Fluctuations from the Semicircle Law
Lecture 3

Ioana Dumitriu

University of Washington

Women and Math, IAS 2014

May 22, 2014
Higher Moments
We have calculated the variance; now we move on to higher moments.

Examine

$$E(X_{n,k}^l) = E \left(\left(\text{tr} \left(W_n^k \right) - E \left(\text{tr} (W_n^k) \right) \right)^l \right).$$

This is the same as

$$E(X_{n,k}^l) = \sum_{I_1, I_2, \ldots, I_l \in \mathcal{I}} E \left(\prod_{j=1}^{l} (w_{I_j} - E(w_{I_j})) \right).$$

The same ideas apply.
The lth Moment

Consider again the graphs G_{I_1}, \ldots, G_{I_l} as well as the union graph \mathcal{G}.

- If any of the edges in \mathcal{G} appears only once in the union of the walks given by I_1, \ldots, I_l, the term has 0 contribution.

- Thus every edge has multiplicity 2 or more in the union of the walks.

- $\forall 1 \leq j \leq l$, $\exists 1 \leq \tilde{j} \leq l$ such that I_j and $I_{\tilde{j}}$ overlap, otherwise independence, 0 contribution.
The lth Moment

Thus \mathcal{G} has $c \leq \lfloor l/2 \rfloor$ connected components.

What is the maximum number of vertices?

Claim: $v \leq \lfloor \frac{(k-1)l}{2} \rfloor + c \leq \frac{kl}{2}$.

Equality is achieved only when l even and $c = l/2$.
The \(l \)th Moment

Assume Claim is true.

Write

\[
\mathbb{E}(X_{n,k}^l) = \sum_{I_1, I_2, \ldots, I_l \in \mathcal{I}} \mathbb{E} \left(\prod_{j=1}^{l} (w_{I_j} - \mathbb{E}(w_{I_j})) \right)
\]

\[
= \frac{1}{n^{kl/2}} \sum_{G_{I_1}, \ldots, G_{I_l}, \mathcal{G}} n^\nu (1 + o(1)) \cdot Q(e, \nu, k, l),
\]

where the RHS sum is a polynomial in \(n \), for which we must obtain the highest power coefficient.

For \(l \) odd, \(\nu < kl/2 \) (given Claim), so \(\mathbb{E}(X_{n,k}^l) \to 0 \).
The lth Moment

For l even, $v = kl/2$ if there are $l/2$ components, each being the overlap of 2 graphs G_{Ij} with a total of k vertices.

We already analyzed that! This is the same count as for the variance, σ_k^2, but now we do it $l/2$ times.

Moreover, the way we pair the graphs G_{Ij} is important: there are precisely $(l-1)!!$ possible matchings.

This yields that the asymptotics for l even are

$$\mathbb{E}((X_{n,k})^l) \to \sigma_k^l (l-1)!!.$$
The lth Moment

Thus, for all l,

$$E \left(\left(\frac{X_{n,k}}{\sigma_k} \right)^l \right) \rightarrow \begin{cases} 0, & \text{if } l \text{ odd,} \\ (l - 1)!! , & \text{if } l \text{ even.} \end{cases}$$

These are the moments of the standard normal variable.

Hence

$$\frac{X_{n,k}}{\sigma_k} \rightarrow N(0, 1) ,$$

with convergence in distribution.

All that remains is to prove the Claim.
Claim: $v \leq \left\lfloor \frac{(k-1)l}{2} \right\rfloor + c \leq \frac{kl}{2}$. Equality is achieved only when l even, $c = k/2$.

Proof. Consider the graphs $G_{I_1}, \ldots, G_{I_l}, \mathcal{G}$, and the walks corresponding to I_1, \ldots, I_l.

We determined that the number of components of \mathcal{G} is $c \leq \lfloor l/2 \rfloor$.

Let F be a spanning forest for \mathcal{G}. Then F uses all v vertices and $e' \leq e$ edges. Moreover, $v = e' + c$.

