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Abstract

The goal of this thesis is to show the existence of dissipative solutions to the incompressible
Euler equations with almost 1/3 of a derivative in L3 that satisfy the local energy inequality
strictly. This proves an intermittent form of the Strong Onsager Conjecture proposed by
Philip Isett. The contents of this thesis are joint work with Hyunju Kwon and Matthew
Novack.
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Chapter 1

Introduction

Let’s consider the incompressible Euler equations

Ou+ (u-Vu+Vp=0
(1.1)
divu = 0

on the periodic domain T? = [—7, 71]*. Here u : [0, 7] x T?> — R? is a time-dependant vector
field on the torus T? called the fluid velocity and p : [0, T] x T> — R is a scalar function called
the pressure. The first equation, called the momentum equation, is derived from Newton’s
second law of motion with internal force —Vp. The incompressibility of the fluid is ensured
by the divergence-free condition. These equations were introduced by Euler more than 250
years ago to model the flow of an ideal volume-preserving fluid with no internal friction.
We note that the pressure (up to addition of a constant) can be recovered from the fluid

velocity by solving the elliptic equation
Ap = —div[(u- V)u] .

Indeed, the pressure acts as a Lagrange multiplier that ensures the divergence-free constraint

on the vector field u. The lack of internal friction suggests that the kinetic energy lu* /2 cannot



be dissipated as heat and so one expects that the total kinetic energy is conserved. Indeed,

if we multiply the first equation by u we see that

Juf? Juf®
0=0Ou+ (u-V)u+Vp)-u zatT—l—(wV)T—l—u-Vp

zatg—i—div [u (g —i—p)} . (1.2)

Taking the integral over the whole domain and using the divergence theorem tells us that

the total kinetic energy is conserved

d [ |u]?
Ly 13
dt /T > (13)

However, this conserved quantity alone is unable to show the global existence of a solution
from a smooth initial data. Indeed, the problem of global existence for the 3D incompressible
Euler equations is a major unsolved problem.

The equation (1.2) is a stronger statement than the conservation of total kinetic energy
and it is called the local energy identity. It implies that the conservation of kinetic energy
holds in any local region. In other words, the the rate of change of kinetic energy in an
arbitrary local region is balanced with energy flux and work done by pressure through the

boundary of the region.

1.1 Anomalous dissipation in the vanishing viscosity
limit

Upon adding a dissipative term to the Euler equations, one gets better compactness for
approximate solutions. Such a dissipative term could be a Laplacian, a fractional Laplacian,

etc. In case of the Laplacian, one obtains the incompressible Navier-Stokes equations. For a



given constant v > 0, these are given by

o’ + (v’ - V)u” + Vp” = vAu”
(1.4)

divu¥ =0

The constant v is called the wviscosity of the fluid and is a measure of the internal friction
in the fluid. Note that one formally gets the Euler equations (1.1) in the vanishing viscosity
limit v — 0T,

In the case of the 3D incompressible Navier-Stokes equations (1.4), one is able to show
the global existence of so-called suitable weak solutions. These are weak solutions of the N-S

eqns. that in addition satisfy an analogous local-energy inequality:

8t|uy|2 + div [u” <w —i—p")} < I/A|uu|2 —v|Vu¥|?. (1.5)
2 2 2
In fact, such suitable weak solutions exist for a wide class of dissipative terms like the
fractional Laplacians A® for a > %. Also, for o > %, one has the existence of a unique global
smooth solution from smooth initial data. Proving the same statement for the Navier-Stokes
eqns. is another major unsolved problem and is one of the Millennium Prize problems.

We now introduce the important concept of the Duchon-Robert measure. 1t will quantify
the change in kinetic energy in a fluid due to the possible presence of singularities in the
fluid velocity field. For a divergence-free vector field u, the Duchon-Robert measure D(u) is
defined as follows: for a smooth, compactly-supported function ¢ : R® — R such that ¢ is
even, non-negative, and has unit mean, let ¢.(z) := e 3¢(x/¢) for € > 0; now we define

D(w) =D —1lim [ Vo.(0) (u(- + ) —u(-)) [ul- + €) — u(-)]2 e (1.6)

e—0 R3

where D — lim denotes the limit in the sense of distributions. We note that D(u) = 0 for

a smooth vector field w. Duchon and Robert introduced this concept in [20] and in that



paper they proved that for the weak solutions of Navier-Stokes constructed by Leray in his

influential paper [32], one has that D(u”) > 0 and moreover one has the equality

V|2 V|2 V|2
3t|U2| + div [u” <|u2| —l—py)] = VA|u2| —v|Vu’)? — D(u") .

In particular, D(u”) is independent of the choice of ¢. The above equality implies that
dissipation of energy of turbulent Navier-Stokes flows u” occurs either from viscosity or from
potential singularities of u” and these are measured by v|Vu”|* and D(u"), respectively.

It is a natural question to ask whether suitable weak solutions to N-S converge to a
solution of Euler as the viscosity parameter v — 0%. If we assumed that the solutions u”
to the corresponding v-N-S equations converged to a vector field u in Lix, then the local

energy inequality would imply that

2 2
&g% + div {u (% +p)1 =—D(u) <0,

where D(u) is the Duchon-Robert measure for the solution u given by (1.6). This measure
exists (and is unique for any choice of regularization by convolution) for any Lix solution
of the incompressible Euler equations as proved by Duchon and Robert (c.f. [20]). Thus
the content of the above formula is that this measure is non-negative: i.e. energy cannot be
created locally through the evolution of the solution. Based on the above reasoning based
on vanishing viscocity limits, Duchon and Robert further postulate that physical solutions
of the incompressible Euler eqns. must, in addition, satisfy D(u) > 0 (i.e. the local energy
inequality).

In this context, anomalous dissipation is the statement that D(u) > 0 and D(u) > 0
somewhere. Upon taking spatial averages (-) in the above vanishing viscosity limit, one has
that

g:= lim (v|Vu’]* + D(u")) = (D(u)) >0 (1.7)

v—0Tt



In other words, anomalous dissipation states that the mean total energy dissipation rate
remains strictly positive in the inviscid limit. Thus solutions of incompressible Euler (1.1)
exhibiting anomalous dissipation will strictly dissipate their total kinetic energy. This phe-
nomenon of anomalous dissipation has been experimentally verified and confirmed by various
numerical simulations and often goes by the term the zeroth law of turbulence. As already
discussed smooth solutions to the incompressible Euler eqns. must conserve total kinetic
energy and so, they cannot model real turbulent fluids. On the other hand, considerations
based on vanishing viscosity suggests that turbulence is necessarily modelled by the incom-
pressible Euler eqns. (c.f. [36]) So, we conclude that real turbulent fluids can be modelled
by weak but not strong solutions to the incompressible Euler eqns. Here kinetic energy can
transfer from large to small scales and eventually dissipate into thermal energy, even in the
absence of viscosity. The mathematical validation of this law remains one of the major open
problems in fluid dynamics. (For the mathematical formulation of the zeroth law, see for
example [27].) A natural question now is to explore at what regularity solutions can start

to dissipate energy. This will be the content of the next section.

1.2 The strong Onsager conjecture

Lars Onsager in his influential study of turbulence ([36]) explored weak solutions of Euler
and Navier-Stokes noted that:

“1It is of some interest to note that in principle, turbulent dissipation as described could
take place just as readily without the final assistance by viscosity. In the absence of viscosity,
the standard proof of the conservation of energy does not apply, because the velocity field does
not remain differentiable! In fact it is possible to show that the velocity field in such “ideal”

turbulence cannot obey any LIPSCHITZ condition of the form

lo(r' + 1) — v(r')| < (const. )r™



for any order n greater than 1/3; otherwise the energy is conserved. Of course, under the
circumstances, the ordinary formulation of the laws of motion in terms of differential equa-
tions becomes inadequate and must be replaced by a more general description; for example,
the formulation in terms of FOURIER series will do. ”

It is amusing to note that what Onsager means by spaces satisfying a Lipschitz con-
dition is what we now call Holder spaces. Thus, in explaining the anomalous dissipation
phenomenon, Onsager proposed a threshold Holder regularity for the conservation of total
kinetic energy in Euler flows as 1/3; when a weak solution! is in the space L°C? with
a > 1/3, the total kinetic energy is always conserved as in (1.3), while for o < 1/3, the
conservation may fail. This is now referred to as the Onsager’s theorem after the rigidity
statement is rigorously proved by Constantin-E-Titi [11] (extended further in [10]), and the
flexibility part is resolved by Isett [26] (see also [6]) building upon the serious of developments
(14, 15, 25, 1, 2, 4, 3, 5, 12, 28].

Theorem 1.2.1 (The Onsager Theorem). Let (v,p) be a weak solution of the incom-
pressible Euler eqns. on the periodic 3-dimensional torus T3 with

o(z,t) —v(y ) < Clo -yl Va,y.t

(where C' is a constant independent of x,y,t).
e (Rigidity) If 0 > 3 , then E(t) = [1, |v|* dz is necessarily constant;
e (Flexibility) For 6 < 5 there are solutions for which E(t) is strictly decreasing.

However, the solutions constructed in the flexible side of the Onsager theorem do not
satisfy the local energy inequality (1.5) and consequently, these solutions have no chance
of arising as vanishing viscosity limits of suitable weak solutions of the Navier-Stokes eqns.

Recall that the local energy inequality prevents the local creation of kinetic energy but

Ly is a weak solution to the Euler equations iff u € Lfym satisfies (1.1) in the distributional sense.



allows its dissipation and, as we have seen, following [20], such dissipation can arise from a
possible singularity of the solution u and is captured by Duchon-Robert measure D(u). In
the context of a hyperbolic system of conservation laws, the local energy inequality serves
as the entropy condition, which plays a crucial role in identifying physically acceptable
solutions, particularly in scalar conservation laws. For instance, the Burger’s equation, which
are regarded as a 1D model of the Euler equations, have the uniqueness of bounded weak
solution under the entropy condition analogous to (1.5). Motivated by these considerations,
in an attempt to obtain physically-relevant solutions to the incompressible Euler eqns. (1.1),

Isett in [27] proposed the following strong Onsager conjecture:

Conjecture 1 (Strong Onsager Conjecture). There exists an open interval I, and a weak
solution (v,p) to the incompressible Euler equations on I x T? that is of class v € L;’OC;/?)

and satisfies the local energy inequality with the left hand side D(u) not identically zero.

Isett in [27] also showed the existence of such solutions that have a 1/15-Hélder regularity.
This regularity has been improved to 1/7 by De Lellis and Kwon in [17] where they prove the
following theorem which is the state-of-the-art (at the time of writing this) towards Holder

continuous solutions to the above strong Onsager conjecture.

Theorem 1.2.2. For any 0 < 3 < 1/7 there are strictly dissipative weak solutions v to the

incompressible Euler equation in C?([0,T] x T3) for which D(u) < 0.

1.2.1 Relation to weak-strong uniqueness

We remark that the techniques used to obtain above existence results as well as those used in
this thesis are unable to specify the initial data in a Cauchy problem. Indeed, if one were to
specify smooth initial data and were able to construct dissipative solutions to (1.1) satisfying
(1.5), then one would have proved a blow-up result for the incompressible Euler equations.
This is because local well-posedness will imply the existence of a smooth solution for a short

time and our constructed solution will have to agree with this smooth solution during its



time of existence by the weak-strong uniqueness principle. The fact that the solution is
dissipative implies that the smoothness must break down in finite time by the rigidity part
of the Onsager theorem.

Also, it is important to note that the flows exhibiting anomalous dissipation that have
been observed in experiments and numerical simulations need not have developed from
smooth initial data. Quoting Eyink in [22]: The most common experiments study turbulent
flows produced downstream of wire-mesh grids or are generated by flows past an obstacle.
In either case, the generation of turbulence is associated to vorticity fed into these flows by
viscous boundary layers that detach from the walls. Since the boundary layers get thinner
as v — 0, the initial data of these experiments cannot be considered to be smooth uniformly

in v. See [22] for more details.

1.3 Fully-developed turbulence

Kolmogorov initiated the modern statistical study of turbulence in his famous 1941 papers,
c.f. [30, 31]. The theory initiated by him goes by the name K41 theory and is closely related
to the conjectures of Onsager outlined above. We describe the theory and a local formulation
of it due to Eyink [22] below.

K41 is a statistical theory by which we mean that we have a good notion of a “random”
solution to the fluid equations that can be chosen from some appropriate probability space.
We will denote here by (-)gat to denote the statistical average of the random solutions. Note
that this notion has not yet been given a fully rigorous mathematical foundation and must
therefore be regarded as purely “physical” motivation.

Given a random velocity field that describes the motion of an incompressible fluid on T3,

we define for z,r € T? the two-point velocity increment as

du(x,r) ==u(x +r) —u(z).



We also define the longitudinal and transverse velocity increments respectively as

Slu(z,r) = du(z,r) - ﬁ : otu(z,r) = du(z,r) — 5”u(:17,7“)|r—| :
r r
The famous 4/5 law of Kolmogorov’s K41 theory states that
Iz )Y = 3z
(0%, 0)))star = —Elt] - (1.8)

This law was derived by Kolmogorov from his assumptions of homogeneity, isotropy, and
self-similarity. It has also been verified by numerous experiments and numerical simulations

and is regarded as an exact law of turbulence.

1.3.1 A local K41 theory

The Duchon-Robert measure is remarkable as it is connected with an exact law in turbulence:

the so-called “Karméan-Howarth-Monin relation”
Vo - (Su(m, 0)|0u(z, £))star = —4Z.

More generally, it was noticed by Eyink in [22] that the Duchon-Robert measure is a key
player in deriving local versions of the various laws in K41 theory.
Already, Duchon and Robert in [20] prove a rigorous form of the the so-called “4/3-law”.

We reproduce their argument here: first set

S)(x,r) = [ |Sulz, rt)|*(Su(z,rl)) - L de

5’2

where S2 is the unit sphere in R? and 7is the unit vector. Since the Duchon-Robert measure
does not depend on the choice of ¢ for the solutions of (1.1) that we consider, we choose

o(0) = ¢(|¢]) to be a radially-symmetric function. Now a computation gives us that upon



setting

/ o (x 5r) ir

we have that D — lim._,o D°(u) = D(u). Moreover, assuming that as ¢ — 0, S(u)(z,¢)/e

tends to a limit s(u)(z), then

oo , 3 B 3
u)/o o' (r)yredr = —Zs(u)

and so we get s(u) = —3D(u) which is a local and non-random form of Kolmogorov’s 4/3
law.

Similarly, the main theorem in [22] is

Theorem 1.3.1 (Theorem 1 of [22]). Let u € L3([0,T] x T?) be a weak solution of (1.1).

Now let
Di) =7 [ Vou(0)-su(t)shu() + o (0dlu Ol u(0) dt
Diu) = [ Vou(0)-su(bls u()F = Lo 0Ol u(0) it

Then, both D3 (u) and D3(u) converge as distributions to D(u) as e — 0.

As corollaries of this theorem, under similar assumptions needed in the 4/3 law, Eyink

is able to derive rigorously local versions of the 4/5 and 4/15 laws in K41 theory:

D—tim: [ (Glu@ 0 dt = —2D@), D—tim= [ slue, 0|5 u(z, O dl = —> D(w)
£—0 g2 5 {—0 52 15

The sign of D(u) then implies the remarkable fact of K41 theory that the cubic powers of

the longitudinal increments have a sign on average.

10



1.3.2 Anomalous dissipation as a conservation law anomaly

A fruitful way of thinking about anomalous dissipation is to think of the energy in a fluid
being transferred from coarse scales to finer scales through non-linear interactions of the fluid.
However, our experiments cannot detect arbitrarily small scales and so we are constrained to
make measurements above a certain scale £ > 0. So we can only measure a “coarse-grained”
uy flow rather than the actual flow with infinite precision. One way of mathematically-
modelling this coarse grained flow is by mollifying v with a smooth, compactly-supported,
unit mean bump function at spatial scale ¢. Another (almost equivalent way) is to model
the coarse grained flow as P<,-1u where P—,-1 is a Littlewood-Paley projector to frequencies
less than ¢!, In fact this is the approach Onsager took in [36] and which we will now briefly
explain following Eyink in [23].

This coarse grained flow P<,-1u does not solve the incompressible Euler eqns. (1.1) as
the projector P<,~1 does not commute with the quadratic non-linearity in (1.1). However,

applying P<,-1 to (1.1) gives us

P <p-1u + div(Pep1u @ Pop-1u) + VP p1p = div (Pep1u @ Pop—1u — Py (u @ 1))
divP<y1u =0
(1.9)
The 2-tensor in the divergence on the right hand side of the first equation is called the
Reynolds stress and we denote it by —R,. Now taking the dot product of the first eqn. with
Poy-1u, we get the local energy identity for the coarse-grained system

|P§£—1U\2
2

’P§£—1U|2

O 5

+ div [Pgw ( +Pop-1p+ Rg):| = VPpu: Ry (1.10)

The quantity on the right hand side of the above eqn. is the so-called “deformation work”
of the large-scale strain against the small-scale Reynolds stress. It can also be interpreted

as the “energy flux” from the resolved scales > ¢ to the unresolved scales < /.

11



The work of Constantin-E-Titi [11] shows that for [du(z,7)| < r?, we have

Ry=0(*),  VPu: Ry =01

from which we can easily see that 5 > 1/3 implies conservation of energy.

The Reynolds stress tensor Ry is not a simple functional of the resolved/coarse-grained
velocity P<;-1u. Indeed, path integral approaches combined with renormalization group
techniques compute R, to be a highly complicated functional of P<,~1u with transcendental
non-linearity, long-term memory, and intrinsic stocasticity. See Eyink [21] for more details.
This lack of a simple expression for R, in terms of the resolved velocity is what is referred
to as the “closure problem” in turbulence. One can guess that this might lead to potential
non-uniqueness and indeed, the convex integration techniques used in this thesis exploit this.

From the renormalization group point of view, the weak solutions of (1.1) proposed by

Onsager correspond to taking the UV limit £ — 0, so that

R, — 0, D —1lim VPoy-1u: Ry — —D(u)

Thus we see that the local energy identity (1.2) has to be modified by the “anomaly term”
D(u) due to the non-linear energy flux VIP<,—1 which persists even as the length scale ¢ —
0. Quoting Eyink [23]: As first noted by Polyakov [37, 38], there is a striking analogy to
conservation-law anomalies in quantum field theory, where terms similar to D(u) appear that

vitiate conservation laws which hold classically.

1.3.3 Intermittency

The moments of the velocity increments du, dlu, 6-u encode encode valuable information

about the fine structure of turbulent flow and are referred to as structure functions. Let us

define
Sma(Ir]) = (((8Mu(z, 7)™ |0 w(z, 7)) )stat (1.11)
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where the inner angle brackets denote an average in space, time, and the angle r/|r| € S2.
The reason for this averaging is though K41 theory assumes statistical homogeneity in space
and time and isotropy of our random field, numerical simulations and experiments will always
have residual inhomogeneity and anisotropy due to the setup which we’d like to remove.
See [29] for more details.

In the preceding discussion, we have already come across various structure functions. For
instance, the 4/5 law is simply the statement S3¢(|¢|) = —4/5¢|¢|. However, notice that we
have only discussed these functions in cases when p := m + n = 3. Indeed, the approach of
Duchon and Robert [20] and Eyink [22] are unable to say anything regarding the case p # 3.

For any m,n let us define the structure function exponents as

log Syn(h
o = iy 2
Note that the self-similar scaling in K41 theory predicts that (i, )y = (" +7)/3.

