Studying generalization in deep learning via PAC-Bayes

Gintarė Karolina Džiugaitė — Element AI

Joint work with

Daniel M. Roy — University of Toronto; Vector Institute
Kyle Hsu — University of Toronto; Vector Institute
Waseem Gharbieh — Element AI
Motivation: SGD is widely used in practice yet its generalization properties are poorly understood.
Motivation: SGD is widely used in practice yet its generalization properties are poorly understood.

Approach: PAC-Bayes:
Motivation: SGD is widely used in practice yet its generalization properties are poorly understood.

Approach: PAC-Bayes:

- PAC-Bayes yields bounds on average risk for weights $\sim Q = Q(S)$;
Motivation: SGD is widely used in practice yet its generalization properties are poorly understood.

Approach: PAC-Bayes:

- PAC-Bayes yields bounds on average risk for weights $\sim Q = Q(S)$;
- in order to study SGD, need “posterior” Q concentrated near SGD solution;
Motivation: SGD is widely used in practice yet its generalization properties are poorly understood.

Approach: PAC-Bayes:

- PAC-Bayes yields bounds on average risk for weights $\sim Q = Q(S)$;
- in order to study SGD, need “posterior” Q concentrated near SGD solution;
- generalization error bound is then determined by $\text{KL}(Q||P)$, where “prior” P is fixed.
Motivation: SGD is widely used in practice yet its generalization properties are poorly understood.

Approach: PAC-Bayes:

- PAC-Bayes yields bounds on average risk for weights $\sim Q = Q(S)$;
- in order to study SGD, need “posterior” Q concentrated near SGD solution;
- generalization error bound is then determined by $\text{KL}(Q||P)$, where “prior” P is fixed.
- Empirically, existing bounds are numerically vacuous (> 1) for numerous reasons: almost all applications suffer from large KL divergence on the account of bad choice of P.

IAS Theory of Deep Learning Workshop 2019
Motivation: SGD is widely used in practice yet its generalization properties are poorly understood.

Approach: PAC-Bayes:

- PAC-Bayes yields bounds on average risk for weights $\sim Q = Q(S)$;
- in order to study SGD, need “posterior” Q concentrated near SGD solution;
- generalization error bound is then determined by $\text{KL}(Q||P)$, where “prior” P is fixed.
- Empirically, existing bounds are numerically vacuous (> 1) for numerous reasons: almost all applications suffer from large KL divergence on the account of bad choice of P.
- I’ll focus on the role of the prior P.
Review the PAC-Bayes framework for generalization bounds.

Introduce three principles for studying generalization using PAC-Bayes framework.

Describe their application to computing risk bounds on Q_{SGD}.

Show how same ideas can be applied to self-bounded learning.
Review the PAC-Bayes framework for generalization bounds.
Outline

- Review the PAC-Bayes framework for generalization bounds.
- Introduce three principles for studying generalization using PAC-Bayes framework.
Review the PAC-Bayes framework for generalization bounds.

Introduce three principles for studying generalization using PAC-Bayes framework.

Describe their application to computing risk bounds on Q concentrated near w_{SGD}.

Show how same ideas can be applied to self-bounded learning.
Outline

- Review the PAC-Bayes framework for generalization bounds.
- Introduce three principles for studying generalization using PAC-Bayes framework.
- Describe their application to computing risk bounds on Q concentrated near w_{SGD}.
- Show how same ideas can be applied to self-bounded learning.
PAC-Bayes yields risk bounds for Gibbs classifiers

Let \mathcal{H} be weight space (which determine classifiers).
Let $\ell : \mathcal{H} \times Z \to [0, 1]$ be our loss function.

Risk and empirical risk

For $h \in \mathcal{H}$,

$$L_D(h) = \mathbb{E}_{z \sim D}[\ell(h, z)] \quad \text{risk}$$

$$L_S(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h, z_i) \quad \text{empirical risk}$$

Gibbs classifier

A Gibbs classifier is a probability distribution on \mathcal{H}.

The risk of a Gibbs classifier Q is defined to be the average risk under $w \sim Q$, i.e.,

$$L_D(Q) = \mathbb{E}_{h \sim Q}[L_D(h)] = \mathbb{E}_{z \sim D} \mathbb{E}_{h \sim Q}[\ell(h, z)].$$
PAC-Bayes generalization bounds

Theorem (PAC-Bayes; Catoni 2007)
McAllester 1999, Shawe-Taylor and Williamson 1997
Assume $L_S(\cdot) \in [0, 1]$.

1. Nature chooses a data distribution D.
2. We choose a distribution P on weights (the “prior”).
3. Nature gives us a data set $S \sim D^m$.
4. Then, with probability at least $(1 - \delta)$,
PAC-Bayes generalization bounds

Theorem (PAC-Bayes; Catoni 2007)

McAllester 1999, Shawe-Taylor and Williamson 1997

Assume $L_S(\cdot) \in [0, 1]$.

1. Nature chooses a data distribution \mathcal{D}.

\[\mathbb{R}^d \]
Theorem (PAC-Bayes; Catoni 2007)
McAllester 1999, Shawe-Taylor and Williamson 1997
Assume \(L_S(\cdot) \in [0, 1] \).

1. Nature chooses a data distribution \(D \).
2. We choose a distribution \(P \) on weights (the “prior”).
PAC-Bayes generalization bounds

Theorem (PAC-Bayes; Catoni 2007)

McAllester 1999, Shawe-Taylor and Williamson 1997

Assume \(L_S(\cdot) \in [0, 1] \).

1. Nature chooses a data distribution \(D \).
2. We choose a distribution \(P \) on weights (the “prior”).
3. Nature gives us a data set \(S \sim D^m \).
 Now we know the empirical risk surface \(L_S(\cdot) \).
Theorem (PAC-Bayes; Catoni 2007)

McAllester 1999, Shawe-Taylor and Williamson 1997

Assume $L_S(\cdot) \in [0, 1]$.

1. Nature chooses a data distribution \mathcal{D}.
2. We choose a distribution P on weights (the “prior”).
3. Nature gives us a data set $S \sim \mathcal{D}^m$.
 Now we know the empirical risk surface $L_S(\cdot)$.
Theorem (PAC-Bayes; Catoni 2007)

McAllester 1999, Shawe-Taylor and Williamson 1997

Assume $L_S(\cdot) \in [0, 1]$.