We need to bound e'.
Claim: \(v \leq \left\lfloor \frac{(k-1)l}{2} \right\rfloor + c \leq \frac{kl}{2} \). Equality is achieved only when \(l \) even, \(c = k/2 \).

Proof. Let \(X = (X_{ij}) \) be a \(l \times k \) table of 0s and 1s, with the properties that

- each walk determined by \(I_j \) defines the \(j \)th row of \(X \);
- an entry in row \(j \) is 1 only if the edge corresponding to it in the walk of \(I_j \) is an edge in \(F \);
- every edge in \(F \) receives a 1 at least 2 times;
- every edge in \(F \) receives a 1 in each walk it appears.

Then it follows that \(2e' \leq \sum_{i,j} X_{ij} \).
Claim

Claim: \(v \leq \left\lfloor \frac{(k-1)l}{2} \right\rfloor + c \leq \frac{kl}{2} \). Equality is achieved only when \(l \) even, \(c = k/2 \).

Proof. Note that such a table can be obtained by simply putting a 1 in for every instance of a spanning tree edge (and 0 everywhere else).

We show each row of \(X \) can be made to have a 0.

If there is a row with no 0, all edges in the respective walk are in \(F \). Since every component of \(F \) is a tree, the walk is a closed walk on a tree, every edge must appear twice.

Call this row \(j \). There must be an edge in \(I_j \) which overlaps with another \(\tilde{I}_j \) and thus receives a 1 in the row \(\tilde{j} \). Replace one of the 1s corresponding to this edge in row \(j \) by a 0.
Claim: \(v \leq \left\lfloor \frac{(k-1)l}{2} \right\rfloor + c \leq \frac{kl}{2} \). Equality is achieved only when \(l \) even, \(c = k/2 \).

Proof. Thus every row can be made to have a 0, so

\[
\sum_{i,j} X_{ij} \leq \sum_{i=1}^{k} \sum_{j=1}^{l} X_{ij} \leq (k-1)l.
\]

Hence \(2e' \leq (k-1)l \), \(e' \leq \left\lfloor \frac{(k-1)l}{2} \right\rfloor \), and

\[
v = e' + c \leq \left\lfloor \frac{(k-1)l}{2} \right\rfloor + \left\lfloor \frac{l}{2} \right\rfloor,
\]

with equality only if the number of components is \(l/2 \) and \(l \) is even. \(\square \)
We have shown:

- $\frac{X_{n,k}}{\sigma_k} \rightarrow N(0, 1)$ in distribution, for all $k \geq 1$.
- Computed the covariances in Review Session.
- So we know all about the Gaussian Process defined on the monomials.
- Therefore we can immediately extend to all polynomials.

But the variances, covariances look nasty.
The reason why the variances look nasty is because the monomial basis is NOT the “nice” one....
... the right one is the Chebyshev basis!
A Different Basis

Let $T_0(x) = 1; T_1(x) = x; \ldots; T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$.

These are orthogonal with respect to the weight $\frac{1}{\sqrt{1-x^2}}$ on $[-1, 1]$.

If one renormalizes the matrices so that the eigenvalues are asymptotically on $[-1, 1]$ instead of $[-2, 2]$, one finds that

$$\frac{\text{tr}(T_k(\tilde{W}_n)) - \mathbb{E} \left(\text{tr}(T_k(\tilde{W}_n)) \right)}{\sqrt{k}} \to N(0, 1),$$

for any $k \geq 1$.
Moreover,

$$\text{Cov}(T_k(W_n), T_l(W_n)) = \mathbb{E}(T_k(W_n)T_l(W_n)) - \mathbb{E}(T_k(W_n))\mathbb{E}(T_l(W_n)) \to k\delta_{k,l}.$$

This means that the Chebyshev basis diagonalizes the covariance matrix.

This phenomenon turns out to be \textit{universal}, in that it applies to a multitude of other matrix ensembles, with other limiting laws (Marčenko-Pastur, Jacobi, regular graphs, etc.).