Group Theory

Spectral gaps in SU(d)

Trou spectral dans SU(d)

Jean Bourgaina, Alexander Gamburdb

a IAS, 1 Einstein Drive, Princeton, NJ 08540, USA
b UCSC, 1156 High Street, Santa Cruz, CA 95064, USA

\begin{abstract}
It is shown that if g_1, \ldots, g_k are algebraic elements in SU(d) generating a dense subgroup, then the corresponding Hecke operator has a spectral gap.
\end{abstract}

\begin{version}
On démontre que si g_1, \ldots, g_k sont des éléments algébriques de SU(d) et le groupe engendré par g_1, \ldots, g_k est dense, alors l'opérateur de Hecke défini par ces éléments a un trou spectral.
\end{version}

\begin{articleinfo}
Article history:
Received 9 April 2010
Accepted 15 April 2010
Available online 4 May 2010
Presented by Jean Bourgain
\end{articleinfo}

\begin{thm}
Soit $g_1, \ldots, g_k \in SU(d) \cap \text{Mat}_{d \times d}(\mathbb{Q})$ et $\Gamma = \langle g_1, \ldots, g_k \rangle$ le groupe engendré par g_1, \ldots, g_k. Supposons Γ dense dans SU(d).

\begin{align*}
\text{Théorème.} \quad \text{L'opérateur de Hecke} \\
Tf(x) = \frac{1}{2k} \sum_{1 \leq j \leq k} (f(g_j x) + f(g_j^{-1} x))
\end{align*}

a un trou spectral.

Ceci généralise le résultat antérieur [4] pour SU(2). L'approche suivie ici diffère cependant et elle est essentiellement analogue à celle de [5] pour les groupes SL(d,pn) avec p fixé et n \to \infty. Des techniques d'arithmétique combinatoire, de la théorie des représentations et produits aléatoires de matrices y sont utilisées.

1. We assume $g_1, \ldots, g_k \in SU(d) \cap \text{Mat}_{d \times d}(\mathbb{Q})$ and denote $\Gamma = \langle g_1, \ldots, g_k \rangle$ the generated group. Assume further that Γ is Zariski dense in SL\textsubscript{d} or, equivalently, that Γ is topologically dense in SU(d).

Denote

$$
(Tf)(x) = \frac{1}{2k} \sum_{j=1}^{k} (f(g_j x) + f(g_j^{-1} x))
$$

the corresponding Hecke operator acting on $L^2(G), G = SU(d)$.

E-mail addresses: bourgain@math.ias.edu (J. Bourgain), agamburd@ucsc.edu (A. Gamburd).

1631-073X/10 - see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.citma.2010.04.024
Theorem 1. T has a spectral gap.

The result for $d = 2$ was obtained in [4]. As in [4], we rely on methods from arithmetic combinatorics. But the approach followed here is significantly different from that of [4] and resembles that of [5] on expansion in groups $SL_d(p^n)$ with p fixed and $n \to \infty$. Similarly to [5], the assumption of Zariski density is exploited through the theory of random matrix products (cf. [1]).

2. By a result of [6], we may take $k = 2$ and assume (g_1, g_2) free generators of the free group F_2. Define

$$
\nu = \frac{1}{4} (\delta_{g_1} + \delta_{g_2} + \delta_{g_1^{-1}} + \delta_{g_2^{-1}})
$$

the symmetric probability measure on G and denote ν^ℓ its ℓ-fold convolution power. Set for $\delta > 0$

$$
P_\delta = \frac{1_{B(1, \delta)}}{|B(1, \delta)|}
$$

providing an approximate identity on G.

Proposition 1. There is $\kappa > 0$ such that if G_1 is a non-trivial closed subgroup of G, then

$$
\nu^\ell(G_1) < e^{-\kappa \ell} \quad \text{for } \ell \to \infty.
$$

The proof of this ‘escape property’ relies on our assumption that T is Zariski dense and results on random matrix products, that are applied in suitable exterior powers of the adjoint representation of G. As in [4], we establish the following ‘flattening property’:

Proposition 2. Given $\tau > 0$, there is a positive integer $\ell < C(\tau) \log \frac{1}{\delta}$ such that

$$
\| \nu^\ell * P_\delta \|_\infty < \delta^{-\tau}.
$$

It is derived by straightforward iteration of

Lemma 1. Given $\gamma > 0$, there is $\kappa > 0$ such that for $\delta > 0$ small enough, $\ell \sim \log \frac{1}{\delta}$, if

$$
\| \nu^\ell * P_\delta \|_2 > \delta^{-\gamma}.
$$

Then

$$
\| \nu^{2\ell} * P_\delta \|_2 < \delta^\kappa \| \nu^\ell * P_\delta \|_2.
$$

With Proposition 2 at hand, the proof of a spectral gap may then be completed by considerations from representation theory (the Sarnak-Xue argument, also used in [4], or variants).