1. Nature chooses a data distribution \mathcal{D}.
2. We choose a distribution P on weights (the “prior”).
3. Nature gives us a data set $S \sim \mathcal{D}^m$.
 Now we know the empirical risk surface $L_S(\cdot)$.
4. Then, with probability at least $(1 - \delta)$,

 $$\forall Q, \quad L_D(Q) \leq L_S(Q) + \sqrt{\frac{\text{KL}(Q||P) + \ln m/\delta}{2m}}.$$
Theorem (PAC-Bayes; Catoni 2007)

Assume $L_S(\cdot) \in [0, 1]$.

1. Nature chooses a data distribution \mathcal{D}.
2. We choose a distribution P on weights (the “prior”).
3. Nature gives us a data set $S \sim \mathcal{D}^m$.
 Now we know the empirical risk surface $L_S(\cdot)$.
4. Then, with probability at least $(1 - \delta)$,

$$\forall Q, \ L_D(Q) \leq L_S(Q) + \frac{\sqrt{\text{KL}(Q||P) + \ln m/\delta}}{2m}.$$
Theorem (PAC-Bayes; Catoni 2007)

McAllester 1999, Shawe-Taylor and Williamson 1997

Assume $L_S(\cdot) \in [0, 1]$.

1. Nature chooses a data distribution D.
2. We choose a distribution P on weights (the “prior”).
3. Nature gives us a data set $S \sim D^m$.

 Now we know the empirical risk surface $L_S(\cdot)$.
4. Then, with probability at least $(1 - \delta)$,

$$\forall Q, \ L_D(Q) \leq L_S(Q) + \sqrt{\frac{\text{KL}(Q||P) + \ln m/\delta}{2m}}.$$
PAC-Bayes generalization bounds

Theorem (PAC-Bayes; Catoni 2007)

McAllester 1999, Shawe-Taylor and Williamson 1997

Assume $L_S(\cdot) \in [0, 1]$.

1. Nature chooses a data distribution \mathcal{D}.
2. We choose a distribution P on weights (the “prior”).
3. Nature gives us a data set $S \sim \mathcal{D}^m$.

 Now we know the empirical risk surface $L_S(\cdot)$.
4. Then, with probability at least $(1 - \delta)$,

\[
\forall Q, \quad L_D(Q) \leq L_S(Q) + \sqrt{\frac{\text{KL}(Q||P) + \ln m/\delta}{2m}}.
\]

\[
\forall Q, \quad 2(L_D(Q) - L_S(Q))^2 \leq \frac{\text{KL}(Q||P) + \ln m/\delta}{m}.
\]
Theorem (PAC-Bayes; Catoni 2007)

McAllester 1999, Shawe-Taylor and Williamson 1997

Assume $L_S(\cdot) \in [0, 1]$.

1. Nature chooses a data distribution \mathcal{D}.
2. We choose a distribution P on weights (the “prior”).
3. Nature gives us a data set $S \sim \mathcal{D}^m$.
 Now we know the empirical risk surface $L_S(\cdot)$.
4. Then, with probability at least $(1 - \delta)$,

\[
\forall Q, \quad L_D(Q) \leq L_S(Q) + \sqrt{\frac{\text{KL}(Q||P) + \ln m/\delta}{2m}}.
\]

\[
\forall Q, \quad \Delta(L_S(Q), L_D(Q)) \leq \frac{\text{KL}(Q||P) + \ln I^\Delta(m)/\delta}{m}.
\]
Growing literature on techniques to construct PAC-Bayes bounds on deterministic classifiers.
Growing literature on techniques to construct PAC-Bayes bounds on deterministic classifiers.

- **Exploiting margin to derandomize**
 - Herbrich and Graepel (2001)
 - Neyshabur et al. (2019)
 - Nagarajan and Kolter (2019)
PAC-Bayes bounds on deterministic classifiers

Growing literature on techniques to construct PAC-Bayes bounds on deterministic classifiers.

- **Exploiting margin to derandomize**
Growing literature on techniques to construct PAC-Bayes bounds on deterministic classifiers.

- **Exploiting margin to derandomize**

Theorem (Neyshabur et al. 2019). Fix margin $\gamma > 0$ and confidence $\delta > 0$. For each $h \in \mathcal{H}$, let $Q(h)$ be a distribution on \mathcal{H} satisfying, with probability $\geq \frac{1}{2}$ over $h' \sim Q(H)$,

$$\sup_z \| f_h(z) - f_{h'}(z) \|_\infty \leq \frac{\gamma}{4}. $$

Then, with probability at least $(1 - \delta)$,

$$\forall h \in \mathcal{H}, L_D(h) \leq L_\gamma(h) + 4\sqrt{\frac{\text{KL}(Q(h)\|P) + \ln \frac{6m}{\delta}}{m + 1}}$$
Growing literature on techniques to construct PAC-Bayes bounds on deterministic classifiers.

- Exploiting margin to derandomize
PAC-Bayes bounds on deterministic classifiers

Growing literature on techniques to construct PAC-Bayes bounds on deterministic classifiers.

- **Exploiting margin to derandomize**

- **Disintegrated versions of PAC-Bayes**
 Catoni (2007)

- ...

- **PAC-Bayes + Generic Chaining**
 Miyaguchi (2019)
Recap: Towards a nonvacuous bound on SGD

\[\forall Q, \Delta \left(L_S(Q), L_D(Q) \right) \leq \frac{\text{KL}(Q||P) + \ln \mathcal{I}^\Delta(m)/\delta}{m}. \]

Consider a PAC-Bayes + margin approach to bounding SGD risk:
Recap: Towards a nonvacuous bound on SGD

\[\forall Q, \Delta(L_S(Q), L_D(Q)) \leq \frac{\text{KL}(Q||P) + \ln \mathcal{I}^\Delta(m)/\delta}{m}. \]

Consider a PAC-Bayes + margin approach to bounding SGD risk:

▶ **In order to derandomize...**

Need posterior \(Q \) tightly concentrated around weights \(w_{\text{SGD}} \) learned by SGD.
Recap: Towards a nonvacuous bound on SGD

\[\forall Q, \Delta(L_S(Q), L_D(Q)) \leq \frac{\text{KL}(Q||P) + \ln \mathcal{I}^\Delta(m)/\delta}{m}. \]

Consider a PAC-Bayes + margin approach to bounding SGD risk:

- **In order to derandomize...**
 Need posterior Q tightly concentrated around weights \(w_{\text{SGD}} \) learned by SGD.

