1. Relation between generating functions and the action functional

In order to discuss the relation between generating functions and the action functional, we need a definition of generating functions which is slightly more general than the one given in the lectures.

1.1. Definition of generating functions. Let $p : E \to B$ be a fiber bundle, and consider a smooth function $S : E \to \mathbb{R}$ on the total space. Let $\Sigma_S \subset E$ be the set of fiber critical points of S, i.e. the set of points e of E that are critical points of the restriction of S to the fiber through e:

$$\Sigma_S := \{ e \in E | e \text{ critical point of } S \big|_{p^{-1}(p(e))} \}.$$

- Note that, in general, Σ_S is not necessarily a smooth submanifold of E. Show that if $dS : E \to T^*E$ is transverse to the fiber normal bundle $N_E := \{ (e, \mu) \in T^*E | \mu = 0 \text{ on } \ker dp(e) \}$, then Σ_S is a smooth submanifold of E, of dimension equal to the dimension of B. In the following, we will always assume this condition.

Given a point e of Σ_S, we can associate to it an element $v^*(e)$ of $T^{*}_{p(e)}B$ by defining

$$v^*(e) := dS(\hat{X})$$

for $X \in T_{p(e)}B$, where \hat{X} is any vector in T_eE with $p_*(\hat{X}) = X$. The element $v^*(e)$ of $T^{*}_{p(e)}B$ is sometimes called the Lagrange multiplier of e.

- Show that $v^*(e)$ is well-defined, i.e. it does not depend on the choice of the lift \hat{X} of X.
- Show that the map $i_S : \Sigma_S \to T^*B, e \mapsto (p(e), v^*(e))$ is a Lagrangian immersion. [Hint: Show that $i_S^*\lambda_{\text{can}} = d(S|_{\Sigma_S})$].
- Show that the map $j_S : \Sigma_S \to J^1B, e \mapsto (p(e), v^*(e), S(e))$ is a Legendrian immersion.

S is called a generating function for the Lagrangian submanifold $L := i_S(\Sigma_S)$ of T^*B and for the Legendrian submanifold $\Lambda := j_S(\Sigma_S)$ of J^1B.

- Show that if $E = B$ and $p : E \to B$ is the identity then L can be identified to the graph of the differential of S, and Λ to the graph of the 1-jet of S.
- Assume that $p : E \to B$ is a trivial vector bundle, i.e. $E = B \times \mathbb{R}^N$. Show that in this case we recover the definition given in the lectures, i.e. we have that

$$L = \{ (q, p) \in T^*B | \exists \xi \in \mathbb{R}^N \text{ such that } \frac{\partial S}{\partial \xi}(q, \xi) = 0 \text{ and } \frac{\partial S}{\partial q}(q, \xi) = p \}.$$

and

$$\Lambda = \{ (q, p, z) \in J^1B | \exists \xi \in \mathbb{R}^N \text{ such that } \frac{\partial S}{\partial \xi}(q, \xi) = 0, \frac{\partial S}{\partial q}(q, \xi) = p \text{ and } S(q, \xi) = z \}.$$
1.2. The Action Functional. Consider an exact symplectic manifold \((M, \omega = -d\lambda)\) and let \(H_t : M \to \mathbb{R}\) be a time-dependent Hamiltonian. Then \(H_t\) determines a functional \(\mathcal{A}_H\) on the space of paths \(\gamma : [t_0, t_1] \to M\). It is called the action functional and is defined by

\[
\mathcal{A}_H(\gamma) := \int_{t_0}^{t_1} \left(\lambda(\dot{\gamma}(t)) + H_t(\gamma(t))\right) dt.
\]

- Show that \(\gamma\) is a critical point of \(\mathcal{A}_H\) (with respect to variations with fixed endpoints) if and only if it is a trajectory of the Hamiltonian flow of \(H_t\).

