Strategic Exploration via State Abstraction from Rich Observations

John Langford
MSR-New York City
Forthcoming work with

Dipendra Misra Mikael Henaff Akshay Krishnamurthy

Fresher than Arxiv! https://tinyurl.com/msr-homer
Reminder: Reinforcement Learning

Goal: Find a policy maximizing the sum of rewards
What's hard?

- Generalization
- Contextual Bandits
- MDP Learning
- Credit

??

Policy Improvement

Exploration
Hard Reinforcement Learning problem

Two start states with a 50% chance each
One special action leads to 50/50 next states
Different action leads to 50/50 next states
9 actions lead to a state and reward 0.1

The pattern repeats 100 times
In the last “good” states there is a reward of 1.

Every observation is unique!
Why is this hard?

Stochastic Start
Stochastic Transition
Unfavorable Dynamics
Antishaped Rewards
Googol Sparsity
Generalization Required!

Congo apes by Z. B. Binkhics!
State Visitation of Common RL algorithms

Advantage Actor Critic (A2C)

Proximal Policy Optimization (PPO)

Random Network Distillation (RND)

Homer (New!)
Performance

[Graphs showing performance metrics for different algorithms over the number of episodes.]
How do you formulate the problem?

Repeatedly
For \(h = 1 \) to \(H \)

 See observation \(x \in R^n \)

 Generated by some latent state \(s \).

 Never repeats!

 Choose action \(a \in \{1, \ldots, K\} \)

 Causes stochastic transition to latent state \(s' \).

 See reward \(r \in [0,1] \)

 Generated by \(x, a, \) and next observation \(x' \).

 This could be per action or per episode.

Goal: Compete with some policy class \(\Pi = \{\pi: x \to a\} \)
Two assumptions

Block MDP: For all observations x there is a unique s which can generate it.

Oracle Learning: Supervised learning problems can be solved well with sufficient data.
Theorem: Homer solves all Block MDP problems with \(\text{poly}(|S|, |A|, H) \) samples and time if Oracle Learning works.

Independent of \(|X|\)!
Key Concept: Kinematic State

Kinematic State = observations with same causal dynamics.

Backward kinematic state:

\[x'_1, x'_2 \in s \text{ if for all } u \in \Delta(x, a), \]

Forward kinematic state:

\[x'_1, x'_2 \in s \text{ if for all } x', a: \]

\[T(x'|x_1, a) = T(x'|x_2, a) \]

Kinematic state = Forward+Backward
Key Concept: Homing Policy

Homing Policy = policy finding something with highest probability.

For all x: $\pi_x = \arg\max_{\pi} P_\pi(x)$

For all s: $\pi_s = \arg\max_{\pi} P_\pi(s)$

Kinematic state $s \Rightarrow$ every $x \in s$ homed by same policy.
Homer

For each $h=2$ to H

Many times

Sample $\pi \sim \text{Uniform (policy cover } \Pi_{h-1})$

$(x, a, x') \sim h-1$ steps with π then act uniform random

50% -> keep $(x, a, x', 1)$ else keep $(x, a, \text{Uniform} \{x'\}, 0)$

Learn to predict whether x' corrupted.

$$(p, \phi, \phi') = \arg\min_{p, \phi, \phi'} \mathbb{E}_{(x,a,x',y)} \left(p(\phi(x), a, \phi'(x')) - y \right)^2$$

For each value of bottleneck $s = \phi'(x')$

Define Reward $R_s(x', a) = I(\phi'(x') = s)$

Learn homing policy $\pi_s = \text{Find_Policy} \{\Pi_i\}, R_s$

Form policy cover $\Pi_h = \{\pi_s\}$

Return Policy cover $\{\Pi_i\}$
We can extract the underlying state space!
A good example to think about

1. Predict action given x, x'
2. Predict action + previous state given x'
3. Construct homing policies incrementally
Past and Future Work

[KAL16] [JKALS16] [DJAKLS18] [SJKAL19] [DKJADL19]

Active Research area!

How do we make the algorithm incremental?
How do we handle continuous state/action?
How do we handle combinatorial state?
Yes, we are hiring!

Many people, locations, roles:
http://aka.ms/rl_hiring