- **In order to control KL complexity term...**
 Need prior P to have sufficient mass near SGD solution.
Recap: Towards a nonvacuous bound on SGD

\[\forall Q, \Delta\left(L_S(Q), L_D(Q)\right) \leq \frac{KL(Q\|P) + \ln \mathcal{I}(\Delta(m)/\delta)}{m}. \]

Consider a PAC-Bayes + margin approach to bounding SGD risk:

- **In order to derandomize...**
 Need posterior \(Q \) tightly concentrated around weights \(w_{SGD} \) learned by SGD.

- **In order to control KL complexity term...**
 Need prior \(P \) to have sufficient mass near SGD solution.

Hard to achieve both at the same time without knowing the training data \(S \) or at least the data distribution \(\mathcal{D} \).
∀Q, \(\Delta \left(L_S(Q), L_D(Q) \right) \leq \frac{\text{KL}(Q||P) + \ln I^\Delta(m)/\delta}{m} \).

Consider a PAC-Bayes + margin approach to bounding SGD risk:

- **In order to derandomize...**
 Need posterior \(Q \) tightly concentrated around weights \(w_{\text{SGD}} \) learned by SGD.

- **In order to control KL complexity term...**
 Need prior \(P \) to have sufficient mass near SGD solution.

Hard to achieve both at the same time without knowing the training data \(S \) or at least the data distribution \(\mathcal{D} \). In fact, the prior can depend on the data distribution!
Recap: Towards a nonvacuous bound on SGD

\[\forall Q, \quad \Delta(L_S(Q), L_D(Q)) \leq \frac{\text{KL}(Q\|P) + \ln I^\Delta(m)/\delta}{m}. \]

Consider a PAC-Bayes + margin approach to bounding SGD risk:

- **In order to derandomize...**
 Need posterior \(Q \) tightly concentrated around weights \(w_{\text{SGD}} \) learned by SGD.

- **In order to control KL complexity term...**
 Need prior \(P \) to have sufficient mass near SGD solution.

Hard to achieve both at the same time without knowing the training data \(S \) or at least the data distribution \(\mathcal{D} \). In fact, the prior can depend on the data distribution!

Theorem (Catoni 2007; Langford). "Optimal" prior is \(P^* = \mathbb{E}_{S \sim \mathcal{D}^m}[Q(S)] \).
Recap: Towards a nonvacuous bound on SGD

\[\forall Q, \Delta \left(L_S(Q), L_D(Q) \right) \leq \frac{\text{KL}(Q \| P) + \ln I^\Delta(m)/\delta}{m}. \]

Consider a PAC-Bayes + margin approach to bounding SGD risk:

- **In order to derandomize...**
 Need posterior \(Q \) tightly concentrated around weights \(w_{\text{SGD}} \) learned by SGD.

- **In order to control KL complexity term...**
 Need prior \(P \) to have sufficient mass near SGD solution.

Hard to achieve both at the same time without knowing the training data \(S \) or at least the data distribution \(\mathcal{D} \). In fact, the prior *can* depend on the data distribution!

Theorem (Catoni 2007; Langford). "Optimal" prior is \(P^* = \mathbb{E}_{S \sim \mathcal{D}^m}[Q(S)] \).

\[\mathbb{E}_{S \sim \mathcal{D}^m}[\text{KL}(Q(S) \| P^*)] = I(S; W) \text{ where } W \mid S \sim Q(S). \]
Can we exploit optimal priors?

Optimal prior $P^* = \mathbb{E}_{S' \sim D}[Q(S')]$ depends on D.

Fundamental tension

1. PAC-Bayes prior P can depend on data distribution D but cannot depend on the data S.
2. Our only handle on the unknown distribution D is the sample S.

▶ Distribution-dependent priors + KL bounds
Catoni (2004; 2007); Lever et al. (2010); Rivasplata et al. (2019)

▶ Data-dependent priors
Use a subset of data to learn prior
Use remainder of data for bound (Ambroladze et al. 2007; Parrado-Hernández et al. 2012)

▶ Use all the data + differential privacy
(D. and Roy 2018a)
Can we exploit optimal priors?

Optimal prior $P^* = \mathbb{E}_{S' \sim D^m}[Q(S')]$ depends on D.

Fundamental tension
1. PAC-Bayes prior P can depend on data distribution D but cannot depend on the data S;
2. Our only handle on the unknown distribution D is the sample S.

▶ Distribution-dependent priors + KL bounds
Catoni (2004; 2007); Lever et al. (2010); Rivasplata et al. (2019)

▶ Data-dependent priors
▶ Use a subset of data to learn prior
Use remainder of data for bound (Ambroladze et al. 2007; Parrado-Hernández et al. 2012)

▶ Use all the data + differential privacy
(D. and Roy 2018a)
Can we exploit optimal priors?

Optimal prior $P^* = \mathbb{E}_{S' \sim D^m}[Q(S')]$ depends on D.

Fundamental tension

1. PAC-Bayes prior P can depend on data distribution D but cannot depend on the data S;
2. Our only handle on the unknown distribution D is the sample S.

Distribution-dependent priors + KL bounds
Catoni (2004; 2007); Lever et al. (2010); Rivasplata et al. (2019)

Data-dependent priors

Use a subset of data to learn prior
Use remainder of data for bound (Ambroladze et al. 2007; Parrado-Hernández et al. 2012)

Use all the data + differential privacy (D. and Roy 2018a)
Can we exploit optimal priors?

Optimal prior $P^* = \mathbb{E}_{S' \sim D} [Q(S')]$ depends on D.

Fundamental tension

1. PAC-Bayes prior P can depend on data distribution D but cannot depend on the data S;

Distribution-dependent priors + KL bounds

Catoni (2004; 2007); Lever et al. (2010); Rivasplata et al. (2019)

Data-dependent priors

Use a subset of data to learn prior

Use remainder of data for bound (Ambroladze et al. 2007; Parrado-Hernández et al. 2012)

Use all the data + differential privacy (D. and Roy 2018a)
Can we exploit optimal priors?

Optimal prior $P^* = \mathbb{E}_{S' \sim D^m}[Q(S')]$ depends on D.

Fundamental tension

1. PAC-Bayes prior P can depend on data distribution D but cannot depend on the data S;
2. Our only handle on the unknown distribution D is the sample S.

IAS Theory of Deep Learning Workshop 2019
Can we exploit optimal priors?

Optimal prior \(P^* = \mathbb{E}_{S' \sim D^m}[Q(S')] \) depends on \(D \).

Fundamental tension

1. PAC-Bayes prior \(P \) **can** depend on data distribution \(D \) but **cannot** depend on the data \(S \);
2. Our only handle on the unknown distribution \(D \) is the sample \(S \).

