Advanced Lecture Course
Lecture 3: Modulo p Galois representations and beyond

2010 Program for Women and Mathematics

Table des matières

1 What you need to know / Prerequisites 2

2 Modulo p representations of G_{Q_p} 2
 2.1 The 2-dimensional case 2
 2.2 (φ, Γ)-modules in characteristic p 2

3 Application to a mod p Langlands correspondence for $n = 2$ 4
 3.1 The operator ψ ... 4
 3.2 Main steps to a mod p Langlands correspondence 4

4 First steps in characteristic 0 5

We have seen in the previous lecture that Colmez-Fontaine equivalence of categories between crystalline representations and admissible filtered φ-modules gives an explicit classification of crystalline representations of G_{Q_p}, and then an explicit p-adic local Langlands correspondence in dimension 2.

To take into account all the p-adic representations of G_{Q_p}, we have to consider a new family of objects called (φ, Γ)-modules. We will only describe here the ideas involved in this theory and its main steps. For further details and proofs, we refer to [Be, Section 9], [BeBr, Section 3] and to M.-F. Vignéras lectures during the next week.
1 What you need to know / Prerequisites

- The classification of 2-dimensional modulo p Galois representations
 \[\rho : G_{\mathbb{Q}_p} \rightarrow GL_2(\mathbb{F}_p) \]
 will be recalled in the next section and is constructed in Advanced Homework Session 1.

- We have the following result, which is proved in Advanced Homework Sessions 3 and 4:

 Theorem 1. Assume that E is endowed with the discrete topology.
 \begin{enumerate}
 \item $H^1(H_{\mathbb{Q}_p}, GL_d(E)) = \{1\}$ for any integer $d \geq 1$.
 \item $H^1(H_{\mathbb{Q}_p}, E) = \{0\}$.
 \end{enumerate}

 Basically, this theorem says that any free E-module of rank d endowed with a semi-linear action of $H_{\mathbb{Q}_p}$ is isomorphic to E^d. We refer to Advanced Homework Session 3 for more details.

2 Modulo p representations of $G_{\mathbb{Q}_p}$

2.1 The 2-dimensional case

As we mentioned it in the previous section, we have a complete classification of absolutely irreducible representations of $G_{\mathbb{Q}_p}$ on finite fields (Advanced Homework Session 1):

Theorem 2. Let E be a finite extension of \mathbb{Q}_p with residue field k_E. Any 2-dimensional k_E-linear absolutely irreducible representation of $G_{\mathbb{Q}_p}$ is isomorphic to $\rho(r, \chi) = \text{ind}(\omega_2^{r+1}) \otimes \chi$ for some integer $0 \leq r \leq p-1$ and some character $\chi : G_{\mathbb{Q}_p} \rightarrow k_E^\times$.

Here we denote by $\omega_2 : I_{\mathbb{Q}_p} \rightarrow \mathbb{F}_p^\times$ the character sending y to $g \frac{p^{1/2}-1}{p^{1/2}}$ and $\text{ind}(\omega_2^r)$ is defined as the unique semi-simple representation ρ of dimension 2 whose determinant is equal to ω_2^r and such that $\rho|_{I_{\mathbb{Q}_p}} = \omega_2^r \otimes \omega_2^{-r}$.

The problem is that this classification offers a too naive point of view to be generalized. To become less naive, we have to introduce a new category of objects called (φ, Γ)-modules.

2.2 (φ, Γ)-modules in characteristic p

First recall that \tilde{E} is (non-canonically) isomorphic to the algebraic closure of $E_{\mathbb{Q}_p} := \mathbb{F}_p((\epsilon - 1))$. We denote by E the separable closure of $E_{\mathbb{Q}_p}$, which is not equal to its algebraic closure! The following result, which is a particular case of a powerful theorem due to Fontaine-Wintenberger [FW], will be proved in Advanced Homework Session 3:
Theorem 3. There exists a group isomorphism:
\[H_{Q_p} \simeq \text{Gal}(E/E_{Q_p}). \]
Denote by \(\Gamma = \Gamma_{Q_p} \) the Galois group of \(Q_p^\infty/Q_p \). A \((\phi, \Gamma)\)-module over \(E_{Q_p} \) is a free \(E_{Q_p} \)-module of finite rank \(d \) endowed with a semi-linear Frobenius map \(\phi \) such that \(\text{Mat}(\phi) \in GL_d(E_{Q_p}) \) and a continuous semi-linear action of \(\Gamma \) that commutes with \(\phi \).