Let now \(B\) be a smooth manifold, and consider the space \(E\) of all paths \(\gamma : [0, 1] \to T^*B\) that begin at the 0-section. \(E\) can be seen as a fiber bundle over \(B\), with projection \(p : E \to B\) given by \(\gamma \mapsto \pi(\gamma(1))\) where \(\pi\) is the projection of \(T^*B\) into \(B\). Given a time-dependent Hamiltonian \(H_t : T^*B \to \mathbb{R}\) we consider the function \(S : E \to \mathbb{R}\) given by \(S(\gamma) := \mathcal{A}_H(\gamma)\).

- Show that the set \(\Sigma_N \subset E\) of fiber critical points of \(S : E \to \mathbb{R}\) is given by the set of trajectories of the Hamiltonian flow of \(H_t\).
- Show that, given a fiber critical point \(\gamma\), the Lagrange multiplier \(\nu^*(\gamma)\) is the vertical component of \(\gamma(1)\).
- Conclude that \(S\) is a “generating function” for the image of the 0-section by the time-1 map of the Hamiltonian flow of \(H_t\).

Note that \(S\) is not a generating function in the sense of the definition given in 1.1, because \(E\) is not a finite-dimensional manifold. In the next section we will show how to construct a finite-dimensional approximation of \(E\), and thus obtain a true generating function for any Lagrangian submanifold of \(T^*B\) which is Hamiltonian isotopic to the 0-section.

1.3. Finite-dimensional reduction. The following construction was given by Laudenbach and Sikorav [3]. It is inspired by the method of “broken geodesics” of Morse theory [4, 1].

Let \(H_t\) be a time-dependent Hamiltonian on \(T^*B\). For every integer \(N\) we will define the space \(E_N\) of broken Hamiltonian trajectories of \(H_t\) with \(N - 1\) singularities and \(N\) smooth pieces. Element of \(E_N\) will be of the form

\[
e = (q_0, X, P)
\]

where \(q_0\) is a point of \(B\), \(X = (X_1, \ldots, X_{N-1})\) is an \((N - 1)\)-tuple of vectors \(X_i \in T_{q_0}B\) and \(P = (P_1, \ldots, P_{N-1})\) is an \((N - 1)\)-tuple of linear maps \(P_i \in T_{q_0}^*B\). The broken Hamiltonian trajectory of \(H_t\) associated to \(e\) is defined as follows. The first smooth piece, for \(t \in [0, \frac{1}{N}]\), is obtained by following the Hamiltonian flow of \(H_t\) in \(T^*B\) starting at the point \((q_0, 0)\) of the 0-section. The endpoint of this first smooth piece will be some other point of \(T^*B\), that we denote by \(z_1^-\). The second smooth piece of the broken Hamiltonian trajectory will not necessarily start from \(z_1^-\) but from a point \(z_1^+\) which is uniquely determined by \(z_1^-\), \(X_1\) and \(P_1\) in a way that we will describe later. The second smooth piece of the broken Hamiltonian trajectory is obtained by following the flow of \(H_t\) for \(t \in [\frac{1}{N}, \frac{2}{N}]\), starting from \(z_1^+\). The endpoint will be some point \(z_2^-\) of \(T^*B\). The third smooth piece of the broken Hamiltonian trajectory is obtained by following the Hamiltonian flow of \(H_t\) for \(t \in [\frac{2}{N}, \frac{3}{N}]\), starting at the point \(z_2^+\) that is uniquely determined by \(z_2^-\), \(X_2\) and \(P_2\) by the procedure we are going to describe later. We continue in this way to describe the whole broken trajectory for \(t \in [0, 1]\). It has \(N - 1\) jumps for \(t = \frac{1}{N}, \frac{2}{N}, \ldots, \frac{N-1}{N}\) and \(N\) smooth pieces from \(z_i^+\) to \(z_i^-\) for \(t \in [\frac{i}{N}, \frac{i+1}{N}]\), \(i = 0, \ldots, N - 1\). In order to describe the jumps we need to fix a Riemannian metric on \(M\). Then \(TM\) and \(T^*M\) have the associated Levi-Civita connection. We describe now the first jump, from \(z_1^-\) to \(z_1^+\). The point \(z_1^+ = (q_1^+, p_1^+)\) is determined by \(z_1^- = (q_1^-, p_1^-)\), \(X_1 \in T_{q_0}B\) and \(P_1 \in T_{q_0}^*B\) as follows. Denote by \(\gamma(t) = (q(t), p(t))\) for \(t \in [0, \frac{1}{N}]\) the first smooth piece of the broken Hamiltonian trajectory, from \((q_0, 0)\) to \(z_1^- = (q_1^-, p_1^-)\). In particular, \(q(t)\) for \(t \in [0, \frac{1}{N}]\) is a smooth path in \(B\). We take the vector \(\dot{X}_1 \in T_{q_1^-}B\) and the 1-form \(\dot{P}_1 \in T_{q_1^-}^*B\) that are obtained by parallel transport, with respect to the Levi-Civita connection,
of $X_1 \in T_{q_0}B$ and $P_1 \in T_{p_0}^*B$ along $q(t)$, $t \in [0, \frac{1}{N}]$. The point z_1^+ is then defined to be
\[z_1^+ = (q_1^+, p_1^+) \]
where $q_1^+ := \exp_{q_1}(-\bar{X}_1)$ and $p_1^+ := t(d\exp_{p_1}(-\bar{X}_1))^{-1}(\bar{p}_1)$. The other jumps are defined similarly.

