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Which problems of set theoretic foundations the
univalent foundations solve and which they do
not attempt to solve 7

1. Univalent foundations do not attempt to solve any pos-
sible consistency issues - the consistency problems in the
univalent foundations are essentially the same as in the
set-theoretic ones.

2. Univalent foundations unlike the set-theoretic ones admit
convenient formalization in the class of languages which
the most advanced proot assistants of today use.

3. Univalent foundations naturally include ” axiomatization”
of categorical and higher categorical thinking.



What is different and what i1s the same in
set-theoretic and univalent foundations.

. As set theoretic foundations the univalent foundations
are "universal’ i.e. can be used for systematization and
formalization of all areas of mathematics.

. Unlike set-theoretic foundations which are formulated in
the language of first order logic the univalent foundations
are formulated in languages of a completely different class
called Martin-Lot type theories.

. Univalent foundations are based on direct axiomatization
of the "world” of homotopy types instead of the "world”
of sets.

. Univalent foundations are formulated in constructive terms.
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A bit of history

1. Multiple attempts to use existing foundations (ZFC -
Zermelo-Fraenkel theory with the Axiom of Choice) as
the basis of formalization of mathematics in the language
of prootf assistants such as Coq all led to very unnatural
constructions.

2.In 1996, Martin Hofmann and Thomas Streicher con-
structed a new semantics for type theory which inter-
preted types not as sets but as groupoids.

3. In 2005/2006 Steve Awodey and his students discovered
the connection between the identity types and factoriza-
tion axioms of the abstract homotopy theory. This led to
the interpretation of identity types as path spaces.
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A bit of history (cont.)

4. At about the same time I introduced the idea of univalent
fibrations and conjectured that there exists a semantics
for Martin-Lot type systems which interprets universes as
bases of the univalent fibrations.

5. In the fall of 2009 I understood how to combine the ideas
of Steve Awodey with my ideas to obtain a far reach-
ing generalization of the groupoid interpretation. It was
eventually called the univalent model of Martin-Lof type
theories.

6. In February 2010 I started to write a Coq library of math-
ematical constructions based on the univalent model. See
http://github.com /vladimirias/Foundations
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What homotopy theory has to do with
foundations of mathematics? 1.

Consider ZFC with two universes (inaccessible cardinals) U1
and U2 such that Ul € U2 and U1 C U2. Let FSets(U1)
be the set of finite sets in U1 and F'Sets(U2) be the set
of finite sets in U2. Then FSets(U1) # FSets(U2) and,

moreover, F'Sets(U1) is not even isomorphic to F'Sets(U?2).

This is a major reason why practicing mathematicians do not
think about F'Sets as about a set. Instead they say, let’s
consider F'Sets(U1) and F'Sets(U2) as categories. Two
categories are " the same” if they are equivalent and F'Sets(U1)

and F'Sets(U2) are equivalent as categories for any U1 and
U?2.



Let’s go one step further. What is then a finite category?”
This notion should be invariant under equivalences so the
only reasonable definition is to say that a category is finite if
all its sets of morphisms are finite and the set of isomorphism
classes of objects is finite.

Consider all finite categories in U1 and U2. These collec-
tions of objects have category structures where morphisms
are functors. But now we’ll discover that the categories of all
finite categories in U1 and U2 are *not™ equivalent since iso-
morphisms between categories define isomorphisms between
their sets of objects and a finite category in our sense may
have an arbitrary large set of objects.



The solution is to consider the collection of all finite cate-
oories as a 2-category. Then, as 2-categories finite categories
in U1 and U2 will be "the same” i.e. will be 2-equivalent.

This construction can be iterated and we come to the con-
clusion that if we want the world of finite sets to be inde-
pendent on the universe we need to introduce categories, if
we want the world of finite categories to be independent of
the universe we need to introduce 2-categories etc.

One of the issues here is that giving a good definition of an
n-category is very non-trivial. Fortunately we do not really
need the whole concept of an n-category for our purpose
since the concept of an equivalence requires us only to know
what are isomorphisms between objects.



What homotopy theory has to do with
foundations of mathematics? II.

