
Dissipative Intermittent Euler Flows

satisfying the local energy inequality

Vikramaditya Giri

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Mathematics

Adviser: Camillo De Lellis

May 2023



© Copyright by Vikramaditya Giri, 2023.

All Rights Reserved



Abstract

The goal of this thesis is to show the existence of dissipative solutions to the incompressible

Euler equations with almost 1/3 of a derivative in L3 that satisfy the local energy inequality

strictly. This proves an intermittent form of the Strong Onsager Conjecture proposed by

Philip Isett. The contents of this thesis are joint work with Hyunju Kwon and Matthew

Novack.
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Chapter 1

Introduction

Let’s consider the incompressible Euler equations


∂tu+ (u · ∇)u+∇p = 0

divu = 0

(1.1)

on the periodic domain T3 = [−π, π]3. Here u : [0, T ]×T3 → R3 is a time-dependant vector

field on the torus T3 called the fluid velocity and p : [0, T ]×T3 → R is a scalar function called

the pressure. The first equation, called the momentum equation, is derived from Newton’s

second law of motion with internal force −∇p. The incompressibility of the fluid is ensured

by the divergence-free condition. These equations were introduced by Euler more than 250

years ago to model the flow of an ideal volume-preserving fluid with no internal friction.

We note that the pressure (up to addition of a constant) can be recovered from the fluid

velocity by solving the elliptic equation

∆p = −div [(u · ∇)u] .

Indeed, the pressure acts as a Lagrange multiplier that ensures the divergence-free constraint

on the vector field u. The lack of internal friction suggests that the kinetic energy |u|2/2 cannot
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be dissipated as heat and so one expects that the total kinetic energy is conserved. Indeed,

if we multiply the first equation by u we see that

0 = (∂tu+ (u · ∇)u+∇p) · u = ∂t
|u|2

2
+ (u · ∇)

|u|2

2
+ u · ∇p

= ∂t
|u|2

2
+ div

[
u

(
|u|2

2
+ p

)]
. (1.2)

Taking the integral over the whole domain and using the divergence theorem tells us that

the total kinetic energy is conserved

d

dt

ˆ
T3

|u|2

2
= 0 . (1.3)

However, this conserved quantity alone is unable to show the global existence of a solution

from a smooth initial data. Indeed, the problem of global existence for the 3D incompressible

Euler equations is a major unsolved problem.

The equation (1.2) is a stronger statement than the conservation of total kinetic energy

and it is called the local energy identity. It implies that the conservation of kinetic energy

holds in any local region. In other words, the the rate of change of kinetic energy in an

arbitrary local region is balanced with energy flux and work done by pressure through the

boundary of the region.

1.1 Anomalous dissipation in the vanishing viscosity

limit

Upon adding a dissipative term to the Euler equations, one gets better compactness for

approximate solutions. Such a dissipative term could be a Laplacian, a fractional Laplacian,

etc. In case of the Laplacian, one obtains the incompressible Navier-Stokes equations. For a
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given constant ν > 0, these are given by


∂tu

ν + (uν · ∇)uν +∇pν = ν∆uν

div uν = 0

(1.4)

The constant ν is called the viscosity of the fluid and is a measure of the internal friction

in the fluid. Note that one formally gets the Euler equations (1.1) in the vanishing viscosity

limit ν → 0+.

In the case of the 3D incompressible Navier-Stokes equations (1.4), one is able to show

the global existence of so-called suitable weak solutions. These are weak solutions of the N-S

eqns. that in addition satisfy an analogous local-energy inequality:

∂t
|uν |2

2
+ div

[
uν
(
|uν |2

2
+ pν

)]
≤ ν∆

|uν |2

2
− ν|∇uν |2 . (1.5)

In fact, such suitable weak solutions exist for a wide class of dissipative terms like the

fractional Laplacians ∆α for α > 3
4
. Also, for α > 5

4
, one has the existence of a unique global

smooth solution from smooth initial data. Proving the same statement for the Navier-Stokes

eqns. is another major unsolved problem and is one of the Millennium Prize problems.

We now introduce the important concept of the Duchon-Robert measure. It will quantify

the change in kinetic energy in a fluid due to the possible presence of singularities in the

fluid velocity field. For a divergence-free vector field u, the Duchon-Robert measure D(u) is

defined as follows: for a smooth, compactly-supported function ϕ : R3 → R such that ϕ is

even, non-negative, and has unit mean, let ϕε(x) := ε−3ϕ(x/ε) for ε > 0; now we define

D(u) := D − lim
ε→0

ˆ
R3

∇ϕε(ℓ) · (u(·+ ℓ)− u(·)) |u(·+ ℓ)− u(·)|2 dℓ (1.6)

where D − lim denotes the limit in the sense of distributions. We note that D(u) ≡ 0 for

a smooth vector field u. Duchon and Robert introduced this concept in [20] and in that
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paper they proved that for the weak solutions of Navier-Stokes constructed by Leray in his

influential paper [32], one has that D(uν) ≥ 0 and moreover one has the equality

∂t
|uν |2

2
+ div

[
uν
(
|uν |2

2
+ pν

)]
= ν∆

|uν |2

2
− ν|∇uν |2 −D(uν) .

In particular, D(uν) is independent of the choice of ϕ. The above equality implies that

dissipation of energy of turbulent Navier-Stokes flows uν occurs either from viscosity or from

potential singularities of uν and these are measured by ν|∇uν |2 and D(uν), respectively.

It is a natural question to ask whether suitable weak solutions to N-S converge to a

solution of Euler as the viscosity parameter ν → 0+. If we assumed that the solutions uν

to the corresponding ν-N-S equations converged to a vector field u in L3
t,x, then the local

energy inequality would imply that

∂t
|u|2

2
+ div

[
u

(
|u|2

2
+ p

)]
= −D(u) ≤ 0 ,

where D(u) is the Duchon-Robert measure for the solution u given by (1.6). This measure

exists (and is unique for any choice of regularization by convolution) for any L3
t,x solution

of the incompressible Euler equations as proved by Duchon and Robert (c.f. [20]). Thus

the content of the above formula is that this measure is non-negative: i.e. energy cannot be

created locally through the evolution of the solution. Based on the above reasoning based

on vanishing viscocity limits, Duchon and Robert further postulate that physical solutions

of the incompressible Euler eqns. must, in addition, satisfy D(u) ≥ 0 (i.e. the local energy

inequality).

In this context, anomalous dissipation is the statement that D(u) ≥ 0 and D(u) > 0

somewhere. Upon taking spatial averages ⟨·⟩ in the above vanishing viscosity limit, one has

that

ε̄ := lim
ν→0+

⟨ν|∇uν |2 +D(uν)⟩ = ⟨D(u)⟩ > 0 (1.7)
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In other words, anomalous dissipation states that the mean total energy dissipation rate

remains strictly positive in the inviscid limit. Thus solutions of incompressible Euler (1.1)

exhibiting anomalous dissipation will strictly dissipate their total kinetic energy. This phe-

nomenon of anomalous dissipation has been experimentally verified and confirmed by various

numerical simulations and often goes by the term the zeroth law of turbulence. As already

discussed smooth solutions to the incompressible Euler eqns. must conserve total kinetic

energy and so, they cannot model real turbulent fluids. On the other hand, considerations

based on vanishing viscosity suggests that turbulence is necessarily modelled by the incom-

pressible Euler eqns. (c.f. [36]) So, we conclude that real turbulent fluids can be modelled

by weak but not strong solutions to the incompressible Euler eqns. Here kinetic energy can

transfer from large to small scales and eventually dissipate into thermal energy, even in the

absence of viscosity. The mathematical validation of this law remains one of the major open

problems in fluid dynamics. (For the mathematical formulation of the zeroth law, see for

example [27].) A natural question now is to explore at what regularity solutions can start

to dissipate energy. This will be the content of the next section.

1.2 The strong Onsager conjecture

Lars Onsager in his influential study of turbulence ([36]) explored weak solutions of Euler

and Navier-Stokes noted that:

“ It is of some interest to note that in principle, turbulent dissipation as described could

take place just as readily without the final assistance by viscosity. In the absence of viscosity,

the standard proof of the conservation of energy does not apply, because the velocity field does

not remain differentiable! In fact it is possible to show that the velocity field in such “ideal”

turbulence cannot obey any LIPSCHITZ condition of the form

|v(r′ + r)− v(r′)| < (const.)rn
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for any order n greater than 1/3; otherwise the energy is conserved. Of course, under the

circumstances, the ordinary formulation of the laws of motion in terms of differential equa-

tions becomes inadequate and must be replaced by a more general description; for example,

the formulation in terms of FOURIER series will do. ”

It is amusing to note that what Onsager means by spaces satisfying a Lipschitz con-

dition is what we now call Hölder spaces. Thus, in explaining the anomalous dissipation

phenomenon, Onsager proposed a threshold Hölder regularity for the conservation of total

kinetic energy in Euler flows as 1/3; when a weak solution1 is in the space L∞
t C

α
x with

α > 1/3, the total kinetic energy is always conserved as in (1.3), while for α < 1/3, the

conservation may fail. This is now referred to as the Onsager’s theorem after the rigidity

statement is rigorously proved by Constantin-E-Titi [11] (extended further in [10]), and the

flexibility part is resolved by Isett [26] (see also [6]) building upon the serious of developments

[14, 15, 25, 1, 2, 4, 3, 5, 12, 28].

Theorem 1.2.1 (The Onsager Theorem). Let (v, p) be a weak solution of the incom-

pressible Euler eqns. on the periodic 3-dimensional torus T3 with

|v(x, t)− v(y, t)| ≤ C|x− y|θ ∀x, y, t

(where C is a constant independent of x, y, t).

• (Rigidity) If θ > 1
3
, then E(t) =

´
T3 |v|2 dx is necessarily constant;

• (Flexibility) For θ < 1
3
there are solutions for which E(t) is strictly decreasing.

However, the solutions constructed in the flexible side of the Onsager theorem do not

satisfy the local energy inequality (1.5) and consequently, these solutions have no chance

of arising as vanishing viscosity limits of suitable weak solutions of the Navier-Stokes eqns.

Recall that the local energy inequality prevents the local creation of kinetic energy but

1u is a weak solution to the Euler equations iff u ∈ L2
t,x satisfies (1.1) in the distributional sense.
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allows its dissipation and, as we have seen, following [20], such dissipation can arise from a

possible singularity of the solution u and is captured by Duchon-Robert measure D(u). In

the context of a hyperbolic system of conservation laws, the local energy inequality serves

as the entropy condition, which plays a crucial role in identifying physically acceptable

solutions, particularly in scalar conservation laws. For instance, the Burger’s equation, which

are regarded as a 1D model of the Euler equations, have the uniqueness of bounded weak

solution under the entropy condition analogous to (1.5). Motivated by these considerations,

in an attempt to obtain physically-relevant solutions to the incompressible Euler eqns. (1.1),

Isett in [27] proposed the following strong Onsager conjecture:

Conjecture 1 (Strong Onsager Conjecture). There exists an open interval I, and a weak

solution (v, p) to the incompressible Euler equations on I × T3 that is of class v ∈ L∞
t C

1/3
x

and satisfies the local energy inequality with the left hand side D(u) not identically zero.

Isett in [27] also showed the existence of such solutions that have a 1/15-Hölder regularity.

This regularity has been improved to 1/7 by De Lellis and Kwon in [17] where they prove the

following theorem which is the state-of-the-art (at the time of writing this) towards Hölder

continuous solutions to the above strong Onsager conjecture.

Theorem 1.2.2. For any 0 ≤ β < 1/7 there are strictly dissipative weak solutions v to the

incompressible Euler equation in Cβ([0, T ]× T3) for which D(u) ≤ 0.

1.2.1 Relation to weak-strong uniqueness

We remark that the techniques used to obtain above existence results as well as those used in

this thesis are unable to specify the initial data in a Cauchy problem. Indeed, if one were to

specify smooth initial data and were able to construct dissipative solutions to (1.1) satisfying

(1.5), then one would have proved a blow-up result for the incompressible Euler equations.

This is because local well-posedness will imply the existence of a smooth solution for a short

time and our constructed solution will have to agree with this smooth solution during its
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time of existence by the weak-strong uniqueness principle. The fact that the solution is

dissipative implies that the smoothness must break down in finite time by the rigidity part

of the Onsager theorem.

Also, it is important to note that the flows exhibiting anomalous dissipation that have

been observed in experiments and numerical simulations need not have developed from

smooth initial data. Quoting Eyink in [22]: The most common experiments study turbulent

flows produced downstream of wire-mesh grids or are generated by flows past an obstacle.

In either case, the generation of turbulence is associated to vorticity fed into these flows by

viscous boundary layers that detach from the walls. Since the boundary layers get thinner

as ν → 0, the initial data of these experiments cannot be considered to be smooth uniformly

in ν. See [22] for more details.

1.3 Fully-developed turbulence

Kolmogorov initiated the modern statistical study of turbulence in his famous 1941 papers,

c.f. [30, 31]. The theory initiated by him goes by the name K41 theory and is closely related

to the conjectures of Onsager outlined above. We describe the theory and a local formulation

of it due to Eyink [22] below.

K41 is a statistical theory by which we mean that we have a good notion of a “random”

solution to the fluid equations that can be chosen from some appropriate probability space.

We will denote here by ⟨·⟩stat to denote the statistical average of the random solutions. Note

that this notion has not yet been given a fully rigorous mathematical foundation and must

therefore be regarded as purely “physical” motivation.

Given a random velocity field that describes the motion of an incompressible fluid on T3,

we define for x, r ∈ T3 the two-point velocity increment as

δu(x, r) := u(x+ r)− u(x) .
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We also define the longitudinal and transverse velocity increments respectively as

δ∥u(x, r) := δu(x, r) · r
|r|

, δ⊥u(x, r) := δu(x, r)− δ∥u(x, r)
r

|r|
.

The famous 4/5 law of Kolmogorov’s K41 theory states that

⟨(δ∥(x, ℓ))3⟩stat = −4

5
ε̄|ℓ| . (1.8)

This law was derived by Kolmogorov from his assumptions of homogeneity, isotropy, and

self-similarity. It has also been verified by numerous experiments and numerical simulations

and is regarded as an exact law of turbulence.

1.3.1 A local K41 theory

The Duchon-Robert measure is remarkable as it is connected with an exact law in turbulence:

the so-called “Kármán-Howarth-Monin relation”

∇ℓ · ⟨δu(x, ℓ)|δu(x, ℓ)|2⟩stat = −4ε̄ .

More generally, it was noticed by Eyink in [22] that the Duchon-Robert measure is a key

player in deriving local versions of the various laws in K41 theory.

Already, Duchon and Robert in [20] prove a rigorous form of the the so-called “4/3-law”.

We reproduce their argument here: first set

S(u)(x, r) :=

ˆ
S2

|δu(x, rℓ)|2(δu(x, rℓ)) · ℓ̂ dℓ

where S2 is the unit sphere in R3 and ℓ̂ is the unit vector. Since the Duchon-Robert measure

does not depend on the choice of ϕ for the solutions of (1.1) that we consider, we choose

ϕ(ℓ) = ϕ(|ℓ|) to be a radially-symmetric function. Now a computation gives us that upon

9



setting

Dε(u) :=
1

4

ˆ ∞

0

ϕ′(r)r3
S(u)(x, εr)

εr
dr

we have that D − limε→0D
ε(u) = D(u). Moreover, assuming that as ε → 0, S(u)(x, ε)/ε

tends to a limit s(u)(x), then

Dε(u) → 1

4
s(u)

ˆ ∞

0

ϕ′(r)r3 dr = −3

4
s(u)

and so we get s(u) = −4
3
D(u) which is a local and non-random form of Kolmogorov’s 4/3

law.

Similarly, the main theorem in [22] is

Theorem 1.3.1 (Theorem 1 of [22]). Let u ∈ L3([0, T ]×T3) be a weak solution of (1.1).

Now let

Dε
L(u) :=

3

4

ˆ
T3

∇ϕε(ℓ) · δu(ℓ)|δ∥u(ℓ)|2 +
2

|ℓ|
ϕε(ℓ)δ

∥u(ℓ)|δ⊥u(ℓ)|2 dℓ

Dε
T (u) :=

3

8

ˆ
T3

∇ϕε(ℓ) · δu(ℓ)|δ⊥u(ℓ)|2 −
2

|ℓ|
ϕε(ℓ)δ

∥u(ℓ)|δ⊥u(ℓ)|2 dℓ

Then, both Dε
L(u) and D

ε
T (u) converge as distributions to D(u) as ε→ 0.

As corollaries of this theorem, under similar assumptions needed in the 4/3 law, Eyink

is able to derive rigorously local versions of the 4/5 and 4/15 laws in K41 theory:

D − lim
ℓ→0

1

ℓ

ˆ
S2

(δ∥u(x, ℓ))3 dℓ = −4

5
D(u) , D − lim

ℓ→0

1

ℓ

ˆ
S2

δ∥u(x, ℓ)|δ⊥u(x, ℓ)|2 dℓ = − 8

15
D(u)

The sign of D(u) then implies the remarkable fact of K41 theory that the cubic powers of

the longitudinal increments have a sign on average.
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1.3.2 Anomalous dissipation as a conservation law anomaly

A fruitful way of thinking about anomalous dissipation is to think of the energy in a fluid

being transferred from coarse scales to finer scales through non-linear interactions of the fluid.

However, our experiments cannot detect arbitrarily small scales and so we are constrained to

make measurements above a certain scale ℓ > 0. So we can only measure a “coarse-grained”

uℓ flow rather than the actual flow with infinite precision. One way of mathematically-

modelling this coarse grained flow is by mollifying u with a smooth, compactly-supported,

unit mean bump function at spatial scale ℓ. Another (almost equivalent way) is to model

the coarse grained flow as P≤ℓ−1u where P≤ℓ−1 is a Littlewood-Paley projector to frequencies

less than ℓ−1. In fact this is the approach Onsager took in [36] and which we will now briefly

explain following Eyink in [23].

This coarse grained flow P≤ℓ−1u does not solve the incompressible Euler eqns. (1.1) as

the projector P≤ℓ−1 does not commute with the quadratic non-linearity in (1.1). However,

applying P≤ℓ−1 to (1.1) gives us


∂tP≤ℓ−1u+ div(P≤ℓ−1u⊗ P≤ℓ−1u) +∇P≤ℓ−1p = div (P≤ℓ−1u⊗ P≤ℓ−1u− P≤ℓ−1(u⊗ u))

divP≤ℓ−1u = 0

(1.9)

The 2-tensor in the divergence on the right hand side of the first equation is called the

Reynolds stress and we denote it by −Rℓ. Now taking the dot product of the first eqn. with

P≤ℓ−1u, we get the local energy identity for the coarse-grained system

∂t
|P≤ℓ−1u|2

2
+ div

[
P≤ℓ−1u

(
|P≤ℓ−1u|2

2
+ P≤ℓ−1p+Rℓ

)]
= ∇P≤ℓ−1u : Rℓ (1.10)

The quantity on the right hand side of the above eqn. is the so-called “deformation work”

of the large-scale strain against the small-scale Reynolds stress. It can also be interpreted

as the “energy flux” from the resolved scales ≥ ℓ to the unresolved scales < ℓ.
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The work of Constantin-E-Titi [11] shows that for |δu(x, r)| ≲ rβ, we have

Rℓ = O(ℓ2β) , ∇P≤ℓ−1u : Rℓ = O(ℓ3β−1)

from which we can easily see that β > 1/3 implies conservation of energy.

The Reynolds stress tensor Rℓ is not a simple functional of the resolved/coarse-grained

velocity P≤ℓ−1u. Indeed, path integral approaches combined with renormalization group

techniques compute Rℓ to be a highly complicated functional of P≤ℓ−1u with transcendental

non-linearity, long-term memory, and intrinsic stocasticity. See Eyink [21] for more details.

This lack of a simple expression for Rℓ in terms of the resolved velocity is what is referred

to as the “closure problem” in turbulence. One can guess that this might lead to potential

non-uniqueness and indeed, the convex integration techniques used in this thesis exploit this.

From the renormalization group point of view, the weak solutions of (1.1) proposed by

Onsager correspond to taking the UV limit ℓ→ 0, so that

Rℓ → 0 , D − lim∇P≤ℓ−1u : Rℓ → −D(u)

Thus we see that the local energy identity (1.2) has to be modified by the “anomaly term”

D(u) due to the non-linear energy flux ∇P≤ℓ−1 which persists even as the length scale ℓ →

0. Quoting Eyink [23]: As first noted by Polyakov [37, 38], there is a striking analogy to

conservation-law anomalies in quantum field theory, where terms similar to D(u) appear that

vitiate conservation laws which hold classically.

1.3.3 Intermittency

The moments of the velocity increments δu, δ∥u, δ⊥u encode encode valuable information

about the fine structure of turbulent flow and are referred to as structure functions. Let us

define

Sm,n(|r|) := ⟨⟨(δ∥u(x, r))m|δ⊥u(x, r)|n⟩⟩stat (1.11)
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where the inner angle brackets denote an average in space, time, and the angle r/|r| ∈ S2.

The reason for this averaging is though K41 theory assumes statistical homogeneity in space

and time and isotropy of our random field, numerical simulations and experiments will always

have residual inhomogeneity and anisotropy due to the setup which we’d like to remove.

See [29] for more details.

In the preceding discussion, we have already come across various structure functions. For

instance, the 4/5 law is simply the statement S3,0(|ℓ|) = −4/5ε̄|ℓ|. However, notice that we

have only discussed these functions in cases when p := m + n = 3. Indeed, the approach of

Duchon and Robert [20] and Eyink [22] are unable to say anything regarding the case p ̸= 3.

For any m,n let us define the structure function exponents as

ζ(m,n) := lim
h→0

logSm,n(h)

log(ε̄h)
.

Note that the self-similar scaling in K41 theory predicts that ζ(m,n) = (m+ n)/3.

The case p = 3 correspond to exact laws of turbulence and is supported by all the

experimental evidence. However, in the case p ̸= 3: experiments and numerical simulations

have confirmed that the real world fluid does not align with Kolmogorov’s prediction ζ(p,0) ≈

p/3, rather it shows the following deviation; when p < 3, ζ(p,0)/p > 1/3 while when p > 3,

ζ(p,0)/p < 1/3. Such deviation is attributed to the intermittency of turbulent flows. To put

down a definition for intermittency, we quote Buckmaster and Vicol in [8]:

“ In a broad sense, intermittency is characterized as a deviation from the Kolmogorov

1941 laws. Already in 1942 Landau remarked that the rate of energy dissipation in a fully

developed turbulent flow is observed to be spatially and temporally inhomogeneous, and thus

Kolmogorov’s homogeneity and isotropy assumptions need not be valid ... The main feature

seems to be the presence of sporadic dramatic events, during which there are large excursions

away from the average. ”

The results of numerical simulations performed by Iyer, Sreenivasan and Yeong [29]
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suggest that as n grows, the transverse structure function exponents ζ(0,n) appear to saturate

towards a value ζT∞ ≈ 2. This indicates that the flows have very large jumps in the transverse

gradient and that they are merely bounded with no Hölder regularity!

Now similar to Sm,n, the pth order absolute structure function Sp(ℓ) satisfies a scaling

relation of the form

Sp(ℓ) := ⟨|δu(x, ℓ)|p⟩stat ∼ |ℓ|ζp ,

where the exponent ζp depending on p is given as a positive number. It’s worth noting

that the implicit constant in this relation is independent of viscosity. For p = m + n, this

indicates the uniform boundedness of turbulent flows in the Besov space B
ζp/p
p,∞, considering

the equivalence

∥v∥Bs
p,∞(T3) ∼ ∥v∥Lp(T3) + sup

|z|>0

∥v(·+ z)− v∥Lp(T3)

|z|s
.

The experimental and numerical observations as briefly outlined above suggest thatB
1/3
3,∞∩L∞

is a more physically reasonable space for turbulent flows than Hölder space C1/3, where

the Onsager theorem was proven. In this direction, the intermittent Onsager theorem was

recently obtained in [35] where a constructed non-conservative solution to (1.1) in the class

C0
t (H

1/2− ∩ L∞−) ⊂ C0
tB

1/3−
3,∞ and so accommodates the intermittent nature of observed

turbulence.

1.4 An L3-based strong Onsager conjecture

With the significance of the local energy inequality in mind and adapting to the intermittent

nature of turbulence, we now introduce an L3-based version of the strong Onsager conjecture.

Conjecture 2 (L3-based strong Onsager conjecture). Let β ∈ (0, 1) and T ∈ (0,∞).

• (Rigidity) For any β > 1/3, if a weak solution to the Euler equations is in C0([0, T ];Bβ
3,∞(T3)),
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then it satisfies the local energy identity D(u) ≡ 0 in distribution sense.

• (Flexibility) For any β < 1/3, there exists a weak solution to the Euler equations

in C0([0, T ];Bβ
3,∞(T3)) which satisfies the local energy inequality (1.5) in distribution

sense but not identity D(u) ≡ 0.

The rigidity part has been established by Duchon-Robert [20]. In this thesis, we will give

a proof of the flexible side when β is in the remaining region [1/7, 1/3), leading to the full

resolution of the L3-based strong Onsager conjecture. We note that the critical case β = 1/3

still remains open.
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Chapter 2

The Main theorem

In our main theorem, we solve the flexible side of our L3-based version of the strong Onsager

conjecture.

Theorem 2.0.1 (Main theorem). For any fixed β ∈ (0, 1/3) and T > 0, we can find a

weak solution u in C0
t (B

β
3,1∩L

27−80β
9(1−3β) )([0, T ]×T3) to the Euler equations which dissipates the

total kinetic energy and satisfies the local energy inequality. In particular, the solution is in

C0
tB

β
3,∞.

The proof of the main theorem will follow from the inductive proposition 5.6.1 and will

be given in section 5.6. We now outline the organization of the chapters of this thesis:

Chapter 3 explains the main new ideas and difficulties in the proof of the inductive

Proposition 5.6.1.

Chapter 4 specifies parameter choices and provides useful inequalities resulting from these

choices.

Chapter 5 outlines the proof of Theorem 2.0.1 through an inductive argument based

on convex integration. We list the inductive hypotheses, introduce an inductive proposi-

tion 5.6.1, and present a proof of the theorem assuming the proposition.

Chapter 6 is a short technical chapter that provides definitions and estimates on various

mollified objects in the scheme. This is to overcome the “loss of derivatives” phenomenon
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that is common in convex integration schemes.

Chapter 7 introduces the main “building blocks” for our wavelet-based scheme: the

intermittent Mikado bundles. We discuss dodging between straight pipes first and prove

the disjoint support property. We then introduce a general wavelet decomposition for our

intermittent objects: the synthetic Littlewood-Paley decompositions.

Chapter 8 is a technical chapter that constructs various partitions of unity.

Chapter 9 constructs the velocity perturbation increment that will be used to correct our

errors.

Chapter 10 considers the stress error generated by adding the new velocity increment to

the relaxed Euler-Reynolds system at qth step. We define the stress errors and associated

pressure increments, providing estimates for both.

Chapter 11 considers the current error generated by adding the new velocity increment to

the relaxed local energy inequality at qth step. We define the current errors and associated

pressure increments, providing estimates for both.

Chapter 12 constructs a partition of unity so that the different regions provide a sharp

Lipschitz control of our background intermittent valocity field.

Chapter 13 gathers all pressure increments constructed in previous chapters and defines

a new pressure increment and a new intermittent pressure, along with their estimates and

verification of relevant inductive assumptions. These new pressures generates new current

errors. We estimate them and finalize the definition of stress/current errors at (q+1)th step.

Appendix A contains various tools that are needed to run our convex integration scheme.

These include a Lp decoupling lemma, an inverse divergence operator that (essentially)

preserves the support of its input, and lemma that constructs a high-frequency “pressure

increment” that will be used to pointwise dominate the various errors.
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Chapter 3

Idea of Proof

Our approach to constructing solutions to (1.1) that satisfy (1.5) will be a convex integration

or Nash iterative scheme. The idea is to solve the equation approximately by solving a

“relaxed” equation with an error term. We run an iterative procedure where at each step

of the iteration we cancel the error by adding in a velocity perturbation to our original

velocity. The error is cancelled by the non-linear interactions with the perturbation with

itself: where the interactions are from the quadratic non-linearity in (1.1) and from the cubic

non-linearity in (1.5). We refer to the excellent surveys [16] and [8] for more information

surrounding convex integration schemes for equations in fluid dynamics.

The first step then is to write down the relaxed equations that we will use in our scheme.

In order to motivate these equations, we should think of these equations as modelling a

coarse-grained solution at some scale ℓ as was discussed in subsection 1.3.2. Over there, we

already derived the relaxed equations for (1.1). Indeed, they are exactly the equations (1.9):


∂tu+ div(u⊗ u) +∇p = div (u⊗ u− u⊗ u) = divR

divu = 0

where we have used the notation (·) = P≤ℓ−1(·).

Now to write the relaxed equations to (1.5), rather than following Onsager and writing
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(1.10), it turns out to be more helpful to coarse-grain (1.5) directly, i.e., we apply the coarse-

graining operator (say, P≤ℓ−1) to (1.5) directly to derive an equation that is satisfied by u

and p. So we have

∂t
|u|2

2
+div

[
u

(
|u|2

2
+ p

)]
= (∂t + u · ∇)

[
|u|2

2
− |u|2

2

]
− div(Rℓu)− div(p− p)u− div

(
1

2
|w|2w

)

where we have used R = u⊗ u− u⊗ u and set w = u− u. We set κ := |u|2
2

− |u|2
2

= 1
2
trR.

We have also used that

1

2
|u|2u− 1

2
|u|2u =

1

2
|w|2w −Ru− κu

So, we get the relaxed equations

∂t
|u|2

2
+div

[
u

(
|u|2

2
+ p

)]
= (∂t + u · ∇)κ+ div(Rℓu) + divφℓ

where φℓ is the unresolved energy flux that scales like the cubic power of w. Using these

relaxed equations, one can now derive the new error terms obtained by adding in a specially

chosen perturbation w such that the “low-frequency” part of w⊗w cancels Rℓ and the “low-

frequency” part of 1
2
w|w|2 cancels φℓ. A detailed derivation of these new error terms for the

relaxed Euler-Reynolds system and the relaxed local energy inequality will be found at the

beginning of Chapters 10 and 11 respectively.

3.1 Heuristic computations

We now provide heuristic estimates that indicate the choices of the sizes of the various

parameters that will lead to the solutions to the relaxed equations converging an actual

solution of (1.1) and (1.5) having our desired regularity.
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3.1.1 Difficulties in a homogeneous scheme

In order to motivate an L3 iteration, we must identify the main difficulties in a hypothetical

C1/3− iteration. We recall that in [27], Isett constructed C1/15− weak solutions of 3D Euler

as a limit of subsolutions uq to the following system:


∂tuq + div (uq ⊗ uq) +∇pq = divRq

∂t
(
1
2
|uq|2

)
+ div

((
1
2
|uq|2 + pq

)
uq
)
≤ (∂t + uq · ∇)κq + divφq + div (Rquq)

div uq = 0 .

(3.1)

Here Rq is a negative definite symmetric tensor known as the Reynolds stress error, κq =

1/2trRq, and φq is a vector field called the current error; all three terms converge to zero

in the sense of distributions, thus producing in the limit a weak solution u to 3D Euler

which satisfies the local energy inequality. The functions uq, Rq, φq are assumed to oscillate

at spatial frequencies no larger than λq ≈ a(b
q), where a is sufficiently large and b > 1 is

as small as possible. Abbreviating the mixed L∞
t L

p
x norms with simply ∥ · ∥p, the natural

inductive estimates for a Cβ scheme are

∥uq∥∞ ≲ 1 ,
∥∥∇N

x ∇uq
∥∥
∞ ≤ λ−β+N+1

q ,
∥∥∇N

x Rq

∥∥
∞ ≤ λ−2β

q+1λ
N
q ,

∥∥∇N
x φq

∥∥
∞ ≤ λ−3β

q+1λ
N
q .

Note that interpolating the first two bounds shows that {uq}∞q=1 is uniformly bounded in Cβ

norms. Then wq+1 = uq+1 − uq = wq+1,R + wq+1,φ is constructed to oscillate at frequency

λq+1 = λbq. Eliding for the moment the fact that Rq and φq are not scalar-valued functions,

we define

wq+1,φ ≈ (sin(λq+1(x2+x3)), 0, 0)
T (−2φq)

1/3 , wq+1,R ≈ (sin(λq+1(x2+x3)), 0, 0)
T
(
(−2φq)

1/3 + (−Rq)
1/2
)

using products of high-frequency shear flows and low-frequency functions. Notice that

both terms in the low-frequency portion of wq+1,R have the same size, and that the low-
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frequency components of the quadratic and cubic nonlinear terms P≤λq(wq+1,R⊗wq+1,R) and

P≤λq(|wq+1,φ|2wq+1,φ), respectively, cancel Rq + P≤λq (wq+1,φ ⊗ wq+1,φ) and 2φq, respectively.

Then wq+1 satisfies

∥∥∇N
x wq+1

∥∥
∞ ≲ ∥Rq∥

1
2
∞ λNq+1 + ∥φq∥

1/3
∞ λNq+1 ≲ λ−β+Nq+1 .

Interpolating the bounds for N = 0, 1, we find that wq+1 has unit Cβ norm, as did uq. The

new Reynolds stress will then include the error term Rq+1,Nash = div−1 (wq+1 · ∇uq) (named

after the analogous error term in Nash’s original isometric embedding iteration [34]), which

can be estimated by

∣∣ div−1︸ ︷︷ ︸
gains λq+1

(wq+1︸︷︷︸
λ−β
q+1

· ∇uq︸︷︷︸
≈λ1−β

q

)
∣∣ ≤ λ−2β

q+2

⇐⇒ λ−1−β
q+1 λ1−βq ≤ λ−2β

q+2

⇐⇒ λb(−1−β)+1−β+2βb2

q ≤ 1

⇐⇒ β(2b2 − b− 1) ≤ b− 1

⇐⇒ β ≤ 1

2b+ 1
.

Thus as b → 1, β → 1/3, as desired. However, the analogous error term in the local energy

inequality, called the Nash current error, only satisfies the estimate

∣∣ div−1︸ ︷︷ ︸
gains λq+1

(P=λq+1(wq+1 ⊗ wq+1)︸ ︷︷ ︸
λ−2β
q+1

: ∇uq︸︷︷︸
≈λ1−β

q

)
∣∣ ≤ λ−3β

q+2

⇐⇒ λ−1−2β
q+1 λ1−βq ≤ λ−3β

q+2

⇐⇒ λb(−1−2β)+1−β+3βb2

q ≤ 1

⇐⇒ β(3b2 − 2b− 1) ≤ b− 1

⇐⇒ β ≤ 1

3b+ 1
. (3.2)
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This evident 1/4 regularity ceiling is also imposed by several similar current error terms. All

the evidence from existing Nash iteration schemes indicates that the above heuristics cannot

be improved. Furthermore, the best Cα result to date suffers from further complications

which limit the regularity to C1/7− [17], suggesting that even in the most optimistic sce-

nario, Nash iterations are incapable of reaching the C1/3− threshold for the strong Onsager

conjecture.

3.1.2 Heuristics for an intermittent scheme

The first difference between an intermittent Nash iteration and a Cα iteration is that the

high-frequency shear flow sin(λq+1(x2+x3))e⃗1 is replaced by a pair of intermittent shear flows

ϱq+1,R(x2, x3)e⃗1 and ϱq+1,φ(x2, x3)e⃗1 (described in detail in the next section) which satisfy

∥∥∇N
x ϱq+1,R

∥∥
p
≲ r

2
p
−1

q λNq+1 ,
∥∥∇N

x ϱq+1,φ

∥∥
p
≲ r

2
p
− 2

3
q λNq+1 , for some 0 < rq ≪ 1 . (3.3)

Then we approximately define wq+1 = wq+1,R + wq+1,φ by

wq+1,φ ≈ ϱq+1,φ(−2φq)
1/3 , wq+1,R ≈ ϱq+1,R

(
r
1/3
q (−2φq)

1/3 + (−Rq)
1/2
)
.

We shall explain below that the flexibility afforded by the extra parameter rq allows our

solutions to exceed the 1/4 threshold described above. To see this, we must first recall that

the iteration in [35] required a “Goldilocks amount” of intermittency rq = (λqλ
−1
q+1)

1/2 in order

to produce a solution in B
1/3−
3,∞ ; any larger or smaller choice of rq causes the size of ∇wq+1

to grow too quickly as q → ∞. Rather remarkably, we shall see below that the Goldilocks

amount of intermittency is precisely the minimum amount required in order to make the

estimate for the current Nash error consistent with B
1/3−
3,∞ regularity.

We first interpolate the L1 and L∞ inductive estimates for Rq and L
2 and L∞ inductive
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estimates for ∇uq from [35] to posit that

∥uq∥3 ≲ 1 ,
∥∥∇N∇uq

∥∥
3
≤ λ−β+N+1

q r
−1/3
q−1 ,

∥∥∇N
x Rq

∥∥
3/2

≤ λ−2β
q+1λ

N
q ,

where β < 1/3 and uq → u in the Bβ−
3,∞ topology; we write β− to emphasize that r

−1/3
q−1 incurs

a small power loss λ
b−1
6

q−1 which disappears as b → 1. We claim that the matching inductive

bound for φq is ∥∥∇Nφq
∥∥
1
≤ λ−3β

q+1 r
−1
q λNq .

Combining this bound with the sharp Lp decoupling estimate proved in the appendix A and

the extra factor of r
1/3
q in the definition of wq+1,R above yields the balanced estimates

∥∥∇Nwq+1,φ

∥∥
3
≲ ∥φq∥

1/3
1

∥∥∇Nϱq+1,φ

∥∥
3
≈ λ−β+Nq+1 r−

1/3
q ,∥∥∇Nwq+1,R

∥∥
3
≲
(
∥Rq∥

1/2
3/2 + r

1/3
q ∥φq∥

1/3
1

)∥∥∇Nϱq+1,R

∥∥
3
≈ λ−β+Nq+1 r−

1/3
q .

Now recalling the structure of wq+1,φ ≈ ϱq+1,φ(−2φq)
1/3 and using decoupling, Hölder’s in-

equality, and our estimates on ϱq+1,φ, φq, and ∇uq, we may estimate the Nash current error

term corresponding to wq+1,φ by

∥div−1P=λq+1(wq+1,φ ⊗ wq+1,φ) : ∇uq∥1 ≲
∥∥div−1P=λq+1(ϱ

2
q+1,φ)

∥∥
1

∥∥|φq|2/3∇uq∥∥1
≲ λ−1

q+1r
2/3
q ∥φq∥

2/3
1 ∥∇uq∥3

≲ λ−1
q+1r

2/3
q λ−2β

q+1 r
−2/3
q λ−β+1

q r
−1/3
q−1 .

In order for this estimate to meet the desired inductive bound of λ−3β
q+2 r

−1
q+1, we see that we

need

λ−1−2β
q+1 λ1−βq r

−1/3
q−1 ≤ λ−3β

q+2 r
−1
q+1 ⇐=︸ ︷︷ ︸

r
1/3
q−1r

−1/3
q+1 >1

λ−1−2β
q+1 λ1−βq ≤ λ−3β

q+2 r
−2/3
q+1
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Note crucially that the inequality on the right has gained r
−2/3
q+1 compared with (3.2). Then

using that r−1
q+1 = λ

b(b−1)
2

q , the inequality on the right is equivalent to

β
(
3b2 − 2b− b

)
≤ (b− 1)

(
1 +

b

3

)
⇐⇒ β ≤

1 + b
3

3b+ 1
,

so that β → 1/3 as b → 1. Similar estimates hold for the Nash current error from wq+1,R, as

well as for a number of current error terms which faced C1/4 regularity limitations in the Cα

iteration.

We conclude by noting that while the basic scaling considerations above indicate that

an L3 iteration inspired by [35] has some hope, the techniques from [35] would suffer from

a number of significant shortcomings if one were to attempt to use them in a proof of the

strong L3 Onsager conjecture. We explain the most immediate of these shortcomings in the

next two sections.

3.2 The continuous scheme

In order to understand the need for partial wavelet sums in our iteration, we must examine the

consequences of replacing sinusoidal shear flows with intermittent shear flows. Intermittency

in Nash iterations dates back to the work of Buckmaster and Vicol [9] for the 3D Navier-

Stokes equations. The intermittent Mikado flows used in [35] were later introduced by

Modena and Székelyhidi in [33] (see also the homogeneous Mikado flows due to Daneri and

Székelyhidi [12]). One should visualize the intermittent Mikado flows ϱq+1,φe⃗1 or ϱq+1,Re⃗1 as

shear flows supported in thin tubes of diameter λ−1
q+1 around lines in the e⃗1 direction, which

have been periodized to scale λ−1
q+1rq. The parameter rq = λ

1/2
q λ

−1/2
q+1 thus quantifies both the

measure of the support and the Lp norms, and the effective frequencies are contained in

the range [λq+1rq, λq+1] = [(λqλq+1)
1/2, λq+1]. Thus we see that intermittency smears out the

frequency support of wq+1.

