Algorithms for sparse analysis

Lecture II: Hardness results for sparse approximation problems

Anna C. Gilbert

Department of Mathematics
University of Michigan
Complexity theory: Reductions

- Problem A (efficiently) reduces to B means a(n efficient) solution to B can be used to solve A (efficiently).
- If we have an algorithm to solve B, then we can use that algorithm to solve A; i.e., A is easier to solve than B.
- “reduces” does not confer simplification here.

- Definition

 $A \leq_P B$ if there’s polynomial time computable function f s.t.

 $$w \in A \iff f(w) \in B.$$

 - B at least as hard as A.
Complexity theory: **NP-hard**

- **Definition**
 \(A \in \text{NP-complete} \) if (i) \(A \in \text{NP} \) and (ii) for all \(X \in \text{NP} \), \(X \leq_P A \).

- **Definition**
 \(B \in \text{NP-hard} \) if there is \(A \in \text{NP-complete} \) s.t. \(A \leq_P B \).
Examples

- **RelPrime** Are a and b relatively prime?
 - in P
 - Euclidean algorithm, simple

- **Primes** Is x a prime number?
 - in P
 - highly non-trivial algorithm, does not determine factors

- **Factor** Factor x as a product of powers of primes.
 - in NP
 - not known to be **NP-hard**

- **X3C** Given a finite universe \mathcal{U}, a collection \mathcal{X} of subsets X_1, X_2, \ldots, X_N s.t. $|X_i| = 3$ for each i, does \mathcal{X} contain a disjoint collection of subsets whose union $= \mathcal{U}$?
 - **NP-complete**
Theorem
Given an arbitrary redundant dictionary \(\Phi \), a signal \(x \), and a sparsity parameter \(k \), it is NP-hard to solve the sparse representation problem \(\text{D-Exact} \). [Natarajan’95, Davis’97]
NP-hardness

Theorem

Given an arbitrary redundant dictionary Φ, a signal x, and a sparsity parameter k, it is NP-hard to solve the sparse representation problem D-EXACT. [Natarajan’95, Davis’97]

Corollary

$\text{Sparse, Error, Exact}$ are all NP-hard.
Theorem

Given an arbitrary redundant dictionary Φ, a signal x, and a sparsity parameter k, it is NP-hard to solve the sparse representation problem D-EXACT. [Natarajan’95, Davis’97]

Corollary

Sparse, Error, Exact are all NP-hard.

Corollary

Given an arbitrary redundant dictionary Φ and a signal x, it is NP-hard to approximate (in error) the solution of EXACT to within any factor. [Davis’97]
Exact Cover by 3-sets: X_3C

Definition
Given a finite universe \mathcal{U}, a collection \mathcal{X} of subsets X_1, X_2, \ldots, X_N s.t. $|X_i| = 3$ for each i, does \mathcal{X} contain a disjoint collection of subsets whose union $= \mathcal{U}$?
Exact Cover by 3-sets: \textit{X3C}

\textbf{Definition}
Given a finite universe \(\mathcal{U} \), a collection \(\mathcal{X} \) of subsets \(X_1, X_2, \ldots, X_N \) s.t. \(|X_i| = 3 \) for each \(i \), does \(\mathcal{X} \) contain a disjoint collection of subsets whose union = \(\mathcal{U} \)?

\textbf{NP-complete} problem.
Exact Cover by 3-sets: $X3C$

Definition
Given a finite universe \mathcal{U}, a collection \mathcal{X} of subsets X_1, X_2, \ldots, X_N s.t. $|X_i| = 3$ for each i, does \mathcal{X} contain a disjoint collection of subsets whose union $= \mathcal{U}$?

$\textbf{NP-complete}$ problem.

Proposition

Any instance of X3C is reducible in polynomial time to D-EXACT. X3C \leq_P D-EXACT

Proof.

- Let \(\Omega = \{1, 2, \ldots, N\} \) index \(\Phi \). Set \(\varphi_i = 1_{X_i} \).

Select \(x = (1, 1, \ldots, 1) \), \(k = \frac{1}{3} |\mathcal{U}| \).

- Suppose have solution to X3C. Sufficient to check if Sparse solution has zero error.

