COMPUTER SCIENCE/DISCRETE MATH I | |

Topic: | The Constant-Depth Complexity of k-Clique |

Speaker: | Ben Rossman |

Affiliation: | Massachusetts Institute of Technology |

Date: | Monday, April 20 |

Time/Room: | 11:15am - 12:15pm/S-101 |

I will discuss a lower bound of $\omega(n^(k/4))$ on the size of constant-depth $(AC_0)$ circuits solving the k-clique problem on n-vertex graphs. This bound follows from a stronger result that $AC_0$ circuits of size $O(n^(k/4))$ almost surely fail to distinguish between an Erdos-Renyi random graph $G$ at the k-clique threshold and $G' = G \cup$(random k-clique). This lower bound is nearly matched by a recent construction of Amano of $AC_0$ circuits of size $O(n^((k/4)+const.))$ which almost surely distinguish $G$ from $G'$ . I will also discuss a corollary in logic: strictness of the "variable hierarchy" for first-order logic on ordered graphs.