Consider the projection $p : E_N \to B$ that sends e to the projection to B of the endpoint of the broken Hamiltonian trajectory associated to e.

We define a function $S : E_N \to \mathbb{R}$ by
\[S(e) := \sum_{i=1}^{N-1} < p_i, X_i > + A_H(\gamma_i) \]
where γ_i denotes the i-th smooth piece of the broken Hamiltonian trajectory of H associated to e.

- Show that the fiber critical points of $S : E_N \to \mathbb{R}$ are the unbroken Hamiltonian trajectories of H.
- Show that S is a generating function for the image of the 0-section by the time-1 map of the Hamiltonian flow of H.
- The above construction works only if N is sufficiently big. Try to understand where this is needed.
- Is there an analogue construction also in the contact case, for any Legendrian submanifold of J^1B which is contact isotopic to the 0-section?

2. Symplectic rigidity in \mathbb{R}^{2n}

2.1. Generating functions for Hamiltonian symplectomorphisms of \mathbb{R}^{2n}. Recall from the lectures that if B is a compact smooth manifold then any Lagrangian submanifold L of the cotangent bundle T^*B has a (unique, up to equivalence) generating function quadratic at infinity. We will now see how this result can be applied to obtain a generating function quadratic at infinity for any compactly supported Hamiltonian symplectomorphism ϕ of \mathbb{R}^{2n}. We will do this by associating to ϕ a Lagrangian submanifold Γ_ϕ of T^*S^{2n}, and then by taking the generating function of Γ_ϕ.

Let ϕ be a Hamiltonian symplectomorphism of \mathbb{R}^{2n} (not necessarily compactly supported, for the moment). We will now see how to associate to ϕ a Lagrangian submanifold Γ_ϕ of $T^*\mathbb{R}^{2n}$.

Recall first that the graph of ϕ is a Lagrangian submanifold of $\mathbb{R}^{2n} \times \mathbb{R}^{2n}$. It is defined by
\[\text{gr}(\phi) = \{ (q, \phi(q)) \mid q \in M \} \]

- Show that the map $\tau : \mathbb{R}^{2n} \times \mathbb{R}^{2n} \to T^*\mathbb{R}^{2n}$, $\tau(x, y, X, Y) = (x, Y, x - y, X - X)$ is a symplectomorphism. Show that it sends the diagonal to the 0-section.

We define $\Gamma_\phi := \tau(\text{gr}(\phi))$. It is a Lagrangian submanifold of $T^*\mathbb{R}^{2n}$.

