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Introduction

0.1. Let V' be a complex vector space. A linear operator R: V @ V —
V@V is called a Yang-Baxter operator, if in End(V @V ® V) the equation

R12R13R23 = Ry3R 3Ry,

holds, where, ¢.g., R,, = R®1,,, etc. This equation is called the Yang-Baxter
(or triangle) equation and has many interesting applications in mathematics
[D], [Ji}, and [RTF].

One expects that the study of higher-dimensional generalizations of the
Yang-Baxter equation will eventually lead to a construction of higher-dimen-
sional classical and quantum integrable systems. One such generalization
is known and called the Zamolodchikov tetrahedra equation [Z1] and [Z2].
This equation can be stated in several forms. In one setting (see 1.5) the
unknown of the Zamolodchikov equation is an endomorphism of the triple
tensor product ¥ ® V' @ V. Still more general simplex equations have been
defined in [MS1).

The aim of this paper is to give an overview of Zamolodchikov equations
and to develop a conceptual framework underlying them. A more or less
exhaustive treatment would require a separate book (for reasons to be dis-
cussed). Such a book is now being prepared by the authors [KV2]. This
chapter, though self-contained, can be regarded as a “digest” of this future
book.

0.2. The conceptual framework for Zamolodchikov equations is, in our
opinion, provided by the theory of 2-categories [Be], [G], [E], and [KS]. (For
Yang-Baxter equations the corresponding conceptual clarification is obtained
by means of the “usual” category theory.)
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Informally, 2-categories differ from usual (or 1-) categories in that they
posses more structure, namely morphisms between usual morphisms (ar-
rows). These new morphisms are called 2-morphisms and can be thought
".of as 2-cells or homotopies.

The most important feature of 2-categories is that an algebraic expression
in them has the “shape” of a subdivided plane polygon (see 2.13 for more in-
formation), whereas the only feasible algebraic expression in a usual category
is the composition of a string

¢ 0500 — @

of n consecutive morphisms which has the shape of a subdivided segment.
The commutative diagrams in 2-categories have therefore the shape of bound-
aries of convex polytopes in R’ , etc. Thus 2-categories can be seen as be-
longing to the realm of a new mathematical discipline which may be called
two-dimensional algebra and contrasted with the usual one-dimensional al-
gebra dealing with formulas written in lines. This point of view was, to
our knowledge first advocated by Brown [Br]. A natural generalization of 2-
categories— n-categories [Br] and [S]—give a way to develop n-dimensional
algebra.

The two-dimensional algebra of 2-categories matches, in a nontrivial way,
the “spatial complexity” of the Zamolodchikov equations (it is not easy nor
illuminating to even write these equations without using some pictorial no-
tation). This is why we believe that the language of 2-categories is useful for
the problem at hand.

0.3. We develop a theory of monoidal structures in 2-categories and of
braidings (or quasi-symmetries) of these monoidal structures. The axiomat-
ics of braidings involves convex polytopes which we call resultohedra. They
first appeared in the paper of Gelfand, Kapranov, and Zelevinsky [GKZ] as
Newton polytopes of the classical resultant of two polynomials.

The relevance of n-categories to n-dimensional generalization of Yang-
Baxter equations was suggested by Manin and Schechtman in [MS2], devoted
to structures motivated by these equations. They also considered the special
convex polytope which we call a permutohedron (the convex hull of a generic
orbit of the symmetric group S, in R").

Our interpretation of Zamolodchikov tetrahedron equation is the com-
mutativity of a three-dimensional diagram in a 2-category having the shape
of a permutohedron (§6). (The two-dimensional permutohedron is just the
hexagon often used to express the Yang-Baxter equation.) Our main re-
sults, Theorems 6.11 and 6.14, say that any braided monoidal 2-category
gives rise to a solution (in fact, many solutions) of the (abstract version of)
the Zamolodchikov equations, and, conversely, every solution gives rise to a
braided monoidal 2-category.

The usual matrix formulation of the Zamolodchikov equation is obtained
by choosing a special example of a monoidal 2-category, namely 2-vector
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spaces, studied in §5. The idea of 2-vector spaces was induced by the notion
of modular functor in conformal field theory [Se] and [Mo-S]. They are a
convenient means for “domestication” of 2-categories. Another idea leading
to 2-vector spaces is that of “vectorization™ of tensor equations (such as the
Yang-Baxter equation, the associativity condition for the tensor of structure
constants of an algebra, etc.). The vectorization procedure consists of replac-
ing the entries of a tensor with vector spaces instead of numbers and then
mimicking tensor operations by replacing + with @ and x with ®. Both
sides of a tensor equation then become collections of vector spaces, and the
condition of coincidence of entries is replaced by isomorphisms of the cor-
responding vector space entries. These isomorphisms are unknowns of the
new, “vectorized” equation. The new equation itself is obtained as a natu-
ral compatibility condition for the isomorphisms in question. Thus we show
that tetrahedra equations can be obtained as the vectorization of Yang-Baxter
equations (6.9).

As one of the applications of our categorical approach to the “usual”
Zamolodchikov equation, let us mention Corollary 6.15, which gives for any
solution § € End(V'® V' ® V) of this equation its “tensor power” S, which

2
acts in the triple tensor product of y®™) and also satisfies the equation.

0.4. The outline of the paper is as follows. Section 1 is a detailed overview
of various versions of Zamolodchikov equations, their interrelations, and
known examples of solutions. One reason for doing this is that different
authors often mean by tetrahedra (or simplex) equations different things [Z1],
{Z2}, [MS1], and [FM]. We also give in 1.12 an overview of solutions to
Zamolodchikov equations.

Preparatory §§2 and 3 present mostly known material on monoidal cate-
gories, 2-categories, and abstract Yang-Baxter equations. This material will
provide the “1-skeleton” of the theory of §§4-6, so in a sense everything
emerges very naturally out of careful rethinking of these well-known con-
cepts. To systematize writing various compatibilities, we introduce certain
“hierogliphical” notation (see 2.1) whose advantage increases with the com-
plexity of situation.

Section 4 is devoted to the notion of a monoidal 2-category. In §5 we study
the monoidal 2-category of 2-vector spaces. In §6 we give the interpretation
of Zamolodchikov equations and prove our main results.

0.5. In order to understand the nature of complications and possibilities
offered by 2- and n-categories it is very useful to keep in mind the following
intuitive principle.

MAIN PrINcIPLE OF CATEGORY THEORY. In any category it is unnatural
and undesirable to speak about equality of two objects.

This principle, though rarely formulated explicitly, was the driving force
for all studies of coherence problems in categories, starting from the work
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of Mac Lane [Macl]. It can be derived from work with categories most
commonly arising in practice, such as the category of all sets or groups, etc.
Indeed, what does it mean that two sets (or, say, two topological spaces) are
equal? By definition, we can speak about equality of two elements in a given
set, but the notion “set of all sets” does not make sense! So the notion of
equality of two sets is meaningiess.

On the contrary, it is quite legitimate to say that two objects of a category
are isomorphic, and we can be so pedantic as to want to specify an isomor-
phism. For example, for a finite-dimensional vector space V the double dual
V** is not equal to ¥ but canonically isomorphic to it.

In a 2-category l-morphisms between two objects form a usual category.
Thus the Main Principle implies that it is unnatural to speak of equality of 1-
morphisms. In particular, the associativity of composition should be replaced
by canonical 2-morphism (homotopy) between a(bc) and (ab)c (which is
also a part of the structure). Such a notion of a lax 2-category was introduced
by Benabou [Be] and encompasses the usual notion of a monoidal category.
To define a similar (“lax”) notion of n-category is a daunting task proposed
by Grothendieck [Gro]. It seems that thé appropriately developed formalism
of hierogliphs (see 2.1) will be helpful in attacking this problem.

-Thus lax n-categories (in situations when it is possible to define them)
have a lot of structure which is not all apparent at first glance. This is the
origin of many difficulties in the subject and the necessary length of every
“honest” exposition.

On the other hand, it is possible to develop a theory of strict n-categories
in which all necessary relations hold exactly, not up to some connecting poly-
morphisms. This has been done in various versions [S] and [Br]. It is pos-
sible also to develop the theory of n-dimensional algebraic expressions in
such n-categories [J] and [P]. In some instances the consideration of strict
n-categories may be justified by a suitable coherence theorem.

We also follow this trend, but only partly. In fact, in our interpretation
of Zamolodchikov equations and in the definition of a 2-braiding it is the
laxness which gives rise to the most meaningful data.

0.6. For several reasons we do not go beyond (monoidal) 2-categories
and tetrahedra equations. First is the absence of a satisfactory theory of
lax n-categories. Second is the possibility of actually drawing pictures of
3-dimensional polytopes, which is lost in higher dimensions. Third is the
absence, at the moment, of interesting solutions of higher simplex equations.

We also have tried to reduce to a minimum the parts related to “pure” the-
ory of 2-categories. Thus we refrained from defining (monoidal) 2-functors,
etc. Such preparations, however, are necessary for coherence theorems (that
any “lax” structure is equivalent, in a suitable sense, to a strict one), and they
will be carried out in detail in [KV2]. A more interesting development omit-
ted with the “abstract nonsense” is the interpretations of Majid’s construction
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of duals and quantum doubles for monoidal categories [Majl]. The quan-
tum double construction makes a braided monoidal category D(%) from any
monoidal category & . From the polycategorical point of view, a monoidal
category is a 2-category with one object and a braided monoidal category—
a 3-category with one object and one I-morphism (see 2.10, 4.2). Majid’s
construction turns out to be a particular case of a general principle that the
collection of all n-categories forms an (n -+ 1)-category. This leads to certain
generalizations of quantum double which will also be studied in [KV2].

0.7. An approach to higher-dimensional algebra different from that of n-
categories is being developed by Lawrence [Law]. Her approach is based on
a direct axiomatization of the structure existing on the vector space of n-
valent tensors (whereas in our theory tensors surface on the very last level as
2-morphisms in the 2-category of 2-vector spaces). It also leads to polytopal
pictures and is related to tetrahedra equations.

We have been recently informed by L. Breen that he has some time ago
already suggested a definition of a braided monoidal 2-category (in an unpub-
lished letter to P. Deligne). His definition is rather close to ours, although it is
restricted to the case of a strict monoidal structure (see §4) on the underlying
2-category and so cannot be directly applied to Zamolodchikov equations. A
still more restrictive version of the notion of a braided monoidal 2-category
was considered in {JS2].

0.8. We are grateful to Shahn Majid who turned our attention to the fact
that triangular diagrams for usual braidings are more fundamental than the
Yang-Baxter hexagon and inquired about higher-dimensional generalizations
of this fact, thus giving an initial impetus to this work. We would also like to
thank I. Frenkel, D. Kazhdan, S. Mac Lane, V. Schechtman and J. Stasheff for
discussions of the work at various stages. To Professor Mac Lane our special
thanks are due for suggesting numerous improvements and corrections to the
previous version of this paper. We also are indebted to J. Fisher for pointing
out several misprints and grammatical mistakes.

1. Yang-Baxter and Zamolodchikov equations

1.1. The constant Yang-Baxter equation. Let ¥ be a complex vector space
of finite dimension. The Yang-Baxter (or triangle) equations (see [Ji] for
general information) are equations on a linear operator R: V@V - VeV.
Fixing abasis e, ..., e, in V', we identify R with its set of matrix elements

RZ’ given by
ki
R(e;®e) =) Rje ®e.
k.1
The equations themselves have the form

(1-1) R RanRs = RasRusRiy)-
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Here R(ab) is the operator in V ® V ® V' acting as R on the ath and bth
factors and by unity on the remaining factor. For example,

(1-2) Ryzle;®e;®¢)=) Rile ®e e,
pP.q

In terms of the matrix elements Rg the equations have the form
(1 3) A1 1 Ny o 41 " I l

> RLE R Rw m= > R RIE Riden Vi, j ki, k.
l” e k" i ,]II k"

Let P: V®V — V @V be the permutation. Equation (1) is equivalent
to the following equation for the operator R = PR:

(1-4) R 15 R3)R gy = R(zs)R(lz)R(zs) ;

which is sometimes also called the Yang-Baxter equation.
ExampLE. The constant Yang-Baxter matrix corresponding to the quan-
tum group GL(n) is the endomorphism of C" ® C* given by

(1-5)  R= qZE ®F;+y E,®E;+(@—q )Y E,QF;
i#j J>i

Here E,; ; € End(C") are matrix units and ¢ # 0 is a complex number. See
[Maj2], [RTF], and [T] for more details.

1.2. Geometric interpretation. The name “triangle equations” comes from
the following geometric interpretation via statistical models (see, e.g., [T]).
Let us consider unordered configurations I" = (/;, ..., 1) of oriented lines
in the Euclidean plane R*. We restrict ourselves to conﬁguratmns of general
positions, i.e., such that no three lines have a common point and no two
lines are parallel. Each line is divided by the points of intersection with
other lines into several segments of which two are unbounded and others are
bounded. The points of intersection of the lines will be called the vertices of
the configuration, see Figure 1.

X

- Segments

/

Figure 1

Suppose also that we have a finite set of “colors” which we can think of as
numbers 1,2,..., n. We shall study various coloring of segments in I".
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More precisely, by a state of I” we mean an assignment of colors to all the
segments of I', i.e., a map

{segments of I'} — {1, ..., n}.

By an infinite state we shall mean the coloring of only the unbounded seg-
ments. Suppose now that we have a linear operator R: C" ® C" - C" @ C" -
or, what is the same, a collection of numbers R;‘} s i, j,k,l=1,...,n. Let
us associate to any state ¢ a number E(o¢) which might be loosely called its
energy (or, rather, Boltzmann weight, i.e., the exponent of the energy) by the
following rules:

(1) E(o) =]I,E,(0) where v runs over all the vertices of T".

(2) Let v be a vertex of ' so that v = [,nl,. Then there are four
segments adjacent to v, two of them “incoming” and two “outgoing”
(see Figure 2).

E(0)=R{

lb
Figure 2

We order the two oriented lines /_ , /, such that the orientation given by

them coincides with the chosen orientation of R?. Suppose that the colors on

the incoming segments are / and j (in the said order) and on the outcoming

—k and [ (with the same convention about the orders). Then we define
k!

E (o) =R; ;-

By the general principle of statistical mechanics the probability with which

each state ¢ occurs in the actual behavior of the statistical system equals the

contribution of ¢ into the partition function
PN) =Y E(o).
g

We introduce also the conditional partition function corresponding to a given
infinite state o_:

P, 0,)= Z | E(o).

g 0=0, at oc

Now the Yang-Baxter equation for ]|Rif{

;1 can be interpreted as the equality
of the following two conditional partition functions depicted in Figure 3 (see

next page).
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I

Figure 3

In words, we move one of the lines constituting the triangle in the left-hand
side across the point of intersection of two other lines, obtaining the picture
on the right. (Note that it does not matter which line is moved—the resulting
picture will remain the same!) This movement identifies the sets of infinite
states for the old and new configurations, and the conditional partition func-
tions with respect to these two states are required to coincide.

If R satisfies the Yang-Baxter equations, then we can deduce the coinci-
dence of more complicated partition functions. Namely, let I" be an arbitrary
configuration of lines of general position and o, its infinite state. Consider
another configuration I obtained from I' by moving each line arbitrarily
parallel to itself with the only restriction being that I” should also be in
general position. Then infinite segments of " and I”, and hence the sets
of infinite states, are in natural bijection. Let 0;0 be the infinite state of I”
corresponding to o .

1.3. PROPOSITION. If R satisfies the Yang-Baxter equations then P(T', g_,)

=PI, aéo).

PRroOOF. We can always restrict ourselves to the case when all lines but
one are unchanged. Let / be the line which moves. During the process of
moving, the topology of the configuration will change when / passes through
intersection points of other lines. So it suffices to prove that our partition
function remains unchanged after passing such a point, say / , N1, . But this
is done by applying the triangle equations to the small triangle formed by
L1,1. '

1.4. Yang-Baxter equations with parameters. Equation (1-1) is known as
the constant Yang-Baxter equation. Equally important is the setting where
the entries of the R-matrix are assumed to be functions of some auxiliary
parameters. More precisely, we choose an arbitrary set X of parameters
(usually R or C) and consider the unknown of the equation to be a function
R(x,, x,) of two variables x,, x, € X with values in ¥ ® V. The equation
itself has the form

Ry15)(%1 5 X)R 13 (xp, X3)R 33y (X, 5 X;)

= Rp3)(%g > X3)R13y(Xy s X3)R 15(%, , X5).

(1-6)
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A still more general setting is that of a Yang-Baxter system in a monoidal
category (see §3).

In most examples, as we have stated, the parameter set X coincides with R
or C, and x; are thought of as slopes of lines in the geometric interpretation
above. The interpretation via statistical models remains the same for variable
Yang-Baxter equations, except the local Boitzmann weight E (o) at a vertex
v depends on the slopes of two lines intersecting at v .

In fact, very often the specialization of the setup goes one step further in
that not only the parameters X; are supposed to be real or complex numbers,
but it is assumed that R(x,, x,) depends only on one variable u = x, — X, .
The equation in this case has the familiar form

(1-7) R 1) ()R 13y (V)R 53)(V — ) = R53(v — u)R 3 (V)R ;5 (10).
As an example let us mention the classical Yang solution
(1-8) R(z,, z,) =(z; = z,)I + nP

where I is the identity operator of ¥ ® V' and P is the permutation.

1.5. Statistics on a configuration of planes in R®. Consider an ordered con-
figuration I' = (H,, ..., H,) of planes in the Euclidean 3-space R’ (note
that for lines in the plane we did not use the ordering). We assume that T’
is in general position, i.e., that the intersection of any i planes, i =2, 3, 4,
has codimension exactly i (codimension 4 is achieved by only the empty sub-
space). The planes of configuration are subdivided into vertices (points where
exactly three planes meet), segments (where exactly two planes meet), and
faces. The space R? is subdivided by the configuration to three-dimensional
parts called regions. By an orientation of T" we will mean a collection of ori-
entations (i.e., choices of directions) of all the lines of intersection H; N HJ .
Since planes are numbered, lines acquire the natural lexicographic order:
H;NH; precedes H, N H, ifi<kori=kand j<lI.