This smearing of frequencies greatly affects nonlinear errors such as the current oscillation
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error

div−1 ◦ div
(
φq + (P≤λq + P>λq)(1/2|wq+1,φ|2wq+1,φ)

)
≈ −div−1P≥λ1/2

q λ
1/2
q+1

(
1/2|ϱq+1,φ|2ϱq+1,φ

)
e⃗1 · ∇φq .

In the above approximate equality we have used the form of wq+1,φ = (−2φq)
1/3ϱq+1,φe⃗1, the

identity e⃗1 · ∇ϱq+1,φ ≡ 0, and the heuristic that the leading order behavior of the operator

div−1 on a product of high and low frequency terms can be understood by simply applying it

to the high frequency term. The maximum frequency of the leftovers is λq+1, and minimum

frequency is λ
1/2
q λ

1/2
q+1. Then if we attempt to absorb this error term into φq+1, we see that

∥∥− div−1P≥λ1/2
q λ

1/2
q+1︸ ︷︷ ︸

gains λ
−1/2
q λ

−1/2
q+1

(
1/2|ϱq+1,φ|2ϱq+1,φ

)
e⃗1︸ ︷︷ ︸

unit L1 norm

· ∇φq︸︷︷︸
L1 size
λ−3β
q+1 r

−1
q

∥∥
L1 ≤ λ−3β

q+2 r
−1
q+1

⇐⇒ λ
3βb2−3βb+ 1

2
(1−b)+ 1

2
(1−b)(b−1)

q ≤ 1

⇐⇒ β ≤ 1

6
.

Thus intermittency has the effect of creating errors at frequencies lower than λq+1 which are

too large to be absorbed into φq+1.

3.2.1 Necessity of a continuous scheme

In [35], the analogue of this issue in the Euler-Reynolds system was rectified by performing a

further frequency decomposition of [(λqλq+1)
1/2, λq+1] into pieces and adding further velocity

increments to handle the errors at frequencies lower than λq+1. Attempting such a strategy

here leads one to define the higher order error φq,α at frequency λ1−αq λαq+1 for α ∈ [1/2, 1] by

φq,α := −div−1P≈λ1−α
q λαq+1

(
1/2|ϱq+1,φ|2ϱq+1,φ

)
e⃗1 · ∇φq .
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This higher order error then satisfies the estimate

∥φq,α∥1 =
∥∥∥div−1P≈λ1−α

q λαq+1

(
1/2|ϱq+1,φ|2ϱq+1,φ

)
e⃗1 · ∇φq

∥∥∥
1
≤ λα−1

q λ−αq+1λ
−3β
q+1 r

−1
q λq = λ−3β

q+1 r
−1
q

λαq
λαq+1

and would be corrected by a higher order velocity increment wq+1,α,φ. In order to keep

the maximum frequency of wq+1,α,φ no larger than λq+1, the strategy of [35] was to define

wq+1,α,φ = (−2φq,α)
1/3ϱq+1,α,φ using intermittent Mikado flows ϱq+1,α,φ with frequency support

[λq+1rq,α, λq+1]. The question then becomes “which values of rq,α will work for the local energy

inequality?”

First, we note that we must have λq+1rq,α ≥ λ1−αq λαq+1. If not, then |wq+1,α,φ|2wq+1,α,φ

will create a current oscillation error at a frequency below that of φq,α, which was λ1−αq λαq+1.

This however stands in contradiction with the fundamental ansatz that Nash iterations use

high-frequency perturbations to correct low-frequency errors. Next, we note that wq+1,α,φ

will also create a Reynolds oscillation error at frequency λq+1rq,α given by

(−2φq,α)
2/3

ˆ
T3

ϱq+1,α,φ ⊗ ϱq+1,α,φ .

The L3/2 norm of this Reynolds stress error is

∥φq,α∥
2/3
1 ∥ϱq+1,α,φ∥22 =

(
λ−3β
q+1 r

−1
q

λαq
λαq+1

)2/3

r
2/3
q,α . (3.4)

The first constraint (λq+1rq,α ≥ λ1−αq λαq+1) implies that rq,α → 1 as α → 1, and so this

Reynolds stress error lives at frequency λq+1rq,α → λq+1. We expect the size of the Reynolds

error Rq+1 at frequency λq+1 to be λ−2β
q+2 . Plugging in α = 1 to (3.4), we see that

λ−2β
q+1 r

−2/3
q

λ
2/3
q

λ
2/3
q+1

r
2/3
q,α ≤ λ−2β

q+2 ⇐=︸ ︷︷ ︸
rq,α≤rq

λ−2β
q+1

λ
2/3
q

λ
2/3
q+1

≤ λ−2β
q+2 ⇐⇒ β ≤ 1

3b
.

Thus we see that we need both rq,α ≤ rq = λ
1/2
q λ

−1/2
q+1 and rq,α → 1 as α → 1, implying that
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there are no satisfactory choices of rq,α. We emphasize that the constraint rq,α ≤ rq only

arises due to the interplay of cubic and quadratic error terms. In [35], which constructed

solutions that certainly do not satisfy the local energy inequality, one could indeed choose

rq,α such that rq,α → 1 as α → 1.

After a bit of thought, one can identify the culprit in the failure of the above analysis;

namely, we insisted that the maximum frequency of wq+1,α,φ was λq+1. Why not construct

wq+1,α,φ to correct φq,α in a manner completely analogous to how wq+1 was constructed

to correct φq? Recalling that φq,α lives at frequency λ1−αq λαq+1 and is corrected using the

intermittent pipe flow ϱq+1,α,φ, we should set the maximum frequency of the intermittent

pipe flow ϱq+1,α,φ to be λ1−αq+1λ
α
q+2, and the minimum frequency to be in accord with the

Goldilocks ratio, i.e.
(
λ1−αq λαq+1λ

1−α
q+1λ

α
q+2

)1/2
. Interestingly, one may view this choice as a

restoration of self-similarity which had been broken by the scheme in [35]. Indeed the choice

of rq,α from [35] implies that wq+1,α,R was much less intermittent than wq+1,R as α → 1, thus

breaking the intermittent self-similarity of the different components of the velocity field. The

natural conclusion of these observations, which in some sense is validated by our analysis

in this paper, is that the local energy inequality imposes intermittent self-similarity by fixing

the Goldilocks parameter of intermittency throughout the iteration.

The discussion in the previous paragraph is far from a complete prescription for an

intermittent, wavelet-inspired L3 scheme. Several ideas outlined in the remainder of the

introduction are needed in order to fully justify our modifications to the original Euler-

Reynolds system and relaxed local energy inequality given in (3.1). Nonetheless, we present

the basic form of our iteration here in order to set ideas. We assume the existence of a

velocity field uq = ûq + (uq − ûq) (where the “hat” notation is used to encode frequency

information described below), a Reynolds stress Rq, a current error φq, a pressure pq, and
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an intermittent pressure −πq which satisfy



∂tuq + div (uq ⊗ uq) +∇pq = div (Rq − πqId)

∂t
(
1
2
|uq|2

)
+ div

((
1
2
|uq|2 + pq

)
uq
)
≤ (∂t + ûq · ∇) 1/2tr (Rq − πqId)︸ ︷︷ ︸

:=κq

+divφq + div ((Rq − πqId)ûq)

div uq = 0 .

(3.5)

We assume the existence of a large parameter n̄ (fixed throughout the iteration) such that ûq

oscillates at spatial frequencies no larger than λq and uq− ûq oscillates at spatial frequencies

in between λq+1 and λq+n̄−1. In general, the subscript q′ with a “hat” (as in uq′) denotes a

velocity field with maximum frequency λq′ , while the subscript q′ and no “hat” (as in uq′)

denotes a velocity field with maximum frequency λq′+n̄−1. Choosing β close to 1/3, we then

inductively assume that

∥uq∥3 ≲ 1 ,
∥∥∇N

x ∇uq
∥∥
3
≲ λ−β+1+N

q+n̄−1 ⇐⇒ ∥ûq+n̄−1∥3 ≲ 1 ,
∥∥∇N

x ∇ûq+n̄−1

∥∥
3
≲ λ−β+1+N

q+n̄−1 .

Next, the Reynolds stress Rq may decomposed as Rq =
∑q+n̄−1

q′=q Rq′
q , the intermittent pressure

πq may be decomposed as πq =
∑∞

q′=q π
q′
q , and the current error φq may be decomposed as

φq =
∑q+n̄−1

q′ φq
′
q . The parameter q′ encodes the frequency λq′ at which Rq′

q , φ
q′
q , and πq

′
q

oscillate. We therefore assume that

∥∥∥∇N
x R

q′

q

∥∥∥
3/2

+
∥∥∥∇N

x π
q′

q

∥∥∥
3/2

≤ λ−2β
q′+n̄λ

N
q′ ,

∥∥∥∇N
x φ

q′

q

∥∥∥
1
≤ λ−3β

q′+n̄r
−1
q′ λ

N
q′ ,

where rq′ = λ
1/2
q′+n̄/2λ

−1/2
q′+n̄. One should conceive of φqq as identical to the previous φq, φ

q′
q for q′ >

q as analogous to the previous φq,α, and similarly for Rq′
q . We shall require that |πq′q | > Rq′

q

so that the tensor on the right-hand side of (3.5) is negative definite (see subsubsection 3.3).

We then construct wq+1 = ŵq+n̄ = uq+1 − uq using intermittent Mikado flows ϱq+n̄,R

and ϱq+n̄,φ which have minimum frequency λq+n̄/2 and maximum frequency λq+n̄. Since wq+1
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is used to correct errors at frequency λq, these choices adhere to the Goldilocks ratio of

intermittency. Furthermore, wq+1 is used to correct Rq
q and φqq while leaving Rq′

q and φq
′
q

intact for q′ > q. The net result of adding wq+1 will be the creation of new stress and current

errors, which will get sorted into bins between λq+1 and λq+n̄ and added to Rq′
q and φq

′
q to form

Rq+1 and φq+1. We emphasize that the terms in the partial sum uq+1 = wq+1+wq+wq−1+. . .

have overlap in frequency when |q′− q′′| ≤ n̄/2, so that uq+1 should be thought of as a partial

wavelet decomposition of the limiting solution rather than a partial Fourier decomposition.

3.2.2 An obstruction

The inductive set-up described above needs to be complemented with assumptions on spatial

support, as well as a methodology for propagating such information throughout the iteration.

To give an example of the kind of support properties we require, let us define the velocity

increment wq+1 = wq+1,R + wq+1,φ by

wq+1,φ = (−2φqq)
1/3ϱq+n̄,φ , wq+1,R =

(
r
1/3
q (−2φqq)

1/3 + (Rq
q)

1/2
)
ϱq+n̄,R , (3.6)

where ϱq+n̄,φ and ϱq+n̄,R satisfy estimates identical to (3.3) after replacing λq+1 with λq+n̄

and using the new definition of rq = λ
1/2
q+n̄/2λ

−1/2
q+n̄ . Then wq+1 satisfies the balanced estimates

∥∥∇Nwq+1,φ

∥∥
3
≲ ∥φq∥

1/3
1

∥∥∇Nϱq+n̄,φ
∥∥
3
≈ λ−β+Nq+n̄ r−

1/3
q ,∥∥∇Nwq+n̄,R

∥∥
3
≲
(∥∥Rq

q

∥∥1/2

3/2
+ r

1/3
q

∥∥φqq∥∥1/3

1

)∥∥∇Nϱq+n̄,R
∥∥
3
≈ λ−β+Nq+n̄ r−

1/3
q .
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Now consider the Nash error obtained from adding wq+1,φ, which we may estimate1 by

∥∥div−1(ϱq+n̄,φ(φ
q
q)

1/3∇uq)
∥∥

3/2
≲
∥∥ div−1ϱq+n̄,φ︸ ︷︷ ︸
L3/2 size λ−1

q+n̄r
2/3
q

(φqq)
1/3︸ ︷︷ ︸

L3 size λ−β
q+n̄r

−1/3
q

· ∇ûq︸︷︷︸
L3 size λ−β+1

q r
−1/3
q−n̄

∥∥
3/2

+
∥∥ div−1ϱq+n̄,φ︸ ︷︷ ︸
L3/2 size λ−1

q+n̄r
2/3
q

(φqq)
1/3︸ ︷︷ ︸

L3 size λ−β
q+n̄r

−1/3
q

· (∇uq −∇ûq)︸ ︷︷ ︸
L3 size λ−β+1

q+n̄−1r
−1/3
q−1

∥∥
3/2
.

Since this error term oscillates at frequency λq+n̄, we expect its size to be λ
−2β
q+2n̄ (the analogue

of δq+2 from [35], for example). After a bit of arithmetic, one may check that the first term

satisfies a sharp estimate when β → 1/3 (analogous to δ
1/2
q+1δ

1/2
q λqλ

−1
q+1 ≤ δq+2 from a C1/3−,

which is the size of the Nash error). The second term, however, is far too large, due to the

fact that ∇uq−∇ûq has much larger L3 norm than ∇̂uq. The only way to close the estimate

for the Nash error is then if

suppwq+1∩supp (uq − ûq) = ∅ ⇐= suppwq+1∩(supp ŵq+1 ∪ supp ŵq+2 · · · ∪ supp ŵq+n̄−1) = ∅ ,

where we have recalled that our “hat” notation gives that uq−ûq = ŵq+1+ŵq+2+· · ·+ŵq+n̄−1.

There is however a clear obstruction to this assertion. Consider the velocity increments

ŵq′ defined analogously to (3.6) for q + 1 ≤ q′ ≤ q + n̄/2. These velocity increments are

constructed using intermittent Mikado flows ϱq′,R and ϱq′,φ which have pipe spacing λ−1
q′−n̄/2

and pipe thickness λ−1
q′ . Since the thickness of these pipes is larger than the spacing of the

pipes we plan to use at step q, namely λ−1
q+n̄/2, there is no way we can arrange the support of

ŵq+n̄ to be disjoint from the support of ŵq+1, . . . ŵq+n̄/2. We have solved this issue through

the creation of intermittent Mikado bundles. The details of this construction will be found

in sections 7.2 and 9.2.

1Note the inverse divergence gain of λq+n̄, which is larger than the minimum frequency λq+n̄/2 of wq+1.

One can test the validity of this estimate by computing the one-dimensional version, where div−1 is simply
integration.
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3.3 The intermittent pressure

As common to many convex integration schemes for the Euler equations, in order to get

sharp regularity solutions, one needs to transport the “high-frequenccy” building blocks

(here, the intermittent Mikado bundles) along the flow of the background, coarse-grained

velocity field. However, such a flow will generally mix anything it transports after a certain

time. This timescale is given by the inverse of the local Lipschitz constant of the background

flow and one can only obtain good estimates for the flow for times smaller this timescale.

This necessitates needing to “switch-off” and “switch-on” the flow by time cut-off functions,

so that on the support of a given time cut-off function, one has good control on the flow

map.

But now, when one switches-on a time cut-off function, the intermittent bundle that is

contained in its support adds local energy to the system along trajectories of the background

flow that intersect its support. The only way one is still able to close the scheme is if this

energy added is small enough in a weak sense to be absorbed into the next unresolved current

error.

In our scheme, the way the above phenomenon manifests is by the “dynamic pressure”

1
2
|wq+1|2 that shows up inside a time/material derivative and one needs to gain from inverting

the divergence on this in order to put this into φq+1. But note that |wq+1|2 is positive and so

has a bunch of low frequencies in it that prevents us from gaining by inverting the divergence.

The only way to make this error term manageable is to handcraft a positive function, the

intermittent pressure, to subtract from |wq|2 in order to make it high-frequency. In order

to do this, we have to do a wavelet decomposition of the dynamic pressure, and then add

pressure terms to beat the individual parts of it. The key here is that other than the highest

frequency terms in this wavelet decomposition, all other pressure terms depend on objects

that have been constructed in the scheme at previous steps and thus these pressure terms can

be anticipated in advance and added into the scheme at these previous steps where we can

get away with the worse estimates. Note that these anticipated pressure terms end up inside
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a material derivative in the relaxed local energy inequality, which then has to be estimated.

So we need an “abstract machine” which takes every error term, makes it positive, does a

wavelet decomposition, applies a material derivative, and then inverts the divergence on each

individual piece. This intermittent and anticipated pressure is one of the main new ideas

in this thesis. Indeed, in all previous convex integration schemes, the pressure has played a

secondary role. The importance of the appearance of the dynamic pressure in our scheme

might be an indication that the ideas of long-term memory and the backwards cascade from

turbulence theory are now entering the mathematical realm of convex integration.
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Chapter 4

Parameters

4.1 Definitions and inequalities

In this section, we choose the values of the parameters and list important consequences. The

choices in items (i)–(viii) are rather delicate, while all the choices in items (ix)–(xix) follow

the plan of “choosing a giant parameter which dwarfs all the preceding parameters.” It is

imperative that each inequality below depends only on parameters which have already been

chosen, and that none depend on q. We point out that in item (iv), we define two parameters

λq and δq in terms of an undetermined large natural number a. This is merely for ease of

notation and computation. Indeed one can check that none of the inequalities below require

a precise choice of a, nor depend on q; rather, any sufficiently large choice of a which may

be used to absorb implicit constants will do. Therefore the precise choice of a is made at

the very end in item (xix).

(i) Choose an L3 regularity index β ∈ (0, 1/3). In light of [17], there is no reason to take

β < 1/7.

(ii) Choose n̄ a large positive multiple of 6 such that

β <
1

3
·

n̄/3
n̄/3 + 2

− 2
n̄/3 + 2

, β <
2

3
·
n̄/2 − 1

n̄
, (4.1)
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which is possible since β < 1/3.

(iii) Choose b ∈ (1, 25/24) such that

β <
1

3bn̄
· 1 + b+ · · ·+ bn̄/3−1

1 + b+ · · ·+ bn̄/3+1
−

2
(
1 + (b− 1)(1 + · · ·+ bn̄/2−1)2

)
1 + b+ · · ·+ bn̄/3+1

, β <
2

3bn̄/2
· 1 + · · ·+ bn̄/2−2

1 + · · ·+ bn̄−1

(4.2a)

bn̄ < 2 ,
(bn̄/2−1 + · · ·+ b+ 1)2

bn̄/2−1 + · · ·+ b+ 1
(b− 1) < (b− 1)

1/2 .

(4.2b)

The inequalities in (4.2a) are possible since (4.1) is just (4.2a) evaluated at b = 1,

and both expressions in (4.2a) are continuous in b in a neighborhood of b = 1. The

first inequality in (4.2b) is trivial, and the second is possible since the fraction in the

expression is continuous at b = 1 and equal to n̄/2 if b = 1. It is clear that as β → 1/3,

we are forced to choose n̄→ ∞ and b→ 1.

(iv) For an undetermined natural number a, define

λq = 2⌈(b
q) log2 a⌉ , δq = λ−2β

q . (4.3)

Note that with the above definition of λq, we have that

a(b
q) ≤ λq ≤ 2a(b

q) and
1

3
λbq ≤ λq+1 ≤ 2λbq . (4.4)

As a consequence of these definitions, we shall deduce a number of inequalities, each

of which is independent of the choice of a and of q once a is sufficiently large. At the

end we will thus choose a sufficiently large to absorb a number of implicit constants,

including those in (4.4). Therefore, in many of the following computations, we may

make the slightly incorrect assumption that λq is actually equal to a(b
q) in order to

streamline the arithmetic.

(a) An immediate consequence of these definitions and of the first inequality in (4.2a)
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is that

δq+n̄

(
λqλ

−1
q+n̄/3

)2/3

λ4q+n̄+1λ
−4
q+n̄

λ4qλ
4
q+n̄

λ8q+n̄/2

< δq+4n̄/3+2

⇐⇒ 2βb
4n̄/3+2 − 2βbn̄ <

2

3
b
n̄/3 − 2

3
− 4bn̄+1 + 4bn̄ − 4bn̄ + 8b

n̄/2 − 4

⇐⇒ 2βbn̄(b− 1)(1 + b+ · · ·+ b
n̄/3+1) <

2

3
(b− 1)(1 + b+ · · ·+ b

n̄/3−1)

− 4bn̄(b− 1)− 4(1 + · · ·+ b
n̄/2−1)2(b− 1)2

⇐⇒ β <
1

3bn̄
· 1 + b+ · · ·+ bn̄/3−1

1 + b+ · · ·+ bn̄/3+1
− 2

1 + b+ · · ·+ bn̄/3+1
− 2(b− 1)(1 + · · ·+ bn̄/2−1)2

(1 + b+ · · ·+ bn̄/3+1)bn̄
,

where we have written out the quantity at the beginning in terms of λq ≈ a(b
q)

and then compared exponents on both sides. It is easy to generalize the above to

δq+n̄
(
λqλ

−1
q+k

)2/3
λ4q+n̄+1λ

−4
q+n̄

λ4qλ
4
q+n̄

λ8q+n̄/2

< δq+n̄+k+2 ∀k ≥ n̄/3 . (4.5)

(b) A consequence of the second inequality in (4.2a) is that

δq+n̄
δq+n̄−1

(
λq+n̄/2/λq+n̄

λq+n̄/2−1/λq+n̄−1

)4/3

<
δq+2n̄

δq+2n̄−1

⇐⇒ −2βbn̄ + 2βbn̄−1 + (b
n̄/2 − bn̄)(b− 1)

4

3b
< −2βb2n̄ + 2βb2n̄−1

⇐⇒ 2βbn̄−1
(
bn̄+1 − b− bn̄ + 1

)
< (bn̄ − b

n̄/2)(b− 1)
4

3b

⇐⇒ β <
2

3bn̄/2
1 + · · ·+ bn̄/2−1

1 + · · ·+ bn̄−1
.

(c) A consequence of the definition of λq is that for q
′ ≥ q − n̄/2 + 1,

λq′+n̄/2λq+n̄/2

λqλq′+n̄
< 1 . (4.6)

Indeed when q′ = q− n̄/2+1, the inequality reduces to λq+1λ
−1
q λq+n̄/2λ

−1
q+n̄/2+1 < 1,

which is an immediate consequence of the super-exponential growth; larger q′ are

similar.
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(d) We have that δqλ
2/3
q < δq′λ

2/3
q′ for all q′ > q. A stronger inequality is that for all

k ≥ 1, δq+n̄λ
2/3
q < δq+k+n̄λ

2/3
q+k, which is in fact equivalent to β < 1/3bn̄, which is

implied by the first inequality in (4.2). A final consequence of both inequalities is

δq+n̄
λ

2/3
q

λ
2/3
q+n̄

< δq+2n̄ =⇒ δ
1/2
q+n̄δ

1/2
q

λq
λq+n̄

< δq+2n̄ =⇒ δ
1/2
q+n̄δ

1/2
q

λq
λq+n̄

λ
1/3
q+n̄/2λ

−1/3
q+n̄

λ
1/3
q+n̄/2−1λ

−1/3
q+n̄−1

< δq+2n̄ .

(4.7)

(e) From the second inequality in (4.2a), we have that

β <
2

3bn̄/2
· 1 + · · ·+ bn̄/2−1

1 + · · ·+ bn̄−1
=⇒ δq+n̄λ

4/3
q+n̄/2 < δq+2n̄λ

4/3
q+n̄ .

(v) Choose Cb =
6+b
b−1

.

(vi) Define Γq, rq, τq, and Λq by
1

Γq = 2

⌈
εΓ log2

(
λq+1
λq

)⌉
≈
(
λq+1

λq

)εΓ
≈ λ(b−1)εΓ

q , rq =
λq+n̄/2Γq
λq+n̄

(4.8)

τ−1
q = δ

1/2
q λqr

−1/3
q−n̄Γ

35
q , Λq = λqΓ

10
q , (4.9)

1The same type of comparability that we have in (4.4) holds for Γq as defined in (4.8).
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where we choose 0 < εΓ ≪ (b− 1)2 < 1 such that

(δq−n̄δ
−1
q−n̄−1)

1/10Γ1000
q+n̄ ≤ 1 , (4.10a)

Γ25
q λqδ

1/2
q r

−1/3
q−n̄ ≤ τ−1

q ≤ Γ50
q λqδ

1/2
q r

−1/3
q−n̄ , Γ300

q+n̄τ
−1
q+n̄−1 ≤ τ−1

q+n̄ , (4.10b)

Γ25
q+n̄

δq+n̄
δq+n̄−1

(
rq
rq−1

)4/3

<
δq+2n̄

δq+2n̄−1

(4.10c)

λ−2
n−1λnλq+n̄/2 ≤ Γ−1

q for q + n̄/2 + 3 ≤ n ≤ q + n̄+ 2 , (4.10d)

Γ3
q+n̄Γ

−2
q

λq′+n̄/2λq+n̄/2

λqλq′+n̄
≤ 1 for all q′ such that q + n̄/2 + 1− n̄ ≤ q′ ≤ q ,

(4.10e)(
λq
λq′

)2/3

Γ2000+10Cb
q+n̄ <

(
δq
δq′

)−1

(4.10f)

r
4/3
q δq+n̄Γ

600
q ≤ δq+2n̄ =⇒ r

4/3
q Γ600

q δq ≤ δq+n̄ (4.10g)(
rq+1

rq

)
Γ1000+10Cb
q+n̄ ≤ 1 (4.10h)

Γ5Cb+300
q δ

1/2
q+n̄r

1/3
q λ−1

q+n̄τ
−1
q ≤ Γ−10

q+n̄δq+2n̄ , (4.10i)

Γq+n̄δ
−1/2
q+n̄−1r

−2/3
q−1 ≤ δ

−1/2
q+n̄ r

−2/3
q , (4.10j)

Γ1000
q+n̄ < min

(
λqλ

−1
q+n̄r

−2
q , λ−

1/10
q λ

1/10
q+1, δ

1/10
q δ

−1/10
q+1

)
(4.10k)⌈

(bn̄/2−1 + · · ·+ b+ 1)2

εΓ(bn̄−1 + · · ·+ b+ 1)

⌉
≥ 20 , 2000εΓb

n̄ < 1 . (4.10l)

Indeed we have that the first inequality in (4.10b) is immediate, the second is possible

since τ−1
q is increasing in q, (4.10c) is possible due to item (ivb), (4.10d) and (4.10l)

are possible from immediate computation, (4.10e) is possible due to item (ivc), (4.10f),

(4.10g), and (4.10i) are possible due to item (ivd), (4.10h), (4.10j), and (4.10a) are

possible since rq and δq are decreasing in q, and (4.10k) is possible due to (4.8) and the

super-exponential growth, which shows that λqλ
−1
q+n̄λ

−2
q+n̄/2λ

2
q+n̄, λqλq+2λ

−2
q+1 > 1.
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(vii) Choose C∞ as

C∞ = 3

⌈
(bn̄/2 − 1)2

(b− 1)2εΓ(b
n̄/2−1 + · · ·+ b+ 1)

+
2000bn̄

bn̄/2 − 1
+

4bn̄−1

(b− 1)εΓ(1 + · · ·+ bn̄/2−1)

⌉
.

(4.11)

As a consequence of this definition and (4.10l), we have that

10 ≤ C∞ . (4.12)

We furthermore have that for all n̄/2 ≤ k ≤ n̄,

ΓC∞
q λ2qλ

4
q+kλ

−4
q+n̄/2λ

2
q+kλ

−4
q+k−1 < ΓC∞

q+n̄/2

⇐⇒ 2
(
1− 2b

n̄/2 + bk + 2bk − 2bk−1
)
< C∞(b− 1)εΓ(b

n̄/2 − 1)

⇐= 2
(
1− 2b

k/2 + bk + 2bn̄ − 2bn̄−1
)
< C∞(b− 1)εΓ(b

n̄/2 − 1)

⇐⇒ 2
(
b
k/2 − 1

)2
+ 4bn̄−1(b− 1) < C∞(b− 1)2εΓ(1 + · · ·+ b

n̄/2−1)

⇐⇒
2
(
bk/2 − 1

)2
(b− 1)2εΓ(1 + · · ·+ bn̄/2−1)

+
4bn̄−1

(b− 1)εΓ(1 + · · ·+ bn̄/2−1)
< C∞ ,

which is implied by (4.11). As a consequence of the above inequality, (4.10l), (4.10k),

and (4.11), we have that for all n̄/2 ≤ k ≤ n̄,

ΓC∞
q ≤ ΓC∞

q+n̄/2Γ
−2000
q+n̄ , ΓC∞+500

q Λq

(
λq+k
λq+n̄/2

)2

λ−2
q+k−1λq+k ≤ ΓC∞

q+n̄/2Γ
−200
q+n̄ . (4.13a)

(viii) Choose α = α(q) ∈ (0, 1) such that

λαq+n̄ = Γ
1/10
q . (4.14)

(ix) Choose Tq according to the formula

1

2
T−1
q−1 = τ−1

q ΓC∞+100
q δ−

1/2
q r−

2/3
q + ΓC∞+100

q δ−
1/2

q r−1
q Λ3

q . (4.15)
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(x) Choose Npr such that

Γq+NprΛ
4
q+n̄ ≤ Γq+Npr+1 . (4.16)

(xi) Choose Ncut,t and Ncut,x such that

Ncut,t ≤ Ncut,x , (4.17a)

λ200q+n̄

(
Γq−1

Γq

)Ncut,t
5

≤ min
(
λ−4
q+n̄δ

2
q+3n̄,Γ

−C∞−17−Cb
q+n̄ δ2q+3n̄rq

)
, (4.17b)

δ
−1/2
q+n̄ r

−1
q Γ

C∞/2+16+Cb
q+n̄

(
Γq+n̄−1

Γq+n̄

)Ncut,x

≤ Γ−1
q+n̄ . (4.17c)

(xii) Choose Nind,t such that

Nind,t ≥ Ncut,t, Γ
−Nind,t
q (τ−1

q Γi+40
q )−Ncut,t−1(T−1

q Γq)
Ncut,t+1 ≤ 1 . (4.18)

(xiii) Choose Ng, Nc so that

Γ
−Ng

q−1 Γ
2
q ≤ Γq+1T

50Nind,t

q+1 δ3q+3n̄ , (4.19a)

2(T−1
q+n̄−1Γ

10
q+n̄−1)

5Nind,tΓ2C∞+Cb+100
q+n̄ r−2

q Γ
−Nc/2
q−1 ≤ Γ

−Ng

q+n̄ δ
3
q+3n̄τ

50Nind,t

q+n̄−1 , (4.19b)

Ng ≤ Nc ≤
Nind

40
.2 (4.19c)

2This inequality is independent from the first two, and can be ensured by a large choice of Nind in the
next step. Since all the inequalities in (4.19) are used together, we break the order slightly and include
(4.19c) in this bullet point.
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(xiv) Choose Nind such that (4.19c) is satisfied and

Nind,t ≤ Nind , (4.20a)(
ΓNind
q−1 Γ

−Nind
q

)1/10

≤ δ3q+5n̄Γ
−2C∞−3
q rq . (4.20b)

(xv) Choose Ndec such that

(λq+n̄+2Γq)
4 ≤

(
Γ

1/10
q

4π

)Ndec

, Nind ≤ Ndec . (4.21)

(xvi) Choose K◦ large enough so that

λ−K◦
q ≤ δ3q+3n̄T

5Nind
q+n̄ λ

−100
q+n̄+2 . (4.22)

(xvii) Choose d and N∗∗ such that

2d+ 3 ≤ N∗∗ , (4.23a)

λ100q+n̄Γ
−d/200
q Λ5+K◦

q+n̄+2

(
1 +

max(λ2q+n̄T
−1
q ,Λ

1/2
q Λq+n̄)

τ−1
q

)20Nind

≤ T
200Nind,t

q+n̄ , (4.23b)

λ100q+n̄Γ
−N∗∗/20
q Λ5+K◦

q+n̄+2

(
1 +

max(λ2q+n̄T
−1
q ,Λ

1/2
q Λq+n̄)

τ−1
q

)20Nind

≤ T
20Nind,t

q+n̄ . (4.23c)

(xviii) Choose Nfin such that

2Ndec + 4 + 10Nind ≤ Nfin/40000 − d2 − 10Ncut,x − 10Ncut,t −N∗∗ − 300 . (4.24a)

(xix) Having chosen all the parameters mentioned in items (i)–(xviii) except for a, there

exists a sufficiently large parameter a∗ such that a
(b−1)εΓb

−2n̄

∗ is at least fives times

larger than all the implicit constants throughout the paper, as well as those which

have been suppressed in the computations in this section. Choose a to be any natural
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number larger than a∗.

4.2 A few more inequalities

For all q + n̄/2 − 1 ≤ m ≤ m′ ≤ q + n̄, we have that

Γ500+5Cb
q λq

(
δq+n̄
δm+n̄

)3/2

Λ
2/3
q

(
λ−2
m′−1λm′

)2/3(min(λm, λq+n̄)Γq
λq+n̄/2

)4/3

λ−2
m−1λm ≤ Γ−250

q , (4.25)

and

Γ500+5Cb
q Λq

(
min(λm′ , λq+n̄)

λq+n̄/2

)2/3(
δq+n̄
δm+n̄

)3/2

Λqλ
−2
m′−1λm′

(
min(λm, λq+n̄)Γq

λq+n̄/2

)4/3

λ−2
m−1λm ≤ Γ−250

q .

(4.26)

We claim the first inequality is morally equivalent to

λq

(
δq+n̄
δm+n̄

)3/2

λ
2/3
q (min(λm, λq+n̄))

2/3 λ
−4/3
q+n̄/2λ

−1
m ≤ 1 .

This equivalence is due to (4.5) (used to absorb a feq meaningless losses of λkλ
−1
k−1) and

(4.10f) (used to absorb Γ2000+10Cb
q+n̄ , which itself can be absorbed in on meaningless loss of

λkλ
−1
k−1 from (4.10k)). Checking the simplified inequality then boils down to applying (4.5).

We leave further details to the reader. The second inequality is morally equivalent to

λq

(
λm′

λq+n̄/2

)2/3(
δq+n̄
δm+n̄

)3/2

λqλ
−1
m′λ

−1
m

(
λm
λq+n̄/2

)4/3

≤ 1 ,

which can be checked by again using similar reasoning.

At this point, we list a number of additional inequalities, each of which can be checked
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by similar reasoning as the two inequalities above. We leave further details to the reader.

λqΓ
250
q Λ

2/3
q

(
rq+n̄/2+1

rq

)2/3

λ
−2/3
q+n̄/2

(
λq+n̄/2+1Γq
λq+n̄/2

)4/3

λ−1
q+n̄/2δ

3/2
q+n̄ ≤ δ

3/2
q+n̄+n̄/2+1 , (4.27a)

λqΓ
250+5Cb
q Λqλ

−1
q+n̄/2

(
λq+n̄/2+1Γq
λq+n̄/2

)2

λ−1
q+n̄/2δ

3/2
q+n̄ ≤ δ

3/2
q+n̄+n̄/2+1 , (4.27b)

δq+n̄Γ
500
q Λ

2/3
q

(
λ2m−1λ

−1
m

)−2/3 ≤ δm+n̄ for q + n̄/2 − 5 ≤ m ≤ q + n̄+ 5 , (4.27c)

δq+n̄ΛqΓ
400+5Cb
q

(
λm

λq+n̄rq

)2/3

λ−2
m−1λm ≤ Γ−9

m δm+n̄ , (4.27d)

δq+n̄
δm+n̄

Γ200+5Cb
q

(
min(λm, λq+n̄)

λq+n̄rq

)2/3

Λqλ
−2
m−1min(λm, λq+n̄) ≤ Γ−100

q+n̄/2 . (4.27e)
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Chapter 5

Inductive assumptions

We begin by fixing a few notational conventions that will be used throughout this thesis.

Remark 5.0.1 (Geometric upper bounds with two bases). For all n ≥ 0, we define

M (n,N∗, λ,Λ) := λmin{n,N∗}Λmax{n−N∗,0} .

Remark 5.0.2 (Space-time norms). In the remainder of the paper, we shall always

measure objects using uniform-in-time norms supt∈[T1,T2] ∥ · (t)∥, where ∥ · (t)∥ is any of a

variety of norms used to measure functions defined on T3 × [T1, T2] but restricted to time t.

In a slight abuse of notation, we shall always abbreviate these space-time norms with simply

∥ · ∥.

Remark 5.0.3 (Space-time balls). For any set Ω ⊆ T3 × R, we shall use the notations

B(Ω, λ−1) :=
{
(x, t) : ∃ (x0, t) ∈ Ω with |x− x0| ≤ λ−1

}
(5.1a)

B(Ω, λ−1, τ) :=
{
(x, t) : ∃ (x0, t0) ∈ Ω with |x− x0| ≤ λ−1 , |t− t0| ≤ τ

}
(5.1b)

for space and space-time neighborhoods of Ω of radius λ−1 in space and τ in time, respectively.
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5.1 Relaxed equations

We shall assume that all inductive assumptions at the qth step hold on the domain [−τq−1, T+

τq−1]× T3.

We assume that there exists a given q-independent Radon measure E = E(t, x) ≥ 0 such

that the approximate solution (uq, pq, Rq, φq,−πq) at the qth step satisfies the Euler-Reynolds

system


∂tuq + div(uq ⊗ uq) +∇pq = div(Rq − πqId)

div uq = 0

(5.2)

and the relaxed local energy identity with dissipation measure E

∂t

(
1

2
|uq|2

)
+ div

((
1

2
|uq|2 + pq

)
uq

)
= (∂t + ûq · ∇)κq + div((Rq − πqId)ûq) + divφq − E .

(5.3)

In the above equation, we have set κq = tr (Rq − πqId)/2, and we use the decomposition and

notations

uq = ûq−1 + ŵq︸ ︷︷ ︸
=:ûq

+ŵq+1 + · · ·+ ŵq+n̄−1 =: ûq+n̄−1 (5.4)

for the velocity field. The stress error Rq has a decomposition

Rq =

q+n̄−1∑
k=q

Rk
q . (5.5)

where Rk
q are symmetric matrices. The pressure πq has a decomposition

πq =
∞∑
k=q

πkq . (5.6)

44



Similarly, the current error φq has a decomposition

φq =

q+n̄−1∑
k=q

φkq . (5.7)

In the continuous scheme, the Reynolds stress Rq and current error φq at stage q of the

iteration will have frequency support in frequencies less than λq+n̄−1 (effectively speaking).

We correct the portions of both which live at frequencies no higher than λq. We denote these

portion by Rq
q and φqq, respectively. More generally, we denote the portions of Rq and φq

with spatial derivative cost λk by Rk
q and φkq , respectively.

5.2 Inductive assumptions for velocity cutoff functions

Given the intermittent nature of the velocity vector field ûq′ , the cost of its associated material

derivative Dt,q′ of errors can vary significantly across different level sets of the velocity.

To address this issue, we introduce a velocity cutoff function ψi,q′ defined inductively. By

applying these cutoffs, we partition the domain into distinct level sets of the velocity, which

allows us to analyze the material derivative cost of errors on each support in the following

subsections. We first record its key properties useful for later analysis in this subsection,

and the L∞ estimates for velocity increment ŵq′ and velocity ûq′ , obtained as a consequence

of the definition of ψi,q′ , can be found in subsection 5.5.

All assumptions in subsection 5.2 are assumed to hold for all q − 1 ≤ q′ ≤ q + n̄ − 1.

First, we assume that the velocity cutoff functions form a partition of unity:

∑
i≥0

ψ6
i,q′ ≡ 1, and ψi,q′ψi′,q′ = 0 for |i− i′| ≥ 2 . (5.8)

Second, we assume that there exists an imax = imax(q
′) ≥ 0, which is bounded uniformly in
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q′ by

imax(q
′) ≤ C∞ + 12

(b− 1)εΓ
, (5.9)

such that

ψi,q′ ≡ 0 for all i > imax(q
′) , and Γ

imax(q′)
q′ ≤ Γ

C∞/2+18
q′−n̄ δ

−1/2
q′ r

−2/3
q′−n̄ . (5.10)

For all 0 ≤ i ≤ imax, we assume the following pointwise derivative bounds for the cutoff

functions ψi,q′ . First, for mixed space and material derivatives and multi-indices α, β ∈ Nk,

k ≥ 0, 0 ≤ |α|+ |β| ≤ Nfin, we assume that

1suppψi,q′

ψ
1−(K+M)/Nfin

i,q′

∣∣∣∣∣
(

k∏
l=1

DαlDβl
t,q′−1

)
ψi,q′

∣∣∣∣∣ ≤ Γq′(Γq′λq′)
|α|M

(
|β|,Nind,t − Ncut,t,Γ

i+3
q′−1τ

−1
q′−1,Γq′−1T

−1
q′−1

)
.