- Let Ψ_ϕ be the symplectomorphism of $T^*\mathbb{R}^{2n}$ defined by the diagram

\[
\begin{array}{ccc}
\mathbb{R}^{2n} \times \mathbb{R}^{2n} & \xrightarrow{\text{id} \times \phi} & \mathbb{R}^{2n} \times \mathbb{R}^{2n} \\
\tau \downarrow & & \tau \\
T^*\mathbb{R}^{2n} & \xrightarrow{\Psi_\phi} & T^*\mathbb{R}^{2n}.
\end{array}
\]

Show that $\Gamma_\phi = \Psi_\phi(0\text{-section})$. Use this to conclude that Γ_ϕ is Hamiltonian isotopic to the 0-section.
Assume now that \(\phi \) is compactly supported.

- Show that \(\Gamma_\phi \) coincides with the 0-section outside a compact set. Using this, explain how we can identify \(\Gamma_\phi \) to a Lagrangian submanifold of \(T^*S^{2n} \) (that we will still denote by \(\Gamma_\phi \)).

We have thus seen that we can associate to any compactly supported Hamiltonian symplectomorphism \(\phi \) of \(\mathbb{R}^{2n} \) a Lagrangian submanifold \(\Gamma_\phi \) of \(T^*S^{2n} \). Since \(S^{2n} \) is compact, by the existence and uniqueness theorems of generating functions we have that \(\Gamma_\phi \) has a (unique, up to equivalence) generating function \(S: \mathbb{R}^{2n} \times \mathbb{R}^N \to \mathbb{R} \) quadratic at infinity, i.e. \(S = S_0 + Q_\infty \) with \(S_0 \) compactly supported and \(Q_\infty \) a non-degenerate quadratic form on \(\mathbb{R}^N \).

We will now see that critical points of \(S \) correspond to fixed points of \(\phi \), and that the critical values coincide with the symplectic action of the corresponding fixed points.

Definition 2.1. Let \(\phi \) be a Hamiltonian symplectomorphism of \(\mathbb{R}^{2n} \). The *symplectic action* of a fixed point \(q \) of \(\phi \) is defined by

\[
A_\phi(q) := A_H(\phi_t(q)) = \int_0^1 \left(\lambda_0(X_t) + H_t \right) (\phi_t(q)) \, dt
\]

where \(\phi_t \) is a Hamiltonian isotopy joining \(\phi \) to the identity, \(X_t \) the vector field generating it and \(H_t \) the corresponding Hamiltonian. The *action spectrum* of \(\phi \) is the set \(\Lambda(\phi) \) of all values of \(A_\phi \) at fixed points of \(\phi \).

(Recall the definition of the *action functional* \(A_H \) given in Part 1)

Let \(\phi \) be a compactly supported Hamiltonian symplectomorphism of \(\mathbb{R}^{2n} \), with generating function \(S \). Recall that this means that \(\Gamma_\phi \) is the image of \(i_S: \Sigma_S \to T^*\mathbb{R}^{2n} \).

- Show that fixed points of \(\phi \) correspond to critical points of \(S \). More precisely, show that a point \(q \) of \(\mathbb{R}^{2n} \) is a fixed point of \(\phi \) if and only if \(i_S^{-1}(q,0) \) is a critical point of \(S \).

Suppose now that we have a fixed point \(q \) of \(\phi \), and take a point \(p \) in \(\mathbb{R}^{2n} \) outside the support of \(\phi \).

- Show that

\[
A_\phi(q) = -\int_{\gamma \in \phi(\gamma)^{-1}} \lambda_0
\]

where \(\gamma \) is any path in \(\mathbb{R}^{2n} \) joining \(p \) to \(q \). [Hint: consider the map \(u: [0, 1] \times [0, 1] \to \mathbb{R}^{2n} \), \(u(s,t) = \phi_t(\gamma(s)) \) and apply Stokes’ theorem to \(u^*\omega_0 = -d(u^*\lambda_0) \).]

- Show that \(S(i_S^{-1}(q,0)) = -\int_{\gamma \in \phi(\gamma)^{-1}} \lambda_0 \). [Hint: Show first that if a Lagrangian submanifold \(L \) of \(T^*B \) is generated by \(S: E \to \mathbb{R} \), i.e. \(L \) is the image of \(i_S: \Sigma_S \to T^*B \) then we have that \(\int_L \lambda_{can} = S(i_S^{-1}(y)) - S(i_S^{-1}(x)) \) for any path \(\gamma \) in \(L \) joining two points \(x \) and \(y \).]