The case p = 3 correspond to exact laws of turbulence and is supported by all the
experimental evidence. However, in the case p # 3: experiments and numerical simulations
have confirmed that the real world fluid does not align with Kolmogorov’s prediction (, o) ~
p/3, rather it shows the following deviation; when p < 3, ¢w.0/p > 1/3 while when p > 3,
Swo /p < 1/3. Such deviation is attributed to the intermittency of turbulent flows. To put
down a definition for intermittency, we quote Buckmaster and Vicol in [8]:

“In a broad sense, intermittency is characterized as a deviation from the Kolmogorov
1941 laws. Already in 1942 Landau remarked that the rate of energy dissipation in a fully
developed turbulent flow is observed to be spatially and temporally inhomogeneous, and thus
Kolmogorov’s homogeneity and isotropy assumptions need not be valid ... The main feature
seems to be the presence of sporadic dramatic events, during which there are large excursions

away from the average.

The results of numerical simulations performed by Iyer, Sreenivasan and Yeong [29]
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suggest that as n grows, the transverse structure function exponents (g ,) appear to saturate
towards a value ¢ ~ 2. This indicates that the flows have very large jumps in the transverse
gradient and that they are merely bounded with no Holder regularity!

Now similar to Sy, ,, the pth order absolute structure function S,(¢) satisfies a scaling

relation of the form
Sp(€) := {|6u(z, O))spar ~ €],

where the exponent ¢, depending on p is given as a positive number. It’s worth noting
that the implicit constant in this relation is independent of viscosity. For p = m + n, this
indicates the uniform boundedness of turbulent flows in the Besov space Bf,ifg, considering

the equivalence

101l g _ersy ~ 101l Logrsy + sup o (- + z’)z;vllwm _
The experimental and numerical observations as briefly outlined above suggest that Bé/o?; NL>
is a more physically reasonable space for turbulent flows than Hélder space C', where
the Onsager theorem was proven. In this direction, the intermittent Onsager theorem was
recently obtained in [35] where a constructed non-conservative solution to (1.1) in the class
CHHY*= N L*") C C’?B;’/O?’o_ and so accommodates the intermittent nature of observed

turbulence.

1.4 An L3-based strong Onsager conjecture
With the significance of the local energy inequality in mind and adapting to the intermittent
nature of turbulence, we now introduce an L3-based version of the strong Onsager conjecture.
Conjecture 2 (L*-based strong Onsager conjecture). Let B € (0,1) and T € (0, 00).

e (Rigidity) For any B > 1/5, if a weak solution to the Euler equations is in C°([0, T); B?EOO(']IB)),
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then it satisfies the local energy identity D(u) = 0 in distribution sense.

o (Flexibility) For any 3 < 1/3, there exists a weak solution to the FEuler equations
in C°([0,TY; Bf’oo(’]l‘?’)) which satisfies the local energy inequality (1.5) in distribution

sense but not identity D(u) = 0.

The rigidity part has been established by Duchon-Robert [20]. In this thesis, we will give
a proof of the flexible side when f is in the remaining region [}/7,1/3), leading to the full
resolution of the L3-based strong Onsager conjecture. We note that the critical case p = 1/3

still remains open.
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Chapter 2

The Main theorem

In our main theorem, we solve the flexible side of our L3-based version of the strong Onsager

conjecture.

Theorem 2.0.1 (Main theorem). For any fized 3 € (0,1/3) and T > 0, we can find a
27808

weak solution u in C'E(Bgil N L3=387) ([0, T) x T3) to the Euler equations which dissipates the

total kinetic energy and satisfies the local energy inequality. In particular, the solution is in

CPB o

The proof of the main theorem will follow from the inductive proposition 5.6.1 and will
be given in section 5.6. We now outline the organization of the chapters of this thesis:

Chapter 3 explains the main new ideas and difficulties in the proof of the inductive
Proposition 5.6.1.

Chapter 4 specifies parameter choices and provides useful inequalities resulting from these
choices.

Chapter 5 outlines the proof of Theorem 2.0.1 through an inductive argument based
on convex integration. We list the inductive hypotheses, introduce an inductive proposi-
tion 5.6.1, and present a proof of the theorem assuming the proposition.

Chapter 6 is a short technical chapter that provides definitions and estimates on various

mollified objects in the scheme. This is to overcome the “loss of derivatives” phenomenon
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that is common in convex integration schemes.

Chapter 7 introduces the main “building blocks” for our wavelet-based scheme: the
intermittent Mikado bundles. We discuss dodging between straight pipes first and prove
the disjoint support property. We then introduce a general wavelet decomposition for our
intermittent objects: the synthetic Littlewood-Paley decompositions.

Chapter 8 is a technical chapter that constructs various partitions of unity.

Chapter 9 constructs the velocity perturbation increment that will be used to correct our
errors.

Chapter 10 considers the stress error generated by adding the new velocity increment to
the relaxed Euler-Reynolds system at gth step. We define the stress errors and associated
pressure increments, providing estimates for both.

Chapter 11 considers the current error generated by adding the new velocity increment to
the relaxed local energy inequality at qth step. We define the current errors and associated
pressure increments, providing estimates for both.

Chapter 12 constructs a partition of unity so that the different regions provide a sharp
Lipschitz control of our background intermittent valocity field.

Chapter 13 gathers all pressure increments constructed in previous chapters and defines
a new pressure increment and a new intermittent pressure, along with their estimates and
verification of relevant inductive assumptions. These new pressures generates new current
errors. We estimate them and finalize the definition of stress/current errors at (¢+ 1)th step.

Appendix A contains various tools that are needed to run our convex integration scheme.
These include a LP decoupling lemma, an inverse divergence operator that (essentially)
preserves the support of its input, and lemma that constructs a high-frequency “pressure

increment” that will be used to pointwise dominate the various errors.

17



Chapter 3

Idea of Proof

Our approach to constructing solutions to (1.1) that satisfy (1.5) will be a convex integration
or Nash iterative scheme. The idea is to solve the equation approximately by solving a
“relaxed” equation with an error term. We run an iterative procedure where at each step
of the iteration we cancel the error by adding in a velocity perturbation to our original
velocity. The error is cancelled by the non-linear interactions with the perturbation with
itself: where the interactions are from the quadratic non-linearity in (1.1) and from the cubic
non-linearity in (1.5). We refer to the excellent surveys [16] and [8] for more information
surrounding convex integration schemes for equations in fluid dynamics.

The first step then is to write down the relaxed equations that we will use in our scheme.
In order to motivate these equations, we should think of these equations as modelling a
coarse-grained solution at some scale ¢ as was discussed in subsection 1.3.2. Over there, we

already derived the relaxed equations for (1.1). Indeed, they are exactly the equations (1.9):

du+div@®u) +Vp=diva®@u—u@u) = divR

divi =0

where we have used the notation (-) = P<y-1(+).

Now to write the relaxed equations to (1.5), rather than following Onsager and writing
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(1.10), it turns out to be more helpful to coarse-grain (1.5) directly, i.e., we apply the coarse-
graining operator (say, P<y-1) to (1.5) directly to derive an equation that is satisfied by @

and p. So we have

—12 _2 1
= (0, +u-V) % - %] —div(Ru) — div(p — p)u — div (§|w\2w>
where we have used R=17uQ®u —u ® u and set w = u —u. We set k := @ — @ = %trR.
We have also used that
1— 1 1——
§|u|2u — §\E|2ﬂ = §\w\2w — Ru — Kku

So, we get the relaxed equations

8tg+div [ﬂ (@ + p)] = (0 + - V)k + div(Reu) + dive,
where ¢, is the unresolved energy flux that scales like the cubic power of w. Using these
relaxed equations, one can now derive the new error terms obtained by adding in a specially
chosen perturbation w such that the “low-frequency” part of w ® w cancels R, and the “low-
frequency” part of Jwlw|? cancels ¢,. A detailed derivation of these new error terms for the
relaxed Euler-Reynolds system and the relaxed local energy inequality will be found at the

beginning of Chapters 10 and 11 respectively.

3.1 Heuristic computations

We now provide heuristic estimates that indicate the choices of the sizes of the various
parameters that will lead to the solutions to the relaxed equations converging an actual

solution of (1.1) and (1.5) having our desired regularity.
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3.1.1 Difficulties in a homogeneous scheme

In order to motivate an L? iteration, we must identify the main difficulties in a hypothetical
C'/~ iteration. We recall that in [27], Isett constructed C'/'*~ weak solutions of 3D Euler

as a limit of subsolutions u, to the following system:

(

Oyug + div (ug ® ug) + Vp, = divR,

O, (%|uq|2) + div ((%|uq|2 + pq) uq) < (O + ug - V)kq + dive, + div (Ryuy) (3.1)

divu, = 0.
\

Here R, is a negative definite symmetric tensor known as the Reynolds stress error, k, =
Lpatr Ry, and ¢, is a vector field called the current error; all three terms converge to zero
in the sense of distributions, thus producing in the limit a weak solution u to 3D Euler
which satisfies the local energy inequality. The functions u,, R,, ¢, are assumed to oscillate
at spatial frequencies no larger than A, ~ a®), where a is sufficiently large and b > 1 is
as small as possible. Abbreviating the mixed L{°L? norms with simply || - ||,, the natural

inductive estimates for a C? scheme are
il ST V290l <AL ORI SAEN L el <A

Note that interpolating the first two bounds shows that {u4}72, is uniformly bounded in C*
norms. Then w11 = Ugp1 — Uy = Wyy1,R + Wet1,, 18 constructed to oscillate at frequency
Ag+1 = )\Z. Eliding for the moment the fact that R, and ¢, are not scalar-valued functions,

we define
Wortp A (SI(Agr1 (22F23)),0,0)T(=20) ", wepr,r ~ (SIn(Agp1 (T2F23)), 0,007 ((—20)"* + (= Ry) ")

using products of high-frequency shear flows and low-frequency functions. Notice that

both terms in the low-frequency portion of wyy1,r have the same size, and that the low-
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frequency components of the quadratic and cubic nonlinear terms P<)_ (wg11,r ® Wq41,r) and
Py, (|wgg1,p*wes1,4), respectively, cancel Ry + P<y, (wgs1,0 @ Wyt1,,) and 2, respectively.

Then wg4 satisfies
1 1 —B+N
V2 wgn | S IRMZ AN+ leall 5 AT S A

Interpolating the bounds for N = 0,1, we find that w,,; has unit C* norm, as did u,. The
new Reynolds stress will then include the error term R, 1 Nash = div! (Wgt1 - Vug) (named
after the analogous error term in Nash’s original isometric embedding iteration [34]), which

can be estimated by

-1 —28
| (-j.lV (Wg1 - Vg )} < Agi2
gains Ag11

PSRV
—1-By1- —28
= AN <D
A\P(—1=B)+1=B+28* - 4
= A <
— BR¥—-b—-1)<b-1

— < L
—20+1°

Thus as b — 1, f — 1/3, as desired. However, the analogous error term in the local energy

inequality, called the Nash current error, only satisfies the estimate

- ) —38
~d1V , <P=/\q+1 (wQ+1 ® wQ+1) : qu )‘ < )\q+2
gains Ag+1 28 N
q+1 7

—1-281— —38
= A AT <A
b(—1—28)+1—B+36b2

= Al ) <1
“— BBV —2b—1)<b—1

1
<« 2
— b5 (3:2)
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This evident !/4 regularity ceiling is also imposed by several similar current error terms. All
the evidence from existing Nash iteration schemes indicates that the above heuristics cannot
be improved. Furthermore, the best C* result to date suffers from further complications
which limit the regularity to C'/"~ [17], suggesting that even in the most optimistic sce-
nario, Nash iterations are incapable of reaching the C'*~ threshold for the strong Onsager

conjecture.

3.1.2 Heuristics for an intermittent scheme

The first difference between an intermittent Nash iteration and a C¢ iteration is that the
high-frequency shear flow sin(A,41 (22 +3))€; is replaced by a pair of intermittent shear flows

0¢+1,r(T2, x3)€1 and gg+1.,(T2, x3)€1 (described in detail in the next section) which satisfy

2

2_ 2 2
HViVQﬁLRHp Srg 1)\5;1 , ||Vivgq+1,¢||p Srg 3)\5;1, for some 0 < r, < 1. (3.3)

Then we approximately define wy1 = Wet1,r + Wqt1, DY

Wyt1,p ~ Qq+1,<p(_290q)1/3 ) Wq+1,R ~ O¢+1,R (r;/3<_290q)1/3 + (_Rq)l/Q) :

We shall explain below that the flexibility afforded by the extra parameter r, allows our

solutions to exceed the !/4 threshold described above. To see this, we must first recall that

the iteration in [35] required a “Goldilocks amount” of intermittency r, = (AgA,.;)"? in order

s—.

to produce a solution in By'_;

any larger or smaller choice of r, causes the size of Vw44
to grow too quickly as ¢ — oco. Rather remarkably, we shall see below that the Goldilocks
amount of intermittency is precisely the minimum amount required in order to make the
/3=
o

estimate for the current Nash error consistent with B; regularity.

We first interpolate the L' and L* inductive estimates for R, and L? and L™ inductive

22



estimates for Vu, from [35] to posit that

g S 1. [9YVully < 529N, < MY,

where 5 < 1/3 and uq — w in the BB_ topology; we write f— to emphasize that 7"_1{3 incurs

a small power loss >\ 61 which disappears as b — 1. We claim that the matching inductive
bound for ¢, is

IVl < Arg A
Combining this bound with the sharp LP decoupling estimate proved in the appendix A and
the extra factor of r:/ * in the definition of w, 1z above yields the balanced estimates

||Vqu+1 <PH3 H‘Pqu/S HVNQq—S-I#PH3 /\qfl—FN q_1/37

IV wgernlly S (IRall + 7 lsal) [1V™ 0qsr.ally = A7

1/3

Now recalling the structure of wyi1,, = 04+1,,(—2¢,) " and using decoupling, Hélder’s in-

equality, and our estimates on 9411, ¢4, and Vu,, we may estimate the Nash current error

term corresponding to wgy1,, by

HdiV71P=>\q+1(wq+l,<ﬁ®wq+1,so> qu”l Hle 1IP)_)\q+1 Qq+1,<p H H’SDq Q/SVUqu

2
S A lealy 11V gl

1 2/3 2[3 —2/3 B+1,.—1/3
N )‘q+1 q/ )‘q+1 q /)‘ Tq-1 -

In order for this estimate to meet the desired inductive bound of )\q +27“ we see that we

q+1’

need

—1—25)\1 B, —1/3 < A3

~1-26\1-8  \~30,.~%3
+1 Ag TS A

’[" P—
q+2 q+1 —— q+1 q+2"q+1

1/3 71/3
Tg-1Tq+1 >l
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Note crucially that the inequality on the right has gained r;jf compared with (3.2). Then
b(b—1)
using that 7’ J:I = )\¢ ? , the inequality on the right is equivalent to

6(362—2b—b)§(b—1)<1+g) — B <

so that § — 1/3 as b — 1. Similar estimates hold for the Nash current error from w41 g, as
well as for a number of current error terms which faced C''/* regularity limitations in the C®
iteration.

We conclude by noting that while the basic scaling considerations above indicate that
an L? iteration inspired by [35] has some hope, the techniques from [35] would suffer from
a number of significant shortcomings if one were to attempt to use them in a proof of the
strong L? Onsager conjecture. We explain the most immediate of these shortcomings in the

next two sections.

3.2 The continuous scheme

In order to understand the need for partial wavelet sums in our iteration, we must examine the
consequences of replacing sinusoidal shear flows with intermittent shear flows. Intermittency
in Nash iterations dates back to the work of Buckmaster and Vicol [9] for the 3D Navier-
Stokes equations. The intermittent Mikado flows used in [35] were later introduced by
Modena and Székelyhidi in [33] (see also the homogeneous Mikado flows due to Daneri and
Székelyhidi [12]). One should visualize the intermittent Mikado flows ;41,61 Or 04+1.r€1 a3
shear flows supported in thin tubes of diameter )\;jl around lines in the € direction, which
have been periodized to scale A;jqu. The parameter r, = )\;/ 2)\;/12 thus quantifies both the
measure of the support and the LP norms, and the effective frequencies are contained in
the range [Ag117¢, Agr1] = [(AgAg1)"7?, Agr1]- Thus we see that intermittency smears out the
frequency support of wq;.

This smearing of frequencies greatly affects nonlinear errors such as the current oscillation
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error

div™! o div (qu + (P<y, + P>>\q)(1/2|wq+1,§0|2wq+1,90)) ~ _div_lpzA;/ﬁ;/ﬁl (1/2|Qq+1,<p|29q+1,90) €1 - Vg

In the above approximate equality we have used the form of wg;1,, = (—290q)1/3gq+1,¢é'1, the
identity €1 - Vog41,, = 0, and the heuristic that the leading order behavior of the operator
div™! on a product of high and low frequency terms can be understood by simply applying it
to the high frequency term. The maximum frequency of the leftovers is A\;1;, and minimum

frequency is A}/ QA;/jl. Then if we attempt to absorb this error term into ¢,11, we see that

- — 73,8 —1
| = div TP yie (Yologiiel?0gi1e) €10 Vg ||, < Ajiar
>AN q+1,pl g+l q ||l = "Ng+2"g+1
~ ~ A
“1/2\—1/2 unit L' norm L' size
gains A4 )\q+1 )\;jfrq—1
38b2—38b+ 1 (1-b)+ 1 (1-b) (b—1
— X FU-+H31-D0-D)
1
— < 6

Thus intermittency has the effect of creating errors at frequencies lower than A,y; which are

too large to be absorbed into ¢4 1.

3.2.1 Necessity of a continuous scheme

In [35], the analogue of this issue in the Euler-Reynolds system was rectified by performing a
further frequency decomposition of [(A A1), Ag+1] into pieces and adding further velocity
increments to handle the errors at frequencies lower than A\,y;. Attempting such a strategy

here leads one to define the higher order error g at frequency A;=*A\e,, for o € [1/2,1] by

Pga = —diV_l]P)m;*a,\gH (1/2|Qq+1,90|29q+1,<.0) €1+ V.
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This higher order error then satisfies the estimate

)\a
. o 1N — _38 _ _38 _
lpgall, = Hdlv 1Pz>\é’“>\§+1 (1/2|9q+17s0|29q+1,<p) €1- Vg ) <A lAq—fl)\q-i-frq 1/\11 = /\q+frq 1)\(111
q

and would be corrected by a higher order velocity increment wgy1,,,- In order to keep
the maximum frequency of wyi1,4,, no larger than A, ;, the strategy of [35] was to define
Wytt.ap = (—20g.0) " 044100 Using intermittent Mikado flows 9,41 4., With frequency support
[Ag+17¢.as Ag+1]- The question then becomes “which values of 7, , will work for the local energy
inequality?”

First, we note that we must have Agy1rgq > AJ7*A% . If not, then |wgi1a,

2
We+1,0,¢

[0}

will create a current oscillation error at a frequency below that of ¢, o, which was )\;_O‘/\q ‘1

This however stands in contradiction with the fundamental ansatz that Nash iterations use
high-frequency perturbations to correct low-frequency errors. Next, we note that wgi1 a4

will also create a Reynolds oscillation error at frequency A\;4+17,4, given by

(_290q,a)2/3 /11‘3 Oq+1,a,0 @ Og+1,a, -

The L*? norm of this Reynolds stress error is

xe N\
2 2 —-38 — .
aal legsnmsll = (2 20 ) . (3.4)
q+1

The first constraint (Ag4+17ga > )\é_a)\g‘ﬂ) implies that r,, — 1 as a — 1, and so this
Reynolds stress error lives at frequency Ag1179.0 — Ag+1. We expect the size of the Reynolds

error IR,y at frequency A\, to be )\q_fg. Plugging in a = 1 to (3.4), we see that

A v 1
—26,.-2/s 14 2/3 —2p —28 \q -2 L
Q"rqu 2/3 T%a < )‘q+2 \<:, )‘q—I—l 2/3 < )\q+2 — ﬁ < 3b .

q+1 rq,a<rq q+1

Thus we see that we need both r,, < r, = )\,11/2)\;/12 and r,, — 1 as a — 1, implying that
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there are no satisfactory choices of r,,. We emphasize that the constraint r,, < r, only
arises due to the interplay of cubic and quadratic error terms. In [35], which constructed
solutions that certainly do not satisfy the local energy inequality, one could indeed choose
Tqa such that ro o — 1 as o — 1.