(5.11)

Next, with α, β, k as above, N ≥ 0 and Dq′ := ŵq′ · ∇, we assume that

1suppψi,q′

ψ
1−(N+K+M)/Nfin

i,q′

∣∣∣∣∣DN

(
k∏
l=1

Dαl

q′ D
βl
t,q′−1

)
ψi,q′

∣∣∣∣∣
≤ Γq′(Γq′λq′)

N(Γi−5
q′ τ

−1
q′ )|α|M

(
|β|,Nind,t − Ncut,t,Γ

i+3
q′−1τ

−1
q′−1,Γq′−1T

−1
q′−1

)
(5.12)

for 0 ≤ N + |α|+ |β| ≤ Nfin. Moreover, for 0 ≤ i ≤ imax(q
′), we assume the L1 bound

∥ψi,q′∥1 ≤ Γ−3i+Cb

q′ where Cb =
6 + b

b− 1
. (5.13)

Lastly, we assume that local timescales dictated by velocity cutoffs at a fixed point in space-

time are decreasing in q. More precisely, for all q′ ≤ q + n̄ − 1 and all q′′ ≤ q′ − 1, we

assume

ψi′,q′ψi′′,q′′ ̸≡ 0 =⇒ τq′Γ
−i′
q′ ≤ τq′′Γ

−i′′−25
q′′ . (5.14)
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This will be useful when we upgrade material derivative from Dt,q′′ to Dt,q′ .

The concrete construction of ψi,q+n̄ and the verification of (5.8)–(5.13) for q 7→ q+1 (i.e.,

q′ = q + n̄) is given in chapter 12.

5.3 Inductive bounds on the intermittent pressure

The intermittent pressure πq is designed to majorize errors and velocity increments pointwise.

Thus, we introduce estimates for this function in subsection 5.3.1 and establish precise rela-

tions between the intermittent pressure and errors/velocity increments in subsection 5.3.3.

(The Lp estimates of the errors will follow consequently.) Furthermore, the intermittent

pressure has been constructed to anticipate the low-frequency part of the future pressure

increments. We record the relevant properties in subsection 5.3.2. All inductive assumptions

appearing in subsection 5.3 will be verified for q 7→ q + 1 in Section 13.

5.3.1 L
3/2, L∞, and pointwise bounds for πkq

We assume that for q ≤ k ≤ q + n̄− 1 and N +M ≤ 2Nind, π
k
q satisfies

∥∥ψi,k−1D
NDM

t,k−1π
k
q

∥∥
3/2

≤ ΓqΓkδk+n̄Λ
N
k M

(
M,Nind,t,Γ

i
k−1τ

−1
k−1,T

−1
k−1

)
. (5.15a)∥∥ψi,k−1D

NDM
t,k−1π

k
q

∥∥
∞ ≤ ΓqΓ

C∞+1
k ΛNk M

(
M,Nind,t,Γ

i
k−1τ

−1
k−1,T

−1
k−1

)
, (5.15b)∣∣ψi,k−1D

NDM
t,k−1π

k
q

∣∣ ≤ ΓqΓkπ
k
qΛ

N
k M

(
M,Nind,t,Γ

i
k−1τ

−1
k−1,T

−1
k−1

)
. (5.15c)

For q + n̄ ≤ k ≤ q + Npr − 1 and N +M ≤ 2Nind, we assume that πkq satisfies

∥∥ψi,q+n̄−1D
NDM

t,q+n̄−1π
k
q

∥∥
3/2

≤ ΓqΓkδk+n̄Λ
N
q+n̄−1M

(
M,Nind,t,Γ

i
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1

)
(5.16a)∥∥ψi,q+n̄−1D

NDM
t,q+n̄−1π

k
q

∥∥
∞ ≤ ΓqΓ

C∞+1
q+n̄−1Λ

N
q+n̄−1M

(
M,Nind,t,Γ

i
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1

)
,

(5.16b)∣∣ψi,q+n̄−1D
NDM

t,q+n̄−1π
k
q

∣∣ ≤ Γqπ
k
qΛ

N
q+n̄−1M

(
M,Nind,t,Γ

i
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1

)
. (5.16c)
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Throughout the paper, we shall use the phrase “pointwise estimates” to refer to bounds on

stress errors, current errors, or velocities in terms of various π’s which resemble the third

bound in either of the above displays.

5.3.2 Lower and upper bounds for πkq

For k ≥ q, we assume that πkq has the lower bound

πkq ≥ δk+n̄ . (5.17)

For all q + n̄− 1 ≤ k′ < k ≤ q + Npr − 1, we assume that πkq has the upper bound

πkq ≤ πk
′

q . (5.18)

For all k ≥ q + Npr, we assume that

πkq ≡ Γkδk+n̄ . (5.19)

We finally assume that for all q ≤ q′ < q′′ <∞,

δq′′+n̄
δq′+n̄

πq
′

q < 2q
′−q′′πq

′′

q , if q + n̄/2 ≤ q′′ (5.20a)

δq′′+n̄
δq′+n̄

πq
′

q < πq
′′

q , otherwise . (5.20b)

This final bound says that the πkq ’s obey a scaling law which may be roughly translated as

“any πk+mq for m > 0 can be bounded from below by an appropriately rescaled πkq .”
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5.3.3 Pointwise bounds for errors, velocities, and velocity cutoffs

We assume that we have the pointwise estimates

∣∣ψi,k−1D
NDM

t,k−1R
k
q

∣∣ < ΓqΓ
−8
k πkqΛ

N
k M

(
M,Nind,t,Γ

i+20
k−1 τ

−1
k−1,T

−1
k−1Γ

10
k−1

)
, (5.21a)∣∣ψi,k−1D

NDM
t,k−1φ

k
q

∣∣ < ΓqΓ
−12
k (πkq )

3
2 r−1
k ΛNk M

(
M,Nind,t,Γ

i+20
k−1 τ

−1
k−1,T

−1
k−1Γ

10
k−1

)
, (5.21b)∣∣ψi,k−1D

NDM
t,k−1ŵk

∣∣ < Γqr
−1
k−n̄(π

k
q )

1/2ΛNk M
(
M,Nind,t,Γ

i
k−1τ

−1
k−1,T

−1
k−1Γ

2
k−1

)
(5.21c)

for q ≤ k ≤ q + n̄ − 1, where the first bound holds for N +M ≤ 2Nind, the second bound

holds for N +M ≤ Nind/4, and the third bound holds for N +M ≤ 3Nfin/2.

While the main Lp estimates on the Reynolds stress follow from the pointwise estimates in

terms of the pressure, we are forced to assume that Rk
q has a decomposition Rk

q = Rk,l
q +Rk,∗

q ,

where Rk,∗
q satisfies the stronger bound

∥∥DNDM
t,k−1R

k,∗
q

∥∥
∞ ≤ Γ2

qT
2Nind,t

k δk+2n̄Λ
N
k M

(
M,Nind,t, τ

−1
k−1,T

−1
k−1

)
(5.22)

for all N +M ≤ 2Nind. The extra superscript l stands for “local,” in the sense that Rk,l
q

is a stress error over which we maintain control of the spatial support, whereas ∗ refers to

non-local terms which are negligibly small. The reader can safely ignore such non-local error

terms.

Finally, we assume that for all q ≤ q′ ≤ q + n̄− 1,

imax∑
i=0

ψ2
i,q′δq′r

−2/3
q′−n̄Γ

2i
q′ ≤ 2q−q

′
Γq′r

−2
q′−n̄π

q′

q . (5.23)

Remark 5.3.1 (Lp estimates on Reynolds errors from pointwise estimates). The

estimates on Rk
q in (5.21a) and the estimates on πkq in (5.15) imply that for q ≤ k ≤ q+ n̄−1
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and N +M ≤ 2Nind, R
k
q satisfies

∥∥ψi,k−1D
NDM

t,k−1R
k
q

∥∥
3/2

≤ Γ2
qΓ

−7
k δk+n̄Λ

N
k M

(
M,Nind,t,Γ

i+20
k−1 τ

−1
k−1,T

−1
k−1Γ

10
q

)
, (5.24a)∥∥ψi,k−1D

NDM
t,k−1R

k
q

∥∥
∞ ≤ Γ2

qΓ
−7
k ΓC∞

k ΛNk M
(
M,Nind,t,Γ

i+20
k−1 τ

−1
k−1,T

−1
k−1Γ

10
q

)
. (5.24b)

Remark 5.3.2 (Velocity cutoffs, timescales, and pressure). Using the timescale pa-

rameter τ−1
q ≈ δ

1/2
q λqr

−1/3
q−n̄ defined precisely in (vi), we may now record the following version

of (5.23) for q′ = q;

ψi,qτ
−1
q Γiq ≤ λqΓq

(
πqq
)1/2

r−1
q . (5.25)

5.4 Dodging principle ingredients

In this subsection, we list “dodging” inductive hypotheses. As discussed in the introduction,

one of the crucial elements for the continuous scheme is dodging between velocity increments,

which is elaborated as Hypothesis 5.4.1. To construct a new velocity increment with such

dodging, it is necessary to keep a record of the density of previous velocity increments as

stated in Hypothesis 5.4.2. These two hypotheses can be seen as improved and inductive

versions of the “pipe dodging” technique used in [7] or [35]. As byproducts of a special con-

struction of velocity increments, we also have Hypothesis 5.4.4 and Hypothesis 5.4.5, which

explain dodging properties between velocity increments and stress error/intermittent pres-

sure. This will be utilized later in the stress current estimate discussed in subsection 11.2.4.

Hypothesis 5.4.1 (Effective dodging). For q′, q′′ ≤ q + n̄− 1 that satisfy 0 < |q′′ − q′| ≤

n̄− 1, we have that1

B
(
supp ŵq′ , λ

−1
q′ Γq′+1

)
∩B

(
supp ŵq′′ , λ

−1
q′′ Γq′′+1

)
= ∅ . (5.26)

1Here we are considering the support of ŵq in time and space, then expanding to a ball of radius λ−1
q Γq+1

in space only; see (5.1).
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Hypothesis 5.4.2 (Density of old pipe bundles). There exists a q-independent constant

CD such that the following holds. Let q̄′, q̄′′ satisfy q ≤ q̄′′ < q̄′ ≤ q + n̄− 1, and set2

d(q̄′, q̄′′) := min
[
(λq̄′′Γ

7
q̄′′)

−1, (λq̄′−n̄/2Γq̄′−n̄)
−1
]
. (5.27)

Let t0 ∈ R be any time and Ω ⊂ T3 be a convex set of diameter at most d(q̄′, q̄′′). Let i be

such that Ω× {t0} ∩ suppψi,q̄′′ ̸= ∅. Let Φq̄′′ be the flow map such that


∂tΦq̄′′ + (ûq̄′′ · ∇) Φq̄′′ = 0

Φq̄′′(t0, x) = x .

We define Ω(t) = Φq̄′′(t)
−1(Ω).3 Then there exists a set4 L = L(q̄′, q̄′′,Ω, t0) ⊆ T3 × R such

that for all t ∈ (t0 − τq̄′′Γ
−i+2
q̄′′ , t0 + τq̄′′Γ

−i+2
q̄′′ ),

(∂t + ûq̄′′ · ∇)1L(t, ·) ≡ 0 and supp xŵq̄′(x, t) ∩ Ω(t) ⊆ L ∩ {t} . (5.28)

Furthermore, there exists a finite family of Lipschitz curves {ℓj,L}CDj=1 of length at most

2d(q̄′, q̄′′) which satisfy

L ∩ {t = t0} ⊆
CD⋃
j=1

B
(
ℓj,L, 3λ

−1
q̄′

)
. (5.29)

Remark 5.4.3 (Segments of deformed pipes of thickness λ−1
q̄′ ). We will refer to a

3λ−1
q̄′ neighborhood of a Lipschitz curve of length at most 2(λq̄′−n̄/2Γq̄′−n̄)

−1 as a “segment of

deformed pipe;” see Definition 7.1.8. Since (λq̄′−n̄/2Γq̄′−n̄)
−1 will be the scale to which our

high-frequency pipes will be periodized, Hypothesis 5.4.2 then asserts that at each step of

2The reasoning behind the choice of d(q̄′, q̄′′) is as follows. The set should be small enough that it can
be contained in the support of a single q̄′′ velocity cutoff. Since these functions oscillate at frequencies no
larger than ≈ λq′′ , the first number inside the minimum ensures that this is the case. The set should also
be no larger than the size of a periodic cell for pipes of thickness q̄′, which is ensured by the second number
inside the minimum.

3For any set Ω′ ⊂ T3, Φq̄′′(t)
−1(Ω′) = {x ∈ T3 : Φq̄′′(t, x) ∈ Ω′}. We shall also sometimes use the notation

Ω ◦ Φq̄′′(t).
4Heuristically this set is ∪tsuppxŵq̄′(·, t) ∩Ω(t), but in order to ensure that (∂t + ûq̄′′ · ∇)1L ≡ 0, L does

not include any “time cutoffs” which turn pipes on and off.
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the iteration, our algorithm can use at most a finite number of high-frequency pipe segments

inside any single periodic cell.

Hypothesis 5.4.4 (Stress dodging). For all k, q′′ such that q ≤ q′′ ≤ k − 1 and q ≤ k ≤

q + n̄− 1, we assume that

B
(
supp ŵq′′ , λ

−1
q′′ Γq′′+1

)
∩ suppRk,l

q = ∅ . (5.30)

Hypothesis 5.4.5 (Pressure dodging). We assume that for all q < k ≤ q+ n̄− 1, k ≤ k′,

and N +M ≤ 2Nind,

∣∣∣ψi,k−1D
NDM

t,k−1

(
ŵkπ

k′

q

)∣∣∣ < ΓqΓ
−100
k

(
πkq
)3/2

r−1
k ΛNk M

(
M,Nind,t,Γ

i+1
k−1τ

−1
k−1,Γ

−1
k T−1

k

)
.

(5.31a)

Hypothesis 5.4.4 for q 7→ q + 1 will be verified in section 10.3. A stronger statement

than Hypothesis 5.4.1 and Hypothesis 5.4.2 for q 7→ q + 1 will be proved in Section 9.2 (see

Lemma 9.2.2). Lastly, Hypothesis 5.4.5 for q 7→ q + 1 will be verified in subsection 13.2.

5.5 Inductive velocity bounds

In this section, we present inductive L∞-bounds for velocity increments and velocity, which

are derived from the construction of velocity cutoffs. Additionally, we also introduce velocity

increment potentials, which express velocity increments as dth divergence of the velocity

increment potential with small homogeneous error. This representation will be useful to

deal with a pressure current error (see subsection 13.4 for more details). All inductive

assumptions in subsection 5.5 except for (5.40) at q 7→ q + 1 will be verified in section 9.4,

and we prove (5.40) for q 7→ q + 1 in Section 13.
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5.5.1 Velocities and velocity increments

In this subsection, we assume that 0 ≤ q′ ≤ q + n̄ − 1. First, for 0 ≤ i ≤ imax, k ≥ 1,

α, β ∈ Nk, we assume that

∥∥∥∥∥
(

k∏
l=1

DαlDβl
t,q′−1

)
ŵq′

∥∥∥∥∥
L∞(suppψi,q′ )

≤ Γi+2
q′ δ

1/2
q′ r

−1/3
q′−n̄(λq′Γq′)

|α|M
(
|β|,Nind,t,Γ

i+3
q′ τ

−1
q′−1,Γq′−1T

−1
q′−1

)
(5.32)

for |α|+ |β| ≤ 3Nfin/2 + 1. We also assume that for N ≥ 0,

∥∥∥∥∥DN
( k∏
l=1

Dαl

q′ D
βl
t,q′−1

)
ŵq′

∥∥∥∥∥
L∞(suppψi,q′ )

≤ (Γi+2
q′ δ

1/2
q′ r

−1/3
q′−n̄)

|α|+1(λq′Γq′)
N+|α|M

(
|β|,Nind,t,Γ

i+3
q′ τ

−1
q′−1,Γq′−1T

−1
q′−1

)
(5.33a)

≤ Γi+2
q′ δ

1/2
q′ r

−1/3
q′−n̄(λq′Γq′)

N(Γi−5
q′ τ

−1
q′ )|α|M

(
|β|,Nind,t,Γ

i+3
q′ τ

−1
q′−1,Γq′−1T

−1
q′−1

)
(5.33b)

whenever N + |α|+ |β| ≤ 3Nfin/2 + 1. Next, we assume

∥∥∥∥∥
(

k∏
l=1

DαlDβl
t,q′

)
Dûq′

∥∥∥∥∥
L∞(suppψi,q′ )

≤ τ−1
q′ Γi−4

q′ (λq′Γq′)
|α|M

(
|β|,Nind,t,Γ

i−5
q′ τ

−1
q′ ,Γq′−1T

−1
q′−1

)
(5.34)

for |α|+ |β| ≤ 3Nfin/2. In addition, we assume the lossy bounds

∥∥∥∥∥
(

k∏
l=1

DαlDβl
t,q′

)
ûq′

∥∥∥∥∥
L∞(suppψi,q′ )

≤ τ−1
q′ Γi+2

q′ λq′(λq′Γq′)
|α|M

(
|β|,Nind,t,Γ

i−5
q′ τ

−1
q′ ,Γq′−1T

−1
q′−1

)
(5.35a)∥∥∥D|α|∂

|β|
t ûq′

∥∥∥
L∞

≤ Λ
1/2
q′ Λ

|α|
q T

−|β|
q′ , (5.35b)

hold, where the first bounds holds for |α|+ |β| ≤ 3Nfin/2+ 1, and the second bound holds for

|α|+ |β| ≤ 2Nfin.

Remark 5.5.1 (Upgrading material derivatives for velocity and velocity cutoffs).
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We have the bound

∥∥DNDM
t,q′ŵq′

∥∥
L∞(suppψi,q′ )

≲ Γi+2
q′ δ

1/2
q′ r

−1/3
q′−n̄(λq′Γq′)

NM
(
M,Nind,t,Γ

i−5
q′ τ

−1
q′ ,Γq′−1T

−1
q′−1

)
(5.36)

for allN+M ≤ 3Nfin/2 + 1. Specifically, we set B = Dt,q′−1 and A = Dq′ , so that A+B = Dt,q′ .

Then the estimate (5.36) follows from the aforementioned Lemma and (4.10b). We also have

that (5.12) and (4.18) imply that for all N +M ≤ Nfin,

1suppψi,q′

ψ
1−(N+M)/Nfin

i,q′

∣∣DNDM
t,q′ψi,q′

∣∣ ≤ Γq′(λq′Γq′)
NM

(
M,Nind,t − Ncut,t,Γ

i−5
q′ τ

−1
q′ ,Γq′−1T

−1
q′−1

)
≲ Γq′(λq′Γq′)

NM
(
M,Nind,t,Γ

i−4
q′ τ

−1
q′ ,Γ

2
q′−1T

−1
q′−1

)
. (5.37)

5.5.2 Velocity increment potentials

We assume that for all q − 1 < q′ ≤ q + n̄ − 1 and ŵq′ as in (5.4), there exists a velocity

increment tensor potential υ̂q′ and an error êq′ such that ŵq′ can be decomposed as

ŵq′ = divdυ̂q′ + êq′ , (5.38)

which written component-wise gives ŵ•
q′ = ∂i1 · · · ∂id υ̂

(•,i1,··· ,id)
q′ + ê•q′ . Next, we assume that

υ̂q′ and êq′ satisfy

B

(
supp (ŵq′′),

1

4
λq′′Γ

2
q′′

)
∩ (supp (υ̂q′) ∪ supp (êq′)) = ∅ (5.39)

for any q + 1 ≤ q′′ < q′. In addition, we assume that υ̂•q′,k := λd−kq′ ∂i1 · · · ∂ik υ̂
(•,i1,...,id)
q′ ,

0 ≤ k ≤ d, satisfies the pointwise estimates

∣∣ψi,q′−1D
NDM

t,q′−1υ̂q′,k
∣∣ < ΓqΓq′

(
πq

′

q

)1/2

r−1
q′−n̄(λq′Γq′)

NM
(
M,Nind,t,Γ

i
q′−1τ

−1
q′−1,T

−1
q′−1Γ

2
q′−1

)
(5.40)
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for N +M ≤ 3Nfin/2. Finally, we assume that for N +M ≤ 3Nfin/2, êq′ satisfies the estimates

∥∥DNDM
t,q′−1êq′

∥∥
∞ ≤ δ3q′+2n̄T

5Nind,t

q′ λ−10
q′ (λq′Γq′)

NM
(
M,Nind,t, τ

−1
q′−1,T

−1
q′−1Γ

2
q′−1

)
. (5.41)

5.6 Inductive proposition and the proof of the main

theorem

In this section, we introduce the inductive proposition and give a proof of the main theorem.

Proposition 5.6.1 (Main inductive proposition). Fix β ∈ (0, 1/3), b ∈ (1, 25/24) and

n̄ ∈ N satisfying bn̄ < (3β)−1, T > 0, and fix a Radon measure E ≥ 0. There exist parame-

ters εΓ, C∞, d, Npr, Ncut,t, Nind,t, Nind, Nfin, depending only on β, b, and n̄ (see Section 4.1)

such that we can find sufficiently large a∗ = a∗(b, β, n̄, T ) such that for a ≥ a∗(b, β, n̄, T ),

the following statements hold for any q ≥ 0. Suppose that we have an approximate solution

(uq, pq, Rq, φq,−πq) which satisfies the Euler-Reynold system (5.2) and the relaxed local en-

ergy identity (5.3) with dissipation measure E on the time interval [0, T ]+ τq−1, and suppose

we have a partition of unity {ψ6
i,q′}i≥0 of ([0, T ] + τq−1)× T3 for q − 1 ≤ q′ ≤ q + n̄− 1 such

that

• ψi,q′ satisfies (5.8)–(5.14).

• The velocity uq and the errors Rq, φq, and πq may be decomposed as in (5.4)–(5.7) so

that (5.15)–(5.23), Hypotheses 5.4.1–Hypothesis 5.4.5, (5.32)–(5.35), and (5.38)–(5.41)

hold.

Then there exist a new partition of unity {ψ6
i,q+n̄}i≥0 of ([0, T ]+τq)×T3 satisfying (5.8)–(5.14)

for q′ = q+n̄, and a new approximate solution (uq+1, pq+1, Rq+1, φq+1,−πq+1) satisfying (5.2)

and (5.3) with dissipation measure E for q 7→ q + 1 on [0, T ] + τq satisfying the following.

The approximate solution may be decomposed as in (5.4)–(5.7) for q 7→ q+1 so that (5.15)–
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(5.23) and Hypothesis 5.4.1–Hypothesis 5.4.5 hold for q 7→ q + 1, and (5.32)–(5.35) and

(5.38)–(5.41) hold for q′ = q + n̄.

Assuming for the moment that the main proposition holds, we give a proof of Theorem

2.0.1.

Proof of Theorem 2.0.1. To avoid confusion between β in the statement of the theorem

and β in the statement of Proposition 5.6.1, we set β := β. Since β ∈ (0, 1/3), we can choose

β ∈ (β, 1/3). Let a∗ = a∗(β, b, n̄) be as in Proposition 5.6.1, fix a ≥ a∗, and define additional

parameters by

Γq = 1 for − n̄ ≤ q ≤ −1 , rq =


λq+n̄/2λ

−1
q+n̄ for − n̄/2 ≤ q < 0

λ
1/2
0 λ

−1/2
n̄ for − n̄ ≤ q < −n̄/2 .

Step 1: Construction of initial approximate solution (u0, p0, R0, φ0,−π0) on the time interval

[−1, T + 1]. We first define

û−1 = 0 , ŵq′ = 0 for 0 ≤ q′ ≤ n̄− 2 , p0 = φ0 = 0 , πk0 = Γkδk+n̄ ,

ψi,q′ =


1 i = 0

0 otherwise

for 0 ≤ q′ ≤ n̄− 1 ,

so that

ûq′ = 0 for 0 ≤ q′ ≤ n̄− 2 , π0 =
∞∑
k=0

Γkδk+n̄ .

Given a smooth R(2
d)-tensor field ϑ̄(x) = ϑ̄(x1, x2) with supp (ϑ̄) ⊂ B(0, 1/4). Then applying

Proposition 7.1.5 we have ϑ̄e3,λn̄−1,r−1 and ϱ̄e3,λn̄−1,r−1 , depending only on the x1, x2 variables,

which are (T3/λn̄/2−1Γ−1))-periodic, have support contained in pipes of thickness λ−1
n̄−1, and
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satisfy

ϱ̄e3,λn̄−1,r−1 = λ−d
n̄−1div

dϑ̄e3,λn̄−1,r−1 ,
∥∥∇nϑ̄e3,λn̄−1,r−1

∥∥
L∞ +

∥∥∇nϱ̄e3,λn̄−1,r−1

∥∥
L∞ ≤ C0λ

n
n̄−1r

−1
−1

for all n ≤ 2Nfin + d and some positive constant C0 = C0(2Nfin, d). For simplicity, we denote

ϱ̄e3,λn̄−1,r−1 and ϑ̄e3,λn̄−1,r−1 by ρ0 and θ0, respectively. We then define

u0 = ŵn̄−1 = e(t)ρ0(x1, x2)e3, e(t) := Γ−100
n̄ δ2n̄r−1 exp(−τ−1

0 (t+ 1))

R0 = e′(t)


0 0 (λ−d

n̄−1div
d−1θ0)1

0 0 (λ−d
n̄−1div

d−1θ0)2

(λ−d
n̄−1div

d−1θ0)1 (λ−d
n̄−1div

d−1θ0)2 0

 = Rn̄−1,l
0 ,

where (g)k denotes the kth component of the vector g. Here, R0 is constructed to have

∂tu0 = divR0.

From the construction, we have divu0 = div(|u0|2u0) = 0 and div(u0 ⊗ u0) = 0, so

that one can easily see that (u0, p0, R0, φ0,−π0) satisfies the Euler-Reynold system (5.2) and

the relaxed local energy identity (5.3) with E(t, x) := −e(t)e′(t)|ρ0|2 on the time interval

[−1, T + 1]. We will now check that the constructed approximate solution pair and the

partitions of unity satisfy the inductive assumptions appearing in Section (5.1)–(5.5) on

[−1, T + 1]. For 0 ≤ q′ ≤ n̄− 1, ψi,q′ satisfies (5.8)–(5.14).

Letting Rk
0 = 0 for 0 ≤ k ≤ n̄− 2, Rn̄−1

0 = Rn̄−1,l
0 , and φk0 = 0 for 0 ≤ k ≤ n̄− 1, we have

the decompositions (5.4)–(5.7). Using the convention B(A, r) = ∅ for the empty set A and

setting υ̂n̄−1 = e(t)θ0e3, υ̂q′ = eq′′ = 0 for 0 ≤ q′ ≤ n̄− 2 and 0 ≤ q′′ ≤ n̄− 1, we can easily

verify (5.15)–(5.23), Hypothesis 5.4.1, 5.4.4, 5.4.5, (5.32), (5.33), (5.38)–(5.41) for q = 0. As

for Hypothesis 5.4.2, it is enough to consider q′ = n̄ − 1. Since q′′ < q = n̄ − 1 and i needs

to be 0, recalling that ûq′′ = 0, we have Φq′′(t, x) = x and hence Ω(t) = Ω. Then, (5.28) is
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equivalent to

supp ŵn̄−1 ∩ Ω ⊂ L ∩ Ω .

Therefore, we choose L as the collection of the (T/λn̄/2−1Γn̄/2−1)
3-periodic pipes of thickness λ−1

n̄−1

containing the support of ŵn̄−1, which verifies the hypothesis. Lastly, considering (5.34) and

(5.35), it is enough to prove it when q′ = n̄− 1 and i = 0. Since we have ûn̄−1 = ŵn̄−1 and

∥∥∥∥∥
(

k∏
l=1

Dαl∂βlt

)
ŵn̄−1

∥∥∥∥∥
L∞(T3)

≤ C0Γ
−100
n̄ δ2n̄λ

|α|
n̄−1τ

−|β|
0 ,

applying Remark A.2.6 to p = ∞, v = 0, w = ŵn̄−1, Ω = T3, N∗ = 7Nfin/4, we get the desired

estimates (5.34) and (5.35).

Step 2: From Proposition 5.6.1 to Theorem 2.0.1. In Step 1, we checked that the induc-

tive assumptions hold at the base case of the induction q = 0, and we may inductively

apply Proposition 5.6.1 with E(t, x) = −e(t)e′(t)ρ20, to produce a sequence of approxi-

mate solutions (uq, pq, Rq, φq,−πq) such that all inductive assumptions hold for all q ≥ 0.

Then, by construction, we have that for any β < β′ < β, the series
∑

q≥n̄ ŵq is absolutely

summable in C0
tW

β′,3 and hence in C0
tB

β
3,1, which justifies the definition of the limiting

velocity field u = u0 +
∑

q≥n̄ ŵq ∈ C0
tB

β
3,1. As Rq, πq → 0 in C0

t L
3/2, from the equation

−∆pq = divdiv(uq ⊗ uq + πqId − Rq), we get the limiting pressure p ∈ C0
t L

3/2. In addition

to this, as φq → 0 in C0
t L

1, the limiting pair (u, p) solves the 3D Euler system and satisfies

the local energy inequality,

∂t

(
1

2
|u|2
)
+ div

((
1

2
|u|2 + p

)
u

)
= e(t)e′(t)ρ20 ≤ 0

in the sense of distributions. In particular, the strict inequality holds in the interior of

supp (ρ0), which leads to the total kinetic energy dissipation.

In order to conclude the proof of the theorem, we only need to show that u ∈ C0
t L

27−80β

9(1−3β) .
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For this purpose, note that we have the identity u = limq→∞ uq = u0 +
∑

q≥n̄ ŵq. Using the

bounds on ŵq provided by (5.21c) and (5.15), we may sum over 0 ≤ i ≤ imax(q) using the

partition of unity property (5.8), to arrive at

∥ŵq∥L3 ≤ Cδ
1/2
q+n̄r

−1
q−n̄Γq and ∥ŵq∥L∞ ≤ CΓ

C∞/2
q r−1

q−n̄

where the constant C depends only on our upper bound for imax(q), and so only on β and

b through (5.9). Using Lebesgue interpolation, the definition (4.11) of C∞, and the above

established bounds, for p ∈ [3,∞) we obtain

∥ŵq∥Lp ≤ ∥ŵq∥
3
p

L3 ∥ŵq∥
1− 3

p

L∞ ≤ C(δq+n̄Γq)
3
2p (ΓC∞

q )(
1
2
− 3

2p)r−1
q−n̄

≈ λ

3
2p

(−2βb2n̄)+( 1
2
− 3

2p)
(

3bn̄(1+4bn̄−1)

1+···+b
n̄
2 −1

+3bn̄(b−1)
1
2

)
+b

n̄
2 (b

n̄
2 −1)+O(εΓ(b−1))

q−n̄

(5.42)

where the constant C = C(β, b) ≥ 1 and we have used (b − 1)C∞εΓ ≤ 3(1+4bn̄−1)

1+···b
n̄
2 −1

+ 3(b −

1)
1
2 + O(εΓ(b − 1)) from (4.11), (4.2b), and (4.10l). Thus, in order to ensure the absolute

summability of {ŵq}q≥n̄ in Lp, the exponent of λq−n̄ appearing on the right side of (5.42)

must be strictly negative. After a short computation, we deduce that we must have

p < p∗(β, b) =:
3
(
2βb2n̄ +

(
3bn̄(1+4bn̄−1)

1+···+b
n̄
2 −1

+ 3bn̄(b− 1)
1
2

))
(

3bn̄(1+4bn̄−1)

1+···+b
n̄
2 −1

+ 3bn̄(b− 1)
1
2

)
+ b

n̄
2 (b

n̄
2 − 1)

+O(n̄εΓ(b− 1)) . (5.43)

Since the second and last term in the denominator is O((b− 1)1/2), we use (1 + x)−1 ≥ 1− x

when x ≥ 0, β ∈ (0, 1/3), and bn̄ ∈ (1, 2) to simplify p∗(β, b). Then, it is enough to show that

3 < 3 +
β

9(1− 3β)
< 3 +

6βb2n̄(1 + · · ·+ b
n̄
2
−1)

3bn̄(1 + 4bn̄−1)
+O((b− 1)

1
2 n̄)−O((b− 1)

1
2 n̄2) .

This can be verified using 2/n̄ < 1 − 3β from the second inequality of (4.1) and bn̄ ∈ (1, 2],
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and adjusting the choice of n̄ = n̄(β) and b = (n̄, β) if necessary. Since 3 + β
9(1−3β)

= 27−80β
9(1−3β)

is increasing in β, we get the desired conclusion u ∈ C0
t L

27−80β

9(1−3β) .
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Chapter 6

Mollification and upgrading material

derivatives

In this section, we introduce suitable mollifications of πkq , R
k
q , κ

q
q, and φqq in preparation

of later analysis. The following lemma says that the mollified functions satisfy the same

estimates essentially as the unmollified ones, ignoring extra Γk costs. The difference between

the mollified function and the original function, on the other hand, can be made small.

Lemma 6.0.1 (Mollification and upgrading material derivative estimates). Assume

that all inductive assumptions listed in subsections 5.1-5.5 hold. Let Pq,x,t be a space-time

mollifier for which the kernel is a product of Pq,x(x), which is compactly supported in space at

scale Λ−1
q Γ

−1/2
q−1 , and Pq,t(t), which is compactly supported in time at scale Tq−1Γ

1/2
q−1; we further

assume that both kernels have vanishing moments up to 10Nfin and are C10Nfin-differentiable.

Define

Rℓ = Pq,x,tRq
q , φℓ = Pq,x,tφqq , πℓ = Pq,x,tπqq , κℓ =

1

2
tr (Rℓ − πℓId) . (6.1)

on the space-time domain [−τq−1/2, T + τq−1/2] × T3. For q′ such that q < q′ ≤ q + n̄ − 1,

we define Pq′,x,t in an analogous way after making the appropriate parameter substitutions,
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and we set Rq′

ℓ = Pq′,x,tRq′
q and πq

′

ℓ = Pq′,x,tπq
′
q . For q′ with q + n̄ ≤ q′ < q + Npr, we define

Pq+n̄−1,x,t analogously at the spatial scale Λ−1
q+n̄−1Γ

−1/2
q+n̄−1 and temporal scale Tq+n̄−1Γ

−1/2
q+n̄−1

and set πq
′

ℓ = Pq+n̄−1,x,tπ
q′
q . Then the following hold.

(i) The following relaxed equations (replacing (5.2) and (5.3)) are satisfied:



∂tuq + div(uq ⊗ uq) +∇pq

= div

(
Rℓ +

q+n̄−1∑
k=q+1

Rk
q −

(
πℓ +

q+Npr−1∑
k=q+1

πkq

)
Id

)
+ div

(
Rq
q −Rℓ +

(
πℓ − πqq

)
Id
)

∂t
(
1
2
|uq|2

)
+ div

((
1
2
|uq|2 + pq

)
uq
)

= (∂t + ûq · ∇)κq + div

((
Rℓ +

q+n̄−1∑
k=q+1

Rk
q −

(
πℓ +

q+Npr−1∑
k=q+1

πkq

)
Id

)
ûq

)

+div
((
Rq
q −Rℓ + (πℓ − πqq)Id

)
ûq
)
+ div

(
φℓ +

q+n̄−1∑
k=q+1

φkq

)
+ div

(
φqq − φℓ

)
− E(t) .

(6.2)

(ii) The inductive assumptions for πqq in (5.15) are replaced with the following upgraded

bounds for πℓ for all N +M ≤ Nfin:

∥∥ψi,qDNDM
t,qπℓ

∥∥
3/2

≲ Γ2
qδq+n̄ (ΛqΓq)

N M
(
M,Nind,t,Γ

i
qτ

−1
q ,T−1

q

)
, (6.3a)∥∥ψi,qDNDM

t,qπℓ
∥∥
∞ ≲ Γ2+C∞

q (ΛqΓq)
N M

(
M,Nind,t,Γ

i
qτ

−1
q ,T−1

q

)
, (6.3b)∣∣ψi,qDNDM

t,qπℓ
∣∣ ≲ Γ3

qπℓ (ΛqΓq)
N M

(
M,Nind,t,Γ

i
qτ

−1
q ,T−1

q

)
. (6.3c)

While we do not replace the inductive bounds in (5.15) and (5.16) for k ̸= q, we do

record the following additional bounds for πkℓ with q < k ≤ q+ n̄−1 and N +M ≤ Nfin,
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∥∥ψi,k−1D
NDM

t,k−1π
k
ℓ

∥∥
3/2

≲ Γ2
kδk+n̄ (ΛkΓk−1)

N M
(
M,Nind,t,Γ

i+2
k−1τ

−1
k−1,T

−1
k−1Γk−1

)
,

(6.4a)∥∥ψi,k−1D
NDM

t,k−1π
k
ℓ

∥∥
∞ ≲ Γ2+C∞

k (ΛkΓk−1)
N M

(
M,Nind,t,Γ

i+2
k−1τ

−1
k−1,T

−1
k−1Γk−1

)
,

(6.4b)∣∣ψi,k−1D
NDM

t,k−1π
k
ℓ

∣∣ ≤ 2Γ3
kπ

k
ℓ (ΛkΓk)

N M
(
M,Nind,t,Γ

i+3
k−1τ

−1
k−1,T

−1
k−1Γ

2
k−1

)
. (6.4c)

and for πkℓ with q + n̄ ≤ k < q + Npr and N +M ≤ Nfin,

∥∥ψi,q+n̄−1D
NDM

t,q+n̄−1π
k
ℓ

∥∥
3/2

≲ Γ2
kδk+n̄ (Λq+n̄−1Γq+n̄−1)

N

×M
(
M,Nind,t,Γ

i+2
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1Γq+n̄−1

)
,

(6.5a)∥∥ψi,q+n̄−1D
NDM

t,q+n̄−1π
k
ℓ

∥∥
∞ ≲ Γ2+C∞

q+n̄−1 (Λq+n̄−1Γq+n̄−1)
N

×M
(
M,Nind,t,Γ

i+2
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1Γq+n̄−1

)
,

(6.5b)∣∣ψi,q+n̄−1D
NDM

t,q+n̄−1π
k
ℓ

∣∣ ≤ 2Γ3
kπ

k
ℓ

(
Λq+n̄−1Γ

2
q+n̄−1

)N
×M

(
M,Nind,t,Γ

i+3
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1Γ

2
q+n̄−1

)
.

(6.5c)

The inductive assumptions (5.19) and subsection 5.2 remain unchanged. While we do

not discard the estimate in (5.17), we however record the additional estimate

1

2
δq+n̄ ≤ πℓ ≤ 2πqq ≤ 4πℓ ,

1

2
δk+n̄ ≤ πkℓ ≤ 2πkq ≤ 4πkℓ . (6.6)

(iii) The inductive assumptions in (5.21a)–(5.21c) for k = q are replaced with the following

upgraded bounds for all N +M ≤ Nfin in the first two inequalities, and N +M ≤ 3Nfin/2
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in the third:

∣∣ψi,qDNDM
t,qRℓ

∣∣ ≲ Γ−7
q πℓ (ΛqΓq)

N M
(
M,Nind,t,Γ

i
qτ

−1
q ,T−1

q

)
(6.7a)∣∣ψi,qDNDM

t,qφℓ
∣∣ ≲ Γ−11

q π
3/2
ℓ r−1

q (ΛqΓq)
N M

(
M,Nind,t,Γ

i
qτ

−1
q ,T−1

q

)
(6.7b)∣∣ψi,qDNDM

t,qŵk
∣∣ ≲ r−1

k−n̄π
1/2
ℓ (ΛqΓq)

N M
(
M,Nind,t,Γ

i
qτ

−1
q ,T−1

q

)
. (6.7c)

For k such that q < k ≤ q + n̄− 1, we have for N +M ≤ Nfin the additional bound

∣∣ψi,k−1D
NDM

t,k−1R
k
ℓ

∣∣ ≲ Γ−7
q πkℓ (ΛkΓk)

N M
(
M,Nind,t,Γ

i+23
k−1 τ

−1
k−1,T

−1
k−1Γ

12
k−1

)
. (6.8)

(iv) The symmetric tensor Rℓ −Rq
q and the pressure πqq − πℓ satisfy

∥∥DNDM
t,q

(
πℓ − πqq

)∥∥
∞ +

∥∥DNDM
t,q

(
Rℓ −Rq

q

)∥∥
∞

≲ Γq+1T
4Nind,t

q+1 δ2q+3n̄λ
N
q+1M

(
M,Nind,t, τ

−1
q ,Γ−1

q T−1
q

)
(6.9)

for all N +M ≤ 2Nind, while φℓ − φqq satisfies

∥∥DNDM
t,q

(
φℓ − φqq

)∥∥
∞ ≤ δ

3/2
q+3n̄λ

N
q+1M

(
M,Nind,t, τ

−1
q ,Γ−1

q T−1
q

)
(6.10)

for all N +M ≤ Nind/4. For k such that q < k ≤ q + n̄ − 1 and N +M ≤ 2Nind, we

have that

∥∥DNDM
t,k−1

(
πkq − πkℓ

)∥∥
∞ +

∥∥DNDM
t,k−1

(
Rk
q −Rk

ℓ

)∥∥
∞

≲ Γk+1T
4Nind,t

k+1 δ2k+3n̄(ΛkΓk−1)
NM

(
M,Nind,t, τ

−1
k−1Γk−1,T

−1
k−1Γ

11
k−1

)
. (6.11)
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and for k with q + n̄ ≤ k < q + Npr and N +M ≤ 2Nind,

∥∥DNDM
t,q+n̄−1

(
πkq − πkℓ

)∥∥
∞ ≲ Γq+n̄+1T

4Nind,t

q+n̄+1δ
2
q+4n̄(Λq+n̄−1Γq+n̄−1)

N

×M
(
M,Nind,t, τ

−1
q+n̄−1Γq+n̄−1,T

−1
q+n̄−1Γq+n̄−1

)
. (6.12)

Proof. We first note that (6.2) is immediate from (5.2)–(5.3) and the definitions in (6.1). At

this point, we split the proof into steps, in which we first carry out the mollifications, and

then upgrade the material derivatives.