This concludes the proof that \(S(i_S^{-1}(q,0)) = A_\phi(q) \), i.e. that the critical value of a critical point of the generating function coincides with the symplectic action of the corresponding fixed point.

2.2. Symplectic Homology

We will associate homology groups first to compactly supported Hamiltonian symplectomorphisms of \(\mathbb{R}^{2n} \), by considering relative homology of sublevel sets of the generating function, and then, by a limit process, to domains of \(\mathbb{R}^{2n} \).

Let \(\phi \) be a compactly supported Hamiltonian symplectomorphism of \(\mathbb{R}^{2n} \). Given real numbers \(a, b \) not belonging to the action spectrum of \(\phi \) and such that \(-\infty < a < b \leq \infty \), we define the \(k \)-th symplectic homology group of \(\phi \) with respect to the values \(a, b \) by

\[
G_k^{[a,b]}(\phi) := H_{k+i}(E^b, E^a)
\]
Lemma 2.2. We will now see that they are invariant by conjugation with a Hamiltonian symplectomorphism. Hamiltonians get arbitrarily large.

- Show that the groups \(G_k^{(a,b)}(\phi) \) are well-defined, i.e. do not depend on the choice of the generating function.

We will now see that they are invariant by conjugation with a Hamiltonian symplectomorphism. We need the following two lemmas.

Lemma 2.2. Let \(\psi \) be a symplectomorphism of \(\mathbb{R}^{2n} \). Then \(\Lambda(\psi \phi^{-1}) = \Lambda(\phi) \).

(A proof of this fundamental fact can be found for example in [2, 5.2].)

Lemma 2.3. Let \(f_t, t \in [0,1], \) be a continuous 1-parameter family of functions defined on a compact manifold \(M \). Suppose that \(a \in \mathbb{R} \) is a regular value of all \(f_t \). Then there exists an isotopy \(\theta_t \) of \(M \) such that \(\theta_t(M^n_a) = M^n_a \), where \(M^n_a := \{ x \in M \mid f_t(x) \leq a \} \).

- Using Lemmas 2.2 and 2.3, prove that for any \(\phi, \psi \) in \(\text{Ham}^c(\mathbb{R}^{2n}) \) we have an induced isomorphism

\[
\psi^* : G_*^{(a,b)}(\psi \phi^{-1}) \longrightarrow G_*^{(a,b)}(\phi).
\]

Consider now a domain \(U \) of \(\mathbb{R}^{2n} \). Given \(a, b \in \mathbb{R} \) we denote by \(\text{Ham}^c_{a,b}(U) \) the set of compactly supported Hamiltonian symplectomorphisms of \(\mathbb{R}^{2n} \) that are the time-1 map of a Hamiltonian function which is supported in \(U \) and whose action spectrum does not contain \(a \) and \(b \). We will consider the partial order \(\leq \) on \(\text{Ham}^c_{a,b}(U) \) defined as follows. We say that \(\phi_1 \leq \phi_2 \) if \(\phi_2 \circ \phi_1^{-1} \) can be written as the time-1 flow of a non-negative Hamiltonian function. It can be proved that if \(\phi_0 \leq \phi_1 \) then there are generating functions \(S_0, S_1 : E \longrightarrow \mathbb{R} \) for \(\Gamma_{\phi_0}, \Gamma_{\phi_1} \) respectively such that \(S_0 \leq S_1 \).

- Show that if \(\phi_1 \leq \phi_2 \) then we have an induced homomorphism

\[
\lambda_2^* : G_k^{(a,b)}(\phi_2) \longrightarrow G_k^{(a,b)}(\phi_1).
\]

- Show that, given \(\phi_1, \phi_2, \phi_3 \) in \(\text{Ham}^c_{a,b}(U) \) with \(\phi_1 \leq \phi_2 \leq \phi_3 \), it holds \(\lambda_3^2 \circ \lambda_2^1 = \lambda_3^1 \) and \(\lambda_i^j = \text{id} \).