There are several possibilities of defining a statistical model out of an
oriented ordered configuration I'. For example, one can color faces, or seg-
ments, or regions. The basic choice for us will be to color the segments (see
Figure 4, next page).

Thus, similarly to the above, a state (resp. infinite state) is a map from the
set of all segments (resp. only infinite segments) of I" to {1,...,n}. To
every vertex v of configuration I', six segments are adjacent, three of them
incoming and three outgoing with respect to our chosen orientation of lines.
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i

in )
113
Figure 4

Thus we set the datum (or the set of unknowns) for would-be tetrahedra

equations to be a 6-valent tensor S{l ',-’;2,-’; ', i,,j,=1,..., n,with three upper

and three lower indices. In more invariant form this is a linear operator
S:VeVeV -VeVeV

in the triple product of the vector space ¥ = C". Since we suppose hyper-
planes to be numbered, it is convenient to number lines of intersection of
hyperplanes by pairs of indices i.e., label H;N HJ by the pair (i, j). Thus it
will be more natural to denote indices of S not by i,, i,, i; and j;, Jj;, J;
but by i,, i3, ip; so thatindex i, is being written on the incoming seg-
ment of the line H, N H, in the configuration {H,, H,, H,}, in Figure 4.

Let v=H,NH,NH ,a< b < c, be a vertex. Suppose we have a state
o. Let the colors given by ¢ on the incoming (to v) segments of lines
H,NH,, HNH , HNH, be respectively i, , i,., i, and the colors on
the outgoing segments of these lines be j,, , j,.» J, respectively. We define
the contribution of the vertex v to the Boltzmann weight to be

E (o =S{'ab:{'a:-_jbc
'U( ) 'ab’lac’lbc

and the Boltzmann weight itself to be E(o) =[], E, (7).

Similarly to the case of plane configurations we define the conditional
partition function P(I", g, ) with respect to a given infinite state (= coloring
of unbounded segments of I').

1.6. Zamolodchikov equation (colors on segments). The Zamolodchikov (or
tetrahedra) equation is most simply stated in the geometric form in Figure 5.
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Figure 5

Here on the left we have a configuration of four planes (H,, ..., H)) (tetra-
hedron) which has four vertices v, = HynH,NnH,, v,=H, nH nH , etc.

Lines are oriented to be directed from v; to v; where i<j. On the nght
we have the configuration obtained by moving one plane across the intersec-
tion point of three others (as in the case of triangles, it makes no difference
which of the four planes we move). Lines of the right configuration are in
natural 1-1 correspondence with lines of the left one, and we orient them by
this correspondence. The sets of unbounded segments of both configurations
are also naturally identified (by considering the “directions” of segments),
and thus we.can compare the conditional partition functions. The equation
means the coincidence of these functions.

In terms of the matrix elements S,’ “,’ ",’  the equations are

Skzs'ku s 345'112 "‘23”‘145112’114’ 24S112 Jizedas

UYSE YL Vg PO SV PR PN PR e Y V08
(1 9) kiyokyyakygsbyy by by
—_ E : S 120 lsrkzsshzv sk Shs-lxu uSlzs»szlu
iaslizsiyy TRyysdigabag Vhyy kg iy Yoy kg kgt

klZ’kIS’kl4’k23’k24’k34

This equality should hold for any i ,,j,, 1 <a<b<4.

1.7. Operator formulation. In both sides of (1-9) we have tensors with six
upper and six lower indices. Thus to give an operator interpretation of the
equations we should consider operators in the 6-tuple tensor product Ve,
To obtain a transparent formula, it is convenient to label factors in this
sextuple tensor product by pairs (a, b), 1 < a < b < 4. We shall denote

the set of such pairs by (‘2‘) and our sextuple tensor product by yei) to
emphasize labelling of factors. Introduce on (;) the lexicographical order
(12) < (13) < (14) < (23) < (24) < (34).

We have already used notation such as R,; for an operator R €
End(V'®V) which acts on the first and third factors of V®V @V (formula (1-
2)). In the same spirit, given an operator S € End(V ® V' ®@ V'), for any triple

of pairs ((a,, b)) < \(az, b,) < (ay, by)) we denote by S(al’bl)’(al'b?_)'(a:i’b3)
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the operator in ¥®3) which acts on factors with labels (q;, b;) as S and
on all other factors by unity, for example S(12) (14),24)- 1O simplify the
formulas we introduce the following notation for some 3-element subsets of

(2):

1={(23), (24), (39)},  2={(13), (14), (34)},

3={(12), (14), 249},  4={(12), (13), (23)}.
In other words, i is the set of all pairs not containing i. We consider each
of these triple of pairs to be equipped with the lexicographic order (in which
they are written above). Correspondingly, introduce the notation S; for the

operator in V®(;) acting on factors with labels from 7 as S and on all other
factors as unity. For example, S5 = S(1 3),(14), (34) » StC-

In this notation the Zamolodchikov equation can be written as the follow-
ing equality between operators in V®(;) :

1.8. Equation with parameters. As in the case of Yang-Baxter equations,
the above setup for Zamolodchikov equations can be generalized to include a
dependence of the tensor S € End(V® V' ® V') on some parameters. As with
the placement of colors, the parameters can be associated with vertices, seg-
ments, etc. We choose the basic setup to be where parameters are associated
with planes. Thus we assume S depends on parameters z,, z,, z; € X,
where z; is associated with the ith hyperplane in the simplest configuration
(H,, H,, H;) of three planes.

The physically interesting choice is X = RP? , the real projective plane
(the set of “directions” of affine hyperplanes in R3). In this case it is also
natural to require that S(L,, L,, L,) remain unchanged under simultaneous
rotation of L,. This is tantamount to the requirement that S depend only
on the three plane angles 6, ; between planes L; (cf. [Z1] and [Z2]).

The variable tetrahedra equation can be obtained from (1-9) by considering
six parameters 2;;, 1 <i<j <4 and letting each factor S (corresponding
to a vertex of the tetrahedron) depend on the three variables associated to
planes meeting at this vertex, i.e.,

Si(245 25, 24)S5(2, 5 24, 2,)85(2,, 2,, 2,)83(2,, 25, Z,)

(1-11)
=832, 25, 23)83(2,, 25, 2,)S5(2,, 25, 2,)51(2,, 23, 2,)-

1.9. Zamolodchikov equations (colors on faces). Let us now discuss other
options of coloring parts of configurations. By coloring 2-faces we obtain
that a collection of Boltzmann weights at a vertex will be a tensor with 12
indices, since three planes intersecting in a point have 12 faces, 4 in each
plane. Thus the set of unknowns is a tensor

o2l i
Ly iy Iy s
Is1 133 I3z I
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where the first index (1, 2, or 3) refers to the number of a plane and the second
to the number of a quadrant in the plane. We always number quadrants
uniformly. More precisely, let H,, H,, H,, a < b < c, be three planes of
configuration. Since we assume lines of intersection to be oriented, in.each
of the three planes two other planes cut a pair of oriented lines which are
ordered (lexicographically). Then the numbering is as follows in Figure 6.

Haan A Hbch A HCme
3 1 3 1 3 1
4 | 2 |HynH, 4 | 2 | HpnH, 4 | 2 |H.nH,
H, Hy H.
Figure 6

This is exactly the setup considered by Zamolodchikov [Z1] and [Z2]. To
write the tetrahedron equation for X, we introduce a labelling of the plane
regions cut out in R? by three ordered lines [, /,,/;. This labelling is
depicted in Figure 7.

Figure 7

In other words, we choose affine-linear functionals f; defining /; in such
a way that the value of f; on the point of intersection of two other lines
1 N I, equals 1 and the sequence of signs associated with a region is given
by the values of f, f,, f;. The sequence (— — —) does not occur. For a
configuration H,, ..., H, of four planes in R® we label the 2-faces of the
plane H; by sequences lie a + ++, a + +—, etc., always referring to the
lexicographic ordering on the three lines cut out by the other planes on H, .
Correspondingly we denote by, say, the color associated to the face
1+ ++ (the interior triangle in H,).

g
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The tetrahedron equation for this setup has the form

|

I l_2+++ l_2++— l_2+-—+ l_2+————
Bf Z z l_3+++ l_3++—- l_3+-—+ l_3+——
ii LY, P L VRO e l4+++ l4++_ l4+._+ l4+__.
i

i

l_1+++ l.1++-— L pr— {1+—-—

XX R VIR S NI VI
lpmrr Uprr Mg g
LS TR} IFIPRR NI
xZ l_2—-++ l_2+++ l_2—+— l_2++—
Loy lap—t layy lages
S IR PRI AP,
x X B TR S SW.
N5 U RNV SR T
(1-12)
Dats ’:1—++ et he—s
= Z ) Disr legr M4y by
il+++'i2+++'i3+++'i4+++ 13+++ l3._.++ l3+_+ 13__.+
l_i++—- l:l—+— l:1+++ l_l-++
xZ l.2++-— 1.2—+— 1.2+++ 1.2—++
lavi+r la—str lap—y Yy
Hpmee ’:1++— v higas
xZ l_3++—- l_3—+— l‘3+++ l_3—++
lgpre ey lager lags
l.2+‘—— 1.2++— l.2+—+ ‘_2+++
x Z {3+—— l.3++—— I_3+—+ 1.3+++ .
lapme lai Mgy lggas

‘ 1.10. Zamolodchikov equation (colors in regions). In a similar fashion we
can describe the version of tetrahedra equation where colors are associated
with three-dimensional regions cut out by a configuration.  Three planes
H,, H,, H, cut the space into eight octants. Since we assume planes num-

1 bered and the lines of their intersection oriented, we can label each octant

3 unambigiously. by a sequence of three signs (+) or (—). Namely, let K be

i any octant. We set the first of the three signs associated with X as (+) if

!

K lies on the same side of H, as the direction of line H, N H;, and (—)
otherwise. Similarly for the second and third components, see Figure 8.
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~++)

Figure 8

Thus the unknown in the region-colored Zamolodchikov equation is a col-
lection of #n® numbers:

{

Wi i

FUWIY FUTIPY SR AP P PR SR S B

We always consider the combinations of (+) and (—) in the order specified
above. To write the equation itself we label the regions of the complement to
four planes H,, ..., H, by sequences of four signs (+) or (-). We choose
an affine functional f, vanishing on H, and equal to 1 at the intersection
of three other planes and associate with a region K the sequence of signs of
Jis fys £, £ on K. Correspondingly we denote by, say, i +1—4 the index
(color) associated with the region (++—+). In this notation the tetrahedron
equation has the form

(1-13)
Z Wl s s T b By Loy )
Dbt
SR USPAARY SR SNINPE SIIPY SUNNNS MNP P NN
XW s b by s Ly iy s bpg)
XW_ il il ol ol ol bl i)

= Z Wi L LAV FUNEAPY AR SRIAPE SEPY S

LI

X W('+++— JLFSIPR FURFUE SURUMS Y I S l—-—++)
x W(l++—— RSV SIS AR SR R SRR S
x W(l+——— R IR VNI NN AR RS NP SR )

This equation was called by Baxter [Bax] the interaction round the cube equa-
tion since the decomposition of R® dual to the decompostion given by ver-
tices, segments, faces, and regions of four planes can be viewed as consisting
of four cubes. In fact, the two groups of four cubes each corresponding to
two tetrahedra in the left- and right-hand sides of the equation form together
the boundary of a four-dimensional cube.
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1.11. Relations between various settings. The scheme of interrelations be-
tween three versions of the tetrahedra equations defined above can be ex-
pressed as follows:

region version C face version C segment version.

More precisely, given a solution of a region-colored equation, we can con-
struct out of it a solution of face-colored and segment-colored equations as
follows.

Note that the colors in our statistical model can be elements of an arbitrary
set which should not necessarily be identified with {1, ..., n} for some n.
Suppose we have a solution
iy i3 i,

b lp a3 I

31 I3 U3z I3
of face-colored Zamolodchikov equations with the set of colors 7. Define
a new set of colors J = I* = I x I x I x I. Elements of this set are just
4-tuples of old colors. Let us assoctate these new colors with segments in
such a way that the (new) color of a segment is equal to the collection of
the (old) colors of four faces containing this segment. Consider three planes
H,, H,, Hy. Define the Boltzmann weight S’g"ﬁz"93 for a,,f, € J to
be 0 xf the combination of new colors on segmcnts does not come from a
combination

i

Iyp I3y I3z Iy
of old colors on faces of (H,, H,, H,). In the case when the new coloring
of segment does come from such a coloring we set
bbby _ s ;_11 ;xz ;13 ;14
ay,ay,a, 21 ‘22 Pz i
Iyg I3 I3z I3
It is straightforward to see that the face-colored Zamolodchikov equation
(1-13) for
VLY
| by iy by iy
Iy I3 I3z I3

implies the segment-colored equation (1-9) for Sf L f: f : ,

1.12. Known solutions. (a) Zamolodchikov has constructed [Z1] and [Z2]
a highly nontrivial solution of a face-colored equation including parameters
which are angles between planes. In fact, as remarked in [Bax] this solu-
tion comes from a solution of a region-colored equation (1-13) by using the
rewriting procedure described above. Matrix elements of Zamolodchikov’s
solution are trigonometric functions of plane angles.
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(b) Manin and Schechtman constructed [MS1] a constant solution of tetra-
hedra equations with colors in regions. Their construction is as follows. Sup-
pose that the set I of colors forms a finite Abelian group. The operation in
I will be denoted +. Let 2 € I be such that 24 = 0. Define the matrix
element

Wi i, i i i i

FUE SR NP NP SR SRR SPS S

to be equal to zero unless in the group I we have the equality

i___=h+i

P, P R L SRR S ISk S S

When this equality holds, the matrix element is equal to 1.

(c) It was remarked by one of the authors (M. K.) that an infinite-dimen-
sional solution of the segment-colored equation can be obtained from the
representation theory of the ring of functions on the quantum group GL(n)
developed by Vaksman and Soibelman [VSo], [Se]. By definition, this ring,
denoted C[GL(n) q] , has generators x,., 1 <1i, j < n, subject to relations

ij?
XXy =4 XyX;;, ji<li,
X;iXpj =4 X %55 i<k,
Xp i Xip = XXy j» i<k,j<l,
[xij,xk1]=(q—l—q)-xij,.k, i<k,j<l.

This ring is a Hopf algebra under the comultiplication A(x;;) = Exip ®X,;+

Vaksman and Soibelman have constructed in [VSo] an infinite-dimen-
sional representation of C[GL(2) A in the vector space V' with basis ¢;, i =
0,1,2, ..., which can be given by

xpe;=(1-9")e_,, X928 = €
1

N i+
Xn€ =4¢€;, X126, =4 &

i+1?

There are two ring homomorphisms ¢,,, ¢,3: C[GL(3),] — C[GL(2) ]
defined by
NET ifi,j<2,
¢12(xij )= { 0 otherwise,
Xy, ifi,j22,

bl =1}

They correspond to the two embeddings GL(2) ¢ GL(3) in the classical
case. By means of these homomorphisms one constructs, out of V', two
representations V,,, V,; of C[GL(3) J- It is the basic fact of the theory
of [So] that the two representations ¥V, ® V,; ® ¥}, and V,, @V}, ® V,,
of C[GL(3) q) (with ® defined by means of the Hopf algebra structure) are

otherwise.
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irreducible and isomorphic. Denote by ¢; the basis in V), and by f; the
basis in V,,. Let

. be
S: V0038V, = Vy38V,0V,,, S(e;®f,0¢,) = Z S?jkfa@’eb@fca

a,b,c

be the intertwining operator taking e ® fr®€, to f,®e,® f (the “high-
est weight vectors”). Consider the tensor So Py, = HS,‘:?,.CI[ , where P, is
the permutation of the first and third factors. Then this tensor satisfies the
Zamolodchikov equation (1-9) or (1-10). This follows from the interpreta-
tion (via Soibelman theory) of operators in both sides of equation (1-10) as
isomorphisms between two irreducible representations of C[GL(4),]. An
explicit formula for S is as follows:

e TP o o [ i ; .
S;zjl;cc - Z q(l 1) +H{a—c—-i)A+(a+c+i+2j—Vu+i(c—J) [ ] z [l}t] 2 [a+1’ a+z—l],
q q

0<ALi A
0<u<j
A—p=i—b
where
m,n]=(1-g")1-¢"+- +(1-¢",
and
Nl _ [1, N]
alp [1,alll, N-d]

is the g°-binomial coefficient. The solution (1-14) acts in an infinite-dimen-
sional vector space V' . Detailed study of this solution and the finite-dimen-
sional solution arising from it when g is a root of unity will be carried out
in another paper.

(d) Frenkel and Moore have defined [FM] a still different version of the
tetrahedra equation. The unknown in the Frenkel-Moore equation is, sim-
ilarly to the segment-colored version of Zamolodchikov equation, a linear
operator S: V@V ®V —- V@V ®V, but the equation has the form of
equality of two operators in y o s

(1-15) §123512451345234 = 52345 13451245123 >

whereas the Zamolodchikov equation requires equality of two operators in
V'®8 . We do not know how to interpret (1-15) by using a tetrahedron.

Frenkel and Moore have constructed in [FM] a solution of their equation
depending on a complex parameter ¢, similar to (1-5).

2. Monoidal categories and 2-categories

2.1. Hierogliphic notation. We shall encounter monoidal categories,
(monoidal) 2-categories, etc. The structure data and axioms for them in-
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volve a lot of diagrams. We find it convenient to label them by certain pic-
tures, which we call “hierogliphs”. Each notion requires its own system of
hierogliphs. With a hierogliph it is easy to write the corresponding axiom.

Let us illustrate this approach first on the simplest example of the notion of
category. The hierogliphs will be constructed of three basic elements (which
are also hierogliphs): e, —, and I (from “identity”). The hierogliph (e)
means that a category has a set (class) of objects, (—) that it has a class of
morphisms, and (I) that each object has the associated identity morphism.
Composite hierogliphs encode the composition structure in a category. Thus
(——) means the axiom that morphisms can be composed, (I —) and (— 1)
that the identity morphisms are left and right units with respect to this com-
position, and (———) that the composition of morphisms is associative.
More complicated hierogliphs such as (————) will not occur in the defi-
nition of category (since the associativity of the product of four morphisms
follows from that for three morphisms, etc.), but they will surface in the
definition of a 2-category.