After a bit of thought, one can identify the culprit in the failure of the above analysis;
namely, we insisted that the maximum frequency of w114, Was Ag41. Why not construct
Wqt1,a,p O correct ¢, in a manner completely analogous to how wgy; was constructed
to correct ¢,? Recalling that ¢, , lives at frequency )\;_a)\gﬂrl and is corrected using the
intermittent pipe flow g441,4,,, We should set the maximum frequency of the intermittent
pipe flow 0441, to be )\;jrf‘ 412> and the minimum frequency to be in accord with the
Goldilocks ratio, i.e. ()\;*a)\gﬂ)\;:f 3+2)1/ *. Interestingly, one may view this choice as a
restoration of self-similarity which had been broken by the scheme in [35]. Indeed the choice
of 74 from [35] implies that w1, r Was much less intermittent than wy1 g as o — 1, thus
breaking the intermittent self-similarity of the different components of the velocity field. The
natural conclusion of these observations, which in some sense is validated by our analysis
in this paper, is that the local energy inequality imposes intermittent self-similarity by fixing
the Goldilocks parameter of intermittency throughout the iteration.

The discussion in the previous paragraph is far from a complete prescription for an
intermittent, wavelet-inspired L? scheme. Several ideas outlined in the remainder of the
introduction are needed in order to fully justify our modifications to the original Euler-
Reynolds system and relaxed local energy inequality given in (3.1). Nonetheless, we present
the basic form of our iteration here in order to set ideas. We assume the existence of a
velocity field u, = 4, + (uy; — u,) (where the “hat” notation is used to encode frequency

information described below), a Reynolds stress R,, a current error ¢,, a pressure p,, and
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an intermittent pressure —m, which satisfy

p

Orugy + div (uy ® uy) + Vp, = div (R, — m,1d)

O ($1ugl?) + div ((Augl® + py) ug) < (8, + 1y - V)i/2tr (R, — ﬂqu)/ +dive, + div (R, — 7, Id)4,)

divuy, =0.

\

(3.5)
We assume the existence of a large parameter 7 (fixed throughout the iteration) such that u,
oscillates at spatial frequencies no larger than A, and u, —u, oscillates at spatial frequencies
in between A\,+1 and A\,17—1. In general, the subscript ¢’ with a “hat” (as in u,) denotes a
velocity field with maximum frequency A, while the subscript ¢’ and no “hat” (as in uy)
denotes a velocity field with maximum frequency A\, 4z—1. Choosing 5 close to 1/3, we then
inductively assume that

luglly ST, [[VEVu|, SAEY = ldga-illy ST, |V Vgraa ||, S ALY

qg+n—1

Next, the Reynolds stress R, may decomposed as R, = 7=q

Rg/, the intermittent pressure

o0 /
7, may be decomposed as T, = > 4—q e » and the current error ¢, may be decomposed as

Yq = ngrﬁ_l (pgl. The parameter ¢’ encodes the frequency A\, at which Rg', @Z’, and 7Tg/

oscillate. We therefore assume that

N !
va R

+ HV;VW;/
3/2

—28 \N N, ¢
o SAEAY, |

=38 —1\N
1 < )‘q’+ﬁrq’ )‘q’ )

where ry = )\;{1 /2)\;1/;. One should conceive of ¢ as identical to the previous gy, gog/ for ¢’ >
q as analogous to the previous ¢, ,, and similarly for Rg'. We shall require that |7rg/| > Rg'
so that the tensor on the right-hand side of (3.5) is negative definite (see subsubsection 3.3).

We then construct wy41 = Wyyn = Ug+1 — U, using intermittent Mikado flows o445 g

and 044, which have minimum frequency Agyn5, and maximum frequency Agip. Since wqyq
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is used to correct errors at frequency \,, these choices adhere to the Goldilocks ratio of
intermittency. Furthermore, wy,1 is used to correct R and ¢f while leaving Rg' and gpg'
intact for ¢’ > ¢. The net result of adding w,4+; will be the creation of new stress and current
errors, which will get sorted into bins between A, and A, and added to Rg/ and gog/ to form
Ry+1 and ¢g441. We emphasize that the terms in the partial sum ug41 = Wy +wg+we—1+. ..
have overlap in frequency when |¢' — ¢”| < /2, so that u,4; should be thought of as a partial

wavelet decomposition of the limiting solution rather than a partial Fourier decomposition.

3.2.2 An obstruction

The inductive set-up described above needs to be complemented with assumptions on spatial
support, as well as a methodology for propagating such information throughout the iteration.
To give an example of the kind of support properties we require, let us define the velocity
increment Wy41 = Wyt1,r + Wet1,e DY

Wo+1,0 = <_2903)1/3Qq+ﬁ,<p ) Wq+1,R — (7’;/3(—2%’3)1/3 + (Rg)l/Q) Oq+7,R (36)

where 0445, and ggiq g satisfy estimates identical to (3.3) after replacing A\;4q with Ajq5

and using the new definition of r, = )\;/jﬁ /2)\;{-12. Then w4 satisfies the balanced estimates

N 1/3 N ~ \—B+N -1/
HV wq+17s0||3§”90q‘|1 ||V Qq+ﬁ7¢H3w)‘q+ﬁ Ty "

19 wgsnrlly S (IR + i el ) 19 eurnnlly = Al oy
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Now consider the Nash error obtained from adding w1, which we may estimate! by

1div (2 en (02 P Vug)|,), S || div 0 0pmg (00 Vig |y,
—_ —— ~~
3/2 o —1 . 2/3 . —B —1/3 13 —p+1,—1/3
L/ size AgtnTqd L3 size )\qfﬁ/rq /3 L3 size A Tq—n
| divogme @D - (Vug— Vi) |,
—_——— —— —
L3/ size /\;&ﬁr;/a L3 size )\;fﬁrgl/g L? size /\;ffj_—llrt;—lég

Since this error term oscillates at frequency A,17, we expect its size to be )\;fgﬁ (the analogue
of 0449 from [35], for example). After a bit of arithmetic, one may check that the first term
satisfies a sharp estimate when  — 1/3 (analogous to (5;f15;/ 2)\(1)\,;&1 < qi2 from a C/~,
which is the size of the Nash error). The second term, however, is far too large, due to the
fact that Vu, — Vi, has much larger L* norm than @uq. The only way to close the estimate

for the Nash error is then if

SUpp Wy41Nsupp (uy —Uy) =0 <= supp wy41N(SUpp Wyy1 U SUPP Wyta - - - U SUPDP Wytn—1)

where we have recalled that our “hat” notation gives that u,—u, = Wy11+Wyra+- - +Wyrn—1.

There is however a clear obstruction to this assertion. Consider the velocity increments
Wy defined analogously to (3.6) for ¢ +1 < ¢’ < ¢ + /2. These velocity increments are
constructed using intermittent Mikado flows o, r and oy, which have pipe spacing /\;iﬁ "

and pipe thickness )\;,1. Since the thickness of these pipes is larger than the spacing of the

-1

e there is no way we can arrange the support of

pipes we plan to use at step ¢, namely A
Wetn to be disjoint from the support of Wgi1, ... Wetnp. We have solved this issue through
the creation of intermittent Mikado bundles. The details of this construction will be found

in sections 7.2 and 9.2.

!Note the inverse divergence gain of A\,47, which is larger than the minimum frequency Agtrfp Of Woy1.

One can test the validity of this estimate by computing the one-dimensional version, where div™! is simply
integration.
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3.3 The intermittent pressure

As common to many convex integration schemes for the Euler equations, in order to get
sharp regularity solutions, one needs to transport the “high-frequenccy” building blocks
(here, the intermittent Mikado bundles) along the flow of the background, coarse-grained
velocity field. However, such a flow will generally mix anything it transports after a certain
time. This timescale is given by the inverse of the local Lipschitz constant of the background
flow and one can only obtain good estimates for the flow for times smaller this timescale.
This necessitates needing to “switch-off” and “switch-on” the flow by time cut-off functions,
so that on the support of a given time cut-off function, one has good control on the flow
map.

But now, when one switches-on a time cut-off function, the intermittent bundle that is
contained in its support adds local energy to the system along trajectories of the background
flow that intersect its support. The only way one is still able to close the scheme is if this
energy added is small enough in a weak sense to be absorbed into the next unresolved current
error.

In our scheme, the way the above phenomenon manifests is by the “dynamic pressure”
|wg41]? that shows up inside a time/material derivative and one needs to gain from inverting
the divergence on this in order to put this into ¢,.1. But note that |wy1|? is positive and so
has a bunch of low frequencies in it that prevents us from gaining by inverting the divergence.
The only way to make this error term manageable is to handcraft a positive function, the
intermittent pressure, to subtract from |w,|* in order to make it high-frequency. In order
to do this, we have to do a wavelet decomposition of the dynamic pressure, and then add
pressure terms to beat the individual parts of it. The key here is that other than the highest
frequency terms in this wavelet decomposition, all other pressure terms depend on objects
that have been constructed in the scheme at previous steps and thus these pressure terms can
be anticipated in advance and added into the scheme at these previous steps where we can

get away with the worse estimates. Note that these anticipated pressure terms end up inside
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a material derivative in the relaxed local energy inequality, which then has to be estimated.
So we need an “abstract machine” which takes every error term, makes it positive, does a
wavelet decomposition, applies a material derivative, and then inverts the divergence on each
individual piece. This intermittent and anticipated pressure is one of the main new ideas
in this thesis. Indeed, in all previous convex integration schemes, the pressure has played a
secondary role. The importance of the appearance of the dynamic pressure in our scheme
might be an indication that the ideas of long-term memory and the backwards cascade from

turbulence theory are now entering the mathematical realm of convex integration.
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Chapter 4

Parameters

4.1 Definitions and inequalities

In this section, we choose the values of the parameters and list important consequences. The
choices in items (i)—(viii) are rather delicate, while all the choices in items (ix)—(xix) follow
the plan of “choosing a giant parameter which dwarfs all the preceding parameters.” It is
imperative that each inequality below depends only on parameters which have already been
chosen, and that none depend on g. We point out that in item (iv), we define two parameters
Ag and ¢, in terms of an undetermined large natural number a. This is merely for ease of
notation and computation. Indeed one can check that none of the inequalities below require
a precise choice of a, nor depend on ¢; rather, any sufficiently large choice of a which may
be used to absorb implicit constants will do. Therefore the precise choice of a is made at

the very end in item (xix).

(i) Choose an L? regularity index 8 € (0,1/3). In light of [17], there is no reason to take
p <1

(ii) Choose n a large positive multiple of 6 such that

Lo a2t
3 342 7342 3 n

B < (4.1)
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(iii)

which is possible since § < 1/s.

Choose b € (1,25/24) such that

b <

g

1 14b+---4071 21+ (b—-1)(14---+b"71)?) 2 14 p2

307 LD+ DA b+ bt )

(4.2a)
(0" 4 b4 1)?
e !

V< 2, b—1)<(®-1)".

(4.2b)

The inequalities in (4.2a) are possible since (4.1) is just (4.2a) evaluated at b = 1,
and both expressions in (4.2a) are continuous in b in a neighborhood of b = 1. The
first inequality in (4.2b) is trivial, and the second is possible since the fraction in the
expression is continuous at b = 1 and equal to 7/2 if b = 1. It is clear that as § — 1/3,

we are forced to choose n — oo and b — 1.

For an undetermined natural number a, define

Ag = 21D osaal g = N2 (4.3)

q

Note that with the above definition of A\;, we have that

a® <\, <2a"  and A< Agpr <2XL. (4.4)

1
3
As a consequence of these definitions, we shall deduce a number of inequalities, each
of which is independent of the choice of a and of ¢ once a is sufficiently large. At the
end we will thus choose a sufficiently large to absorb a number of implicit constants,
including those in (4.4). Therefore, in many of the following computations, we may
make the slightly incorrect assumption that )\, is actually equal to a®") in order to

streamline the arithmetic.

(a) An immediate consequence of these definitions and of the first inequality in (4.2a)
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is that

RN AL
5q+ﬁ (Aq)\q—iﬁ/3> /\3+ﬁ+1)‘q-éﬁ ;8 !
q+n/2
_ _ 2 2 _ _ _ _
— 20672 _ 28" < §b"/ﬁ‘ -3 AV 4 407 — 4D + 8™ — 4

< 6q+4ﬁ/3+2

_ _ 2 _
¢:>m%%b-1ﬂ1+b+~-+y%“)<§@_4x1+b+.“+y%4)

— 4V (b —1) —4(1 + -+ b"PH2(b — 1)?
1 14+b+- 40"t 2 20— 1)(1 4+ 4 b"/271)2

<~ < == - — = — ~ -
T N O e G I T (L+b+-- + 0B

where we have written out the quantity at the beginning in terms of A\, = a®?)

and then compared exponents on both sides. It is easy to generalize the above to
1\2/3 4 4 3 3+n 7
5q+ﬁ (Aq)\q_Jrk) )\q—l—ﬁ—l—l)\t]_—l—ﬁ)\g— < 5q+ﬁ+kz+2 VEk > n/3- (4-5)

q+n/2

(b) A consequence of the second inequality in (4.2a) is that

5‘1-1—7_1 ( >\q+ﬁ/2/)\q+ﬁ >4/3 < 6q+2ﬁ
0,

5q+ﬁ—1 A01+ﬁ/2—1/Aq+ﬁ—1 g+2n—1

_ _ _ _ 4 _ _
= —2Bb" + 286" + (b2 — b7 (b — gy < —260 + 260"

. . o 4

= 280" (" —b— b+ 1) < (b — b2 (b - 1)%
2 14...4p1

Bbﬁ/2 1_{_“,_|_bﬁ71 :

— <

(¢) A consequence of the definition of A, is that for ¢ > ¢ — 2+ 1,

Asnpdane (4.6)
/\q)‘q’+ﬁ

Indeed when ¢’ = ¢ — /24 1, the inequality reduces to )\qﬂ)\gl)\ﬁﬁ/g)\;jﬁ e

which is an immediate consequence of the super-exponential growth; larger ¢ are

<1,

similar.
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(d) We have that 5q)\;/ P < 5q/)\2/3 for all ¢ > q. A stronger inequality is that for all

k> 1, 5q+ﬁ/\;/ P < 5q+k+ﬁ)\z/jk, which is in fact equivalent to 8 < 1/3", which is

implied by the first inequality in (4.2). A final consequence of both inequalities is

AP

/\‘21/3 12 ¢1/s )‘q L2 ¢l/a )‘q qtn/2” gt
5q+ﬁ2_/3 < 6q+2ﬁ — (Sq-i-ﬁ(sq — < 5q+2ﬁ — (5q+ﬁ5q 1/3 < 5q+2ﬁ .
e Agn g7 A e o
n q+n/2—1"'q+n—1
(4.7)
(e) From the second inequality in (4.2a), we have that
2 I Y 4/3 4/3
b< 3072 14+ b — 5q+ﬁ)\4+ﬁ/2 < Ogr2nAgin -
_ 64b
(v) Choose C, = 2.
(vi) Define Ty, r,, 7,4, and A, by!
er
r, — olen (50)] & (M) A0 Peeel (4.8)
Ag Ag+n
= 6 T MEATE )

!The same type of comparability that we have in (4.4) holds for T'; as defined in (4.8).
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where we choose 0 < er < (b —1)? < 1 such that

(5q—ﬁ5q_—1ﬁ—1>l/wréo+0£ <1, (4.10a)

TBNS 8 < 7 < TG P T30 <l (4.10b)

e (i)% < g (1100)
g+a—1 \Tqg-1 5q+2ﬁ71

A2 A A g, S TJH for q+72+3<n<q+n+2, (4.10d)

A/ n )\ n
Fgﬂﬁrgz% <1 for all ¢’ such that ¢ +72+1—n < ¢ <gq,
g\ +n

(4.10e)
2 _
() e (3)
1 604n T8 < Ggpan = 1,805, < 6,1a (4.10g)
(’"Z—:l) PI00+10C, < (4.10h)
DoCH3005 2 A Tt < D105, 4o (4.101)
Cgsnbpun a7y s < 0,00 % (4.10§)
T < min (A Lary A NS 0,000,010 (4.10K)
[ii(/;:f; beilm >20,  2000epb™ < 1. (4.101)

Indeed we have that the first inequality in (4.10b) is immediate, the second is possible
since 7, ' is increasing in ¢, (4.10c) is possible due to item (ivb), (4.10d) and (4.101)
are possible from immediate computation, (4.10e) is possible due to item (ivc), (4.10f),
(4.10g), and (4.10i) are possible due to item (ivd), (4.10h), (4.10j), and (4.10a) are
possible since 7, and d, are decreasing in ¢, and (4.10k) is possible due to (4.8) and the

super-exponential growth, which shows that A, A L A2 A2 A Ao 2 > 1.
9 g+ngnfa Mg+ 42N+
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(vii) Choose C as

C _3 [ (b2 — 1) 2000b™ 45" W

(b - 1)25F(bﬁ/271 + i+ b+ 1) + b2 — 1 + (b — 1)51“(1 T F bn/Q,l)
(4.11)

As a consequence of this definition and (4.101), we have that
10 < Coo . (4.12)
We furthermore have that for all 72 < k < 7,

Cooy2)4 y—4 2 -4 Coo
Fq )‘q)‘q+k)‘q+ﬁ/2)‘q+k)‘q+k—1 < Fq+ﬁ/2

= 2(1 20" + " + 208 — 26"71) < Coo(b— D)ep (b — 1)
= 2(1 20"+ b" + 20" — 26" ") < Coo(b— L)er(b™” — 1)
= 20— 1)+ (b= 1) < Cou(b— D2er(14--- + 071

2 (b2 — 1) 457

<~ _ _
(b — 1)251“(1 4+ 4 b”/z—l) + (b _ 1)5F(1 4+ -4 b”/Q—l)

< Cx,

which is implied by (4.11). As a consequence of the above inequality, (4.101), (4.10k),

and (4.11), we have that for all 72 < k <n,

i\ 2

Coo Coo —2000 Coo+500 +k -2 Coo —200

Fq qu+ﬁ/2Fq+ﬁ , Fq + Aq (—)\‘:/2) )\q+k_1)\q+k§Fq+ﬁ/2Fq+ﬁ. (4.13a)
q n

(viii) Choose a = a(q) € (0,1) such that

A =T (4.14)
(ix) Choose T, according to the formula
1
o Tt = 7 T 00 or 0 O 100 A (4.15)
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(x) Choose Ny, such that

Fq+NprA3+ﬁ S Fq+Npr+1 ‘ (416)

(xi) Choose Neytt and Ny x such that

Ncut,t S Ncut,xa (417&)
F Ncut,t
-1\ ° - . —Cou17-C
A2, ( : < min (X202 0 Ty GO0 ) L (417D)
q
1 ¢ 1" _ Ncut,x
Spnry T TP (=) < Tl (4.17¢)
Lgin
(xii) Choose Njyq+ such that
—Nin —171i —Necut,t— — cut,t
Nind,t > Ncut,t; Fq d,t (Tq IFq+4O> Ncut, 1(Tq qu>N o+l <1. (418)
(xiii) Choose Ng, N, so that
—N, 50N,
| R P D (4.19a)
Q(T;jﬁflréiﬁfl)mmd’t in%o+cb+10074;2rq_ivf/2 < F;_‘{\%52+3ﬁ7_522i3?t : (4.19b)
Nin
N, <N, < 4—0‘1 2 (4.19¢)

2This inequality is independent from the first two, and can be ensured by a large choice of Nj,q in the
next step. Since all the inequalities in (4.19) are used together, we break the order slightly and include
(4.19¢) in this bullet point.
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(xiv)

(xvi)

(xvii)

(xviii)

(xix)

Choose Nj,q such that (4.19¢) is satisfied and

Ning,t < Ning (4.20a)
Nima —Nina Y 70 _ 53 —2Co0—3
(rq;nl T, d) < §3 T2y (4.20b)
Choose Nge. such that
1 Ndec
r /10
A n QF 4 < ! ) Nind < Ndec . 4.21
g+n+2t q A
Choose K, large enough so that
A S 6 T, (1.22)
Choose d and N,, such that
2d+3< N,,, (4.23a)
_ 1/2 20Ninq
100 T7—d/200 A 5+ Ko max(AZ, . Tt Ad " Agyn) 200Ninq ¢
A T PN e (1 + g qu - < T, (4.23b)
q
9 Z1 Al 20Ning
—Nusfo0 p 5+ Ko max (A, T, Ad Agyn) 20Nind.¢
AT NS <1 - ¢ Tq_ - < Tonm. (4.23c)
q
Choose Ng, such that
2Ngee + 4 + 10N;pq < Nsin /10000 — d* — T0Neygx — 10Neye s — Nuw — 300 (4.24a)

Having chosen all the parameters mentioned in items (i)—(xviii) except for a, there
exists a sufficiently large parameter a, such that aib_l)arbﬁﬁ is at least fives times
larger than all the implicit constants throughout the paper, as well as those which

have been suppressed in the computations in this section. Choose a to be any natural
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number larger than a,.

