Recent progress on the Yau and Nadirashvili conjecture concerning the volumes of the zero sets of Laplacian Eigenfunctions

Organizers: Eugenia Malinnikova and Mikhail Sodin

Participants: Lev Buhovski, Hamid Hezari, Fang Hua Lin, Alexander Logunov, Dan Mangoubi, Fedor Nazarov, Melissa Tacy, John Toth, Steve Zelditch

Outcomes

D Mangoubi Lecture Harmonic functions - positivity and convexity

J Toth Lecture The nodal intersection problem for Laplace eigenfunctions

E Malinnikova Lecture An improvement of Liouville theorem for discrete harmonic functions

M Sodin Lecture Nodal sets of random spherical harmonics

S Zelditch Lecture Log lower bound on the number of nodal domains on some surfaces of negative curvature

M Tacy Lecture Equidistribution of random waves on shrinking balls