A linear map \(L : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is a map of the form
\[
L \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11} \ldots a_{1n} \\ \vdots \\ a_{m1} \ldots a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}
\]
\[a_{ij} \in \mathbb{R}\]

Example:
\[
L : \mathbb{R}^3 \rightarrow \mathbb{R}^2 \quad L \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + 2y + 3z \\ 4x + 5y + 6z \end{pmatrix}.
\]

An affine map \(A : \mathbb{R}^m \rightarrow \mathbb{R}^n \) is a map of the form \(A(\overrightarrow{x}) = L(\overrightarrow{x}) + \overrightarrow{y}_0 \), \(\overrightarrow{y}_0 \in \mathbb{R}^n \).

Example:
\[
A : \mathbb{R}^3 \rightarrow \mathbb{R}^2, A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 7 \\ 8 \end{pmatrix} = \begin{pmatrix} x + 2y + 3z + 7 \\ 4x + 5y + 6z + 8 \end{pmatrix}.
\]

Maximal Rank. We will need to know what affine maps look like in the “nice case”, i.e. the case where \(L \) has maximal rank. The rank of \(L \) is the number of linearly independent rows (or columns) of the matrix \((a_{ij})\). The maximum possible rank is \(\min(m,n) \).

a Let \(L : \mathbb{R}^n \rightarrow \mathbb{R}^n \) be linear. Then \(L \) has max rank (i.e. \(n \))
\[\iff L \text{ is injective} \]
\[\iff L \text{ is surjective} \]
\[\iff L \text{ has a continuous inverse} \]
\[\iff \det(a_{ij}) \neq 0. \]

b Let \(L : \mathbb{R}^n \rightarrow \mathbb{R}^{n+k} \) be linear. Then \(L \) has max rank (i.e. \(n \))
\[\iff L \text{ is injective} \]
\[\iff \text{The image of } L \text{ is an } n \text{-dimensional plane in } \mathbb{R}^{n+k}. \]

c Let \(L : \mathbb{R}^{n+k} \rightarrow \mathbb{R}^n \) be linear. Then \(L \) has max rank (i.e. \(n \))
\[\iff L \text{ is surjective} \]
\[\iff \text{the preimage } f^{-1}(\overrightarrow{y}_0) \text{ is a } k \text{-dimensional plane in } \mathbb{R}^{n+k} \text{ if } \overrightarrow{y}_0 \neq 0. \]
HINTS for finding the rank of a matrix:
A square matrix has max rank \Leftrightarrow determinant $\neq 0$.
A matrix with 1 row (or column) has max rank (1) unless every entry is 0.
A matrix with 2 rows (or columns) has max rank (2) unless one row (column) is a multiple of the other.

* Inverse of a 2×2 matrix:
$$
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}^{-1} = \begin{pmatrix}
d & -b \\
\frac{-a}{ad-bc} & \frac{1}{ad-bc}
\end{pmatrix}.
$$

Facts about determinants
$Det : \mathbb{R}^n \rightarrow \mathbb{R}$

1. Det is a group homomorphism from the group of invertible $n \times n$ matrices (with matrix multiplication) to the group of non zero real numbers (with multiplication). Thus
$$
Det(A \cdot B) = Det(A) \cdot Det(B)
$$
(Note: the multiplication on the left is matrix multiplication. The multiplication on the right is multiplication of real numbers.) And
$$
Det(I) = 1
$$
where
$$
I = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
$$

2. Det is conjugation invariant, i.e. $Det(A^{-1}BA) = DetB$ (this follows from 1 above; do you see why?)

3. $Det(A) = 0 \Leftrightarrow$ the rows of A are linearly dependent
 \Leftrightarrow the columns of A are linearly dependent
 \Leftrightarrow the associated linear map $A : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is not injective
 \Leftrightarrow the associated linear map $A : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is not surjective
 $\Leftrightarrow 0$ is an eigenvalue of A

EIGENVALUES
λ is an eigenvalue of $A \Leftrightarrow A\vec{v} = \lambda \vec{v}$ for some $\vec{v} \in \mathbb{R}^n, \vec{v} \neq 0$
 $\Leftrightarrow (A - \lambda I)\vec{v} = 0$
 $\Leftrightarrow det(A - \lambda I) = 0$
(What does it mean geometrically if $A\overrightarrow{v} = \lambda\overrightarrow{v}$? What is the significance of the sign?)

Let A be an $n \times n$ matrix.

The characteristic polynomial $P(t) = \det(A - tI)$ is a polynomial of degree n. Ex: If $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, then

$$P(t) = \det \begin{pmatrix} 1-t & 2 \\ 3 & 4-t \end{pmatrix} = t^2 - 5t - 2.$$

FACT: A always satisfies its characteristic polynomial, i.e. $P(A) = 0$. In above example you can check

$$A^2 - 5A - 2 = 0$$

If $P(t)$ has n distinct (real) roots, then \mathbb{R}^n has a basis of (real) eigenvectors for A. That is, we can find a basis $\overrightarrow{v}_1, \overrightarrow{v}_2, \ldots, \overrightarrow{v}_n$ for \mathbb{R}^n with

$$A\overrightarrow{v}_i = \lambda_i \overrightarrow{v}_i$$

for each i, where the eigenvalues λ_i are the roots of the characteristic polynomial. In this case A is conjugate to a diagonal matrix, i.e. there is a matrix B (invertible) with $B^{-1}AB = D$ with D diagonal; in fact $D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \cdots & \cdots & \lambda_n \end{pmatrix}$.

The columns of B are the eigenvectors $\overrightarrow{v}_1, \ldots, \overrightarrow{v}_n$.

Special matrices.

$O(n) =$ Orthogonal Group

$= \{ A | A^tA = I \}$

A is orthogonal $\iff A^tA = I \iff$ the rows of A form an orthonormal basis for \mathbb{R}^n

\iff the columns of A form an orthonormal basis for \mathbb{R}^n.

\iff The linear map $A : \mathbb{R}^n \to \mathbb{R}^n$ preserves the inner product \langle , \rangle on \mathbb{R}^n, i.e. $\langle \overrightarrow{x}, \overrightarrow{y} \rangle = \langle A\overrightarrow{x}, A\overrightarrow{y} \rangle \forall \overrightarrow{x}, \overrightarrow{y}$

\iff The image of the standard orthonormal basis $\begin{pmatrix} 1 \\ 0 \\ \vdots \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \vdots \end{pmatrix}, \ldots, \begin{pmatrix} 0 \\ 0 \\ \vdots \end{pmatrix}$ of \mathbb{R}^n is an orthonormal basis for \mathbb{R}^n.

Exercise: Show that $O(n)$ is a group, with the operation of matrix multiplication.

$SO(n) =$ Special Orthogonal Group

$= \{ A | A^tA = I \text{ and } \text{Det}A = 1 \}$

A is symmetric if $A^t = A$.

3
FACT: If A is symmetric, then all eigenvalues are real and A is conjugate by an orthogonal matrix Θ to a diagonal matrix $D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \ddots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$.

That is, $\Theta^{-1} A \Theta = D$.

This means that there is an orthonormal basis v_1, \ldots, v_n for \mathbb{R}^n consisting of eigenvectors for A. The vectors v_1 are the columns of Θ.

This means that the linear map A does just what you would expect a diagonal map D to do.