4.2 A few more inequalities

For all ¢ +7/2— 1 <m <m’ < g+ n, we have that

Sn N7 (A, Agin)0q )
I‘\200+5Cb)\q ((5‘]+ ) Aq/3 (>\;3_1>\m/)2/3 (mln( » \g+ ) Q> )\T—nQ_IAm S ]"1(1—2507 (425)

m+n )\q+ﬁ/2

and

in(Ams Agan) \ 72 [ Ogrn \ in(Am, Agen) T\ 7
F200+5CbAq (I'Illn()\ j q+ )) (6q+ ) Aq)\;n?_l)\m/ (mln( : ) 7(I+ ) q) )\;12_1>\m S F;ZSO ]
q+n/2 m-+n q+n/2

(4.26)

We claim the first inequality is morally equivalent to

N\
A (5‘””) A5 (min (A, Adgin)) P ATE AL <1

q n/f2”'m
6m+ﬁ a+n/

This equivalence is due to (4.5) (used to absorb a feq meaningless losses of Az ;) and
(4.10f) (used to absorb Fi‘fg“ocb, which itself can be absorbed in on meaningless loss of

MAGY, from (4.10k)). Checking the simplified inequality then boils down to applying (4.5).

We leave further details to the reader. The second inequality is morally equivalent to

2/3 B 3/2 4/3
)\q )\m 5q+n )\q)\i})\;nl )\—m S 1 7
)\q+ﬁ/2 5m+ﬁ m )\q+ﬁ/2

which can be checked by again using similar reasoning.

At this point, we list a number of additional inequalities, each of which can be checked
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by similar reasoning as the two inequalities above. We leave further details to the reader.

2 2 Tq+n/2+1 ” —2/3 )‘q+ﬁ/2+1Fq v 1 3/2 3/2
g (1Yo () e

r q+n/2 Y /e q+n/27qt+n —= Yg4n+n/j24+1 0
q q

)\ +ﬁ/2+1F 2 3/2 3/2
)\qF350+5CbAq)\—l (u) )\—1 5 <45

q+7/2 )\q+ﬁ/2 q+7/27q+n — Yg4n+n/2410

Sqral 2N (N2 A < pyn for q+7p—5<m<q+n+5,
Am

qg+nTq

2/3
Oqinlg Lo ( ) Atidm ST 0,

Og+in 20045¢, (MU (Am, Agrn) ” -2 —100
5jz+ﬁ Fq o >\q+ﬁ7”qq AgA =y min(Ap, Agya) < I‘quﬁ/2 )
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Chapter 5

Inductive assumptions

We begin by fixing a few notational conventions that will be used throughout this thesis.

Remark 5.0.1 (Geometric upper bounds with two bases). For all n > 0, we define
M (Tl, ]\[*7 >\’ A) — )\min{n,N*}Amax{n—N*70} .

Remark 5.0.2 (Space-time norms). In the remainder of the paper, we shall always
measure objects using uniform-in-time norms sup;eir, 1) || - (¢)||, where || - (¢)|| is any of a
variety of norms used to measure functions defined on T? x [T}, T3] but restricted to time t.

In a slight abuse of notation, we shall always abbreviate these space-time norms with simply
- 1]

Remark 5.0.3 (Space-time balls). For any set 0 C T? x R, we shall use the notations

B(Q,A 1) == {(z,t) : I(mo,t) € Q with |z — x| <A} (5.1a)

B, 1) = {(z,t) : I(wo,to) € Q with |z — x| <A [t —to] <7} (5.1b)

for space and space-time neighborhoods of Q of radius A~! in space and 7 in time, respectively.
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5.1 Relaxed equations

We shall assume that all inductive assumptions at the g™ step hold on the domain [—7,_1, T+
Te1] x T3

We assume that there exists a given g-independent Radon measure £ = E(t,z) > 0 such
that the approximate solution (u,, py, Ry, ¢q, —7,) at the ¢*" step satisfies the Euler-Reynolds

system
Oyug + div(uy ® ug) + Vp, = div(R, — m,1d)
divug, =0

and the relaxed local energy identity with dissipation measure F

1 1 ~ : ~ .
O (§|uq|2) + div ((§|uq|2 + pq) uq) = (O + Uy - V)ry + div((R, — mId)u,) + divp, — E.
(5.3)
In the above equation, we have set r, = ' (fs —7ld) 5 and we use the decomposition and

notations

Uq = Ug—1 + Wq +Wqs1 + -+ + Wayn—1 = Ugin-1 (5.4)
—_——

=i,

for the velocity field. The stress error R, has a decomposition

q+n—1

R,= Y RE. (5.5)
k=q

where R’; are symmetric matrices. The pressure 7, has a decomposition

Ty = ng . (5.6)
k=q
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Similarly, the current error ¢, has a decomposition

g+n—1

Pg = Z 90];- (5.7)
k=q

In the continuous scheme, the Reynolds stress R, and current error ¢, at stage ¢ of the
iteration will have frequency support in frequencies less than \,4;_1 (effectively speaking).
We correct the portions of both which live at frequencies no higher than A,. We denote these
portion by R and ¢, respectively. More generally, we denote the portions of R, and ¢,

with spatial derivative cost Ay by quC and gp’; , respectively.

5.2 Inductive assumptions for velocity cutoff functions

Given the intermittent nature of the velocity vector field %, the cost of its associated material
derivative Dy, of errors can vary significantly across different level sets of the velocity.
To address this issue, we introduce a velocity cutoft function ; , defined inductively. By
applying these cutoffs, we partition the domain into distinct level sets of the velocity, which
allows us to analyze the material derivative cost of errors on each support in the following
subsections. We first record its key properties useful for later analysis in this subsection,
and the L> estimates for velocity increment @, and velocity u,, obtained as a consequence
of the definition of v; ,, can be found in subsection 5.5.

All assumptions in subsection 5.2 are assumed to hold for all ¢ — 1 < ¢ < g+ n — 1.

First, we assume that the velocity cutoff functions form a partition of unity:

Youb,=1,  and Gty =0 for |i—i|>2. (5.8)

>0

Second, we assume that there exists an imax = imax(¢’) > 0, which is bounded uniformly in
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q by

Coo + 12
max (@) < | 5.9
i (q)_(b_l)EF (5.9)
such that
Uig =0 forall i>iga(q), and i) < ommriss i e (5.10)

For all 0 < i < inay, we assume the following pointwise derivative bounds for the cutoff
functions v; ;. First, for mixed space and material derivatives and multi-indices «, 8 € N¥,

k>0,0<|al+ |5 < Ng,, we assume that

1supp¢i,q/
I—(K+M)/Ngy
1/",1( )/Ng

2y

< Ty (TgAg) M (18], Nina,e = Newet, 15271 Ty a T

k
<H D% Dflq/ 1) ¢i,q’

=1

(5.11)

Next, with «, 8, k as above, N > 0 and D, := Wy - V, we assume that

1sur>p¢¢,q/
wl*(N+K+M)/Nﬁn
i,q

2

k
DN (H DalDtﬁiI, 1) wi,q/

=1

(F >‘ ) ( 5 _1)|a|M (|5| det Ncut,taFZJrSlT/ 1,Fq’—1T;1_1) (512)

for 0 < N + |a] + |8] < Ngu. Moreover, for 0 < i < i..(¢'), we assume the L' bound

: 6+ b
, ST where G, = Sy (5.13)

H@Di,q/ b—1

Lastly, we assume that local timescales dictated by velocity cutoffs at a fixed point in space-
time are decreasing in ¢q. More precisely, for all ¢ < ¢+ n — 1 and all ¢ < ¢ — 1, we

assume

1/]2-/7q/wi//7q// ¢ 0 e qul—‘;i S Tq//F;f —25 . (514)
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This will be useful when we upgrade material derivative from D, to Dy 4.
The concrete construction of v; ,+» and the verification of (5.8)—(5.13) for ¢ — ¢+1 (i.e.,

¢ = q+n) is given in chapter 12.

5.3 Inductive bounds on the intermittent pressure

The intermittent pressure 7, is designed to majorize errors and velocity increments pointwise.
Thus, we introduce estimates for this function in subsection 5.3.1 and establish precise rela-
tions between the intermittent pressure and errors/velocity increments in subsection 5.3.3.
(The LP estimates of the errors will follow consequently.) Furthermore, the intermittent
pressure has been constructed to anticipate the low-frequency part of the future pressure
increments. We record the relevant properties in subsection 5.3.2. All inductive assumptions

appearing in subsection 5.3 will be verified for ¢ — ¢ + 1 in Section 13.

5.3.1 L%, L*, and pointwise bounds for 77’;

We assume that for < k< g+n—1and N + M < 2Nj.q, 7rf; satisfies

|thik-1 DN DYy qHs/2 < Ty llprnAy M (M, Nipae, Ty T (5.15a)
@i ka DN DMy || L < Tp= T AYM (M, Ninao, Th g7, Ti) (5.15b)
ik DYDYy | < DeLpmi AY M (M, Ninae, Ty 75, Ty ) (5.15¢)

Forg+n <k <qg+ Ny —1and N+ M < 2N,,q, we assume that 7r§ satisfies

Hw%qun IDNth+n 17TkH32 < quk5k+n q+n— M (M detquJrn 1 q+n 17Tq+1n 1) (5.16a)

k Coot+l AN i 1
||’l/}1q+n ID th+n 17g H <T qun 1Aq+n 1M <M7 Nind,t7rq+ﬁ 1 q+n 17TQ+71 1) ’

(5.16b)
W’qurn lDNDt ,q+n— 17Tk| < FQW(I;A?]—FFL—IM (M’ Nindth‘Z‘H—ﬁ 1 q+n 17T¢;+n 1) . (5‘16C)
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Throughout the paper, we shall use the phrase “pointwise estimates” to refer to bounds on
stress errors, current errors, or velocities in terms of various 7’s which resemble the third

bound in either of the above displays.

k

5.3.2 Lower and upper bounds for 7,

For k > ¢, we assume that 7r§ has the lower bound
T > Opin - (5.17)
Forall g+n—1<k <k <qg+ N, — 1, we assume that 7T(I; has the upper bound
mh < (5.18)
For all kK > g + Np,, we assume that
¥ =Tibhin - (5.19)

™

We finally assume that for all ¢ < ¢’ < ¢" < oo,

(S " ’ Y " . _

Lt < 20 " ifg+nf2<q’ (5.20a)
Sy

5 1" n / 1 .

L0t <l otherwise . (5.20b)
Sy

This final bound says that the 7r§’s obey a scaling law which may be roughly translated as

k »
q

k+m

g " for m > 0 can be bounded from below by an appropriately rescaled m

“any m
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5.3.3 Pointwise bounds for errors, velocities, and velocity cutoffs

We assume that we have the pointwise estimates

Vi1 DYDY RE| < T DS mb AR M (M, Nipa e, TP 7 T TR ) (5.21a)
ikt DYDY b < DDy (a2 r PAN M (M Niga o, TE 07,71 T LT ) L (5.21D)

ywi,k_IDND;‘i_@q < rqr,;jﬁ(wf;)l/?/\g M (M, Niae, Ty 7y, T Tiy) (5.21c)

for ¢ < k < g+ n — 1, where the first bound holds for N + M < 2N;,q, the second bound
holds for N + M < Nina/s; and the third bound holds for N + M < 3N /o,

While the main LP estimates on the Reynolds stress follow from the pointwise estimates in
terms of the pressure, we are forced to assume that R} has a decomposition Rf = Ri' 4 RE*,

where R'q“’* satisfies the stronger bound
| DYDY Rl < 2Ty on AN M (M, Niga g, 704, T ) (5.22)

for all N + M < 2N;,q. The extra superscript [ stands for “local,” in the sense that R’q“’l
is a stress error over which we maintain control of the spatial support, whereas * refers to
non-local terms which are negligibly small. The reader can safely ignore such non-local error
terms.

Finally, we assume that for all ¢ < ¢ < q¢+n — 1,

Tmax

> w2 b, iTE < 20792 wd (5.23)

Remark 5.3.1 (L? estimates on Reynolds errors from pointwise estimates). The

estimates on R} in (5.21a) and the estimates on 7} in (5.15) imply that for ¢ <k < ¢+n—1
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and N + M < 2N;,q, R’; satisfies

“¢i7k—1DND%€—1R§ H S Fgl—‘];?(sk-i-ﬁAi;VM (M7 Nind,t7 Fz—thOTk_,ll7 T’;i1F;O) y (524&)

3/2
H@Z)Lk_lDND%C_lR’;HOO < rgr,jrgwA{jM (M, Nind’t,F}flOT,;fl,T,ill“;o) . (5.24b)

Remark 5.3.2 (Velocity cutoffs, timescales, and pressure). Using the timescale pa-
rameter 7, ~ 5;/ 2)\q7‘(1__17/§’ defined precisely in (vi), we may now record the following version
of (5.23) for ¢ = ¢;

YigTy Ty < Al (773)1/2 Ty (5.25)

q

5.4 Dodging principle ingredients

In this subsection, we list “dodging” inductive hypotheses. As discussed in the introduction,
one of the crucial elements for the continuous scheme is dodging between velocity increments,
which is elaborated as Hypothesis 5.4.1. To construct a new velocity increment with such
dodging, it is necessary to keep a record of the density of previous velocity increments as
stated in Hypothesis 5.4.2. These two hypotheses can be seen as improved and inductive
versions of the “pipe dodging” technique used in [7] or [35]. As byproducts of a special con-
struction of velocity increments, we also have Hypothesis 5.4.4 and Hypothesis 5.4.5, which
explain dodging properties between velocity increments and stress error/intermittent pres-

sure. This will be utilized later in the stress current estimate discussed in subsection 11.2.4.

Hypothesis 5.4.1 (Effective dodging). For ¢, ¢” < ¢+ n — 1 that satisfy 0 < |¢" — ¢/| <

n — 1, we have that!

B (supp Wy, )\;quq_l) N B (supp @y, A;}Fqﬂ_i_l) =0. (5.26)

Here we are considering the support of @, in time and space, then expanding to a ball of radius )\q_lfq_H
in space only; see (5.1).
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Hypothesis 5.4.2 (Density of old pipe bundles). There exists a ¢g-independent constant

Cp such that the following holds. Let ¢, ¢" satisfy ¢ < ¢’ < @ < q +n — 1, and set?
d(q/, q//) ‘= min [()\qllrg//)il, ()\q/_ﬁ/Qqufﬁ)il} . (527)

Let ty € R be any time and 2 C T? be a convex set of diameter at most d(7,7"). Let i be

such that 2 x {to} Nsupp¢); g# # 0. Let @z be the flow map such that

8,5(1)5// —+ (ﬁq,/ . V) (I)q/, =0

(I)q//(t(), ZE) =Xa.

We define Q(t) = @z (t)1(2).2 Then there exists a set! L = L(7,7",Q,t) C T?> x R such

that for all t € (tg — Tq,,rqur?’ to + Tqﬂp;;’ﬁ)’
(8t + /dqu . V)lL(t, ) =0 and supp x@q,(x’ t) N Q(t) CLN {t} _ (5.28)

Furthermore, there exists a finite family of Lipschitz curves {€j7L}§£1 of length at most
2d(q',q") which satisfy
Cp
Ln{t=t} C|JB(4.1.3);") . (5.29)

j=1
Remark 5.4.3 (Segments of deformed pipes of thickness )\(;,1). We will refer to a
3)\;,1 neighborhood of a Lipschitz curve of length at most 2(A\y_a,ly—7) "' as a “segment of
deformed pipe;” see Definition 7.1.8. Since (Ay_npl'y—7)~ " will be the scale to which our

high-frequency pipes will be periodized, Hypothesis 5.4.2 then asserts that at each step of

2The reasoning behind the choice of d(g,q") is as follows. The set should be small enough that it can
be contained in the support of a single ¢ velocity cutoff. Since these functions oscillate at frequencies no
larger than =~ Ayv, the first number inside the minimum ensures that this is the case. The set should also
be no larger than the size of a periodic cell for pipes of thickness ¢’, which is ensured by the second number
inside the minimum.

3For any set Q' C T3, @z (t) "1 () = {z € T : D4/ (t,x) € Q'}. We shall also sometimes use the notation
Qo (I)q// (t)

4Heuristically this set is Ugsupp, @y (-, t) N Q(¢), but in order to ensure that (9; + Uz - V)11 = 0, L does
not include any “time cutoffs” which turn pipes on and off.
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the iteration, our algorithm can use at most a finite number of high-frequency pipe segments

inside any single periodic cell.

Hypothesis 5.4.4 (Stress dodging). For all k,¢” such that ¢ < ¢" <k —1and ¢ <k <

q +n — 1, we assume that
~ kil _
B (supp Wer, A Fq/url) Nsupp R," = 0. (5.30)

Hypothesis 5.4.5 (Pressure dodging). We assume that for all ¢ < k < ¢+n—1, k < ¥/,
and N + M < 2N;,q,

Yix A DVDM | (amg’)\ < T (7Y r AN M (M, N, TE 7 T TR

q

(5.31a)

Hypothesis 5.4.4 for ¢ — ¢ + 1 will be verified in section 10.3. A stronger statement
than Hypothesis 5.4.1 and Hypothesis 5.4.2 for ¢ — g + 1 will be proved in Section 9.2 (see

Lemma 9.2.2). Lastly, Hypothesis 5.4.5 for ¢ — g + 1 will be verified in subsection 13.2.

