Representational Power of Graph Neural Networks

Stefanie Jegelka
MIT

joint work with
Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe,
Ken-ichi Kawarabayashi, Weihua Hu, Jure Leskovec, Jingling Li,
Mozhi Zhang, Simon S. Du
Learning with Graphs

- Graph Molecule
- Property: Solubility, Toxicity, Drug efficacy
- Node Item → Node Item
- Pair of Nodes: Drugs
- Edge: Interaction

(Duvenaud et al, 2015, …)
(Ying et al, 2018)
(Battaglia et al. 2016)
(Allamanis et al. 2018)
Outline

- Discriminative Power of Graph Neural Networks
 K. Xu, W. Hu, J. Leskovec, S. Jegelka, ICLR 2019

- Network Depth and Graph Structure
 K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, S. Jegelka, ICML 2018

- Neural Networks for Reasoning
Graph Neural Networks

In each round:

Aggregate over neighbors

\[a_v^{(k)} = \text{AGGREGATE}^{(k)} \left(\{ h_u^{(k-1)} : u \in \mathcal{N}(v) \} \right) \]

Combine with current node

\[h_v^{(k)} = \text{COMBINE}^{(k)} \left(h_v^{(k-1)}, a_v^{(k)} \right) \]

Graph-level **readout**

\[h_G = \text{READOUT} \left(\{ h_v^{(K)} \mid v \in G \} \right) \]

(Battaglia et al., 2016; Defferrard et al., 2016; Duvenaud et al., 2015; Hamilton et al., 2017a; Kearnes et al., 2016; Kipf & Welling, 2017; Li et al., 2016; Velickovic et al., 2018; Verma & Zhang, 2018; Ying et al., 2018b; Zhang et al., 2018, …)
Graph Neural Networks

Intuition: Nodes aggregate information from their neighbors using neural networks.

INPUT GRAPH

TARGET NODE

layer 0 (input)

shared weights

layer 1

layer 2

(illustrations: J. Leskovec)
Graph Neural Networks

Which graphs can GNNs distinguish? What does this depend on?
Lemma (XHLJ19)

Aggregation-based GNNs are at most as powerful as the 1-dim. Weisfeiler-Lehman graph isomorphism test*.

Reach maximum power?

Aggregate from neighbors

\[g(X) = \phi \left(\text{MEAN}\{ f(x) : x \in X \} \right) \]
(Kipf et al. 2017)

\[g(X) = \phi \left(\text{MAX}\{ f(x) : x \in X \} \right) \]
(Hamilton et al. 2017)

Failure: same node representations

max / mean pooling fail

max pooling fails
Discriminative Schemes

Theorem \((XHLJ19)\)
If Aggregate, Combine and Readout are \textit{injective}, then the network is as discriminative as the 1-dim. WL test.

- max / mean fail
- max fails
A powerful GNN (GIN)

Lemma

Any multi-set function g can be decomposed as

$$g(X) = \phi \left(\sum_{x \in X} f(x) \right)$$

- Aggregation: sum & appropriate nonlinearity:

$$h_{v}^{(k)} = \text{MLP}^{(k)} \left((1 + \epsilon^{(k)}) \cdot h_{v}^{(k-1)} + \sum_{u \in \mathcal{N}(v)} h_{u}^{(k-1)} \right)$$
A powerful GNN (GIN)

Lemma

Any multi-set function \(g \) can be decomposed as

\[
g(X) = \phi \left(\sum_{x \in X} f(x) \right)
\]

- Aggregation: sum & appropriate nonlinearity:

\[
h_{v}^{(k)} = \text{MLP}^{(k)} \left((1 + \epsilon^{(k)}) \cdot h_{v}^{(k-1)} + \sum_{u \in \mathcal{N}(v)} h_{u}^{(k-1)} \right)
\]

- Readout: concatenation or sum

\[
h_{G} = \text{CONCAT} \left(\text{READOUT} \left(\left\{ h_{v}^{(k)} | v \in G \right\} \right) \mid k = 0, 1, \ldots, K \right)
\]
Example Empirical Results

\[g(X) = \phi \left(\sum_{x \in X} f(x) \right) \]

PROTEINS

Training accuracy

Epoch

Sum — MLP (injective)

Sum — linear+ReLU

Mean/Max — MLP/linear+ReLU
Towards Understanding Graph Neural Networks

- **Discriminative Power of Graph Neural Networks**

 K. Xu, W. Hu, J. Leskovec, S. Jegelka, ICLR 2019

- **Network Depth and Graph Structure**

 K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, S. Jegelka, ICML 2018

- **Neural Networks for Reasoning**
Why is deeper not always better here?