A category where all morphisms are isomorphisms is called
a groupoid. As we saw we may consider the collections of
finite sets in U1 and U2 as groupoids where morphisms are
isomorphisms of sets. Then on the next step we will only
need the collection of all finite groupoids which will form a
2-groupoid etc. For the whole hierarchy we will only need
to know a good definition of an n-groupoid.

Remarkably, it is much easier to define n-groupoids than
n-categories due to something called the Grothendieck cor-
respondence.



The Grothendieck correspondence says that up to an equiv-
alence n-groupoids are the same as topological spaces with
no non-trivial homotopy groups m; for ¢ > n up to homotopy
equivalence.

Let us say that a space or a homotopy type has h-level 0
if it is contractible , h-level 1 if the space of paths between
any two points is contractible and h-level n + 1 if the space
of paths between any two points is of h-level n. For n > 2
being of h-level n is equivalent to the condition that w;, = 0
for s >n — 2.

The Grothendieck correspondence allows us to think of ho-
motopy types of h-level n + 2 instead of thinking about
n-groupoids.
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For example we should have a well defined homotopy type of
all finite sets, a well defined homotopy type of all homotopy
types with finite g and m;’s and with m; = 0 for ¢ > 1 etc.

Such homotopy types do indeed exist and can be defined. Up
to a canonical homotopy equivalence they are independent
from the universe structure of the set theory which we start
with.

For example the homotopy type of the groupoid of finite
sets and their isomorphisms is of the form I1,,>( B>, where
B2y, is the classitying space of the group of permutation of
n elements.
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Basics of the univalent foundations

The basic elementary entities in the univalent foundations
are types and terms of a given type. There is definition of
an equivalence between two types ( an equivalence is a term
of a type constructed in a certain way from the two types in
question ). All construction one can syntactically describe
are invariant under the equivalences.

There are enough constructions to define the type of natu-
ral numbers, the type of functions between any two types,
the types of pairs or more generally n-tuples, the types of
equalities between two terms of a given type etc.

There is also, in the standard version an infinite hierarchy
of universes.
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For any n there is a definition of what it means for a given
type to be of h-level n. There is only one (up to an equiv-
alence) type of h-level 0 namely the "one point” type. The
types of h-level 1 correspond to " propositions”, terms of such
types are proofs of the corresponding propositions . Types
of h-level 2 correspond to sets. For example the type of nat-
ural numbers and the type of finite binary trees have h-level
2. The type of finite sets in a given universe is not a set but
a type of h-level 3. Up to an equivalence it does not depend
on the ambient universe.

Similarly there is a definition of an function of h-level n.
Functions of h-level 0 are equivalences, functions of h-level
1 are "inclusions”.
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The logic (intuitionistic one) is formalized in terms of opera-
tions on types of h-level 1 . The set theoretic mathematic is
formalized in terms of structures and operations on types of
level 2. The category theory and more general mathematics
of the "categorical” level is formalized in terms of structures
and operations on types of h-level 3 etc.
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To connect the univalent foundations with the set-theoretic
ones one constructs a model of the underlying type theory
which interprets types as homotopy types. This model maps
type expressions of h-level 1 to homotopy types of h-level 1
i.e. to the homotopy types of the one point set and the
empty set. The types of h-level 2 are mapped to sets and
the types of higher h-levels to the homotopy types of the
corresponding h-levels.

In particular, as one would expect, the type of finite sets is
mapped to the homotopy type Il,,>0B%,.
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Current state of development.

1. The basic properties of weak equivalences, h-levels etc.
have been formalized in Coq.

2. The current approach to the universe management in Coq
is not flexible enough for many of the more advanced and
interesting applications of the univalent approach. I am
talking to the Coq development people about this issues.

3. We have been able to formalize a very important con-
struction - the construction of true set-quotients of types.
This opens the way for the formalization of many areas
of mathematics which were unaccessible to direct type-
theoretic formalization due to the problems with quo-
tients in type theory.
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4. There is a growing community of people working on the
issues connected with the univalent foundations. There
will be a full year program on this topic at the Institute
for Advanced Study in 2012-2013 co-organized by Steve
Awodey, Thierry Coquand and myself. For information
on the program see http://www.math.ias.edu.
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