- Conclude that \(\{ G_k^{(a,b)}(\phi_i) \}_{\phi_i \in \text{Ham}^c_{a,b}(U)} \) is an inversely directed system of groups\(^{1}\).

We define the \(k \)-th symplectic homology group \(G_k^{(a,b)}(U) \) of \(U \) with respect to the values \(a, b \) to be the inverse limit of the inversely directed system \(\{ G_k^{(a,b)}(\phi_i) \}_{\phi_i \in \text{Ham}^c_{a,b}(U)} \). Note that \(G_k^{(a,b)}(U) \) can be calculated by any sequence \(\phi_1 \leq \phi_2 \leq \phi_3 \leq \cdots \) such that the associated Hamiltonians get arbitrarily large.

- Show that for any domain \(U \) in \(\mathbb{R}^{2n} \) and any Hamiltonian symplectomorphism \(\psi \) we have an induced isomorphism

\[
\psi^* : G_*^{(a,b)}(\psi(U)) \longrightarrow G_*^{(a,b)}(U).
\]

\(^{1}\)Recall the definition of an inversely directed system of groups. Let \((I, \leq) \) be a directed partially ordered set, i.e. a set \(I \) with a partial order \(\leq \) such that for any two elements \(i \) and \(j \) of \(I \) there exists a third element \(k \) such that \(i \leq k \) and \(j \leq k \). A family of groups \(\{ A_i \}_{i \in I} \) is called an inversely directed system of groups if for every \(i \leq j \) there exists a homomorphism \(f_{ij} : A_j \rightarrow A_i \) such that the following properties are satisfied: \(f_{ii} = \text{id} \) and \(f_{jk} \circ f_{ij} = f_{kj} \) for all \(i \leq j \leq k \). The inverse limit of the inversely directed system \(\{ A_i \}_{i \in I} \) is then defined by

\[
\lim_{i \in I} A_i := \{ a \in \prod_{i \in I} A_i \mid a_i = f_{ij}(a_j) \text{ for all } i \leq j \}.
\]
2.3. Spectral invariants.

2.3.1. Invariants for Lagrangian submanifolds. Let B be a closed manifold and L a Lagrangian submanifolds of T^*B Hamiltonian isotopic to the 0-section. We know that L has a generating function quadratic at infinity $S : E \to \mathbb{R}$. We are going to see now how to define invariants for L by selecting critical values of its generating function S. Recall that S is only defined up to fiber-preserving diffeomorphism, stabilization and addition of a constant. While the first two operations do not affect the critical values of the function, addition of a constant does, so in order to get well-defined invariants we first need to normalize generating functions. This can be done by fixing a point P in B and only considering the set \mathcal{L}_P of Lagrangian submanifolds L of T^*B which are Hamiltonian isotopic to the 0-section and intersect it at P. We can then normalize generating functions by requiring the critical value of the critical point corresponding to P to be 0.

Let L be an element of \mathcal{L}_P with generating function $S : E \to \mathbb{R}$. We will now explain how to use a cohomology class u of B to select a critical value of S, in order to get an invariant $c(u, L)$.

Recall that we can assume that $E = B \times \mathbb{R}^n$ and S is of the form $S = S_0 + Q_\infty$ where S_0 is compactly supported and Q_∞ is a non-degenerate quadratic form on \mathbb{R}^n. We denote by E^a, for $a \in \mathbb{R}$, the sublevel set of S at a i.e. $E^a = \{ x \in E | S(x) \leq a \}$ and by $E^{-\infty}$ the set E^{-a} for a big enough (i.e. such that $-a$ is smaller that all critical values of S_0). Note that up to homotopy equivalence $E^{-\infty}$ is the same for all elements of \mathcal{L}_P. We will study the inclusion $i_a : (E^a, E^{-\infty}) \hookrightarrow (E, E^{-\infty})$, and the induced map on cohomology

$$i_a^* : H^*(B) \equiv H^*(E, E^{-\infty}) \longrightarrow H^*(E^a, E^{-\infty}).$$