For monoidal categories the hierogliphs will be constructed from symbols
o, 1, —,;—— as their unbracketed tensor products. For example, ¢® 1® —
is a hierogliph. The following definition of a monoidal category is, of course,
equivalent to the standard one [JS2], [FY], [Macl], and [Mac2]. The level
of detail and authomatism provided by hierogliphs will be indispensable in
working with (braided) monoidal 2-categories in §§4-6.

2.2. DeFINITION. Let & be a category. A monoidal structure on &/ is a
collection of the following data:

(1) An object 1 =1, € Ob&/

(e ®e) For any two objects 4, B € &/, a new object A® B

(— ® o) For a morphism u: A — 4 and an object B, a morphism
u®B: A®B—+ A ®B

(» ® —) For an object 4 and a morphism v: B — B', a morphism
A®V:A®B - A®B

(e ®e®e) For any three objects 4, B, C , an isomorphism ay gc-A®
B®C)—(A®B)’C

(1 ®e) For any object A, an isomorphism /,: 1@ 4 — 4

(e ® 1) For any object 4, an isomorphi.sm rgA®1— 4

These data should satisfy the following conditions: ,

(- ® —) For any two morphisms u: 4 — 4, v: B — B’ we have
(u®BYA®v)=(4'®Vv)®ueB). ,

(— — ® o) For any pair of composable morphisms A4 - 4’ % 4" and
an object B we have (#'u)® B = (' ® B)(u® B).

(¢ ® — —) For any object 4 and any pair of composable morphisms
B-5 B 25 B" wehave A® (vv') = (4@v)(4®v').

(The first three conditions just express in detailed form the fact that ® is

a functor from the Cartesian product & x & to & .)
(¢ ® e ® e ® ¢) For any four objects 4, B, C, D the diagram
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A48 (B®(C&D))

aAECQV \ejaﬂcb‘

(4® B)® (C ® D) A®((B®C)® D)

“4@5.(:.01 laA.B®C,D

a, p.c®D

(AeB)®C)®D (A®(B®C))®D

is commutative.

(w®e ®0),(¢e® = Q@e), (¢e®e ® —) The isomorphisms a, p ¢ are
naturalin 4, B, C.

(e®e ® 1) For any two objects 4, B the diagram

Ao (Beo1) 222, 4B
aA.B,ll TAoB
(A8 B)®1"

1s commutative.
(1 ® « ®¢) For any two objects 4, B the diagram

1 (4@ B) —— A®B
al.A.Bl 1,©B
(1®A4)®B

is commutative.
(e ® 1 ® e) For any objects A, B the diagram

A®(1eB) 22, 408

aA,l.Bl rA®B
(A491)® B

is commutative.
REMARK. In fact, axioms (1Qe®e) and (e®e®1) follow from (e®1®se).

This was shown by Kelly [Ke2].
(1 ® —) For any 1-morphism u: A — 4’ the diagram

104 2,194

z,l le,

A u Al

is commutative.
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. 7 .
(— ® 1) For any l-morphism u: 4 — A4 the diagram

A1 224, A1

rAl er,

A u AI
1S commutative.
(1®1) The morphisms /;,r,: 1®1— 1 coincide.

2.3. Examples. (a) A standard example of a monoidal category is provided
by the category Vect of finite-dimensional vector spaces (over the field C of
complex numbers). The operation ® is given by the usual tensor product
of vector spaces. The associativity isomorphism a . A®(B® C) —
(A® B)® C is defined on decomposable tensors by the rule a ® (b ® ¢) +—
(a ® b) ® c. The unit object 1 is the field C considered as a vector space
over itself. The isomorphism /,: C® A — A takes 1 ® a to a; similarly,
the isomorphism r,: A® C — A4 takes a®1 to a.

(b) Let H be a (possibly noncommutative) algebra over C and H-mod
the category of finite-dimensional left H-modules. The tensor product over
C of two H-modules M and N will be an H ®; H-module and does not a
priori have any H-module structure. However, suppose that H is equipped
with a comultiplication, i.e., a linear map A: H — H @ H satisfying two
properties:

(*) The operator A is a homomorphism of algebras.

(*+) The operator A is coassociative; i.e., the diagram

H —2., HeH

A [

HeoH 2., HeHeoH
is commutative.

In this case we can, for any two left H-modules M, N equip the vector
space M ®. N with the structure of a left H-module by means of A, ie.,
by setting a.(m @ n) = A(4)(m @ n) for a € H. This will indeed be an
H-action if condition (*) is satisfied. If, moreover, (#+) holds, then the
standard isomorphism M ® (N ® P) —» (M ® N)® P defined in n. (a), will
be an H-module isomorphism. An algebra equipped with a comultiplication
is called a bialgebra (or Hopf algebra). Thus we have seen that H-mod for
a bialgebra H is equipped with almost all the data of monoidal structure
except the unit object. In order for H-mod to have a unit object, H should
possess a counit, i.e., a homomorphism &: H — C- such that the compositions
H-A He H-%, H, H-A Heo H 2L, H are identities. In this case C

is equipped with the structure of H-module (via &) and is a unit object.
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(c) Let € be any category. Let & = Hom(%, %) be the category of
all functors from € to itself. By definition, objects of Hom(%, %) are
all functors € — & . A morphism in Hom(%, %) between two functors
F, G: % — & is, by definition, a natural transformation of functors 7': F =
G, ie., a collection of morphisms 7 ,: F(4) — G(A) given for any object
A € & such that for any morphism u: 4 — B in & we have T, pF(u) =
G(u)T, (see [Mac2]). The category Hom(% , %) has a natural monoidal
structure ® defined as follows. -

(» ® ») On objects the structure ® is given by the composition of functors:
FRG=FoqG.

(*® =) Let F: & — % be a functor and T: G = G be a natural
transformation. We define the morphism F ® T of Hom(% , %) to be the
natural transformation having (F® T), = F(T,).

(- ®e) Let S: F = F' be a natural transformation and G: % - % a
functor. We define the transformation S ® G to have (S® G) 4 =S

(» ® e ® o) The composition of functors is well known to be strictly asso-
ciative, and we define the associativity isomorphism to be the identity.

The rest of the data (involving unities) are tfivial. We leave the verification
of the axioms to the reader.

2.4. DEFINITION. A monoidal category & is called strict if we have equal-
ities of objects

A®(B®C)=(A8B)®C, 198A=A®1=4

for any objects 4, B, C and the morphisms a 4.B.C* l,, r, are identities.
* Of course, “large” monoidal categories like Vect arising in practice are
never strict: the vector spaces A ® (B® C) and (4 ® B) ® C are, strictly
speaking, different. However, working with strict categories is convenient. It
is justified by the coherence theorem of Mac Lane [Macl1] and [Mac2], which
implies that every monoidal category can be replaced by an “equivalent” strict
one. (For a formulation exactly in this form, see §1 of [JS1].)

To give a precise meaning to “equivalent” one should introduce the notion
of a monoidal functor and monoidal natural transformation. We shall refrain
from doing this here, referring the reader to [Saa]. Instead, we shall give some
examples of strict monoidal categories.

2.5. Examples. (a) The monoidal category Hom(% , ¥) defined in Exam-
ple 2.3(c) is strict.

(b) We shall construct a coordinatized version Vect, of the monoidal
category Vect which is strict.

(») Objects of Vect, are formal symbols [n], where n=0,1,2,....

(=) HomVCaé([m], [n]) to be the set of all m x n complex matrices
F=||f,.j||, i=1,...,m, j=1,...,n.

(——) The composition of morphisms is given by matrix multiplication.



2-CATEGORIES AND ZAMOLODCHIKOV TETRAHEDRA EQUATIONS 199

(1) The unit object is the symbol [1].
(» ® ») The tensor product of objects is defined by [m] ® [n] = [mn].
(e® —) The tensor product of an object {m] and a morphism G = || &gl :

[n] — [n'] is the following (block) matrix of format (mn) x (mn'):

G 0 - 0

G --- 0

mleG=1|{. . . .
0 0 --- G

(— ®e) The tensor product of morphism F = || f,.j” :[m] — [m'] and an
object [n] is the following block matrix of format (mn) x (m'n):

;_ll':n ?2'}» -}‘lm';n
F@[ﬂ]= 21. n 22. n . 2m. An
fm'l'ln fm'Z'ln fm'm.ln

(0.®-®0) » (1®e), (e®1) The morphisms Q) n1. 101 l[m] » I are identity
matrices.

Let us verify that these data indeed define a (strict) monoidal category. The
only thing that needs checking is the condition (— ® —). Let F:[m] —
[m'], G:[n]— [#'] be two morphisms in Vect_, i.e., matrices. We need to
show the commutativity of the diagram

(m)®G

(mn] [mn']

F®[n]l lF@[rz']
{m'n] 1m 186, [m'n"1.

The composition (F ® [#])([m] ® G) is represented by the following block
matrix of size (mn) x (m'n’):

an Gflz o Gflm
Gy Gfy - Gfy,
Gfm'l Gfm'Z e Gfm'm

In each (i, j)th block, which is an (7 x n') matrix, we have the scalar mul-
tiple Gf; = llg, f;l, k=1,...,n, I =1,...,n". The other possible
composition will give a similar matrix but will f; J.G in blocks. These give
the same answer by the commutativity of our field C of scalars (so an at-
tempt to construct in this fashion the tensor product for free modules over
noncommutative ring would fail in exactly this place).

2.6. Hierogliphs for 2-categories. In a category one has objects and mor-
phisms. In a 2-category, a new class of entities is present: 2-morphisms
or “morphisms between morphisms” or “homotopies”. A 2-morphism can
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act between two usual morphisms (1-morphisms) if their sources and targets
coincide, see Figure 9.

Figure 9

Here A, B are objects, u,v : A - B are l-morphisms, and « is a
2-morphism from u to v.

There is a different notion of a two-dimensional category in which 2-
morphisms have the space of squares (instead of “globes™), as above. Such
structures are called double categories [Br], [E], and [G]. We shall not use
them here.

The data and axioms for lax 2-categories will be labelled by hierogliphs
constructed from the following elementary symbols:

— —
o, —, 1 , I, 1.
— —

The notion of a lax 2-category was introduced by Benabou [Be]. Let us give
a formal definition.

2.7. DEFINITION. A lax 2-category % is a collection of the following data:
() A set (class) Ob% whose elements are called objects.
(—) Aset 1 —Mor(%) whose elements are called 1-morphisms and two

maps s;, f;: 1— Mor% — Ob% called source and target maps of dimension
0.1f ue 1 -Mor%, 4=sy(u), B=1y(u), then we write u: 4 — B.
( ! ) A set 2—Mor% whose elements are called 2-morphisms and maps

—

5,,1,:2—Mor% — 1 —-Mor% called source and target maps of dimension
1. It is required that sys, = ¢t,, ;5 = ¢, as maps 2 —Mor% — Ob¥% .
These maps are denoted s, {,. A 2-morphism o is usually visualized as a
2-cell (Figure 9) where u = 5,(a), v =t,(a), 4 =sy(a), B =ty(a).

We shall also write a:u = v.

(——) For any two l-morphisms u: 4 —» B, v: B — C, a 1-morphism
vx,u: A — C is called their composition. The composition of 1-morphisms
will also he sometimes denoted v o u or just vu.

- 1 ) For any 1-morphism u: 4 — B and a 2-morphism

v

B o C

NS
o

a 2-morphism (also called 0-composition)
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);

A fau ¢
vu

(T —») For any 2-morphism

—

TN
A Jo B
N

u

U

and a l-morphism v: B — C a 2-morphism

w
/\
A vk C

N

(also called 0-composition)
(———) For any triple 4 -5 B - C % D of composable 1-mor-
phisms, a 2-isomorphism (i.e., a 2-morphism invertible with respect to *,)

ay ' UOW) = (V)W

1
(—l») For any pair a, B of 2-morphisms such that s,(a) = £,(8) a 2-

morphism a *, f: 5,(B) = t,(a).

(I) For any object 4 a l-morphism Id,: A — A4 called the identity
morphism of 4.

(1) For any 1-morphism #: A — B a 2-morphism 1,: u = u called the
identity 2-morphism of u. :

(— I) For any l1-morphism #: A — B a 2-morphism / : Idgou = u.

(I —) For any 1-morphism u#: A — B a 2-morphism 7,: uold, = u.

These data should satisfy the following conditions.

(————) For any 4-tuple 4 = B % C -2 D X5 E of composable

1-morphisms the diagram of 2-morphisms

ax.u.vw X(u(‘uw)) xtoau,v,w
(xu)(vw) ' X(unw)
axu'v.w U ax uow
(w)vyw ——————— (x(ur))w
ax.u,ua-oW

is commutative.

(T _1') For any pair of 2-morphisms of the form
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/—“\ /’\
a |e 2 | ¢
\_'/ \'/

we have the following equality of 2-morphisms:

(B *o u') * (v *o a) = ('U' %0 a)x (B *, u).
The 2-morphism given by any of the sides of this equality is denoted S #,
a: vV, u=>v'*,1u (and called the O-composition of & and ).

The composition *, of 2-morphisms is associative.

bl

(TI) For any 2-morphism a: u=u', u, u':4A— B, we have Id x,a=
a.

(I T) For any 2-morphism o as above we have a*,1d, = a.

(—— I) For any'pair 4 -5 B - C of composable 1-morphisms the
diagram of 2-morphisms '

Idoo(vo u)%‘i—'—;'"(ldc ov)ou

[vuﬂ Iel,

v
is commutative.
(— I —) For any pair 4 5 B - C of composable 1-morphisms the

diagram of 2-morphisms

a,ldg,u
vo(Ildgou) = (veoldy)ou

U‘OIHﬂ %‘

vu
is commutative.
(I ——) For any pair 4 -5 B —*» C of composable 1-morphisms the

diagram of 2-morphisms

1d, 0 (v o 1) 43*(1d 0 v) o u

Iwﬂ veol,

. vu
1S commutative. '

i 1
( _l,) »| 7] The 2-morphisms 1, are right and left units with respect
1 S

to *

1
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2.8. The main example: the “category” of all categories. The archetypal
example of a 2-category is given by the “category” Cat of all usual categories.

It is defined as follows (cf. [Be], [GZ], and [Mac2]):
(¢) Objects if Cat are all categories. *

(=) 1-morphisms in Cat are functors between categories.

( { ) 2-morphisms‘ in Cat are natural transformations between functors.

-—

(——) Composition of functors is defined in the usual way.

(———) The composition of functors is strictly associative and the asso-
ciativity 2-morphisms are identities.

All the other data are well known and we leave them to the reader.

We deliberately ignore set-theoretic (or, rather, category-theoretic) “diffi-
culties” which are usually mentioned when speaking about the category of all
categories. Our opinion is that the introduction of the 2-categorical structure
on Cat resolves these difficulties for good, just as the consideration of the
categorical structure on the collection of all sets resolves the difficulties with
the “set” of all sets.

By considering categories with some additional structure, one obtains more
complicated examples of 2-categories. This is similar to the way of con-
structing usual categories by considering sets (O-categories) with additional
structure.

2.9. Hom-categories in a 2-category. Let @ by any (lax) 2-category and
A, B € € objects. Define a 1-category Homg(4, B) to have, as objects,
1-morphisms 4 — B, and as morphisms 2-morphisms between these 1-
morphisms with composition defined by *, .

2.10. Monoidal categories as 2-categories: delooping. The reader has cer-
tainly noted the similarity between the definitions of a monoidal category and
a 2-category. In fact, as was remarked by Benabou [Be], the former notion
can be regarded as a particular case of the latter.

More precisely, let &/ be a monoidal 1-category. Define a 2-category
Qo7 with one object pt, the set of 1-morphisms Obs/ , and the set of
2-morphisms Mor.%/ , the composition *, defined by ® and *; by composi-
tion of 1-morphisms in & . Axioms of a monoidal category for & translate
into axioms of a 2-category for Q 'o7 . It is easy to see that any 2-category
@ with one object comes in this way from some monoidal category, namely
¥ =Hom(%,%).

Thus monoidal categories are essentially the same as 2-categories with just
one object. We shall call this observation the delooping principle and call the
2-category Q '/ the delooping of the monoidal category & .

Any object A of any 2-category % defines a sub-2-category in % with
the unique object A. The delooping principle implies the following.
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2.11. ProrosITION. Let & be any (lax) 2-category and A € € an ob-
Ject. Then the composition x, defines on Homg(A, A) a structure of a lax
monoidal category.

For instance, the monoidal structure on the category of all functors from
a category % to itself (Example 2.3(c)) is just a particular case of the 2-
categorical structure on the collection of all categories.

2.12. Strict 2-categories. A 2-category % 1is called strict if all the 2-
morphisms Ay v w> l,, r, (given by the data with labels (———), (= I),
and (I —)) are identity 2-morphisms (in particular, their one-dimensional
sources and targets coincide). In other words, the composition of 1-mor-
phisms is strictly associative and units are strict. For example, the 2-category
Cat of all categories is strict.

It is clear that the monoidal categories Hom.(4, 4) associated to a strict
2-category ¥ are strict, and, conversely, if & is a strict monoidal category
then the 2-category Q™ '/ is strict.

A strict 2-category can be seen as a category enriched in the Cartesian
category Cat of usuatl categories (in the sense that Hom’s are no more sets
but categories), see [Mac2] for the definitions.

It follows from the coherence theorem of Mac Lane and Pare [Mac-P]
that any lax 2-category is equivalent (in a suitable sense) to a strict one. This
remark will enable us to consider in the sequel only strict 2-categories.

2.13. Pasting in strict 2-categories. Commutative polytopes. In strict 2-
categories it is possible to consider algebraic expressions which have the form
of a two-dimensional cell subdivided into several other two-dimensional cells.
Such a construction is known as pasting. There are several approaches to the
theory of pasting [J] and [P] see also [KV1]. Let us give an example.

Suppose that in some strict 2-category & we have a system of objects, 1-
and 2-morphisms of the form depicted in Figure 10.