- **Distribution-dependent priors + KL bounds**
 - Catoni (2004; 2007); Lever et al. (2010); Rivasplata et al. (2019)
Can we exploit optimal priors?

Optimal prior \(P^* = \mathbb{E}_{S' \sim D_m}[Q(S')] \) depends on \(D \).

Fundamental tension

1. PAC-Bayes prior \(P \) can depend on data distribution \(D \) but cannot depend on the data \(S \);
2. Our only handle on the unknown distribution \(D \) is the sample \(S \).

- **Distribution-dependent priors + KL bounds**
 - Catoni (2004; 2007); Lever et al. (2010); Rivasplata et al. (2019)

- **Data-dependent priors**
Can we exploit optimal priors?

Optimal prior $P^* = \mathbb{E}_{S' \sim D^m}[Q(S')]$ depends on D.

Fundamental tension

1. PAC-Bayes prior P can depend on data distribution D but cannot depend on the data S;
2. Our only handle on the unknown distribution D is the sample S.

- Distribution-dependent priors + KL bounds
 Catoni (2004; 2007); Lever et al. (2010); Rivasplata et al. (2019)

- Data-dependent priors
 - Use a subset of data to learn prior
 Use remainder of data for bound (Ambroladze et al. 2007; Parrado-Hernández et al. 2012)
Can we exploit optimal priors?

Optimal prior $P^* = \mathbb{E}_{S' \sim \mathcal{D}^m}[Q(S')]$ depends on \mathcal{D}.

Fundamental tension

1. PAC-Bayes prior P **can** depend on data distribution \mathcal{D} but **cannot** depend on the data S;
2. Our only handle on the unknown distribution \mathcal{D} is the sample S.

- **Distribution-dependent priors + KL bounds**
 Catoni (2004; 2007); Lever et al. (2010); Rivasplata et al. (2019)

- **Data-dependent priors**
 - Use a subset of data to learn prior
 Use remainder of data for bound (Ambroladze et al. 2007; Parrado-Hernández et al. 2012)
 - Use all the data + differential privacy
 (D. and Roy 2018a)
Distribution-dependent priors (Lever et al. 2010)

\[
\begin{align*}
\text{They show } & \quad \text{KL}(Q' || P') \text{ is bounded above with probability } \geq 1 - \delta, \\
& \text{satisfying } \text{KL}(Q' || P') \leq \frac{\gamma}{\sqrt{m}} \sqrt{\frac{\ln 4}{\sqrt{m}} \delta} + \frac{\gamma^2}{4m} + \frac{\ln 4}{\sqrt{m} \delta}.
\end{align*}
\]
Lever et al. 2010 study priors and posteriors of the form

\[dP'(w) \propto \exp\{-\gamma L_D(w)\}\,dw \quad dQ'(w|S) \propto \exp\{-\gamma L_S(w)\}\,dw \]
Lever et al. 2010 study priors and posteriors of the form

\[dP'(w) \propto \exp\{-\gamma L_D(w)\} \, dw \quad dQ'(w|S) \propto \exp\{-\gamma L_S(w)\} \, dw \]

They show \(KL(Q'||P') \) is bounded above with probability \(\geq 1 - \delta \), satisfying

\[
KL(Q'||P') \leq \gamma \sqrt{\frac{4 \sqrt{m}}{\delta}} + \frac{\gamma^2}{4m}
\]
Lever et al. 2010 study priors and posteriors of the form

\[dP'(w) \propto \exp\{-\gamma L_D(w)\} \, dw \quad dQ'(w|S) \propto \exp\{-\gamma L_S(w)\} \, dw \]

They show \(KL(Q'||P') \) is bounded above with probability \(\geq 1 - \delta \), satisfying

\[KL(Q'||P') \leq \frac{\gamma}{\sqrt{m}} \sqrt{\ln \frac{4\sqrt{m}}{\delta}} + \frac{\gamma^2}{4m} \]

which yields the following PAC-Bayes bound: with probability \(\geq 1 - \delta \),

\[\Delta(L_S(Q'), L_D(Q')) \leq \frac{1}{m} \left(\frac{\gamma}{\sqrt{m}} \sqrt{\ln \frac{4\sqrt{m}}{\delta}} + \frac{\gamma^2}{4m} + \ln \frac{4\sqrt{m}}{\delta} \right) \]
Empirical evaluation of Lever et al.’s bounds

\[dQ(w|S) \propto \exp\{-\gamma L_S(w)\}\, dw \]
Empirical evaluation of Lever et al.’s bounds

\[dQ(w|S) \propto \exp\{-\gamma L_S(w)\} \, dw \]
Distribution-dependent approximations of optimal priors via privacy

Summary: Lever et al. bound vacuous once γ large enough to fit random labels.

Recall: PAC-Bayes prior P can depend on data distribution D but not data. But data is our only handle on D.

Idea: If we use the data S to choose a prior $P(S)$, but in a way that is stable to changes to S, then $P(S)$ is "almost" independent from S.

Theorem (D. and Roy, 2018a).

Let $P(S)$ be an ϵ-differentially private prior. Then, with probability $\geq 1 - \delta$ over an i.i.d. sample S from an unknown distribution,

$$(\forall Q) \Delta(L_S(Q), L_D(Q)) \leq KL(Q || P(S)) + \ln 4 \sqrt{m \delta / m + \epsilon^2 / 2 + \epsilon \sqrt{\ln 4 / \delta} / m}$$

Challenge: ϵ-differential privacy for $\epsilon \ll 1$ is hard to achieve.

Solution: We show that being close in Wasserstein to a private mechanism suffices to yield a generalization bound.

See different approach based on stability by Rivasplata et al. (2018).
Distribution-dependent approximations of optimal priors via privacy

▶ Summary: Lever et al. bound vacuous once γ large enough to fit random labels.

Recall: PAC-Bayes prior P can depend on data distribution D but not data. But data is our only handle on D.

▶ Idea: If we use the data S to choose a prior $P(S)$, but in a way that is stable to changes to S, then $P(S)$ is “almost” independent from S.

Theorem (D. and Roy, 2018a). Let $P(S)$ be an ϵ-differentially private prior. Then, with probability $\geq 1 - \delta$ over an i.i.d. sample S from an unknown distribution, $\forall Q \quad \Delta(L_S(Q), L_D(Q)) \leq KL(Q || P(S)) + ln 4 \sqrt{m/\delta^2} + \epsilon^2/2 + \epsilon \sqrt{ln 4/\delta^2 m}$

▶ Challenge: ϵ-differential privacy for $\epsilon \ll 1$ is hard to achieve.