Assume solutions of X3C indexed by \(\Lambda \). Set \(c_{opt} = 1_{\Lambda} \).

\(\Phi c_{opt} = x \).

\(\Rightarrow \) Sparse solution has zero error and D-Exact returns Yes.
Proposition

Any instance of $X3C$ is reducible in polynomial time to D-Exact. $X3C \leq_p D$-Exact

Proof.

- Let $\Omega = \{1, 2, \ldots, N\}$ index Φ. Set $\varphi_i = 1_{X_i}$.
 Select $x = (1, 1, \ldots, 1)$, $k = \frac{1}{3} |\mathcal{U}|$.

- Suppose have solution to $X3C$. Sufficient to check if Sparse solution has zero error.
 Assume solutions of $X3C$ indexed by Λ. Set $c_{opt} = 1_\Lambda$.
 \[\Phi c_{opt} = x. \]
 \[\implies \text{Sparse solution has zero error and D-Exact returns YES}. \]

- Suppose c_{opt} is optimal solution of Sparse
 \[\Phi c_{opt} = x \]
 then c_{opt} contains $k \leq \frac{1}{3} |\mathcal{U}|$ nonzero entries and D-Exact returns YES.
 Each column of Φ has 3 nonzero entries
 \[\implies \{X_i \mid i \in \text{supp}(c_{opt})\} \text{ is disjoint collection covering } \mathcal{U}. \]
What does this mean?

Bad news

• Given any polynomial time algorithm for Sparse, there is a dictionary Φ and a signal x such that algorithm returns incorrect answer
• Pessimistic: worst case
• Cannot hope to approximate solution, either
What does this mean?

Bad news

- Given any polynomial time algorithm for SPARSE, there is a dictionary Φ and a signal x such that algorithm returns incorrect answer
- Pessimistic: worst case
- Cannot hope to approximate solution, either

Good news

- Natural dictionaries are far from arbitrary
- Perhaps natural dictionaries admit polynomial time algorithms
- Optimistic: rarely see worst case
- Hardness depends on instance type
Hardness depends on instance

<table>
<thead>
<tr>
<th>Redundant dictionary Φ</th>
<th>input signal x</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP-hard</td>
<td>arbitrary</td>
</tr>
<tr>
<td>depends on choice of Φ</td>
<td>fixed</td>
</tr>
<tr>
<td>compressive sensing</td>
<td>random (distribution?)</td>
</tr>
</tbody>
</table>

random signal model
Leverage intuition from orthonormal basis

- Suppose Φ is orthogonal, $\Phi^{-1} = \Phi^T$
- Solution to EXACT problem is unique

$$c = \Phi^{-1}x = \Phi^T x \quad \text{i.e.,} \quad c_\ell = \langle x, \varphi_\ell \rangle$$

hence, $x = \sum_\ell \langle x, \varphi_\ell \rangle \varphi_\ell$.
Leverage intuition from orthonormal basis

Solution to Sparse problem similar

- Let $\ell_1 \leftarrow \text{arg max}_\ell |\langle x, \varphi_\ell \rangle|$

 Set $c_{\ell_1} \leftarrow \langle x, \varphi_{\ell_1} \rangle$

 Residual $r \leftarrow x - c_{\ell_1} \varphi_{\ell_1}$
Leverage intuition from orthonormal basis

Solution to Sparse problem similar

- Let $\ell_1 \leftarrow \arg \max_{\ell} |\langle x, \varphi_{\ell} \rangle|$

 Set $c_{\ell_1} \leftarrow \langle x, \varphi_{\ell_1} \rangle$

 Residual $r \leftarrow x - c_{\ell_1} \varphi_{\ell_1}$

- Let $\ell_2 \leftarrow \arg \max_{\ell} |\langle r, \varphi_{\ell} \rangle| = \arg \max_{\ell} |\langle x - c_{\ell_1} \varphi_{\ell_1}, \varphi_{\ell} \rangle| = \arg \max_{\ell \neq \ell_1} |\langle x, \varphi_{\ell} \rangle|$

 Set $c_{\ell_2} \leftarrow \langle r, \varphi_{\ell_2} \rangle$.