Step 1: Mollifying the pressure πkq . We first consider the case k = q and apply the

abstract mollification Proposition A.6.1 with the following choices:

p = 3/2,∞ , Ng, Nc as in (xiii) , Mt = Nind,t , N∗ = 2Nind ,

Nγ = Nfin , Ω = suppψi,q−1 , v = ûq−1 , i = i ,

λ = Λq−1 , Λ = ΛqΓq−1 , Γ = Γq−1 , τ = τq−1Γq−1 , T = Tq−1,

f = πqq , Cf,3/2 = Γ2
qδq+n̄, Cf,∞ = C̃f = ΓC∞+2

q Cv = Λ
1/2
q−1 .

First, we have that the assumptions on the parameters in (A.225a) are satisfied by (4.19c),

(4.20a),(4.24a), (4.15) and (5.10). The assumptions in (A.225b) are satisfied from (4.19b),

and the assumptions in (A.226) are satisfied from (5.35b). Next, the assumptions in (A.227a)

are satisfied from (5.15) (where we apply the bound with ψi±,q−1 in order to obtain a bound

for Lp(suppψi,q−1)). Finally, in order to verify (A.227b), we apply Remark A.2.6 with the

following choices. We set p = ∞, Nx = Nt = ∞, N∗ = 2Nind, Ω = T3 × R, v = −w = ûq−1,

Cw = Γimax+2
q−1 δ

1/2
q−1λ

2
q−1, λw = λ̃w = Λq−1, µw = µ̃w = Γ−1

q−1T
−1
q−1 in (A.34), while in (A.27) and

(A.28) we set v = ûq−1, Cv = Cw, λv = λ̃v = Λq−1, µv = µ̃v = Γ−1
q−1T

−1
q−1, f = πqq , Cf = ΓC∞+2

q ,

λf = λ̃f = Λq, µf = µ̃f = T−1
q−1. Then (A.27) and (A.28) are satisfied from (5.34) at level

q − 1, (5.15), (5.10), and (4.15). Next, (A.34) is satisfied from (5.35a) at level q − 1. Thus
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from (A.35) and (4.15), we obtain that

∥∥DN∂Mt π
q
q

∥∥
∞ ≲ ΓC∞+2

q ΛNq T
−M
q−1 (6.13)

for N +M ≤ 2Nind, thus verifying the final assumption (A.227b) from Lemma A.6.1.

We first apply (A.228) to conclude that for N +M ≤ Nfin,

∥∥ψi,q−1D
NDM

t,q−1πℓ
∥∥

3/2
≲ Γ2

qδq+n̄ (ΛqΓq−1)
N M

(
M,Nind,t,Γ

i+2
q−1τ

−1
q−1,T

−1
q−1Γq−1

)
(6.14a)∥∥ψi,q−1D

NDM
t,q−1πℓ

∥∥
∞ ≲ ΓC∞+2

q (ΛqΓq−1)
N M

(
M,Nind,t,Γ

i+2
q−1τ

−1
q−1,T

−1
q−1Γq−1

)
. (6.14b)

Next, we have from (A.229) and (4.19a) that the difference πqq − πℓ satisfies

∥∥DNDM
t,q−1

(
πqq − πℓ

)∥∥
∞ ≲ Γq+1T

4Nind,t

q+1 δ2q+3n̄(ΛqΓq−1)
NM

(
M,Nind,t, τ

−1
q−1Γq−1,T

−1
q−1Γq−1

)
(6.15)

for N +M ≤ 2Nind. Note also that since we have a lower bound on πqq given by (5.17),

the above estimate implies that (after a sufficiently large choice of λ0 so that the implicit

constant is absorbed)

πℓ ≥ πqq − δq+2n̄ ≥ 1

2
δq+n̄ ,

which is the first inequality for πℓ and π
q
q in (6.6). The other two inequalities there follow

similarly. Finally, we note that by (5.15c) and (6.6),

∣∣ψi,q−1D
NDM

t,q−1πℓ
∣∣ ≤ ∣∣ψi,q−1D

NDM
t,q−1π

q
q

∣∣+ ∣∣DNDM
t,q−1

(
πqq − πℓ

)∣∣
≤ Γ2

qπ
q
qΛ

N
q M

(
M,Nind,t,Γ

i
q−1τ

−1
q−1,T

−1
q−1

)
+ δ2q+3n̄(ΛqΓq−1)

NM
(
M,Nind,t, τ

−1
q−1,T

−1
q−1Γq−1

)
≤ Γ3

qπℓ(ΛqΓq−1)
NM

(
M,Nind,t,Γ

i
q−1τ

−1
q−1,T

−1
q−1Γq−1

)
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for N +M ≤ 2Nind. For 2Nind < N +M ≤ Nfin, we have from (6.14b) and (4.20b) that

∣∣DNDM
t,q−1πℓ

∣∣ ≤ δ2q+n̄(ΛqΓ
1/2
q−1Γ

1/2
q )NM

(
M,Nind,t,Γ

i+3
q−1τ

−1
q−1,T

−1
q−1Γ

2
q−1

)
.

In the case k ̸= q, we may obtain the bounds (6.4a), (6.4b), (6.5a), (6.5b), and the second

inequality of (6.6), via an argument identical to the proof of (6.3) and the first inequality of

(6.6). We additionally have the pointwise bound for q+1 ≤ k ≤ q+ n̄−1 and N +M ≤ Nfin

∣∣ψi,k−1D
NDM

t,k−1π
k
ℓ

∣∣ ≤ (Γ3
kπ

k
q + δ2k+n̄)(ΛkΓ

1/2
k−1Γ

1/2
k )NM

(
M,Nind,t,Γ

i+3
k−1τ

−1
k−1,T

−1
k−1Γ

2
k−1

)
≤ 2Γ3

kπ
k
ℓ (ΛkΓ

1/2
k−1Γ

1/2
k )NM

(
M,Nind,t,Γ

i+3
k−1τ

−1
k−1,T

−1
k−1Γ

2
k−1

)
, (6.16)

and for q + n̄ ≤ k < q + Npr and N +M ≤ Nfin

∣∣ψi,q+n̄−1D
NDM

t,q+n̄−1π
k
ℓ

∣∣ ≤ (Γ3
kπ

k
q + δ2k+n̄)(Λq+n̄−1Γ

2
q+n̄−1)

NM
(
M,Nind,t,Γ

i+3
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1Γ

2
q+n̄−1

)
≤ 2Γ3

kπ
k
ℓ (Λq+n̄−1Γ

2
q+n̄−1)

NM
(
M,Nind,t,Γ

i+3
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1Γ

2
q+n̄−1

)
,

(6.17)

which again follows from a similar argument as in the proof of the corresponding bounds

for q = k and (6.6). Furthermore, we have that the difference πkq − πkℓ satisfies (6.11) and

(6.12), which follows directly from the mollification lemma and (4.19a) with q replaced by

k − 1 or q + n̄, as in the case k = q. Finally, the bounds in (6.6) for πmℓ follow similarly as

before. At this point we have completed the proofs of the required estimates in (6.4)–(6.6)

and (6.11)–(6.12) for πkℓ .

Step 2: Mollifying the stress and current errors. We apply the abstract mollification

Proposition A.6.1 with the same choices as before, except for the stress error we choose

f = Rk
q , q ≤ k ≤ q + n̄− 1 , p = ∞ , Cf,∞ = ΓC∞+2

k , τ = τk−1 , c = 20 , T = Tk−1Γ
−10
q .
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We then have that (A.225a)–(A.225b) are satisfied as in the previous step, as is (A.226).

In order to verify (A.227a), we appeal to (5.21a) and (5.15b). In order to verify (A.227b),

we use Remark A.2.6 exactly as in the previous step, but with Rk
q replacing πkq . Thus from

(A.228)–(A.229) and (4.19a), we have that for q ≤ k ≤ q + n̄ − 1 (we denote Rℓ by R
q
ℓ for

concision here)

∣∣ψi,k−1D
NDt,k−1R

k
ℓ

∣∣ ≲ ΓC∞+2
k (ΛkΓk−1)

NM
(
M,Nind,t,Γ

i+22
k−1 τ

−1
k−1,T

−1
k−1Γ

11
k−1

)
(6.18a)∣∣DNDM

t,k−1

(
Rk
ℓ −Rk

q

)∣∣ ≲ Γk+1T
4Nind,t

k+1 δ2k+3n̄(ΛkΓk−1)
NM

(
M,Nind,t, τ

−1
k−1,T

−1
k−1Γ

11
k−1

)
,

(6.18b)

where the first bound holds for N+M ≤ Nfin, and the second bound holds for N+M ≤ 2Nind.

The second bound verifies (6.11) for the difference Rk
q − Rk

ℓ . Appealing to (5.21a), (6.18b),

and (6.6), we then may write that in the case k = q,

∣∣ψi,q−1D
NDM

t,q−1Rℓ

∣∣ ≤ ∣∣ψi,q−1D
NDM

t,q−1R
q
q

∣∣+ ∣∣DNDM
t,q−1

(
Rq
q −Rℓ

)∣∣
≤ Γ−7

q πqqΛ
N
q M

(
M,Nind,t,Γ

i+20
q−1 τ

−1
q−1,T

−1
q−1Γ

11
q

)
+ δ2q+3n̄(ΛqΓq−1)

NM
(
M,Nind,t, τ

−1
q−1,T

−1
q−1Γ

11
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)
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q πℓ(ΛqΓq−1)
NM

(
M,Nind,t,Γ
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q−1τ

−1
q−1,T

−1
q−1Γ

11
q−1

)
for N +M ≤ 2Nind. For 2Nind < N +M ≤ Nfin, we have from (6.18a) and (4.20b) that

∣∣DNDM
t,q−1Rℓ

∣∣ ≤ δ2q+n̄(ΛqΓ
1/2
q−1Γ

1/2
q )NM

(
M,Nind,t,Γ

i+23
q−1 τ

−1
q−1,T

−1
q−1Γ

12
q−1

)
.

In the case q ̸= k, we have that for N +M ≤ Nfin,

∣∣ψi,k−1D
NDM

t,k−1R
k
ℓ

∣∣ ≲ (Γ−7
k πkℓ + δ2k+n̄)(ΛkΓ

1/2
k−1Γ

1/2
k )NM

(
M,Nind,t,Γ

i+23
k−1 τ

−1
k−1,T

−1
k−1Γ

12
k−1

)
,

giving the desired bound in (6.8) after using (5.20a) again.
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In the case of the current error, we again apply Proposition A.6.1 with the same choices

as in the first portion of this step, except we choose

f = φqq , Cf,∞ = Γ
3C∞
2

+3
q r−1

q c = 20 , T = Tq−1Γ
10
q , N∗ = Nind/4.

We then have that (A.225a)–(A.225b) are satisfied exactly as in the previous step, as is

(A.226). In order to verify (A.227a), we appeal to (5.21b) and (5.15b). In order to verify

(A.227b), we use Remark A.2.6 exactly as in the first part of this step, but with φqq replacing

Rq
q. We conclude that (A.227b) is satisfied with C̃f = Cf,∞. Thus from (A.228)–(A.229), we

have that

∣∣ψi,q−1D
NDt,q−1φℓ

∣∣ ≲ Γ
3C∞
2

+3
q r−1

q (ΛqΓq−1)
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)
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4Nind,t
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NM
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M,Nind,t, τ
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11
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)
, (6.19b)

where the first bound holds for N+M ≤ Nfin, and the second bound holds for N+M ≤ Nind/4.

Appealing to (5.21b), (6.19b), and (6.6), we then may write that

∣∣ψi,q−1D
NDM

t,q−1φℓ
∣∣ ≤ ∣∣ψi,q−1D

NDM
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q
q

∣∣+ ∣∣DNDM
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)
for N +M ≤ Nind/4. For Nind/4 < N +M ≤ Nfin, we have from (6.19a) and (4.20b) that

∣∣DNDM
t,q−1φℓ

∣∣ ≤ δ2q+n̄(ΛqΓ
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q−1Γ
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q )NM
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.

Step 3: Upgrading material derivatives for k = q. We begin with the pointwise bounds
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for πℓ. Combining the bounds from Step 1 with (5.14) with q′ = q and q′′ = q − 1, we have

that for N +M ≤ Nfin,

∣∣ψi,qDNDM
t,q−1πℓ

∣∣ ≤ 2Γ3
qπℓ

(
ΛqΓ

1/2
q−1Γ

1/2
q

)N
M
(
M,Nind,t, τ

−1
q Γi−2

q ,T−1
q−1Γ

2
q−1

)
. (6.20)

We shall apply Remark A.2.6 (with the adjustment in Remark A.2.4 for derivative bounds)

with the following choices, at a point (t, x) ∈ int (suppψi,q) for which the neighborhood

Ωt,x ⊂ suppψi,q:

(A.34) choices: p = ∞ , Nx = ∞ , Nt = Nind,t , N∗ = Nfin , w = ŵq ,

Ω = Ωt,x , v = ûq−1 , Cw = Γi+2
q δ

1/2
q r

−1/3
q−n̄ ,

λw = λ̃w = Λq , µw = Γi+3
q−1τ

−1
q−1 , µ̃w = Γ−1

q T−1
q ,

(A.27) choices: Cv = Γi+2
q δ

1/2
q r

−1/3
q−n̄ , λv = λ̃v = Λq , µv = Γiqτ

−1
q , µ̃v = T−1

q Γ−1
q , Ω = Ωt,x ,

(A.28) choices: f = πℓ , Cf = sup
Ωt,x

πℓ , λf = λ̃f = Λq(Γq−1Γq)
1/2 , µf = µv , µ̃f = µ̃v , Ω = Ωt,x .

Then we have that (A.34) holds from (5.32) at level q, (A.27) holds from (5.34) at level q,

and (A.28) holds from (6.20). Taking Ωt,x to be arbitrary and using the continuity of πℓ, we

thus have from (A.35) that for N +M ≤ Nfin,

∣∣ψi,qDNDM
t,qπℓ

∣∣ ≲ Γ3
qπℓ
(
Λq(Γq−1Γq)

1/2
)N M

(
M,Nind,t, τ

−1
q Γiq,T

−1
q Γ−1

q

)
,

matching (6.3c). In order to obtain (6.3a) and (6.3b), we use the L3/2 and L∞ bounds on πℓ

shown in (6.3). Combined with Step 1, this concludes the proof of (ii).

In order to prove (6.7a), we argue in a manner very similar to the proof of (6.3c) carried

out just previously. The only difference is that from Step 2, we have the bound

∣∣DNDt,q−1Rℓ

∣∣ ≲ Γ−7
q πℓ

(
Λq(Γq−1Γq)

1/2
)N M

(
M,Nind,t,Γ

i+23
q−1 τ

−1
q−1,T

−1
q−1Γ

12
q−1

)
. (6.21)
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Carrying out the same steps with the obvious modifications, we deduce that (6.7a) holds as

desired. The proof of (6.7b) is again quite similar, and we omit the details. To conclude the

proof of (iii), we must show (6.7c). Following the exact same steps as before but beginning

instead with the bound (5.21c) and appealing to (6.6), we obtain the desired estimate,

concluding the proof of item (iii).

Finally, we must upgrade the material derivatives to Dt,q on the differences in order to

conclude the proofs of (6.9)–(6.10) from item (iv). Arguing in a similar fashion as in the

first part of this step but applying Remark A.2.6 to the differences, choosing Cw = µw =

µ̃w = Cv = µv = µ̃v = T−1
q+1 and using the extra prefactors from T

4Nind,t

q+1 to absorb the lossy

material derivative cost yields the desired estimates in (6.9)–(6.10).
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Chapter 7

Intermittent Mikado bundles and

synthetic Littlewood-Paley

decompositions

7.1 Definition of intermittent Mikado flows and basic

properties

We shall require the following lemmas regarding decompositions of symmetric positive defi-

nite tensor fields. Typically such lemmas are stated and applied for tensors in a neighborhood

of the identity. Since it will be convenient for us to decompose tensors for which some rescal-

ing of the original tensors belongs to a neighborhood of the identity, and later estimates (see

Lemma 9.3.1) will depend on the rescaling factor, we include a slightly altered statement

with full proof.

Proposition 7.1.1 (Geometric lemma I). Let Ξ ⊂ Q3∩S2 denote the set {3/5ei ± 4/5ej}1≤i<j≤3,

and for every ξ in Ξ. Then there exists ϵ > 0 such that every symmetric 2-tensor in B(Id, ϵ)

can be written as a unique, positive linear combination of ξ ⊗ ξ for ξ ∈ Ξ. Furthermore, for
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a given large number K > 1, let CK denote the set

CK :=
⋃

1≤k≤K

B(kId, kϵ) , (7.1)

which we note is contained in the set of positive definite, symmetric 2-tensors for ϵ sufficiently

small. Then there exist functions γξ,K for ξ ∈ Ξ such that every element R ∈ CK can also

be written as a unique, positive linear combination

R =
∑
ξ∈Ξ

(γξ,K(R))
2 ξ ⊗ ξ . (7.2)

Additionally, we have that for all 1 ≤ N ≤ 3Nfin,

1 ≲ |γξ,K | ≲ K
1/2,

∣∣DNγξ,K
∣∣ ≲ 1 , (7.3)

where the implicit constants above depend on Ξ and Nfin but not K.

Proof. By direct computation, we have that the identity matrix can be written as a strictly

positive linear combination of ξ ⊗ ξ for ξ ∈ Ξ, and that the set of simple tensors {ξ ⊗ ξ}ξ∈Ξ

is linearly independent in the set of symmetric matrices. Therefore, there exists ϵ < 1 and

linear functions (γξ)
2 for ξ ∈ Ξ such that for all R ∈ B(Id, ϵ),

R =
∑
ξ∈Ξ

γ2ξ (R)ξ ⊗ ξ ,

and there exist implicit constants depending only on Ξ such that

1 ≲ γξ(R) ≲ 1 ,
∣∣D[γ2ξ (R)]

∣∣ ≲ 1 , DN [γ2ξ (R)] ≡ 0 ∀N ≥ 2 . (7.4)
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Now let K be given, and let 1 ≤ k ≤ K and R be such that R/k ∈ B(Id, ϵ). We define1

γ2ξ,K(R) = kγ2ξ

(
R

k

)
, (7.5)

so that ∑
ξ∈Ξ

γ2ξ,K(R)ξ ⊗ ξ =
∑
ξ∈Ξ

γ2ξ

(
R

k

)
kξ ⊗ ξ = R ,

and (7.2) is satisfied. We then have that

1 ≲ γξ,K(R) ≲ K
1/2 ,

∣∣D[γ2ξ,K(R)]
∣∣ ≲ 1 , DN [γ2ξ,K(R)] ≡ 0 ∀N ≥ 2 ,

where the implicit constants are those from (7.4) and depend only on Ξ. We immediately

deduce from the lower bound for γξ,K(R) that

|Dγξ,K(R)| ≤
∣∣D[γ2ξ,K(R)]

∣∣
|γξ,K(R)|

≲ 1 .

Now for N ≥ 1, we may write that

2γξ,K(R)D
N+1γξ,K(R) = DN+1

(
γ2ξ,K(R)

)
+

∑
0<N ′<N+1

cN,N ′DN ′
(γξ,K(R))D

N+1−N ′
(γξ,K(R)) .

Assuming by induction that |DN ′′
γξ,K(R)| ≲ 1 for 1 ≤ N ′′ ≤ N , we use the lower bound for

γξ,K(R) to divide both sides by γξ,K(R) and deduce that |DN+1γξ,K(R)| ≲ 1, concluding the

proof of (7.3).

The following lemma appears in [17].

Proposition 7.1.2 (Geometric lemma II). Let {ξ1, ξ2, ξ3, ξ4} ⊂ Z3 be a set of nonzero

1This is well-defined since (γξ)
2 is linear, and so the choice of K is irrelevant.
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vectors satisfying

{ξ1, ξ2, ξ3} is an orthogonal basis of R3 and ξ4 := −(ξ1 + ξ2 + ξ3).

Fix C0 > 0 and let BC0 := {ϕ ∈ R3 : |ϕ| ≤ C0}. Then, there exist positive functions

{γ̃ξi}4i=1 ⊂ C∞(BC0) such that for each ϕ ∈ BC0, we have

ϕ =
1

2

4∑
i=1

(γ̃ξi(ϕ))
3ξi .

In particular, the set {e1, 2e2, 2e3,−(e1+2e2+2e3)} satisfies the assumption. We denote the

set of their normalized vectors by Ξ′ := {e1, e2, e3,−1/3(e1 + 2e2 + 2e3)} ⊂ Q3 ∩ S2, and with

slight abuse of the notation we redefine γ̃ξ to have

2ϕ =
∑
ξ∈Ξ′

(γ̃ξ(ϕ))
3ξ . (7.6)

Definition 7.1.3. For any ξ ∈ Ξ ∪ Ξ′, we choose ξ′, ξ′′ ∈ Q3 ∩ S2 such that {ξ, ξ′, ξ′′}

is an orthonormal basis of R3. We then denote by n∗ the least positive integer such that

n∗ξ, n∗ξ
′n∗ξ

′′ ∈ Z3 for all ξ ∈ Ξ ∪ Ξ′.

We now recall [7, Proposition 4.3], which details the choices for shifts enjoyed by a func-

tion with sparse support. In our setting, such functions will be pipe densities, or equivalently

the densities associated to their potentials.

Proposition 7.1.4 (Rotating, Shifting, and Periodizing). Fix ξ ∈ Ξ (or ∈ Ξ′), where

Ξ is as in Proposition 7.1.1 (or as in Proposition 7.1.2). Let r−1, λ ∈ N be given such that

λr ∈ N. Let κ : R2 → R be a smooth function with support contained inside a ball of radius

1/4. Then for k ∈ {0, ..., r−1 − 1}2, there exist functions κk
λ,r,ξ : R3 → R defined in terms of

κ, satisfying the following additional properties:

(1) We have that κk
λ,r,ξ is simultaneously

(
T3

λr

)
-periodic and

(
T3
ξ

λrn∗

)
-periodic. Here, by T3

ξ
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we refer to a rotation of the standard torus such that T3
ξ has a face perpendicular to ξ.

(2) Let Fξ be one of the two faces of the cube
T3
ξ

λrn∗
which is perpendicular to ξ. Let Gλ,r ⊂

Fξ ∩ 2πQ3 be the grid consisting of r−2-many points spaced evenly at distance 2π(λn∗)
−1

on Fξ and containing the origin. Then each grid point gk for k ∈ {0, ..., r−1−1}2 satisfies

(
suppκk

λ,r,ξ ∩ Fξ
)
⊂
{
x : |x− gk| ≤ 2π (4λn∗)

−1}. (7.7)

(3) The support of κk
λ,r,ξ is a pipe (cylinder) centered around a

(
T3

λr

)
-periodic and

(
T3
ξ

λrn∗

)
-

periodic line parallel to ξ, which passes through the point gk. The radius of the cylinder’s

cross-section is as in (7.7).

(4) We have that ξ · ∇κk
λ,r,ξ = 0.

(5) For k ̸= k′, suppκk
λ,r,ξ ∩ suppκk′

λ,r,ξ = ∅.

We now state a slightly modified version of [7, Proposition 4.4] or equivalently [35, Propo-

sition 3.3], which rigorously constructs the L2-normalized intermittent pipe flows and enu-

merates the necessary properties.

Proposition 7.1.5 (Intermittent pipe flows for Reynolds corrector). Fix a vector

ξ belonging to the set of rational vectors Ξ ⊂ Q3 ∩ S2 from Proposition 7.1.1, r−1, λ ∈ N

with λr ∈ N, and large integers Nfin and D. There exist vector fields Wk
ξ,λ,r : T3 → R3 for

k ∈ {0, ..., r−1 − 1}2 and implicit constants depending on Nfin and D but not on λ or r such

that:

(1) There exists ϱ : R2 → R given by the iterated divergence divDϑ =: ϱ of a pairwise

symmetric tensor potential ϑ : R2 → R2D with compact support in a ball of radius 1
4

such that the following holds. Let ϱkξ,λ,r and ϑkξ,λ,r be defined as in Proposition 7.1.4,

in terms of ϱ and ϑ (instead of κ). Then there exists Uk
ξ,λ,r : T3 → R3 such that if
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{ξ, ξ′, ξ′′} ⊂ Q3 ∩ S2 form an orthonormal basis of R3 with ξ × ξ′ = ξ′′, then we have2

Uk
ξ,λ,r = −1

3
ξ′ λ−Dξ′′ · ∇

(
divD−2

(
ϑkξ,λ,r

))ii︸ ︷︷ ︸
=:φ′′k

ξ,λ,r

+
1

3
ξ′′ λ−Dξ′ · ∇

(
divD−2

(
ϑkξ,λ,r

))ii︸ ︷︷ ︸
=:φ′k

ξ,λ,r

, (7.8)

and thus

curlUk
ξ,λ,r = ξλ−DdivD

(
ϑkξ,λ,r

)
= ξϱkξ,λ,r =: Wk

ξ,λ,r , (7.9)

and

ξ · ∇ϑξ,λ,r = (ξ · ∇)Wk
ξ,λ,r = (ξ · ∇)Uk

ξ,λ,r = 0 . (7.10)

(2) The sets of functions {Uk
ξ,λ,r}k, {ϱkξ,λ,r}k, {ϑkξ,λ,r}k, and {Wk

ξ,λ,r}k satisfy items 1–5 in

Proposition 7.1.4.

(3) Wk
ξ,λ,r is a stationary, pressureless solution to the Euler equations.

(4) −
ˆ
T3

Wk
ξ,λ,r ⊗Wk

ξ,λ,r = ξ ⊗ ξ.

(5) −
ˆ
T3

|Wk
ξ,λ,r|2Wk

ξ,λ,r = −
ˆ
T3

(ϱkξ,λ,r)
2Uk

ξ,λ,r =

ˆ
T3

ϱkξ,λ,rUk
ξ,λ,r = 0 .

(6) For all n ≤ 3Nfin,

∥∥∇nϑkξ,λ,r
∥∥
Lp(T3)

≲ λnr(
2
p
−1),

∥∥∇nϱkξ,λ,r
∥∥
Lp(T3)

≲ λnr(
2
p
−1) (7.11)

and ∥∥∇nUk
ξ,λ,r

∥∥
Lp(T3)

≲ λn−1r(
2
p
−1),

∥∥∇nWk
ξ,λ,r

∥∥
Lp(T3)

≲ λnr(
2
p
−1). (7.12)

(7) We have that suppϑkξ,λ,r ⊆ B (supp ϱξ,λ,r, 2λ
−1).

2The double index ii indicates that divD−2
(
ϑkξ,λ,r

)
is a 2-tensor, and we are summing over the diagonal

components. The factor of 1/3 appears because each component on the diagonal of this 3 × 3 matrix is
∆−1ϱkξ,λ,r. The formula then follows from the identity curl curl = −∆ for divergence-free vector fields.
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(8) Let Φ : T3 × [0, T ] → T3 be the periodic solution to the transport equation

∂tΦ + v · ∇Φ = 0 , Φ|t=t0 = x , (7.13)

with a smooth, divergence-free, periodic velocity field v. Then

∇Φ−1 ·
(
Wk

ξ,λ,r ◦ Φ
)
= curl

(
∇ΦT ·

(
Uk
ξ,λ,r ◦ Φ

))
. (7.14)

(9) For any convolution kernel K, Φ as in (7.13), A = (∇Φ)−1, and for i = 1, 2, 3,

[
∇ ·
(
AK ∗

(
Wk

ξ,λ,r ⊗Wk
ξ,λ,r

)
(Φ)AT

)]
i

= AjmK ∗
(
(Wk

ξ,λ,r)
m(Wk

ξ,λ,r)
l(Φ)

)
∂jA

i
l

= Ajmξ
mξl∂jA

i
lK ∗

((
ϱkξ,λ,r

)2
(Φ)
)
. (7.15)

In the above display, k indicates the choice of placement, i is the component of the

vector field on either side of the equality, and m, l, and j are repeated indices over which

summation is implicitly encoded.

Proof. The only small changes relative to the cited Propositions are as follows. First, we write

the pipe density ϱ as the iterated divergence of a pairwise symmetric vector potential divDϑ =

ϱ to match the form required for our inverse divergence operator (cf. Proposition A.3.3). By

“pairwise symmetric,” we mean that permuting the 2n−1 and 2n components for 1 ≤ n ≤ D/2

leaves ϑ unchanged. Since one can always rewrite the identity ∆f = g as ∂i∂jδijf = g, it

is easy to convert the equality ∆D/2ϑ̃ = ϱ into divDϑ = ϱ where ϑ is a pairwise symmetric

tensor (see (7.38)).

Second, (5) is new. We first show that the second integral vanishes for any radial pipe

density. This is a simple computation in polar coordinates which is a consequence of the

fact that Uξ,λ,r can be written as the 2-dimensional perpendicular gradient of a radial scalar

potential V (see the computation below). Then the only θ dependence in the integrand will
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come from U = ∇⊥
x,yV = (−∂yV , ∂xV) = (− sin θV ′(r), cos θV ′(r)), which will then integrate

to zero against the other radial functions in the integrand. In order to show that the first

integral vanishes, we can take any radial pipe density which defines a specific Wk
ξ,λ,r and set

W̃ = Wk
ξ,λ,r −Wk+1

ξ,λ,r, where k and k + 1 are adjacent choices of placement. Then it is clear

that the second now integral vanishes for W̃ , and the other properties are unchanged up

to renormalizations and adjustments of implicit constants. In order to show that the third

integrand vanishes, we recall (7.8), the fact that ξ, ξ′, ξ′′ forms an orthonormal basis with

ξ × ξ′ = ξ′′, and the fact that ξ · ∇ϑξ,λ,r = 0. From these facts, we deduce the existence of a

scalar potential V such that

(Uξ,λ,r)i = ξ′iξ
′′
l ∂lV − ξ′′i ξ

′
l∂lV = ϵijkξk

(
ξ′′l ξ

′′
j + ξ′lξ

′
j

)
∂lV = ϵijk∂jVξk .

From the fact that curlUξ,λ,r = Wξ,λ,r and the fact that ξ · ∇ϑξ,λ,r = 0, we deduce that

(Wξ,λ,r)i = ϵilm∂lϵmjk∂jVξk = (δijδlk − δikδlj)∂l∂jVξk = −ξi∂jjV .

Therefore we have that

ˆ
T3

ξi∂jjVϵlmk∂mVξk = −1

2

ˆ
T3

ϵlmkξiξk∂m (∂jV∂jV) = 0 ,

which implies that the third integrand in (5) vanishes.

Finally, (7) is new, but it follows immediately from definitions and (7.7).

We shall require a set of intermittent pipe flows which possess nearly the same properties

as above, but which are however normalized in L3, and have non-vanishing cubic mean.

Proposition 7.1.6 (Intermittent pipe flows for current corrector). Fix a vector ξ

belonging to the set of rational vectors Ξ′ ⊂ Z3 from Proposition 7.1.2. The statement is

same as in Proposition 7.1.5, but item 4 is not imposed, and items 5–6 are replaced by
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(5) −
ˆ
T3

|Wk
ξ,λ,r|2Wk

ξ,λ,r = |ξ|2ξ , −
ˆ
T3

(ϱkξ,λ,r)
2Uk

ξ,λ,r = −
ˆ
T3

ϱkξ,λ,rUk
ξ,λ,r = 0.

(6) For all n ≤ 3Nfin,

∥∥∇nϑkξ,λ,r
∥∥
Lp(T3)

≲ λnr(
2
p
− 2

3),
∥∥∇nϱkξ,λ,r

∥∥
Lp(T3)

≲ λnr(
2
p
− 2

3) (7.16)

and

∥∥∇nUk
ξ,λ,r

∥∥
Lp(T3)

≲ λn−1r(
2
p
− 2

3),
∥∥∇nWk

ξ,λ,r

∥∥
Lp(T3)

≲ λnr(
2
p
− 2

3) . (7.17)

Proof. The differences in (6) relative to (6) from the preceding proposition are simply a result

of the L3 normalization and require no further justification. In order to ensure (5), it remains

to show that one can construct a radial pipe density ϱξ,λ,r which has non-vanishing cubic

mean and is the iterated Laplacian of a scalar potential, and then convert the scalar potential

to a pairwise symmetric tensor potential. As the latter task has already been carried out in

the previous proposition, we can focus on the former. One can start with a smooth function

f : (1/2, 1) → R for which
´ 2π

0
(f (D))3(x) dx ̸= 0, and then define F (r) = f(λ1r + λ2), where

λ1 and λ2 are chosen to ensure that to leading order, ∆
D/2
r F ≈ λD1 f

(D)(λ1r + λ2). Then

periodizing concludes the proof.

In order to control the geometry of pipes which are deformed by a velocity field on a

local Lipschitz timescale, we recall [35, Lemma 3.7].

Lemma 7.1.7 (Control on Axes, Support, and Spacing). Consider a convex neighbor-

hood of space Ω ⊂ T3. Let v be an incompressible velocity field, and define the flow X(x, t)

and inverse Φ(x, t) = X−1(x, t), which solves

∂tΦ + v · ∇Φ = 0 , Φ|t=t0 = x .

Define Ω(t) := {x ∈ T3 : Φ(x, t) ∈ Ω} = X(Ω, t). For an arbitrary C > 0, let τ > 0 be a
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timescale parameter and Γ > 3 a large multiplicative prefactor such that the vector field v

satisfies the Lipschitz bound

sup
t∈[t0−τ,t0+τ ]

∥∇v(·, t)∥L∞(Ω(t)) ≲ τ−1Γ−2 .

Let Wk
ξ,λ,r : T3 → R3 be a set of straight pipe flows constructed as in Proposition 7.1.4,

Proposition 7.1.5, and Proposition 7.1.6 which are (T/λr)3-periodic and concentrated around

axes {Ai}i∈I oriented in the vector direction ξ for ξ ∈ Ξ,Ξ′, passing through the grid-points

in item 2 of Proposition 7.1.4. Then W := Wk
ξ,λ,r(Φ(x, t)) : Ω(t) × [t0 − τ, t0 + τ ] satisfies

the following conditions:

(1) We have the inequality

diam(Ω(t)) ≤
(
1 + Γ−1

)
diam(Ω) . (7.18)

(2) If x and y with x ̸= y belong to a particular axis Ai ⊂ Ω, then

X(x, t)−X(y, t)

|X(x, t)−X(y, t)|
=

x− y

|x− y|
+ δi(x, y, t) (7.19)

where |δi(x, y, t)| < Γ−1.

(3) Let x and y belong to Ai ∩ Ω for some i, where the axes Ai are defined above. Denote

the length of the axis Ai(t) := X(Ai ∩ Ω, t) in between X(x, t) and X(y, t) by L(x, y, t).

Then

L(x, y, t) ≤
(
1 + Γ−1

)
|x− y| . (7.20)

(4) The support of W is contained in a
(
1 + Γ−1

)
2π(4n∗λ)

−1-neighborhood of the set

⋃
i

Ai(t) . (7.21)
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(5) W is “approximately periodic” in the sense that for distinct axes Ai, Aj with i ̸= j, we

have

(
1− Γ−1

)
dist (Ai ∩ Ω, Aj ∩ Ω) ≤ dist (Ai(t), Aj(t)) ≤

(
1 + Γ−1

)
dist (Ai ∩ Ω, Aj ∩ Ω) .

(7.22)

A consequence of Lemma 7.1.7 is that a set of (T/λr)3-periodic intermittent pipe flows

which are flowed by a locally Lipschitz vector field on the Lipschitz timescale can be de-

composed into “segments of deformed pipe” in the sense of Remark 5.4.3. Furthermore, any

neighborhood of diameter ≈ (λr)−1 contains at most a finite number of such segments of

deformed pipe.

Definition 7.1.8 (Segments of deformed pipes). A single “segment of deformed pipe

with thickness λ−1 and spacing (λr)−1” is defined as a 3λ−1 neighborhood of a Lipschitz curve

of length at most 2(λr)−1.

7.2 Pipe dodging and intermittent Mikado bundles

In the continuous scheme, the building block flows are intermittent Mikado bundles, which are

bundles of pipes carefully designed to dodge previously placed intermittent Mikado bundles.

To give the idea, suppose that intermittent Mikado bundles comprised of deformed pipes

of thickness λ−1
q+1, · · ·λ−1

q+n̄ are given in a rectangular prism Ω0 of particular dimensions. If

certain conditions are satisfied with respect to the spacing of the new bundles and the

dimensions of the prism Ω0, we can successfully place new bundles of thickness λ−1
q+n̄ that

dodge all given bundles. Furthermore, the pipes in each new bundles will be placed to be at

least at a distance λ−1
q+iΓq+i away from a given deformed pipe of thickness λ−1

q+i. We call this

additional property effective dodging, and it will play a crucial role throughout our scheme.

The key observation is that the intermittency alone need not dictate the spacing of the

pipes in a bundle. For example, consider a set of pipes of thickness λ−1
q+n̄ and spacing λ−1

q+n̄/2
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restricted to the support of a set of a small number of pipes of thickness and spacing λ−1
q+1.

An intermittent Mikado bundle is precisely such an object; a low frequency, small number

of homogeneous pipes on which high frequency, large numbers of intermittent pipes live.

Placing new bundles made up of pipes of thickness λ−1
q+n̄ consists of two steps. We divide

T3 into the rectangular prisms of dimensions λ−1
q+1Γ

5
q × λ−1

q+1Γ
5
q × λ−1

q Γ−8
q , and first construct

the low frequency, homogeneous (bundling) pipes to effectively dodge all given pipes of

thicknesses λ−1
q+1, · · ·λ−1

q+⌊n̄/2⌋ in each prism. The pipes of thickness λ−1
q+n̄ will then be placed

in the support of the low frequency, homogeneous (bundling) pipes.

Proposition 7.2.1 (“Bundling” pipe flows ρkξ,⋄ for Reynolds and current correc-

tors). Fix a vector ξ belonging to either of the sets of rational vectors from Propositions 7.1.1

or 7.1.2. Then for k ∈ {1, . . . ,Γ6
q}, there exist master scalar functions ρξ,k and subsidiary

bundling pipe flows ρkξ,R := ρ3
ξ,k for Reynolds correctors and ρkξ,φ := ρ2

ξ,k for current correc-

tors satisfying the following.

(i) ρkξ,⋄ is (T/λq+1Γ
−4
q )3-periodic and satisfies ξ · ∇ρkξ,⋄ ≡ 0, where either ⋄ = R or ⋄ = φ.

(ii) The set of functions {ρkξ,⋄}k satisfies the conclusions of Proposition 7.1.4 with r−1 = Γ3
q,

λ = λq+1Γ
−1
q . In particular, suppρkξ,⋄ ∩ suppρk

′

ξ,⋄ = ∅ for k ̸= k′, and there are Γ6
q

disjoint choices of placement.

(iii)

ˆ
T3

ρ6
ξ,k = 1.

(iv) For all n ≤ 3Nfin and p ∈ [1,∞],

∥∥∇nρkξ,R
∥∥
Lp(T3)

≲
(
Γ−1
q λq+1

)n
Γ
−3( 2

p
−1)

q ,
∥∥∇nρkξ,φ

∥∥
Lp(T3)

≲
(
Γ−1
q λq+1

)n
Γ
−3( 2

p
− 2

3)
q .

(7.23)

Proof. The proof is a straightforward adaptation of the proofs of Propositions 7.1.5 or 7.1.6

after construction of an L6 normalized master function ρξ,k which satisfies the shift and

support properties from Proposition 7.1.4. We omit further details.
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With the bundling pipe flows defined, we record our first dodging proposition, which

uses the bundling pipes to dodge pipes with thickness at least λ−1
q+n̄/2 and at most λ−1

q+1. We

record and prove a statement for ξ = e3 and leave the case for general direction vectors to

the reader.

Lemma 7.2.2 (Using bundling pipes to dodge very old, thick pipes). Let Ω0 be

a rectangular prism of dimensions λ−1
q+1Γ

5
q × λ−1

q+1Γ
5
q × λ−1

q Γ−8
q . Suppose that there exists a

q-independent constant CP such that at most CP segments of their deformed segments with

thickness λ−1
q′+n̄ and spacing (λq′+n̄/2Γq′)

−1 for some q − n̄ < q′ ≤ q − n̄/2 (in the sense of

Definition 7.1.8) have non-empty intersection with Ω0. Let E0 ⊂ Ω0 denote the support of

such deformed segments inside Ω0. Then there exists k ∈ {1, . . . ,Γ6
q} and a bundling pipe

flow ρe3,⋄ := ρke3,⋄ defined as in Proposition 7.2.1 such that

B
(
suppρke3,⋄, λ

−1
q+1Γ

2
q

)
∩ E0 = ∅ i.e., B

(
E0, λ

−1
q+1Γ

2
q

)
∩ suppρke3,⋄ = ∅ . (7.24)

Proof. We first divide the face [0, λ−1
q+1Γ

5
q]

2 of the prism into the grid of squares of sidelength

≈ λ−1
q+1Γq, and we will find a set of squares in which we can place a new bundling pipe flow

ρke3,⋄. Since the set of squares will be placed (T/λq+1Γ
−4
q )2-periodically, we have from (ii) that

(the possible number of placement of a set of squares) =

(
spacing

thickness

)2

=

(
λ−1
q+1Γ

4
q

λ−1
q+1Γq

)2

= Γ6
q .