▶ Solution: We show that being close in Wasserstein to a private mechanism suffices to yield a generalization bound.

▶ See different approach based on stability by Rivasplata et al. (2018).
Distribution-dependent approximations of optimal priors via privacy

- Summary: Lever et al. bound vacuous once γ large enough to fit random labels.
- Recall: PAC-Bayes prior P can depend on data distribution \mathcal{D} but not data. But data is our only handle on \mathcal{D}.

Theorem (D. and Roy, 2018a). Let $P(S)$ be an ϵ-differentially private prior. Then, with probability $\geq 1 - \delta$ over an i.i.d. sample S from an unknown distribution,

\[\forall Q \] \[\Delta(L_S(Q), L_D(Q)) \leq KL(Q \parallel P(S)) + \ln 4 \sqrt{\frac{m}{\delta}} + \epsilon^2 / 2 + \epsilon \sqrt{\ln 4 / \delta} m \]

Challenge: ϵ-differential privacy for $\epsilon \ll 1$ is hard to achieve.

Solution: We show that being close in Wasserstein to a private mechanism suffices to yield a generalization bound.

See different approach based on stability by Rivasplata et al. (2018).
Distribution-dependent approximations of optimal priors via privacy

- Summary: Lever et al. bound vacuous once γ large enough to fit random labels.
- Recall: PAC-Bayes prior P can depend on data distribution \mathcal{D} but not data. But data is our only handle on \mathcal{D}.
- Idea: If we use the data S to choose a prior $\mathcal{P}(S)$, but in a way that is stable to changes to S, then $\mathcal{P}(S)$ is “almost” independent from S.

Theorem (D. and Roy, 2018a). Let $\mathcal{P}(S)$ be an ϵ-differentially private prior. Then, with probability $\geq 1 - \delta$ over an i.i.d. sample S from an unknown distribution,

$$(\forall Q) \Delta(L_S(Q), L_\mathcal{D}(Q)) \leq \frac{\text{KL}(Q \| \mathcal{P}(S)) + \ln \frac{4\sqrt{m}}{\delta}}{m} + \frac{\epsilon^2}{2} + \epsilon \sqrt{\frac{\ln 4/\delta}{2m}}$$
Distribution-dependent approximations of optimal priors via privacy

- Summary: Lever et al. bound vacuous once \(\gamma \) large enough to fit random labels.
- Recall: PAC-Bayes prior \(P \) can depend on data distribution \(D \) but not data. But data is our only handle on \(D \).
- Idea: If we use the data \(S \) to choose a prior \(\mathcal{P}(S) \), but in a way that is stable to changes to \(S \), then \(\mathcal{P}(S) \) is “almost” independent from \(S \).

\textbf{Theorem (D. and Roy, 2018a).} Let \(\mathcal{P}(S) \) be an \(\epsilon \)-differentially private prior. Then, with probability \(\geq 1 - \delta \) over an i.i.d. sample \(S \) from an unknown distribution,

\[
(\forall Q) \ \Delta(L_S(Q), L_D(Q)) \leq \frac{\text{KL}(Q \| \mathcal{P}(S)) + \ln \frac{4\sqrt{m}}{\delta}}{m} + \frac{\epsilon^2}{2} + \epsilon \sqrt{\frac{\ln 4/\delta}{2m}}
\]

- Challenge: \(\epsilon \)-differential privacy for \(\epsilon \ll 1 \) is hard to achieve.
Distribution-dependent approximations of optimal priors via privacy

- Summary: Lever et al. bound vacuous once γ large enough to fit random labels.
- Recall: PAC-Bayes prior P can depend on data distribution D but not data. But data is our only handle on D.
- Idea: If we use the data S to choose a prior $P(S)$, but in a way that is stable to changes to S, then $P(S)$ is “almost” independent from S.

Theorem (D. and Roy, 2018a). Let $P(S)$ be an ϵ-differentially private prior. Then, with probability $\geq 1 - \delta$ over an i.i.d. sample S from an unknown distribution,

$$
(\forall Q) \Delta(L_S(Q), L_D(Q)) \leq \frac{\text{KL}(Q\|P(S)) + \ln \frac{4\sqrt{m}}{\delta}}{m} + \frac{\epsilon^2/2 + \epsilon \sqrt{\ln 4/\delta}}{2m}
$$

- Challenge: ϵ-differential privacy for $\epsilon \ll 1$ is hard to achieve.
- Solution: We show that being close in Wasserstein to a private mechanism suffices to yield a generalization bound.
- See different approach based on stability by Rivasplata et al. (2018).
A question of interpretation

\[\Delta \left(L_S(Q(S)), L_D(Q(S)) \right) \leq \frac{\text{KL}(Q(S)\| P^*) + \ln I^\Delta(m)/\delta}{m}. \]

- Numerous approaches exist to approximate \(P^* = \mathbb{E}[Q(S)] \) analytically, with data, and with privacy/stability.

Theorem (D., Roy, Hsu, Gharbieh 2019+). Informally, there's a distribution, loss, and learning algorithm such that a PAC-Bayes bound with oracle prior \(P^*(S') = \mathbb{E}[Q(S)] \) is vacuous, but same bound on a subset \(S \setminus S' \) with data-dependent oracle prior \(P^*(S') = \mathbb{E}[Q(S)|S'] \) is nonvacuous.
A question of interpretation

\[\Delta\left(L_S(Q(S)), L_D(Q(S))\right) \leq \frac{\text{KL}(Q(S)\|P^*) + \ln I^\Delta(m)/\delta}{m}. \]

- Numerous approaches exist to approximate \(P^* = \mathbb{E}[Q(S)] \) analytically, with data, and with privacy/stability.
- Is approximating \(P^* \) actually optimal?
A question of interpretation

\[\Delta \left(L_S(Q(S)), L_D(Q(S)) \right) \leq \frac{\text{KL}(Q(S) \| P^*) + \ln I^\Delta(m)/\delta}{m}. \]

- Numerous approaches exist to approximate \(P^* = \mathbb{E}[Q(S)] \) analytically, with data, and with privacy/stability.
- Is approximating \(P^* \) actually optimal?
A question of interpretation

\[\Delta \left(L_S(Q(S)), L_D(Q(S)) \right) \leq \frac{\text{KL}(Q(S) || P^*) + \ln \mathcal{I}^\Delta(|S|) / \delta}{|S|} . \]

