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”Classic” foundations of mathematics

The only formal foundations we had until now are based on
the Zermelo-Fraenkel theory with the axiom of choice (ZFC).

It was created in the early 20th century before the results of
Goedel at the time when it was hoped that a formal proof
of its consistency will be found.

Thus the main goal of the creators of ZFC was to have a
theory which is general enough and at the same time as
simple as possible to analyze for the purposes of finding a
consistency proof. It was not designed with the purpose of
making formalization of mathematics convenient.
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Problem of equivalence

The key practical problem of ZFC-based formalization of
mathematics can be called ”the problem of equivalence” .

Set-level mathematics is only interested in properties of sets
with structures which are invariant under isomorphisms.

Higher level mathematics dealing with categories and their
higher analogs is only interested in properties invariant un-
der appropriatley defined higher equivalences.

ZFC does not provide any natural approach to distinguish
between constructions and properties which respect equiva-
lences and the ones which do not.
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The problems of equivalence and of consistency
in the univalent foundations

1. Univalent foundations solve the ”problem of equivalence”
both for structures on sets and for structures on objects
of higher levels by making it syntactically impossible to
formulate properties or describe constructions which do
not respect equivalences.

2. Formal consistency of the univalent foundations is essen-
tially equivalent to formal consistency of ZFC. However,
since the univalent foundations are constructive a possible
discovery of formal inconsistency would have a somewhat
different effect on the univalent foundations than on the
ZFC-based ones.
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What is different and what is the same in
ZFC-based and univalent foundations

1. As ZFC-based foundations the univalent foundations are
”universal” i.e. can be used for systematization and for-
malization of all areas of mathematics.

2. Unlike ZFC-based foundations which are formulated in
the language of predicate calculus the univalent founda-
tions are formulated in languages of a completely different
class called Martin-Lof type theories.

3. Unlike ZFC-based foundations the univalent foundations
are intrinsically constructive.

4. Univalent foundations are based on axiomatization of the
”world” of homotopy types instead of the ”world” of sets.
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Two main discoveries which made univalent
foundations possible are:

1. Grothendieck correspondence between infinity groupoids
and homotopy types. It was suggested as an informal
conjecture by Alexander Grothendieck in the 80-ies . The
first proof was given in early 90-ies by M. Kapranov and
myself .

2. Univalent model of Martin-Lof type theory which inter-
prets types not as sets but as homotopy types. I con-
structed it in 2009 using ideas of Steve Awodey and his
students and my earlier concept of the univalent fibra-
tions.
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A bit of history

1. The most famous attempt to systematize all of mathe-
matical knowledge was made by Bourbaki group. Their
key idea was to define mathematics as the study of various
structures on sets. Bourbaki project was highly successful
but encountered two major issues:

(a) Since they used paper publications it was impossible
to back-track and make changes in earlier exposition
which were called for by new developments in mathe-
matics.

(b) The appearance of the concepts of categories and func-
tors undermined their main idea of mathematics as the
study of structures on sets.
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A bit of history (cont.)

2. Later several attempts have been made to use categories
as a basis of new foundations of mathematics. These at-
tempts led to some important and interesting discoveries
but never succeeded in their original purpose of creating
new universal foundations.

One of the reasons was the introduction of 2-categories
and later higher categories which posed the same prob-
lems for category-based foundations as categories did for
set-based ones .

Another reason was that it was not recognized that cate-
gories are not the ”next level” analogs of sets but rather
the ”next level” analogs of partially ordered sets.
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∞-groupoids and homotopy types

As soon as categories are recognized as the next level analogs
of partially ordered sets it becomes apparent that the proper
next level analogs of sets themselves are objects which are
classically know as groupoids - categories where all mor-
phisms are isomorphisms. As one goes to even higher levels
one has to consider 2-groupoids, 3-groupoids etc.

Higher groupoids are much more tractable than higher cat-
egories due to Grothedieck’s insight that the ”world” of∞-
groupoids is the same as the world of homotopy types with
n-groupoids corresponding to so called n-types.

9



Summary : homotopy types and foundations of
mathematics

1. Proper foundations for contemporary mathematics must
provide a way to directly work not only with sets but also
with higher analogs of sets.

2. The objects of set-theoretic mathematics which are most
likely to correspond to ”higher sets” are higher groupoids.
By Grothendieck’s insight groupoids of all levels may be
considered as homotopy types.

3. We conclude that in order to build proper foundations
for contemporary mathematics we need to have a formal
deduction system which can be used to describe construc-
tions on homotopy types and to prove their properties.
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A bit of history (cont.)

In 2005-2006 I started to work on developing such a de-
duction system using as the basis standard constructions of
dependent polymorphic type theory. I understood that uni-
verses in of such type theories are to be interpreted as bases
of special fibrations which I called univalent fibrations and
proceeded to building my own version of constructive type
theory which I called ”homotopy λ-calculus”.