By assumption there exist at most CP number of deformed pipe segments in the prism. When

we enlarge these segments by a factor of λ−1
q+1Γ

2
q and project the enlarged neighborhood onto

the face [0, λ−1
q+1Γ

5
q]

2, each projection will be contained in a ≈ λ−1
q+1Γ

2
q-neighborhood of a curve
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of length at most ≈ λ−1
q+1Γ

5
q by (7.20) and (7.21). It then follows that3

(the number of grid squares occupied by given enlarged segments)

≲ number of segments× area occupied by an enlarged segment

area of a grid square

≲ CP ×
λ−2
q+1Γ

7
q

Γ2
qλ

−2
q+1

= CPΓ5
q ,

which is less than Γ6
q for sufficiently large λ0. Therefore, from the pigeonhole principle, there

exists a set of squares in which we can place the pipe ρke3,⋄ satisfying (7.24).

We now use the intermittent pipe flows from Propositions 7.1.5 or 7.1.6 to dodge pipes

with thickness at least λ−1
q+n̄ and at most than λ−1

q+n̄/2+1. Combined with the previous propo-

sition, we will have successfully dodged pipes of thicknesses in between λ−1
q+1 and λ−1

q+n̄. As

before, we present the statement for ξ = e3 and omit further details.

Lemma 7.2.3 (Using very intermittent pipes to dodge newer, less thick pipes).

Let Ω1 be a rectangular prism of dimensions λ−1
q+n̄/2 × λ−1

q+n̄/2 × λ−1
q Γ−8

q with the long side

in the e3 direction. Suppose that a finite number of sets of (T/λq′′+n̄/2Γq′′)
3-periodic pipes of

thickness λ−1
q′′+n̄ are given for all q − n̄ + n̄/2 < q′′ ≤ q, constructed as in Propositions 7.1.5

or 7.1.6. Furthermore, suppose that for each such q′′ and any convex subset Ω′ ⊂ Ω1 with

diam (Ω′) ≲ λ−1
q′′+n̄/2Γ

−1
q′′ , there exists a q-independent constant CP such that at most CPΓq′′

segments of the deformed pipes of thickness λ−1
q′′+n̄ have non-empty intersection with Ω′. For

fixed q′′, let Eq′′ denote the support of such segments inside Ω1. Then for either ⋄ = R or

⋄ = φ, there exists k and a corresponding intermittent pipe flow We3,⋄ := Wk
ξ,λq+n̄,λq+n̄/2Γq/λq+n̄

3A fully rigorous version of this estimate would utilize a standard covering argument which is predicated
on the geometric constraints imposed by Lemma 7.1.7, or even Definition 7.1.8; we however content ourselves
with a slightly heuristic version and refer the reader to [7, Proposition 4.8] for further details.
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constructed as in Propositions 7.1.5 or 7.1.6 such that for all q − n̄/2 < q′′ ≤ q,

B
(
suppWe3,⋄,Γ

2
q′′+n̄λ

−1
q′′+n̄

)
∩ Eq′′ = ∅ i.e., B

(
Eq′′ ,Γ

2
q′′+n̄λ

−1
q′′+n̄

)
∩ suppWe3,⋄ = ∅ .

Proof. As in the previous lemma, since we want to place a new pipe which enjoys effective

dodging with previously placed deformed pipes, instead of considering the previously placed

pipes themselves, we consider a thickened neighborhood of them. More precisely, for a

deformed pipe of thickness 2λ−1
q+i, we consider instead a neighborhood of it of thickness

Γ2
q+iλ

−1
q+i and call these new objects ‘thickened pipes’. Then, it is enough to place a new

pipe that dodges these thickened pipes, so that a new pipe effectively dodges all previously

placed deformed pipes.

We divide the face of Ω1 into a grid of squares of sidelength λ−1
q+n̄. Since a new pipe will

be placed (T/λq+n̄/2Γq)3-periodically, we have from Proposition 7.1.5 or 7.1.6 that

(the possible number of placement of a set of squares) =

(
spacing

thickness

)2

=

(
λq+n̄

λq+n̄/2Γq

)2

.

(7.25)

Now, we count the number of grid squares occupied by given enlarged segments and

compare it to this number. From the assumption that there exists CP which controls the

density of thickened, deformed pipe segments of thickness λ−1
q′′+n̄ that can intersect a ball Ω′

of volume ≈ (λq′′+n̄/2Γq′′)
−3, we have that the total number of thickened pipe segments that

can intersect Ω1 is at most

CPΓq′′ ×
length of Ω1

λ−1
q′′+n̄/2Γ

−1
q′′

× (width of Ω1)
2

min
(
λ−1
q′′+n̄/2Γ

−1
q′′ ,width of Ω1

)2 ≤ CPΓq′′ ×
λq′′+n̄/2Γ

3
q′′

Γ8
qλq

.

When we project all these thickened segments onto the face of Ω1, each projection will be

contained in a ≈ λ−1
q′′+n̄Γ

2
q′′+n̄-neighborhood of a curve of length at most ≈ λ−1

q+n̄/2 from (7.20)

and (7.21). Therefore, the number of grid squares occupied by each enlarged pipe projection
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is

area occupied by an enlarged segment

area of a grid square
≈
λ−1
q+n̄/2λ

−1
q′′+n̄Γ

2
q′′+n̄

λ−2
q+n̄

.

Thus the total number of grid squares covered by the union of all projections is

∼
q∑

q′′=q−n̄/2+1

CPΓq′′ ×
λq′′+n̄/2Γ

3
q′′

λq′′+n̄Γ
−2
q′′+n̄

λ2q+n̄λ
−1
q+n̄/2

Γ8
qλq

, (7.26)

or the product of the two numbers computed above and summed over q′′. This number will

be less than the the number in (7.25) if

n̄CpΓ2
q+n̄Γ

−2
q

λq′′+n̄/2λq+n̄/2

λqλq′′+n̄
≤ 1

for q − n̄/2 + 1 ≤ q′′ ≤ q, which is precisely (4.10e).

Considering the dimensions of the prism in Lemma 7.2.3, we further divide the support

of the bundling pipes using the following anisotropic cut-offs and assign different pipes on

the support of different cut-offs.

Definition 7.2.4 (Strongly anisotropic cut-off). To each ξ ∈ Ξ, we associate a partition of

the orthogonal space ξ⊥ ∈ T3 into a grid4 of squares of sidelength ≈ λ−1
q+n̄/2. We index the

squares S in this partition by Iξ which we will also denote by simply I. To this grid, we

associate a partition of unity ζIξ, i.e.,

ζIξ =


1 on 3

4
SI

0 outside 5
4
SI

,
∑
I

(ζIξ)
6 = 1 , (7.27)

which in addition satisfies (ξ · ∇)ζξ = 0 and
∥∥∇NζIξ

∥∥
∞ ≲ λNq+n̄/2 for all N ≤ 3Nfin and all I,

where the implicit constants depend only on Ξ.

4One can use some version of the grid from Proposition 7.1.4, as the periodicity issues have been avoided
there.
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Remark 7.2.5. We note that the number of grid squares of sidelength λ−1
q+n̄/2 partitioning

the orthogonal space ξ⊥ ⊂ T3 is ≲ λ2q+n̄/2. Consequently, we bound the cardinality of the

index set I as

|{I ∈ S}| ≲ λ2q+n̄/2 .

We now introduce intermittent pipe bundles, which are defined on the support of a broad

rectangular prism at scale close to λ−1
q . These objects are multi-scale and consist of nearly

homogeneous bundling pipes at scale λ−1
q+1, upon which various intermittent pipes are placed

on the support of much finer cutoffs. We write the following definition under the assumptions

of Lemmas 7.2.2 and 7.2.3, which demand that the broad rectangular prism is inhabited by a

limited number of deformed pipes at various scales which avoid the support of the newly con-

structed pipes. In our inductive argument, this assumption corresponds to Hypothesis 5.4.2

and will be verified in subsection 9.2.

Definition 7.2.6 (Intermittent pipe bundles). For rectangular prisms Ω0 as in Lemma 7.2.2,

the intermittent pipe bundle associated to them is given by

B(ξ),R = ρ(ξ),R

∑
I

(ζIξ)
3WI

(ξ),R and B(ξ),φ = ρ(ξ),φ

∑
I

(ζIξ)
2WI

(ξ),φ

where ρ(ξ),⋄ and WI
(ξ),⋄ are chosen in Lemmas 7.2.2 and 7.2.3, respectively.

Remark 7.2.7 (Notational conventions). We shall frequently denote the intermittent

pipe bundles defined above as follows:

B(ξ),⋄ = ρ⋄
(ξ)

∑
I

ζI,⋄ξ WI
(ξ),⋄ . (7.28)

The meaning of this notation is as follows:

(i) The choice of placements for each bundle B(ξ),⋄ will depend on which of the various

88



mildly anisotropic checkerboard cutoff functions ζq,⋄,i,k,ξ,⃗l (these are defined in Defini-

tion 8.4.1 and correspond to the set Ω0 in Lemma 7.2.2) we are trying to construct

the bundle on. Thus each bundle will depend on all the indices for ζq,⋄,i,k,ξ,⃗l, as well as

the index j for the pressure cutoffs defined in Definition 8.3.2. We will suppress these

indices most of the time and simply write (ξ) in parentheses, where the parentheses is

a stand-in for the omitted indices q, i, k, l⃗, j, ⋄.

(ii) The subscript “⋄” in B(ξ),⋄ will be equal to either φ or R, corresponding to velocity

increments designed to correct current errors or stress errors, respectively.

(iii) We abbreviate the bundling pipes ρ(ξ),⋄ by ρ⋄
(ξ). We write the ⋄ in the exponent to

emphasize that the only difference between ⋄ = φ and ⋄ = R is the power of the scalar

function ρξ,k used to define them.

(iv) We abbreviate the very anisotropic cutoff functions by ζI,⋄ξ . We do not write ξ in

parentheses, since ζI,⋄ξ does not depend on anything besides the vector direction ξ and

the index I used to index the partition of unity. Also, the only difference between

⋄ = φ and ⋄ = R is the power, so we write ⋄ in the exponent.

(v) We write WI
(ξ),⋄ for the following reasons: first, the pipe flow depends on more indices

than just ξ, so we write (ξ) to denote the omitted indices; we include the index I to

emphasize that the placement of the intermittent pipe flow depends not just on the

omitted indices in (ξ), but on the index I as well. Finally, we leave ⋄ in the subscript

since the difference between WI
(ξ),R and WI

(ξ),φ is more than just a power; the former

has vanishing cubic mean, while the latter does not.

7.3 Synthetic Littlewood-Paley decomposition

When we estimate material derivatives of oscillation stress and current errors, we need dodg-

ing in order to handle the differential operator (ûk−1 − ûq) · ∇ in the material derivative
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applied to the error. To ensure a spatial support property even after taking the inverse diver-

gence operator and a frequency projection operator on a squared pipe density, we introduce

a synthetic Littlewood-Paley projector P̃(λ1,λ2]. This operator is defined using convolution

with a compactly supported kernel, and thus behaves like the original projection operator

P(λ1,λ2] in estimates but has an additional spatial support property.

Definition 7.3.1 (Synthetic Littlewood-Paley projector). Let φ̄ ∈ C∞
c (R) satisfy

supp (φ̄) ⊂ (−1/
√
2, 1/

√
2) ,

ˆ
R
φ̄ds = 1 ,

ˆ
R
snφ̄ds = 0

for n = 1, . . . , 10Nfin. Define φ̄λ(·) = λφ̄(λ·), and set φλ(x) = φ̄λ(x1)φ̄λ(x2). For f ∈

C∞(T2), we define the synthetic Littlewood-Paley projectors by

P̃λf(x) :=
ˆ
R2

φλ(y)f(x− y)dy , P̃(λ1,λ2]f := (P̃λ2 − P̃λ1)f , (7.29)

where in the convolution we consider f as a periodic function defined on R2.

From the definition, it is easy to see that supp (φλ2 − φλ1) ⊆ supp (φλ1) and hence

supp (P̃(λ1,λ2]f) ⊂ B(supp (f), λ−1
1 ). With a bit of care, this property persists even after

inverting the divergence.

Lemma 7.3.2 (Inverse divergence with spatial support property). For given f ∈

C∞(T2) and D ≥ 1, there exists a symmetric tensor field Θλ1,λ2
f : T2 → R(2D) such that

P̃(λ1,λ2](f) = P̃(λ1,λ2](f − ⟨f⟩) =
(
λ−1
1 div

)(D)
Θλ1,λ2
f , supp

(
Θλ1,λ2
f

)
⊂ B(supp (f), λ−1

1 ) .

(7.30)

Proof. By a simple computation, we have

φλ2(x)− φλ1(x) = (φ̄λ2(x1)− φ̄λ1(x1))φ̄λ2(x2) + φ̄λ1(x1)(φ̄λ2(x2)− φ̄λ1(x2)) . (7.31)

90



Now define g0(z) = φ̄λ2(z)− φ̄λ1(z). We first construct a function gD(z) : R → R with zero

mean such that upon differentiating D many times,

g
(D)
D = g0 , supp (gD) ⊂ (−(

√
2λ1)

−1, (
√
2λ1)

−1) .

The construction follows from applying the following claim iteratively: if gi ∈ C∞
c (R) for

some i ∈ {0, . . . ,D− 1} satisfies
´
sngids = 0 for all n = 0, · · · ,D− i, then we can find gi+1

such that

g′i+1 = gi , supp (gi+1) ⊂ (−(
√
2λ1)

−1, (
√
2λ1)

−1) ,

ˆ
R
sngi+1ds = 0 for n = 0, . . . ,D− i− 1 .

Assuming the claim, then g0 satisfies
´
R s

ng0(s)ds = 0 for n = 0, · · · ,D, so we can find gD

with zero-mean such that

g
(D)
D = g

(D−1)
D−1 = · · · = g0 , supp (gD) ⊂ (−(

√
2λ1)

−1, (
√
2λ1)

−1) .

To prove the claim, we define gi+1 by gi+1(t) :=
´ t
−a gids, where a is chosen so that supp (gi) ⊂

(−a, a). Since gi has zero-mean, we can easily see that supp (gi+1) ⊂ (−a, a), and gi+1(a) =

gi+1(−a) = 0. Using the latter, the vanishing moment condition follows from

ˆ
R
sngi+1ds =

1

n+ 1

ˆ a

−a
(sn+1)′gi+1ds = − 1

n+ 1

ˆ a

−a
sn+1gids = 0 .

Now, we set θ
(1,...,1)
1 (x1, x2) = gD(x1)φ̄λ2(x2), and otherwise θ

(i1,...,iD)
1 is zero, and θ

(2,...,2)
2 (x1, x2) =

φ̄λ1(x1)gD(x2), and otherwise θ
(i1,...,iD)
2 is zero. Then

∂i1···iDθ
(i1,··· ,iD)
1 = g0(x1)φ̄λ2(x2) , supp (θ

(i1,··· ,iD)
1 ) ⊂ B(0, λ−1

1 )

∂i1···iDθ
(i1,··· ,iD)
2 = φ̄λ1(x1)g0(x2) , supp (θ

(i1,··· ,iD)
2 ) ⊂ B(0, λ−1

1 ) . (7.32)
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Lastly, we define the desired tensor function Θλ1,λ2
f by

(Θλ1,λ2
f )(i1,...,iD)(x1, x2) := Θ ∗ f(x1, x2) := λD1 [(θ1 + θ2)

(i1,··· ,iD)] ∗ f(x1, x2) , (7.33)

which by (7.31) and direct computation satisfies
(
λ−1
1 div

)(D)
Θλ1,λ2
f = P̃(λ1,λ2]f . The desired

spatial support property follows from (7.33) and (7.32). We note that since φλ2 − φλ1 has

zero mean, P̃(λ1,λ2]⟨f⟩ = 0.

With the previous Lemma in hand, we aim to apply various synthetic Littlewood-Paley

projectors to smooth functions (such as squared pipe densities) and derive estimates for the

projected function, and its “inverse divergence potentials.” We shall generally decompose a

smooth, (T/λr)3-periodic function ρ which has derivative cost λ as a sum of the form

P̃λ0(ρ) +

(
K∑
k=1

P̃(λk−1,λk](ρ)

)
+
(
Id− P̃λK

)
(ρ) , (7.34)

where λ0 is slightly larger than λr, and λK is slightly larger than λ. The terms in the sum

are precisely of the form to which the previous lemma applies, and we estimate these in

Lemma 7.3.4. The bottom and top shells which correspond to the two terms not in the

summand are slightly unique cases; for these we record the following Lemma. Note that

spatial localization is not relevant for these unique cases, as the lowest shell will have no

spatial localization properties at all, and the highest shell will be vanishingly small.

Lemma 7.3.3 (Inverse divergence, special cases). Fix q ∈ [1,∞]. Let N a positive

integer, N∗∗ ≤ N/2 a positive integer, r, λ such that λr, λ ∈ N, and ρ : (T/λr)2 → R a smooth

function such that there exists a constant Cρ,q with

∥∥DNρ
∥∥
Lq(T2)

≲ Cρ,qλN . (7.35)

for N ≤ N. Let λ0, λK be given with λr < λ0 < λ < λK. If the kernel φ used in Defini-

92



tion 7.3.1 has N∗∗ vanishing moments, then for p ∈ [q,∞] we have that

∥∥∥DN
(
P̃λ0ρ

)∥∥∥
Lp

≲ Cρ,q
(
λ0
λr

)2/q−2/p

λN0 ∀N ≤ N , (7.36a)∥∥∥DN
((

Id− P̃λK
)
ρ
)∥∥∥

L∞
≲

(
λ

λK

)N∗∗

Cρ,qλN+3 ∀N ≤ N−N∗∗ − 3 . (7.36b)

Furthermore, for any chosen positive even integer D and any small positive number α, there

exist adjacent-pairwise symmetric5 rank-D tensor potentials ϑ0 and ϑK such that for 0 ≤ k ≤

D and N in the same range as above,

divDϑ0 = P̃λ0P ̸=0ρ ,
∥∥DNdivkϑ0

∥∥
Lp ≲ λα0Cρ,q

(
λ0
λr

)2/q−2/p

(λr)k−DM (N,D− k, λr, λ0) ,

(7.37a)

divDϑK = (Id− P̃λK )ρ ,
∥∥DNdivkϑK

∥∥
L∞ ≲

(
λ

λK

)N∗∗

Cρ,qλ3(λr)k−DM (N,D− k, λr, λ) .

(7.37b)

The implicit constants above depend on α but do not depend on λ, λ0, λK, or r.

Proof. For the proof of (7.36a), we first define F (x) = (P̃λrρ)(x/λr) to be the 1-periodic

rescaling of P̃λrρ. Then we can write that

sup
x∈T2

∣∣∣DN
(
P̃λrρ

)∣∣∣ (x) = (λr)N sup
x∈T2

∣∣DNF
∣∣ (x)

= (λr)N sup
x∈T2

∣∣∣∣DN
x

ˆ
R2

ρ(x/λr − y)φλ0(y) dy

∣∣∣∣
= (λr)N sup

x∈T2

∣∣∣∣DN
x

ˆ
R2

ρ

(
x− z

λr

)
φλ0

λr

(z) dz

∣∣∣∣
= (λr)N sup

x∈T2

∣∣∣∣ˆ
R2

ρ

(
x− z

λr

)
(DN

z φλ0
λr

)(z) dz

∣∣∣∣
≲ (λr)N

(
λ0
λr

)N (
λ0
λr

)2/q

Cρ,q = λN0

(
λ0
λr

)2/q

Cρ,q

for allN , and in particular for allN ≤ N. This proves (7.36a) for p = ∞, and the full estimate

5By “adjacent-pairwise symmetric,” we mean that permuting the 2n− 1 and 2n components for 1 ≤ n ≤
D/2 leaves ϑ unchanged.
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follows from interpolation with the trivial Lq estimate. To prove the second estimate, we

use the vanishing moments condition to expand ρ as a Taylor series and eliminate the first

N∗∗ − 1 terms; in particular, we have that

∣∣∣DN
((

Id− P̃λK
)
ρ
)∣∣∣ (x)

=

∣∣∣∣∣∣
ˆ
R2

φλK (x− y)

 ∑
|β|=N∗∗

|β|(y − x)β

β!

ˆ 1

0

(1− η)N∗∗−1DβDNρ(x+ η(y − x)) , dη

 dy

∣∣∣∣∣∣
≲
∥∥DN+N∗∗ϱ

∥∥
L∞ (λK)

−N∗∗

≲

(
λ

λK

)N∗∗

λN+3Cρ,q .

The above computation holds for N + N∗∗ + 3 ≤ N, concluding the proof of the second

estimate.

To prove the estimates for the tensor potentials, for k = 0, K we first define

ϑ
i1i2...iD−1iD
0 = δi1i2 · · · δiD−1iD∆−D

2 P̃λ0P ̸=0ρ , (7.38a)

ϑ
i1i2...iD−1iD
K = δi1i2 · · · δiD−1iD(Id− P̃λK )∆

−D
2P ̸=0ρ (7.38b)

where δjl is the usual Kronecker delta. Then by direct computation and standard Littlewood-

Paley analysis, (7.37a) and (7.37b) hold. The α loss in the first estimate is due to the failure

of the Calderon-Zygmund inequality in endpoint cases.

We now move to the middle cases from (7.34), for which the spatial localization will be

important.

Lemma 7.3.4 (General localized inverse divergence). Fix q ∈ [1,∞]. Let ρ : T2 → R

be a smooth function which is (T/λr)2-periodic and for N ≤ 2Nfin satisfies

∥∥DNρ
∥∥
Lq(T2)

≲ Cρ,qλN . (7.39)

94



For λr < λ1 < λ2, define Θλ1,λ2
ρ using Lemma 7.3.2. Then for p ∈ [q,∞], 0 ≤ k ≤ D,

0 < α≪ 1, and N ≤ Nfin, we have

(
λ−1
1 div

)(D)
Θλ1,λ2
ρ = P̃(λ1,λ2](ρ) = P̃(λ1,λ2](ρ− ⟨ρ⟩) (7.40a)∥∥DN∂i1···iD−k

(λ−D
1 Θλ1,λ2

ρ )(i1,··· ,iD)
∥∥
Lp(T2)

≲D,α Cρ,q
(
min (λ, λ2)

λr

) 2
q
− 2

p
+α

λ−k1 min (λ, λ2)
N ,

(7.40b)

supp (Θλ1,λ2
ρ ) ⊂ B(supp (ρ), λ−1

1 ) . (7.40c)

The implicit constants above depend on α but do not depend on λ, λ1, λ2, or r.

Proof. The spatial property immediately follows from Lemma 7.3.2. To obtain Lp-norm

estimates, we will obtain Lq and L∞ norm estimates and then interpolate them. We first

rescale by setting

ρ̃(·) = ρ
( ·
λr

)
, λ̃1 =

λ1
λr

, λ̃2 =
λ2
λr

, λ̃ =
λ

λr
= r−1 , (7.41)

so that ρ̃ is T2 periodic and satisfies

∥∥DN ρ̃
∥∥
Lq(T2)

≲ Cρ,qλ̃N .

Constructing θ1 and θ2 as in the previous lemma but for the choices in (7.41), we have

∂D−k
1 θ

(1,...,1)
1 (x1, x2) = gk(x1)φ̄λ̃2(x2) , ∂D−k

2 θ
(2,...,2)
2 (x1, x2) = φ̄λ̃1(x1)gk(x2) .

By direction computation, i.e. simply integrating a difference of mollifiers, we have that g̃k
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satisfies

∥∥DNgk
∥∥
L1(R) ≲D λ̃

−k
1 M

(
N, k − 1, λ̃1, λ̃2

)
,

∥∥DNgk
∥∥
L∞(R) ≲D λ̃

1−k
1 M

(
N, k − 1, λ̃1, λ̃2

)
, k ≥ 1 ,∥∥DNg0

∥∥
L1(R) ≲D λ̃

N
2 ,

∥∥DNg0
∥∥
L∞(R) ≲D λ̃

N+1
2 .

Then we have the bounds

∥∥∥DN∂D−k
1 θ

(1,...,1)
1

∥∥∥
L1(R2)

≲D λ̃
N
2 λ̃

−k
1 ,

∥∥∥DN∂D−k
1 θ

(1,...,1)
1

∥∥∥
L∞(R2)

≲D λ̃
N+2
2 λ̃−k1 ,∥∥∥DN∂D−k

2 θ
(2,...,2)
2

∥∥∥
L1(R2)

≲D λ̃
N
2 λ̃

−k
1 ,

∥∥∥DN∂D−k
2 θ

(2,...,2)
2

∥∥∥
L∞(R2)

≲D λ̃
N+1
2 λ̃−k+1

1 .

Thus it follows by interpolation for 1/q′ = 1− 1/q that

∥∥∥DN∂D−k
1 θ

(1,...,1)
1

∥∥∥
Lq′ (R2)

≲D λ̃
N+2/q
2 λ̃−k1 ,

∥∥∥DN∂D−k
2 θ

(2,...,2)
2

∥∥∥
Lq′ (R2)

≲D λ̃
N+1/q
2 λ̃−k+1

1 .

We therefore have that for k = 0, . . . ,D,

∥∥∥DN∂i1···iD−k
(Θλ̃1,λ̃2

ρ̃ )(i1,··· ,iD)
∥∥∥
Lq(T2)

≲ λ̃D−k
1 min

(
λ̃, λ̃2

)N
Cρ,q∥∥∥DN∂i1···iD−k

(Θλ̃1,λ̃2
ρ̃ )(i1,··· ,iD)

∥∥∥
L∞(T2)

≲D λ̃
D−k
1 min

(
λ̃, λ̃2

)N+2/q+α

Cρ,q ,

where if λ̃2 ≤ λ̃, we let the derivatives fall on θi, and if λ̃2 > λ̃, we let the derivatives fall on

ρ̃. Using the interpolation inequality, we obtain

∥∥∥DN∂i1···iD−k
(Θλ̃1,λ̃2

ρ̃ )(i1,··· ,iD)
∥∥∥
Lp(T2)

≲D λ̃
D−k
1 min(λ̃, λ̃2)

N+2/q−2/p+αCρ,q .
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Undoing our original rescaling, we find that

∥∥DN∂i1···iD−k
(Θλ1,λ2

ρ )(i1,··· ,iD)
∥∥
Lp(T2)

≲D (λr)N+D−k
∥∥∥DN

[
∂i1···iD−k

(Θλ̃1,λ̃2
ρ̃ )(i1,··· ,iD)

]∥∥∥
Lp(T2)

≤
(
min(λ, λ2)

λr

) 2
q
− 2

p
+α

Cρ,qλD−k
1 min(λ, λ2)

N .
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Chapter 8

Non-inductive cutoffs

8.1 Time cutoffs

Let χ : (−1, 1) → [0, 1] be a C∞ function which induces a partition of unity according to

∑
k∈Z

χ6(· − k) ≡ 1 . (8.1)

Consider the translated and rescaled function

χ
(
2tτ−1

q Γi+2
q − k

)
,

which is supported in the set of times t satisfying

∣∣t− 1/2τqΓ
−i−2
q k

∣∣ ≤ 1/2τqΓ
−i−2
q ⇐⇒ t ∈

[
(k − 1)1/2τqΓ

−i−2
q , (k + 1)1/2τqΓ

−i−2
q

]
. (8.2)

We then define temporal cut-off functions

χi,k,q(t) = χ
(
2tτ−1

q Γi+2
q − k

)
. (8.3)
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It is then clear that

|∂mt χi,k,q| ≲ (Γi+2
q τ−1

q )m (8.4)

for m ≥ 0 and

χi,k1,q(t)χi,k2,q(t) = 0 (8.5)

for all t ∈ R unless |k1 − k2| ≤ 1. In analogy to ψi±,q, we define

χi,k±,q(t) :=
(
χ6
i,k−1,q(t) + χ6

i,k,q(t) + χ6
i,k+1,q(t)

) 1
6 , (8.6)

which are cutoffs with the property that

χi,k±,q ≡ 1 on supp (χi,k,q) . (8.7)

Next, we define the cutoffs χ̃i,k,q by

χ̃i,k,q(t) = χ
(
tτ−1
q Γiq − kΓ−2

q

)
. (8.8)

For comparison with (8.2), we have that χ̃i,k,q is supported in the set of times t satisfying

∣∣t− τqΓ
−i−2
q k

∣∣ ≤ τqΓ
−i
q . (8.9)

Let (i, k) and (i∗, k∗) be such that suppχi,k,q ∩ suppχi∗,k∗,q ̸= ∅ and i∗ ∈ {i − 1, i, i + 1}.

Then as a consequence of these definitions and a sufficiently large choice of λ0,

suppχi,k,q ⊂ supp χ̃i∗,k∗,q . (8.10)
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8.2 Estimates on flow maps

We can now make estimates regarding the flows of the vector field ûq′ for q
′ ≤ q + n̄− 1 on

the support of a velocity and time cutoff function. This section is completely analogous to

[7, Section 6.4], and we omit the proofs.

Lemma 8.2.1 (Lagrangian paths don’t jump many supports). Let q′ ≤ q+ n̄−1 and

(x0, t0) be given. Assume that the index i is such that ψ2
i,q′(x0, t0) ≥ κ2, where κ ∈

[
1
16
, 1
]
.

Then the forward flow (X(t), t) := (X(x0, t0; t), t) of the velocity field ûq′ originating at

(x0, t0) has the property that ψ2
i,q′(X(t), t) ≥ κ2/2 for all t such that |t− t0| ≤ τq′Γ

−i+4
q′ .

Corollary 8.2.2 (Backwards Lagrangian paths don’t jump many supports). Sup-

pose (x0, t0) is such that ψ2
i,q′(x0, t0) ≥ κ2, where κ ∈ [1/16, 1]. For |t− t0| ≤ τq′Γ

−i+3
q′ , define

x to satisfy

x0 = X(x, t; t0) .

That is, the forward flow X of the velocity field ûq′, originating at x at time t, reaches the

point x0 at time t0. Then we have

ψi,q′(x, t) ̸= 0 .

Definition 8.2.3 (Flow maps). We define Φi,k,q′(x, t) = Φ(i,k)(x, t) to be the flows induced

by ûq′ with initial datum at time kτq′Γ
−i−2
q given by the identity, i.e.

 (∂t + ûq′ · ∇)Φi,k,q′ = 0

Φi,k,q′(x, kτq′Γ
−i−2
q′ ) = x .

(8.11)

We will use DΦ(i,k) to denote the gradient of Φ(i,k) (which is a thus matrix-valued function).

The inverse of the matrix DΦ(i,k) is denoted by
(
DΦ(i,k)

)−1
, in contrast to DΦ−1

(i,k), which is

the gradient of the inverse map Φ−1
(i,k).
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Corollary 8.2.4 (Deformation bounds). For k ∈ Z, 0 ≤ i ≤ imax, q
′ ≤ q + n̄ − 1, and

2 ≤ N ≤ 3Nfin/2 + 1, we have the following bounds on the support of ψi,q′(x, t)χ̃i,k,q′(t).

∥∥DΦ(i,k) − Id
∥∥
L∞(supp (ψi,q′ χ̃i,k,q′ ))

≲ Γ−1
q′ (8.12a)∥∥DNΦ(i,k)

∥∥
L∞(supp (ψi,q′ χ̃i,k,q′ ))

≲ Γ−1
q′ (λq′Γq′)

N−1 (8.12b)∥∥(DΦ(i,k))
−1 − Id

∥∥
L∞(supp (ψi,q′ χ̃i,k,q′ ))

≲ Γ−1
q′ (8.12c)∥∥DN−1

(
(DΦ(i,k))

−1
)∥∥

L∞(supp (ψi,q′ χ̃i,k,q′ ))
≲ Γ−1

q′ (λq′Γq′)
N−1 (8.12d)∥∥∥DNΦ−1

(i,k)

∥∥∥
L∞(supp (ψi,q′ χ̃i,k,q′ ))

≲ Γ−1
q′ (λq′Γq′)

N−1 (8.12e)

Furthermore, we have the following bounds for 1 ≤ N +M ≤ 3Nfin/2 and 0 ≤ N ′ ≤ N :

∥∥∥DN−N ′
DM
t,q′D

N ′+1Φ(i,k)

∥∥∥
L∞(supp (ψi,q′ χ̃i,k,q′ ))

≤ (λq′Γq′)
NM

(
M,Nind,t,Γ

i
q′τ

−1
q′ ,T

−1
q′−1Γq′−1

)
(8.13a)∥∥∥DN−N ′

DM
t,q′D

N ′
(DΦ(i,k))

−1
∥∥∥
L∞(supp (ψi,q′ χ̃i,k,q′ ))

≤ (λq′Γq′)
NM

(
M,Nind,t,Γ

i
q′τ

−1
q′ ,T

−1
q′−1Γq′−1

)
.

(8.13b)

8.3 Intermittent pressure cutoffs

In this section, we introduce cutoff functions for the level sets of πℓ. Estimates for πℓ are

provided by (6.3a)–(6.3c).

8.3.1 Definition of the intermittent pressure cutoffs

We first introduce a partition of unity which is slightly more general than is needed at the

moment; however, the generality will prove useful in the construction of the velocity cutoffs.

The statement is almost identical to [7, Lemma 6.2]. The only slight difference is that (8.14)

holds for the sixth power (the least common multiple of two and three, corresponding to

cubic and quadratic error terms, respectively), and the estimates in (5) hold for arbitrary
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integer powers of the cutoff functions. The more general bounds follow from the fact that

since the cutoff functions are defined by gluing together exponential functions, raising to a

power is (locally) equivalent to dilation.

Lemma 8.3.1. For all q ≥ 1 and 0 ≤ m ≤ Ncut,t, there exist smooth cutoff functions

γ̃m,q, γm,q : [0,∞) → [0, 1] which satisfy the following.

(1) The function γ̃m,q satisfies 1
[0, 1

4
Γ
2(m+1)
q ]

≤ γ̃m,q ≤ 1
[0,Γ

2(m+1)
q ]

.

(2) The function γm,q satisfies 1
[1, 1

4
Γ
2(m+1)
q ]

≤ γm,q ≤ 1
[ 1
4
,Γ

2(m+1)
q ]

.

(3) For all y ≥ 0, a partition of unity is formed as

γ̃6m,q(y) +
∑
i≥1

γ6m,q
(
Γ−2i(m+1)
q y

)
= 1 . (8.14)

(4) γ̃m,q and γm,q(Γ
−2i(m+1)
q ·) satisfy

supp γ̃m,q(·) ∩ supp γm,q
(
Γ−2i(m+1)
q ·

)
= ∅ if i ≥ 2,

supp γm,q
(
Γ−2i(m+1)
q ·

)
∩ supp γm,q

(
Γ−2i′(m+1)
q ·

)
= ∅ if |i− i′| ≥ 2 . (8.15)

(5) For 0 ≤ N ≤ Nfin, when 0 ≤ y < Γ
2(m+1)
q we have

|DN γ̃m,q(y)| ≲ (γ̃m,q(y))
1−N/NfinΓ−2N(m+1)

q . (8.16)

For 1
4
< y < 1 we have

|DNγm,q(y)| ≲ (γm,q(y))
1−N/Nfin , (8.17)

while for 1
4
Γ
2(m+1)
q < y < Γ

2(m+1)
q we have

|DNγm,q(y)| ≲ Γ−2N(m+1)
q (γm,q(y))

1−N/Nfin . (8.18)
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In each of the above inequalities, the implicit constants depend on N but not m or q. If

γm,q or γ̃m,q is replaced on the left hand side with γpm,q, respectively γ̃
p
m,q for p ∈ N, then

a similar inequality holds after substituting the same power on the right-hand side and

changing implicit constants.

We now introduce the intermittent pressure cut-off functions.

Definition 8.3.2 (Intermittent pressure cutoff functions). For j ≥ 1 the cut-off func-

tions are defined by

ωj,q(x, t) = γ0

(
Γ−2j
q (δq+n̄)

−1πℓ(x, t)
)
, (8.19)

while for j = 0 we let

ω0,q(x, t) = γ̃0

(
(δq+n̄)

−1πℓ(x, t)
)
, (8.20)

where γ0 := γ0,q and γ̃0 := γ̃0,q.

An immediate consequence of (8.14) with m = 0 is that {ω6
j,q}j≥0 satisfies

∑
j≥0

ω6
j,q = 1 , ωj,qωj′,q ≡ 0 if |j − j′| > 1 (8.21)

on T3 × R.
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8.3.2 Estimates for intermittent pressure cutoffs

Lemma 8.3.3. For all m+ k ≤ Nfin and j ≥ 0, we have that

1supp (ωj,qψi,q)|DkDm
t,qπℓ(x, t)| ≤ Γ2j+6

q δq+n̄(ΓqΛq)
kM

(
m,Nind,t,Γ

i
qτ

−1
q ,T−1

q

)
, (8.22a)

1/4δq+n̄Γ
2j
q ≤ 1supp (ωj,q)πℓ (8.22b)

1/8
∑
j

ωj,qδq+n̄Γ
2j
q ≤ πℓ , (8.22c)

1supp (ωj,qψi,q)|DkDm
t,qRℓ(x, t)| ≤ Γ2j−4

q δq+n̄(ΓqΛq)
kM

(
m,Nind,t,Γ

i
qτ

−1
q ,T−1

q

)
, (8.22d)

1supp (ωj,qψi,q)|DkDm
t,qφℓ(x, t)| ≤ Γ3j−7

q δ
3
2
q+n̄r

−1
q (ΓqΛq)

kM
(
m,Nind,t,Γ

i
qτ

−1
q ,T−1

q

)
. (8.22e)

Proof. First, observe that by the construction of ωj,q, we have that for all j ≥ 0,

1supp (ωj,q)|πℓ| = 1supp (ωj,q)πℓ ≤ Γ2(j+1)
q δq+n̄ . (8.23)

Then, recalling the pointwise estimate (6.3c) and using (8.23), we have that

1supp (ωj,q)|ψi,qDkDm
t,qπℓ(x, t)| ≲ 1supp (ωj,q)Γ

3
qπℓ(ΓqΛq)

kM
(
m,Nind,t,Γ

i
qτ

−1
q ,T−1

q

)
≤ Γ2(j+3)

q δq+n̄(ΓqΛq)
kM

(
m,Nind,t,Γ

i
qτ

−1
q ,T−1

q

)
.

To obtain the lower bounds on πℓ on the support of ωj,q, we appeal to (6.6) in the case j = 0,

and the definition of ωj,q in the case j ≥ 1. Summing over j and appealing to (8.21) yields

(8.22c). Next, we can obtain the pointwise estimates (8.22d) and (8.22e) for Rq
q and φ

q
q in a

similar way by using (6.7a) and (6.7b), respectively. Finally, we obtain (8.22c) from (6.6),

the definition of ωj,q for j ≥ 0, and .

104



Corollary 8.3.4. For q ≥ 0, 0 ≤ i ≤ imax, and α, β ∈ Nk
0 with |α|+ |β| ≤ Nfin, we have

∥∥∥∥∥
(

k∏
ℓ=1

DαℓDβℓ
t,q

)
πℓ

∥∥∥∥∥
L∞(supp (ψi,qωj,q))

≲ Γ2j+6
q δq+n̄(ΓqΛq)

|α|M
(
|β|,Nind,t,Γ

i
qτ

−1
q ,T−1

q

)
(8.24a)

∥∥∥∥∥
(

k∏
ℓ=1

DαℓDβℓ
t,q

)
Rℓ

∥∥∥∥∥
L∞(supp (ψi,qωj,q))

≲ Γ2j−4
q δq+n̄(ΓqΛq)

|α|M
(
|β|,Nind,t,Γ

i
qτ

−1
q ,T−1

q

)
(8.24b)∥∥∥∥∥

(
k∏
ℓ=1

DαℓDβℓ
t,q

)
φℓ

∥∥∥∥∥
L∞(supp (ψi,qωj,q))

≲ Γ3j−7
q δ

3
2
q+n̄r

−1
q (ΓqΛq)

|α|M
(
|β|,Nind,t,Γ

i
qτ

−1
q ,T−1

q

)
.