Intuition: Nodes aggregate information from their neighbors using neural networks.
Neighborhood Aggregation

Influence distribution

\[I_x(y) = e^T \left[\frac{\partial h_x^{(k)}}{\partial h_y^{(0)}} \right] e / \left(\sum_{z \in V} e^T \left[\frac{\partial h_x^{(k)}}{\partial h_z^{(0)}} \right] e \right) \]

how much is node x's feature influenced by node y

Theorem (XLTSKJ18) Under simplifying assumptions*:

* as in (Choromanska et al 2015, Kawaguchi 2016)
Implications

Random Walk convergence / size of feature neighborhood depends on **expansion properties of the graph**

Conjecture:
Different depths work for different subgraph structures
Examples

3 and 4-layer models make incorrect prediction

(d) 2-layer

(e) 3-layer

(f) 4-layer

(j) 2-layer

(k) 3-layer

(l) 4-layer
Examples

2-layer models make incorrect prediction
Adaptive depth

Adapting to subgraph structures empirically improves performance by 2-30%

JK-Concat adapts once for entire dataset/graph:
best for more regular graphs (images: DenseNet)

JK-LSTM adapts for each node/subgraph:
best for large graphs with diverse structures
Towards Understanding Graph Neural Networks

» Discriminative Power of Graph Neural Networks
 K. Xu, W. Hu, J. Leskovec, S. Jegelka, ICLR 2019

» Network Depth and Graph Structure
 K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, S. Jegelka, ICML 2018

» Neural Networks for Reasoning
Reasoning Tasks

summary statistics

What is the maximum value difference among treasures?

“relational argmax”

What are the colors of the farthest pair of objects?

dynamic programming

What is the cost to defeat monster X by following the optimal path?

(Johnson et al., 2017a; Weston et al., 2015; Hu et al., 2017; Fleuret et al., 2011; Antol et al., 2015; Battaglia et al., 2016; Watters et al., 2017; Fragkiadaki et al., 2016; Chang et al., 2017; Saxton et al., 2019; Chang et al., 2019; Santoro et al., 2018; Zhang et al., 2019, …)
Algorithmic Alignment: Network can mimic algorithm via few, easy-to-learn modules

Bellman-Ford

\[
\text{for } k = 1 \ldots |S| - 1:\n\]

\[
\text{for } u \text{ in } S:\n\]

\[
d[k][u] = \min_v \ d[k-1][v] + \text{cost}(v, u)
\]

GNN

\[
\text{for } k = 1 \ldots \text{GNN iter}:\n\]

\[
\text{for } u \text{ in } S:\n\]

\[
h_u^{(k)} = \sum_v \text{MLP}(h_v^{(k-1)}, h_u^{(k-1)})
\]
Alignment and Learning

More generally: GNNs align with a class of DP

\[\text{Answer}[k][i] = \text{DP-Update}(\{ \text{Answer}[k-1][j], j = 1 \ldots n \}) \]

Includes many reasoning tasks: visual question answering, physical reasoning,…
Alignment & Implications

A neural network \((M, \epsilon, \delta)\)-aligns with an algorithm if it can mimic the algorithm via \(n\) different (shared) network modules, each of which can be learned with at most \(M/n\) samples.

Theorem

If a network and task algorithm \((M, \epsilon, \delta)\)-align, then, under assumptions, the task is \((M, O(\epsilon), O(\delta))\)-learnable by the network.
Representational Power of GNNs

• Discriminative power of graph neural networks
 ‣ Aggregation schemes important!

• Local expansion and network depth
 ‣ Adaptive depths for different graph structures

• Alignment for reasoning tasks