 Update residual $r \leftarrow x - (c_{\ell_1} \varphi_{\ell_1} + c_{\ell_2} \varphi_{\ell_2})$
Leverage intuition from orthonormal basis

Solution to \textsc{Sparse} problem similar

\begin{itemize}
\item Let $\ell_1 \leftarrow \arg\max_{\ell} |\langle x, \varphi_\ell \rangle|$

Set $c_{\ell_1} \leftarrow \langle x, \varphi_{\ell_1} \rangle$

Residual $r \leftarrow x - c_{\ell_1} \varphi_{\ell_1}$

\item Let $\ell_2 \leftarrow \arg\max_{\ell} |\langle r, \varphi_\ell \rangle| = \arg\max_{\ell} |\langle x - c_{\ell_1} \varphi_{\ell_1}, \varphi_\ell \rangle| = \arg\max_{\ell \neq \ell_1} |\langle x, \varphi_\ell \rangle|$

Set $c_{\ell_2} \leftarrow \langle r, \varphi_{\ell_2} \rangle$.

Update residual $r \leftarrow x - (c_{\ell_1} \varphi_{\ell_1} + c_{\ell_2} \varphi_{\ell_2})$

\item Repeat $k - 2$ times.
\end{itemize}
Leverage intuition from orthonormal basis

Solution to Sparse problem similar

- Let $\ell_1 \leftarrow \arg \max_{\ell} |\langle x, \varphi_\ell \rangle|$

 Set $c_{\ell_1} \leftarrow \langle x, \varphi_{\ell_1} \rangle$

 Residual $r \leftarrow x - c_{\ell_1}\varphi_{\ell_1}$

- Let $\ell_2 \leftarrow \arg \max_{\ell} |\langle r, \varphi_\ell \rangle| = \arg \max_{\ell} |\langle x - c_{\ell_1}\varphi_{\ell_1}, \varphi_\ell \rangle| = \arg \max_{\ell \neq \ell_1} |\langle x, \varphi_\ell \rangle|$

 Set $c_{\ell_2} \leftarrow \langle r, \varphi_{\ell_2} \rangle$.

 Update residual $r \leftarrow x - (c_{\ell_1}\varphi_{\ell_1} + c_{\ell_2}\varphi_{\ell_2})$

- Repeat $k - 2$ times.

- Set $c_{\ell} \leftarrow 0$ for $\ell \neq \ell_1, \ell_2, \ldots, \ell_k$.

Approximate $x \approx \Phi c = \sum_{t=1}^{k} \langle x, \varphi_{\ell_t} \rangle \varphi_{\ell_t}$.

Check: algorithm generates list of coeffs of x over basis in descending order (by absolute value).
Leverage intuition from orthonormal basis

Solution to Sparse problem similar

- Let $\ell_1 \leftarrow \text{arg max}_\ell |\langle x, \varphi_\ell \rangle|$
 Set $c_{\ell_1} \leftarrow \langle x, \varphi_{\ell_1} \rangle$
 Residual $r \leftarrow x - c_{\ell_1} \varphi_{\ell_1}$

- Let $\ell_2 \leftarrow \text{arg max}_\ell |\langle r, \varphi_\ell \rangle| = \text{arg max}_\ell |\langle x - c_{\ell_1} \varphi_{\ell_1}, \varphi_\ell \rangle| = \text{arg max}_{\ell \neq \ell_1} |\langle x, \varphi_\ell \rangle|$
 Set $c_{\ell_2} \leftarrow \langle r, \varphi_{\ell_2} \rangle$.
 Update residual $r \leftarrow x - (c_{\ell_1} \varphi_{\ell_1} + c_{\ell_2} \varphi_{\ell_2})$

- Repeat $k - 2$ times.
- Set $c_\ell \leftarrow 0$ for $\ell \neq \ell_1, \ell_2, \ldots, \ell_k$.
- Approximate $x \approx \Phi c = \sum_{t=1}^{k} \langle x, \varphi_{\ell_t} \rangle \varphi_{\ell_t}$.