▶ Numerous approaches exist to approximate \(P^* = \mathbb{E}[Q(S)] \) analytically, with data, and with privacy/stability.
▶ Is approximating \(P^* \) actually optimal?
A question of interpretation

\[\Delta \left(L_{S \setminus S'}(Q(S)), L_D(Q(S)) \right) \leq \frac{\text{KL}(Q(S)\|P^*) + \ln \mathcal{I}(S \setminus S')}{|S \setminus S'|} \cdot \frac{1}{\delta} \]

- Numerous approaches exist to approximate \(P^* = \mathbb{E}[Q(S)] \) analytically, with data, and with privacy/stability.
- Is approximating \(P^* \) actually optimal?
A question of interpretation

\[\Delta \left(L_{S \setminus S'}(Q(S)), L_D(Q(S)) \right) \leq \frac{\text{KL}(Q(S) \| P^*(S')) + \ln I^\Delta(|S \setminus S'|)/\delta}{|S \setminus S'|}. \]

- Numerous approaches exist to approximate \(P^* = \mathbb{E}[Q(S)] \) analytically, with data, and with privacy/stability.
- Is approximating \(P^* \) actually optimal?
A question of interpretation

\[\Delta \left(L_{S \setminus S'}(Q(S)), L_D(Q(S)) \right) \leq \frac{\text{KL}(Q(S) \| P^*(S')) + \ln I^\Delta(\mid S \setminus S'\mid)}{|S \setminus S'|} / \delta. \]

- Numerous approaches exist to approximate \(P^* = \mathbb{E}[Q(S)] \) analytically, with data, and with privacy/stability.
- Is approximating \(P^* \) actually optimal?

If we only use \(S \setminus S' \) to estimate generalization error then the “optimal prior” is \(P^*(S') = \mathbb{E}[Q(S) | S'] \).
A question of interpretation

\[\Delta \left(L_{S \setminus S'}(Q(S)), L_D(Q(S)) \right) \leq \frac{\text{KL}(Q(S) \| P^*(S')) + \ln I^\Delta(|S \setminus S'|)/\delta}{|S \setminus S'|}. \]

- Numerous approaches exist to approximate \(P^* = \mathbb{E}[Q(S)] \) analytically, with data, and with privacy/stability.
- Is approximating \(P^* \) actually optimal?

If we only use \(S \setminus S' \) to estimate generalization error then the “optimal prior” is \(P^*(S') = \mathbb{E}[Q(S)|S'] \).

Would we ever want to do this?
A question of interpretation

\[\Delta \left(L_{S\setminus S'}(Q(S)), L_D(Q(S)) \right) \leq \frac{\text{KL}(Q(S)\|P^*(S')) + \ln I^\Delta(|S \setminus S'|)/\delta}{|S \setminus S'|}. \]

- Numerous approaches exist to approximate \(P^* = \mathbb{E}[Q(S)] \) analytically, with data, and with privacy/stability.
- Is approximating \(P^* \) actually optimal?

If we only use \(S \setminus S' \) to estimate generalization error then the “optimal prior” is \(P^*(S') = \mathbb{E}[Q(S)|S'] \).

Would we ever want to do this? Yes.

Theorem (D., Roy, Hsu, Gharbieh 2019+). Informally, there’s a distribution, loss, and learning algorithm such that a PAC-Bayes bound with oracle prior \(P^*(S') = \mathbb{E}[Q(S)] \) is vacuous, but same bound on a subset \(S \setminus S' \) with data-dependent oracle prior \(P^*(S') = \mathbb{E}[Q(S)|S'] \) is nonvacuous.
Recap: Towards a nonvacuous bound on SGD

\[
\Delta \left(L_{S \setminus S'}(Q(S)), L_D(Q(S)) \right) \leq \frac{\text{KL}(Q(S) \| P^*(S')) + \ln \mathcal{I}^\Delta(|S \setminus S'|)/\delta}{|S \setminus S'|}.
\]

In order to relate \(Q \) **to SGD weights** \(w_{\text{SGD}} \)...

Need posterior \(Q \) tightly concentrated around weights \(w_{\text{SGD}} \) learned by SGD.
Recap: Towards a nonvacuous bound on SGD

\[\Delta \left(L_{S\setminus S'}(Q(S)), L_D(Q(S)) \right) \leq \frac{\text{KL}(Q(S) \| P^*(S')) + \ln I^A(S \setminus S')/\delta}{|S \setminus S'|}. \]

- **In order to relate** \(Q \) **to SGD weights** \(w_{\text{SGD}} \)... Need posterior \(Q \) tightly concentrated around weights \(w_{\text{SGD}} \) learned by SGD.

- **In order to control KL complexity term**...
 Use some data to approximate data-dependent oracle prior \(P^*(S') = \mathbb{E}[Q(S)|S'] \).
Recap: Towards a nonvacuous bound on SGD

\[\Delta \left(L_{S\setminus S'}(Q(S)), L_D(Q(S)) \right) \leq \frac{\text{KL}(Q(S)\|P^*(S')) + \ln \mathcal{I}^\Delta(|S \setminus S'|)/\delta}{|S \setminus S'|}. \]

- **In order to relate** \(Q \) **to SGD weights** \(w_{\text{SGD}} \)...

 Need posterior \(Q \) tightly concentrated around weights \(w_{\text{SGD}} \) learned by SGD.

- **In order to control KL complexity term**...

 Use some data to approximate data-dependent oracle prior \(P^*(S') = \mathbb{E}[Q(S)|S'] \).
 Empirical risk term \(L_{S\setminus S'}(Q(S)) \) computed on remainder of data.
Recap: Towards a nonvacuous bound on SGD

$$\Delta \left(L_{S \setminus S'}(Q(S)), L_D(Q(S)) \right) \leq \frac{\text{KL}(Q(S)||P^*(S')) + \ln \mathcal{I}^A(|S \setminus S'|)/\delta}{|S \setminus S'|}.$$

- **In order to relate Q to SGD weights w_{SGD}...**
 Need posterior Q tightly concentrated around weights w_{SGD} learned by SGD.

- **In order to control KL complexity term...**
 Use some data to approximate data-dependent oracle prior $P^*(S') = \mathbb{E}[Q(S)|S'].$
 Empirical risk term $L_{S \setminus S'}(Q(S))$ computed on remainder of data.

How might we approximate $P^*(S') = \mathbb{E}[Q(S)|S']$?
Approximating $P^*(S') = \mathbb{E}[Q(S)|S']$.