(8.24c)

Proof of Corollary 8.3.4. We only work on the estimate for πℓ because the estimates for Rq
q

and φqq can be obtained in a completely analogous way from Lemma 8.3.3 and Lemma A.2.3,

Remark A.2.4. We then apply Lemma A.2.3 with v = ûq, f = πℓ, Ω = suppψi,q ∩ suppωj,q,

and p = ∞. In view of estimate (5.34) at level q, the assumption (A.27) holds with Cv =

τ−1
q ΓiqΛ

−1
q , λv = λ̃v = Λq, Nx = ∞, µv = Γiqτ

−1
q , µ̃v = Γ−1

q T−1
q , and Nt = Nind,t. On the other

hand, the bound (8.22a) implies assumption (A.28) with Cf = Γ2j+6
q+1 δq+n̄, λf = λ̃f = ΓqΛq,

µf = Γiqτ
−1
q , µ̃f = T−1

q , and Nt = Nind,t. We then deduce from the bound (A.31) that (8.24a)

holds, thereby concluding the proof.

Lemma 8.3.5 (Maximal j index). Fix q ≥ 0. There exists a jmax = jmax(q) ≥ 1,

determined by the formula

jmax = inf

{
j :

1

4
Γ2j
q δq+n̄ ≥ Γ3+C∞

q

}
(8.25)

and which is bounded independently of q, such that

ωj,q ≡ 0 for all j > jmax . (8.26)
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Moreover, we have the bound

Γ2jmax
q ≤ δ−1

q+n̄Γ
C∞+6
q . (8.27)

Proof of Lemma 8.3.5. The proof of (8.26) follows immediately from the definition in (8.25),

the bound (8.22a), and the bound (6.3b), where the extra factor of Γq absorbs the implicit

constant in (6.3b). Checking that jmax is independent of q is a simple calculation, as is the

bound in (8.27).

Lemma 8.3.6 (Derivative bounds). For q ≥ 0, 0 ≤ i ≤ imax, 0 ≤ j ≤ jmax, and

N +M ≤ Nfin, we have

1suppψi,q
|DNDM

t,qωj,q|
ω
1−(N+M)/Nfin

j,q

≲ (Γ5
qΛq)

NM
(
M,Nind,t,Γ

i+4
q τ−1

q ,T−1
q

)
. (8.28)

Proof of Lemma 8.3.6. We shall apply the mixed-derivative Fa’a di Bruno formula from [7,

Lemma A.5] with the following choices, where we use the parameter names from there:

ψ = γ0 or γ̃0 , Γψ = Γq , v = ûq ,

Γ = δ
1/2
q+n̄Γ

−j
q , λ = λ̃ = ΛqΓq , µ = τ−1

q Γiq , µ̃ = T−1
q ,

Nx = ∞ , Nt = Nind,t , h = πℓ , Ch = δq+n̄Γ
2j+6
q .

The assumption [7, A.24] is verified due to (8.16)–(8.18), and [7, (A.25)] is verified due to

(8.24a), which holds on the support of ωj,qψi,q. From conclusion [7, (A.26)] and the equality

(ΓψΓ)
−2Ch = Γ4

q, we find that (8.28) holds; note that for the N = M = 0 case, we just use

the fact that ωj,q ≤ 1 rather than incur the loss ChΓ−2 from [7, (A.26)].

Lemma 8.3.7 (Support bounds). For any r ≥ 3/2 and 0 ≤ j ≤ jmax, we have that

∥ωj,q∥Lr ≲ Γ
3(1−j)

r
q . (8.29)
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Proof of Lemma 8.3.7. We prove only the case r = 3/2, at which point the remaining esti-

mates follow from Lebesgue interpolation and the fact that ωj,q ≤ 1 for all j, q. For j = 0, 1

the estimate is trivial from the pointwise bound for ωj,q, and so we consider now j ≥ 2.

Using Chebyshev’s inequality, (6.3a), and (8.22b), we have that

∥ωj,q∥
3/2
3/2 ≤ sup

t∈R

ˆ
T3

1{πℓ(t,·)≥1/4δq+n̄Γ
2j
q }

≲
∥πℓ∥

3/2
3/2

δ
3/2
q+n̄Γ

3j
q

≲ Γ3(1−j)
q .

8.4 Mildly and strongly anisotropic checkerboard cut-

offs

We first construct mildly anisotropic checkerboard cutoff functions which are well-suited for

intermittent pipe flows with axes parallel to e1. The construction for general ξ ∈ Ξ follows

by rotation. We include all the details since the power for which the partition is summable

to 1 is absolutely crucial for the definition of the perturbation in (9.8) and its estimates

in Lemma 9.3.1, and the Reynolds and current oscillation errors in subsections 10.2.1 and

11.2.1, respectively.

Step 1: Partitioning the space perpendicular to x1. Consider a partition of T2
x2,x3

into the squares defined using the periodized base square

{
(x2, x3) ∈ T2 : 0 ≤ x2, x3 ≤

π

8
Γ5
q (λq+1)

−1
}

(8.30)
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and its periodized translations by

(
l2 · π/8 · Γ5

q(λq+1)
−1, l3 · π/8 · Γ5

q(λq+1)
−1
)

for

l2, l3 ∈ {0, . . . , 16Γ−5
q λq+1 − 1} .

Note that the periodized squares evenly partition [−π, π]2. We let l⊥ := (l2, l3) be an ordered

pair using the indices defined above, and choose {Xq,e1,l⊥}l⊥ to be a C∞ partition of unity

adapted to these periodized squares such that

∑
l⊥

X 2
q,e1,l⊥

(x2, x3) ≡ 1, ∀(x2, x3) ∈ T2
x2,x3

, Xq,e1,l⊥Xq,e1,l̃⊥
≡ 0 if |l2 − l̃2| > 1 |l3 − l̃3| > 1 ,

(8.31a)

suppXq,e1,l⊥0
= [−1/8Γ5

qλ
−1
q+1, 5/8Γ

5
qλ

−1
q+1]

2 for l⊥0 = (0, 0) . (8.31b)

We shall later need that 〈∑
l⊥

χ3
q,e1,l⊥

(x2, x3)

〉
= c3 , (8.32)

where the constant c3 is geometric and bounded independently of q.

Step 2: Partitioning the space parallel to x1. Next, consider a partition of Tx1

into the line segments defined using the base line segment

{
x1 ∈ T : 0 ≤ x1 ≤

π

8
λ−1
q Γ−8

q

}
(8.33)

and its translations by

l · 1/2 · λ−1
q Γ−8

q , l ∈ {0, . . . , 16λ−1
q Γ−8

q − 1} .

Note that the segments evenly partition [−π, π]. Choose {Xq,e1,l}l to be a C∞ partition of
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unity adapted to these segments such that for N ≤ 3Nfin,

∑
l

X 6
q,e1,l

(x1) ≡ 1 ∀(x1) ∈ Tx1 , Xq,e1,lXq,e1,l̃
≡ 0 if |l − l̃| > 1 ,

∣∣DNXq,ξ′,l′
∣∣ ≲ (λqΓ

8
q)
N ,

(8.34a)

supp (Xq,e1,0) = [−1/8λ−1
q Γ−8

q , 5/8λ−1
q Γ−8

q ] . (8.34b)

Step 3: Reynolds cutoffs. Combining l, l⊥ into integer triples l⃗ = (l, l2, l3) = (l, l⊥), we

now have a division of T3 into rectangular prisms indexed by l⃗. We define

Xq,e1 ,⃗l,R
(x1, x2, x3) = X 3

q,e1,l
(x1)Xq,e1,l⊥(x2, x3)

and note that

∑
l⃗

X 2
q,e1 ,⃗l,R

(x1, x2, x3) ≡ 1 ∀ (x1, x2, x3) ∈ T3 .

Step 4: Current cutoffs. We combine l, l⊥ into integer triples l⃗ as above but now define

Xq,e1 ,⃗l,φ
(x1, x2, x3) = X 2

q,e1,l
(x1)Xq,e1,l⊥(x2, x3)

and note that for each fixed value of l = l0,

∑
l⃗ : l=l0

X 2
q,e1 ,⃗l,φ

(x1, x2, x3) ≡ X 4
q,e1,l0

(x1) ∀ (x1, x2, x3) ∈ T3 .

Conversely, for each fixed value of l⊥ = l⊥0 , we have that

∑
l⃗ : l⊥=l⊥0

X 3
q,e1 ,⃗l,φ

(x1, x2, x3) ≡ X 3
q,e1,l⊥0

(x2, x3) .

With the time-independent cutoffs in hand, we define the time-dependent cutoff which is

adapted to the flows of the velocity field ûq.
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Definition 8.4.1 (Mildly anisotropic checkerboard cutoff functions). Given q, ξ ∈ Ξ,

i ≤ imax, and k ∈ Z, we define

ζq,⋄,i,k,ξ,⃗l (x, t) = Xq,ξ,⃗l,⋄ (Φi,k,q(x, t)) . (8.35)

These cutoff functions satisfy properties which we enumerate in the following lemma.

Lemma 8.4.2. The cutoff functions {ζq,⋄,i,k,ξ,⃗l}l⃗ satisfy the following properties.

(i) The material derivative Dt,q(ζq,⋄,i,k,ξ,⃗l) vanishes.

(ii) We have the summability properties for all (x, t) ∈ T3 × R;

∑
l⃗

(
ζq,R,i,k,ξ,⃗l (x, t)

)2 ≡ 1 , (8.36a)

∑
l⃗ : l=l0

ζ2
q,φ,i,k,ξ,⃗l

(x, t) ≡ X 4
q,ξ,l0

(Φi,k,q(x, t)) , (8.36b)

∑
l⃗ : l⊥=l⊥0

ζ3
q,φ,i,k,ξ,⃗l

(x1, x2, x3) = X 3
q,ξ,l⊥0

(Φi,k,q(x, t)) . (8.36c)

(iii) Let A = (∇Φ(i,k))
−1. Then we have the spatial derivative estimate

∥∥DN1DM
t,q(ξ

ℓAjℓ∂j)
N2ζq,⋄,i,k,ξ,⃗l

∥∥
L∞(suppψi,qχ̃i,k,q)

≲
(
Γ−5
q λq+1

)N1
(
Γ8
qλq
)N2

×M
(
M,Nind,t,Γ

i
qτ

−1
q ,T−1

q Γ−1
q

)
.

(8.37)

for all N1 +N2 +M ≤ 3Nfin/2 + 1.

(iv) There exists an implicit dimensional constant Cχ independent of q, k, i, and l⃗ such that

for all (x, t) ∈ suppψi,qχ̃i,k,q, the support of ζq,⋄,i,k,ξ,⃗l (·, t) satisfies

diam(supp (ζq,⋄,i,k,ξ,⃗l (·, t))) ≲ Γ−8
q λ−1

q . (8.38)
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Proof of Lemma 8.4.2. The proof of (i) is immediate from (8.35). The first equality in (8.36)

follows from (i) and the definition of the Reynolds cutoffs in Step 3 above. The second and

third equalities follow from (i) and the definition of the current cutoffs in Step 4 above.

To verify (iii), the only nontrivial calculations are those including the differential operator

ξℓAjℓ∂j. Using the Leibniz rule, the contraction

ξℓAjℓ∂jζq,⋄,i,k,ξ,⃗l = ξℓAjℓ(∂mXq,ξ,⃗l,⋄)(Φi,k,q)∂jΦ
m
i,k,q = ξm(∂mXq,ξ,⃗l,⋄)(Φi,k,q) ,

the diameter of the cutoffs defined in Steps 1 and 2 above, and (8.13a)–(8.13b) gives the

desired estimate. The proof of (8.38) follows from the construction of Xq,ξ,⃗l,⋄ and the Lipschitz

bound obeyed by ûq on the support of ψi,q; see for example (7.18).

We may similarly obtain estimates on the flowed cutoff functions ζIξ which come from

Definition 7.2.4. The proof is quite similar to the one above, and we omit the details.

Lemma 8.4.3 (Strongly anisotropic checkerboard cutoff function). The cutoff func-

tions ζIξ ◦ Φ(i,k) satisfy the following properties:

(1) The material derivative Dt,q(ζ
I
ξ ◦ Φ(i,k)) vanishes.

(2) For all fixed values of q, i, k, ξ, each t ∈ R, and all x = (x1, x2, x3) ∈ T3,

∑
I

(ζIξ ◦ Φ(i,k))
6(x, t) = 1 . (8.39)

(3) Let A = (∇Φ(i,k))
−1. Then we have the spatial derivative estimate

∥∥DN1DM
t,q(ξ

ℓAjℓ∂j)
N2ζIξ ◦ Φ(i,k)

∥∥
L∞(suppψi,qχ̃i,k,q)

≲ λN1

q+⌊n̄/2⌋M
(
M,Nind,t,Γ

i
qτ

−1
q ,T−1

q Γ−1
q

)
.

(8.40)

for all N1 +N2 +M ≤ 3Nfin/2 + 1.
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(4) There exists an implicit dimensional constant Cχ independent of q, k, i, and ξ such that

for all (x, t) ∈ suppψi,qχ̃i,k,q, the support of ζIξ ◦ Φ(i,k)(·, t) satisfies

diam(supp (ζIξ ◦ Φ(i,k)(·, t))) ≲ Γ−8
q λ−1

q . (8.41)

We also need the following lemma that bounds the cardinality of these anisotropic cut-

offs.

Lemma 8.4.4. For fixed q, i, k, ξ, we have that

#
{
(⃗l, I) : supp

(
ζq,i,k,ξ,⃗l ζ

I
ξ ◦ Φ(i,k)

)
̸= ∅
}
≲ Γ8

qλqλ
2
q+n̄/2 . (8.42)

Proof. Note first that for a fixed I, there are at most 4 values of l⊥0 such that supp (Xq,ξ,l⊥0
ζIξ) ̸=

∅. Also note that for a fixed l⊥0 , we have #{⃗l : l⊥ = l⊥0 } ≲ λqΓ
8
q. Putting these together

along with the bound on the number of I given by Remark 7.2.5, we get that

#{(⃗l, I) : supp (Xq,ξ,⃗l,⋄ζ
I
ξ) ̸= ∅} ≲ Γ8

qλqλ
2
q+n̄/2 .

Now the desired conclusion follows as all these cut-offs are flowed by the same Φ(i,k).

8.5 Definition of the cumulative cutoff function

Finally, combining the cutoff functions defined in Definition 12.1.4, Definition 8.3.2, (8.3),

and the previous subsection, we define the cumulative cutoff functions by

ηi,j,k,ξ,⃗l,⋄ (x, t) = ψ⋄
i,q(x, t)ω

⋄
j,q(x, t)χ

⋄
i,k,q(t)ζq,⋄,i,k,ξ,⃗l (x, t) , (8.43)

where the ⋄ in the superscript of the first three functions is equal to 2 if ⋄ = φ (so that

they are cubic-summable to 1) and 3 if ⋄ = R (so that they are square-summable to 1). We
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conclude this section with estimates on the Lp norms of the cumulative cutoff functions.

Lemma 8.5.1 (Cumulative support bounds for cutoff functions). For r1, r2 ∈ [1,∞]

with 1
r1
+ 1

r2
= 1 and any 0 ≤ i ≤ imax, 0 ≤ j,≤ jmax, ξ ∈ Ξ,Ξ′, and ⋄ = φ,R, we have that

for each t,

∑
l⃗

∣∣∣supp x

(
ηi,j,k,ξ,⃗l,⋄(t, x)

)∣∣∣ ≲ Γ
−3i+Cb

r1
+−3j

r2
+3

q . (8.44)

We furthermore have that

∑
i,j,k,ξ,⃗l,I,⋄

1supp η
i,j,k,ξ,⃗l,⋄ρ

⋄
(ξ)

ζI
ξ
≈

∑
i,j,k,ξ,⃗l,⋄

1supp η
i,j,k,ξ,⃗l,⋄ρ

⋄
(ξ)

≲ 1 . (8.45)

Proof of Lemma 8.5.1. We shall prove the first bound for ⋄ = φ. Then from (8.43), the only

differences between ⋄ = R and ⋄ = φ are the powers to which various cutoff functions are

raised, and so we shall omit the proof for ⋄ = R. To prove the bound for ⋄ = φ, we have

that

∑
l⃗

∣∣∣supp ηi,j,k,ξ,⃗l,φ∣∣∣ ≲ ∥∥(ψ6
i−1,q + ψ6

i,q + ψ6
i+1,q)

1/6(ω6
j−1,q + ω6

j,q + ω6
j+1,q)

1/6
∥∥
L1

≲
∥∥(ψ6

i−1,q + ψ6
i,q + ψ6

i+1,q)
1/6
∥∥
Lr1

∥∥(ω6
j−1,q + ω6

j,q + ω6
j+1,q)

1/6
∥∥
Lr2

≲ Γ
−3(i−1)+Cb

r1
q Γ

−3(j−1)
r2

q .

To achieve the final inequality, we have used interpolation, (5.13) at level q, and (8.29).

Using that 1
r1

+ 1
r2

= 1 gives the desired estimate. Finally, to prove (8.45), we appeal to

(5.8) at level q, (8.1) and (8.5), (8.21), item (ii) from Proposition 7.2.1, Definition 7.2.4, and

Lemma 8.4.2.
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8.6 Cutoff aggregation lemmas

Corollary 8.6.1 (Aggregated Lp estimates). Let θ ∈ (0, 3], and θ1, θ2 ≥ 0 with θ1+ θ2 =

θ. Let H = Hi,j,k,ξ,⃗l,⋄ or H = Hi,j,k,ξ,⃗l,I,⋄ be a function with

suppHi,j,k,ξ,⃗l,⋄ ⊆ supp ηi,j,k,ξ,⃗l,⋄ or suppHi,j,k,ξ,⃗l,I,⋄ ⊆ supp ηi,j,k,ξ,⃗l,⋄ζ
I,⋄
ξ ◦Φ(i,k) . (8.46)

Let p ∈ [1,∞) and let θ1, θ2 ∈ [0, 3] be such that θ1 + θ2 = 3/p. Assume that there exists

CH , N∗,M∗, Nx,Mt and λ,Λ, τ,T such that

∥∥∥DNDM
t,qHi,j,k,ξ,⃗l,⋄

∥∥∥
Lp

≲ sup
t∈R

(∣∣∣supp x

(
ηi,j,k,ξ,⃗l,⋄(t, x)

)∣∣∣1/p)
× CHΓθ1i+θ2jq M (N,Nx, λ,Λ)M

(
M,Mt, τ

−1Γiq,T
−1
)

(8.47a)∥∥∥DNDM
t,qHi,j,k,ξ,⃗l,I,⋄

∥∥∥
Lp

≲ sup
t∈R

(∣∣∣supp x

(
ηi,j,k,ξ,⃗l,⋄ζ

I,⋄
ξ ◦ Φ(i,k)(t, x)

)∣∣∣1/p)
× CHΓθ1i+θ2jq M (N,Nx, λ,Λ)M

(
M,Mt, τ

−1Γiq,T
−1
)

(8.47b)

for N ≤ N∗,M ≤M∗. Then in the same range of N and M ,

∥∥∥∥∥∥ψi,q
∑

i′,j,k,ξ,⃗l,⋄

DNDM
t,qHi′,j,k,ξ,⃗l,⋄

∥∥∥∥∥∥
Lp

≲ Γ3+θ1Cb
q CHM (N,Nx, λ,Λ)M

(
M,Mt, τ

−1Γi+1
q ,T−1

)
(8.48a)∥∥∥∥∥∥ψi,q

∑
i′,j,k,ξ,⃗l,I,⋄

DNDM
t,qHi′,j,k,ξ,⃗l,I,⋄

∥∥∥∥∥∥
Lp

≲ Γ3+θ1Cb
q CHM (N,Nx, λ,Λ)M

(
M,Mt, τ

−1Γi+1
q ,T−1

)
.

(8.48b)

Proof. We prove only (8.48b), as (8.48a) is slightly easier and follows the same method.

Using (8.46), (5.8) at level q, (8.47b), Lemma 8.5.1 with r1 =
3
pθ1
, r2 =

3
pθ2

, θ1 + θ2 = 3/p, we
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may write that

∥∥∥∥∥∥ψi,q
∑

i′,j,k,ξ,⃗l,I,⋄

DNDM
t,qHi′,j,k,ξ,⃗l,I,⋄

∥∥∥∥∥∥
p

p

≤ sup
t∈R

ˆ
T3

ψi,q

∣∣∣∣∣∣∣∣
∑

i−1≤i′≤i+1

j,k,ξ,⃗l,I,⋄

DNDM
t,qHi′,j,k,ξ,⃗l,I,⋄

∣∣∣∣∣∣∣∣
p

(t, x) dx

≤ sup
t∈R

∑
i−1≤i′≤i+1

j,k,ξ,⃗l,I,⋄

∣∣∣supp x

(
ηi,j,k,ξ,⃗l,⋄ζ

I,⋄
ξ ◦ Φ(i,k)(t, x)

)∣∣∣ CpHΓpθ1i+pθ2jq

×
(
M (N,Nx, λ,Λ)M

(
M,Mt, τ

−1Γiq,T
−1
))p

≲ sup
t∈R

∑
i−1≤i′≤i+1

j,k,ξ,⃗l,⋄

∣∣∣supp x

(
ηi,j,k,ξ,⃗l,⋄(t, x)

)∣∣∣ CpHΓpθ1i+pθ2jq

(
M (N,Nx, λ,Λ)M

(
N,Nt, τ

−1Γiq,T
−1
))p

≤ CpHΓ
pθ1Cb+3p
q

(
M (N,Nx, λ,Λ)M

(
M,Mt, τ

−1Γiq,T
−1
))p

,

concluding the proof.

Remark 8.6.2 (Aggregated L1 estimates with Γiq). Assume that (8.46)–(8.47b) hold

for p = 3/2, but with CH = ΓiqC̃H . Then we can obtain the L1 estimates

∥∥∥∥∥∥ψi,q
∑

i′,j,k,ξ,⃗l,⋄

DNDM
t,qHi′,j,k,ξ,⃗l,⋄

∥∥∥∥∥∥
1

≲ C̃HΓ2Cb+3
q M (N,Nx, λ,Λ)M

(
M,Mt, τ

−1Γiq,T
−1
)

(8.49a)∥∥∥∥∥∥ψi,q
∑

i′,j,k,ξ,⃗l,I,⋄

DNDM
t,qHi′,j,k,ξ,⃗l,I,⋄

∥∥∥∥∥∥
1

≲ C̃HΓ2Cb+3
q M (N,Nx, λ,Λ)M

(
M,Mt, τ

−1Γiq,T
−1
)
.

(8.49b)
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Indeed, considering (8.49b), we have

∥∥∥∥∥∥ψi,q
∑

i′,j,k,ξ,⃗l,I,⋄

DNDM
t,qHi′,j,k,ξ,⃗l,I,⋄

∥∥∥∥∥∥
1

≤ sup
t∈R

∑
i−1≤i′≤i+1

j,k,ξ,⃗l,I,⋄

ˆ
T3

ψi,q1supp x(ηi,j,k,ξ,⃗l,⋄ζ
I,⋄
ξ ◦Φ(i,k))

∣∣∣DNDM
t,qHi′,j,k,ξ,⃗l,I,⋄

∣∣∣ (t, x) dx

≤ sup
t∈R

 ∑
i−1≤i′≤i+1

j,k,ξ,⃗l,I,⋄

Γ3i
q

∥∥∥ψi,q1supp x(ηi,j,k,ξ,⃗l,⋄ζ
I,⋄
ξ ◦Φ(i,k))

∥∥∥3
3


1/3  ∑

i−1≤i′≤i+1

j,k,ξ,⃗l,I,⋄

Γ−3/2i
q

∥∥∥DNDM
t,qHi′,j,k,ξ,⃗l,I,⋄

∥∥∥3/2

3/2


2/3

≲ sup
t∈R

 ∑
j,k,ξ,⃗l,⋄

∣∣∣supp x

(
ηi,j,k,ξ,⃗l,⋄(t, x)

)∣∣∣Γ3i
q

1/3  ∑
j,k,ξ,⃗l,⋄

∣∣∣supp x

(
ηi,j,k,ξ,⃗l,⋄(t, x)

)∣∣∣Γ3/2(θ1i+θ2j)
q

2/3

· C̃HM (N,Nx, λ,Λ)M
(
M,Mt, τ

−1Γiq,T
−1
)

≤ C̃HΓ2Cb+3
q M (N,Nx, λ,Λ)M

(
M,Mt, τ

−1Γiq,T
−1
)
.

In the last inequality, we used Lemma 8.5.1 with r1 = 1, r2 = ∞ and with r1 =
3
pθ1
, r2 =

3
pθ2

,

and θ1 + θ2 = 3/p.

We now state two similar corollaries which allow us to aggregate pointwise estimates.

Corollary 8.6.3 (Aggregated pointwise estimates). Let H = Hi,j,k,ξ,⃗l,⋄ or H = Hi,j,k,ξ,⃗l,I,⋄

be a function with

suppHi,j,k,ξ,⃗l,⋄ ⊆ supp ηi,j,k,ξ,⃗l,⋄ or suppHi,j,k,ξ,⃗l,I,⋄ ⊆ supp ηi,j,k,ξ,⃗l,⋄ζ
I,⋄
ξ ◦ Φ(i,k) (8.50)

and let ϖ = ϖi,j,k,ξ,⃗l,⋄ or ϖ = θi,j,k,ξ,⃗l,I,⋄ be a non-negative function such that

suppϖi,j,k,ξ,⃗l,⋄ ⊆ supp ηi,j,k,ξ,⃗l,⋄ or suppϖi,j,k,ξ,⃗l,I,⋄ ⊆ supp ηi,j,k,ξ,⃗l,⋄ζ
I,⋄
ξ ◦ Φ(i,k) (8.51)
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Let p ∈ (0,∞) and assume that there exists λ,Λ, τ such that

|DNDt,qHi,j,k,ξ,⃗l,⋄| ≲ ϖp

i,j,k,ξ,⃗l,⋄
M (N,Nx, λ,Λ)M

(
N,Nt, τ

−1Γiq,T
−1
)

(8.52a)

|DNDt,qHi,j,k,ξ,⃗l,I,⋄| ≲ ϖp

i,j,k,ξ,⃗l,I,⋄
M (N,Nx, λ,Λ)M

(
N,Nt, τ

−1Γiq,T
−1
)

(8.52b)

for N ≤ N∗,M ≤M∗. Then in the same range of N and M ,

∣∣∣∣∣∣ψi,q
∑

i′,j,k,ξ,⃗l,⋄

DNDM
t,qHi′,j,k,ξ,⃗l,⋄

∣∣∣∣∣∣ ≲
 ∑
i,j,k,ξ,⃗l,⋄

ϖi,j,k,ξ,⃗l,⋄

p

M (N,Nx, λ,Λ)M
(
M,Mt, τ

−1Γi+1
q ,T−1

)
(8.53a)∣∣∣∣∣∣ψi,q

∑
i′,j,k,ξ,⃗l,I,⋄

DNDM
t,qHi′,j,k,ξ,⃗l,I,⋄

∣∣∣∣∣∣ ≲
 ∑
i,j,k,ξ,⃗l,I,⋄

ϖi,j,k,ξ,⃗l,I,⋄

p

M (N,Nx, λ,Λ)M
(
M,Mt, τ

−1Γi+1
q ,T−1

)
.

(8.53b)

Corollary 8.6.4 (Aggregated pointwise estimates with Γiq). Let H = Hi,j,k,ξ,⃗l,I,⋄ be a

function with

suppHi,j,k,ξ,⃗l,⋄ ⊆ supp ηi,j,k,ξ,⃗l,⋄ or suppHi,j,k,ξ,⃗l,I,⋄ ⊆ supp ηi,j,k,ξ,⃗l,⋄ζ
I,⋄
ξ ◦ Φ(i,k) (8.54)

and let ϖ be a non-negative function and assume that there exists λ,Λ, τ,T such that for

H = Hi,j,k,ξ,⃗l,⋄ or Hi,j,k,ξ,⃗l,I,⋄

∣∣DNDM
t,qH

∣∣ ≲ τ−1
q Γiqψi,qϖM (N,Nx, λ,Λ)M

(
M,Mt, τ

−1Γiq,T
−1
)

(8.55a)
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for N ≤ N∗,M ≤M∗. Then in the same range of N and M ,

∣∣∣∣∣∣ψi,q
∑

i′,j,k,ξ,⃗l,⋄

DNDM
t,qHi′,j,k,ξ,⃗l,⋄

∣∣∣∣∣∣ ≲ Γqr
−1
q λq

(
πqq
)1/2

ϖM (N,Nx, λ,Λ)M
(
M,Mt, τ

−1Γi+1
q ,T−1

)
(8.56a)∣∣∣∣∣∣ψi,q

∑
i′,j,k,ξ,⃗l,I,⋄

DNDM
t,qHi′,j,k,ξ,⃗l,I,⋄

∣∣∣∣∣∣ ≲ Γqr
−1
q λq

(
πqq
)1/2

ϖM (N,Nx, λ,Λ)M
(
M,Mt, τ

−1Γi+1
q ,T−1

)
.

(8.56b)

Proofs of Corollaries 8.6.3 and 8.6.4. We will give the full details for estimate (8.56b) from

Corollary 8.6.4, since the proofs of all the other estimates are slightly easier and follow the

same method. We first note that summing the estimate in (8.55a) over j, k, ξ, l⃗, I, ⋄ and

using (8.21), (8.5), (8.31a), (8.34a), and (7.27), we find that

∣∣∣∣∣∣
∑

j,k,ξ,⃗l,I,⋄

DNDM
t,qHi,j,k,ξ,⃗l,I,⋄

∣∣∣∣∣∣ ≲ ψi±,qτ
−1
q ΓiqϖM (N,Nx, λ,Λ)M

(
M,Mt, τ

−1Γiq,T
−1
)

since suppHi,j,k,ξ,⃗l,I,⋄ ⊆ supp ηi,j,k,ξ,⃗l,⋄ζ
I,⋄
ξ ◦ Φ(i,k) ⊆ suppψi,q and ψi±,q = (ψ6

i−1,q + ψ6
i,q +

ψ6
i+1,q)

1/6. Now summing on i and using (5.8) and Remark 5.3.2, we find that

∣∣∣∣∣∣ψi,q
∑

i′,j,k,ξ,⃗l,I,⋄

DNDM
t,qHi′,j,k,ξ,⃗l,I,⋄

∣∣∣∣∣∣ ≲
(∑

i

Γiqτ
−1
q ψi±,q

)
ϖM (N,Nx, λ,Λ)M

(
M,Mt, τ

−1Γiq,T
−1
)

≲ Γqr
−1
q (πqq)

1/2λqϖM (N,Nx, λ,Λ)M
(
M,Mt, τ

−1Γi+1
q ,T−1

)
.
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Chapter 9

The velocity increment

9.1 Definition of the corrector

In this subsection, we define the premollified velocity increment wq+1, except for the choice

of placement, which we handle in the next subsection and which requires the application of

Lemmas 7.2.3 and 7.2.2. None of the discussion or properties in this subsection depend on

the choice of placement.

9.1.1 Definition of the current corrector

For any fixed values of i, k, we recall the constant c3 from (8.32) and define

φq,i,k = − 1/c3∇Φ(i,k)φℓ . (9.1)

Let ξ ∈ Ξ′, cf. Proposition 7.1.2. For all ξ ∈ Ξ′, we define the coefficient function aξ,i,j,k,⃗l,φ

by

aξ,i,j,k,⃗l,φ = a(ξ),φ = δ
1/2
q+n̄r

−1/3
q Γj−1

q ψφi,qω
φ
j,qχ

φ
i,k,qζq,φ,i,k,ξ,⃗l |∇Φ−1

(i,k)ξ|
−2/3γ̃ξ

(
φq,i,k

δ
3/2
q+n̄r

−1
q Γ3j−3

q

)
,

(9.2)
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where γ̃ξ is defined in Proposition 7.1.2, ζq,φ,i,k,ξ,⃗l is defined in Definition 8.4.1, and

ψφi,q := ψ2
i,q , ωφj,q := ω2

j,q , χφi,k,q := χ2
i,k,q . (9.3)

From Corollary 8.3.4 and estimate (8.12a) from Corollary 8.2.4, we have that |φℓ| ≲ Γ3j−7
q δ

3/2
q+n̄r

−1
q ,

and so φq,i,k is well-defined on the support of ψφi,qω
φ
j,q once λ0 is sufficiently large.

The coefficient function a(ξ),φ is then multiplied by an intermittent pipe bundle∇Φ−1
(i,k)B(ξ),φ◦

Φ(i,k), where we have used Proposition 7.1.6 (with λ = λq+n̄ and r = rq), Definition 7.2.6,

and the shorthand notation

B(ξ),φ = ρφ(ξ)

∑
I

ζI,φξ WI
(ξ),φ (9.4)

to refer to the pipe bundle associated with the region Ω0 = supp ζq,φ,i,k,ξ,⃗l∩{t = kτqΓ
−i
q } and

the index j. The choice of placement of this pipe bundle will be detailed in subsection 9.2. We

will use UI
(ξ),φ to denote the potential satisfying curlUI

(ξ),φ = WI
(ξ),φ. Applying the algebraic

identity (7.14) from Proposition 7.1.5, we define the principal part of the current corrector

by

w
(p)
q+1,φ =

∑
i,j,k,ξ,⃗l,I

a(ξ),φ

(
ρφ(ξ)ζ

I,φ
ξ

)
◦ Φ(i,k)curl

(
∇ΦT

(i,k)UI
(ξ),φ ◦ Φ(i,k)

)
︸ ︷︷ ︸

=:w
(p),I
(ξ),φ

. (9.5)

The notation w
(p),I
(ξ),φ refers to fixed values of the indices i, j, k, ξ, l⃗, I. We add the divergence

corrector

w
(c)
q+1,φ =

∑
i,j,k,ξ,⃗l,I

∇
(
a(ξ),φ

(
ρφ(ξ)ζ

I,φ
ξ

)
◦ Φ(i,k)

)
×
(
∇ΦT

(i,k)UI
(ξ),φ ◦ Φ(i,k)

)
︸ ︷︷ ︸

=:w
(c),I
(ξ),φ

, (9.6)
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so that the mean-zero, divergence-free total current corrector is given by

wq+1,φ = w
(p)
q+1,φ+w

(c)
q+1,φ =

∑
i,j,k,ξ,⃗l,I

curl
(
a(ξ),φ

(
ρφ(ξ)ζ

I,φ
ξ

)
◦ Φ(i,k)∇ΦT

(i,k)UI
(ξ),φ ◦ Φ(i,k)

)
︸ ︷︷ ︸

=:wI
(ξ),φ

. (9.7)

9.1.2 Definition of the Euler-Reynolds corrector

For any fixed values of i, k, we recall (8.34a) and define

Rq,i,k = −∇Φ(i,k)

(
Rℓ−πℓId

+
∑
ξ′,i′,j′

k′,l′

δq+n̄Γ
2j′−2
q CΓ−2

q∣∣∣∇Φ−1
(i′,k′)ξ

′
∣∣∣4/3 ψ4

i′,qω
4
j′,qχ

4
i′,k′,qX 4

q,ξ′,l′ ◦ Φi′,k′,qγ̃
2
ξ′∇Φ−1

(i′,k′)ξ
′ ⊗ ξ′

(
∇Φ−T

(i′,k′)

))
∇ΦT

(i,k) ,

(9.8)

where the constant C = c0c1c2 is geometric and bounded independently of q; see (10.5b).

For all ξ ∈ ΞR, we define the coefficient function aξ,i,j,k,⃗l,R by

aξ,i,j,k,⃗l,R = a(ξ),R = δ
1/2
q+n̄Γ

j−1
q ψRi,qω

R
j,qχ

R
i,k,qζq,R,i,k,ξ,⃗l γξ,Γ9

q

(
Rq,i,k

δq+n̄Γ
2j−2
q

)
(9.9)

where γξ,Γ9
q
is defined in Proposition 7.1.1 with the parameter choice K = Γ9

q, and

ψRi,q := ψ3
i,q , ωRj,q := ω3

j,q , χRi,k,q := χ3
i,k,q . (9.10)

In order to show that (9.9) is well-defined, we first recall (8.22b) from Lemma 8.3.3, which

gives that πℓ|suppωj,q
≥ 1/4Γ2j

q δq+n̄. Using this in combination with Corollary 8.3.4, we find

that for all j,

Γq ≤
πℓ|suppωj,q

δq+n̄Γ
2j−2
q

≤ Γ9
q . (9.11)

Furthermore, from (9.8), (8.21), and Corollary 8.2.4, we have that the second term in (9.8) is

pointwise bounded by 2Cδq+n̄Γ
2j−2
q , or upon division by δq+n̄Γ

2j−2
q is bounded above by 2C.
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Finally, from (8.22d), we have that ∇Φ(i,k)Rℓ∇ΦT
(i,k) is pointwise bounded by δq+n̄Γ

2j−3
q , or

upon division by δq+n̄Γ
2j−2
q is pointwise bounded by Γ−1

q . Combining the above arguments,

we find that

∣∣∣∣∣ Rq,i,k

δq+n̄Γ
2j−2
q

− πℓ

δq+n̄Γ
2j−2
q

Id

∣∣∣∣∣ ≤ Γq ,

and so Proposition 7.1.1 may be applied with K = Γ9
q since

Rq,i,k

δq+n̄Γ
2j−2
q

belongs to the ball of

radius Γq around
πℓId

δq+n̄Γ
2j−2
q

, which itself is a multiply of the identity bounded between 1 and

Γ9
q from (9.11).

The coefficient function a(ξ),R is then multiplied by an intermittent pipe bundle∇Φ−1
(i,k)B(ξ),R◦

Φ(i,k), where we have used Proposition 7.1.5 (with λ = λq+n̄ and r = rq), Definition 7.2.6,

and the shorthand notation

B(ξ),R = ρR(ξ)
∑
I

ζI,Rξ WI
(ξ),R (9.12)

to refer to the pipe bundle associated with the region Ω0 = supp ζq,R,i,k,ξ,⃗l ∩ {t = kτqΓ
−i
q }

and the index j. We will use UI
(ξ),R to denote the potential satisfying curlUI

(ξ),R = WI
(ξ),R.

Applying (7.14) from Proposition 7.1.5, we define the principal part of the Reynolds corrector

by

w
(p)
q+1,R =

∑
i,j,k,ξ,⃗l,I

a(ξ),R

(
ρR(ξ)ζ

I,R
ξ

)
◦ Φ(i,k)curl

(
∇ΦT

(i,k)UI
(ξ),R ◦ Φ(i,k)

)
︸ ︷︷ ︸

=:w
(p),I
(ξ),R

. (9.13)

The notation w
(p),I
(ξ),R refers to fixed values of i, j, k, ξ, l⃗, I. We add the divergence corrector

w
(c)
q+1,R =

∑
i,j,k,ξ,⃗l,I

∇
(
a(ξ),R

(
ρR(ξ)ζ

I,R
ξ

)
◦ Φ(i,k)

)
×
(
∇ΦT

(i,k)UI
(ξ),R ◦ Φ(i,k)

)
︸ ︷︷ ︸

=:w
(c),I
(ξ),R

, (9.14)
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so that the mean-zero, divergence-free total Reynolds corrector is given by

wq+1,R =
∑

i,j,k,ξ,⃗l,I

curl
(
a(ξ),R

(
ρR(ξ)ζ

I,R
ξ

)
◦ Φ(i,k)∇ΦT

(i,k)UI
(ξ),R ◦ Φ(i,k)

)
︸ ︷︷ ︸

=:wI
(ξ),R

. (9.15)

9.1.3 Definition of the complete corrector

We shall sometimes want to aggregate pieces of the Reynolds and current velocity correctors

as

wq+1 = wq+1,R + wq+1,φ , w
(p)
q+1 := w

(p)
q+1,R + w

(p)
q+1,φ , w

(c)
q+1 := w

(c)
q+1,R + w

(c)
q+1,φ .

(9.16)

9.2 Dodging for new velocity increment

Definition 9.2.1 (Definition of ŵq+n̄ and uq+1). Let P̃q+n̄,x,t denote a space-time mollifier

which is a product of compactly supported kernels at spatial scale λ−1
q+n̄Γ

−1/2
q+n̄−1 and temporal

scale T−1
q+1. We again assume that both kernels have vanishing moments up to 10Nfin and are

C10Nfin differentiable and define

ŵq+n̄ := P̃q+n̄,x,twq+1 , uq+1 = uq + ŵq+n̄ . (9.17)

We also recall from (5.1) the notations B(Ω, λ−1) and B(Ω, λ−1, τ) for space and space-time

balls, respectively, around a space-time set Ω. Using these notations, we may write that

supp ŵq+n̄ ⊆ B
(
suppwq+1, 1/2λ

−1
q+n̄, 1/2Tq

)
. (9.18)

Now recalling the formula in (7.9) for an intermittent Mikado flow, (9.4), and (9.12), we set

ϱI(ξ),⋄ := ξ ·WI
(ξ),⋄ . (9.19)
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Next, in slight conflict with (5.1), we shall also use the notation

B
(
supp ϱI(ξ),⋄, λ

−1
)
:=
{
x ∈ T3 : ∃y ∈ supp ϱI(ξ),⋄ , |x− y| ≤ λ−1

}
(9.20)

throughout this section, despite the fact that supp ϱI(ξ),⋄ is not a set in space-time, but merely

a set in space. We shall also use the same notation but with ϱI(ξ),⋄ replaced by ρ⋄
ξ . Finally, for

any smooth set Ω ⊆ T3 and any flow map Φ defined in Definition 8.2.3, we use the notation

Ω ◦ Φ := {(y, t) : t ∈ R,Φ(y, t) ∈ Ω} = supp (1Ω ◦ Φ) . (9.21)

In other words, for any smooth set Ω ⊆ T3, Ω ◦ Φ is a space-time set whose characteristic

function is annihilated by Dt,q.