5.5 Inductive velocity bounds

In this section, we present inductive L*°-bounds for velocity increments and velocity, which
are derived from the construction of velocity cutoffs. Additionally, we also introduce velocity
increment potentials, which express velocity increments as dth divergence of the velocity
increment potential with small homogeneous error. This representation will be useful to
deal with a pressure current error (see subsection 13.4 for more details). All inductive
assumptions in subsection 5.5 except for (5.40) at ¢ — ¢ + 1 will be verified in section 9.4,

and we prove (5.40) for ¢ — ¢ + 1 in Section 13.
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5.5.1 Velocities and velocity increments

In this subsection, we assume that 0 < ¢’ < g+ n — 1. First, for 0 < i < dpay, & > 1,

a, 3 € N¥ we assume that

(H D™D}, 1) < T2 (A D)l M (18], Ninag, 53721 Ty T )
Loe(supp ; 1)
(5.32)
for |af + |B| < 3Nan/2 4+ 1. We also assume that for N > 0,
k
o (TTop0t, )
=1 Leo(suppt; o)
< (DE28 1 V) (g Ty )N (18], Nipa,e, D371 Ty T L) (5.33a)

<26, 5 O D) N (T P71 M (18], N, T3 70y T i Tty ) (5.33D)

whenever N + || + || < 3Nsn/2 + 1. Next, we assume

for |a| 4 || < 3Nsn/2. In addition, we assume the lossy bounds

k
H (H DalDflq/) i[/\q/
=1
(5.35a)

|pofay|| < agapiT (5.35b)
Lo

<7, T A T) M (18], Nina e, T 7 Ty T, L)
Lo (supp ¥, /)

k
(H D™ Df;) Diy

=1

(5.34)

<7 TP Ay (A D )M (18], Nina e, T4 57,1 Ty T, 1)

Loo(supp; o)

hold, where the first bounds holds for || + || < 3N&n/2+ 1, and the second bound holds for

|OZ| + |ﬁ| S 2Nﬁn'

Remark 5.5.1 (Upgrading material derivatives for velocity and velocity cutoffs).
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We have the bound

| DY DM, @, S L2500 (A D) N M (M, Ny, D570 Ty T0L ) (5.36)

HL"O(Sllppwi,q/) ~
for all N+M < 3Nan/2 + 1. Specifically, we set B = Dy o1 and A = D, so that A+B = D, 4.
Then the estimate (5.36) follows from the aforementioned Lemma and (4.10b). We also have
that (5.12) and (4.18) imply that for all N + M < Ng,,

1supp Y g

77D‘1*,(]\”F]V[)/|\‘ﬁn
l?q

q

DNDY by | < Ty(AgT )M (M, Ninay — Newrt, T *70 1 Tyroa Tl )
STy L)V M (M, Nipa, Ty 7 T T ) o (5.37)

5.5.2 Velocity increment potentials

We assume that for all ¢ — 1 < ¢ < ¢+ n —1 and W, as in (5.4), there exists a velocity

increment tensor potential v, and an error e, such that @, can be decomposed as

Wy = divis, + ey, (5.38)

which written component-wise gives @y = 9, -+ 0; d@éf’il""’id) + €. Next, we assume that
Uy and e, satisfy
1 9 - ~
B ( supp (Wy), Z)\q//Fq,/ N (supp () Usupp (&) =0 (5.39)
for any ¢ +1 < ¢" < ¢. In addition, we assume that 0}, := )\gfkail~~~8ikA((],.’i1""’id),

0 < k < d, satisfies the pointwise estimates

1/2
N M -~ d -1 N i -1 -1 2
|wi7q/_1D Dt,q’—lvql7k < quq/ <7Tg > rq’—ﬁ()\q/]‘—‘ql) M (M, Nind7t, F;/—qu’—17 Tq’—IFq’—l)

(5.40)
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for N + M < 3Nan/a. Finally, we assume that for N + M < 3Nan /2, €, satisfies the estimates

DYDY, _ eyl . < 62 nn T ™ A0 Mg Ty )N M (M, Nigae, 7,1 TRL T2 ) o (5.41)

q'+2n -~ q'

5.6 Inductive proposition and the proof of the main
theorem

In this section, we introduce the inductive proposition and give a proof of the main theorem.

Proposition 5.6.1 (Main inductive proposition). Fiz § € (0,1/3), b € (1,25/21) and
n € N satisfying b < (38)~%, T > 0, and fir a Radon measure E > 0. There exist parame-
ters er, Coo, d, Npr, Neust, Nindt, Ninda, Nan, depending only on (3, b, and i (see Section 4.1)
such that we can find sufficiently large a, = a.(b, 3,1, T) such that for a > a.(b,B,n,T),
the following statements hold for any q > 0. Suppose that we have an approrimate solution
(tgs Dgs Ry, g, —T4) which satisfies the Euler-Reynold system (5.2) and the relazed local en-
ergy identity (5.3) with dissipation measure E on the time interval [0,T) 4 7,1, and suppose
we have a partition of unity {7 }izo of ([0,T] 4+ 74-1) x T? forq—1< ¢ < q+n—1 such

that
o ;s satisfies (5.8)—(5.14).

o The velocity u, and the errors Ry, ¢,, and m, may be decomposed as in (5.4)—(5.7) so
that (5.15)—(5.23), Hypotheses 5.4.1-Hypothesis 5.4.5, (5.32)—(5.35), and (5.38)—(5.41)
hold.

Then there exist a new partition of unity {17, }izo of ([0, T]+74) xT? satisfying (5.8)~(5.14)
for ¢ = q+n, and a new approximate solution (w1, Pg+1, Rgt1, Pgr1, —Tqr1) satisfying (5.2)
and (5.3) with dissipation measure E for ¢ — q+ 1 on [0,T] + 7, satisfying the following.

The approzimate solution may be decomposed as in (5.4)—(5.7) for g — q+1 so that (5.15)—

%)



(5.23) and Hypothesis 5.4.1-Hypothesis 5.4.5 hold for ¢ — q + 1, and (5.32)—(5.35) and
(5.38)~(5.41) hold for ¢ = q + 7.

Assuming for the moment that the main proposition holds, we give a proof of Theorem

2.0.1.

Proof of Theorem 2.0.1. To avoid confusion between 3 in the statement of the theorem
and 3 in the statement of Proposition 5.6.1, we set B := 3. Since B € (0,1/3), we can choose
B e (B,1/3). Let a, = a,(B,b,7) be as in Proposition 5.6.1, fix a > a., and define additional

parameters by

)\Jrﬁ/)\_lﬁ for —n/<g<0
I'y=1 for —n<¢g<-1, rg = B

>\(1)/2/\gl/2 for —n<g<—-1/.

Step 1: Construction of initial approximate solution (ug, po, Ro, ¥0, —To) on the time interval

[—1,T + 1]. We first define

6_1:0, @q/:0 fOFOS(]’SfL—Q, p():gO():O, ﬂ-g:]_—‘kék_}_ﬁ’

0 otherwise

so that

uy =0 for0<q¢ <n-2, 7T0:ZFk5k+ﬁ.
k=0

Given a smooth R(*')_tensor field V(z) = V(z1, 22) with supp (J) C B(0,1/1). Then applying

o

Proposition 7.1.5 we have Ve, x, , r_, and Qe x,_,r_,, depending only on the x, x5 variables,

which are (T%/x.,_,r_1))-periodic, have support contained in pipes of thickness A\.',, and
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satisfy
§637>\ﬁ71,7’71 = /\f_zildivdﬁe&)\ﬁﬂﬂtm an/§€37>\ﬁ71,7’71 HLOO + ané%)\ﬁqﬂ"q HLOO < CO)‘Z—IT:%

for all n < 2Ng, + d and some positive constant Cy = Cy(2Ng,,d). For simplicity, we denote

Ocsanyry a0d Uy x,_, »_, by po and Oy, respectively. We then define

Uy = Wn_1 = e(t)po(x1, T2)es, e(t) = T 1%%r_ exp(—75 1t + 1))

0 0 (A4, divi™6y),
Ry =¢(t) 0 0 A9 dive0,). | = Ry,
()\,-jfldivd_l%)l ()\,-:fldivd_l%)g 0

where (g); denotes the k™ component of the vector g. Here, Ry is constructed to have
Oyug = divRy.

From the construction, we have divug = div(|ug|*ug) = 0 and div(ug ® ug) = 0, so
that one can easily see that (ug, po, Ro, @0, —7o) satisfies the Euler-Reynold system (5.2) and
the relaxed local energy identity (5.3) with E(t,z) := —e(t)e/(t)|po|* on the time interval
[—1,T + 1]. We will now check that the constructed approximate solution pair and the
partitions of unity satisfy the inductive assumptions appearing in Section (5.1)—(5.5) on
[—1,T+1]. For 0 < ¢ <n—1, ¢,y satisfies (5.8)—(5.14).

Letting RE =0for 0 <k <@—2, Ri~' = Ry and of = 0 for 0 < k <7 — 1, we have
the decompositions (5.4)—(5.7). Using the convention B(A,r) = () for the empty set A and
setting Un_1 = e(t)bpes, Uy = ey =0for 0 < ¢ <n—2and 0 <¢”" <n—1, we can easily
verify (5.15)—(5.23), Hypothesis 5.4.1, 5.4.4, 5.4.5, (5.32), (5.33), (5.38)—(5.41) for ¢ = 0. As
for Hypothesis 5.4.2, it is enough to consider ¢ = 7 — 1. Since ¢” < ¢ = n — 1 and i needs

to be 0, recalling that u,» = 0, we have ®,(t,x) = = and hence Q(¢) = Q. Then, (5.28) is
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equivalent to
supp w1 NQ C LNQ.

Therefore, we choose L as the collection of the (T/x.,_ T, )3-periodic pipes of thickness A ',
containing the support of w;_1, which verifies the hypothesis. Lastly, considering (5.34) and

(5.35), it is enough to prove it when ¢’ = n — 1 and i = 0. Since we have U1 = W;_1 and

applying Remark A.2.6 to p =00, v =0, w = Wy_1, 2 = T3, N, = MNan /s, we get the desired

< Col 05\

k
(H D‘YZ@EZ) -

=1

L>°(T3)

estimates (5.34) and (5.35).

Step 2: From Proposition 5.6.1 to Theorem 2.0.1. In Step 1, we checked that the induc-
tive assumptions hold at the base case of the induction ¢ = 0, and we may inductively
apply Proposition 5.6.1 with E(t,z) = —e(t)e/(t)p?, to produce a sequence of approxi-
mate solutions (u,, py, Ry, ¢4, —7,) such that all inductive assumptions hold for all ¢ > 0.
Then, by construction, we have that for any p < 8’ < 3, the series > > W, is absolutely
summable in CYW#3 and hence in C’?Bgl, which justifies the definition of the limiting

velocity field u = ug + > .. W, € C?Bgl. As R,,m, — 0 in C?L*2) from the equation

q=>n
—Ap, = divdiv(y, ® u, + 7,Id — R,), we get the limiting pressure p € C?L*2. In addition
to this, as ¢, — 0 in CP L', the limiting pair (u, p) solves the 3D Euler system and satisfies

the local energy inequality,

o (%|u|2) + div ((%|u|2 +p> u> =e(t)e'(t)ps <0

in the sense of distributions. In particular, the strict inequality holds in the interior of
supp (po), which leads to the total kinetic energy dissipation.

27—80p
In order to conclude the proof of the theorem, we only need to show that v € CPL90-3).
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For this purpose, note that we have the identity u = limg_,oo g = ug + > > w,. Using the
bounds on @, provided by (5.21c) and (5.15), we may sum over 0 < i < iya(q) using the
partition of unity property (5.8), to arrive at

o~ 1 _ -~ oo —
@l s < CO/2ar 2D, and @l oo < O,

where the constant C' depends only on our upper bound for iya,(q), and so only on g and
b through (5.9). Using Lebesgue interpolation, the definition (4.11) of C., and the above

established bounds, for p € [3, 00) we obtain

. O R 2 Cay(3-2), -1
[Wgll o < Nl zs [|Wgll " < CGgqal'y) 2 (D)2 21

2 n__
)\ P 14+---+b2 1
q—n

_ n n—1 _ 1 n n
(2804 (3- %) (L‘”’n@sbn(b—l)?)+b7(b7—1)+0(6r(b—1))

Q

(5.42)

where the constant C' = C(5,b) > 1 and we have used (b — 1)Cyer < % + 3(b —
1)z + O(ep(b — 1)) from (4.11), (4.2b), and (4.101). Thus, in order to ensure the absolute
summability of {w,},>» in L, the exponent of A\, appearing on the right side of (5.42)

must be strictly negative. After a short computation, we deduce that we must have

(29 (9001
A ETTET g ) L O(mer(b—1)).  (5.43)
(MT +307(b — 1)?) FbE(bE — 1)

Since the second and last term in the denominator is O((b—1)"?), we use (1+z)"' > 1—x

when 2 > 0, 5 € (0,1/3), and b™ € (1,2) to simplify p,(5,b). Then, it is enough to show that

6 6667 (1 + -+ +b271)
3<3+——-—-<3 = —
o033 T T s ta

+0((b—1)70) — O((b — 1)21?) .

This can be verified using 2/s < 1 — 3§ from the second inequality of (4.1) and b™ € (1,2],
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B 27-808
1-38) — 9(1-3p)

and adjusting the choice of n = n(f) and b = (n, ) if necessary. Since 3 + 57

27—80p
is increasing in 3, we get the desired conclusion u € CPL°0-38) . m
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Chapter 6

Mollification and upgrading material

derivatives

In this section, we introduce suitable mollifications of 775

k . .
, Ry, ki, and ¢f in preparation
of later analysis. The following lemma says that the mollified functions satisfy the same
estimates essentially as the unmollified ones, ignoring extra I'j, costs. The difference between

the mollified function and the original function, on the other hand, can be made small.

Lemma 6.0.1 (Mollification and upgrading material derivative estimates). Assume
that all inductive assumptions listed in subsections 5.1-5.5 hold. Let Py, be a space-time
mollifier for which the kernel is a product of P, ,(x), which is compactly supported in space at
scale Aq_lF;_l/f, and Py (t), which is compactly supported in time at scale Tq,lfz/fl; we further
assume that both kernels have vanishing moments up to 10Ng, and are C1Nin_differentiable.

Define
1
Rg = Pq,m’th y Qe = ’qu,t@g s Ty = ,Pq,m,tﬂ'g’ Ry = 5'61“ (Rg — WgId) . (61)

on the space-time domain [—ma-1/2, T + Ta-1/2] x T2, For ¢’ such that ¢ < ¢ < q+n — 1,

we define Py ., in an analogous way after making the appropriate parameter substitutions,
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and we set Rz/ = Pq/,ng/ and ng = Pq/,mwgl. For ¢ with ¢ +n < ¢ < g+ Ny, we define
Poin_1.0: analogously at the spatial scale A;jﬁflf;szl and temporal scale Tqm,lF;éffl

and set 71'2, = fq+ﬁ_1,x7t7rg/. Then the following hold.

(i) The following relazed equations (replacing (5.2) and (5.3)) are satisfied:

(

Orug + div(u, ® uy) + Vp,

g+n—1 g+Npr—1
=div| R+ Y RE—|(m+ > aF)Id|+div(R?— R+ (m —7d) Id)

k=q+1 k=q+1
§ 0 (zlugl?) + div ((3lugl + pg) uq)

q+n—1 q+Npr—1
= (O +1Ug-V)kg+div | R+ > Ri—(m+ > 7F)Id|7q,

k=q+1 k=g+1
R g+n—1

+div ((R2 = Ry + (mp — m)Id) Ug) + div | e+ > oF | +div (¢f — @) — E(t) .
k=q+1

(6.2)

(ii) The inductive assumptions for w3 in (5.15) are replaced with the following upgraded

bounds for w; for all N + M < Ngy:

[ D" Digmelly, < T4+ (A L)Y M (M, Niga, Tir L T (6.3a)
[t DV DMmo|| S T2 (ATg)™ M (M, Nigas, Tir, ' T, (6.3b)
|9i DY DMy | < Ty (ML) M (M, Nipa, Tir L, T (6.3¢)

While we do not replace the inductive bounds in (5.15) and (5.16) for k # q, we do

record the following additional bounds for 7 with ¢ < k < g+n—1 and N+ M < Ng,,
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|21 DV DY 17Tg||3/2 ST2000m (MTe1)™ M (M, Niae, T3 70 Tt D)

(6.4a)
[¢ik1 DY DY g || L S TRFe (AR DY M (M, Nia e, T3 7 T D)

(6.4D)
N . i+3 2
i DV DMy < 203w (ML) Y M (M, Niga,o, T35 78 T2 T2 ) - (6.4c)

and for wf with g +n <k < q+ Ny and N + M < Ng,,
[1.44n1 DN Dy, S Ti0kn (AgraaTgrn1)™
x M (M det’FZ-HL 1Tq+n 17Tq-&n 1y +ﬁ*1) )
(6.5a)
||¢“1+" 1DNth+n 17TZH ngg 1 Aq-i—ﬁ—qu—i—ﬁ—l)N
X M (M, NindtarH_n 17 +n 1»T_+n 1Fq+ﬁ—1) )

(6.5b)

‘wZQ+7L 1DNth+n 17-(-@} < 2Fkﬂ-€ (Aq+n 1Fq+n 1)N

1+3 71 1 2
X M (M7 NindtJFq+n 1Tg+n— 17Tq+n 1Fq+n 1) :

(6.5¢)

The inductive assumptions (5.19) and subsection 5.2 remain unchanged. While we do

not discard the estimate in (5.17), we however record the additional estimate

1 1
§5q+ﬁ < mp < 2m] < dmy, §5k+ﬁ <7< 27réC < 4rf (6.6)

(15i) The inductive assumptions in (5.21a)—(5.21c) for k = q are replaced with the following

upgraded bounds for all N+ M < Ng, in the first two inequalities, and N + M < 3Nén />
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i the third:

i DYDY Ry| ST, e (AT )Y M (M, Nipay, Tir, T, (6.7a)
|95 DYDMo S T, 1 (A Tg) Y M (M, Ny, T L, T 1) (6.7b)
|0s e DY DMy | S ritom” (ML) M (M, Nigaye, Do, T1) (6.7¢)

For k such that g < k < q+n — 1, we have for N + M < Ng, the additional bound

[Yiu 1 DV DM_RE| ST, 7nf (ATR) Y M (M, Nipag, T80 T T02)) - (6.8)

(iv) The symmetric tensor Ry — R and the pressure wf — m, satisfy

1D D (e = wi) || + | D™ Drg (Re = B

4N1n ,t — —
S F(H'qu—l-ld 52—&—371)\(]]\:—1'/\/1 (M Nlnd 49 T, q 17 Fq 1T‘q 1) (69)
for all N + M < 2Nyuq, while @y — @l satisfies
1DV D (o = 20|, < 055 M M (M. N, 77 TTY) - (6.10)

for all N + M < Nwda/s. For k such that ¢ < k < qg+n—1and N+ M < 2Njq, we

have that

1D Dr oy (g = i) || + 1D Dris (Bg — )

ANing,¢

SJ Fk’-l-lTkJrl 7 5i+3ﬁ(Aka—1)NM (M, Nind,tﬂ_k:llrk—lv T;;llfil_l) : (6-11)
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and for k with ¢ +n <k < g+ Ny and N + M < 2Njpg,

HDND%-H'L—I (Wg - ) Hoo S FQ+ﬁ+1T2JNri5T153+4ﬁ(Aq+ﬁ—1rq+ﬁ—1)N

X M (M, Niﬂd,ta Tq_.;.lﬁ_ll—‘q—&-ﬁ—la T(;jﬁ_lr(ﬁ_ﬁ_l) . (612)

Proof. We first note that (6.2) is immediate from (5.2)—(5.3) and the definitions in (6.1). At
this point, we split the proof into steps, in which we first carry out the mollifications, and

then upgrade the material derivatives.

k
q

Step 1: Mollifying the pressure 7. We first consider the case k = ¢ and apply the

abstract mollification Proposition A.6.1 with the following choices:

p=23k,00, Ng N.asin (xili), M; = Npar, Ne=2Nina,
N, =Ngn, Q=suppvg1, vV=0Ug1, =1,
A= Aq—l s A= Aqu_1 s I'= Fq—l s T = Tq—qu—l s T = Tq—l;

Forl Com=THym Cpoom Gy =TS C = A

First, we have that the assumptions on the parameters in (A.225a) are satisfied by (4.19¢),
(4.20a),(4.24a), (4.15) and (5.10). The assumptions in (A.225b) are satisfied from (4.19b),
and the assumptions in (A.226) are satisfied from (5.35b). Next, the assumptions in (A.227a)
are satisfied from (5.15) (where we apply the bound with ;1,1 in order to obtain a bound
for LP(supp;,—1)). Finally, in order to verify (A.227b), we apply Remark A.2.6 with the
following choices. We set p = 0o, N, = N, = 00, N, = 2Njpg, Q=T xR, v = —w = Ug—1,
Cop = T t25 2 N2 Ny = A = A1, fy = i = U, 4T, 2, in (A.34), while in (A.27) and
(A.28) we set v = Tg1, Co = Cuy Ao = Ay = Nyt f1p = i, = T, T, f = w8, Cp = DS=42,
Ap = Xf = Ay, puy = py = T;_ll. Then (A.27) and (A.28) are satisfied from (5.34) at level
q—1, (5.15), (5.10), and (4.15). Next, (A.34) is satisfied from (5.35a) at level ¢ — 1. Thus
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from (A.35) and (4.15), we obtain that
| DYoM7d|| . ST AT M (6.13)

for N + M < 2Nj,q, thus verifying the final assumption (A.227b) from Lemma A.6.1.
We first apply (A.228) to conclude that for N + M < Ngy,

|t01,q-1 DV DM _ 7|, oS T26 540 (ATgo1)™ M (M, Nipa,, TH 3774 T Ty (6.14a)

|iq-1 DN DY yme| S Tg=*? (ML) M (M, Nigqo, T3 72 TN D) . (6.14D)
Next, we have from (A.229) and (4.19a) that the difference w§ — 7, satisfies