Consider a Gaussian prior P and posterior Q:

- Fix posterior mean $w_{\text{SGD}}(S)$ to SGD weights, optimize $\text{diag}(s)$.
- We must choose prior mean $\bar{w}(S')$ before seeing full data S.
Approximating $P^*(S') = \mathbb{E}[Q(S)|S']$.

Consider a Gaussian prior P and posterior Q:

Let $Q(S) = N(w_{\text{SGD}}(S), \text{diag}(s))$ where $w_{\text{SGD}}(S)$ is the output of SGD.
Approximating $P^*(S') = \mathbb{E}[Q(S)|S']$.

Consider a Gaussian prior P and posterior Q:

Let $Q(S) = N(w_{SGD}(S), \text{diag}(s))$ where $w_{SGD}(S)$ is the output of SGD.

Let $P(S') = N(\bar{w}(S'), \lambda_0 I)$ where $\bar{w}(S')$ is some data-dependent parameter.
Approximating $P^*(S') = \mathbb{E}[Q(S)|S']$.

Consider a Gaussian prior P and posterior Q:

Let $Q(S) = N(w_{\text{SGD}}(S), \text{diag}(s))$ where $w_{\text{SGD}}(S)$ is the output of SGD.

Let $P(S') = N(\bar{w}(S'), \lambda_0 I)$ where $\bar{w}(S')$ is some data-dependent parameter.

$$\text{KL}(Q(S)||P(S')) = \frac{1}{2\lambda_0} \| w_{\text{SGD}}(S) - \bar{w}(S') \|^2 + \frac{1}{2} \sum_i \psi(\lambda_0, s_i).$$
Approximating $P^*(S') = \mathbb{E}[Q(S)|S']$.

Consider a Gaussian prior P and posterior Q:

Let $Q(S) = N(w_{\text{SGD}}(S), \text{diag}(s))$ where $w_{\text{SGD}}(S)$ is the output of SGD.

Let $P(S') = N(\bar{w}(S'), \lambda_0 \mathbb{I})$ where $\bar{w}(S')$ is some data-dependent parameter.

$$\text{KL}(Q(S)||P(S')) = \frac{1}{2\lambda_0} ||w_{\text{SGD}}(S) - \bar{w}(S')||_2^2 + \frac{1}{2} \sum_i \psi(\lambda_0, s_i).$$

- Fix posterior mean $w_{\text{SGD}}(S)$ to SGD weights, optimize $\text{diag}(s)$.
Approximating $P^*(S') = \mathbb{E}[Q(S) | S']$.

Consider a Gaussian prior P and posterior Q:

Let $Q(S) = N(w_{SGD}(S), \text{diag}(s))$ where $w_{SGD}(S)$ is the output of SGD.

Let $P(S') = N(\bar{w}(S'), \lambda_0 I)$ where $\bar{w}(S')$ is some data-dependent parameter.

$$\text{KL}(Q(S)||P(S')) = \frac{1}{2\lambda_0} \|w_{SGD}(S) - \bar{w}(S')\|^2_2 + \frac{1}{2} \sum_i \psi(\lambda_0, s_i).$$

- Fix posterior mean $w_{SGD}(S)$ to SGD weights, optimize $\text{diag}(s)$.
- We must choose prior mean $\bar{w}(S')$ before seeing full data S.

$$\bar{w}(S') = \arg \min_{w'} \mathbb{E}[\|w_{SGD}(S) - w'\|^2_2 | S']$$
Approximating $P^*(S') = \mathbb{E}[Q(S)|S']$.

Consider a Gaussian prior P and posterior Q:

Let $Q(S) = N(w_{\text{SGD}}(S), \text{diag}(s))$ where $w_{\text{SGD}}(S)$ is the output of SGD.

Let $P(S') = N(\tilde{w}(S'), \lambda_0 \mathbb{I})$ where $\tilde{w}(S')$ is some data-dependent parameter.

\[
\text{KL}(Q(S)||P(S')) = \frac{1}{2\lambda_0} \| w_{\text{SGD}}(S) - \tilde{w}(S') \|_2^2 + \frac{1}{2} \sum_i \psi(\lambda_0, s_i).
\]

- Fix posterior mean $w_{\text{SGD}}(S)$ to SGD weights, optimize $\text{diag}(s)$.
- We must choose prior mean $\tilde{w}(S')$ before seeing full data S.

\[
\tilde{w}(S') = \arg \min_{w'} \mathbb{E}[\| w_{\text{SGD}}(S, U) - w' \|_2^2 | S']
\]
Approximating $P^*(S') = \mathbb{E}[Q(S)|S']$.

Consider a Gaussian prior P and posterior Q:

Let $Q(S) = N(w_{SGD}(S), \text{diag}(s))$ where $w_{SGD}(S)$ is the output of SGD.

Let $P(S') = N(\bar{w}(S'), \lambda_0 I)$ where $\bar{w}(S')$ is some data-dependent parameter.

$$\text{KL}(Q(S)||P(S')) = \frac{1}{2\lambda_0} \|w_{SGD}(S) - \bar{w}(S')\|_2^2 + \frac{1}{2} \sum_i \psi(\lambda_0, s_i).$$

- Fix posterior mean $w_{SGD}(S)$ to SGD weights, optimize $\text{diag}(s)$.
- We must choose prior mean $\bar{w}(S')$ before seeing full data S.

$$\bar{w}(S', U) = \arg \min_{w'} \mathbb{E}[\|w_{SGD}(S, U) - w'\|_2^2 | S', U]$$
Use SGD to predict SGD

\[\tilde{w}(S', U) = \arg \min_{w'} \mathbb{E}[\|w_{\text{SGD}}(S, U) - w'\|_2^2 \mid S', U] \]
\[
\bar{w}(S', U) = \arg \min_{w'} \mathbb{E}[\|w_{\text{SGD}}(S, U) - w'\|^2_2 \mid S', U]
\]

- \(w_{\text{SGD}}(S, U)\) should be equivalent to SGD on the full data set. Since \(S' \subseteq S\) is a random subset, we’re free to choose \(S'\) to be first data processed by SGD.
Use SGD to predict SGD

\[\bar{w}(S', U) = \arg \min_{w'} \mathbb{E}[\| w_{\text{SGD}}(S, U) - w' \|^2 \ | \ S', U] \]

- \(w_{\text{SGD}}(S, U) \) should be equivalent to SGD on the full data set. Since \(S' \subseteq S \) is a random subset, we’re free to choose \(S' \) to be first data processed by SGD.

