Princeton/IAS Symplectic Geometry Seminar | |

Topic: | Gromov-Witten theory of locally conformally symplectic manifolds and the Fuller index |

Speaker: | Yakov Savelyev |

Affiliation: | University of Colima |

Date: | Thursday, February 9 |

Time/Room: | 11:15am - 12:15pm/S-101 |

We review the classical Fuller index which is a certain rational invariant count of closed orbits of a smooth vector field, and then explain how in the case of a Reeb vector field on a contact manifold $C$, this index can be equated to a Gromov-Witten invariant counting holomorphic tori in the locally conformally symplectic manifold $C \times S^1$. This leads us to prove a certain variant of the classical Seifert conjecture for the odd dimensional spheres.