Here $H^*(B)$ is identified with $H^*(E, E^{-\infty})$ via the Thom isomorphism

$$T : H^*(B) \xrightarrow{\sim} H^*(D(E^-), S(E^-))$$

where E^- denotes the subbundle of E where Q_∞ is negative definite. Note that this isomorphism shifts the grading by the index of Q_∞. Note also that by excision $H^*(D(E^-), S(E^-))$ is isomorphic to $H^*(E, E^{-\infty})$. For $|a|$ big enough we have $H^*(E^a, E^{-\infty}) \equiv 0$ if $a < 0$, and $i_a^* = id$ if $a > 0$. So we can define

$$c(u, L) := \inf \{ a \in \mathbb{R} | i_a^*(u) \neq 0 \}$$

for $u \neq 0$ in $H^*(B)$.

- Show that $c(u, L)$ is well-defined, i.e. it does not depend on the choice of the generating function used to calculate it.
- Show that $c(u, L)$ is a critical value of S.

2.3.2. Spectral invariants for Hamiltonian symplectomorphisms of \mathbb{R}^{2n}. We now apply the construction of the previous section to the special case of compactly supported Hamiltonian symplectomorphisms of \mathbb{R}^{2n}.

Consider a compactly supported Hamiltonian symplectomorphism ϕ of \mathbb{R}^{2n}. Define

$$c^+(\phi) := c(\mu, \Gamma_\phi) \text{ and } c^-(-\phi) := c(1, \Gamma_\phi)$$

where Γ_ϕ is the Lagrangian submanifold of T^*S^{2n} constructed in Section 2.1 and μ and 1 are respectively the orientation and the unit classes of S^{2n}. Note that Γ_ϕ intersects the 0-section at the point at infinity of S^{2n}. This point plays the role of the point P of the previous section.

- Show that $c(\phi) = A_\phi(q)$ for some fixed point q of ϕ. In particular, deduce that $c^+(id) = c^-(id) = 0$.

Moreover we have the following properties, that can be proved by methods of algebraic topology..

Lemma 2.4. For all ϕ, ψ in $\text{Ham}^c(\mathbb{R}^{2n})$ it holds:
2.4.1. Moreover it can be proved that
\[c^+(\phi) \geq 0 \text{ and } c^- (\phi) \leq 0. \]
(i) \[c^+(\phi) = c^- (\phi) = 0 \text{ if and only if } \phi \text{ is the identity.} \]
(ii) \[c^+ (\phi) = -c^- (\phi^{-1}). \]
(iii) \[c^+(\phi\psi) \leq c^+(\phi) + c^+(\psi) \text{ and } c^-(\phi\psi) \geq c^- (\phi) + c^- (\psi). \]
(iv) c^+(\phi) \leq c^- (\phi^{-1}).

We will now prove that \(c^+ \) and \(c^- \) are invariant by conjugation.

- Show that for all \(\phi, \psi \in \text{Ham}^c (\mathbb{R}^{2n}) \) it holds \(c(\phi) = c(\psi\phi\psi^{-1}) \). [Hint: Let \(\psi \) be the time-1 flow of a Hamiltonian isotopy \(\psi_t \), and consider the continuous map \(t \mapsto c(\psi_t\phi\psi_t^{-1}) \). Use Lemma 2.2.]

Recall that the relation \(\leq \) on the group \(\text{Ham}^c (\mathbb{R}^{2n}) \) is defined by setting \(\phi_1 \leq \phi_2 \) if \(\phi_2 \phi_1^{-1} \) can be written as the time-1 flow of a non-negative Hamiltonian function.

- Show that \(c^+ \) and \(c^- \) are monotone with respect to \(\leq \), i.e. that if \(\phi_1 \leq \phi_2 \), then \(c(\phi_1) \leq c(\phi_2) \).

