Amenability lecture 4

Percolation & amenability

\[T = \] \[\begin{array}{c|c|c|c|c} \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline 0 & & & & \\ \hline \end{array} \]

Map spreading: EX's disease spreading among an orchard, fires, coffee brewing (water & beans)

1957 Broadbent, Hammersley
Bernoulli bond percolation

\[\forall \text{edge } e \in \text{Edges}(T) \]
\[\text{toss a } (p, 1-p) \text{-coin} \]
\[\text{Bernoulli RV} \]

Think of water flowing on the edges and declare the edge open or closed according to the result.

We obtain a Configuration Space:
\[(0, 1)^{\text{Edges}} \]

Equipped with the prob. measure \[P_p = \prod_{e \in \text{Edges}} P_p(e) \]

\[P_p(e) = \begin{cases} p & \text{if } \gamma_p(e) = 1 \\ 1-p & \text{if } \gamma_p(e) = 0 \end{cases} \]

Note: \((0, 1)^{\text{Edges}}, P_p\) can be viewed as a "random subgraph" of \(T\)

\(P_p\) is \(G\)-invariant if \(T = \text{Cay}(G, S)\)

Remark: Such a prob space can be similarly defined \((\gamma_p \in [0, 1])\) and \(\gamma \in G, \gamma \in \text{gp}\)
and \(S\) a fin. symm. gen. set.
Moreover, it can similarly be defined on any transitive infinite-complement graph. Let a property that makes a graph similar to $\text{Cay}(G,S)$.

3. Given p, are we likely to have an infinite component in our subgraph (an infinite cluster)?

- $p=0 \implies \text{prob } 0 \text{ to have an inf. cl.}$
- $p=1 \implies \text{prob } 1 \text{ to have an inf. cl.}$

Define Percolation Function

$$\Theta(p) = P_p \{ \Omega \text{ an infinite cluster} \}$$

$$P_c = \sup \{ p : \Theta(p) = 0 \}$$

\[P_c(\mathbb{Z}^2) = \frac{1}{2} \]

$$P_c(\mathbb{T}_d) = \frac{1}{d-1}$$

Critical value of percolation

- Its from left is open for \mathbb{Z}^2, \mathbb{Z}^3 but known for other \mathbb{Z}^d.

$7/28/17$
Note \(p_c = \inf \{ p : \text{a.s. } \exists \text{ an inf. cluster} \} \)
= \(\sup \{ p : \text{a.s. no inf. clusters} \} \)

Benjamini, Schramm 1996
"Percolation beyond \(\mathbb{Z}^d \): many questions & few answers"

Note \(p_c(\mathbb{Z}) = 1 \)

Conj \(p_c(\mathbb{G}, s) = 1 \) iff \(\mathbb{G} \) is virtually \(\mathbb{Z} \)

Proved for poly growth gps, exp growth gps, Grigorchuk's gps

If \(p > p_c \), how many inf. clusters do you have?

Thm \# of inf. clusters is almost surely \(0, 1, \infty \)

Recall Stallings Thm \# of ends in a f.g. gp is \(0, 1, 2 \) or \(\infty \)

Thm In \(\mathbb{Z}^2 \), \(\forall p > p_c \), \(\Pr_p (\exists \text{ inf. cluster}) = 1 \)

For amenable

Prop In a tree
\(\Pr_p (\text{the inf. cluster is unique}) < 1 \)
\(\forall p < 1 \)
Grimmet–Neuman \(\mathbb{Z} \times T \)

<table>
<thead>
<tr>
<th>0 inf. d.</th>
<th>inf. many</th>
<th>1 inf.</th>
<th>cl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(P_c)</td>
<td>(P_u)</td>
<td>1</td>
</tr>
</tbody>
</table>

Unicity parameter

Conjecture (Benjamini–Schramm) (BS-amenable conj.)

\[P_c = P_u \text{ iff } T \text{ is amenable} \]

N. Pack (’00) Proved a weak version of the conjecture:

If \(G \) is a non-amenable f.g. gp, then \(\exists S \subset G \) a finite gen set such that

\[P_c(G, S) : P_c(T) < P_u(T) \]

Idea of proof combines Spectral Graph Theory & Geometric Group Theory

Corollary. A f.g. gp \(G \) is amenable iff

\[\forall S \text{ f.g. gen set } \quad P_c(\text{Cay}(G, S)) = P_u(\text{Cay}(G, S)) \]

Application: Recall von Neumann’s Problem

Does every non-amenable \(G \) contain a free subgp \(F_2 \)? No

Thm (1999, K. Whyte) \(G \) non-amenable \(\iff \) its Cayley graph(s) can be partitioned into pieces which are uniformly bi-Lipschitz equivalent to \(T \).
Thm (Gaboriau-R. Lyons) 2013

G non-amenable \Rightarrow G admits an action on a
prob. space such that almost
all orbits of this action
can be partitioned into
the orbits of an essentially
free action of F_2 on this space.

Idea of the proof: G non-amenable

weak version of B.S.

Let S s.t. in Cay(G,S) = T^d, $P \leq P_n$

Take $p \in (p_c,p_n)$, $\tilde{\gamma} \mapsto (\gamma, \tilde{\gamma}_0, \cdots, \tilde{\gamma}_d)$, P_p

a.s. ∞ many infinite clusters

2. Use Stallings' Thm: Every conn'd graph with

$\forall x$ degrees $\leq 2d$ can be realized as
the Stallings graph of a subgp

in F_d.