Figure 10

This means that a: E — F, b: D — E , etc., are 1-morphisms whose source
and target objects are depicted by the arrows; T: gh = dk, U: fd = ae,
V. ek = bc are 2-morphisms. In this situation it is possible to associate
to the above picture a 2-morphism from fgh to abc called the pasting of
U, V, W. To define it in terms of the compositions *,, we should gradually
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move the path fgh, restructuring it at each step by replacing the beginning
of some cell with its end:

fgh= fdk = aek = abc.
This amounts to a definition of pasting (in our situation) as
(@xg V) *, (Uxgk)x, (f %, T).

In general, one can consider a subdivided polygon together with its real-
Jization in the 2-category % . A realization is the association, to every vertex
of the subdivision, of an object of C, to every edge a I-morphism, and to
every 2-cell a 2-morphism. We shall not give here a formal definition of what
are admissible patterns for pasting (pasting schemes), referring the reader to
{J] and [P].

In our concrete examples it will always be clear how to formalize a given
pasting expression.

Thus a formula in a 2-category has the shape of a subdivided polygon.
Suppose we have two such subdivided polygons P, P’ realized in our 2-
category % such that their boundaries are identified with each other and
the 1-morphisms associated to corresponding edges of the boundaries are the
same. Then we can glue P, P’ together, obtaining a three-dimensional poly-
tope. The commutativity of such a polytope means that the results of pasting
the two parts of its boundary coincide. For example, the commutativity of
the cube in Figure 11

F H
\
’ A\
A |B 'Y\
¢ = -
\/) /7P
aw
A T C
Figure 11

means that we have the equality in Figure 12.

Figure 12

2.14, Convention. To faciliate the deciphering of polytopal diagrams, we
always denote by thick arrows the common boundary of two composable
polygons constituting a diagram. Note that such a decomposition of the
boundary of a polytope into two composable polygons is always unique.
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We use commutative polytopes often. In fact, most of our examples come
from genuine convex polytopes in three-dimensional space. (Recall that a
convex polytope is the convex hull of a finite set of points.) A convenient
way to prove the commutativity of some polytope is to construct its decom-
position into smaller polytopes (also realized in our 2-category) which are
known to be commutative. -

3. Braided monoidal categories and Yang-Baxter equation

From now on we consider only strict monoidal categories. This is justi-
fied by the Mac Lane coherence theorem [Macl and Mac2]. The following
definition was (up to minor modifications) introduced in [FY] and [JS2].

3.1. DeFINITION. Let &/ be a strict monoidal category. A braiding (resp
an isobraiding) on %/ is a family of morphisms (resp. isomorphisms) R,
A®B — B® A given for any pair (4, B) of ob_;ects of & which sat1sfy the
following conditions:

(— ®e),(e® =) R, ; are natural in 4 and B.

(*® (¢ ®¢)) For any objects 4, B,, B, the diagram

®B
A®A®B2Jﬂ~i&@A®%

RA,H,@BZl BI®R4.BZ
B,®B,® A
is commutative,
((e®e) ®e) For any objects 4, , 4,, B the diagram

A®R, ,
A, ®4,8B —2" 4, 8B4,

R, l
1943,8
m2

B®A ®4,

is commutative. .
(1®e), (¢®1) For any object 4 the diagrams

R
184 —— A®1 A1 —21, 184
l‘l Ta ’Al L
A - A

are commutative.

3.2. Braidings and isobraidings. Usually the requirement that morphisms
R, p are isomorphisms is included in the definition of a braiding. This
pro’perty holds for most practical examples. However, in the definition of
2-braiding (§6) of which the present notion will be the 1-skeleton, it will be
reasonable not to require the isomorphicity of R 4,5 - Moreover, solutions of
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Yang-Baxter equation (1-7) depending on a parameter u usually have poles
for some u and are degenerate for some u. As was pointed out to us by
D. Kazhdan, this does not permit us to construct a genuine braided monoidal
category from such a solution.

3.3. Examples. (a) The category Vect of C-vector spaces with the monoidal
structure ® given by the tensor product has a natural braiding

R, p:A®B—-B®A4, a®b—boa

Here we have, in addition, the identity R 4, gR B.oA= Id. Braided monoidal -
categories satisfying this additional property are called symmetric and were
studied by Mac Lane [Macl].

(b) Let g Vect be the category of Z-graded finite-dimensional vector spaces
V = GB:ez » dim(V) < oo, and grading-preserving linear operators. For
a€V, wewrite i =|aj. Equlp & Vect with the usual tensor product

Vew),=@ v,ew,
i+j=k

Let g € C* be a nonzero complex number. Define a system of operators
Ry, 2 V®W — W@V setting on homogeneous elements R(v ® w) =

'”' "l(w ® v). Clearly these operators are natural in ¥ and W . To show '
that they form a braiding we have to check only the triangles ((e ® o) ® )
and (e ® (¢ ® ¢)) from Definition 3.1. This is left to the reader.

(c) Let H be a bialgebra (see Example 2.3(b)) and H-mod the category
of finite-dimensional left H-modules. As we have seen in the cited example,
this category is equipped with a monoidal structure ®, where M @ N for
M, N € H-mod is the usual tensor product M ®c N equipped with the H-
module structure via the comultiplication A: H — H® H . In order to equip
H-mod with a braiding, H should carry the additional structure namely an
element % € H ® H such that two conditions hold:

(** ) We have A'(a)# = HA(a) for any a € H, where A’ is the
permuted comultiplication PoA.

(x**x+) In H® H® H we have the equalities

AQI)(R) = B, Fyy,  (1AGA)NZE) = B,, %,

where £, =Z ®1, %,; =10%,and Z,, is defined similarly; cf. (1-2).
If condition (x=**) holds, then for any M, N € H-mod one can define an
H-morphism R,, ,: M®N — N®M by setting Ry y(m@n)=F(neom).
The conditions (****) are exact replicas of the two braldmg triangles (ax10ms
(¢®(o®¢)), ((»®e) ®e) of Definition 3.1).
For more examples the reader is referred to [Maj2] and to articles in the
reprint volume [Ji].
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3.4. The Yang-Baxter hexagon. Let (&, R) be a braided monoidal cate-
gory. Consider any three objects 4, B, C and form the diagram

B®R
B®A®C—gi5§®C®A

-~
-
R, 3®C _ - Ry ®4
-

AQB®C-~ 3CeB®A

- -~
A®RB,C b — - C®RA,B

° T R, .®B
A®C®B 2", C®RA®B

This diagram is called the Yang-Baxter hexagon. The commutativity of it
can be viewed as an “abstract” version of the Yang-Baxter equation (1-1).
The following proposition is well-known {FY] and [JS1-2].

3.5. PROPOSITION. The Yang-Baxter hexagon is commutative for any three
objects A, B, C.

Proor. The dotted lines in the hexagon decompose it into two triangles of
the type (e ® (¢ ® ¢)) and a square of naturality, which are all commutative.

3.6. The permutohedron. The vertices of the Yang-Baxter hexagon corre-
spond to all permutations of three letters. We now consider a convex polytope
whose vertices correspond to permutation of n letters, n > 2.

By definition, the (n — 1)-dimensional permutohedron P, (see [Bau] and
[Mi]) is the convex hull of n! points (a(1), --- , a(n)) € R", where ¢ runs
over all the permutations of {1, --- , n}.

It is clear from this definition that P, lies in the hyperplane

{(x;,---,x,)€ R": Z‘xi =n(n—1)/2}

and its dimension equals (n—1).

Let S, be the symmetric group of all permutations of {1, --- , n}.

For any ¢ € S, we shall denote by [¢] the point (a_l(l) TR a_l(n)) €
P, , where o~ ! is the inverse permutation.

The 2-dimensional permutohedron P; is the hexagon in Figure 13.

/[123] \

[213] [IT

[231] [312]

2]

[321]
Figure 13




2-CATEGORIES AND ZAMOLODCHIKOV TETRAHEDRA EQUATIONS 209

The permutohedron P, will be drawn in formula (6-2) in §6 below (see
also pictures in [Bau] and [Mi}).

Two vertices [o], [t] € P, are connected by an edge if and only if the
- corresponding permutations [o], [t] € P, are connected by an edge if and
only if the corresponding permutations o, T are obtained from each other
by interchanging two numbers standing in the consecutive positions. This
fact is true for any permutohedron P, , and follows from the description of
all the faces of P, given in [Mi] and [Bau] which we now recall.-

Faces of P, arein 1-1 correspondence with partitions of the set {1, --- ,n}
into a union of several nonintersecting numbered subsets:

{t,---,n}=C,u---UC,.
The face I'(C,, ..., C,) has, by definition, the vertices [o] for all the
permutations ¢ which preserve each C;. Itis easy to see that I'(C,, ..., C,)

is linearly isomorphic to the product of smaller permutohedra, namely Pl 1%
e X PI cl and has codimension r in P,. ,

In this description our choice of the notations of vertices is important.
If we had introduced the straightforward notation for the vertices, i.c., the
vertex (o(1), ..., o(n)) denoted by (o), then the fact that two vertices are
connected by an edge would mean that the two permutations are obtained
from each other by interchanging some two consecutive numbers, e.g., 5 and
6, regardless of the position where these numbers stand in the permutation.
Thus our chosen notation is “local” and does not make appeal to the order
on the permuted symbols 1, ..., n which makes it possible to choose any
other set of symbols.

3.7. Weak Bruhat order on the group S, . By definition (see, e.g., [MS2])
this order < is generated by the preorder < where ¢ < © when the following
conditions hold:

(1) o can be obtained from 7 by interchanging two symbols standing in
consecutive positions (i.e., [¢] and [7] are connected by an edge).

(2) The length (i.e., the number of inversions) of 7 is greater than the
length of ¢ . In other words, the Bruhat order < is obtained by orieriting all
edges of P, in the direction of increasing length.

3.8. Permutohedral diagrams in an (iso-) braided category. Let &/ be an
isobraided monoidal category and n objects A4,,..., 4, of it. For any
permutation ¢ € S, denote by 4, the product Aa(l) ®-® Aa(") and
put this product at the vertex {o] of the permutohedron P,. Let [o], [7]
be two adjacent vertices of P, . Then the product A, differs from 4_ by
interchanging two consecutive factors At(i) and At(,. 1y - Let e be the edge
joining [¢] and [r]. Assume that g < 7 with respect to the weak Bruhat
order. The braiding gives two morphisms
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s A

Ay ® @A, ®R, Agiis2)® - @Ay, A r

sty Aatisn)

and

Aa(l) Q- ®Ac.‘r(i—l) ® RA ®Aa([+2) ®--- ®Aa(n): At — A

(1), 4y g’
We denote the first of these morphisms by U, and the second by V,. Thus
we obtain a diagram in which to every edge of the permutohedron two mor-
phisms are associated. We shall call it the permutohedral diagram associated .
to 4,,..., 4, and denoteitby P(4,, ..., 4,). Given two permuted prod-
ucts A , A,, we are interested in how many morphisms from A, to A4,
one can construct by composing various U,, ¥, and their inverses. More
precisely, to define such a morphism we should specify an edge path on the
permutohedron, leading from [o] to [7] and make a choice at each edge e of
the two morphlsms gomg in the direction of the path. These morphisms are
either U,, V, " or Ue V,, depending on the edge and its direction (here
we use the assumption that the braiding morphisms are isomorphisms).

The first fact about P(4,, ..., 4,) we want to mention is a generalization
of Proposition 3.5 on the commutativity of the Yang-Baxter hexagon. Denote
the part of the permutohedral diagram P(4,, ..., A,) formed only by the
morphisms U,, e running over all the edges of P, by P+(A1 Y
Denote the part formed by only the V, by P (4,,...,4,).

3.9. ProrosITION. Let &/ be any braided monoidal category and A, ,
.., A, any objects of /. Then the diagrams P+(A1, ..., 4,) and
P7(4,,..., 4,) are commutative.

ProoF. Since P, is a convex polytope, to prove the commutativity of,
say, P: , it suffices to prove the commutativity of each two-dimensional face
of P . These faces are either hexagons or squares. The commutativity of
hexagons follows from Proposition 3.5 and the commutativity of squares
follows from the naturality of ® (axioms(— ® —) of a monoidal category).

However, the whole diagram P(4,, ..., 4,) is not, in general, commuta-
tive. This can be seen already on the example of two objects, say, 4 and B.
Then we have two morphisms R 4,5 A®B — B®A4 and R, ,: B®A — AQB
which need not be inverses to each other. In fact, the coherence theorem for
braided monoidal categories [FY], [JS1], and [JS2] implies that morphisms
of this diagram and their inverses define an action, on each permuted product,
of the pure braid group T'(n) on n strands. See [Bi] for general background
on braid groups.

3.10. Yang-Baxter systems. Let &/ be a monoidal category. By a Yang-
Baxter system (YB-system) we mean a set of objects 7 ¢ Ob&/ and a col-
lection of morphisms
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R, ,;A®B—~B®A, A,Bel,

such that for any 4, B, C € I the hexagon

B®R
B®A®C ®”B@C@A

R/ \m,,
‘h\ / B

ARC®B ———— CRA®B

A®B®C CRBQ®A

commutes.

For the case & = (Vect, ®) and I consisting of one vector space V, a
YB-system is nothing but a solution of the modified Yang-Baxter equation
(1-4) (which is equivalent to the standard form (1-1)). More generally, any
solution of the “variable” Yang-Baxter equation (6) gives rise to a YB-system.
Namely, let & be again (Vect, ®). For each element x of the parameter set
X, take one copy ¥ (x) of the same vector space V . Define the morphism

RV(x),V(y): Vx)eV(y)—= V() e V(x)

to be given by the operator PoR(x,y): V®V — V ®V, where P is the
permutation. We immediately find that (1-6) is identical to the commuta-
tivity of the required hexagon. In physically interesting examples, however,
the matrix R(x, y) can have poles for some (x, y) and can be degenerate
for some (x, y). The first inconvenience can be amended by multiplying
R(x, y) by a scalar function f(x, y), which does not affect the Yang-Baxter
equation. However, the degeneracy of R(x, y) cannot be helped in such
a way. This is why we have introduced a distinction between notions of a
braiding and an isobraiding (Definition 3.1).
Consider, for example, the Yang’s solution (1-8):

Rx,y)=(x—-y)+nP

where P is the permutation of ¥ ® V' and n € C. Since P has eigenvalues
+1, the matrix R(x, #) will be degenerate for x —y = £7.

Proposition 3.5 implies that if a monoidal category & is equipped with
a braiding then there is a YB-system in & with the set (class) I being the
whole Ob./ and R, given by the braiding.

3.11. A braiding from a Yang-Baxter system. Let us associate to any YB-
system (I, R) in a monoidal category & a braided monoidal category I.
Let &/ be the category of formal tensor products of objects of & . By
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definition, objects of & are ordered strings (4, ..., 4;), 4, € Obs,
i > 0 (the empty string (&) is also allowed). For any two such strings

(Ays--rs A), (By,s ..., B)) define

Hom ~((4,, ..., 4;), (B, ... »B))=Hom_(4,®---®4,,B ® --®B).

The product of the empty string is set to be the unit object. Define the
monoidal structure on & to be given on objects by juxtaposition of strings

(Ays oo A)® By, o, BY = {4y, ..., 4., B,..., B)

with obvious extension to morphisms (note that & is assumed strict). In
this way we get a new strict monoidal category equivalent to .7 . The reason
for its introduction is the possibility of disting{xishing two tensor products in
& which “accidentally” coincide. .

Let I be the smallest monoidal subcategory of & containing the objects
of the form (A4), where 4 € I and the morphisms R, p:(4,B)— (B, 4).

Let (4;,..., 4,), (B, ..., B;) be two objects of IT. Define

Rt iy, my: Ays oo s 4)® (B, ..., By
— (Bys s BY®(A,, ..., 4,)

as the morphism corresponding to the composition

4,884, @B ® ®B—A4,0 - -©B 84,8 -8B,
=B ®A4,® ®4,®B,8 0B,
+—= B ®B,®A4,® - ®4,®B,®--® B,
> B ® - ®B®A4 0 04,

3.12. THEOREM. The collection of R( A s 4), (B, os By) is a braiding in the

monoidal category I. If all R 4,p are isomorphisms, this collection is an
isobraiding.

ProOF. We need to verify the naturality of our “braiding” and the com-
mutativity of the triangles (s @ (¢ @ 9)), (¢ ® 0) ® o) from Definition 3.1.
The naturality concerns a morphism and an object in 7. Note that mor-

phisms in 7 are, by definition, generated by elementary morphisms R 4.B>

A, B €71, by means of compositions and tensor products with other objects
from I. Therefore to verify the naturality of our “braiding” with respect to
the first argument it suffices to show the commutativity of each diagram of
the form
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Ay A By B —— Al"'Ai—lAi+1AiAi+2"'AkBl"‘BI
BBy Ay —— _Bx"'BlAl"'Ai—nAi+1AiAi+2"'Ak-

Both paths on this diagram can be seen as certain edge paths on the pos-
itive part P‘L(Al s--- s Aps By, ..., B;) of the permutohedral diagram cor-
responding to 4, ..., Ay, By, ..., B, (see 3.8). Therefore the assertion
follows from the commutativity of this diagram (Proposition 3.9).

4. Monoidal 2-categories

4.1. DEFINITION. Let & be a strict 2-category. A (lax) monoidal structure
on & is a collection of the following data:

(1) An object 1=1_, called the unit object

(e ® @) For any two objects A, B € & a new object 4® B, also denoted
AB

{(— ®e) For any 1-morphism u: 4 — A and any object B a 1-morphism
u®B: AB— A ®B

(e® —) For an object 4 and a morphism v: B — B’ a morphism 4 ®
v:A®B - A®B .