2.3.3. Bi-invariant metric on Hamiltonian group. Given two Hamiltonian symplectomorphisms \(\phi \) and \(\psi \) of \(\mathbb{R}^{2n} \), define
\[d(\phi, \psi) := c^+(\phi\psi^{-1}) - c^- (\phi\psi^{-1}). \]
- Show that \(d \) is a bi-invariant metric on \(\text{Ham}^c (\mathbb{R}^{2n}) \).

This metric was discovered by Viterbo in [5].

2.4. Symplectic capacity. Given an open bounded domain \(\mathcal{U} \) of \(\mathbb{R}^{2n} \), its Viterbo capacity \(c(\mathcal{U}) \) is defined by
\[c(\mathcal{U}) := \sup \{ c^+(\phi) \mid \phi \in \text{Ham} (\mathcal{U}) \} \]
where \(\text{Ham} (\mathcal{U}) \) denotes the set of time-1 maps of Hamiltonian functions supported in \(\mathcal{U} \). It can be shown that \(c(\mathcal{U}) \) is a finite real number.

- Prove that for any Hamiltonian symplectomorphism \(\psi \) of \(\mathbb{R}^{2n} \) we have
\[c(\psi(\mathcal{U})) = c(\mathcal{U}). \]
- Prove that if \(\mathcal{U}_1 \subset \mathcal{U}_2 \), then \(c(\mathcal{U}_1) \leq c(\mathcal{U}_2) \).
- Prove that \(c(\alpha \mathcal{U}) = \alpha^2 c(\mathcal{U}) \) for any positive constant \(\alpha \). [Hint: You can use the fact that if \(\psi \) is a conformal symplectomorphism of \(\mathbb{R}^{2n} \), i.e. \(\psi^*\omega = \alpha \omega \) for some constant \(\alpha \), then \(\Lambda (\psi\phi\psi^{-1}) = \alpha \Lambda (\phi) \) (see [2, 5.2]).]

Moreover it can be proved that \(c(B^{2n}(1)) > 0 \) and \(c(C^{2n}(1)) < \infty \) where
\[B^{2n}(R) = \{ \pi \sum_{i=1}^{n} x_i^2 + y_i^2 < R \} \]
and
\[C^{2n}(R) = B^2(R) \times \mathbb{R}^{2n-2}. \]
All these property are summarized by saying that \(c \) is a symplectic capacity in \(\mathbb{R}^{2n} \).

2.4.1. The Symplectic Non-Squeezing Theorem. It can be proved that the capacity of an ellipsoid
\[E(\alpha_1, \cdots, \alpha_n) := \{ \sum_{i=1}^{n} \frac{\pi}{\alpha_i} (x_i^2 + y_i^2) < 1 \} \]
is given by its smallest coefficient. In particular \(c(B(R)) = R \). Since every bounded domain contained in the cylinder \(C(R) \) is also contained in some ellipsoid with \(R \) as smallest coefficient, it follows from monotonicity that \(c(C(R)) = R \).
Due to this result, the Viterbo capacity can be used to prove Gromov’s Non-Squeezing Theorem, which says that if $R_2 < R_1$ then there is no symplectic embedding of $B(R_1)$ into $C(R_2)$.

- Prove the Non-Squeezing Theorem. [*Hint: Use the extension after restriction principle: if there is an embedding $\Psi : B(R_1) \hookrightarrow C(R_2)$ then for any $\delta \in (0, 1)$ we can find a compactly supported Hamiltonian symplectomorphism Ψ_δ of \mathbb{R}^{2n} with $\Psi_\delta \equiv \Psi$ on $\delta B(R_1).$]*

Moreover, the Viterbo capacity has been used in [5] to prove the Camel Theorem, which says that there is no Hamiltonian isotopy ψ_t supported in $(\mathbb{R}^{2n} \setminus \mathbb{R}^{2n-1}) \cup B^n(\epsilon)$ such that $\psi_0 = \text{id}$ and ψ_1 sends a ball of radius $R > \epsilon$ contained in one component of $\mathbb{R}^{2n} \setminus \mathbb{R}^{2n-1}$ into the other component.

REFERENCES