A polytope in \mathbb{R}^d is higher dim'l analogue of a polygon. Can describe in 2 ways:

1. **Vertices**

 A polytope is the "convex hull" of a finite set of points $V = \{v_1, \ldots, v_n\}$ in \mathbb{R}^d.

 $\text{P} = \text{conv}(V) = \{x = \sum_{i=1}^{n} a_i v_i \mid a_i \geq 0, \sum a_i = 1\}$

 eg. $\text{conv}(\pm e_1, \pm e_2, \pm e_3)$ is an octahedron.

 Think: Snap a rubber band (rubber suit?) around V. This is the smallest convex set containing V.

2. **Inequalities**

 A polytope is a bounded intersection of halfspaces defined by linear inequalities.

 $\text{P} = \{x \in \mathbb{R}^d \mid a_i \cdot x \leq z_i, \ldots, a_m \cdot x \leq z_m\}$

 Here $a_i, z_i \in \mathbb{R}^d$ and \cdot is the dot product.

 Octahedron:

 $x_1 + x_2 + x_3 \leq 1$

 $x_1 - x_2 + x_3 \leq 1$

 \vdots

 $\pm x_1 \pm x_2 \pm x_3 \leq 1 \quad (8 \text{ facets})$
Theorem: A subset $S \subseteq \mathbb{R}^d$ is a convex hull of a finite set of points iff it is a bounded intersection of halfspaces.

Cor:
- Polytope \cup Polytope = Polytope (fact described)
- Projection of Polytope = Polytope (vertex desc)

To define a face F of polytope P one "points in its direction": for $w \in \mathbb{R}^d$,
$$F_w = \{ x \in P \mid w \cdot x \text{ is maximum} \}$$
(a polytope of smaller dim)

Faces of octahedron:
- 3D, 8 2D, 12 1D, 6 0D,
- (1 (-1) 0)

Ex: The face w/ vertices \{ e_1, e_2, $-e_3$ \} equals
$$F_{(1,1,-1)} = \{ (x_1, x_2, x_3) \in P \mid (1,1,-1) \cdot (x_1, x_2, x_3) = x_1 + x_2 - x_3 \text{ is max} \}$$

Note: $F_{(1,1,-1)} = F_{(a, a, -a)}$ for any $a \in \mathbb{R}_{>0}$

Ex: The face w/ vertices \{ e_1, e_2, e_3 \} equals $F_{(1,1,0)}$.
Also equals $F_{(c, c, b)}$ where $0 \leq b < c$

Ex: The face w/ unique vertex \{-e_3\} is $F_{(0,0,-1)}$

Lots of other ways to express face!
Recall: A matroid $\mathcal{M}=(E, I)$ where I is the collection of independent subset of E. A basis of \mathcal{M} is a maximal element of I. All bases of \mathcal{M} have the same size.

Theorem 1: Let B be a set of subsets of a finite set E. Then B is the collection of bases of a matroid on E iff B satisfies:

- (B1) $B \neq \emptyset$.
- (B2) If B_1 and $B_2 \in B$ and $x \in B_1 - B_2$ then $\exists y \in B_2 - B_1$ s.t. $(B_1 - \{x\}) \cup \{y\} \in B$.

Def: The matroid polytope P_M of \mathcal{M} (or matroid basis polytope) is:

$$P_M := \text{conv}(\{e_{b_1} + \ldots + e_{b_r} | \{b_1, \ldots, b_r\} \text{ a basis of } \mathcal{M}\})$$

in \mathbb{R}^E.

Let $E = \{1, 2, 3\}$.

Ex 1: $I = \{1, 2, 3\}$. \(\mathcal{M}(A)\) for $A = (1, 0, 1)$

Ex: $\mathcal{M}(\bar{E}^2)$
Def: Given matroid \(M = (E, \mathcal{I}) \), the rank function is \(r: \text{subset of } E \rightarrow \mathbb{Z}_{\geq 0} \)
defined by \(r(s) = \text{size of largest independent set contained in } E \).

rank of \(M = r(E) \).

Can define matroids using rank function:

Thm: Given finite set \(E \) and function \(r: \text{subset of } E \rightarrow \mathbb{Z}_{\geq 0} \),
\(r \) is the rank function of a matroid iff:

- For any \(A, B \subseteq E \), \(r(A \cup B) + r(A \cap B) \leq r(A) + r(B) \) (submodular)
- For any \(A \subseteq E \) and \(x \in E \), \(r(A) \cup \{x\} \leq r(A \cup \{x\}) \leq r(A) + 1 \).

(we will prove this)

Thm: \(P_M = \left\{ x \in \mathbb{R}^E \mid \begin{array}{l}
\sum_{i \in S} x_i = 0 \quad \forall S \in \mathcal{I} \\
\sum_{i \in E} x_i \leq r(S) \quad \forall S \subseteq E \\
\sum_{i \in E} x_i = r(M)
\end{array} \right\} \)

Pf; (only \(\leq \))

Suffices to show that each vertex \(v_A \) of \(P_M \) satisfies these inequalities.

Each \(v_A \in \{0, 1\}^E \) with exactly \(r(M) \) coordinates = 1.

\(\sum_{i \in S} (v_A)_i = \#(S \cap A) \leq r(S) \) since \(A \) is independent set.
Next time we will prove:

Theorem (Gelfand - Goresky - MacPherson - Serganova, '87):
Let \(B \) be a collection of \(k \)-subsets of
\(E = \{1, 2, \ldots, n\} \). Let
\[P_B = \text{conv} \left(v_\beta : \beta \in B \right), \]

\((E, B)\) is a matroid \(\iff \) every edge of \(P_B \)
is of the form \(e_i - e_j \).
Exercises

1. Given the rank function $r: E \to \mathbb{Z}_{\geq 0}$ of a matroid, how should we define the independent sets?

2. The uniform matroid $\mathcal{U}_{k, n}$ is the matroid on ground set $[n] = \{1, 2, \ldots, n\}$ whose bases consist of all k-element subsets of $[n]$. Draw the matroid polytope associated to $\mathcal{U}_{2, 4}$ and express each face in the form F_w. Also write down the vectors corresponding to the edges of the polytope.

3. (Symmetric Basis exchange) If \mathcal{B} is the collection of bases of a matroid M on E then for any $B_1, B_2 \in \mathcal{B}$, if $b_1 \in B_1 - B_2$ then there exists $b_2 \in B_2 - B_1$ such that $(B_1 - b_1 \cup b_2)$ and $(B_2 - b_2 \cup b_1)$ are also bases of M.