(z ® -) For any 2-morphism

and an object B a 2-morphism

u®B

TN

A®B |T®B A'®B

~_ _~7

u'®B

(- ® T) For any object 4 and any 2-morphism
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a 2-morphism

A®y

PR

A®B |4®s A®B

~_ 7

ARY

(e ® # ® o) For any three objects 4, B, C an isomorphism a 4. Bc-A®
B®C)— (A®B)®C

(1®e) For any object 4 an isomorphism /,: 1@ 4 — 4
(e® 1) For any object 4 an isomorphism r ' A®1— 4

(— ® —) For any two morphisms u: 4 —A', v: B —B' a 2-isomorphism

A®B, =224 -4 B

/®u, v
u®Bl lu@B'

AoB 4%, 4oB

(—— ®e) For any pair of composable morphisms 4 -“+ 4’ -“+ 4" and
an object B a 2-isomorphism

A@B WWeB, qnop
u®Bl /

A ®B

(e® ——) For any object 4 and any pair of composable morphisms B -2

[
B' 2 B" a 2-isomorphism

A®B AS(v'v) A ®B”

A®vl

A® B

(* ® e ® e ®e) For any four objects 4, B, C, D a 2-morphism
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A® (B ®(C®D))
aA,B,C‘®D/ \maa,c.n
(4®B)®(C®D) “%°  4o(B®C)eD)

aA@B,C,Dl - l“n.mc.o

a, z «®D

(4eB)®C)®D (A8 (B®C))®D.

(— ® e ®e) For any morphism u: A — A and objects B, C a 2-
isomorphism

A®(B®C) (A®B)®C

%.8.C

u®(B®C)l l(u@B)@C

AQB®C) 242 (£/'9B)&C

(e® — ®e) For any object 4, morphism v: B — B’ and another object
C a 2-isomorphism

AR (B®C) —425 (4@B)®C

aA.v.C

A®(v®C)l l(A@v)@C

AQ(B'®C) 225 (49B)8C

(» ® e® —) For any objects 4, B and a morphism w: C — C' a 2-
isomorphism

AR (B®C) 22 (4®B)®C
aA,B,w

A®(B®w)l l(A@B)@w

A® (B C') 22, (4eB)®(C’

(*® e® 1) For any two objects 4, B a 2-isomorphism
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Ao (Bo1l) 22, 408
aA.B,ll pA’B' .
(A®B)®1

(1 ® e ®e) For any two objects 4, B a 2-isomorphism

19 (A®B) —22, 4B
al.A.Bl s T oB
‘ i (1®A4A)®B

(¢® 1 ®e) For any objects A, B a 2-isomorphism

A®(1®B) —% A®B
(A®1)® B

(1® —) For any 1-morphism -u: 4 —» 4’ a 2-isomorphism

194 —-‘2“—» 14

S D

A ., A
(— ®1) For any 1-morphism u: A — A’ a 2-isomorphism

A®1 — 4'®1

. 14/ L

LN A

(1®1) A 2-isomorphism
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Before listing the conditions on the structure data, let us introduce the
modified tensor product & which will be used for multiplication of one of
the above structure 2-morphisms and an object. For example, a 4.B.C, D@E
will denote the 2-morphism

{ABICD)IE

[AUBC)DIE

/ ®A®as.c1>ﬂu®c.o-5

[((AB)O)DIE

{ABO)DIE

®(0u®cp);(ﬁ®as.cp)ﬂA.B.<‘®D-E
Note that since a 4.B,c.p 1S @ 2-morphism

(a4,5,c®D)*y(a, pec,p) *0(A®ap ¢ p) = (A4ep c.p) *0 (A4 5 cop) s

the usual product a 4.B.C, p®E (in the middle of the preceding picture) is a 2-
morphism from the product of the left composition with E to the product of
the right composition with E. The 2-morphism a 4.B.C, D®E acts between
*,-composition of the products with E of individual l-morphlsms in the

above formula.

The ®-product for other types of structure 2-morphisms is defined simi-
larly.

Now the conditions for the structure data in a monoidal 2-category are as
follows:

(e®e®@e®e®e) For any five objects A, B, C, D, E the Stasheff polytope
[Stal and Sta2]

((ABXCD))E

(ABY(CD)E)

A(B(CD)E))

A(B(C(DEY))

A((BCXDE)) 94,B.C.DE
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is commutative. As we explained in 2.13, the commutativity of a polytope
means that the pastings of its two composable halves coincide. In the present

* case these halves are
gl A(B(C(DE))
L (AB)C(DE) ABCPE \A®ap pp
: ) A(B((CD)E))
((AB)C)(DE) A((BCYDE)) A((B(CD))E)
/ aM,CDE\ ABCDE
(ABO)DE)
e (ABYOD)E A(((BC)D)E)
((ABC)D)E (A(BOD))E
- A(B(C(DE)))
—— -~ \
‘ (AB)(C(DE)) A.Bacps SBUCDE))
f / o emeon \
. AB,C.D.E N ‘
’ (ABYC)(DE) / a4 5 cpE
! . / ((ABY(CD)E A(B(CD)E)
- ((AB)C)D)E (A(B(CD))E
\ &a 4 5,C.0PE A((BOD)E
; /%IA'(‘B.C.D.E
(A(BO)D)E (A((BC)D))E

(— ®e®e®e) For any l-morphism u: A — 4 and objects B, C, D the
pentagonal prism
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- AB(CDY))
I
a Aﬁ/ \

(AB)(CD)

[ A((BO)D)
1

\ ! /
I

(AB)O)D ~e——— (A(BC)D

au,B,CD ]
\ AB(CD) Buanc
| - - <
e

x - ~ .
(AB)(CD) N e

e “a'B.cp A(BOD)
4,28, c,z\ ' (@, 58D =\

a,,BC.D

((ABYO)D

(A(BO)YD

-

is commutative,

(o® — ReQe), (¢®@e® — Re), (¢@e®e® —) Similar prisms correspond-
ing to 1-morphism in the second, third, or fourth factor.

(—— ® e ®e) For any composable pair 4 -5 A %+ 4" of 1-morphisms
and objects B, C the diagram

A(BC) > (AB)C
“ AuB,C a,pc
\ ﬁ
A'(BC) t‘ (AB)C

/r (®u' o, B)&C

A"(BC) ( » (A"B)C

a,B.C

is commutative.

(o® —— ®e), (#®e® ——) Similar prisms corresponding to a composable
pair of 1-morphisms in the second or third factor.

(— ® — ®e) For any two 1-morphisms u: 4 — A', v: B — B’ and an
object C the cube
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A(BC) (AB)C
Curnect” | _J, a
W1 a w,B.C /
;/&: S Z g CIRT:
A'BC) ; (AB)C
i
Gp v C :
1
t
\
ABC)---------- - -~ (AB)C
‘ e - a /\
e W' B.C
s ’ ‘ . ’ 2
A(BC) (ABYC

1S commutative.
(- ®e®—), (¢®@ — ® —) Similar cubes. Left to the reader.

( 1 ' ®e® 0) For any 2-morphism

and objects B, C the cylinder

/—\
ABC) ~ Joa®(BC) A'(BC)

=
au’,B,C
44,B,C
el
(AB)C J (0®B)®C (A'B)C

1s commutative.

(o ® Z ® 0) , (o Re® Z) Similar cylinders. Left to the reader.

(—=+— ® —) For any composable pair of 1-morphisms 4 = 4’ M4

and another 1-morphism v: B — B’ the triangular prism
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®u.u'.B

A®B
= y
®u.v A,®B/
®ui'v/ ®u'u,v

AeB” T T T ~ - _&— TTA"®B’

/

A'®B’ ®u.u'.B'

A”®B

is commutative.
(— ® ——) Similar prism. Left to the reader

(Z® _’) For any 2-morphism

and a 1-morphism v: B — B’ the cylinder

A®B / a®B A'®B
l / l
A®B 7 / a®B’ A®B

is commutative.
(—* ® T) Similar cylinder. Left to the reader.

221

T C o . .
(_f ® o) If u3 4 3 4" is a 1-composable pair of 2-morphisms and B

is any object, then
(@' *,a)® B =(c' ® B)*, (@ ® B).

n
(o ® T) Left to the reader.

(T —»@-) Let

——
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be a 0-composable pair of a 2-morphism and a 1-morphism, and B an object.
Then the 2-morphism

u®B /o1, \

. ®B )
A®B @/ A'®B Y -~ A'®B
u'®B ﬂ ®yup

coincides with (v %, a).® B.
(—* T ®0) s (o® n —») , (o®—» T ) Left to the reader.
- - - ' "
(—+—— ®s) For any composable triple 4 - A4’ % 4" 2 4" of
1-morphisms and an object B the tetrahedron

A"®B

®, w5

- A'®B -

commutes.
" (e® ———) Similarly.
(1 ® e ® e ®e) For any three objects 4, B, C € & the polytope
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ABC)
\NC
J\
\ (AB)C
7‘A.B®C \ Ia.u;c
1
. A
| A®B,C
1ABO) ~ Y =
P -~ ? v

2.4.8C

(1-AXBC)
1((AB)C)

((14)B)C —=——— (1(AB))C

commutes.

(e@1QeRe), (e@e®1Q0), (¢®@e®e®1) Similarly.
These polytopes can be called Kelly polytopes since their boundaries give
the diagrams used by Keily [Ke 2] in his proof that axiom (¢ & 1 ® ) for
monoidal categories implies axioms (e @ ¢ ® 1), and (1®@s®s).

(= ®1®e) For any 1-morphism u: 4 — A’ and an object B the trian-
gular prism

A(1B) > (A)B

‘/@;&\ /\ru®B

A(lB)"_“— ‘“"_”A’I)B‘
AB

A’B

i1s commutative.

(18 = ®¢), (- @e®1), (¢®1® =), (1®e® —), (+@ — ®1) Left to the
reader. :

(1® ——) For any composable pair of 1-morphisms 4 %+ 4" - 4" the
prism
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I®A 1®A"

@.ﬂ' /
~Z
1, 1® y
1 I

uu

- R
) Id /
u u'
. . A
is commutative.
(—— ®1) Similarly.
(1 ® ! ) For any 2-morphism
U
/‘\
A U(x A
~_ _7
v
the cylinder
194" /1@« T®A
7
L,
7

is commutative.
(T ® 1) Similarly.
(1®1®@e) For any object 4 € & the two pastings

191%4) 1®(1®A4)

a
‘\ ‘_)_:/Nu /11 " W"
1,A
(11)®A, r, ®A

1®1)RA4,

IA /@A N‘:@A/
[, ®A
®A ﬂld

give the same 2-morphism.
(1®e®1),(¢®1®1) Similarly.

181,

4.2. ExaMpLE. Consider a 2-category with one object. As we have seen
(2.10), such 2-categories correspond to monoidal (1-) categories. We denote
by Q! (&) the 2-category corresponding to a braided monoidal 1-category
(&, ®). Suppose that & is equipped with an isobraiding R. Introduce on
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QO lw the monoidal structure © settmg
(1) ptox =x@pt=x for any i-morphism x of Q—IM, i=0,1,2;
(2) for any pair of l-morphisms A: pt — pt, B: pt — pt of Q'
(i.e., objects of &) the 2-morphism

pt@pt 2224 ptopt

®
pzoBk/ . Lvtoa

ptoOpt — ptOpt
AOpt

of Q corresponds to 1-morphism R, ,:B®A4—~A®B in &
given by the braiding;
(3) all other structure 1- and 2-morphisms are identities.

We leave to the reader the verification that this indeed gives a monoidal
2-category. Thus a general notion of a monoidal 2-category can be seen as
a “distributed” version of the notion of a braided monoidal category (in the
same sense in which a category is a “distributed” semigroup).

4.3. Strict and semistrict monoidal 2-categories. A monoidal 2-category
& 1is called strict if all structure 1- and 2-morphisms are identities. We say
that & is semistrict if all structure 1- and 2-morphisms except ®  , are

identities. For example, the monoidal 2-category Q" (.sa{ ) constructed in
4.2 is semistrict.

A strict monoidal 2-category can be delooped, in a way similar to that
of 2.10, to a strict 3-category with one object. The notion of a strict n-
category for any n was defined in [S]. Various lax versions of the notion of
a monoidal 2-category can be regarded as approximations to the would-be
notion of a fully lax 3-category.

Unlike the case of monoidal 1-categories it is not always possible to re-
place a lax monoidal 2-category with an “equivalent” strict one. Indeed, in
Example 4.2 we have encoded the braiding in a monoidal 1-category & as
the “laxness” of the monoidal structure on Q~'(%/) (the data (— ® —)). It
is clearly not possible to get rid of the braiding.

The right coherence theorem for monoidal 2-categories is that every lax
monoidal 2-category is lax monoidal 2-equivalent to a semistrict one. To
even define the notion of monoidal 2-equivalence would require scores of
pages. This theorem will be proven in [KV 2]. A still more general coherence
theorem was recently announced by Gordon, Power, and Street.

5. 2-vector spaces

5.1. Introduction: 2-matrices. In §2 we encountered, as a basic example of
a monoidal category, the category Vect of complex finite-dimensional vector
spaces and its coordinatized analog Vect,, which has the advantage of being




226 ° M. M. KAPRANOV AND V. A. VOEVODSKY

a strict monoidal category. Now we are going to construct their 2-categorical
analog. More precisely, we are going to construct the 2-category of 2-vector
spaces in three versions: 2-Vect, 2- Vect,, and 2- Vect ., which differ by the
level of coordinatization. The idea of 2-vector spaces was induced by Segal’s
definition of conformal field theory [Se, Mo-S], especially by the concept of
modular functor.

By a 2-matrix we shall mean a “matrix” Iv; [I i=1,...,k, j=
1,...,1, whose entries V. are not numbers but ﬁmte—dlmensmnal com-
plex vector spaces. By takmg dimensions of these vector spaces we obtain
a numerical matrix. Similarly, we define a 2-vector of length k to be just a
k-tuple (¥}, ..., ¥,) of vector spaces.

Givena (kx/) 2-matrix V = ||V, il andan (!xm) 2-matrix W = w1,
we define their 2-matrix product to be the 2-matrix VW = Z = [[Z ils
where we set Z,, 63 (Vi ®W,)), Givena (kx![) 2-matrix V = ;i and

a 2-vector E = (E1 , e Ek) of length k, we define the 2-vector VE of
length / to have oomponents (VE);, =6p; (V ®E)).

If V,W,X are three 2-matrices of formats (k xl),(Ixm),(mxn),
then the 2-matnc§s V*(W=xX)and (V«W)*X are not exactly equal, but
their corresponding entries are connected by natural isomorphisms which are
obtained from the standard associativity and distributivity isomorphisms for
operations @, ® on vector spaces. Now we define our first version of the
2-category of 2-vector spaces.

5.2. DerFINITION. The (lax) 2-category 2- Vect, of coordmat1zed 2-vector
spaces has objects {n}, n=0,1,2,.... A l-morphlsm from {m} to {n}
isan (mxn) 2-matrix ¥V = ||V, ng The composmon of 1-morphisms is given
by the 2-matrix product deﬁned above. A 2-morphism 7': V = W, where
V,W:{m} — {n}, is a family of linear operators T,;: V; — W;. The
* -composition of 2-morphisms is given by the usual composmon of linear
operators.

We have left to the reader the definition of the *,-composition of a 1-
morphism and a 2-morphism as well as the construction of the canonical
associativity 2-isomorphism V(W «X) = (V* W)X . It is rather straight-
forward to see that these data indeed define a 2-category.

Definition 5.2 is an exact analog of the definition of the category of vector
space in terms of matrices (see 2.5). It is natural, therefore, to seek a more
“coordinate-free” definition. To arrive at such a definition, note that the
notion of a 2-matrix appeals to the structure on the category Vect which we
have not yet considered, namely that of a ring category given by operations
&, ®. This structure was formalized by Kelly [Kel] and Laplaza [L]. In the
following definitions we employ, as previously, hierogliphical notation.

5.3: DEFINITION. A ring category is a category # equipped with two
monoidal structures ®, ® (which include corresponding associativity mor-
phisms a2 4,B.C> a® A,B.C and unit objects denoted 0, 1) together with natural
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isomorphisms

u, prA®@B—-Bo4, ”A,B.C:A®(B€BC)""(A®B)@(A®C)',
w, pc(A06B)®C —~(48C)0 (B (),
x:A®0-0, y,:004—0.

These isomorphisms are required to satisfy the following conditions.
(e @) The isomorphisms u, p define on P a structure of a symmetric

monoidal category i.e., they form a braiding and u, puy ,=1.
(e ® (s ®¢)) For any objects 4, B, C the diagram

A®(B®C) 225 (4@ B)® (48 C)

ABuy, cl l“A@B.A@c

A®(C®B) 22, (48 C)®(4® B)

is commutative.
((» @ ») ® #) For any objects 4, B, C the diagram

(A@B)®C —425 (48 C)e (B®C)

uA.B®Cl l“mc, 88C

BoA)®C 245 (BaC)e (48 C)

is commutative.
((» ® ¢ ® ») ® ¢) For any objects A4, B, C, D the diagram
(40 (B CHD 4292, 4D & (B @ C)D) —t:C:2, 4D @ (BD & CD)

© )
aA,B,C®D1 laAD,BD,CD

eCD
(40 B)® C)D 482C2, (1oBDeCD AL2°, (4D® BD)® CD

is commutative.
(o ® (» ® « @ ¢)) Similar to the above. Left to the reader.
(s @ e ® (e @ o)) For any objects 4, B, C, D the diagram

AB(COD)) “%%.c.0, ypcgpp) 42022, A(BC)® A(BD)

® ® ®
aA,B.C@Dl l“a.n.c@h,n,o

(AB)(C ® D) “48.C.D . (4B)C @ (4B)D
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is commutative.
(*®e) ® e ®e) Similar to the above. Left to the reader.
(o ® (» ® o) ® ) Similar to the above. Left to the reader
((+ @) ® (e ® o)) For any objects A, B, C, D the diagram

(4@ B)(C®D) ————— A(C®D)® B(C®D) —— (AC® AD)® (BC ® BD)

l

(AeB)Cé(AeB)D ((AC ® AD)® BC)® BD

(AC® BC) o (4D @ BD) (AC® (4D ® BC)) & BD

((4C® BC)® AD)® BD — (AC & (BC @ AD)) ® BD

is commutative (we have omitted the notation for arrows; they are obvious).
(0®0) The maps X, y,: 0®0 — 0 coincide.
(0® (e @ o)) For any obJects A, B the diagram

0®(A€9B) (0®A)®(0®B)
lh@a lJ’A@)’B
0 0

is commutative.
((e ® @) ® 0) Similar to the above. Left to the reader.
(0® 1) The morphisms x,, rf’ 0®1 — 0 coincide.
(1®0) Similarly.
(O® e @ ¢) For any objects 4, B the diagram

®
08 (4®B) 242, (0@ d)® B

yA®Bl lyA®B

Vg

0 — 0®B
is commutative.
(*®0®e), (¢®e®0) Similarly.
(¢ ® (0@ e)) For any objects A, B the diagram
AR (08 B) 42, (400)® (4® B)

A®l?l lXﬁ(AQ?B)

B

e
A®B —— 06(4®B)

is commutative.

