Local bound on the number of nodal domains

Analysis - Mathematical Physics
Topic:Local bound on the number of nodal domains
Speaker:Aleksandr Logunov
Affiliation:Princeton University
Date:Friday, November 1
Time/Room:3:30pm - 4:30pm/Simonyi Hall 101

Courant's theorem states that the k-th eigenfunction of the Laplace operator on a closed Riemannian manifold has at most k nodal domains. Given a ball of radius r, we will discuss how many of nodal domains can intersect a ball (depending on r and k). Based on joint work (in progress) with S.Chanillo and E.Malinnikova.