1 Principal components and least squares fitting

Suppose that \(\mathbf{x} = (x_1, x_2, \ldots, x_p) \) and \(\mathbf{y} = (y_1, y_2, \ldots, y_p) \) are the \(x \) and \(y \) coordinates of some data. Suppose that the data is centered, so that \(\bar{x} = \frac{1}{p} \sum_{j=1}^{p} x_j = 0 \) and \(\bar{y} = \frac{1}{p} \sum_{j=1}^{p} y_j = 0 \).

- Show that the square of the distance between a point \((x_j, y_j)\) and a fixed line \(y = ax \) is
 \[
 d^2 = \left(\frac{1}{1 + a^2} \right)^2 (y_j - ax_j)^2.
 \]

 (Recall that the distance between a point \(\mathbf{x} \) and a line \(L \) is the shortest distance between \(\mathbf{x} \) and any point on \(L \).)

- The sum of squared distances between a fixed line \(y = ax \) and the data \((x_1, y_1), \ldots, (x_p, y_p)\) is
 \[
 D(a) = \left(\frac{1}{1 + a^2} \right)^2 \sum_{j=1}^{p} (y_j - ax_j)^2.
 \]

- Argue that if \(\mathbf{v}_1 = (1, u) \) and \(\mathbf{v}_2 = (1, v) \) are distinct principal components of the covariance matrix
 \[
 \mathbf{C} = \begin{pmatrix}
 \text{cov}((\mathbf{x}, \mathbf{x}) & \text{cov}((\mathbf{x}, \mathbf{y}) \\
 \text{cov}((\mathbf{x}, \mathbf{y}) & \text{cov}((\mathbf{y}, \mathbf{y})
 \end{pmatrix},
 \]
 then \(u \) and \(v \) are the critical points of \(D \) (that is, \(D'(v) = D'(u) = 0 \)).

- Which critical point corresponds to a least squares distance? Which corresponds to a maximal least squares distance? Why does this make sense geometrically?