- We will approximate \(\bar{w}(S', U) \) by running SGD on the subset \(S' \) to convergence. By design, SGD on \(S' \) will match the initial behavior of SGD on \(S \).
Example: SGD on S' predicting SGD on S
How well are we predicting the weights learned by SGD?

MNIST, FC (2 hidden layers).
Data-dependent oracle priors for neural networks

\[\alpha = \frac{|S'|}{|S|} \]

\[
\text{Scaled squared L2} = \frac{\|w_{SGD} - \bar{w}\|^2}{(1 - \alpha)|S|^2}.
\]

Similar results found for networks trained on Fashion-MNIST and CIFAR10 datasets.
Coupled data-dependent approximate oracle priors and posteriors

Gaussian Lenet5 networks with **means equal to SGD trained on 30k examples from MNIST.**

![Graph](image)
Test error and PAC-Bayes generalization bounds with isotropic prior covariance. The best test error bound on MNIST, LeNet5 (approximately 11%) is significantly better than the 46% bound by Zhou et al., 2018.
Oracle access to optimal prior covariance

For a Gaussian prior P_Λ with diagonal covariance $\Lambda = \text{diag}(\lambda_i)$, the KL term is

$$\text{KL}(Q(S)||P_\Lambda(S')) = \frac{1}{2}(w_{\text{SGD}} - \bar{w})'\Lambda(w_{\text{SGD}} - \bar{w}) + \frac{1}{2} \sum_i \Psi(\lambda_i, s_i)$$
Oracle access to optimal prior covariance

For a Gaussian prior P_Λ with diagonal covariance $\Lambda = \text{diag}(\lambda_i)$, the KL term is

$$\text{KL}(Q(S)||P_\Lambda(S')) = \frac{1}{2}(w_{\text{SGD}} - \bar{w})'\Lambda(w_{\text{SGD}} - \bar{w}) + \frac{1}{2} \sum_i \Psi(\lambda_i, s_i)$$

- How much could an oracle estimate of Λ help?
Oracle access to optimal prior covariance

For a Gaussian prior P_Λ with diagonal covariance $\Lambda = \text{diag}(\lambda_i)$, the KL term is

$$\text{KL}(Q(S)||P_\Lambda(S')) = \frac{1}{2} (w_{\text{SGD}} - \bar{w})' \Lambda (w_{\text{SGD}} - \bar{w}) + \frac{1}{2} \sum_i \Psi(\lambda_i, s_i)$$

How much could an oracle estimate of Λ help?

Optimizing the KL bound in terms of Λ, we obtain

$$\min_\Lambda \text{KL}(Q(S)||P_\Lambda(S')) = \frac{1}{2} \sum_i \ln \left(1 + \frac{1}{s_i} (w_{\text{SGD}}^i - \bar{w}_i)^2 \right)$$
Oracle access to optimal prior covariance

For a Gaussian prior P_{Λ} with diagonal covariance $\Lambda = \text{diag}(\lambda_i)$, the KL term is

$$\text{KL}(Q(S)\|P_{\Lambda}(S')) = \frac{1}{2} (w_{\text{SGD}} - \bar{w})' \Lambda (w_{\text{SGD}} - \bar{w}) + \frac{1}{2} \sum_i \Psi(\lambda_i, s_i)$$

- How much could an oracle estimate of Λ help?

- Optimizing the KL bound in terms of Λ, we obtain

$$\min_{\Lambda} \text{KL}(Q(S)\|P_{\Lambda}(S')) = \frac{1}{2} \sum_i \ln \left(1 + \frac{1}{s_i} (w^i_{\text{SGD}} - \bar{w}_i)^2 \right)$$

- This bound represents the best we could hope to achieve and allows us to test limits of proposed mean prediction $\bar{w}(S', U)$.
Gaussian network bounds with oracle data-dependent prior covariance

MNIST, Lenet-5.

The bounds are hypothetical.
Directly optimizing Variational data-dependent PAC-Bayes generalization bound.

Apply these same ideas (data-dependency and coupling) to self-bounded learning.
Recap and Conclusion

▶ Using fraction of data $S' \subseteq S$ to predict SGD on S leads to significant improvement over priors centered at initialization.

▶ Data-dependence leads to predictions approximately as accurate as having fresh "ghost" samples.

▶ Theory suggests this type of data-dependent oracle prior may be necessary for tight PAC-Bayes bounds.

▶ We're still far from studying SGD itself: Stochastic neural networks in our studies were severely underfit due to looseness of the KL term during PAC-Bayes optimization. Need to understand the pareto-optimal frontier.

▶ Study of Gibbs classifiers "concentrated" near SGD weights may be a fruitful (suggestive) test bed for generalization ideas.
Using fraction of data $S' \subseteq S$ to predict SGD on S leads to significant improvement over priors centered at initialization.
Recap and Conclusion

▶ Using fraction of data $S' \subseteq S$ to predict SGD on S leads to significant improvement over priors centered at initialization.
 ▶ Data-dependence leads to predictions approximately as accurate as having fresh “ghost” samples.
Recap and Conclusion

- Using fraction of data $S' \subseteq S$ to predict SGD on S leads to significant improvement over priors centered at initialization.
 - Data-dependence leads to predictions approximately as accurate as having fresh “ghost” samples.
- Theory suggests this type of data-dependent oracle prior may be necessary for tight PAC-Bayes bounds.
Recap and Conclusion

- Using fraction of data $S' \subseteq S$ to predict SGD on S leads to significant improvement over priors centered at initialization.
 - Data-dependence leads to predictions approximately as accurate as having fresh “ghost” samples.
- Theory suggests this type of data-dependent oracle prior may be necessary for tight PAC-Bayes bounds.
- We’re still far from studying SGD itself: Stochastic neural networks in our studies were severely underfit due to looseness of the KL term during PAC-Bayes optimization. Need to understand the pareto-optimal frontier.
Recap and Conclusion

- Using fraction of data $S' \subseteq S$ to predict SGD on S leads to significant improvement over priors centered at initialization.
 - Data-dependence leads to predictions approximately as accurate as having fresh “ghost” samples.
- Theory suggests this type of data-dependent oracle prior may be necessary for tight PAC-Bayes bounds.
- We’re still far from studying SGD itself: Stochastic neural networks in our studies were severely underfit due to looseness of the KL term during PAC-Bayes optimization. Need to understand the pareto-optimal frontier.
- Study of Gibbs classifiers “concentrated” near SGD weights may be a fruitful (suggestive) test bed for generalization ideas.