3. Returning to Lemma 1, the first step is to apply T. Tao's version of the Balog-Szemerédi-Gowers lemma (cf. [7]) for compact groups. Denoting $\mu = \nu^\ell * P_\delta$ and assuming (4) fails, one obtains a subset $H \subset G$, H a union of δ-balls, and a finite subset X of G such that

(5) $H = H^{-1}$,
(6) $H \cdot H \subset H, X \cap X \cdot H$,
(7) $|X| < \delta^{-\varepsilon}$,
(8) $\mu(aH) > \delta^\varepsilon$ for some $a \in G$,
(9) $|H| < \delta^\varepsilon$

(here $\varepsilon > 0$ is an arbitrary small, fixed number and $| |$ is used in (7) to denote ‘cardinality’ and in (9) for ‘Haar-measure’).

Recall that (5)–(6) mean that H is an ‘approximate group’ (cf. [7]). The goal is to show that properties (5)–(9) are not compatible and get a contradiction.

4. Next we specify some technical ingredients.

Crucial use is made of the ‘discretized ring theorem’ (see [2,3]). The version needed here is the following
Proposition 3. Given $\sigma > 0$, there is $\gamma > 0$ such that if $\delta > 0$ is small enough and $A \subset C^d \cap B(0,1)$ satisfies

$$N(A, \delta) > \delta^{-\sigma}$$

then there is $k \in C^d$, $|k| = 1$ such that

$$[0, \delta^2]k \subset A + B(0, \delta^{\sigma+1}).$$

Here A' denotes a 'sum-product' set $s_1A^{(s_2)} - s_1A^{(s_2)}$ of A, with s_1, s_2 bounded in terms of σ.

In (10), $N(A, \delta)$ refers to the metrical entropy, i.e. the minimum number of δ-balls needed to cover A. We used the notations $A = A + \cdots + A$ and $A^{(s)} = A + \cdots + A$ for the s-fold sum (resp. product) sets.

Proposition 3 is derived from the following result that generalizes [3]:

Theorem 2. Let $A \subset [0, 1]^d$ satisfy

$$N(A, \delta) = \delta^{-\sigma} \quad (0 < \sigma < d)$$

and also a non-concentration property

$$N(A \cap I, \delta) < C \delta^\eta N(A, \delta) \quad \text{if} \ \delta < \delta_1 < 1 \ \text{and} \ I \text{ any \ } \delta_1 \text{-ball}.$$ (13)

Let μ be a probability measure on $L(\mathbb{R}^d, \mathbb{R}^d)$ such that

$$\|b\| \leq 1 \quad \text{for} \ b \in \text{supp} \ \mu,$$

$$\max_{|v| = 1} \mu\left(\left|\langle bv, w \rangle \right| < \delta_1\right) < \delta^\varepsilon \quad \text{if} \ \delta < \delta_1 < 1.$$ (14)

Then, for some $b \in \text{supp} \ \mu$

$$N(A + A, \delta) + N(A + bA, \delta) > \delta^{-\sigma - \tau}$$ (15)

with $\tau = \tau(\sigma, \kappa) > 0$.

In order to apply Proposition 3, we construct 'almost' diagonal sets of matrices, using the following:

Lemma 2. Assume $\{g_1, g_2\}$ in $U(d) \cap \text{Mat}_{d \times d}(\mathbb{Q})$ generate a free group and let $H \subset W_{d}(g_1, g_2)$ (= the set of 'words' or length $\leq \ell$) satisfy

$$\log |H| > c \ell.$$ (16)

Then there is a subset A of a product set $H^{(s)}$, $s < C$ and $\delta > 0$ such that

(17) $\log \frac{1}{\delta} \sim \ell$.

(18) The elements of A are δ-separated.

(19) In an appropriate orthonormal basis, we have

$$\text{dist}(x, \Delta) < \delta \quad \text{for} \ x \in A$$

where Δ denotes the set of diagonal matrices.

Acknowledgements

The first author was supported in part by NSF, grant 0808042. The second author was supported in part by DARPA, NSF and Sloan Foundation.

References