We do the two following remarks:

1. First note that the condition on \(\text{Mat}(\phi) \) does not depend on the basis in which the matrix of \(\phi \) is considered.
2. If we choose a basis \(e \) of \(D \), an element \(\gamma \in \Gamma \) and set \(P := \text{Mat}_e(\phi) \) and \(G := \text{Mat}_e(\gamma) \), then requiring that \(\phi \) and \(\gamma \) commute as semi-linear operators is equivalent to require that \(P\phi(G) = G\gamma(P) \).

Assuming the fact that \(E^{H_{Q_p}} = E_{Q_p} \) (Advanced Homework Session 3), we can prove the following result:

Proposition 1. Let \(W \) be an \(\mathbb{F}_p \)-representation of \(G_{Q_p} \) of dimension \(d \). Then \(D(W) := (E \otimes_{E_{Q_p}} W)^{H_{Q_p}} \) is a \((\phi, \Gamma)\)-module over \(E_{Q_p} \) of dimension \(d \) such that
\[E \otimes_{E_{Q_p}} D(W) \simeq E \otimes_{\mathbb{F}_p} W. \]

In particular, we have
\[W = (E \otimes_{E_{Q_p}} D(W))^{\phi=1}. \]

Démonstration. Let \(W : G_{Q_p} \rightarrow GL_d(\mathbb{F}_p) \) be such a representation. Its restriction to \(H_{Q_p} \), defines an element \([W \otimes_{\mathbb{F}_p} E]\) of \(H^1(H_{Q_p}, GL_d(E)) \), which is trivial by the first point of Theorem 1. This means that \(W \otimes_{\mathbb{F}_p} E \) is isomorphic to \(E^d \) as an \(H_{Q_p} \)-representation, so that \(D(W) := (E \otimes_{\mathbb{F}_p} W)^{H_{Q_p}} \) is an \(E_{Q_p} \)-vector space of dimension \(d \) which is stable under \(\phi \) and \(\Gamma \). Moreover, we have an isomorphism of \(E_{Q_p} \)-vector spaces (but not of \((\phi, \Gamma)\)-modules):
\[D(W) \simeq E^d_{Q_p} \]
so that \((E \otimes_{E_{Q_p}} D(W))^{\phi=1} = W. \)

Proposition 2. Let \(D \) be a \((\phi, \Gamma)\)-module of rank \(d \) over \(E_{Q_p} \). Then \(W(D) := (E \otimes_{E_{Q_p}} D)^{\phi=1} \) is an \(\mathbb{F}_p \)-representation of \(G_{Q_p} \) of dimension \(d \) such that
\[E \otimes_{\mathbb{F}_p} W(D) \simeq E \otimes_{E_{Q_p}} D. \]

Démonstration. [Be, Proposition 9.1.5]

Corollaire 1. The map \([W \mapsto D(W)]\) defines an equivalence of categories:
\[\{ \mathbb{F}_p \text{-linear representations of } G_{Q_p} \} \leftrightarrow \{ (\phi, \Gamma) \text{-modules over } E_{Q_p} \}. \]

Démonstration. [Be, Theorem 9.1.8]
To finish this section, note that if we forget about the action of Γ, we then get the following result:

Corollaire 2. There exists an equivalence of categories:

$$\{\mathbb{F}_p\text{-linear representations of } H_{Q_p}\} \leftrightarrow \{\varphi\text{-modules over } E_{Q_p}\}.$$

3 Application to a mod p Langlands correspondence for $n = 2$

We just saw how to go from Galois representations to (φ, Γ)-modules. We now introduce an operator ψ on these (φ, Γ)-modules in order to define (as Colmez did) a representation of the Borel subgroup $B_2(Q_p) \subset GL_2(Q_p)$.

3.1 The operator ψ

Recall that $E_{Q_p} := \mathbb{F}_p((\epsilon - 1))$ is a vector space over $\varphi(E_{Q_p}) = \mathbb{F}_p((\varphi(\epsilon - 1)))$ which admits $\{1, \epsilon, \ldots, \epsilon^{p-1}\}$ as a basis. Any $\alpha \in E_{Q_p}$ can therefore be uniquely written as

$$\alpha = \sum_{j=0}^{p-1} \epsilon^j \alpha_j$$

with $\alpha_j \in \varphi(E_{Q_p})$. We set $\psi(\alpha) := \alpha_0$.