HDND%I—I (Wg - W) Hoo S FQ+1T3T-i1nd’t5§+3ﬁ(Aqu—1)NM (M7 Nind.s, Tq_—lqu—l’ T;—lqu—l)
(6.15)

for N 4+ M < 2N;,q. Note also that since we have a lower bound on wf given by (5.17),
the above estimate implies that (after a sufficiently large choice of Ay so that the implicit

constant is absorbed)

1
Ty > 7TZ - 5q+2n > §5q+ﬁ7

which is the first inequality for 7, and 7 in (6.6). The other two inequalities there follow

similarly. Finally, we note that by (5.15¢) and (6.6),

i1 DY Dig_yme| < [thiq 1 DY Dygymg| + | DY Dy (mf — m2) |
< T2rdAY M (M Nipay, Uo7, T )
+ 60 an (AT gm) Y M (M Nipae, 7,24, T, T 1)
< T3y (AgTy 1)N M (M, Nipa, T8 778 T4 Ty )

qg—1"q—
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for N + M < 2Njq. For 2Njq < N + M < Ng,, we have from (6.14b) and (4.20b) that
|DVDM 7| < 02,0 (AL TN M (M, N, T2 7,4 L T2 )

In the case k # ¢, we may obtain the bounds (6.4a), (6.4b), (6.5a), (6.5b), and the second
inequality of (6.6), via an argument identical to the proof of (6.3) and the first inequality of

(6.6). We additionally have the pointwise bound for ¢+1 <k < g+n—1and N+ M < Ng,

[ i DYDYy | < (Tkf 4 63 o) (NT 2 TN M (M, No TR 7 T TR )

< 2FI?;7T§ (Akrllc/ilrllc/Z)NM (M7 Nind,tv FZtSITI;—lp Tlg—llri—l) ) (6'16)
and for ¢ +n <k < ¢+ Ny, and N + M < Ng,

N M k 3 _k 2 2 N i+3 -1 —1 2
‘wi,quﬁle Dt,quﬁleé‘ < (Fkﬂq + 5k+ﬁ>(Aq+ﬁ*1Fq+ﬁfl> M (M7 Nind,t F;+ﬁ—17q+ﬁ—1v Tq+ﬁ—1rq+ﬁ—1)

< 2Fiﬂ?(Aq+n71F§+a71)NM (M7 Ning,t, Fzﬁ%—ﬂqjﬁfpT;iﬁflrngfl) )
(6.17)

which again follows from a similar argument as in the proof of the corresponding bounds
for ¢ = k and (6.6). Furthermore, we have that the difference 7} — 7y satisfies (6.11) and
(6.12), which follows directly from the mollification lemma and (4.19a) with ¢ replaced by
k —1 or g+ n, as in the case k = ¢. Finally, the bounds in (6.6) for 7" follow similarly as
before. At this point we have completed the proofs of the required estimates in (6.4)—(6.6)
and (6.11)-(6.12) for ).

Step 2: Mollifying the stress and current errors. We apply the abstract mollification

Proposition A.6.1 with the same choices as before, except for the stress error we choose

.f:RI(;7 qSkSQ+ﬁ_17 p =00, Cf,oozrgoc+27 T =Tk-1, C:20a T:Tk—lr(;10~
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We then have that (A.225a)-(A.225b) are satisfied as in the previous step, as is (A.226).
In order to verify (A.227a), we appeal to (5.21a) and (5.15b). In order to verify (A.227b),
we use Remark A.2.6 exactly as in the previous step, but with R’; replacing 7r§ . Thus from
(A.228)—(A.229) and (4.19a), we have that for ¢ < k < ¢+ n — 1 (we denote R, by R] for

concision here)

‘wi,kleNDt,kflRﬂ S Fg““(/\krkq)NM (M7 Nina,t, I 3 7 T;;_llr}cl,l) (6.18a)

|DND%<71 (R? - R§)| ,S Fk+1T2'}fd’t5i+3ﬁ(Akafl)NM (M, Nind,ta 71;—117 TIZ—11F11<171) ’
(6.18b)

where the first bound holds for N+ M < Ng,, and the second bound holds for N+ M < 2Nj.q.
The second bound verifies (6.11) for the difference R} — R;. Appealing to (5.21a), (6.18b),

and (6.6), we then may write that in the case k = g,

|¢i,q71DND%71RE‘ < ‘wi,qleND%,qu + ‘DND%A (Rg — R5)|

q

_7 N i+20,.—1 -1 i1
< T, 'miA; M (M, Nina,t, Ty T, T, 20 )

qg—1 "q—1>
+ 6§+3ﬁ (AQFQ—I)NM (M7 Nind,t7 Tc;—llv T(;jlréil)

S Fz;?Wf(Aqu—l)NM (M7 Nind,s, Ffzfqu:ll’ Tq—fllrélfl)
for N + M < 2Nj,q. For 2Njqg < N + M < Ng,, we have from (6.18a) and (4.20b) that
| DYDY Be] < 03a(ATED) Y M (M, Nowa g, TP TR
In the case ¢ # k, we have that for N + M < Ng,,
[usa DYDY RE) S (0T 4 07 (D2 TN M (M N, TR L T TR

giving the desired bound in (6.8) after using (5.20a) again.
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In the case of the current error, we again apply Proposition A.6.1 with the same choices

as in the first portion of this step, except we choose
f = 902 ’ Cf,oo = 1—‘qT r Cc = 20, T = Tq,IFéO , N, = Nind/4.

We then have that (A.225a)-(A.225b) are satisfied exactly as in the previous step, as is
(A.226). In order to verify (A.227a), we appeal to (5.21b) and (5.15b). In order to verify
(A.227Db), we use Remark A.2.6 exactly as in the first part of this step, but with ¢l replacing
R{. We conclude that (A.227b) is satisfied with 5f = Cf 0. Thus from (A.228)-(A.229), we
have that

3Coo 3 i _ _
Vi g1 DN Dy g1p0| STg 2 * rql(Aqu_l)N/\/l (M, Nind,t,rqt% ! Tq_llr}f_l) (6.19a)

g—1

‘DNDtvq—l (W o 903)‘ S FqHT;lg\lrilnd’tégHﬁ(Aqrq—l)NM (M’ Nind,e, 7—q_—ll’ Tq——llrél—l) , (6.19b)

where the first bound holds for N+M < Ng,, and the second bound holds for N+ M < Nind/s.

Appealing to (5.21b), (6.19b), and (6.6), we then may write that

|91 DY Dy 11| < i1 DYDYy 10l + [DV D/ (0] — )|
< T (D) Pr AN M (M Niaye, T 77 T T
+ 67 on (AT gm1) Y M (M Ninay, 7,04, T, T0L)
ST 1 (AL ) VM (M, N, TH20774 T TIL )

for N + M < Nina/y. For Nina/s < N + M < Ng,, we have from (6.19a) and (4.20b) that

‘DND%—W@’ < 5q2+ﬁ

(AL TN M (M, N, TE %74 T L T2

q—1

Step 3: Upgrading material derivatives for £ = q. We begin with the pointwise bounds
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for m,. Combining the bounds from Step 1 with (5.14) with ¢ = ¢ and ¢’ = ¢ — 1, we have
that for N + M < Ngp,

N )
i DYDY _y,| < 203w, <Aqrj/ElF;/2> M (M Nipas, 7, 'T0 2, T, L2 ) . (6.20)

»q

We shall apply Remark A.2.6 (with the adjustment in Remark A.2.4 for derivative bounds)

with the following choices, at a point (t,z) € int (supp;,) for which the neighborhood

Qt,x - supp wi,q:

(A.34) choices: p=00, Ny;=00, Ny=Npar, Ne=Ng,, w=1w,,

— _n _ Tit2¢l/a —1/3
Q=W2, v=Ug1, Cuo=T77/r,7%,

>\w = Xw = Aq7 My = thngq__ll ) ﬁ'w = Fq_lT(;l )
(A.27) choices: C, = Di25.%r "2 N\, =X, =A,, p,=Tir ', J,=T,'T;', Q=Q,

q—n

(A.28) choices: f=m,, Cp=supm, A=A =ANTil)?, pp=po, Jig=rpw, Q=,.

t,x

Then we have that (A.34) holds from (5.32) at level ¢, (A.27) holds from (5.34) at level ¢,
and (A.28) holds from (6.20). Taking €, to be arbitrary and using the continuity of 7, we
thus have from (A.35) that for N + M < Ngy,

i DN DYy S Ty (Aq(rq,qu)lﬁ)N M (M, Nipas, 7, ' T2, T,'T,Y)

q

matching (6.3c). In order to obtain (6.3a) and (6.3b), we use the L% and L> bounds on m,
shown in (6.3). Combined with Step 1, this concludes the proof of (ii).

In order to prove (6.7a), we argue in a manner very similar to the proof of (6.3c) carried
out just previously. The only difference is that from Step 2, we have the bound

_ N i _ _
DDy 1 Re| ST, 7m0 (Ag(Tyoal)'?) " M (M, Nipaye, TH337. 74 TN D02 ) (6.21)

q—1 'q—1»
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Carrying out the same steps with the obvious modifications, we deduce that (6.7a) holds as
desired. The proof of (6.7b) is again quite similar, and we omit the details. To conclude the
proof of (iii), we must show (6.7¢c). Following the exact same steps as before but beginning
instead with the bound (5.21c) and appealing to (6.6), we obtain the desired estimate,
concluding the proof of item (iii).

Finally, we must upgrade the material derivatives to D, , on the differences in order to
conclude the proofs of (6.9)—(6.10) from item (iv). Arguing in a similar fashion as in the
first part of this step but applying Remark A.2.6 to the differences, choosing C,, = p,, =

ANipa ¢

fhw = Cyp = by = Jlyy = T;jl and using the extra prefactors from T 7" to absorb the lossy

material derivative cost yields the desired estimates in (6.9)—(6.10).
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Chapter 7

Intermittent Mikado bundles and
synthetic Littlewood-Paley

decompositions

7.1 Definition of intermittent Mikado flows and basic
properties

We shall require the following lemmas regarding decompositions of symmetric positive defi-
nite tensor fields. Typically such lemmas are stated and applied for tensors in a neighborhood
of the identity. Since it will be convenient for us to decompose tensors for which some rescal-
ing of the original tensors belongs to a neighborhood of the identity, and later estimates (see
Lemma 9.3.1) will depend on the rescaling factor, we include a slightly altered statement

with full proof.

Proposition 7.1.1 (Geometric lemma I). Let = C Q’NS? denote the set {3/se; = fse;}, ;..
and for every £ in =. Then there exists € > 0 such that every symmetric 2-tensor in B(Id, €)

can be written as a unique, positive linear combination of £ ® £ for & € Z. Furthermore, for
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a gwen large number K > 1, let C'x denote the set

Cx = |J B(Kd, ke), (7.1)

1<k<K

which we note is contained in the set of positive definite, symmetric 2-tensors for € sufficiently
small. Then there exist functions ve x for & € E such that every element R € Ck can also

be written as a unique, positive linear combination

R=> (rex(R)E®¢. (7.2)

£eE

Additionally, we have that for all 1 < N < 3Ngy,
1S el S K [DVyer| S1, (7.3)

where the implicit constants above depend on = and Ng, but not K.

Proof. By direct computation, we have that the identity matrix can be written as a strictly
positive linear combination of £ ® ¢ for £ € Z, and that the set of simple tensors {€ ® {}ecz
is linearly independent in the set of symmetric matrices. Therefore, there exists ¢ < 1 and

linear functions (y¢)? for £ € = such that for all R € B(Id, e),

R=Y % (RE®E,

ez

and there exist implicit constants depending only on = such that

1<% ([R) ST, [DRHE(R) ST, DN[v(R)]=0 VN >2. (7.4)

~Y Y
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Now let K be given, and let 1 < k < K and R be such that R/ € B(Id,¢). We define'

e =2 (7)) (75)

so that

Y NkRERE=D (%) K ®E=R,

== Ee=

and (7.2) is satisfied. We then have that
1S 7ex(R) SK”, DRI ST, DV[x(R)]=0 VN>2,

where the implicit constants are those from (7.4) and depend only on Z. We immediately

deduce from the lower bound for ¢ x(R) that

\Dh?,K(R)H

<1
ek (R)|

| Dye.x(R)| <
Now for N > 1, we may write that

27§,K(R)DN+17§,K(R) = DN*! (752,;((3)) + Z CN,N’DN/ (7§,K(R)) DNFTI=N (7§,K(R)) .

0<N'<N+1

Assuming by induction that |[DY" ¢ x(R)| <1 for 1 < N” < N, we use the lower bound for
Ye x(R) to divide both sides by v¢ x(R) and deduce that | DV, (R)| < 1, concluding the

proof of (7.3). O
The following lemma appears in [17].

Proposition 7.1.2 (Geometric lemma II). Let {&,&,&3,84} C Z2 be a set of nonzero

!This is well-defined since (vy¢)? is linear, and so the choice of K is irrelevant.
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vectors satisfying

{€1,&5,63} is an orthogonal basis of R® and &4 := — (& + & + &3).

Fiz Cy > 0 and let Bg, := {¢ € R® : |¢| < Cy}. Then, there exist positive functions

{36, }i21 € C>(Bg,) such that for each ¢ € Be,, we have

1 4

0=352 (a(0)’s.

=1

In particular, the set {eq,2eq,2e3, —(e1 + 269+ 2e3)} satisfies the assumption. We denote the
set of their normalized vectors by Z' := {ey, e, €3, —1/3(e1 + 2e5 + 2e3)} C Q3 N'S?, and with

slight abuse of the notation we redefine V¢ to have

26 =) (Fe(¢))%. (7.6)

e’

Definition 7.1.3. For any £ € ZUZ', we choose £,&" € Q> N'S? such that {£,¢,¢"}
is an orthonormal basis of R3. We then denote by n, the least positive integer such that

&, n &M E" € 73 for all € € ZUZ.

We now recall [7, Proposition 4.3], which details the choices for shifts enjoyed by a func-
tion with sparse support. In our setting, such functions will be pipe densities, or equivalently

the densities associated to their potentials.

Proposition 7.1.4 (Rotating, Shifting, and Periodizing). Fiz { € = (or € Z/), where
= is as in Proposition 7.1.1 (or as in Proposition 7.1.2). Let r—', X\ € N be given such that
Ar € N. Let s : R? = R be a smooth function with support contained inside a ball of radius
Vs, Then for k € {0,...,r=t — 1}2, there exist functions %’;,T,E : R? — R defined in terms of

», satisfying the following additional properties:

3
(1) We have that %I/\C,r,ﬁ 18 simultaneously (E—i)—peﬂodic and (%) -pertodic. Here, by Tg
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we refer to a rotation of the standard torus such that ']I‘Z’ has a face perpendicular to £.

3
TE
AT

2) Let F¢ be one of the two faces of the cube which is perpendicular to £. Let Gy, C
E b
F:N27Q3 be the grid consisting of r~2-many points spaced evenly at distance 2w(An,)~*

on F¢ and containing the origin. Then each grid point gx, for k € {0, ...,r~' —1}? satisfies

(supp sy, NFe) C {a: |z — g <27 (4)\71*)_1}. (7.7)

3

3) The support of »% . is a pipe (cylinder) centered around a T—S -periodic and e ).
/\,T‘,ﬁ AT AT

periodic line parallel to &, which passes through the point g,. The radius of the cylinder’s

cross-section is as in (7.7).
(4) We have that & - V5, . = 0.
(5) For k # k', supp s , . N supp %’j:r7§ = 0.

We now state a slightly modified version of [7, Proposition 4.4] or equivalently [35, Propo-
sition 3.3], which rigorously constructs the L?-normalized intermittent pipe flows and enu-

merates the necessary properties.

Proposition 7.1.5 (Intermittent pipe flows for Reynolds corrector). Fiz a vector
€ belonging to the set of rational vectors = C Q* N'S? from Proposition 7.1.1, r~* A € N
with \r € N, and large integers Ng, and D. There exist vector fields ng,,\,r :T® — R3 for
k€ {0,...,r~1 —1}? and implicit constants depending on Ng, and D but not on X\ or r such

that:

(1) There exists 0 : R? — R given by the iterated divergence divPy =: 0 of a pairwise

symmetric tensor potential ¥ : R? — R2” with compact support in a ball of radius

4
such that the following holds. Let Q’Z}M and 192)“ be defined as in Proposition 7.1.4,

in terms of o and ¥ (instead of »). Then there exists Z/{f’)ﬂ : T3 — R3 such that if
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{£,,¢" c Q*N'S? form an orthonormal basis of R? with & x & = &", then we have?

Uy = =€ NPV (@0 (0,) 456 APV (@2 (0,,))" (78)

J/

and thus
curll/{é/\m = EAPdiv? (19159\,7’) = f@lg,x,r =: W?,A,w (7.9)
and
£ Viler, = (£ V)Why, = (€ VUL, = 0. (7.10)

(2) The sets of functions {UE i, {0Exr s {0Ex,Ter and {WE,  }i satisfy items 1-5 in

Proposition 7.1.4.

(3) Wg/\’r 1S a stationary, pressureless solution to the Fuler equations.

(4) ][ WEL, @ WE,, = £® €.
T3

(5) ][ |W§,)\,7‘ QWg,)\,r :][ (QQA,T)ZZ/{{IC,)\,T = / Q]g,k,rué)\,r =0.
T3 T3 T3

(6) For all n < 3Ngy,

199 p el S AP ET 197 0 gy S 4G ()
and
HVRUEICA,THLP('N) 5 )‘n_lr(%il)’ anWEk,A,THLP(W) 5 )‘nr(%il)’ (7'12)

(7) We have that supp 9 , , € B (supp g¢xr, 2A7").

2The double index ii indicates that divP 2 (19}5 /\J) is a 2-tensor, and we are summing over the diagonal

components. The factor of 1/3 appears because each component on the diagonal of this 3 x 3 matrix is
A’lg’g - The formula then follows from the identity curlcurl = —A for divergence-free vector fields.
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(8) Let @ : T3 x [0,T] — T be the periodic solution to the transport equation
QD +v-VO=0, By =1, (7.13)
with a smooth, divergence-free, periodic velocity field v. Then
VO (WE,, 0®) =curl (VO - (Uf,,0D)). (7.14)
(9) For any convolution kernel K, ® as in (7.13), A= (V®)™', and fori=1,2,3,

(AR (W W) @047 )| = 8 (00,7 OV, )'(0) 9,4

)

= AL Emeo A K x (k) (@) . (7.15)

In the above display, k indicates the choice of placement, i is the component of the
vector field on either side of the equality, and m, [, and j are repeated indices over which

summation is implicitly encoded.

Proof. The only small changes relative to the cited Propositions are as follows. First, we write
the pipe density o as the iterated divergence of a pairwise symmetric vector potential divPy =
o0 to match the form required for our inverse divergence operator (cf. Proposition A.3.3). By
“pairwise symmetric,” we mean that permuting the 2n—1 and 2n components for 1 <n < DB/
leaves ¥ unchanged. Since one can always rewrite the identity Af = g as 0,0;0;;f = g, it
is easy to convert the equality A2y = o into divP¥ = ¢ where ¥ is a pairwise symmetric
tensor (see (7.38)).