We can now verify Hypotheses 5.4.1–5.4.2, as well as several related useful dodging results.

Lemma 9.2.2 (Dodging and preventing self-intersections for wq+1 and ŵq+n̄). We

construct wq+1 so that the following hold.

(i) Let q+1 ≤ q′ ≤ q+ n̄/2 and fix indices ⋄, i, j, k, ξ, l⃗, which we abbreviate by ((ξ), ⋄), for

a coefficient function a(ξ),⋄ (cf. (9.2), (9.9)). Then

B

(
supp ŵq′ ,

1

2
λ−1
q+1Γ

2
q, 2Tq

)
∩ supp

(
χ̃i,k,qζq,⋄,i,k,ξ,⃗l ρ

⋄
(ξ) ◦ Φ(i,k)

)
= ∅ . (9.22)

(ii) Let q′ satisfy q+1 ≤ q′ ≤ q+ n̄− 1, fix indices ((ξ), ⋄, I), and assume that Φ(i,k) is the

identity at time t(ξ), cf. Definition 8.2.3. Then we have that

B

(
supp ŵq′ ,

1

4
λ−1
q′ Γ

2
q′ , 2Tq

)
∩ supp

(
χ̃i,k,qζq,⋄,i,k,ξ,⃗l

(
ρ⋄
(ξ)ζ

I,⋄
ξ

)
◦ Φ(i,k)

)
∩B

(
supp ϱI(ξ),⋄,

1

2
λ−1
q′ Γ

2
q′

)
◦ Φ(i,k) = ∅ . (9.23)
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As a consequence we have

B

(
supp ŵq′ ,

1

4
λ−1
q′ Γ

2
q′ , 2Tq

)
∩ suppwq+1 = ∅ . (9.24)

(iii) Consider the set of indices {((ξ), ⋄, I)}, whose elements we use to index the correc-

tors constructed in (9.7) and (9.15), and let l, l ∈ {p, c} denote either principal or

divergence corrector parts. Then if (⋄, (ξ), I) ̸= (⋄, (ξ), I), we have that for any l, l,

suppw
(l),I
(ξ),⋄ ∩ suppw

(l),I

(ξ),⋄ = ∅ . (9.25)

(iv) ŵq+n̄ satisfies Hypothesis 5.4.2 with q replaced by q + 1.

Remark 9.2.3 (Verifying Hypothesis 5.4.1). We claim that (9.24) and (9.18) imply

that Hypothesis 5.4.1 holds with q + 1 replacing all instances of q. To check this, we must

show that (5.26) holds for q′, q′′ ≤ q + n̄ and 0 < |q′ − q′′| ≤ n̄ − 1. By induction on q

and the symmetry of q′′ and q′, the only case we must check is the case that q + n̄ = q′′

and 0 < q + n̄ − q′ ≤ n̄ − 1. But it is a simple exercise in set theory to check that for

q + 1 ≤ q′ ≤ q + n̄ − 1, (9.24) is equivalent to supp ŵq′ ∩ B(suppwq+1, 1/4λ
−1
q′ Γ

2
q′ , 2Tq) = ∅.

Then using (9.18) and the inequalities λ−1
q′ Γ

2
q′ ≥ λ−1

q+n̄, b < 2 =⇒ Γq′+1 ≪ Γ2
q′ implies that

(5.26) holds.

Proof of Lemma 9.2.2. We split the proof up into steps, in which we first carry out some

preliminary set-up before verifying item (i), items (ii)–(iii), and finally item (iv).

Step 0: Ordering of cutoff functions and set-up. Consider all coefficient functions

aξ,i,j,k,⃗l,⋄ utilized at stage q + 1, cf. (9.9) and (9.2). Using natural numbers z ∈ N as indices,

we choose an ordering of the tuples (i, j, k, ξ, l⃗, ⋄) such that for any choice of (i, j, k, ξ, l⃗, ⋄)

and (i∗, j∗, k∗, ξ∗, l⃗∗, ⋄∗), we have

i < i∗ =⇒ (i, j, k, ξ, l⃗, ⋄) <ordering (i
∗, j∗, k∗, l⃗∗, ⋄∗) , (9.26)
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where the implied inequality holds for the natural numbers assigned to each tuple in our

chosen ordering. This automatically provides an ordering for the coefficient functions aξ,i,j,k,⃗l,⋄

and associated pipe bundles B(ξ),⋄ ◦ Φ(i,k). We will place pipe bundles inductively according

to this ordering so that all the conclusions in the statement of Lemma 9.2.2 hold. (9.26)

ensures that timescales are decreasing with respect to this ordering and mitigates the fact

that the number of possible overlaps between ψi,qχi,k,q and ψi+1,qχi+1,k′,q could be of order

Γq (see 8.3).1 To lighten the notation, we will abbreviate the newly ordered coefficient and

cutoff functions and associated intermittent pipe bundles (cf. (9.2), (9.3), (9.4), (9.9), (9.10),

and (9.12)) as

az , ψz , ωz , χz , ζz , (B ◦ Φ)z = ρz ◦ Φz

∑
I

(ζzWI
z) ◦ Φz ,

respectively, where z ∈ N corresponds to the ordering. Now for fixed z and az, we will place

ρz and WI
z with two goals in mind. First, we must dodge the velocity increments ŵq′ for

q + 1 ≤ q′ ≤ q + n̄/2 and ŵq′′ for q + n̄/2 + 1 ≤ q′′ ≤ q + n̄ − 1. Second, we must dodge all

pipe bundles (B ◦ Φ)ẑ with coefficient functions aẑ such that ẑ < z in the aforementioned

ordering.

Step 1: Proof of item (i). We will apply Lemma 7.2.2 with the following choices. We

recall that at the time tz at which Φz is the identity, the cutoff function ηz contains a

checkerboard cutoff function ζz which from (8.31b) and (8.34b) is contained in a rectangular

prism of dimensions no larger than 3/4λ−1
q Γ−8

q in the direction of ξz, and 3/4Γ5
q(λq+1)

−1 in the

directions perpendicular to ξz. Thus we set

Ω0 = supp ζz ∩ {t = tz} .

Notice that diam(Ω0) ≤ λ−1
q Γ−8

q , which satisfies (5.27) for q̄′, q̄′′ chosen as q̄′′ = q and q̄′ = q′

1This is not strictly necessary– one can always adust the choice of parameters to accommodate a spare
Γq.
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as in (i) so that q + 1 ≤ q′ = q̄′ ≤ q + n̄/2. Then by applying Hypothesis 5.4.2 at level q

with q̄′ = q′, q̄′′ = q, Ω = Ω0 as defined above, t0 = tz, and Φq̄′′ = Φz, we have that for each

q + 1 ≤ q′ ≤ q + n̄/2, there exists a set L(q′, q,Ω0, tz) such that (5.28) and (5.29) hold. Now

we set

E0 :=

q+n̄/2⋃
q′=q+1

L(q′, q,Ω0, tz) ∩ {t = tz} , CP = CDn̄ .

We now appeal to the conclusion of Lemma 7.2.2 to choose a placement for ρz such that

B
(
suppρz, λ

−1
q+1Γ

2
q

)
∩ E0 = ∅ . (9.27)

An immediate consequence of (9.27), Hypothesis 5.4.2, and (8.11) is that for t such that

|t− tz| ≤ τqΓ
−iz+2
q ,

Dt,q

(
1B(suppρz ,λ

−1
q+1Γ

2
q)◦Φz

1L(q′,q,Ω0,tz)

)
(t, x) ≡ 0 . (9.28)

This in turn implies that in the same range of t,

B
(
suppρz, λ

−1
q+1Γ

2
q

)
◦ Φz(t) ∩ L(q′, q,Ω0, tz) ∩ {t = tz} = ∅ . (9.29)

Next, we claim that (9.29) implies that

B
(
suppρz ◦ Φz ∩ (T3 × {t}), 3/4λ−1

q+1Γ
2
q

)
∩ L(q′, q,Ω0, tz) = ∅ for |t− tz| ≤ τqΓ

−iz+2
q ,

(9.30)

which we now prove. Indeed, this follows from the fact that on the Lipschitz timescale

τqΓ
−iz+2
q , spatial distances can change by at most a multiplicative factor of (1± Γ−1

q ) due to
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(5.34) (see also Lemma 7.1.7, which contains similar assertions). Finally, we claim that

B

 ⋃
|t−tz |≤ 1

2
τqΓ

−iz+2
q

suppρz ◦ Φz ∩ (T3 × {t}), 1
2
λ−1
q+1Γ

2
q, 2Tq


⊆

⋃
|t−tz |≤τqΓ−iz+2

q

B
(
suppρz ◦ Φz ∩ (T3 × {t}), 3/4λ−1

q+1Γ
2
q

)
. (9.31)

Assuming that (9.31) holds, we have then from (9.30), (8.9), and Hypothesis 5.4.2 that

B
(
supp (χ̃zζzρz ◦ Φz) , 1/2λ

−1
q+1Γ

2
q, 2Tq

)
∩ supp ŵq′ = ∅ ,

which is equivalent to (9.22) after using the same sort of set-theoretic reasoning as in Re-

mark 9.2.3. To prove (9.31), suppose that (x̃, t̃) belongs to the set on the left-hand side of

the inclusion in (9.31). Then by definition, there exists (t0, x0) such that |t̃ − t0| ≤ 2Tq,

|x̃− x0| ≤ 1/2λ−1
q+1Γ

2
q, |t0 − tz| ≤ 1/2τqΓ

−iz+2
q , and (x0, t0) ∈ suppρz ◦ Φz ∩ (T3 × {t0}). Then

from (5.10) and (4.15), we have that |t̃ − tz| ≤ τqΓ
−iz+2
q . So we need to find x′ such that

(x′, t̃) ∈ suppρz ◦ Φz ∩ (T3 × {t̃}) and |x′ − x̃| < 3/4λ−1
q+1Γ

2
q. Now from (8.11), (5.35b),

Corollary 8.2.4, and (4.15), we have that

∥∥Φz(t̃, ·)− Φz(t0, ·)
∥∥
L∞(T3)

≲ Tq ∥∂tΦz∥L∞(T3×(tz−τqΓ−iz+2
q ,tz+τqΓ

−iz+2
q ))

≲ Tq ∥ûq∥∞ ∥∇Φz∥L∞(T3×(tz−τqΓ−iz+2
q ,tz+τqΓ

−iz+2
q ))

≲ Γ−1
q λ−1

q+1 .

Therefore, although it may not be the case that (x0, t̃) ∈ suppρz ◦ Φz ∩ (T3 × {t̃}), there

must exist x′ such that |x′ − x0| ≤ Γ
−1/2
q λ−1

q+1 and (x′, t̃) ∈ suppρz ◦ Φz ∩ (T3 × {t̃}).2 Since

|x′ − x̃| ≤ |x′ − x0| + |x0 − x̃| ≤ Γ
−1/2
q λ−1

q+1 + 1/2λq+1Γ
2
q < 3/4λ−1

q+1Γ
2
q, we have thus concluded

the proof of (9.31).

2We have that (x0, t0) ∈ suppρz◦Φz if and only if Φz(x0, t0) ∈ suppρz. Using the bound on the difference
between Φz(t̃) and Φz(t0), we may say that although Φz(x0, t̃) is not necessarily in the support of ρz, it is
very close.
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Step 2: Proofs of items (ii) and (iii). In order to proceed with this portion of the

proof, we assume inductively that a version of Hypothesis 5.4.2 holds for the portion of

wq+1 already constructed. More precisely, we extend the ordering on z ∈ N from Step 0 to

ordered pairs (z, I) ∈ N2 such that ẑ < z =⇒ (ẑ, Î) < (z, I) for any Î , I (that is, we fix z

and finish placing an entire bundle for all its various values of I before moving to different

ẑ). We thus assume the following inductive hypothesis.

Hypothesis 9.2.4 (Density of already placed pipe bundles in wq+1). There exists a

geometric constant Cpipe such that the following holds. Fix z and set

sẑ,Î(t) := supp
[
χî,k̂,qζ(ξ̂)

(
ρ⋄
(ξ̂)
ζ Î,⋄
ξ̂

)
◦ Φ(̂i,k̂)

]
∩B

(
ϱÎ
(ξ̂),⋄,

1

2
λ−1
q+n̄Γ

2
q

)
◦ Φ(̂i,k̂) ∩ (T3 × {t}) ,

wz,I :=
∑

(ẑ,Î)<(z,I)

aẑ(ρẑζ
Î
ẑWÎ

ẑ) ◦ ΦÎ
ẑ , Sz,I(t) :=

⋃
(ẑ,Î)<(z,I)

sẑ,Î(t) .

Let iz be the value of i corresponding to z and az, and let t0 be any time and Ω ⊂ T3 be a

convex set with diameter at most
(
λq+n̄/2Γq

)−1
such that Ω × {t0} ∩ suppψiz ,q ̸= ∅. Let Φ

solve Dt,qΦ = 0 with initial data Φ|t=t0 = Id. We set Ω(t) = Φ(t)−1(Ω) and

NΩ,z,I = #
{
(ẑ, Î) < (z, I) : ∃t ∈ [t0 − τqΓ

−iz−2
q , t0 + τqΓ

−iz−2
q ] with sẑ,Î(t) ∩ Ω(t) ̸= ∅

}
.

Then there exists an Ω-dependent set L(z,I) ⊆ Ω consisting of at most NΩ,z,ICpipe segments of

deformed pipe segments with thickness λ−1
q+n̄ such that for all t ∈ [t0−τqΓ−iz−2

q , t0+τqΓ
−iz−2
q ],

[suppwz,I(·, t) ∩ Ω(t)] ⊆ [Sz,I(t) ∩ Ω(t)] ⊆
[
Φ(t)−1(L(z,I)) ∩ Ω(t)

]
. (9.32)

One should understand this hypothesis as asserting that at all steps in the construction

of wq+1, there is no more than a finite number of pipe segments of thickness λ−1
q+n̄ in any set of

diameter proportional to the size of a periodic cell. Indeed, NΩ,z,I is bounded independently

of z, I, and hence q. From the finite maximal cardinality of the indices (̂i, ĵ, ξ̂, ⋄̂) and
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decreasing time scale with respect to the ordering (9.26), the indices (̂i, ĵ, k̂, ξ̂, ⋄̂) takes a

finite number, independent of z, I, and q. Fix these indices and we now count the remaining

indices (̂⃗l, Î). Since Φ(i,k) and Φ are advected by the same velocity field ûq, recalling Definition

8.35, it is enough to count the indices to have sẑ,Î(t) ∩ Ω(t) ̸= ∅ at some fixed time t̄ ∈

suppχî,k̂,q∩[t0−τqΓ−iz−2
q , t0+τqΓ

−iz−2
q ]. From the diameter bound on Ω and Lemma 7.1.7, we

have diam(Ω(t̄)) ≤ 2(λq+n̄/2Γq)
−1, while the spatial derivative costs of ζ(ξ̂) and ζ Î,⋄̂

ξ̂
◦Φ(̂i,k̂) are

λq+1Γ
−5
q and λq+n̄/2, respectively, from (8.37) and (8.40). Since the inverse of the derivative

costs are much greater than 2(λq+n̄/2Γq)
−1, only for finite number of indices

̂⃗
l and Î, the

intersection sẑ,Î(t̄) ∩ Ω(t̄) ̸= ∅ occurs, where the number is independent of z, I, and q.

Therefore, we can set an upper bound of NΩ,z,I as a geometric constant C. Lastly, we note

that Hypothesis 9.2.4 is vacuously true in the base case where (z, I) is the smallest element

in our ordering.

We will now justify the application of Lemma 7.2.3. We recall from (9.2) and (9.9)

that at the time tz at which Φz is the identity, azρzζ
I
z contains both a strongly anisotropic

checkerboard cutoff function ζIz and a mildly anistropic checkerboard cutoff function ζz.

The support of the product of these cutoff functions is contained in a rectangular prism of

dimensions no larger than 3/4λ−1
q Γ−8

q in the direction of ξz from (8.34b), and λ−1
q+⌊n̄/2⌋ in the

directions perpendicular to ξz from Definition 7.2.4. Thus we can contain the support of

azρzζ
I
z at time tz inside a prism of dimensions 3/4λ−1

q Γ−8
q and λ−1

q+⌊n̄/2⌋, and so we set

Ω1 = supp ζzζ
I
z ∩ {t = tz} .

By applying Hypothesis 5.4.2 at level q with q̄′ = q′′ for each q+ n̄/2 ≤ q′′ ≤ q + n̄−1, q̄′′ = q,

Ω′ ⊂ Ω1 any convex subset of diameter at most (λq′′−n̄+n̄/2Γq′′−n̄)
−1 (which satisfies (5.27)),

t0 = tz, and Φq̄′′ as defined in Hypothesis 5.4.2, we have that there exists a set L(q′′, q,Ω′, tz)

such that (5.28) and (5.29) hold. We therefore see that the density condition of Lemma 7.2.3
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is verified with

CP = CpipeC + n̄CD

from Hypothesis 5.4.2, which contributes the second term counting the number of old pipe

segments belonging to ŵq′′ for q+ n̄/2+1 ≤ q′′ ≤ q+n̄−1, and our inductive Hypothesis 9.2.4,

which contributes the first term counting the number of current pipe segments belong to wz,I .

We define Eq′′ (including the endpoint case q′′ = q + n̄ which contains already placed pipes

from wz,I) as in Lemma 7.2.3 so that it contains the support of ŵq′′ inside Ω1 if q′′ < q + n̄,

and wz,I inside Ω1 in the endpoint case.

Now appealing to the conclusion of Lemma 7.2.3, we may choose the support of WI
z =

(W ◦ Φ)Iz|t=tz so that for q + n̄/2 + 1 ≤ q′′ ≤ q + n̄− 1,

suppx (W ◦ Φ)Iz|t=tz ∩B
(
supp ŵq′′(·, tz), λq′′Γ2

q′′

)
∩ Ω = ∅ ,

suppx (W ◦ Φ)Iz|t=tz ∩B
(
Sz,I(tz), λ

−1
q+n̄Γ

2
q+n̄

)
∩ Ω = ∅ .

Reasoning as in the final portion of Step 1 and assuming for the moment that Hypoth-

esis 9.2.4 can be propagated throughout the construction of wq+1, we have that the first

assertion implies (9.23) and therefore also the weaker assertion (9.24). In addition, the

second assertion verifies (9.25) at t = tz, and (9.25) at all times follows from a similar

type of argument (in fact simpler since no expansion by 2Tq in time is required), but with

Hypothesis 9.2.4 replacing Hypothesis 5.4.2.

We now verify that Hypothesis 9.2.4 has been preserved by the placement of WI
z. Note

that we have placed
(
λq+n̄/2Γq

)−1
-periodic straight pipes at time t = tz and have composed

them with a diffeomorphism Φz. Furthermore, this diffeomorphism and the vector field ûq

obey the conditions and conclusions of Lemma 7.1.7 on the support of azρzζ
I
z. Thus we have

that there exists Cpipe such that for any convex set Ω′ of diameter at most
(
λq+n̄/2Γq

)−1
and
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for any time t,

supp (W ◦ Φ)Iz(·, t) ∩ Ω′(t) ∩ supp ((az(ρzζ
I
z) ◦ Φz)(·, t)

is contained in at most Cpipe deformed pipe segments. Now fix a convex set Ω and a time t0

as in Hypothesis 9.2.4, and let (z, I)+ denote the next element after (z, I) in our ordering.

Then if Ω(t) has empty intersection with the spatial support of az(ρzζ
I
z) ◦Φz for all times t,

we define L(z,I)+ = L(z,I). If not, we set

L(z,I)+ = L(z,I) ∪ supp x(W ◦ Φ)Iz(t0) ∩ Ω .

Then to see that we have verified Hypothesis 9.2.4, in particular (9.32), we use that all flow

maps Φî,k̂ and Φ(i,k) are advected by the same velocity field ûq and the observation above

concerning the support of (W ◦ Φ)Iz.

Step 3: Proof of item (iv), or Hypothesis 5.4.2 for q + 1. In order to verify Hy-

pothesis 5.4.2 at level q+1, we must consider q̄′ = q+n̄ and any q̄′′ such that q+1 ≤ q̄′′ < q+n̄,

any convex set Ω of diameter3

d(q + n̄, q̄′′) = min
[
(λq̄′′Γ

7
q̄′′)

−1, (λq+n̄/2Γq)
−1
]
,

any time t0, and any i′′ such that Ω×{t0}∩suppψi′′,q̄′′ ̸= ∅. Given these choices and the flow

map Φq̄′′ as defined in Hypothesis 5.4.2, we must define L(q + n̄, q̄′′,Ω, t0) satisfying (5.28)

and (5.29). We divide the proof into substeps, in which we first count the number of cutoff

functions which can overlap with Ω(t), before defining L(q + n̄, q̄′′,Ω, t0) and verifying (5.28)

and (5.29) in the second substep.

3Hypothesis 5.4.2 in fact allows for sets of smaller diameter, for which the results follow trivially by
embedding a smaller set into a set of the largest possible diameter.
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Step 3a: Counting overlap. Let us pick any fixed but arbitrary x ∈ Ω and set

Ω̃ = B
(
x, 3d(q + n̄, q̄′′) + 3λ−1

q+n̄

)
. (9.33)

Note that Ω̃ contains a ball of radius 3λ−1
q+n̄ around Ω. We claim that the cardinality of the

set of indices (ξ, i, j, k, l⃗, ⋄, I) such that

supp
[
χi,k,qζq,⋄,i,k,ξ,⃗l

(
ρ⋄
(ξ)ζ

I,⋄
ξ

)
◦ Φ(i,k)

]
∩B

(
ϱI(ξ),⋄, 3λ

−1
q+n̄

)
◦ Φ(i,k)

∩ Ω̃ ◦ Φq̄′′ ∩
[
T3 × {|t− t0| ≤ 2τq̄′′Γ

−i′′+2
q̄′′ }

]
̸= ∅

(9.34)

is bounded by a finite, q-independent constant Ccounting. We first count the possible values

for i and k. From the diameter bound on Ω, (5.11), Lemma 8.2.1, and Corollary 8.2.2, we

have that Ω̃ ◦Φq̄′′ ⊆ suppψi′′±,q̄′′ restricted to T3×{|t− t0| ≤ 2τq̄′′Γ
−i′′+2
q̄′′ }. From eqn. (5.14),

we have that if t is in the same range as above, (x, t) ∈ Ω̃ ◦ Φq̄′′ , and ψi,q(x, t) ̸= 0, then it

must be the case that 2τq̄′′Γ
−i′′+2
q̄′′ ≤ τqΓ

−i−7
q . Thus if i is such that ψi,q(x, t) ̸= 0 at some

(x, t) ∈ Ω̃ ◦ Φq̄′′ for t in the same range as above, from (8.2) there exist at most two values

of k such that χi,k,q satisfies

supp (ψi,qχi,k,q) ∩ Ω̃ ◦ Φq̄′′ ∩
[
T3 × {|t− t0| ≤ 2τq̄′′Γ

−i′′+2
q̄′′ }

]
̸= ∅

Next, recall that we have bounds imax and jmax for the number of values of i and j, and ξ

and ⋄ take a finite number of q-independent values.

In order to conclude the proof of the claim concerning intersections with (9.34), it only

remains to count l⃗ and I for fixed (ξ, i, j, k, ⋄). Since i and k are fixed, we can drop the

time cutoff χi,k,q and consider in the intersection in the time interval [t0 − 2τq̄′′Γ
−i′′+2
q̄′′ , t0 +
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2τq̄′′Γ
−i′′+2
q̄′′ ] ∩ suppχi,k,q. We then observe that from (8.9) and (9.23),

Dt,q̄′′1{ζi(ρiζi)◦Φi∩B(ϱi,3λ−1
q+n̄)◦Φi}

= Dt,q1{ζi(ρiζi)◦Φi∩B(ϱi,3λ−1
q+n̄)◦Φi} + (Dt,q̄′′ −Dt,q)1{ζi(ρiζi)◦Φi∩B(ϱi,3λ−1

q+n̄)◦Φi} = 0 .

(9.35)

on T3 × {|t − t0| ≤ 2τq̄′′Γ
−i′′+2
q̄′′ }. Here, recalling Definition 8.4.1, the first term vanishes

since Dt,qΦi ≡ 0, while the second term vanishes due to dodging. It follows that the set(
supp

(
Xq,ξ,⃗l,⋄ρ

⋄
(ξ)ζ

I,⋄
ξ

)
∩B

(
ϱI(ξ),⋄, 3λ

−1
q+n̄

))
◦Φ(i,k) remains the same even though the defor-

mation is replaced by the one induced by the vector field ûq̄′′ . Therefore, applying the same

argument to get the upper bound of NΩ,z,I in Step 2, we can count the remaining indices

at some fixed time and conclude the proof the claim concerning the cardinality of the set of

indices satisfying (9.34).

We define

IΩ,t0 =
{
(ξ, i, j, k, l⃗, ⋄, I) such that (9.34) holds

}
and note that its cardinality is bounded by the q-independent constant Ccounting. In the

remainder of the proof we shall abbreviate a tuple of indices (ξ, i, j, k, l⃗, ⋄, I) with i and use

i as a subscript/superscript on any cutoff functions or flow maps which are part of wq+1.

Step 3b: Defining L and checking (5.28) and (5.29). We now define

L(q + n̄, q̄′′,Ω, t0) = Ω̃ ◦ Φq̄′′

⋂⋃
IΩ,t0

supp [ζi (ρiζ i) ◦ Φi] ∩B
(
ϱi, 3λ

−1
q+n̄

)
◦ Φi

 .

The first claim easily follows from (9.35) and Dt,q̄′′Φq̄′′ = 0.

In order to prove the second claim in (5.28), we first note that by the definition of IΩ,t0 ,

L(q + n̄, q̄′′,Ω, t0) contains suppwq+1 ∩ Ω ◦ Φq̄′′ . Then due to the fact that in the definition

of L we have enlarged the support of each ϱi, the fact that Ω̃(t) := Φq̄′′(t)
−1(Ω̃) contains a

ball of radius 2λ−1
q+n̄ around Ω(t) for all |t − t0| ≤ τq̄′′Γ

−i′′+2
q̄′′ , and the fact that (9.34) has
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doubled the timescale over which overlap is being considered, we have that the second claim

in (5.28) follows from Definition 9.2.1.

Finally, we must check (5.29). Note that at time t0, L is defined using intermittent pipe

bundles which have been deformed on the Lipschitz timescale 2τq̄′′Γ
−i′′+2
q̄′′ ≤ τqΓ

−i−7
q . Note

furthermore that due to Step 3a, we are only considering Ccounting many such bundles, and

that due to the fact that the diameter of Ω̃(t) is bounded on the Lipschitz timescale by

a constant times the size λ−1
q+n̄/2Γ

−1
q of a periodic cell, each bundle may only contribute a

q-independent number Cξ of deformed pipe segments. We set CD = CξCcounting, which we

emphasize is independent of q, concluding the proof of (5.29).

9.3 Estimates for wq+1

Lemma 9.3.1 (Coefficient function estimates). For N,N ′, N ′′,M with N ′′, N ′ ∈ {0, 1}

and N,M ≤ Nfin/3, we have the following estimates.

∥∥∥DN−N ′′
DM
t,q(ξ

ℓAhℓ ∂h)
N ′
DN ′′

aξ,i,j,k,⃗l,φ

∥∥∥
r

≲
∣∣∣supp ηi,j,k,ξ,⃗l,φ∣∣∣1/r δ1/2q+n̄r−1/3

q Γj−1
q

(
Γ−5
q λq+1

)N (
Γ5
qΛq
)N ′

M
(
M,Nind,t, τ

−1
q Γi+4

q ,T−1
q

)
,

(9.36a)∥∥∥DN−N ′′
DM
t,q(ξ

ℓAhℓ ∂h)
N ′
DN ′′

(
aξ,i,j,k,⃗l,φ

(
ρφ(ξ)ζ

I,φ
ξ

)
◦ Φ(i,k)

)∥∥∥
r

≲
∣∣∣supp (ηi,j,k,ξ,⃗l,φζI,φξ )∣∣∣1/r δ1/2q+n̄r−1/3

q Γj+1
q

(
λq+⌊n̄/2⌋

)N (
Γ5
qΛq
)N ′

M
(
M,Nind,t, τ

−1
q Γi+4

q ,T−1
q

)
,

(9.36b)∥∥∥DN−N ′′
DM
t,q(ξ

ℓAhℓ ∂h)
N ′
DN ′′

aξ,i,j,k,⃗l,R

∥∥∥
r

≲
∣∣∣supp ηi,j,k,ξ,⃗l,R∣∣∣1/r δ1/2q+n̄Γj+4

q

(
Γ−5
q λq+1

)N (
Γ13
q Λq

)N ′
M
(
M,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
,

(9.36c)∥∥∥DN−N ′′
DM
t,q(ξ

ℓAhℓ ∂h)
N ′
DN ′′

(
aξ,i,j,k,⃗l,R

(
ρR(ξ)ζ

I,R
ξ

)
◦ Φ(i,k)

)∥∥∥
r

≲
∣∣∣supp (ηi,j,k,ξ,⃗l,RζI,Rξ )∣∣∣1/r δ1/2q+n̄Γj+7

q

(
λq+⌊n̄/2⌋

)N (
Γ13
q Λq

)N ′
M
(
M,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
.

(9.36d)
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In the case that r = ∞, the above estimates give that

∥∥∥DN−N ′′
DM
t,q(ξ

ℓAhℓ ∂h)
N ′
DN ′′

aξ,i,j,k,⃗l,R

∥∥∥
∞

≲ Γ
C∞
2

+7
q

(
Γ−5
q λq+1

)N
×
(
Γ13
q Λq

)N ′
M
(
M,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
.

(9.37a)∥∥∥DN−N ′′
DM
t,q(ξ

ℓAhℓ ∂h)
N ′
DN ′′

aξ,i,j,k,⃗l,φ

∥∥∥
∞

≲ Γ
C∞
2

+2
q r−

1/3
q

(
Γ−5
q λq+1

)N
×
(
Γ8
qΛq
)N ′

M
(
M,Nind,t, τ

−1
q Γi+4

q ,T−1
q

)
,

(9.37b)

with analogous estimates (incorporating a loss of Γ3
q for ⋄ = R and Γ2

q for ⋄ = φ) holding for

the product a(ξ),⋄ζ
I,⋄
ξ ρ⋄

(ξ). Finally, we have the pointwise estimates

∣∣∣DN−N ′′
DM
t,q(ξ

ℓAhℓ ∂h)
N ′
DN ′′

aξ,i,j,k,⃗l,R

∣∣∣ ≲ Γ12
q π

1/2
ℓ

(
Γ−5
q λq+1

)N (
Γ13
q Λq

)N ′
M
(
M,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
(9.38a)∣∣∣DN−N ′′

DM
t,q(ξ

ℓAhℓ ∂h)
N ′
DN ′′

aξ,i,j,k,⃗l,φ

∣∣∣ ≲ Γ12
q π

1/2
ℓ r−

1/3
q

(
Γ−5
q λq+1

)N (
Γ5
qΛq
)N ′

M
(
M,Nind,t, τ

−1
q Γi+4

q ,T−1
q

)
.

(9.38b)

Proof of Lemma 9.3.1. We first prove (9.36a) and (9.36b), since a portion of a(ξ),φ appears

in the definition of the Reynolds corrector in (9.8). We further simplify by computing (9.36a)

for the case r = ∞ first. Recalling estimate (8.24c), we have that for all N,M ≤ Nfin/2,

∥∥DNDM
t,qφℓ

∥∥
L∞(suppψi,qωj,q)

≲ δ
3/2
q+n̄r

−1
q Γ3j−7

q (ΓqΛq)
N M

(
M,Nind,t, τ

−1
q Γiq,T

−1
q

)
.

Thus from definition (9.1), the Leibniz rule, and Corollary 8.2.4, and the fact that supp ηi,j,k,ξ,⃗l,φ

is contained in suppψi,qωj,qχi,k,q we have that for N,M ≤ Nfin/2,

∥∥DNDM
t,qφq,i,k

∥∥
L∞(supp η

i,j,k,ξ,⃗l,φ
)
≲ δ

3/2
q+n̄r

−1
q Γ3j−7

q (ΓqΛq)
N M

(
M,Nind,t, τ

−1
q Γiq,T

−1
q

)
. (9.39)

The above estimates allow us to apply [7, Lemma A.5] with N ′ = M ′ = Nfin/2, ψ = γ̃ξ,,
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Γψ = 1, v = ûq, Dt = Dt,q, h(x, t) = φq,i,k(x, t), Ch = δ
3/2
q+n̄r

−1
q Γ3j−6

q = Γ2, λ = λ̃ = ΛqΓq,

µ = τ−1
q Γiq, µ̃ = T−1

q , and Nt = Nind,t. We obtain that for all N,M ≤ 3Nfin/4,

∥∥∥∥∥DNDM
t,qγ̃ξ

(
φq,i,k

δ
3/2
q+n̄r

−1
q Γ3j−3

q

)∥∥∥∥∥
L∞(supp η

i,j,k,ξ,⃗l,φ
)

≲ (ΓqΛq)
N M

(
M,Nind,t, τ

−1
q Γiq,T

−1
q

)
. (9.40)

Finally, from Corollary 8.2.4 and an application of the mixed derivative Fa’a di Bruno formula

from [7, Lemma A.5] with ψ(·) : B1/2(ξ) → R defined by ψ(·) = | · |−4/3, Γψ = 1, v = ûq,

Γ = 1, λ = λ̃ = Λq, µ = τ−1
q Γiq, µ̃ = Γ−1

q T−1
q , Nx = 0, Nt = Nind,t, h = ∇Φ−1

(i,k)ξ, and Ch = 1,

we have that for all N +M ≤ 3Nfin/2,

∥∥∥∥DNDM
t,q

(∣∣∣∇Φ−1
(i,k)ξ

∣∣∣−4/3
)∥∥∥∥

L∞(supp (ψφ
i,qχ

φ
i,k,q))

≲ ΛNq M
(
M,Nind,t,Γ

i
qτ

−1
q ,T−1

q Γ−1
q

)
.

From the above three bounds, definition (9.2), the Leibniz rule, estimate (5.37) at level q,

(8.4), (8.28), and (8.37), we obtain that for N ′ = 0, 1 and N,M ≤ Nfin/2,

∥∥DNDM
t,q(ξ

ℓAjℓ∂j)
N ′
aξ,i,j,k,⃗l,φ

∥∥
∞ ≲ δ

1/2
q+n̄Γ

j−1
q r−

1/3
q (Γ−5

q λq+1)
N(Γ5

qΛq)
N ′M

(
M,Nind,t, τ

−1
q Γi+4

q ,T−1
q

)
.

(9.41)

Using (8.27), we obtain (9.37b). When r ̸= ∞, we use ∥f∥Lr ≤ ∥f∥L∞ |{supp f}|1/r and the

demonstrated bound for r = ∞ to obtain (9.36a) for the full range of r and for N ′′ = 0. The

estimate in (9.36b) for N ′′ = 0 follows in the same way using (7.23) for p = ∞ and (8.40).

Similar estimates for N ′′ = 1 in both cases are nearly identical, and we omit the details

We now compute (9.36c) for the case r = ∞, from which the remaining bounds in (9.36d)

and (9.37a) will follow as before. Recalling estimates (8.24a) and (8.24b), we have that for

all N,M ≤ Nfin/2,

∥∥DNDM
t,qRℓ

∥∥
L∞(supp η

i,j,k,ξ,⃗l,R
)
+
∥∥DNDM

t,qπℓ
∥∥
L∞(supp η

i,j,k,ξ,⃗l,R
)

≲ δq+n̄Γ
2j+6
q (ΓqΛq)

N M
(
M,Nind,t, τ

−1
q Γiq,T

−1
q

)
.

137



From (5.37) and (5.8) at level q, (8.21), (8.28), (8.4), (8.34a), (8.2.4), and (9.40), we find

that∥∥∥∥∥∥DNDM
t,q

∑
i′,j′,k′,ξ′ ,⃗l′

δq+n̄Γ
2j′−4
q C

|∇Φi′,k′ξ′|
4/3
ψ4
i′,qω

4
j′,qχ

4
i′,k′,qX 4

q,ξ′,l′ ◦ Φi′,k′,qγ̃
2
ξ∇Φ−1

(i′,k′)ξ
′ ⊗ ξ′∇Φ−T

(i′,k′)

∥∥∥∥∥∥
L∞(supp η

i,j,k,ξ,⃗l,R
)

≲ δq+n̄Γ
2j−4
q

(
Γ5
qΛq
)N M

(
M,Nind,t, τ

−1
q Γi+5

q ,T−1
q

)
.

Thus from the Leibniz rule and definition (9.8), we find that for N,M ≤ Nfin/2,

∥∥DNDM
t,qRq,i,k

∥∥
L∞(supp η

i,j,k,ξ,⃗l,R
)
≲ δq+n̄Γ

2j+6
q

(
Γ5
qΛq
)N M

(
M,Nind,t, τ

−1
q Γi+5

q ,T−1
q

)
; (9.42)

the loss of Γq in the sharp material derivative cost comes from the fact that the sum includes

ψi′,q and is estimated on the supported of ψi,q. The above estimates allow us to apply [7,

Lemma A.5] with N ′ = M ′ = Nfin/2, ψ = Γ−5
q γξ,Γ9

q
as in (7.5),4 Γψ = 1, v = ûq, Dt = Dt,q,

h(x, t) = Rq,i,k(x, t), Ch = δq+n̄Γ
2j+6
q , Γ2 = δq+n̄Γ

2j−2
q , λ = λ̃ = ΛqΓ

5
q, µ = τ−1

q Γi+5
q , µ̃ = T−1

q ,

and Nt = Nind,t. We obtain that for all N,M ≤ Nfin/2,

∥∥∥∥∥DNDM
t,qγξ,Γ9

q

(
Rq,i,k

δq+n̄Γ
2j−2
q

)∥∥∥∥∥
L∞(supp η

i,j,k,ξ,⃗l,R
)

≲ Γ5
q

(
Γ13
q Λq

)N M
(
M,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
.

From the above bound, definition (9.9), the Leibniz rule, estimate (5.37) at level q, (8.13b),

(8.4), (8.28), and (8.37), we obtain that for N ′ = 0, 1 and N,M ≤ Nfin/2,

∥∥DNDM
t,q(ξ

ℓAjℓ∂j)
N ′
aξ,i,j,k,⃗l,R

∥∥
L∞ ≲ δ

1/2
q+n̄Γ

j+4
q (Γ−5

q λq+1)
N(Γ13

q Λq)
N ′M

(
M,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
.

Using (8.27), we obtain (9.37a) forN ′′ = 0. When r ̸= ∞, we use ∥f∥Lr ≤ ∥f∥L∞ |{supp f}|1/r

and the demonstrated bound for r = ∞ to obtain (9.36c) for the full range of r and N ′′ = 0.

The estimate in (9.36d) follows in the same way using (7.23) for p = ∞ and (8.40) and the

4Since γξ,Γ9
q
and all its derivatives are bounded by Γ5

q from (7.3), we first rescale by Γ−5
q on the outside

and then apply the Faa di Bruno lemma, which requires ψ to be bounded in between 0 and 1. Rescaling
back then produces the desired bound.
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fact that ζI,Rξ ≤ 1. Estimates for N ′′ = 1 are again nearly identical, and we omit further

details.

Finally, we prove the pointwise estimates. Recalling that the left-hand side of (9.41) is

supported inside the support of ωj,q and using (8.21) and (8.22c) proves the claim for ⋄ = φ.

Arguing analogously for ⋄ = R concludes the proof.