Let now D be a (φ, Γ)-module over E_{Q_p}; then D admits a basis $(\varphi(e_1), \ldots, \varphi(e_d))$ made from elements of $\varphi(D)$, so that any $x \in D$ can be uniquely written

$$x = \sum_{j=1}^{d} x_j \varphi(e_j)$$

with $x_j \in E_{Q_p}$. We set $\psi(x) := \sum_{j=1}^{d} \psi(x_j)e_j$.

Lemma 1. The map $\psi : D \to D$ defined just above doesn’t depend on the choice of the basis $(\varphi(e_1), \ldots, \varphi(e_d))$ and commutes to the action of Γ.

3.2 Main steps to a mod p Langlands correspondence

The construction of a $GL_2(Q_p)$-representation starting from a (φ, Γ)-module attached to a G_{Q_p}-representation, known as Colmez’ functor, splits into three main steps:

1st step: Let D be a (φ, Γ)-module. There exists some ψ-stable lattice N in D, and we let $(\lim_{\psi} D)^{\dagger}$ be the set of elements $x = (x_n)_{n \in \mathbb{N}} \in D^\mathbb{N}$ satisfying the two following conditions:

$$\begin{cases}
\forall n \in \mathbb{N}, \psi(x_{n+1}) = x_n ; \\
\exists k \in \mathbb{N} \mid \forall n \in \mathbb{N}, x_n \in \pi^{-k}N .
\end{cases}$$

4
2nd step: We set \(D^\sharp := \{ x_0, x \in (\lim_{\to \psi} D)^b \} \). One can prove that \(D^\sharp \) is stable under \(\psi \) and \(\Gamma \), and that \(\psi : D^\sharp \to D^\sharp \) is surjective. We can also build \(\lim_{\to \psi} D^\sharp \) starting from \(D^\sharp \) as we built \((\lim_{\to \psi} D)^b \) starting from \(D \).

3rd step: Let \(\chi : \mathbb{Q}^\times \to E^\times \) be a smooth character. We endow \(\lim_{\to \psi} D^\sharp \) with an action of the Borel subgroup \(B_2(\mathbb{Q}_p) \) as follows:

\[
\begin{cases}
(\begin{pmatrix} t & 0 \\ 0 & t \end{pmatrix} x)_n = \chi^{-1}(t)x_n; & \left(\begin{pmatrix} 1 & 0 \\ 0 & p^l \end{pmatrix} x \right)_n = x_{n-j} = \psi^j(x_n) \\
(\begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix} x)_n = \gamma_a^{-1}(x_n); & \left(\begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} x \right)_n = \pi^{p^n}x_n.
\end{cases}
\]

Here \(x \in \lim_{\to \psi} D^\sharp, a \in \mathbb{Z}_p^\times \) and \(z \in \mathbb{Q}_p \). Moreover, we set \(\gamma_{a^{-1}} \), the element of \(\Gamma \) such that \(\chi_{\text{cycl}}(\gamma_{a^{-1}}) = a^{-1} \) (where \(\chi_{\text{cycl}} \) denotes the cyclotomic character).

The key point of this construction is that if \(D \) is the \((\varphi, \Gamma)\)-module associated to an absolutely irreducible representation of \(G_{\mathbb{Q}_p} \), then this representation of \(B_2(\mathbb{Q}_p) \) lifts in a unique way to an irreducible representation of \(GL_2(\mathbb{Q}_p) \).

4 First steps in characteristic 0

As usual, we want to lift to characteristic 0 what we have done in characteristic \(p \). To do this, we will (as usual) introduce some new rings of period.

Let \(\hat{A} := W(E) \) be the ring of Witt vectors with coefficients in \(E \). Denote by \(A_{\mathbb{Q}_p} \) the \(p \)-adic completion of \(\mathbb{Z}_p[[\pi]][\frac{1}{\pi}] \) inside \(\hat{A} \) and set \(B_{\mathbb{Q}_p} := A_{\mathbb{Q}_p}[\frac{1}{p}] \): this is a local field with residue field equal to \(E_{\mathbb{Q}_p} \).

Let \(\hat{B} := A[\frac{1}{p}] \) and denote by \(B \) the \(p \)-adic completion of the maximal unramified extension of \(B_{\mathbb{Q}_p} \) inside \(\hat{B} \). Finally set \(A := \hat{A} \cap B \).