Second, (5) is new. We first show that the second integral vanishes for any radial pipe
density. This is a simple computation in polar coordinates which is a consequence of the
fact that U, can be written as the 2-dimensional perpendicular gradient of a radial scalar

potential V (see the computation below). Then the only # dependence in the integrand will
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come from U =V, V = (=9,V,9,V) = (—sinOV'(r), cos #V'(r)), which will then integrate
to zero against the other radial functions in the integrand. In order to show that the first
integral vanishes, we can take any radial pipe density which defines a specific )/\/5’C A and set
W = WE, — ?j\ﬂ, where k and k 4 1 are adjacent choices of placement. Then it is clear
that the second now integral vanishes for 17\//, and the other properties are unchanged up
to renormalizations and adjustments of implicit constants. In order to show that the third
integrand vanishes, we recall (7.8), the fact that &, &', £” forms an orthonormal basis with
¢ x & =¢" and the fact that £ - Vie \, = 0. From these facts, we deduce the existence of a

scalar potential ) such that
Userr)i = EEOY — GOV = el (§E] + ;) OV = €510, VEp .
From the fact that curlif , = We \, and the fact that £ - VU, = 0, we deduce that
(Wenr)i = €mOi€m;n0iVE = (0i0m — 0indi;)010;VE = —&i05;V .

Therefore we have that

1
/ giajjvelmkamvgk - _5/ Elmkgigkam (ajvajv) = 07
T3 T3

which implies that the third integrand in (5) vanishes.
Finally, (7) is new, but it follows immediately from definitions and (7.7). O

We shall require a set of intermittent pipe flows which possess nearly the same properties

as above, but which are however normalized in L3, and have non-vanishing cubic mean.

Proposition 7.1.6 (Intermittent pipe flows for current corrector). Fiz a vector £
belonging to the set of rational vectors = C Z3 from Proposition 7.1.2. The statement is

same as in Proposition 7.1.5, but item 4 is not imposed, and items 5—6 are replaced by
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(5) ][ |W§,>\,r QWQ)\,T = |€|2§ ) ][ (ng,)\,'r)Quﬁk,)\,r :][ ng,k,rufk,)\,r = 0.
T3 T3 T3

(6) For all n < 3Ngy,

||V”192%THLP(T3> <xrG), ||V"9]§Am“m(nr3) S amd) (7.16)
and
||Vnufli)\ﬂ“HLp(’]I‘3) 5 A”_lr(%*g)’ anng\,rHLp(TS) S )\nr(%f%) . (717)

Proof. The differences in (6) relative to (6) from the preceding proposition are simply a result
of the L? normalization and require no further justification. In order to ensure (5), it remains
to show that one can construct a radial pipe density o¢ x, which has non-vanishing cubic
mean and is the iterated Laplacian of a scalar potential, and then convert the scalar potential
to a pairwise symmetric tensor potential. As the latter task has already been carried out in
the previous proposition, we can focus on the former. One can start with a smooth function
f:(12,1) = R for which fOQﬂ(f(D))3(x) dz # 0, and then define F(r) = f(A\r + A2), where
A1 and Ay are chosen to ensure that to leading order, A/?F ~ APf® ()7 + A;). Then

periodizing concludes the proof. O

In order to control the geometry of pipes which are deformed by a velocity field on a

local Lipschitz timescale, we recall [35, Lemma 3.7].

Lemma 7.1.7 (Control on Axes, Support, and Spacing). Consider a convex neighbor-
hood of space Q C T3. Let v be an incompressible velocity field, and define the flow X (x,t)

and inverse ®(z,t) = X (x,t), which solves
atCI)+U~V¢)=O, @|t:t0:x'

Define Q(t) := {x € T? : ®(x,t) € Q} = X(Q,t). For an arbitrary C > 0, let 7 > 0 be a

80



timescale parameter and I' > 3 a large multiplicative prefactor such that the vector field v

satisfies the Lipschitz bound

sup V(5 )| ooy S L Ay

telto—,to+7]

Let Wg/\’r : T3 — R3 be a set of straight pipe flows constructed as in Proposition 7.1.4,
Proposition 7.1.5, and Proposition 7.1.6 which are (T/x)3-periodic and concentrated around
azes {A;}ier oriented in the vector direction £ for & € Z,Z/, passing through the grid-points
in item 2 of Proposition 7.1.4. Then W := WE, (®(x,t)) : Q(t) X [to — 7,to + 7] satisfies

the following conditions:

(1) We have the inequality

diam(€(¢)) < (1+T7") diam(€2). (7.18)

(2) If x and y with x # y belong to a particular axis A; C €0, then

X(x,t) —
[ X (1) -

(yvt) _ =y
(v, )] |z —yl

alla

+ di(x,y, 1) (7.19)

where |6;(z,y,t)| < T~

(3) Let x and y belong to A; N QY for some i, where the axes A; are defined above. Denote
the length of the azis A;(t) == X(A; N, t) in between X (x,t) and X (y,t) by L(x,y,t).
Then

L(z,y,t) <(1+T7 ) |z —y . (7.20)

(4) The support of W is contained in a (1 + F_l) 21 (4n, \) "t -neighborhood of the set

UAi(t). (7.21)
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(5) W is “approzimately periodic” in the sense that for distinct aves A;, A; with i # j, we

have

(1—=T7")dist (A;NQ,A;NQ) < dist (Ai(t), 4;(8) < (1+T71) dist (A, N QL A;NQ).
(7.22)

A consequence of Lemma 7.1.7 is that a set of (T/x)3-periodic intermittent pipe flows
which are flowed by a locally Lipschitz vector field on the Lipschitz timescale can be de-
composed into “segments of deformed pipe” in the sense of Remark 5.4.3. Furthermore, any
neighborhood of diameter ~ (Ar)~! contains at most a finite number of such segments of

deformed pipe.

Definition 7.1.8 (Segments of deformed pipes). A single “segment of deformed pipe
with thickness A1 and spacing (\r)~'” is defined as a 3\~ neighborhood of a Lipschitz curve

of length at most 2(Ar)~t.

7.2 Pipe dodging and intermittent Mikado bundles

In the continuous scheme, the building block flows are intermittent Mikado bundles, which are
bundles of pipes carefully designed to dodge previously placed intermittent Mikado bundles.
To give the idea, suppose that intermittent Mikado bundles comprised of deformed pipes

- -1 -1
of thickness A [y, A

4+n are given in a rectangular prism (g of particular dimensions. If

certain conditions are satisfied with respect to the spacing of the new bundles and the
dimensions of the prism {2y, we can successfully place new bundles of thickness )\q’jﬁ that
dodge all given bundles. Furthermore, the pipes in each new bundles will be placed to be at
least at a distance )\;iil“qﬂ away from a given deformed pipe of thickness )\q’ji. We call this
additional property effective dodging, and it will play a crucial role throughout our scheme.

The key observation is that the intermittency alone need not dictate the spacing of the

—1
q+n

-1

pipes in a bundle. For example, consider a set of pipes of thickness A YA

and spacing A
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restricted to the support of a set of a small number of pipes of thickness and spacing /\q_il.
An intermittent Mikado bundle is precisely such an object; a low frequency, small number

of homogeneous pipes on which high frequency, large numbers of intermittent pipes live.

-1

Placing new bundles made up of pipes of thickness A 5

consists of two steps. We divide
T3 into the rectangular prisms of dimensions A}, s x A_ /T2 x AT #, and first construct

the low frequency, homogeneous (bundling) pipes to effectively dodge all given pipes of

-1

: -1
thicknesses A a7

PISTRRE )\;jtﬁ " in each prism. The pipes of thickness A

will then be placed

in the support of the low frequency, homogeneous (bundling) pipes.

Proposition 7.2.1 (“Bundling” pipe flows p'g"o for Reynolds and current correc-
tors). Fiz a vector £ belonging to either of the sets of rational vectors from Propositions 7.1.1
or 7.1.2. Then for k € {1,... ,Pg}, there exist master scalar functions p;, and subsidiary
bundling pipe flows p’g’R = ﬁg,k for Reynolds correctors and p’gw = ﬁék for current correc-

tors satisfying the following.
(i) PE, is (T/rg 175 4)> -periodic and satisfies € - Vp, =0, where either o= R or o = .

(ii) The set of functions {pf}o}k satisfies the conclusions of Proposition 7.1.4 with r~! = I‘g,
A= /\qHI‘;l. In particular, supp p’éo N supp plgo = 0 for k # K, and there are FS

disjoint choices of placement.

(iii) / Py =1.
™

(iv) For all n < 3Ng, and p € [1, 00],

— n—3(2-1 n _ n..—3 %_
anpZR”Lp(TS) N (Pq 1/\‘1+1) L'y G )’ HV plg,w”Lp(TS) N (Fq 1/\q+1) Iy (

5
(7.23)

Proof. The proof is a straightforward adaptation of the proofs of Propositions 7.1.5 or 7.1.6
after construction of an L® normalized master function p,, which satisfies the shift and

support properties from Proposition 7.1.4. We omit further details. O
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With the bundling pipe flows defined, we record our first dodging proposition, which

uses the bundling pipes to dodge pipes with thickness at least A\, and at most quil. We

q+7/2
record and prove a statement for £ = e3 and leave the case for general direction vectors to

the reader.

Lemma 7.2.2 (Using bundling pipes to dodge very old, thick pipes). Let Q be
a rectangular prism of dimensions Ao x A LTS x AT 78, Suppose that there exists a
g-independent constant Cp such that at most Cp segments of their deformed segments with
thickness A, L and spacing (Ag4npl'y) ™ for some ¢ — i < ¢ < g — /2 (in the sense of
Definition 7.1.8) have non-empty intersection with . Let Ey C Qg denote the support of
such deformed segments inside . Then there exists k € {1,... ,FS} and a bundling pipe

flow p, o = pifg’o defined as in Proposition 7.2.1 such that
B (supp pf, o, A,4T2) NEyg =0 i, B(Ey, A\ 4T2) Nsupppt,,=0. (7.24)

Proof. We first divide the face [0, A}, I"2]* of the prism into the grid of squares of sidelength
R, +1Fq, and we will find a set of squares in which we can place a new bundling pipe flow

pE. .. Since the set of squares will be placed (T/x,.:r;*)*periodically, we have from (ii) that

: 2 4

A ls
(the possible number of placement of a set of squares) = m Zoetl g )
thickness A Ry

By assumption there exist at most Cp number of deformed pipe segments in the prism. When
we enlarge these segments by a factor of )\(;jlfg and project the enlarged neighborhood onto

the face [0, )\;leg]z, each projection will be contained in a ~ )\;jll’g-neighborhood of a curve
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of length at most ~ )\;jlfg by (7.20) and (7.21). It then follows that?

(the number of grid squares occupied by given enlarged segments)

area occupied by an enlarged segment

< number of segments x -
area of a grid square

7
5 CP % )\g+1r
r )\‘H-l

—CpT?

which is less than Fg for sufficiently large A\g. Therefore, from the pigeonhole principle, there

exists a set of squares in which we can place the pipe pfg}<> satisfying (7.24). O

We now use the intermittent pipe flows from Propositions 7.1.5 or 7.1.6 to dodge pipes

with thickness at least )\q +n and at most than At Combined with the previous propo-

q+n/2+1"

sition, we will have successfully dodged pipes of thicknesses in between )\q 1 and A L. As

q+n:

before, we present the statement for ¢ = e3 and omit further details.

Lemma 7.2.3 (Using very intermittent pipes to dodge newer, less thick pipes).

x A1

Let Q1 be a rectangular prism of dimensions X\ ey

i X A\;'T,% with the long side
in the ez direction. Suppose that a finite number of sets of (T/xyrinpuly)®-periodic pipes of
thickness )\q_,,l+ﬁ are given for all ¢ —n + "2 < ¢" < q, constructed as in Propositions 7.1.5
or 7.1.6. Furthermore, suppose that for each such ¢" and any convexr subset € C Qi with

diam () < A}

ey q,,, there exists a g-independent constant Cp such that at most Cpl'yr

segments of the deformed pipes of thickness )\;,IML have non-empty intersection with Q). For
fized ¢", let Ey denote the support of such segments inside 0y. Then for either o = R or

o =, there exists k and a corresponding intermittent pipe flow W, , 1= e Mg asnoTa/Agen

3A fully rigorous version of this estimate would utilize a standard covering argument which is predicated
on the geometric constraints imposed by Lemma 7.1.7, or even Definition 7.1.8; we however content ourselves
with a slightly heuristic version and refer the reader to [7, Proposition 4.8] for further details.

85



constructed as in Propositions 7.1.5 or 7.1.6 such that for all ¢ — /2 < ¢" < g,

B (Supp We, o, F2//+ﬁ)\_1

q//+,'7L

JNEy=0 ie, B(Ep, Fz,,Jrﬁ)\;,,lJrﬁ) Nsupp We, o, = 0.
Proof. As in the previous lemma, since we want to place a new pipe which enjoys effective
dodging with previously placed deformed pipes, instead of considering the previously placed
pipes themselves, we consider a thickened neighborhood of them. More precisely, for a
deformed pipe of thickness 2)\;“ we consider instead a neighborhood of it of thickness
Fg H)\q’ji and call these new objects ‘thickened pipes’. Then, it is enough to place a new
pipe that dodges these thickened pipes, so that a new pipe effectively dodges all previously
placed deformed pipes.

-1

g+n- Oince a new pipe will

We divide the face of €2y into a grid of squares of sidelength A

be placed (T/x,.n.T)3-periodically, we have from Proposition 7.1.5 or 7.1.6 that

. 2 2
Agtn
(the possible number of placement of a set of squares) = (%) = (ﬁ;ﬂ) .

(7.25)

Now, we count the number of grid squares occupied by given enlarged segments and
compare it to this number. From the assumption that there exists Cp which controls the
density of thickened, deformed pipe segments of thickness )\q’,,l . that can intersect a ball &'
of volume ~ (Agr4nl'¢7) ™2, we have that the total number of thickened pipe segments that

can intersect {2; is at most

length of Q idth of ;)2 Agrinalgn
)\q//+ﬁ/2 q" min </\;/1+ﬁ/2r;,1’ width of Ql) -

When we project all these thickened segments onto the face of €);, each projection will be

from (7.20)

-neighborhood of a curve of length at most ~ A~}

. . ~ 1 2
contained in a ~ A T b

q//_j'_,ﬁ q//_j’_ﬁ

and (7.21). Therefore, the number of grid squares occupied by each enlarged pipe projection
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18

. 1 1
area occupied by an enlarged segment A +n/2>\q”+n q'+n

. ~ 2
area of a grid square Agin

Thus the total number of grid squares covered by the union of all projections is

a )\ " Ln F // )\ n)\ 1n
~ S el x . - l/f . ‘”FS . iy (7.26)
q"'=q—n/2+1 q"+nt ¢ +n q7q

or the product of the two numbers computed above and summed over ¢”. This number will

be less than the the number in (7.25) if

aC, 2 o Agranfa Ag i

qun q >\ b\ ¢+ <1

for ¢ — 72+ 1 < ¢” < g, which is precisely (4.10e). ]

Considering the dimensions of the prism in Lemma 7.2.3, we further divide the support
of the bundling pipes using the following anisotropic cut-offs and assign different pipes on

the support of different cut-offs.

Definition 7.2.4 (Strongly anisotropic cut-off). To each £ € =, we associate a partition of

the orthogonal space £ € T3 into a grid* of squares of sidelength ~ X! We index the

q+n/2°

squares S in this partition by I which we will also denote by simply I. To this grid, we

associate a partition of unity Cg, i.€.,

1 on §S[
4
¢t : E (¢e)° =1, (7.27)
0 outside 281 I

which in addition satisfies (§- V) =0 and HVNCéH S AN ... for all N < 3Ng, and all I,

q+n/2

where the implicit constants depend only on =.

4One can use some version of the grid from Proposition 7.1.4, as the periodicity issues have been avoided
there.
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-1

Remark 7.2.5. We note that the number of grid squares of sidelength /\q ey partitioning
the orthogonal space ¢+ C T3 is < Ag ye Consequently, we bound the cardinality of the

index set I as
I € SH S N2y

We now introduce intermittent pipe bundles, which are defined on the support of a broad
rectangular prism at scale close to )\;1. These objects are multi-scale and consist of nearly
homogeneous bundling pipes at scale )\q’jl, upon which various intermittent pipes are placed
on the support of much finer cutoffs. We write the following definition under the assumptions
of Lemmas 7.2.2 and 7.2.3, which demand that the broad rectangular prism is inhabited by a
limited number of deformed pipes at various scales which avoid the support of the newly con-
structed pipes. In our inductive argument, this assumption corresponds to Hypothesis 5.4.2

and will be verified in subsection 9.2.

Definition 7.2.6 (Intermittent pipe bundles). For rectangular prisms Qg as in Lemma 7.2.2,

the intermittent pipe bundle associated to them is given by

1 1 I 1
Bio.r = Pen ) S Wigr and Bg, = p, D (€ Wi,
I 1

where pg o, and Wf&)& are chosen in Lemmas 7.2.2 and 7.2.3, respectively.

Remark 7.2.7 (Notational conventions). We shall frequently denote the intermittent

pipe bundles defined above as follows:

o Iogwrl
Bie)o = Pl D G “Wie)o (7.28)
I

The meaning of this notation is as follows:

(i) The choice of placements for each bundle B, will depend on which of the various
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mildly anisotropic checkerboard cutoff functions Cpoihel (these are defined in Defini-
tion 8.4.1 and correspond to the set €y in Lemma 7.2.2) we are trying to construct
the bundle on. Thus each bundle will depend on all the indices for Cpoike s S well as
the index j for the pressure cutoffs defined in Definition 8.3.2. We will suppress these
indices most of the time and simply write (£) in parentheses, where the parentheses is

a stand-in for the omitted indices ¢, 1, k, ij, o.

(ii) The subscript “o” in B, will be equal to either ¢ or R, corresponding to velocity

increments designed to correct current errors or stress errors, respectively.

(iii) We abbreviate the bundling pipes Pe)o DY p&). We write the ¢ in the exponent to
emphasize that the only difference between ¢ = ¢ and ¢ = R is the power of the scalar

function p ; used to define them.

(iv) We abbreviate the very anisotropic cutoff functions by Cé’o. We do not write £ in
parentheses, since ¢ g,o does not depend on anything besides the vector direction & and
the index I used to index the partition of unity. Also, the only difference between

o = and ¢ = R is the power, so we write ¢ in the exponent.

(v) We write Wfé)’ ., for the following reasons: first, the pipe flow depends on more indices
than just £, so we write (§) to denote the omitted indices; we include the index I to
emphasize that the placement of the intermittent pipe flow depends not just on the
omitted indices in (), but on the index I as well. Finally, we leave ¢ in the subscript
since the difference between Wé), » and W(QW is more than just a power; the former

has vanishing cubic mean, while the latter does not.

7.3 Synthetic Littlewood-Paley decomposition

When we estimate material derivatives of oscillation stress and current errors, we need dodg-

ing in order to handle the differential operator (uy_; —u,) - V in the material derivative
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applied to the error. To ensure a spatial support property even after taking the inverse diver-
gence operator and a frequency projection operator on a squared pipe density, we introduce
a synthetic Littlewood-Paley projector ]?’(,\17,\2}. This operator is defined using convolution
with a compactly supported kernel, and thus behaves like the original projection operator

P(x;,0,] in estimates but has an additional spatial support property.

Definition 7.3.1 (Synthetic Littlewood-Paley projector). Let ¢ € C°(R) satisfy
supp (¢) C (—1/v2,1/V2), /@ds =1, / s"Gds = 0
R R

for n = 1,...,10Ng,. Define ¢x(-) = Ap(\-), and set pr(x) = @r(x1)@r(xs). For f €

C>(T?), we define the synthetic Littlewood-Paley projectors by

]?D)\f(x) = /R? QO)\(y>f<.T - y)dya ]?D(Al,)\z}f = (ED)Q - ﬁbh)fﬂ (729)

where in the convolution we consider f as a periodic function defined on R2.

From the definition, it is easy to see that supp (vx, — ¢a,) € supp (¢y,) and hence
supp (ED(AI,AQ]f) C B(supp (f),A\;!). With a bit of care, this property persists even after

inverting the divergence.