Check: algorithm generates list of coeffs of x over basis in descending order (by absolute value).
Geometry

• Why is orthogonal case easy?
 inner products between atoms are small
 it’s easy to tell which one is the best choice

\[\langle r, \varphi_j \rangle = \langle x - c_i \varphi_i, \varphi_j \rangle = \langle x, \varphi_j \rangle - c_i \langle \varphi_i, \varphi_j \rangle \]

• When atoms are (nearly) parallel, can’t tell which one is best
Coherence

Definition

The coherence of a dictionary

\[
\mu = \max_{j \neq \ell} |\langle \varphi_j, \varphi_\ell \rangle| \]

Small coherence (good)

Large coherence (bad)
Coherence

Definition

The coherence of a dictionary

\[\mu = \max_{j \neq \ell} |\langle \varphi_j, \varphi_\ell \rangle| \]

Small coherence (good) Large coherence (bad)
Coherence: lower bound

Theorem

For a $d \times N$ dictionary,

$$\mu \geq \sqrt{\frac{N - d}{d(N - 1)}} \approx \frac{1}{\sqrt{d}}.$$

[Welch'73]

Theorem

For most pairs of orthonormal bases in \mathbb{R}^d, the coherence between the two is

$$\mu = O\left(\sqrt{\frac{\log d}{d}}\right).$$

[Donoho, Huo '99]
Large, incoherent dictionaries

- Fourier–Dirac, $N = 2d$, $\mu = \frac{1}{\sqrt{d}}$
- wavelet packets, $N = d \log d$, $\mu = \frac{1}{\sqrt{2}}$
- There are large dictionaries with coherence close to the lower (Welch) bound; e.g., Kerdock codes, $N = d^2$, $\mu = 1/\sqrt{d}$
Approximation algorithms (error)

- **Sparse.** Given $k \geq 1$, solve

$$\arg \min_{c} \|x - \Phi c\|_2 \quad \text{s.t.} \quad \|c\|_0 \leq k$$

i.e., find the best approximation of x using k atoms.

- $c_{opt} = \text{optimal solution}$
- $E_{opt} = \|\Phi c_{opt} - x\|_2 = \text{optimal error}$
Approximation algorithms (error)

- **Sparse.** Given $k \geq 1$, solve
 \[
 \arg \min_c \| x - \Phi c \|_2 \quad \text{s.t.} \quad \| c \|_0 \leq k
 \]
 i.e., find the best approximation of x using k atoms.

- $c_{opt} = \text{optimal solution}$
- $E_{opt} = \| \Phi c_{opt} - x \|_2 = \text{optimal error}$

- Algorithm returns \hat{c} with

 1. $\| \hat{c} \|_0 = k$
 2. $E = \| \Phi \hat{c} - x \|_2 \leq C_1 E_{opt}$
Approximation algorithms (error)

- **Sparse.** Given $k \geq 1$, solve

 $$\arg \min_c \|x - \Phi c\|_2 \quad \text{s.t.} \quad \|c\|_0 \leq k$$

 i.e., find the best approximation of x using k atoms.

- $c_{opt} = \text{optimal solution}$
- $E_{opt} = \|\Phi c_{opt} - x\|_2 = \text{optimal error}$

- Algorithm returns \hat{c} with

 1. $\|\hat{c}\|_0 = k$
 2. $E = \|\Phi \hat{c} - x\|_2 \leq C_1 E_{opt}$

- (Error) approximation ratio: $\frac{E}{E_{opt}} = \frac{C_1 E_{opt}}{E_{opt}} = C_1$
Approximation algorithms (terms)

- Algorithm returns \hat{c} with

 \begin{align*}
 (1) \quad & \|\hat{c}\|_0 = C_2 k \\
 (2) \quad & E = \|\Phi\hat{c} - x\|_2 = E_{opt}
 \end{align*}

- (Terms) approximation ratio: $\frac{\|\hat{c}\|_0}{\|c_{opt}\|_0} = \frac{C_2 k}{k} = C_2$
Algorithm returns \hat{c} with

\begin{align*}
(1) \quad & \|\hat{c}\|_0 = C_2 k \\
(2) \quad & E = \|\Phi\hat{c} - x\|_2 = C_1 E_{opt}
\end{align*}

(Terms, Error) approximation ratio: (C_2, C_1)
Greedy algorithms

Build approximation one step at a time...
Greedy algorithms

Build approximation one step at a time...