(0@e)Re), (e®(e@0)), ((¢e®0) ®e) Similarly.

Note that our definition of a ring category differs a little from the one
given by Laplaza [L] in that we do not assume any kind of commutativity
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(or braiding) for the multiplication ® , though we do assume commutativity
for the addition.

5.4. DEFINITION. Let # be a ring category. The lax 2-category - Mod,
of coordinatized free #-modules has objects {n}, n = 0,1,2,..., 1-
morphisms matrices with entries from Ob.% , and 2-morphisms matrices of
l-morphisms in & .

5.5. DEFINITION. A ring category % is called strict if both monoidal struc-
tures @, ® are strict and the structure morphisms v A.8.C>Wa,B.coXqs V4
(note that u A.B is not included) are identities.

5.6. ExaMpLE. The monoidal category Vect, of coordinatized vector
spaces introduced in 2.5, can be equipped with a structure of a strict ring
category. On objects we set [m] @ [n] = [m +n], [m] ® [n] = [mn]. If [m]
is an object and A4: [n] — [p] is a morphism i.e., an (n x p)-matrix Ilaijll

then we set
1 0 ) _ (4 0
[mle A= (0 A) A€i9[m]—(0 lm),

where 1, is the unit (m x m) matrix, and

A 0 0
med=| 0 4 D
0o 0 .- 4
all'lm alZ.lm alp'lm
A®[m]= a1y ap-1, a1,
a, " 1m U 1m o Ay 1m

The zero and unit objects are [0] and [1].

5.7. Coherence for ring categories. The main result of the coherence theory
for ring category developed by Kelly [Kel] and Laplaza [L] can be stated by
saying that . every lax ring category & is equivalent (in a suitable sense) to a

strict one % . The “rectification” Z can be constructed from % in a canon-
ical way. Namely, objects of Z are formal polynomials @(A ®---®4, )

in objects of % . Morphisms between such polynomials are set to be mor-
phisms in % between their actual values (evaluated with respect to some
preferred bracketing). Operations &, ® on formal polynomials are defined
in an obvious way and are strictly associative and distributive. Addition or
multiplication of an object and a morphism requires the use of coherence iso-
morphisms. We leave these details to the reader. The reader is also referred
to the original paper of Laplaza [L]. The following fact is straightforward.

5.8. ProrosiTION. If % is a strict ring category then the 2-category -
mod,_ is also strict.

Thus we can obtain a strict version of the 2-category of 2-vector spaces
either by rectifying the lax 2-category 2- Vect_ (by using the Mac Lane-Pare
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theorem, see 2.12) or by considering 2-matrices whose entries are not vector
spaces but objects of strict ring categories Vect or Vect_. The latter will be
especially useful for us.

5.9. DEFmNITION. The strict 2-category 2- Vect, . of totally coordinatized
2-vector spaces is Vect - mod, .

Thus objects of 2- Vect are symbols {7}, and l-morphisms {m} — {n}
are matrices with entries [a J] where a;; ;i € Z, . We can equally well say that
I-morphisms are just matrices 4 = lla; || w1th nonnegative integer entries.
The composition of 1-morphisms is glven by the usual matrix multiplica-
tion. A 2-morphism between two integral matrices 4 = ||a |l and B = ||b, ”
of the same format is a collection of usual complex matnces Ti of for-
mats (a; J) x (b, ,) In other words, this is a rectangular matrix whose entries
are rectangular matrices of various formats. We pay so much attention to
strict versions of 2-categories since we are eventually interested in 2 monoidal
structure on them, a notion which we have defined only for the strict case.

5.10. 2-Vector calculus and module categories. The multiplication of a 2-
matrix by a 2-vector has the following conceptual sense. Note that 2-vectors
of length n form a category Vect” if morphisms are defined componentwise.
In other words, Vect” is just the direct sum of n copies of the category
Vect. Given an (m x n) 2-matrix ¥V = v, ;i , the multiplication with ¥

defines a functor ¥7: Vect™ — Vect". Each collection T, V. — W. of
linear operators between corresponding entries of two 2-matnces vV, W of
the same format (m x n) defines a natural transformation between their
associated functors ¥, W: Vect™ — Vect™. In this way we realize our 2-
category 2- Vect as a subcategory of the “archetypal” 2-category Cat.

However, there is one subtlety involved. Namely, Cat is a strict 2-category
while our 2- Vect, is not. The point is that the previous reasoning defines a
lax 2-functor f: 2- Vect, — Cat. Let us describe f in more detail.

On objects we have f({r}) = Vect", the category of 2-vectors of length 7.
On 1-morphisms it is given by the correspondence V — ¥V above. However,
this composition does not commute with the compdsition of 1-morphisms.
Indeed, let V, W be two 2-matrices of formats (k x /) and (I x m). Then

the functor WoV takes a 2-vector (E,, ..., E,) into (F,,..., F "n) » Where
F, = ®,W,® (®;V, ; ® E;)), whereas the correspondmg component of
(W* V) is F GB ((69 (W, Vij) ® E;). We take the compatibility

2-1somorph1sm (—»—v) for the 2 functor f to be the natural isomorphism
between F and F

Let us characterxze functors of the type ¥ . To do this, we note that each
Vect” can be seen as a kind of “module” over the “ring” Vect. More precisely,
we have the following definition.

5.11. DeFINITION. Let % be a (lax) ring category. A (lax) left module
category over % is a symmetric monoidal category (#, @, 0 ) together
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with a bifunctor ®: % x .# — .# and natural isomorphisms

a, p N A®(BO®N)—(A®B)®N,
Vyp N (ABB)®N - (4@ N)®(B®N),
Wy py n' AO(MSN)—+ (AR M)® (A N),

lyily®@M— M,
x40, —0,, V' 0p®@M—0,,

given for any objects 4,B € £, M, N € .#. These isomorphisms are
required to satisfy the coherence conditions which are obtained from the
conditions for a ring category by “polarization” (setting the last factor to
belong to ).

5.12. DEfFINITION. Let % be a strict ring category. An %-module cate-
gory # is called strict if (# , @) is strict as a monoidal category and the
structure isomorphisms Ay N Va B N> Waar no lﬁ, X,, ¥, arealliden-
tities.

5.13. DEeFINITION. Let .# , 4 be two lax module categories over a lax
ring category % . A (lax) #-module functor F: .# — .# is a symmetric
monoidal functor (see [Saa]) (£, ®) — (4, ®) (also denoted by F) to-
gether with natural isomorphisms F um FA® M) — A® F(M) given for
any A€ %, M € # which satisfy the following conditions:

(#® e ®e) For any objects 4, B £, M € # the diagram
F(A® (B®M)) ———A@F(B® M) —— A® (B ® F(M))

l !

F((4®B)e M) —~ (A® B)® F(M)

is commutative.
((e®e) ®e) For any objects 4, Be€ £, M € # the diagram

F((A®B)® M) -F(A®M)® (B M) — FASM)®F(B® M)

! !

(A® B)® F(M) + (AQ F(M))® (B® F(M))

is commutative.
(s ® (+ @ ¢)) For any objects 4 € #, M, N € # the diagram

F(A® (M ® N))=F(AM)®(A® N))—» F(A® M)® F(A® N)

l !

ARFM & N) - AQ (F(M)® F(N)) »(4A® F(M))® (A® F(N))
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is commutative.
(1 ® ¢) For any object M € .# the diagram

Fly® M) —— 1, F(M)

F({u) /

is commutative
(» ® 0) For any object 4 € &# the diagram

F(4®0,) —— A®F(0,)

! !

FO)— o, «—480,

is commutative.
(0 ® e) For any object M € .# the diagram

F(0p ® M) —— 0, ® F(M)

! !

is commutative.

5.14. DEFINITION. Let # be a strict ring category and .# , .4/ two strict
left #Z-module categories. An #-module functor F:.# — # is called strict
if it defines a strict monoidal functor of strict monoidal categories (# , ®) —
(", ®) and the structure morphisms F A, aTe identities.

5.15. DEerINITION. Let &% be a (lax) ring category, £,/ two F-
module categories, and F, G: # — A4 two lax #-module functors. A
(lax) #Z-module natural transformation 7: F = G is a symmetric monoidal
natural transformation (see [Saa]) between underlying monoidal functors
(A ,®) > (#,®) such that T, = A® T,: F(M) — G(M) for any
AeZ, Med.

5.16. PROPOSITION. (a) Let # be a lax ring category. Then all lax -
module categories, their lax module functors, and their module natural trans-
formations form a strict 2-category, denote #-mod,

(b) Let # be a strict ring category. Then all the strict %-module cate-
gories, their strict F-module functors and their module natural transforma-
tions also form a strict 2-category R-mod®.

ProOOF. We define compositions, leaving the verifications to the reader.
Let &, 4, P be three P-module categories, and F: £ -4, G: AN —
P two lax F#-module functors. Their composition consists of the underly-
ing monoidal functor (#, ®) — (£, &) given by the usual composition of
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the underlying monoidal functors for F and G (see [Saa)), and the struc-
ture isomorphisms (GF), ,,: GF(4® M) — A® GF(M) defined as the
composition

G(F(A® M)) - G(A® F(M)) — A® GF(M).

Since module natural transformations are just monoidal natural transforma-
tions with additional condition, their composition is defined by the usual
rules (see 2.8).

In any 2-category there is a class of 1-morphisms called equivalences (cf.
[S]) For the 2-category Cat they are just equivalence of categories in the
usual sense. Considering the 2-category %#-mod, we get a notion of a lax
Z~-module equivalence of lax F-module categories .# , ./ .

Now we are ready to give a coordinate-free definition of 2-vector spaces.

5.17. DEFINITION. A 2-vector space is a lax module category 727 over
the ring category Vect which is module-equivalent to Vect" for some 7.
The number 7 is called the rank of 77 and is denoted rk(7"). The strict
2-category 2-Vect has as objects 2-vector spaces, as 1-morphisms their Vect-
module functors, and as 2-morphisms their module natural transformations.

5.18. Tensor products of 2-vector spaces. Let 77, #Z  be two 2-vector
spaces. Define a new Vect-module category 7° ® Z°. Its structure data
are as follows:

() Objects of 7 ® Z~ are formal expressions of the form

eW)e--e¥,eW), r20,

where ¥V, € Ob?", W, € ObZ . Note that we assume an ordering in the
formal direct sum. For brevity we denote objects of 77®@% as D,(V;®W)).
(—) Define

Homy, g (GBW,- ®W), P e M))

= D Hom,, (V,, V}) ©c Homg, (W, W)),
‘.'j
where ordering of indices (i, j) on the right-hand side is assumed to be the
lexicographical one: (i, j), (i’, j') if i<i’ or i=i and j<j .
(e ® ) For any vector space Z define

zZ® (GB('V,. ® W,.)) =Pz e V)ew).

(*» ® e ® o) Define the structure isomorphism

(Zl ®Z,® (@(V,@ W,))) —(Z,8Z,)® (@(V;@» W,.)) :

i

4
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This should be a certain element / of the Hom-space between objects in the
left- and right-hand sides. This Hom-space is, by definition,

PHom(Z, ® (Z,8 V), (Z,8Z,)® V;) ® Hom(W,, W,).
i,
We define /4 to have nontrivial component only for i = j and the corre-
sponding component to be az,.2,.v, ®1Idy,
We leave to the reader the constructlon of data related to zero and unit
objects and the verification of the axioms of module category.
This definition is so similar to the usual definition of tensor product of
vector spaces that it seems to be erroneous. However, we have the following
fact.

5.19. PROPOSITION. 7 @ #  is a 2-vector space of rank equal to
k(7)Y 1k(#). _

PrOOF. We can assume that 2 = Vect™, % = Vect”. Let us construct
a left module functor F from 7 @ # to Vect™", thinking of objects of
Vect™ as (m x n) 2-matrices IZl, i=1,...,m, j=1,...,n. As
usual, we label the data for this functor by hierogliphs.

(o) Let V =(V,..., V,), W= (W,..., W,) be some objects of 7
and 7~ respectwely We set F(Ve® W) to be the the 2-matrix ||V, ® W, fl
(here ¥V ® W is the formal tensor product which is an object of 7" ® 7/ )-
¥ vO=@®, vy, wR =, W) k=1, arer
objects of 77 and #”, then we set F (@k(V(k) ® W(k))) to be the 2-matrix
whose (i, j)th entry is G}k(Vi(k) ® Wj(k)) .

(—) Let

V=W,....Y,), V=¥,.,V)e0b7,
W=W,..,W), Ws=W,. W)cOb¥.

We have

Homy, oo (VO W, V' ® W') = Hom,(V, V') ® Hom,, (W, W')

= (@ Hom(V;, V}')) ® (@ Hom (W, Wj')) .
i j
On the other hand, we have
Homy, .o F(V @ W), F(V' @ W')) = D Hom (¥, ® W, V, ® W)).
i
We define the action of F on morphisms, J
B Hom(V,, V) @ Hom(W;, W) —» @ Hom(V,® W,, ¥, & W)),
i,j

to be the tensor product of 1-morphisms in the monoidal 1-category (Vect, ®).
This defines the data (—) on morphisms between decomposable objects of
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7 @ % and we extend these data to morphisms between arbitrary objects
by &-additivity.

(e®e) Let Z be a vector space, V = (V},...,V,) € Ob7, W =
Wy, ..., W,)eOb#Z . Wehave ZQ(V ® W)= (Z®V)® W . Therefore
F(Z ® (V ® W)) is a 2-matrix whose (i, j)thentryis (Z®V,) ® W.. On
the other hand, Z @ F(V ® W) has at the (i, j)thplace Z®(V;® W) We
define the structure 1-morphism

Fy vew: F(Z@ (VW) > Z@F(V W)

to be given, at the (i, j)th place, by the standard associativity isomorphism
agl,, W, for vector spaces. Then we extend the data to arbitrary objects of
7 ® 4 by ®-additivity.

We leave the reader the task of proving that these data define a lax Vect-
module equivalence F: 7 @ # — Vect™.

5.20. THEOREM. The strict 2-category 2-Vect admits a lax monoidal struc-
ture ® which on objects is given by the tensor product of 2-vector spaces defined
above.

Proor. We already have the data (e ® o). Let us define the rest of data.

(e® —) Let 7" be a 2-vector space and G: Z — %" a module functor
of 2-vector spaces. We define the module functor 7 @G 7 % — 7 ¥’
by the following data:

() VOW — V @G(W), and this extends on arbitrary
objects of 7”@ #~ by ®-additivity.

(—) Let VoW, X®Y be two decomposable objects of
7 ®¥ . We define the action of 7" ® G on Homy,go (V' ®
W, X®Y),ie., the map

Hom(V, X).® Hom(W, Y) - Hom(V, X) ® Hom(G(W), G(Y))
as Id®G.

(e®e) Let Z be a vector space and V' ® W a decompos-
able object of 77 ® # . We have

(Z0GNZe(VeW)=(ZG)N((ZeV) W)
' =(ZV)®G(W)=Z (V& GW))
=ZQ (7 ®G)(VeW)),

and we define the structure morphism (7°® G) z.vew tobe
the identity. This defines 7 ® G'.

(— ®e) Let F: 2 — 7" be a module functor of 2-vector spaces and %~
another 2-vector space. We define the module functor FQ# : 7 ¥ —
7' @ # by the following data:

(0) VW = F(V)oW.
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(=) Let V@ W, X®Y be decomposable objects of
7 ®% . We define the action of F®%~ on Homy, oo (V' ®
W, X®Y) to be the map

Hom(V, X) @ Hom(W, Y) L2494, Hom(F(V), F(X)) ® Hom(W, Y).

(e ®e).Let Z be a vector space and V @ W as above.
We define the morphism (F ® #), o, 1o be

FOIZNZQIVRIW)=FQZ)YZV)QW)

—F(ZeV)eW 2% (Z@ F(V))e W
—ZQUF W)V & W)).

(- ® =). Let F:1 72 - %', G:% — %' be two module functors
between 2-vector spaces. In the diagram

veow L2, veow'

F@Wl lF@W'
7’®W 7'®G 7-/@%1
both paths give functors which take a decomposable object V@ W, V €
ObZ, W e ObZ ,into F(V)® G(W). The same will hold for a general
object of 77 ® 7", i.e., a formal direct sum of decomposable objects. We
define the 2-morphism ® F.G 10 be the identity natural transformation.

(oQ@eQe) Let 7, 7", & be three 2-vector spaces. Let us define a module
functor @y, 4 o ‘7 ® (W ®Z)— (7 %) ®Z by the following data:

() Each decomposable object V@ (W X) € Ob(Z &(# ®
Z’)) istaken into (V@ W)® X .

(=) Let V,V e Ob?7, W, W e ObZ, X, X €
ObZ”. We have

Homy g 5rp0(V © (W@ X), V' @ (W @ X))

= Hom,,(V, V') ® (Homy, (W, W') ® Hom, (X, X))
and
Homy gprie2 (VO W)@ X, (V @ W) 8 X)

= (Hom,, (V, V') ® Hom,, (W, W')) @ Hom, (X, X'),

and we define the action of 4y o . on Hom’s to be given
_by the usual associativity isomorphism for vector spaces.
(e®e) Let Z be a vector space and V', W, X objects of
7, % ,Z respectively. We have

ZRVRWeX)=(ZV)e(WeX)
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and hence
ay'y,g(2®(V®(W®X)))
=(ZV)eW)@e X =Z(VeW)®X)
=Z®ay 5 #(V O (W @X))

So we define the data (e ®e) for g 4 , to be the identity.

