Ramsey Theory for Metric Spaces

Manor Mendel

Abstract

Ultrametrics are special metrics satisfying a strong form of the triangle inequality: For every \(x, y, z \), \(d(x, z) \leq \max\{d(x, y), d(y, z)\} \). We consider Ramsey-type problems for metric spaces of the following flavor:

Every metric space contains a “large” subset having approximate ultrametric structure.

The following theorem implies a variety of Ramsey-type theorems for compact metric spaces with different notions of “size”:

For every \(e > 0 \), every compact metric space \(X \) and every probability measure \(\mu \) on \(X \), there exists a subset \(S \) of \(X \) and a probability measure \(\nu \) supported on \(S \) such that \(S \) is an approximate ultrametric upto distortion \(9/e \), and for every ball \(B(x, r) \) in \(X \), \(\nu(B(x, r)) \leq \mu(B(x, Cr))^{1-e} \), where \(C = C_e > 1 \) depends only on \(e \).

Those Ramsey-type theorems, besides their intrinsic interest, have applications for algorithms (approximate distance oracles, lower bounds for online problems), metric analysis (Lipschitz surjections onto the \(n \)-dimensional cube), and probability (Talagrand’s majorizing measure theorem).