...choose the best atom at each step
Orthogonal Matching Pursuit OMP [Mallat '92], [Davis'97]

Input. Dictionary Φ, signal x, steps k

Output. Coefficient vector c with k nonzeros, Φc ≈ x
Orthogonal Matching Pursuit OMP [Mallat '92], [Davis'97]

Input. Dictionary Φ, signal x, steps k

Output. Coefficient vector c with k nonzeros, $\Phi c \approx x$

Initialize. counter $t = 1$, residual $r_0 = x$, $c = 0$
Orthogonal Matching Pursuit \textbf{OMP} [Mallat '92], [Davis'97]

\textbf{Input.} Dictionary Φ, signal x, steps k
\textbf{Output.} Coefficient vector c with k nonzeros, $\Phi c \approx x$
\textbf{Initialize.} counter $t = 1$, residual $r_0 = x$, $c = 0$

1. \textbf{Greedy selection.} Find atom φ_{j_t} s.t.

\[j_t = \arg\max_\ell | \langle r_{t-1}, \varphi_\ell \rangle | \]
Orthogonal Matching Pursuit (OMP) [Mallat '92], [Davis'97]

Input. Dictionary Φ, signal x, steps k

Output. Coefficient vector c with k nonzeros, Φc ≈ x

Initialize. counter \(t = 1 \), residual \(r_0 = x \), \(c = 0 \)

1. **Greedy selection.** Find atom \(\varphi_{j_t} \) s.t.

 \[j_t = \arg\max_{\ell} |\langle r_{t-1}, \varphi_{\ell} \rangle| \]

2. **Update.** Find \(c_{\ell_1}, \ldots, c_{\ell_t} \) to solve

 \[
 \min \left\| x - \sum_{s} c_{\ell_s} \varphi_{\ell_s} \right\|_2
 \]
Orthogonal Matching Pursuit OMP [Mallat '92], [Davis'97]

Input. Dictionary Φ, signal x, steps k

Output. Coefficient vector c with k nonzeros, $\Phi c \approx x$

Initialize. counter $t = 1$, residual $r_0 = x$, $c = 0$

1. **Greedy selection.** Find atom φ_{j_t} s.t.

$$ j_t = \arg \max_{\ell} | \langle r_{t-1}, \varphi\ell \rangle | $$

2. **Update.** Find $c_{\ell_1}, \ldots, c_{\ell_t}$ to solve

$$ \min \left\| x - \sum_s c_s \varphi_s \right\|_2 $$

new residual $r_t \leftarrow x - \Phi c$
Orthogonal Matching Pursuit OMP [Mallat '92], [Davis'97]

Input. Dictionary Φ, signal x, steps k

Output. Coefficient vector c with k nonzeros, $\Phi c \approx x$

Initialize. counter $t = 1$, residual $r_0 = x$, $c = 0$

1. **Greedy selection.** Find atom φ_{j_t} s.t.

 $$j_t = \arg\max_{\ell} |\langle r_{t-1}, \varphi_\ell \rangle|$$

2. **Update.** Find $c_{\ell_1}, \ldots, c_{\ell_t}$ to solve

 $$\min \left\| x - \sum_s c_s \varphi_s \right\|_2$$

 new residual $r_t \leftarrow x - \Phi c$

3. **Iterate.** $t \leftarrow t + 1$, stop when $t > k$.
Many greedy algorithms with similar outline

- **Matching Pursuit**: replace step 2. by $c_{t+1} \leftarrow c_t + \langle r_{t-1}, \varphi_{k_t} \rangle$

- **Thresholding**
 Choose m atoms where $|\langle x, \varphi_\ell \rangle|$ are among m largest

- **Alternate stopping rules**:
 $$\|r_t\|_2 \leq \epsilon$$
 $$\max_\ell |\langle r_t, \varphi_\ell \rangle| \leq \epsilon$$

- **Many other variations**
Summary

- Sparse approximation problems are **NP-hard**
- At least as hard as other well-studied problems
- Hardness result of arbitrary input: *dictionary and signal*
- Intuition from orthonormal basis suggests some feasible solutions under certain conditions on redundant dictionary
- Geometric properties and greedy algorithms
- **Next lecture**: rigorous proofs for algorithms