(— ®e®e) Let F: 7 — 7" be a module functor of 2-vector spaces
and #", 2 another pair of 2-vector spaces. We need to construct a module
transformation

7 oW L) LIE (VW)X

F®(W’®2’)l/ A o 2 lrwv)@z’

V' W QL) LTE, (VW)L
Let V ® (W @ X) be a decomposable object of 7” ® (¥ ® Z°) . Both paths

in the boundary of the above diagram take this object to F((V)®V)® X so
we define the transformation ap 4 o to be the identity.

(¢® — ®e), (¢ ® «® —) Similarly.

(e®@e®@e®e) Let 7, % ,2,% be 2-vector spaces. Both paths in
the Stasheff pentagon take a decomposable object ¥ @ (W ® (X ® Y)) to
(VeW)®X)®Y, and we define the transformation to be the identity one.

(e® ——), (—— ®e) identities.

(o ® T) Let 7 be a 2-vector space, and

G
PR

2R 7
~___"
o
a module transformation. We define the transformation
7°®G

7 @7 |7°®T 777"
~_
Py
to take a decomposable object ¥V ® W into the morphism V ® G(W) —
V ® G'(W) given by 1deTy, .

(T ® -) Similarly.
Thus we have defined all the data. We leave to the reader the verification
of the axioms of Definition 4.1. Theorem 5.20 is proven.

5.21. Monoidal structure on totally coordinatized 2-vector spaces. We men-
tioned in §4 that any lax monoidal 2-category can be rectified to a semistrict
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one. For a 2-vector space a semistrict version can be constructed explicitly
The underlying 2-category will be the 2-category 2- Vect . Of totally coordina-
tized 2-vector spaces (i.e., we consider the 2-matrix version, but the entries of
2-matrices are now coordinatized vector spaces coded by their dimensions).

5.22. DerFINITION. The monoidal structure on the strict 2-category 2-Vect,,
is defined as follows:

(e ®e) On objects we set {m} ® {n} = {mn}.

(e® —) Given an object {m} and a 1-morphism B = ”bu" {n} - {n'}
(ie., a matrix with entries from Z_), the tensor product {m} ® B is the
I-morphism {mn} — {mn'} given by the integral matrix

B 0o .- 0
OB 0 times).
0 0O -.-- B

(-® z) Let {m} be an object, B = ||bll, B' = |1b||: {n} — {n'}
two l-morphisms and 7 = ||T,;]|: B = B' a 2-morphism (i.e., a collection
of complex matrices T;; of format (b;; x b;j)). The product {m} @ T is
the collection of usual matrices Mpq, , 1<p<mn,1<qg<mn defined

as follows Suppose that p =nd+i, q=n'd +j,where 1 <i<n,
1<j<n’. Then M, T, if d=d',and Mp = ( otherwise.
(— ®e) Let A: {m} — {m'} bea l-morphlsm given by the integral matrix
lla; ," and let {n} be an object. The product 4 ® {n} is the 1-morphism
given by the matrix

(all'ln al2°1n alm"ln)
aml'ln am2'1n ne- amm"ln

(I ® 0) Let 4, A4': {m} — {m'} be two 1-morphisms given by matrices
a;i, a;j ,and let S: 4 = 4 be a 2-morphism (i.e., a collection of complex
matrices S;; of format (a; ;X a;j)) . The tensor product S ® {n} is the
collection of usual matrices Npq , 1<p<mn, 1<q<mn, defined as
follows. Suppose p=dn+i,q=dn+j,where 1 <i,j<n,1<d<
m, 1<d <m'. Then Npq—Sd, if i=j,and N =0 otherw1se

(—'® =) Let 4: {m} — {m'}, B: {n} — {n} be two 1-morphisms
given by matrices lla;;Il and {[b,|l. Let 4;;=la;]1=C C% and B,, = b=
Cl be the corresponding coordinatized vector spaces. The right path in the
diagram

{mn} 1722 {mn'y

A®{n}l lA@{n'}

{m'n} Am}®5, {m'n'}
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is represented by the 2-matrix of format (mn) x (m'n’) whose entry with
number (im+j, kn+!) equals A, ® B, . The left path in the same diagram
is represented by a similar matrix whose entries are B, i1 ® A,

We define the 2-morphism ® 4,p 10 be given on each such space.by the
standard permutation operator in the tensor product.

5.23. THEOREM. 2- Vect , is a semistrict (see 4.3) monoidal 2-category.

The proof is left to the reader.

Note that the data (— ® —) for 2-Vect (the category of “abstract” 2-vector
spaces) are identities, whereas for 2- Vect,, they are not. Thus the definition
of 2-Vect,, makes essential use of bra1d1ng in Vect. We can replace in this
construction Vect by any strict ring category for which ® is equipped with
a braiding,.

6. 2-Braidings and Zamolodchikov equations

6.1. DEFINITION OF A 2-BRAIDING. Let & be a semistrict monoidal 2-

category. A 2-braiding in &/ is a collection of the following data:
(» ® o) 1-morphisms (not necessarily isomorphisms or equivalences)

R, p: A® B — B® A given for any pair A, B of objects of & .
(— ®e) For any l-morphism u: 4 — A4’ and any object B a 2-morphism

u®B A ® B
lj A B

BeA 22, Beod
(#® —) For any object 4 and any 1-morphism v: B — B’ a 2-morphism

e

BoA 24, B o4
((+® ) ® ) For any objects 4,, 4, and B a 2-morphism

A%, 48 B

AB'

A®R,,
A ®A4, 8By ——F— 4,9 B® A4,
R
RA,@A:.BlJ“"”“”R
4,894,
B®A,®4,

(* ® (s ® o)) For any ObJCCtS A4, B, and B, a 2-morphxsm
A, ®B ®B, Lan®h B, ® A® B,

RA.B,@le

B,®B,®4

Ruw, .By)

B®R, ,
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These data should satisfy the following conditions:
((+® e ®e)®e) For any objects 4, , A4,, 4, B the tetrahedron

BA 1A2A3

R(A Ay ALlB)

) Ra anm

AAAB
JA®Ry 4m)

AA,BA,

is commutative.
(¢ ®¢)® (e ®'s) For any objects 4,, 4,, B, B, the polytope

R
. A4A,B,B, (A4,1B,.B) B,B,A\A,

o “\R\(Ar"zw Y

ABiBAy T

A®Ry 555 ~ - 2 _ %

B lA IAZB 2
is commutative.
(*® (» ® e ® ¢)) For any objects A4, B,, B,, B, the tetrahedron

B\ByB:A
By ® Ry 5,

R(AIIBI'BZ‘Bs) - -

AB Ty
1828y Y Riyp 5, @B

B,AB,B,
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is commutative. ,
((» ® )® —) For any two objects 4,, 4, and a l-morphism v: B — B
the triangular prism

A\A,B BAA,
w /
A BA A v
AA v
AAB —— == - BAlAz
)R(AI.AE,B')
AB'A,

1s commutative.

(— ®(e ®¢) Similar prism. Left to the reader.

((#® —) ® o) For an object A, a 1-morphism v: B — B’, and an object
C the cube

ABC 3 AB'C
®C Rp ¢

1 A v 8"

/ ; ' / A.B
BAC T B’AC

1

1

1

' Riguc
Rp Y '

is commutative.
((— ®0)®9), (+®(s® —)), (¢®(— ®e)) Similar cubes. Left to the reader.

A'(— ® —) For any two 1-morphisms u: A — 4', v: B — B’ the cube
AB A’'B

!
AB"/ I » A'B’
R, |
1
1 Ru.B
“\RA'” B*A BA’
R St S
) X R..
B’A = B'A’ Aty

is commutative.

(- ® T) For any object A and any 2-morphism
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N
B |p &
N

| 1‘: the cylinder

A®B ) A A®B’
/ RA.v’ R A % l
i =T T T~
! L B®A™ Jpea B'®A
| \__/
is commutative.

(—f ® o) A similar cylinder for a 2-morphism and an object.

(—— ©e) For any composable pair 4 =+ 4" - 4" of 1-morphisms
and an object B the 2-morphisni R, u.B coincides with the pasting

A®B —— A ®B — A"®B

l&_/{*..n l%s 1

B®A —— BA — Bo A".
(e® ——) Similarly.

6.2. The resultohedra N, . The first three polytopes entering in the ax-
ioms of 2-braiding (as well as both triangles entering in the axioms of the
usual braiding) are members of a bigger family of polytopes which we call
resultohedra and describe below. These polytopes were first introduced and
studied in [GKZ] in connection with the Newton polytope of the resultant of
two polynomials in one variable.

Consider m +n letters 4,,...,4,,B,, ..., B, . By an (m, n)-shuffle
we shall mean a word w in A’s and B’s such that:

(1) w contains each 4; and each B; exactly once (i.e., w defines a
permutation of (m + n) symbols).
(ii) The order of A4’s in w, as well as the order of B’s, is increasing.

For example, 4, B, B, A, isa (2, 2)-shuffle. Clearly, the number of (m, n)-
shuffles is (™!") since a shuffle w is uniquely determined by an m-element
subset in the set {1, ..., m + n} of positions occupied by A’s. We regard
any shuffle as a sequence of strings of consecutive A’s followed by strings of
consécutive B’s and conversely.

For an (m, n)-shuffle w let p,(w) be the length of the maximal string
of consecutive B’s at the beginning of w (so p,(w) =0 if w starts from
A4,). Letalso p(w), i =1, ..., m denote the length of the maximal string if
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consecutive B’s immediately following A4 ;- In this way we associate to w an
integer vector p(w) = (p,(w), ..., P, (w)) € 2™ such that 2p(w)=n.

Similarly, for any w as above we define gy(w) to be the length of the
maximal string of consecutive A’s at the beginning of w and by qj(w) L, J=
1, ..., n the length of the maximal string of consecutive A’s immediately
following B - In this way we get an integer vector g(w) = (gp(w), ..., g,(w))

€ 2" such that Y a(w)=m.

The resultohedron N,.. is by definition, the convex hull of the points
(p(w), g(w)) € Z™"*? for all the (m, n)-shuffles w. One can give a more
conceptual definition. For any p > 0 consider the p-dimensional simplex
A ={(x,, ..., x,) € R2!': Y x, = 1}. The product A™ x A" is embedded,
therefore into R™*"**_ There is a well-known triangulation of A™ x A" into
("+") simplices labelled by shuffles (see [Mac3] and [GZ]}). The resultohe-
dron Nm’n is (up to homothety) just the convex hull of the barycenters of
the simplices of this triangulation.

It was proven in [GKZ] that N, 1s a convex polytope of dimension m +
n—1 and any point (p(w), g(w)) is actually a vertex of N,..

It can be decided, in general, when two vertices (p(w), g(w)) and (p(w'),
g(w')) of N,, are connected by an edge. The condition is [GKZ] that ei-
ther w' can be obtained from w (or w can be obtained from w') by the
following procedure. Find in one of the shuffles a string (not necessarily max-
imal) of consecutive A’s followed by a string (also not necessarily maximal)
of consecutive B’s and interchange these strings. In [GKZ] the whole face
lattice of N, was described. In particular, each face of N, is a product
of several smaller resultohedra.

This implies that if Ay,....4,,B,..., B, are not just symbols but
objects of some braided monoidal category &% then we can form in & a
diagram of shape N,.. by associating to edges the morphisms given by the
braiding. Since 2-faces of any resultohedron are either triangles (N,, or N,,)
or squares N, x N,,, the axioms of braiding imply that the whole diagram
will be commutative.

Similarly, if we work in a braided monoidal 2-category then we can asso-
ciate 2-morphisms to the 2-faces of the diagram of the shape N, associated
to objects 4, ..., A,., By, ..., B, . The axioms for 2-braiding imply the
commutativity of every three-dimensional face of N,,, so the whole diagram
is commutative.

6.3. Resultohedra and the resultant. Consider two polynomials
fx)=ay+---+a,x", glx)=by+---+b x"
of degrees m and » in one variable x with indeterminate coefficients. The
resultant R(f, g) is an integral irreducible polynomial in a,, bj such that -

the vanishing of R(f, g) for some concrete polynomials f, g is equiva-
lent to the fact that these polynomials have a common root. It is given by



s w FE

244 M. M. KAPRANOYV AND V. A. VOEVODSKY

the classical Sylvester determinant formula [vdW] We write R(f, g) in the
developed form

P, P 1.4 n _ q
R(f, 8) = Ecpo,...,pm,qo,...,q,,aoo"'am bOO bn - Zcpqapb

where p = (py, ..., P,) €Z™', g =(q;,..-,q,) € Z"' . We define the
Newton polytope /%, . of R(f,g) as the convex hull in R™"™2 of the
points (p, ¢g) such that €,q #0.

It was proven in [GKZ] that the resultohedron N, , coincides with the
Newton polytope .#,, .

On the intuitive le\;el, one can think of objects 4,,...,4,,B,,..., B,
of a braided monoidal 2-category as corresponding to roots a, ..., 0,
B,»..., B, of polynomials f and g. The condition that the resultant

does not vanish means that «; # f - A braiding morphism in the prod-
uct 4,---4, B, ---B, can be thought of as corresponding to a path in the
space of pairs of polynomials going around the zero locus of the resultant (so
that roots interchange places).

6.4. The decomposition of a permutohedron into (products of) resultohe-

_dra. Let P be an (n — l)-dimensional permutohedron (see 3.6). We shall

construct a polyhedral decomposition Z'(I") of P, for any face I' C P,
of codimension 1. The polyhedra (of full dimension) of the decomposition
Z(T') will be in bijection with the faces (of all dimensions) of I". By general
description of faces of P, (see 3.6) the face I' is defined by a partition of
{1, ..., n} into two disjoint parts, C,UC, . More precisely, I" has vertices
[0]), where the permutation ¢ preserves C; and C,. Let ACT bean
arbitrary nonempty face (including A = I). It is defined by a pair of parti-
tions C;, = Q,U---UQ,, C,=R;U---U R,. We say that a permutation
geS, isa (A, I")-shufﬂe if 1t is obtamed by shuffling R, among Q; and
then arbltrarlly reordering elements inside R; and Q Denote the set of ail
(A, I')-shuffles by S(A,T).

6.5. THEOREM. (a) The polytope Conv S(A, T') C P, is linearly isomorphic

t0
N x [Py x I1 By

(b) For a given face I", the polytopes ConvS(A,T) form a polyhedral
decomposition D (T) of P, (i.e., they cover .P, and intersect along common
Jaces).

One-can also permit I' to have arbitrary dimension, thus obtaining new
polyhedral decompositions of P, which we do not use here.

The proof of this theorem will be given in a separate paper of the authors
devoted expecially to the polyhedral aspects of the theory. In the present
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r
Figure 14

work we need only the particular cases of this theorem corresponding to two-
and three-dimensional permutohedra, which can be verified easily. We shall
show the arising decompositions explicitly.

6.6. Examples of the decompositions. (a) If I" is an edge of the hexagon
P,, then the decomposition Z(I") has the form shown in Figure 14. This
type of decomposition was used in the proof of Proposition 3.5.

(b) Let T" be a hexagonal face of the permutohedron P,. The decompo-
sition Z(T') consists of six tetrahedra N, , (corresponding to the vertices
of T'), six triangular prisms (corresponding to edges of I'), and a hexagonal
prism (corresponding to I itself), see Figure 15.

(c) Let I be a quadrangular face of the permutohedron P,. The decom-
position Z(I') consists of four polytopes of type N, , (corresponding to
the vertices of I'), four triangular prisms (corresponding to edges of I'), and
a cube (corresponding to I' itself), see Figure 16.

Figure 15
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Figure 16

6.7. Zamolodchikov systems. Let &/ be a semistrict monoidal 2-category.
A Zamolodchikov system (Z-system, for short) in & is a collection I of
objects of & , a family of 1-morphisms R 4,8° A®B — B® A given for any
two objects 4, B € I and a family of 2-morphisms
A®B®C

B®A®C A®C®B
(6-) sor,c|  HC |k con

BoC®A CRA®B

Ry ®A C®R, , .

CRB®A
given for any three objects 4, B, C, € I. These data should satisfy the

following condition: for any four objects A, B, C, D the permutohedral
diagram
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ABCD

DABC

(6-2)

DCBA

is commutative.

6.8. Examples. (a) Let & be the monoidal 2-category of 2-vector spaces
(see §5). More precisely, we set & to be 2- Vect,, the most coordinatized
version of this category (Definition 5.22). Let [ cons1st of one object {1} of
2-Vect (the one-dimensional 2-vector space; in the module-categorical inter-
pretation of 2-Vect (Definition 5.17) it corresponds to Vect as a module cate-
gory over itself). Let us see what a Zamolodchikov system on the set 7 is. We
have {1}®{1} = {1}. Therefore a morphism Roy, iy {13e{1} — {1}®{1}
is just one vector space V.. Since {1}® {1} ® {1} = {1} both 1-morphisms
given by composition of right or left boundary paths in the hexagon

{1}e{i}e {1}

{l}e {1} e {1} {1}e{1} & {1}
{1}e{1} & {1} {1}e{1}e{1}

™~ —

{1}e{1}e {1}
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are given by the vector space V® V' ® V' (see 5.1). Therefore a 2-morphism
S{l} 3. {1} filling the above hexagon is nothing but a linear operator

S:VRVeV --VeVeV.

The condition that S indeed defines a Z-system (i.e., that the permutohe-
dral diagram above is commutative) amounts to the following equation for
operators in yes.

(6'3) P34S456S234P12P45S234S456 = SlZ3S345P23P56S345S123P34‘

Let us compare this with the Zamolodchikov tetrahedra equations (1-10)
corresponding to coloring of segments of plane configurations. After the pairs
(12), (13), (14), (23), (24), (34) are numbered as 1, 2, 3, 4, 5, 6, Equation
(1-10) takes the form

(6'4) S456S2368135S124 = S124Sl35S236S456'

It is straightforward to see that if S satisfies (6-3) then the operator S =
SoP,,, where P, is the permutation of the first and the third factors, satisfies
(6-4), and vice versa. . )

(b) Let S(z,, z,, z;) € End(V ® ¥ ® V') be a solution of the parametric
Zamolodchikov equation (1-11) where parameters z; vary in some set X .
We associate to such a solution a Z-system as follows. We again take the
monoidal 2-category & to be 2-Vect. For any z € X choose a copy {1}(z)
of the one-dimensional 2-vector space {1}. For any two values of parameters
z,, z, € X define the 1-morphism R{‘}(xl), (1}xy) to be the vector space V.
For any three values of parameters z,, z,, z; we define the 2-morphism

S{l}(Z,).{I}(zz). 1)z to be given by the linear operator

S(2),25,23)0 Pt VRVIV 2 VRVRV.