Then in 2009 I discovered that such a deduction system,
or rather a class of deduction systems, already exists and
moreover that a remarkably sophisticated ”proof assistant”
based on one of the languages of this class is being taught
to undergraduates at Princeton CS department!
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Martin-Lof type theories

The deduction systems of the class in question are called
Martin-Lof type theories.

The first system of this class was introduced by Per Martin-
Lof in the 70-ies as a basis for new foundations of construc-
tive mathematics. Two most important for us features of
his theory are:

1. identity types or types of ”intensional equality”, together
with the associated ”induction principle” and ”computa-
tion rules” which are defined for any pair of terms of a
given type X ,

2. a universe U which is used to quantify over types.
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A bit of history (cont.)

It was originally assumed that Martin-Lof theory is some-
thing like a constructive set theory. Types were interpreted
as sets and constructions on types as corresponding con-
structions on sets.

It was soon observed however that it is not a very good
formalization of the world of sets because many of the nat-
ural properties expected from sets were not provable in the
Martin-Lof theory. Adding axioms which made the objects
of his theory to behave more like sets led to the deterioration
of its constructive nature.

Consequently it has not become popular with mathemati-
cians.
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A bit of history (cont.)

The ideas of Martin-Lof found their way into theoretical
computer science in part through Coquand’s Calculus of
Constructions and its extension - Calculus of Inductive Con-
structions .

This later variant of Martin-Lof type theory , more complex
and more convenient for practical use because of its sophis-
ticated machinery of inductive definitions became the basis
for proof assistant Coq - the proof assiatant which is now
taught in the course on programming languages in Princeton
University and in many other leading universities.
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Martin-Lof theory and homotopy theory

The first hint that Martin-Lof type theory may have some-
thing to do with homotopy types appeared in 1996 when
Martin Hofmann and Thomas Streicher constructed a new
semantics for a version of this theory which interpreted types
not as sets but as groupoids.

In 2005 Steve Awodey discovered the connection between the
Martin-Lof ”induction principle” for the identity types and
factorization axioms of the abstract homotopy theory. This
led to the interpretation of identity types as path spaces.

At about the same time I understood that the universe U is
to be interpreted as the base of a universal univalent fibra-
tion.
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A bit of history (cont.)

As I mentioned it all came together in the fall of 2009. Com-
bining the ideas of Steve Awodey on the interpretation of
the identity types with my ideas on the interpretation of
the universes I have constructed the univalent model of the
calculus of inductive constructions.

This model provides a semantics for the Calculus which al-
lows one to use it to do exactly what was needed from the
hypothetical language for new foundations of mathematics
which was discussed above.

In February 2010 I started to write a Coq library of for-
malized mathematics based on the univalent model. See
http://github.com/vladimirias/Foundations/ .
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Some of the key univalent concepts

1. There is a filtration on types , or rather on type expres-
sions, by their ”h-level”.

(a) Types of h-level 0 are equivalent to the one point type.

(b) Types of h-level 1 correspond to propositions.

(c) Types of h-level 2 correspond to sets.

(d) Types of h-level 3 correspond to groupoids.

(e) Types of higher levels correspond to higher groupoids
or, equivalently, to more general homotopy types.
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Some of the key univalent concepts (cont.)

2. Types with decidable equality such as natural numbers,
trees etc. have level ≤ 2 e.g. the usual inductive types
are sets.

3. Typical examples of types of level > 2 are universes.

4. Constructions translated into CIC using univalent seman-
tics are invariant under weak equivalences between types.

5. The univalent model satisfies a new axiom which is called
the univalence axiom. It imposes the condition that the
identity type between two types is naturally weakly equiv-
alent to the type of weak equivalences between these
types.
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Some of the key univalent concepts (cont.)

6. The univalence axiom implies the functional extensional-
ity both for ”straight” functions and for dependent func-
tions. It also implies that two logically equivalent ”propo-
sitions” (types of h-level 1) are equal.

7. The univalence axiom implies that the universe of types
of h-level n has h-level n + 1. In particular, the type
of ”propositions” is a ”set” and the type of ”sets” is a
”groupoid”.

8. The univalence axiom implies similar statements for types
with structures e.g. one can prove using the univalence
axiom that the identity type between two groups is equiv-
alent to the type of isomorphisms between these groups.
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Some of the key univalent concepts (cont.)

9. Unlike many other axioms (e.g. the axiom of excluded
middle), the univalence axiom is expected ”to have com-
putational content”. In other words decidable normal-
ization should be extendable in a certain sense to terms
which involve the univalence axiom. For example there
is the following precise:

Conjecture 1. There exists a terminating algorithm which
for any term expression t of type [ nat ] (natural num-
bers) constructed using the univalence axiom returns a
term expression t′ of type [ nat ] which does not use uni-
valence axiom and a term expression of the identity type
[ Id nat t t’ ] which may use the univalence axiom.
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There will be a full year program on Univalent Foundations
topic at the Institute for Advanced Study in 2012-2013
co-organized by Steve Awodey, Thierry Coquand and

myself. For information on the program see
http://www.math.ias.edu.
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