Lemma 7.3.2 (Inverse divergence with spatial support property). For given f €

C=(T?) and D > 1, there exists a symmetric tensor field ©72 : T2 — R®”) such that

Iﬁﬁ)()q,)a](f) = ]P()q,)@](f - <f>) = ()‘Ildlv)(D) @;17/\2 y supp <@?17>\2> C B(supp (f)7 )‘Il) .

(7.30)

Proof. By a simple computation, we have
Pz (l’) - ¥x (ZL‘) = (@M (xl) — Pxn (‘Tl))@h (172) + Pn (1'1)(@>\2 (xQ) — Pxn (ZEQ)) . (731)
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Now define go(2) = @x,(2) — @x,(2). We first construct a function gp(z) : R — R with zero

mean such that upon differentiating D many times,
g =go,  suwpp(gp) C (—(V2M) (V2) ).

The construction follows from applying the following claim iteratively: if g; € C°(R) for
some i € {0,...,D — 1} satisfies [ s"g;ds =0 for alln =0,---,D — i, then we can find g;14

such that
Giv1 = i supp (gir1) C (—(\/§A1)_1,(\/§)\1)_1), /Sngi+1d8: 0Oforn=0,....D—i—1.
R

Assuming the claim, then g, satisfies fR s"go(s)ds = 0 for n = 0,---,D, so we can find gp

with zero-mean such that
g =g = =g,  supplgp) C (~(vV2A) 7, (V2A) 7).

To prove the claim, we define g; 1 by g;11(t) := ffa gids, where a is chosen so that supp (g;) C
(—a,a). Since g; has zero-mean, we can easily see that supp (¢;+1) C (—a,a), and g;41(a) =

giv1(—a) = 0. Using the latter, the vanishing moment condition follows from

1 “ 1 “
ni ds = —— n+1/i ds = — n+1id =0.
/RSQHS ntl w(s ) giv1ds n+1/a5 g:as
(1,1) _ _ o pityeiD) (2,..2)
Now, we set 6; (1, 22) = gp(x1)P, (22), and otherwise 0; is zero, and 6, (x1,20) =
&, (71)gp(22), and otherwise Géil """ ) is zero. Then
Oniofi™ " = go(w1)@ny(w2), supp () € B0, AT
By igBS) = 5y (1) g0(x2),  supp (6577 )y € B0, A7) . (7.32)
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Lastly, we define the desired tensor function @;1’)‘2 by
(O ) ) (1, w5) 1= © % f(1,x2) 1= AD[(01 + 02) )] f(ay, ) (7.33)

which by (7.31) and direct computation satisfies ()\l_ldiv)(D) @}1”\2 = ]?’()\17)\2}]”. The desired
spatial support property follows from (7.33) and (7.32). We note that since ), — ¢, has

Zero mean, IF’(,\I,)\Q](ﬁ =0. O

With the previous Lemma in hand, we aim to apply various synthetic Littlewood-Paley
projectors to smooth functions (such as squared pipe densities) and derive estimates for the
projected function, and its “inverse divergence potentials.” We shall generally decompose a

smooth, (T/xr)*-periodic function p which has derivative cost A as a sum of the form

Py, (p) + (Z f”u“,wp)) +(1a=P) (0). (7.34)

where )\g is slightly larger than Ar, and A\ is slightly larger than A\. The terms in the sum
are precisely of the form to which the previous lemma applies, and we estimate these in
Lemma 7.3.4. The bottom and top shells which correspond to the two terms not in the
summand are slightly unique cases; for these we record the following Lemma. Note that
spatial localization is not relevant for these unique cases, as the lowest shell will have no

spatial localization properties at all, and the highest shell will be vanishingly small.

Lemma 7.3.3 (Inverse divergence, special cases). Fiz q € [1,00]. Let N a positive
integer, N, < N/2 a positive integer, r, X such that A\r,\ € N, and p : (T/x)?> — R a smooth

function such that there exists a constant C,, with
”DNPHLCI(W) S Co A (7.35)

for N < N. Let \o, A\ be given with A\r < A\g < A < Ag. If the kernel © used in Defini-
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tion 7.3.1 has N, vanishing moments, then for p € [q, 00| we have that

2/q*2/p
HDN (f@& p) H <c,, (20 AN YN <N (7.36a)
0 LP,V P4 AT 0 — )
. )\ Nicx
N _ < _ N+3 < _ _
HD ((Id ]P’AK> p) HLOO < (AK) Co ) YN <N- N, —3. (7.36b)

Furthermore, for any chosen positive even integer D and any small positive number «, there
exist adjacent-pairwise symmetric® rank-D tensor potentials ¥ and O such that for 0 < k <

D and N in the same range as above,

_ A 2/g—2/p
divPdy = Py, Pop, | DN div*do]|,, S A5Cpy (Yf«) (AP PM (N, D — k, M, No)
(7.37a)
. /\ Nix
divPg = (Id = Py, )p, | DY divFi ||, . S (E) Co N3 PM (N, D — k, M, )
(7.37b)

The implicit constants above depend on « but do not depend on A\, Ay, A, orr.

Proof. For the proof of (7.36a), we first define F(z) = (Px.p)(*/x) to be the 1-periodic

rescaling of ﬁ’m«p- Then we can write that

DY (Barp) | (2) = (xr)™ sup | DV F (x)

reT?

= (Ar)" sup | DY /R e = y)ex () dy‘

zeT?2

xr—z
= (Ar)" sup DiV/ p( " )smo(Z) dz
RQ

z€T?2

=0 s | [ o (550 0Xesa:

zET2
M\ o) Ao\
S()‘T)N (E) (E) Cp,q:)‘(j)v (E) Cpq

for all N, and in particular for all N < N. This proves (7.36a) for p = 0o, and the full estimate

sup
x€T?2

°By “adjacent-pairwise symmetric,” we mean that permuting the 2n — 1 and 2n components for 1 < n <
D/2 leaves ¥ unchanged.
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follows from interpolation with the trivial L? estimate. To prove the second estimate, we
use the vanishing moments condition to expand p as a Taylor series and eliminate the first

N,, — 1 terms; in particular, we have that

o (1-5.))] o

_ . Bl =2 (') e o .
— [ encte=0) 3 [ =D DY ottty =) | dy

< [|[DN g

’Loo (AK)—N**
N
5 (i) >\N+3Cp,q-
AK

The above computation holds for N + N,, + 3 < N, concluding the proof of the second
estimate.

To prove the estimates for the tensor potentials, for £ = 0, K we first define

ﬁélig...iofﬂD — 51‘1'[2 . 6iD,1iDA7%I’@)\OP;&Op7 (738&)
ﬁil(iQ...i[)fﬂD — 5i1i2 . 5iD,1iD (Id . IF)\K>A7%]P7$Op (738b)

where 67 is the usual Kronecker delta. Then by direct computation and standard Littlewood-
Paley analysis, (7.37a) and (7.37b) hold. The « loss in the first estimate is due to the failure

of the Calderon-Zygmund inequality in endpoint cases. O]

We now move to the middle cases from (7.34), for which the spatial localization will be

important.

Lemma 7.3.4 (General localized inverse divergence). Fir ¢ € [1,00]. Let p: T?> - R

be a smooth function which is (T/x)*-periodic and for N < 2Ng, satisfies

||DNpHLq(1r2) S CoA (7.39)
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For Ar < A\ < Xy, define ©)* using Lemma 7.3.2. Then for p € [q,00], 0 < k < D,

0<a<x1, and N < Ngn, we have

19 D = =
()‘1 ldlv)( ) 921’)\2 = P(M,)\Q] (p) = P()\l,)\Q](p - <p>> (7408“)

2 2
B P min (A, Ag) et
| DN 0y, i (A POY1A2) )| (r2) S0 Cog (T ATEmin (A, Ag)™

(7.40b)

supp (@21’)‘2) C B(supp (p), \[ ). (7.40c)

The implicit constants above depend on « but do not depend on A, Ay, Ag, orr.

Proof. The spatial property immediately follows from Lemma 7.3.2. To obtain LP-norm

estimates, we will obtain L? and L* norm estimates and then interpolate them. We first
rescale by setting

N . ~ N A ~ A
i =n() M=5 =3 A==t (7.41)

so that p is T? periodic and satisfies
N~ N
|D p”Lq(T?) S Cpah
Constructing #; and 6, as in the previous lemma but for the choices in (7.41), we have

OPFON D (w1, 00) = gi(m1) @5, (22) . DML (w1, 20) = B, (1) gi(2) -

By direction computation, i.e. simply integrating a difference of mollifiers, we have that g
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satisfies

DY gull ey S0 ATM (N =108 ) o [[DVgl| ey S0 MM (N k=100,
N NN N YN+1
HD gOHLl(R) So Ay, HD goHLoo(R) Sp Ay T
Then we have the bounds
HDNalD—%? ----- D <p AAK HDNalD—’w? ----- D o MYk
L' (R2) Loo(R?)
N 9D—k(2;-,2) < YNY-k N 9D—kp(2,-,2) NN+1Y—k+1
Thus it follows by interpolation for 1/¢' =1 — 1/q that
e P L L P P
L7 (R2) L7 (R2)

We therefore have that for k =0,...,D,

~ N
A0 (i R ID—k
[0, 0], 5t () o
s ) N+2/¢+a
HDNail---ink(@Z)}l’)\Q)(’LL.”’ZD) e, <b )\D ¥ min ()\ Ag) ’ Cog s

where if Xg < X, we let the derivatives fall on 6;, and if XQ > X, we let the derivatives fall on

p. Using the interpolation inequality, we obtain

@il ,X2)(i1,“' 4iD) SD X?_k min(x, XQ)N+2/q_2/p+an,q .

HDNa
LP(T2)

11 7/Dk:
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Undoing our original rescaling, we find that

DY Ohyi (O)2) 0 So )N DY [0,y (0370

. 2240
< (M) Cp AP F min(A, Ag) " .

0 )
° HLP(TQ) LP(’]I‘Q)

A7

97



Chapter 8

Non-inductive cutoffs

8.1 Time cutoffs

Let x : (—1,1) — [0,1] be a C*° function which induces a partition of unity according to

ZX6(~—kZ)El.

kEZ

Counsider the translated and rescaled function
X (2157'(1_1I’f]+2 — k:) ,

which is supported in the set of times ¢ satisfying

[t =1om Ly R < e T = e [k = D)Yer D (ke 1) e T

We then define temporal cut-off functions

Xikq(t) =X (2157(1_11“3“2 —k) .
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It is then clear that

0" Xikal S (0527 (8.4)

for m > 0 and

Xikr.q(t)Xikag(t) =0 (8.5)

for all t € R unless |k — k2| < 1. In analogy to vy ,, we define

o=

Xigtq(t) = (G ro1,4(t) + Xorg() + Xorr10(D)° (8.6)
which are cutoffs with the property that
Xik+g = 1 00 SUPD (Xikq) - (8.7)
Next, we define the cutoffs x; x, by
Xigg(t) = x (t, "I, — k%) (8.8)
For comparison with (8.2), we have that X; ., is supported in the set of times ¢ satisfying
|t — 7,0 k| < 7L (8.9)

Let (i,k) and (i*, k*) be such that supp X; e N Supp Xix+q # 0 and * € {i — 14,7 + 1}.

Then as a consequence of these definitions and a sufficiently large choice of Ag,

SUPP Xi kg C SUPP Xi* kg - (8.10)
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8.2 Estimates on flow maps

We can now make estimates regarding the flows of the vector field u, for ¢ < ¢+ n—1 on
the support of a velocity and time cutoff function. This section is completely analogous to

[7, Section 6.4], and we omit the proofs.

Lemma 8.2.1 (Lagrangian paths don’t jump many supports). Let ¢ < ¢+n—1 and
(x0,t0) be given. Assume that the index i is such that wzq, (zo,t0) > K, where k € [1—16, 1}.
Then the forward flow (X(t),t) = (X(xo,to;t),t) of the velocity field U, originating at

(o, to) has the property that 17, (X (t),t) > #*f2 for all t such that [t — to| < quf;i+4.

Corollary 8.2.2 (Backwards Lagrangian paths don’t jump many supports). Sup-
pose (x0,t0) is such that 17 ,(xo,t0) > K7, where k € [L/16,1]. For [t —to| < Tq/P(;,i+3, define
x to satisfy

xo = X(x,t; 1) .

That is, the forward flow X of the velocity field uy, originating at x at time t, reaches the

point xo at time tg. Then we have

@Di,q/(l', t) 7é 0 .

Definition 8.2.3 (Flow maps). We define ®; 1, 4 (x,t) = ) (x,t) to be the flows induced

by uy with initial datum at time /{ZTq/Pq_i_g given by the identity, i.e.

B + Uy - V)B; o = 0
Oty - V) o (8.11)
Qi (2, kT ) = 2.

We will use D®; 1,y to denote the gradient of ®; 1 (which is a thus matrix-valued function).
The inverse of the matrix D®; ;) is denoted by (D(I>(Z-7k))_1, in contrast to Dcpalk), which is

the gradient of the inverse map Q)&lk).
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Corollary 8.2.4 (Deformation bounds). For k € Z, 0 < i < ipa, ¢ < qg+n—1, and

2 < N <3Nsnfy + 1, we have the following bounds on the support of V; (., t)Xi ke (t)-

[DP i) — IdHLoo(Spr A AD) ST (8.12a)
HDNCID(M) HLoo(supp ) N Ft;l(/\q’Fq’)N_l (8.12Db)
H(D(I)(i»k))_l - IdHLoo(supp (Vi o/ Xikq?)) S F;’l (8.12¢)
1D ((P6)™ M soe upp 0 < Tt QaTe)™ (8.12d)
HDN%’I’“) )L%upp o) (AT (8-12¢)

Furthermore, we have the following bounds for 1 < N + M < 3Nsn/2 and 0 < N’ < N:

| DY D, DY | < g Ty )N M (M, Ny, Thy7 L T Ty )

L (supp (wi,q/%i,k,q/))

(8.13a)

| DYDY DY (DD ) < g Ty ) MM (M, Ny, Th7 L T Ty )

L (supp (wi,q/%i,k,q/))

(8.13b)

8.3 Intermittent pressure cutoffs

In this section, we introduce cutoff functions for the level sets of 7,. Estimates for m, are

provided by (6.3a)—(6.3c).

8.3.1 Definition of the intermittent pressure cutoffs

We first introduce a partition of unity which is slightly more general than is needed at the
moment; however, the generality will prove useful in the construction of the velocity cutoffs.
The statement is almost identical to [7, Lemma 6.2]. The only slight difference is that (8.14)
holds for the sixth power (the least common multiple of two and three, corresponding to

cubic and quadratic error terms, respectively), and the estimates in (5) hold for arbitrary
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integer powers of the cutoff functions. The more general bounds follow from the fact that
since the cutoff functions are defined by gluing together exponential functions, raising to a

power is (locally) equivalent to dilation.

Lemma 8.3.1. For all ¢ > 1 and 0 < m < Ny, there exist smooth cutoff functions
Vm.gs Ymg © 10, 00) = [0, 1] which satisfy the following.

(1) The function 7, , satisfies 1[07i1_‘3(m+1)] < Vg < 1[0,F(2](m+1)].

(2) The function v, satisfies 1

[17%1‘\3("’""1)] S r)/m,q S 1[%7F3(m+1>]'

(3) For all y > 0, a partition of unity is formed as

Tona®) + D 7o (L7 y) = 1. (8.14)

1>1
(4) Fmg and Y o(Lg ") satisfy

SUPD Yrm,g () N SUPP Vg (D 2™ HD) =0 if i > 2,
0

SUPP Yim,q (T 20" ) A supp Yo (0,2 D) =0 if |i — | > 2. (8.15)
(5) For 0 < N < Ngy,, when 0 <y < Fg(mﬂ) we have
| DN Fg ()] S (g ()1 Nam T 2N D) (8.16)
For}l<y<1 we have
D™ Vg ()] S (Gm,g ()1~ (8.17)
while for irﬁ(m“) <y < T2 e have
| DN g ()] ST 2N (4 (1)) NN (8.18)

102



In each of the above inequalities, the implicit constants depend on N but not m or q. If
Ym,g OT Vmq 18 replaced on the left hand side with ~h, ., respectively 4%, . for p € N, then
a similar inequality holds after substituting the same power on the right-hand side and

changing implicit constants.
We now introduce the intermittent pressure cut-off functions.

Definition 8.3.2 (Intermittent pressure cutoff functions). For j > 1 the cut-off func-

tions are defined by
Wig(2,t) = 70 (rq—% (8,0n) "oz, t)) , (8.19)
while for j =0 we let
(1) = o ((8,00) el ) (8.20)

where Yo 1= V0,4 and Yo = Yoq-

An immediate consequence of (8.14) with m = 0 is that {W?,q}jzo satisfies

D Wi =1, wigwpe=0 if |j—j>1 (8.21)

320

on T2 x R.
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8.3.2 Estimates for intermittent pressure cutoffs

Lemma 8.3.3. For all m + k < Ng, and j > 0, we have that

Loupp (w; i) | D D@, £)| < TE4065, 7 (LgAg)* M (m, Niae, Ti7y T (8.22a)
Ya8g1n T2 < Lgupp (w;.q) e (8.22Db)
1/8 Z wj7q§q+,—lljgj <y, (8.22¢)
J
Lsupp (wj.g10i.q) |Dk Ré(xvt)’ < F2j_45q+ﬁ(r Aq)kM (m7 Nind,t, F; q ,Tq_l) , (8.22d)

1supp(wj,q¢i,q)\D’“Dg”;w(x,t)] < I¥- 752 ro (TgAg) M (m, Nipaye, Tt T,') . (8.22¢)

a+nTq qTq

Proof. First, observe that by the construction of w;,, we have that for all j > 0,
Loupp (w5.) 1 Te] = Loupp (wy )¢ < T/ 017 (8.23)
Then, recalling the pointwise estimate (6.3c) and using (8.23), we have that

]-supp(wj,q)h/}l qD Dmﬂ'f(x t)| ~ supp(wj q)F W[(F A ) M (m, Nind,t7F 7'71 T )

qa'q 7

< T35 (DgAg) P M (my Nipaye, Thr 1, T

q(I’

To obtain the lower bounds on 7, on the support of w;,, we appeal to (6.6) in the case j = 0,
and the definition of w;, in the case j > 1. Summing over j and appealing to (8.21) yields
(8.22c). Next, we can obtain the pointwise estimates (8.22d) and (8.22e) for R and ¢{ in a
similar way by using (6.7a) and (6.7b), respectively. Finally, we obtain (8.22¢) from (6.6),

the definition of w;, for j > 0, and . ]
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Corollary 8.3.4. For ¢ >0, 0 <4 < iy, and o, 8 € N§ with |a| + |8] < Ng,, we have

S sz+65q+ﬁ(Fqu)‘alM (’m, Nind,, it T_l) (8.24a)

k
(H Do ng> T

q'q 7 g
=1 L2 (supp (Yi,qwj,q))
k
(H D“fo,é) Ry ST 0,a(Talg) M (18], Nina, Ty T, )
=1 L (supp (i,qwy,q))

(8.24b)

.3 '
S F23*7(52 Tﬁl(Fqu)la‘M (lﬁ’a Nind,t>FZ7—71 T;l) :

a+nTq q'q >
Loe (supp (vi,qwj,q))

(8.24¢)

Proof of Corollary 8.3.4. We only work on the estimate for m, because the estimates for R{
and ¢f can be obtained in a completely analogous way from Lemma 8.3.3 and Lemma A.2.3,
Remark A.2.4. We then apply Lemma A.2.3 with v = u,, f = 1, = supp¢; , N SUPP wj 4,
and p = oco. In view of estimate (5.34) at level ¢, the assumption (A.27) holds with C, =
TTIALY, Ay = Ay = Ay, Ny = 00, 1y = il i, = T, VT, Y, and N = Nipas. On the other

hand, the bound