The equivalence of Equation (1-11) and the commutativity of permutohedra
(6-2) are established similarly to the previous example.

For the concrete physical setting of [Z1] and [Z2] this recipe amounts to
taking a copy of the 2-vector space {1} for each direction of affine planes in
R , 1.e., for each point of the real projective plane RP?.

(c) As we have seen in 4.2, any braiding in a monoidal 1-category (& , ®)
gives rise to a monoidal structure on the 2-category Q! (&) with one object,
associated to (&, ®). A Zamolodchikov system in Q! (&) consists of

(1) A l-morphism ‘Rpt,pt: ptoOpt — ptOpt in Q_l(.%) , 1.e., an object
Ve
(2) A 2-morphism S,, ,, ., in Q_l(.% ) which corresponds to a (1-)
.morphism VV®V - VeV eV in &, which we also denote by
S.

The commutativity of the permutohedron (6-2) amounts to the following

equation on endomorphisms of 148 (which differs from (6-3) by replacing
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permutations with braidings):
(6-5) R34S4565234R12R 45 R348 456 = 1335345 Ry3 R 5653455123 R34-

Here R: V®V — V®V is the braiding in & . Equation (6-5) can be called
the coupled Zamolodchikoiv-Yang-Baxter equation. It was proposed also by
Lawrence [Law]. )

6.9. Tetrahedra equations as the “vectorization” of triangle equations. Let
us see what are more general Z-systems in the category 2-Vect. Let us keep
the assumption that I contains just one element, but allow this element to
be an arbitrary (coordinatized) 2-vector space {n}. A l-morphism R =
Riuy (my: {n}®{n} — {n} ® {n} is nothing but a collection of vector spaces

.9?,.';.1 indexed by four numbers i, j, k,/ € {l,..., n}. In other words, #
1s an “ R-matrix” in the usual sense, but its entries are not numbers but vector
spaces. Now a 2-morphism S = § (n}, {n}, {n} is a collection of isomorphisms
of usual vector spaces

i

66) S DAL eHL 0 H) - R AT

1
a,b,c a,b,c
given forany i, j, k,i', j', K € {1,..., n}.
Note that for the existence of such isomorphisms it is necessary that
dimensions of the space in the right- and left-hand sides coincide for ev-

ery i,j,k,i,j,k'. In other words, the “numerical” R-matrix IIR;‘J.IH =

Il dim.9£’,.'j.1|| should satisfy the usual Yang-Baxter equations. When these
equations are satisfied, we can look for a system of isomorphisms which
form a Z-system, i.e., make the permutohedral diagram (6-2) commute. We
shall not write the corresponding version of the Zamolodchikov equations in
full detail, since this can be done automatically by “unraveling” the permu-
tohedron. Instead we summarize the results of the above digression:

1. Any solution |]Rf} I, 1<1i,j,k,l<n, of the Yang-Baxter equa-
tion whose entries are natural numbers can provide a setup for formulating
Zamolodchikov tetrahedra equations. The usual setting of §1 corresponds to
the trivial solution with n=1 and R:i = m a fixed natural number.

2. More precisely, given a solution R:.‘f as above, we consider vec-

tor spaces .92’51 of dimensions Rf.‘j[ . The unknowns of the Zamolodchikov
equations associated to Rf.‘; are isomorphisms S,f ;.’ k’k , “materializing” the

Yang-Baxter equations for Rfj{ . The equations themselves are certain natural
compatibility conditions on these isomorphisms.

We can modify this approach to take into account solutions of YB with not

necessarily integer entries. More precisely, given an arbitrary solution IlRf.‘f I,

Rf.‘]{ € C, we can look for a collection (ﬂil;l , T,-I;-I) of vector spaces 9?/;’

and linear operators T[.I;.I: ‘%i’;.l — 9?1.’;.1 such that 1r(Ti';.l) = Rfj[ In other
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words, we replace the vector space with finite-dimensional C[7]-modules.
Such modules form a monoidal category with respect to the usual tensor
multiplication over C and the action of T givenby T(a®b) = T(a)@T(d).
The trace of T is multiplicative with respect to this tensor product and
additive with respect to the direct sum. Thus the setup for any R-matrix is
the following:

Find #* finite-dimensional C[T}-modules le such that

(T 351)=Ri and n® isomorphisms of C[T}-modules S” «

of the form (6-6) making the permutohedral diagram (6 2)
commute.

6.10. A Zamolodchikov system from a 2-braiding. Let &/ be a braided
monoidal 2-category. We are going to define two Z-systems (R

+
4,8°54,8,C)
and (R, p, S, p ) on the same set of objects = Ob.s .
The 1-morphisms R 4B in both systems are given by the braiding. The
2-morphisms Sj, p,c and S;, B,c are defined respectively by pastings

BAC
BAC

R(_Bm o
// Raaic. » \\ /

ACB ACB

(AIB C)

6.11. THEOREM. The collections (R, 5, Sy 5 ) and (R, 5, S, 5 () are
Z-systems on the collection of objects I = Ob.%/ .

ProoF. Consider the vertex ABCD of the permutohedron (6-2). It is
contained in three facets, two hexagonal and one quadrangular. For I" one
of the two hexagonal faces, the decomposition Z(I') of the permutohedron
constructed in Theorem 6.5 (see also Example 6.6(c)) shows that S* and
S are indeed Zamolodchikov systems.

In the proof of Theorem 6-11 we have not used the decomposition of the
permutohedron corresponding to a quadrangular face. Taking it into account
results in an additional relation between S* and S~ .

In a subsequent paper [KV3] we will show that this relation permits one
to define, for any objects 4, ..., 4, of a braided monoidal 2-category &,
an action of the Manin-Schechtman higher braid group T(2, n) (defined in
[MS 2]) by 2-automorphisms on any braiding 1-morphism 4, ® ---® 4, —
4,8 Q4.
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6.12. The 2-category of formal tensor products. Our aim in the rest of
this section is to construct, for any Z-system (I, R, S) in a (semistrict)
monoidal 2-category &, a certain braided monoidal 2-category T. Asin
the 1-categorical case (3. 14) we will define I to consist of formal tensor
products of objects from I, and again we need to distinguish two tensor
products which accidentally coincide. To this end we perform the following
construction.

Let &/ be a semistrict monoidal 2-category. The tensor product of several
objects A4,,..., 4, of & will be denoted by A, --- A, (without brackets
since we assume semlstnctness) The same for a product of several objects
and one 1- or 2-morphism. Define a new monoidal 2-category 7 by the
following data. _

(e) By definition, objects of &/ are formal symbols (4,,..., 4;), where
A; are objects of &/ and k > 0. We also include the symbol (@) or { },
correspondmg to the empty set of objects.

We use the following notation, sometimes s without explanation. A typical
object of & is denoted by a tilded letter, 4 = (4,, ..., 4;). An untilded
letter denotes the product 4 = A, --- A, of objects constituting A.

(=) Let A= (A, ..., 4.), B = (B, ..., B)) be two objects of &7,
and 4 = (4,,...,4,), B = (B ..., B)) the corresponding objects of
& . To define the set 1- Hom ~(A B) we first define the set of what we call

elementary 1-morphisms from 4 to B to be
l ~~ ~
Hom {4, B) = Hom,, (4, B).

We extend the use of the nlde to morphisms; i.e., if f: 4 — B isa I-
morphism i in & , then by f A — B we denote the corresponding 1-mor-
phism in .

We define 1-morphisms in % to be formal compositions of elementary
I-morphisms, i.e.,

bom o4, By=T]_T1_ Hom(3t, &%) x- x HonE, )

r20gm o
1-morphisms in & are denoted ({fy»--os £)), where fi,...,f isa
composable sequence of elementary l-mo_rphisms.~ Such a composite mor-
phism will sometimes be denoted f = ((f,, ..., /), and by f we denote

the composition f ---f in &7 .

The composition of 1-morphisms in & is given by the formal concatena-
tion, _ -

( i ) Let f , & be'two l-morphisms in % with common source and

-

target and f, g the corresponding 2-morphisms in &/ . We define

2-Hom{f, 2) = 2-Hom, (f, g).
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Again, if T: f = g is a 2-morphism in &, we denote by T /=2
the corresponding 2-morphisms in & . The 0- and l-compositions of 2-
morphisms are defined in an obvious way. ~

It is easy to see that in this way we obtain a strict 2-category % (which
is 2-equivalent to & , but we do not need this). Let us introduce on & a
monoidal structure by means of the following data:

(1) The object 1 7 1s the empty sequence (D).

(e®e) Theproduct (4, ..., 4,)®(B,, ..., B)) isdefinedtobe (4,, ...,
A, By,...,B).

(—* ®0) Let f:A— B bean elementary 1-morphism and B an object
in & . The 1-morphism f ® B is set to be the elementary 1-morphism
corresponding to the 1-morphism f® B: A® B — A’ ® B in & (with the
above conventions on tildas). We extend the definition of the data (— ®e) to
arbitrary I-morphisms (which are formal compositions of elementary ones)
by setting

({fys - s L) ®B = {{( ®B),-... , (f, ® B)).

(o® —), (_L ® 0) ) (0 ® ._L) Similarly.

(e®e®e),(l®e), (e®1) The associativity, left and right unity 1-
morphisms in " are set to be identities. 5

(#®—) Let A=(A4,,..., 4), 4 =(4],..., ’) =(B,, ..., B),
B'=(B|,..., B,) be objects of & ,and f:A— A, 3: B — B elemen-
tary l-morphlsms We define the required 2- morphlsm ® 7.z 1 correspond
to the 2-morphism ®f’g in & where f:4 — A, g: B — B’ are the
1-morphisms in & corresponding to f, Z. )

We extend this definition to nonelementary 1-morphisms by concatena-

tion.LetZli-»ffzi'—‘-»----—j—»A landB ——-»B i»ﬁ

s+1

be two composable strings of elementary 1-morphisms in & . We define
®Us s TN 2002 to be the pasting of the obvious rectangular diagram

-consisting of rs squares ; , .
&)

All the other data for & are set to be identities. This obviously makes
sense due to the semistrictness of & .
We verify at once that & is a semistrict monoidal 2-category.

6.13. A 2-braiding from a Z-system. Let (/, R, S) be a Z-system in a
semistrict monoidal 2-category &/ . Let T be the smallest monoidal sub-
2-category in &/ containing elementary objects (4), 4 € I, 1-morphisms
R 4,p» and 2-morphisms S, B,c- Loosely speaking, 2-morphlsms of T are
all 2-morphlsms which can be constructed from structure 2-morphisms ® f.g
and also R A.B> S 4.B.C by tensor products, 0- and 1-composition.

Let us introduce on the monoidal 2-category ITa braiding which will also
be denoted R.
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(e®e) Let A= (A, - 5 4L, B = (B], ,B) be two objects of 1. 1
We define the 1-morphism R~ 7 A®B - B® 4 to correspond to the q

l1-morphism in & given by the composmon
(6-7) ;
A---AB B —A--A_|BAB, --B—--—BA - AB, B, :

— = B ByA,---A,B;---B

—~ .-~ BB,---BiA, - 4,.

(— ®e) For any 1-morphism i: A— A4 in T and any object Bel we
need to construct a 2-morphism

AeB 2, I9B
Rnl R, 5 lR? 5

Bed 22, Bed.
We define R, 5 for the case when @ is an elementary 1-morphism, i.e., it
corresponds to a l-morphism of & of the form
Ao Ay — A A (A AAL - Ay

i1 42

For such @ the 2-morphism R, % is defined to correspond to the 2-morphism
in & given by the pasting

AB,---B, —— A'B ---B,
7

B,4B,---B, —— B,A'B,---B,

!

B,---B,_AB, —— B,---B,_/A'B,

7

i
Bl BIA —_— BIB[A

/
where A=A,---A4,, A =A4,---A,_ A, AA - -4, , and

U=B®--®B_; ®V,®B,_; ®---®B,
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where V. is given by the pasting

J
Ay Ay - A By —> Ay A AL B
®A|"‘A"“’l®k"i-Ai+|®"i+2'“‘4k— RAk'Bj
Ay Ay A B4, > Ay Ay Ay A By Ay
A --- AA+13~A-+2---Ak — Al"'Ai+1AiB Apq Ay
it J 4 "Al]®S;,~l,A;+|Bj®Ai+2mAk
Ay ABiA; Ay Ay Ay---A4;4B; A1A1+2"'Ak
A A BjA A Ay Ay YAy A BA AA; Ay

A A YRy
! ’-2®®R“I—I'BI'RA1'.AI+!® 2Tk

Ay A By Ay Ay Ay i By iy Ay

|
| |

B;4,--- 4, — By -A; Ay Ay

(one hexagon and (k—2) squares). Since the composition of 1-morphisms
in & is formal, we define in this way an unambiguous 2-morphism ®; 5
for any it by concatenation.

(e® —) . The definition is absolutely similar to that of (— ®e). We leave
it to the reader. 5 _

((e®0)®e). Let A=(4,,..., 4,), B= (Bys---s B)), C=(C,, ..., C,)
be objects of I. We need to construct a 2-morphism
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We define it to correspond to the 2-morphism in &/ given by the pasting

ABC,~C,,
\‘]H
JZI ‘112
J. J. J
31 22 13
)
1 1
- — k- - = - - - = = = I
| 1
Jm-l.] I ! ’I3, m-3 "2 m-2 ‘,1 m-1
A4 L
C,~C,,AB AC,~C, B

where A=A,.--A,, B=B,---B,, and the 2-morphism Jij is given by the
pasting

Cl"'CiACi+1"'CfBC}H"‘Cm Cl'"Ci—IAC:CiH"'CjBCjH'"Cm
e i e

T T, T
1\ i, k-1 | | \ 12 \ I

YA ' ! T T.
\ 2, k-1 1 | \ 22 \ 21
l—---'———'——'l-—-————“—*-l

! |

T, I ! T, T,

\ 1-1, k-1 o '— _ l_ _ \ 1,2 \ -1,1

Cl"'CiACi+1"‘C}'Cj+lBCj+2"'Cm Cl"'Ci—IACiCm“‘C}(:j+lBC}+2"‘Cm
Here Tp = T’Z is the 2-morphism of naturality & e corresponding to

f=(C1---C,.~1A, "'Ak—p)®RAk
g'= (B1 “'BI-—q) ® R

c ® Ay piy A4 Crpy - Cj),

—p+l? ¢ ! J
c. ®(B_ =BGy G

Bl—q+| J+1 q+2

(e®(o®e)). Let A~, §, C be as before. We need to construct a 2-
morphism
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It follows from the definition of R~ 7568 that the boundary of this triangle is
a commutative diagram of 1-morph1sms We define R ~ to correspond
to the 1dent1ty 2-morphism in &7 .

(418, C)

6.14. THEOREM. The data defined above indeed form a braiding in the
monoidal 2-category T .

ProoF. For any n objects A4,,..., 4, from I we can construct a per-
mutohedral diagram similar to the diagram P‘“(A1 »++.,A4,) defined in 3.8
for a braided monoidal 1-category. Namely, we put in the vertices of the
permutohedron P, all the permuted products of A4 ;» and associate to edges
the morphisms induced by R-morphisms of our Z-system. In addition, 2-
faces of P are either hexagons or squares. We fill each hexagon with the
2-morphism given by the S-part of the Z-system and every square with the
2-morphism of naturality of the tensor product (datum (— ® —) in &).
The axioms of monoidal 2-category and the definition of a Z-system im-
ply that every 3-face of the permutohedron is commutative. This implies
that the whole permutohedron is commutative. In other words, if y and J
are two monotone edge paths in P with common beginnings and ends and
T,U are two membranes (composable pasting schemes which are unions
of 2-faces) bounding y UJ, then the pastings of T and U give the same
2-morphism from the 1-morphism represented by y to that represented by
J.

Now let us note that the verification of any axiom of the braiding for I is
reduced to comparison of the pastings of two membranes in a permutohedral
diagram as above. Indeed, for an axiom involving only objects this is so by
definition. To prove the axioms involving 1- or 2-morphisms it suffices to
consider the case when these morphisms are elementary, i.e., come from the
braiding. In this case the boundary of any diagram in question again will be
represented as a sphere in some permutohedron and the assertion follows.
Theorem 6.14 is proven.

6.15. CoROLLARY. Let V be a complex vector space and S €
End(V @ V ® V) a solution of the Zamolodchikov equation (1-10). For

2
any m 2 2 let W, = V™) Then there is a natural operator S, €
End(W, @ W, ® W, ) also satisfying the Zamolodchikov equation. Its matrix
elements are polynomials in matrix elements of S .

In other words, we can construct “tensor powers” of a solution of Zamolod-
chikov equations. The existence of such powers is well known for Yang-
Baxter equations. In our case, however, we get only m th powers.

PROOF. After replacing S by $' =So P ; (see 6.8) we get a Z-system
in the monoidal 2-category 2-Vect. The set I for this system consists of one
object {1}, and the braiding 1-morphism Ry iyt {1} ® {1} = {1} ® {1}
is the vector space V. Let I be the braided monoidal 2-category associated
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to (I,V,S) by Theorem 6.14. Consider the object X = ({1},..., {1}
(m times) of the 2-category /. Formula (6-7) defined the braiding 1-mor-
phism R, ,: X ® X - X ® X. The definitions imply that R X.x is the

tensor product of m? copies of the space V. Now pastings in 6.10 define
2-morphisms

S:: Ry x*o Ry x*oRy x = Ry y xRy x* Ry x-
These are just endomorphisms of W, ® W, ® W, . Theorem 6.11 implies
that each of them forms a Z-system. In addition, reasoning with the per-
mutohedron similar to that used in the proof of Theorem 6.14 shows that

S;; =S,, . So we get one solution of the Zamolodchikov equation.

An explicit formula for S,, can be obtained by unraveling diagrams in
6.13.
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