We then set the following definitions:

- A \((\varphi, \Gamma)\)-module over \(A_{\mathbb{Q}_p} \) is a free \(A_{\mathbb{Q}_p} \)-module \(D \) of finite rank \(d \) equipped with a semi-linear Frobenius \(\varphi \) such that \(\text{Mat}(\varphi) \in GL_d(A_{\mathbb{Q}_p}) \) and a continuous semi-linear action of \(\Gamma \) which commutes to \(\varphi \).

- A \((\varphi, \Gamma)\)-module over \(B_{\mathbb{Q}_p} \) is a free \(B_{\mathbb{Q}_p} \)-module \(D \) of finite rank \(d \) equipped with a semi-linear Frobenius \(\varphi \) such that \(\text{Mat}(\varphi) \in GL_d(B_{\mathbb{Q}_p}) \) and a continuous semi-linear action of \(\Gamma \) which commutes to \(\varphi \).

- We say that a \((\varphi, \Gamma)\)-module over \(B_{\mathbb{Q}_p} \) is étale if there exists a basis \(e \) of \(D \) such that \(\text{Mat}_e(\varphi) \in GL_d(A_{\mathbb{Q}_p}) \).

As in characteristic \(p \), we have \(H^1(H_{\mathbb{Q}_p}, GL_d(A)) = \{1\} \) if \(A \) is endowed with the \(p \)-adic topology (Advanced Homework Session 4). This leads to the following results:
Lemma 2. Let T be a free \mathbb{Z}_p-module of finite rank d endowed with a continuous action of $G_{\mathbb{Q}_p}$. Then $D(T) := (A \otimes_{\mathbb{Z}_p} T)^{H_{\mathbb{Q}_p}}$ is a (φ, Γ)-module of rank d over $A_{\mathbb{Q}_p}$ and it satisfies:

$$A \otimes_{A_{\mathbb{Q}_p}} D(T) \simeq A \otimes_{\mathbb{Z}_p} T.$$

In particular, we have:

$$(A \otimes_{A_{\mathbb{Q}_p}} D(T))^{\varphi = 1} = T.$$

Lemma 3. Let V be a free \mathbb{Q}_p-module of finite rank d endowed with a continuous action of $G_{\mathbb{Q}_p}$. Then $D(V) := (B \otimes_{\mathbb{Q}_p} V)^{H_{\mathbb{Q}_p}}$ is an étale (φ, Γ)-module of rank d over $B_{\mathbb{Q}_p}$ and it satisfies:

$$B \otimes_{B_{\mathbb{Q}_p}} D(V) \simeq B \otimes_{\mathbb{Q}_p} V.$$

In particular, we have

$$(B \otimes_{B_{\mathbb{Q}_p}} D(V))^{\varphi = 1} = V.$$

Theorem 4. The functor $D(.)$ defines equivalences of categories:

$$\{\text{free } \mathbb{Z}_p\text{-representations of } G_{\mathbb{Q}_p}\} \leftrightarrow \{\text{ } (\varphi, \Gamma)\text{-modules over } A_{\mathbb{Q}_p}\}.$$

$$\{\mathbb{Q}_p\text{-linear representations of } G_{\mathbb{Q}_p}\} \leftrightarrow \{\text{étale } (\varphi, \Gamma)\text{-modules over } B_{\mathbb{Q}_p}\}.$$

Once again, if we forget about the Γ-action, we have the following result:

Corollaire 3. We have the following equivalences of categories:

$$\{\text{free } \mathbb{Z}_p\text{-representations of } H_{\mathbb{Q}_p}\} \leftrightarrow \{\varphi\text{-modules over } A_{\mathbb{Q}_p}\};$$

$$\{\mathbb{Q}_p\text{-linear representations of } H_{\mathbb{Q}_p}\} \leftrightarrow \{\text{étale } \varphi\text{-modules over } B_{\mathbb{Q}_p}\}.$$

It is also possible to define an operator ψ and to make the three-steps construction that has been seen in characteristic p, but it is harder to go from $B_2(\mathbb{Q}_p)$-representations to $GL_2(\mathbb{Q}_p)$-representations in the characteristic 0 setting. In fact, one can prove that it works for some big enough family of p-adic representations so that we can conclude that it works for any p-adic representation by density. For further details, we refer to [C, Section II.3.2].

Références

[Be] L. Berger, Partial notes for the course “Galois representations and (φ, Γ)-modules”, Galois Trimester 2010 at the IHP.