Corollary 9.3.2 (Full velocity increment estimates). For N,M ≤ Nfin/4, we have the

estimates

∥∥∥DNDM
t,qw

(p),I
(ξ),⋄

∥∥∥
Lr

≲
∣∣∣supp (ηi,j,k,ξ,⃗l,⋄ζI,⋄ξ )∣∣∣1/r δ1/2q+n̄Γj+7

q r
2
r
−1

q λNq+n̄M
(
M,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
(9.43a)∥∥∥DNDM

t,qw
(p),I
(ξ),⋄

∥∥∥
L∞

≲ Γ
C∞
2

+10
q r−1

q λNq+n̄M
(
M,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
. (9.43b)

Also, for N,M ≤ Nfin/4, we have that

∥∥∥DNDM
t,qw

(c),I
(ξ),⋄

∥∥∥
Lr

≲ rq

∣∣∣supp (ηi,j,k,ξ,⃗l,⋄ζI,⋄ξ )∣∣∣1/r δ1/2q+n̄Γj+7
q r

2
r
−1

q λNq+n̄M
(
M,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
(9.44a)∥∥∥DNDM

t,qw
(c),I
(ξ),⋄

∥∥∥
L∞

≲ Γ
C∞
2

+10
q λNq+n̄M

(
M,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
. (9.44b)

Proof of Corollary 9.3.2. Recalling the definition of w
(p),I
(ξ),⋄ from (9.5) and (9.13), we shall

prove (9.43a) by applying Lemma A.1.3 with

N∗ =M∗ = Nfin/4 , f = a(ξ),⋄

(
ρ⋄
(ξ)ζ

I,⋄
ξ

)
◦ Φ(i,k)∇Φ−1

(i,k) , Φ = Φ(i,k) ,

λ = λq+⌊n̄/2⌋ , τ−1 = τ−1
q Γi+13

q , T = TqΓ
−8
q , Cf,R =

∣∣∣supp η(ξ),RζI,Rξ ∣∣∣1/r δ1/2q+n̄Γj+7
q

Cf,φ =
∣∣∣supp η(ξ),φζI,φξ ∣∣∣1/r δ1/2q+1r

−1/3
q Γj+7

q , v = ûq , φ = WI
(ξ),⋄ , µ = λq+⌊n̄/2⌋Γq ,

Υ = Λ = λq+n̄ , Cϱ,R = r
2
r
−1

q , Cϱ,φ = r
2
r
− 2

3
q , Nt = Nind,t .
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From (9.36), Corollary 8.2.4, and (8.40), we have that for N,M ≤ Nfin/4,

∥∥∥DNDM
t,q

(
a(ξ),⋄

(
ρ⋄
(ξ)ζ

I,⋄
ξ

)
◦ Φ(i,k)

)∥∥∥
r

≲
∣∣∣supp η(ξ),⋄ζI,⋄ξ ∣∣∣1/r δ1/2q+1Γ

j+7
q λNq+⌊n̄/2⌋M

(
M,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
(9.45)∥∥DNDM

t,q(DΦ(i,k))
−1
∥∥
L∞(supp (ψi,qχ̃i,k,q))

≤ ΛNq M
(
M,Nind,t,Γ

i
qτ

−1
q ,T−1

q Γ−1
q

)
, (9.46)∥∥DNΦ(i,k)

∥∥
L∞(supp (ψi,qχ̃i,k,q))

+
∥∥∥DNΦ−1

(i,k)

∥∥∥
L∞(supp (ψi,qχ̃i,k,q))

≲ Γ−1
q ΛN−1

q , (9.47)

showing that (A.12), (A.13), and (A.14) are satisfied. From Proposition 7.1.5 and 7.1.6,

we have that from WI
(ξ),⋄ is periodic to scale λq+⌊n̄/2⌋Γq, in addition to the estimates (7.12)

and (7.17), and so (A.15) is satisfied for ⋄ = R,φ. Next, from (4.21) and (4.24a), the

assumptions (A.16) and (A.17) are satisfied. We may thus apply Lemma A.1.3 to obtain

that for N,M ≤ Nfin/4, (9.43a) is satisfied. Applying (8.27) then gives (9.43b).

The argument for the corrector is similar, save for the fact thatDt,q will land on∇a(ξ), and

so we require an extra commutator estimate from Lemma A.2.3, specifically Remark A.2.4.

We omit the details of this commutator estimates and refer the reader to [7, Corollary 8.2].

However, we note that the gain in amplitude comes from the quotient of a spatial derivative

cost of λq+⌊n̄/2⌋ on the low-frequency function, and a gain of λq+n̄ from (7.12) or (7.17). Using

the definition of rq gives a net gain of rqΓ
−1
q , concluding the proof.

9.4 Velocity increment potential

In this section, we define a potential for wq+1 along with an error term, construct its pressure

increment and the associated current errors, and investigate their properties.

Lemma 9.4.1 (Velocity increment potential). For a given w
(l)
q+1, l = p, c, as in (9.16),

there exists a tensor υ
(l)
q+1 and an error e

(l)
q+1 such that the following hold.

(i) Let d be as in (xvii) of section 4.1. Then w
(l)
q+1 can be written in terms of υ

(l)
q+1 and e

(l)
q+1
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as

w
(p)
q+1 = divdυ

(p)
q+1 + e

(p)
q+1

w
(c)
q+1 = divd(rqΓ

−1
q υ

(c)
q+1) + rqΓ

−1
q e

(c)
q+1 ,

(9.48)

or equivalently notated component-wise as (w
(p)
q+1)

• = ∂i1 . . . ∂idυ
(p,•,i1,...,id)
q+1 + e•q+1.

(ii) υ
(l)
q+1 and e

(l)
q+1 have the support property5

supp (υ
(l)
q+1), supp (e

(l)
q+1)

⊆
⋃

ξ,i,j,k,⃗l,I,⋄

supp
(
χi,k,qζq,⋄,i,k,ξ,⃗l

(
ρ⋄
(ξ)ζ

I,⋄
ξ

)
◦ Φ(i,k)

)
∩B

(
supp ϱI(ξ),⋄, 2λ

−1
q+n̄

)
◦ Φ(i,k) .

(9.49)

(iii) For 0 ≤ k ≤ d, (υ
(l)
q+1,k)

• := λd−kq+n̄∂i1 · · · ∂ikυ
(l,•,i1,...,id)
q+1 ,6 satisfies the estimates

∥∥∥ψi,qDNDM
t,qυ

(l)
q+1,k

∥∥∥
3
≤ Γ10

q δ
1
2
q+n̄r

− 1
3

q λNq+n̄M
(
M,Nind,t,Γ

i+14
q τ−1

q ,Γ8
qT

−1
q

)
(9.50a)∥∥∥ψi,qDNDM

t,qυ
(l)
q+1,k

∥∥∥
∞

≤ Γ
C∞
2

+10
q r−1

q λNq+n̄M
(
M,Nind,t,Γ

i+14
q τ−1

q ,Γ8
qT

−1
q

)
(9.50b)

for N ≤ Nfin/4 − 2d2 and M ≤ Nfin/5.

(iv) e
(l)
q+1 satisfies

∥∥∥DNDM
t,qe

(l)
q+1

∥∥∥
∞

≤ δ3q+3n̄T
20Nind,t

q+n̄ λ−10
q+n̄λ

N
q+n̄M

(
M,Nind,t, τ

−1
q ,Γ8

qT
−1
q

)
. (9.51)

for N ≤ Nfin/4 − 2d2 and M ≤ Nfin/5.

Remark 9.4.2 (Notation for cumulative velocity increment potential). We let

υq+1 := υ
(p)
q+1 + rqΓ

−1
q υ

(c)
q+1 and υ•q+1,k := λd−kq+n̄∂i1 · · · ∂ikυ

(•,i1,...,id)
q+1 . As a corollary of Lemma

5For any smooth set Ω ⊂ T3, we use Ω ◦ Φ(i,k) to denote the set Φ−1
(i,k)(Ω) ⊂ T3 × R, i.e. the space-time

set whose characteristic function is annihilated by Dt,q.
6If k = 0, we adopt the convention that ∂i1 · · · ∂ik is the identity operator.
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9.4.1, we have that

wq+1 = divdυq+1 + eq+1 ,

where υq+1 and eq+1 share the properties (9.49)–(9.51) with υ
(l)
q+1 and e

(l)
q+1 after adjusting

the inequalities to include an implicit constant.

Proof. Recall from subsection 9.1 that wq+1 = wq+1,R + wq+1,φ where

wq+1,⋄ =
∑

i,j,k,ξ,⃗l,I

a(ξ),⋄∇Φ−1
(i,k)(ρ

⋄
(ξ)ζ

I,⋄
ξ ) ◦ Φ(i,k)WI

(ξ),⋄ ◦ Φ(i,k) (9.52)

+
∑

i,j,k,ξ,⃗l,I

∇
(
(ρ⋄

(ξ)ζ
I,⋄
ξ ) ◦ Φ(i,k)a(ξ),⋄

)
×
(
∇Φ(i,k)UI

(ξ),⋄ ◦ Φ(i,k)

)
(9.53)

for ⋄ = R,φ. To construct υq+1 and eq+1, we will apply Corollary A.3.11 to the right

hand side terms. We shall adhere to the convention set out in Remark A.3.8 and treat

each component separately, so that the resulting tensor potential does not have any special

symmetry properties.

Fix values for all indexes i, j, k, ξ, l⃗, I, set ⋄ = R, and consider one component, indexed

by •, of the vector field in (9.52). Set

p = 3,∞ , N∗ = Nfin/4, M∗ = Nfin/5, Mt = Nind,t,

G = a(ξ),R∇Φ−1
(i,k)(ρ

R
(ξ)ζ

I,R
ξ ) ◦ Φ(i,k)ξ

•r−
1/3

q , Φ = Φ(i,k), π = πℓΓ
30
q , rG = rq

CG,p =
∣∣∣supp (ηi,j,k,ξ,⃗l,RζI,Rξ )∣∣∣1/p δ 1

2
q+n̄Γ

j+7
q , λ = λq+n̄/2, λ′ = λqΓq, ν = τ−1

q Γi+13
q , ν ′ = T−1

q Γ8
q,

ϱ = r
1/3
q ϱ

ξ,λq+n̄,
λq+⌊n̄/2⌋Γq

λq+n̄

, ϑ̃ = ϑ̃
ξ,λq+n̄,

λq+⌊n̄/2⌋Γq

λq+n̄
,R

C∗,3 = 1 , C∗,∞ = r−
2/3

q , µ = λq+n̄/2Γq, Υ = Υ′ = Λ = λq+n̄,

where ϑ̃ is constructed from Proposition 7.1.5 with D = d2. Then, all assumptions of Corol-

lary A.3.11 hold by (4.24a), (9.36d), (9.38a), (5.34), Corollary 8.2.4, (8.11), and Proposi-
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tion 7.1.5. Then from (A.89), there exist R =: υ
(p)
(ξ),I,R and E =: e

(p)
(ξ),I,R such that

a(ξ),R∇Φ−1
(i,k)(ρ

R
(ξ)ζ

I,R
ξ ) ◦ Φ(i,k)WI

(ξ),R ◦ Φ(i,k) = divdυ
(p)
(ξ),I,R + e

(p)
(ξ),I,R .

From (A.92), we have that

∥∥∥DNDM
t,q∂i1 · · · ∂ilυ

(p)
(ξ),I,R

∥∥∥
3
≤
∥∥∥DNDM

t,qD
lυ

(p)
(ξ),I,R

∥∥∥
3

≲
∣∣∣supp (η(ξ),RζI,Rξ )∣∣∣1/3 δ 1

2
q+n̄Γ

j+7
q r−

1/3
q λl−d+N

q+n̄ M
(
M,Mt, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
,

(9.54a)∥∥∥DNDM
t,q∂i1 · · · ∂ilυ

(p)
(ξ),I,R

∥∥∥
∞

≤
∥∥∥DNDM

t,qD
lυ

(p)
(ξ),I,R

∥∥∥
∞

≲ δ
1
2
q+n̄Γ

j+7
q r−1

q λl−d
q+n̄λ

N+α
q+n̄ M

(
M,Mt, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
≲ Γ

(C∞ + 20)/2
q r−1

q λl−d
q+n̄λ

N+α
q+n̄ M

(
M,Mt, τ

−1
q Γi+3

q ,T−1
q

)
, (9.54b)

for 0 ≤ l ≤ d, N + l ≤ Nfin/4− d2, and M ≤ Nfin/5, where we used (8.27) in the last inequality.

From (A.93), we have that

∥∥∥DNDM
t,qe

(p)
(ξ),I,R

∥∥∥
∞

≲ δ
1
2
q+n̄Γ

j+7
q r−1

q (λq+n̄/2/λq+n̄)
d λN+α

q+n̄ M
(
M,Mt, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
. (9.55)

for N ≤ Nfin/4−d2, andM ≤ Nfin/5. Furthermore, from (A.90) and (7) from Proposition 7.1.5,

we have that the supports of υ
(p)
(ξ),I,R and e

(p)
(ξ),I,R are contained in the set on the right-hand

side of (9.49).

We now sum over indexes i, j, k, ξ, l⃗, I and set

υ
(p)
q+1,R =

∑
i,j,k,ξ,⃗l,I

υ
(p)
(ξ),I,R , e

(p)
q+1,R =

∑
i,j,k,ξ,⃗l,I

e
(p)
(ξ),I,R , (9.56)

which verifies the first equality in (9.48) and (9.49). Using (8.45) to obtain an L∞ bound for

the sum and Corollary 8.6.1 withHi,j,k,ξ,⃗l,R = υ
(p)
(ξ),I,R, θ2 = θ = 1, p = 3, CH = δ

1
2
q+n̄Γ

7
qr

−1
q , Nx =

N∗ = Nfin/4 − d2, the obvious choices for the other parameters, (9.54a), (9.54b), (9.55), and
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(4.23b), we have that υ
(p)
q+1,R and e

(p)
q+1,R satisfy

∥∥∥ψi,qDNDM
t,q∂i1 . . . ∂ik(υ

(p)
q+1,R)

(i1,...,id)
∥∥∥
3
≲ Γ10

q δ
1
2
q+n̄r

−1/3
q λk−d

q+n̄λ
N+α
q+n̄ M

(
M,Mt, τ

−1
q Γi+14

q ,T−1
q Γ8

q

)
∥∥∥ψi,qDNDM

t,q∂i1 . . . ∂ik(υ
(p)
q+1,R)

(i1,...,id)
∥∥∥
∞

≲ Γ
C∞
2

+10
q r−1

q λk−d
q+n̄λ

N+α
q+n̄ M

(
M,Mt, τ

−1
q Γi+14

q ,T−1
q Γ8

q

)
,∥∥∥DNDM

t,qe
(p)
q+1,R

∥∥∥
∞

≲ δ3q+3n̄T
2Nind,t

q+n̄ λ−10
q+n̄λ

N
q+n̄M

(
M,Mt, τ

−1
q Γi+14

q ,T−1
q Γ8

q

)
for N ≤ Nfin/4 − d2, and M ≤ Nfin/5. The first inequality follows from Lemma (8.5.1) and

Remark 8.6.1, and the second and the last inequalities use the support property noted earlier.

In a similar way, we work on (9.52) with φ and (9.53) withR,φ and generate (υ
(p)
q+1,φ, e

(p)
q+1,φ),

(υ
(c)
q+1,R, e

(c)
q+1,R), and (υ

(c)
q+1,φ, e

(c)
q+1,φ), respectively. Indeed, for (9.52) with φ, we set

G = a(ξ),φ∇Φ−1
(i,k)(ρ

φ
(ξ)ζ

I,φ
ξ ) ◦ Φ(i,k)ξ, ϱ = ϱ

ξ,λq+n̄,
λq+⌊n̄/2⌋Γq

λq+n̄
,φ
, ϑ̃ = r−

1/3
q ϑ̃

ξ,λq+n̄,
λq+⌊n̄/2⌋Γq

λq+n̄
,φ

where ϑ̃ is constructed from Proposition 7.1.6 with D = d2, and choose the rest of parameters

and functions as in the case ⋄ = R. The rest of the conclusions follow analogously to the

case ⋄ = R, and we omit further details. In the case of (9.53), we write

(w
(c),I
(ξ),⋄)

• = rqΓ
−1
q G⋄(ϱ⋄ ◦ Φ) ,

where G⋄ and ϱ⋄ are defined by

GR = λ−1
q+n̄/2ϵ•pr∂p

(
a(ξ),R

(
ρR(ξ)ζ

I,R
ξ

)
◦ Φ(i,k)

)
∂rΦ

s
(i,k), ϱR = λq+n̄(UI

(ξ),R)
s, Φ = Φ(i,k)

Gφ = r
1/3
q λ−1

q+n̄/2ϵ•pr∂p

(
a(ξ),φ

(
ρφ(ξ)ζ

I,φ
ξ

)
◦ Φ(i,k)

)
∂rΦ

s
(i,k), ϱφ = r−

1/3
q λq+n̄(UI

(ξ),φ)
s, Φ = Φ(i,k) .

Due to the rescaling by rqΓ
−1
q , we may apply Corollary A.3.11 to (rqΓ

−1
q )−1(w

(c),I
(ξ),⋄)

• with the

same choice of parameters as in the case l = p. As a consequence, we obtain (υ
(c)
q+1,⋄, e

(c)
q+1,⋄),

defined as in (9.56), which enjoy the same properties as (υ
(p)
q+1,R, e

(p)
q+1,R). Note that from the
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construction, the velocity increment potential associated to the correctors satisfies

w
(c)
q+1,⋄ = divd(rqΓ

−1
q υ

(c)
q+1,⋄) + rqΓ

−1
q e

(c)
q+1,⋄ .

We may now set

υq+1 =
∑
⋄=R,φ

υ
(p)
q+1,⋄ + rqΓ

−1
q υ

(c)
q+1,⋄ =: υ

(p)
q+1 + rqΓ

−1
q υ

(c)
q+1

eq+1 =
∑
⋄=R,φ

e
(p)
q+1,⋄ + rqΓ

−1
q e

(c)
q+1,⋄ =: e

(p)
q+1 + rqΓ

−1
q e

(c)
q+1 .

which leads to (9.49), (9.50a), (9.50b), and (9.51).

Remark 9.4.3 (Decompositions of potentials into pieces to facilitate pressure

creation). From the proof of Lemma 9.4.1, the velocity increment potentials υ
(l)
q+1,k, l = p, c,

k = 0, · · · , d, have the additional properties listed below.

(i) Using Corollary A.3.11, (ii), we have that υ
(l)
q+1,d = λdq+n̄υ

(l)
q+1 can be decomposed as

υ
(l)
q+1,d = λdq+n̄

∑
i,j,k,ξ,⃗l,I,⋄

CH∑
j=0

H
α(j)
(ξ),I,⋄(ρ

β(j)
(ξ),I,⋄ ◦ Φ(i,k))

=:
∑
(ξ),I,⋄

H(ξ),I,⋄ρ(ξ),I,⋄ ◦ Φ(i,k) (9.57)

where we abuse notation slightly by using (ξ) to include the indices i, j, k, ξ, l⃗, j as well

as the indices in α(j) or β(j) in the final expression, which take a finite number of

values independent of q.
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(ii) Let p = 3 or ∞. H(ξ),I,⋄ satisfies

suppH(ξ),I,⋄ ⊆ supp
(
(ρ⋄

(ξ)ζ
I,⋄
ξ ) ◦ Φ(i,k)

)
, (9.58a)∥∥∥∥∥

k∏
i=1

DαiDβi
t,qH(ξ),I,⋄

∥∥∥∥∥
p

≲
∣∣∣supp (ηi,j,k,ξ,⃗l,⋄ζI,⋄ξ )∣∣∣1/p δ1/2q+n̄Γj+7

q r−
1/3

q

× λ
|α|
q+n̄/2M

(
|β|,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
, (9.58b)∣∣∣∣∣

k∏
i=1

DαiDβi
t,qH(ξ),I,⋄

∣∣∣∣∣ ≲ (πℓΓ
30
q )

1/2r−
1/3

q λ
|α|
q+n̄/2M

(
|β|,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
, (9.58c)

for all integer k ≥ 1 and multi-indices α, β ∈ Nk with |α| ≤ Nfin/4 − d2 and |β| ≤ Nfin/5.

(iii) ρ(ξ),I,⋄ is (T/λq+n̄/2Γq)
3-periodic and satisfies

supp ρ(ξ),I,⋄ ⊆ supp

(
ϑ̃
ξ,λq+n̄,

λq+⌊n̄/2⌋Γq

λq+n̄
,⋄

)
(9.59a)∥∥DNρ(ξ),I,⋄

∥∥
Lp ≲ r

2
p
− 2

3
q λNq+n̄ (9.59b)

for all N ≤ Nfin/4 − d2 and ((ξ), I, ⋄).

These properties of H(ξ),I,⋄ and ρ(ξ),I,⋄ follow from items (i)–(iv).

From the above properties, we may derive similar formulae and properties for all of the

various velocity increment potentials υ
(l)
q+1,h defined in item (iii) for 0 ≤ h ≤ d. Specifically,
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we have that υ
(l)
q+1,h can be decomposed using (9.57) and the Leibniz rule7 as

υ
(l,•,ih+1,··· ,id)
q+1,h = λd−hq+n̄∂i1 · · · ∂ihυ

(l,•,i1,...,id)
q+1

= λd−hq+n̄

∑
a⃗h ,⃗bh

Ca⃗h ,⃗bh
∑

i,j,k,ξ,⃗l,I,⋄

CH∑
j=0

∂a⃗hH
α(j)
(ξ),I,⋄∂b⃗h

(
ρ
β(j)
(ξ),I,⋄ ◦ Φ(i,k)

)
=:

∑
(ξ),I,⋄,h′

Hh,h′

(ξ),I,⋄ρ
h,h′

(ξ),I,⋄ ◦ Φ(i,k)

=:
∑

(ξ),I,⋄,h′
Υh,h′

(ξ),I,⋄ , (9.60)

where Hh,h′

(ξ),I,⋄, ρ
h,h′

(ξ),I,⋄, and Υh,h′

(ξ),I,⋄ satisfy the following, and we again abuse notation slightly

by letting (ξ) denote all indices i, j, k, ξ, l⃗, j, as well as those indices needed for the application

of the Faa di Bruno formula from (A.9) to ∂b⃗h

(
ρ
β(j)
(ξ),I,⋄ ◦ Φ(i,k)

)
. We again have that (ξ)

includes i, j, k, ξ, l⃗, ξ, as well as the a finite, q-independent number of indices.

(i) Let p = 3 or ∞. Hh,h′

(ξ),I,⋄ satisfies

suppHh,h′

(ξ),I,⋄ ⊆ supp
(
(ρ⋄

(ξ)ζ
I,⋄
ξ ) ◦ Φ(i,k)

)
, (9.61a)∥∥∥∥∥

k∏
i=1

DαiDβi
t,qH

h,h′

(ξ),I,⋄

∥∥∥∥∥
p

≲
∣∣∣supp (ηi,j,k,ξ,⃗l,⋄ζI,⋄ξ )∣∣∣1/p δ1/2q+n̄Γj+7

q r−
1/3

q

× λ
|α|
q+n̄/2M

(
|β|,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
, (9.61b)∣∣∣∣∣

k∏
i=1

DαiDβi
t,qH

h,h′

(ξ),I,⋄

∣∣∣∣∣ ≲ (πℓΓ
30
q )

1/2λ
|α|
q+n̄/2M

(
|β|,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
, (9.61c)

for all integer k ≥ 1 and multi-indices α, β ∈ Nk with |α| ≤ Nfin/4− 2d2 and |β| ≤ Nfin/5.

7We use the notation

∂i1 · · · ∂ih(fg) =
∑

a⃗h=(a1,...,aA),

b⃗h=(b1,...,bB)

Ca⃗h ,⃗bh
∂ia1

· · · ∂iaA
f ∂ib1 · · · ∂ibA g =

∑
a⃗h ,⃗bh

Ca⃗h ,⃗bh
∂a⃗h

f∂⃗bhg ,

where a⃗h, b⃗h are multi-indices with A, respectively B distinct components for which the union of all indices
belonging to either a⃗h or b⃗h is {i1, . . . , ih}.
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(ii) ρh,h
′

(ξ),I,⋄ is (T/λq+n̄/2Γq)
3-periodic and satisfies

supp ρh,h
′

(ξ),I,⋄ ⊆ supp

(
ϑ̃
ξ,λq+n̄,

λq+⌊n̄/2⌋Γq

λq+n̄
,⋄

)
(9.62a)∥∥∥DNρh,h

′

(ξ),I,⋄

∥∥∥
Lp

≲ r
2
p
− 2

3
q λNq+n̄ (9.62b)

for all N ≤ Nfin/4 − 2d2 and ((ξ), I, ⋄).

(iii) For p = 3,∞, we have that

∥∥∥Υh,h′

(ξ),I,⋄

∥∥∥
p
≲
∣∣∣supp (ηi,j,k,ξ,⃗l,⋄ζI,⋄ξ )∣∣∣1/p δ1/2q+n̄Γj+7

q r
2/p−1
q . (9.63)

The proofs of these properties follows from backwards induction on the index h. Indeed,

the case h = d has already been shown in the beginning of the remark. The subsequent

cases follow from application of the Faa di Bruno formula to (9.57) to derive (9.60), (9.58a)–

(9.59b), Corollary 8.2.4, and Lemma A.1.3.

Lemma 9.4.4 (Pressure increment). Define υ
(l)
q+1,k, 0 ≤ k ≤ d, l = p, c, as in Lemma

9.4.1. Then there exists a pressure increment συ(l) = σ+
υ(l)

− σ−
υ(l)

associated to the sum∑d
k=0 υ

(l)
q+1,k of velocity increment potentials such that the following properties hold.

(i) We have that for all k = 0, 1, . . . , d,

∣∣∣ψi,qDNDM
t,qυ

(l)
q+1,k

∣∣∣ ≲ (σ+
υ(l)

+ δq+3n̄)
1/2r−1

q (λq+n̄Γ
1/10
q+n̄)

NM
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
(9.64)

for any 0 ≤ k ≤ d and N,M ≤ Nfin/5.

(ii) Set

σ±
υ := σ±

υ(p)
+ σ±

υ(c)
, συ = σ+

υ − σ−
υ . (9.65)
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Then we have that

∣∣ψi,qDNDM
t,qσ

+
υ

∣∣ ≲ (σ+
υ + δq+3n̄)(λq+n̄Γ

1/10
q+n̄)

NM
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
,

(9.66a)∥∥ψi,qDNDM
t,qσ

+
υ

∥∥
3/2

≤ Γ−9
q+n̄δq+2n̄(λq+n̄Γ

1/10
q+n̄)

NM
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
,

(9.66b)∥∥ψi,qDNDM
t,qσ

+
υ

∥∥
∞ ≤ ΓC∞−9

q+n̄ (λq+n̄Γ
1/10
q+n̄)

NM
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
, (9.66c)∥∥ψi,qDNDM

t,qσ
−
υ

∥∥
3/2

≤ Γ−9
q+n̄δq+2n̄(λq+n̄/2Γq+n̄/2)

NM
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
,

(9.66d)∥∥ψi,qDNDM
t,qσ

−
υ

∥∥
∞ ≤ ΓC∞−9

q+n̄ (λq+n̄/2Γq+n̄/2)
NM

(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
, (9.66e)∣∣ψi,qDNDM

t,qσ
−
υ

∣∣ ≲ πℓΓ
30
q r

4/3
q (λq+n̄/2Γq+n̄/2)

NM
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
. (9.66f)

for all N ≤ Nfin/5 and M ≤ Nfin/5 − Ncut,t.

(iii) We have that

supp (σ+
υ ) ∩B(ŵq′′ , λ

−1
q′′ Γq′′+1) , supp (σ−

υ ) ∩B(ŵq′ , λ
−1
q′ Γq′+1) = ∅ (9.67)

for q + 1 ≤ q′′ ≤ q + n̄− 1 and q + 1 ≤ q′ ≤ q + n̄/2.

(iv) Define

mσυ(t) =

ˆ t

0

⟨Dt,qσυ⟩ (s) ds . (9.68)

Then we have that

∣∣∣∣ dM+1

dtM+1
mσυ

∣∣∣∣ ≤ (max(1, T ))−1δ2q+3n̄M
(
M,Nind,t, τ

−1
q ,T−1

q+1

)
(9.69)

for 0 ≤M ≤ 2Nind.

Remark 9.4.5 (Pointwise bounds for principal and corrector parts). From (9.48)–

149



(9.51), (9.64), and (4.24a), we have that

∣∣∣ψi,qDNDM
t,qw

(p)
q+1

∣∣∣ ≲ (σ+
υ(p)

+ δq+3n̄)
1/2r−1

q (λq+n̄Γ
1/10
q+n̄)

NM
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
,

(9.70a)∣∣∣ψi,qDNDM
t,qw

(c)
q+1

∣∣∣ ≲ (σ+
υ(c)

+ δq+3n̄)
1/2Γ−1

q (λq+n̄Γ
1/10
q+n̄)

NM
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
(9.70b)

for N,M ≤ Nfin/5. Note that thanks to the factor rqΓ
−1
q in (9.48), the bound in (9.70b) has

extra gain of rqΓ
−1
q compared to (9.70a). This gain will be useful when we deal with the

divergence corrector stress errors in subsection 10.2.3 and divergence corrector current errors

in 11.2.5. We also record an upgraded version of (9.70), which states that in the same range

of N and M , we have that

∣∣∣ψi,q+n̄−1D
NDM

t,q+n̄−1w
(p)
q+1

∣∣∣ ≲ (σ+
υ(p)

+ δq+3n̄)
1/2r−1

q (λq+n̄Γ
1/10
q+n̄)

N

×M
(
M,Nind,t, τ

−1
q+n̄−1Γ

i−5
q+n̄−1,T

−1
q+n̄−1Γ

−1
q+n̄

)
, (9.71a)∣∣∣ψi,q+n̄−1D

NDM
t,q+n̄−1w

(c)
q+1

∣∣∣ ≲ (σ+
υ(c)

+ δq+3n̄)
1/2Γ−1

q (λq+n̄Γ
1/10
q+n̄)

N

×M
(
M,Nind,t, τ

−1
q+n̄−1Γ

i−5
q+n̄−1,T

−1
q+n̄−1Γ

−1
q+n̄

)
. (9.71b)

The proof of (9.71) is immediate from Hypothesis 5.14 at level q and Remark 9.2.3, which

asserts that Hypothesis 5.4.1 is verified at level q + 1 with q′ = q + n̄.

Before giving the proof of Lemma 9.4.4, we record the following lemma, which investigates

the current error generated by the pressure increment συ. The proof of both lemmas will

proceed using Lemma A.4.3.

Lemma 9.4.6 (Current error from the pressure increment). There exists a current

error ϕυ generated by συ such that the following hold.
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(i) We have the decomposition and equalities

ϕυ = ϕ∗
υ︸︷︷︸

nonlocal

+

q+n̄∑
m′=q+n̄/2+1

ϕm
′

υ︸ ︷︷ ︸
local

= (H +R∗)(Dt,qσ
∗
υ) +

q+n̄∑
m′=q+n̄/2+1

R∗(Dt,qσ
m′

υ )

︸ ︷︷ ︸
nonlocal

+

q+n̄∑
m′=q+n̄/2+1

H(Dt,qσ
m′

υ )

︸ ︷︷ ︸
local

, (9.72a)

div
(
ϕm

′

υ (t, x) +R∗(Dt,qσ
m′

υ (t, x))
)
= Dt,qσ

m′

υ (t, x)−
ˆ
T3

Dt,qσ
m′

υ (t, x′) dx′ , (9.72b)

div

ϕ∗
υ(t, x)−

q+n̄∑
m′=q+n̄/2+1

R∗(Dt,qσ
m′

υ )(t, x)

 = Dt,qσ
∗
υ(t, x)−

ˆ
T3

Dt,qσ
∗
υ(t, x

′) dx′ .

(9.72c)

(ii) For all N ≤ Nfin/5 and M ≤ Nfin/5 − Ncut,t − 1 and q + n̄/2 + 1 ≤ m′ ≤ q + n̄,

∣∣∣ψi,qDNDM
t,qϕ

m′

υ

∣∣∣ ≲ Γ−100
m (πm

′

q )
3/2r−1

m (λmΓm′)NM
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
. (9.73)

(iii) For all N ≤ 3Nind and M ≤ 3Nind,

∥∥DNDM
t,qϕ

∗
υ

∥∥
∞ ≲ δ

3/2
q+3n̄T

2Nind,t

q+n̄ λ−10
q+n̄+2(λq+n̄Γq+n̄)

NM
(
M,Nind,t, τ

−1
q ,T−1

q Γ9
q

)
. (9.74)

(iv) For all q + 1 ≤ q′ ≤ q + n̄/2, q + n̄/2+ 2 ≤ m ≤ q + n̄, and q + 1 ≤ q′′ ≤ m− 1, we have

the support properties

supp (ϕq+
n̄/2+1

υ ) ∩B(ŵq′ , λ
−1
q+1Γ

2
q) = ∅ , supp (ϕmυ ) ∩ supp ŵq′′ = ∅ . (9.75)

Proofs of Lemma 9.4.4 and Lemma 9.4.6. Step 1: Setup and Assumptions from Lemma A.4.3.

In order to create a pressure increment which dominates all of the various velocity increment

potentials υ
(l)
q+1,h defined in item (iii), we shall create pressure increments which dominate

each separate piece, and then sum at the end. We fix all indices (ξ), I, ⋄, h, h′ from the
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formula in (9.60) and apply Proposition A.4.3 with the following choices:

N∗ = Nfin/4 − 2d2, M∗ = Nfin/5, Mt = Nind,t, N◦ =M◦ = 3Nind ,

υ̂ = Υh,h′

(ξ),I,⋄ , G = Hh,h′

(ξ),I,⋄ , ρ = ρh,h
′

(ξ),I,⋄ , π = πℓΓ
30
q , K◦ as in

CG,p =
∣∣∣supp (ηi,j,k,ξ,⃗l,⋄ζI,⋄ξ )∣∣∣1/p Γj+7

q δ
1
2
q+n̄r

−1/3
q + λ−10

q+n̄ , K◦ as in item (xvi)

Cρ,p = r
2
p
− 2

3
q , λ = λq+n̄/2, λ′ = Λq, ν = τ−1

q Γi+13
q , ν ′ = T−1

q Γ8
q , Λ = λq+n̄,

rG = rυ̂ = rq , µ = λq+n̄/2Γq , Γ = Γ
1/10
q , Φ = Φ(i,k) , v = ûq , Cv = Λ

1/2
q ,

µ0 = λq+n̄/2+1, µ1 = λq+n̄/2+3/2, µm = λq+n̄/2+m, µm̄ = λq+n̄+1, δtiny = δq+3n̄ ,

where µm = λq+n̄/2+m above is defined for 2 ≤ m ≤ m̄. Then we have that (A.158a)–(A.158d)

are verified from (9.61a)–(9.63), (A.159a) holds by definition and by (4.21), (A.160a)–

(A.160c) hold from (5.34), Corollary 8.2.4, (5.35b), and (4.15), (A.161a) holds from (4.17a),

(A.161b) holds due to (4.17b), (A.161c) holds due to (4.24a), (A.162) holds from direct

computation, and (A.163a)–(A.163c) hold due to (xvii).

Step 2: Part 2 from Lemma A.4.3 and proof of Lemma 9.4.4. We now apply the

conclusions from Part 2 of Lemma A.4.3. We first have from (A.164) and (A.165) the

existence of a pressure increment σ
Υh,h′

(ξ),I,⋄
= σ+

Υh,h′
(ξ),I,⋄

− σ−
Υh,h′

(ξ),I,⋄
such that

∣∣∣DNDM
t,qΥ

h,h′

(ξ),I,⋄

∣∣∣ ≲ (σ+

υh,h
′

(ξ),I,⋄
+ δq+3n̄

)1/2

r−1
q (λq+n̄Γ

1/10
q+n̄)

NM
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
(9.76)
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for all N ≤ Nfin/4 − 2d2 and M ≤ Nfin/5. Then using items (ii)–(iii) and (4.18), we have that

∣∣∣∣DNDM
t,qσ

+

Υh,h′
(ξ),I,⋄

∣∣∣∣ ≲ (σ+

Υh,h′
(ξ),I,⋄

+ δq+3n̄

)
(λq+n̄Γ

1/10
q+n̄)

NM
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
,

(9.77a)∥∥∥∥DNDM
t,qσ

+

Υh,h′
(ξ),I,⋄

∥∥∥∥
3/2

≲
∣∣∣supp (ηi,j,k,ξ,⃗l,⋄ζI,⋄ξ )∣∣∣2/3 Γ2j+14

q δq+n̄r
4/3
q

× (λq+n̄Γ
1/10
q+n̄)

NM
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
, (9.77b)∥∥∥∥DNDM

t,qσ
+

Υh,h′
(ξ),I,⋄

∥∥∥∥
∞

≲ ΓC∞+20
q (λq+n̄Γ

1/10
q+n̄)

NM
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
, (9.77c)∥∥∥∥DNDM

t,qσ
−
Υh,h′

(ξ),I,⋄

∥∥∥∥
3/2

≲
∣∣∣supp (ηi,j,k,ξ,⃗l,⋄ζI,⋄ξ )∣∣∣2/3 Γ2j+14

q δq+n̄r
4/3
q

× (λq+n̄/2Γq+n̄/2)
NM

(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
, (9.77d)∥∥∥∥DNDM

t,qσ
−
Υh,h′

(ξ),I,⋄

∥∥∥∥
∞

≲ ΓC∞+20
q (λq+n̄/2Γq+n̄/2)

NM
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
, (9.77e)∣∣∣∣DNDM

t,qσ
−
Υh,h′

(ξ),I,⋄

∣∣∣∣ ≲ πℓΓ
30
q r

4/3
q (λq+n̄/2Γq+n̄/2)

NM
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
, (9.77f)

for all N ≤ Nfin/4 − 2d2 − Ncut,x and M ≤ Nfin/5 − Ncut,t. In (9.77c) and (9.77e), we used

(8.27). Finally, from (A.169), (9.61a), (9.62a), (9.49), and Lemma 9.2.2, we get the support

properties

supp

(
σ+

Υh,h′
(ξ),I,⋄

)
⊆ supp

(
Υh,h′

(ξ),I,⋄

)
⊆ supp

(
χi,k,qζq,⋄,i,k,ξ,⃗l

(
ρ⋄
(ξ)ζ

I,⋄
ξ

)
◦ Φ(i,k)

)
∩B

(
supp ϱI(ξ),⋄, 2λ

−1
q+n̄

)
◦ Φ(i,k) ,

supp

(
σ−
Υh,h′

(ξ),I,⋄

)
∩B(ŵq′ , λ

−1
q′ Γq′) ⊆ supp

(
ηi,j,k,ξ,⃗l,⋄ζ

I,⋄
ξ

)
∩B(ŵq′ , λ

−1
q′ Γq′) = ∅ ,

for q + 1 ≤ q′ ≤ q + n̄/2.

We now sum over h, h′, (ξ), i, ⋄ (while recalling from (9.60) that summation over (ξ)

includes summation over i, j, k, ξ, l⃗, j as well as any indices needed for the application of the
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Faa di Bruno formula) and set

σ±
υ :=

∑
(ξ),I,⋄,h′,h

σ±
Υh,h′

(ξ),I,⋄
.

From (9.76), (9.60), (8.45), and Corollary 8.6.3 with H = Υh,h′

(ξ),I,⋄ and ϖ = σ+

Υh,h′
(ξ),I,⋄

+

1
suppΥh,h′

(ξ),I,⋄
δq+3n̄, we have that (9.64) holds. We have (9.65) from the formula above. In

order to verify (9.66a)–(9.66f), we appeal to (9.77a)–(9.77f) and Corollaries 8.6.1 and 8.6.3.

Specifically, the L3/2 estimates in (9.66b) and (9.66d) use (4.10g) and Corollary 8.6.1 with

θ2 = θ = 2, H = σ±
Υh,h′

(ξ),I,⋄
, and CH = δq+n̄r

4/3
q Γ14

q . The L∞ estimates in (9.66c) and

(9.66e) follow from (8.45), (4.13a), and Corollary 8.6.3 and with the same choice of H and

ϖ = ΓC∞+20
q 1

suppΥh,h′
(ξ),I,⋄

. Finally, the pointwise estimates in (9.66a) and (9.66f) follow from

Corollary 8.6.3 in much the same manner as the L∞ estimates just derived, and we omit

further details.

Step 3: Part 3 from Lemma A.4.3 and proof of Lemma 9.4.6. We now apply the

conclusions from Part 3 of Lemma A.4.3. From item (i), there exist current errors ϕ
Υh,h′

(ξ),I,⋄

such that we have the decompositions and equalities

ϕ
Υh,h′

(ξ),I,⋄
= ϕ∗

Υh,h′
(ξ),I,⋄︸ ︷︷ ︸

nonlocal

+

q+n̄∑
m′=q+n̄/2+1

ϕm
′

Υh,h′
(ξ),I,⋄︸ ︷︷ ︸

local

(9.78a)

= (H +R∗)

(
Dtσ

∗
Υh,h′

(ξ),I,⋄

)
+

q+n̄∑
m′=q+n̄/2+1

R∗
(
Dtσ

m′

Υh,h′
(ξ),I,⋄

)
︸ ︷︷ ︸

nonlocal

+

q+n̄∑
m′=q+n̄/2+1

H
(
Dtσ

m′

Υh,h′
(ξ),I,⋄

)
︸ ︷︷ ︸

local

,

div

(
ϕm

′

Υh,h′
(ξ),I,⋄

(t, x) +R∗
(
Dtσ

m′

Υh,h′
(ξ),I,⋄

)
(t, x)

)
= Dtσ

m′

Υh,h′
(ξ),I,⋄

(t, x)−
ˆ
T3

Dtσ
m′

Υh,h′
(ξ),I,⋄

(t, x′) dx′ ,

div

(
ϕ∗
Υh,h′

(ξ),I,⋄
(t, x)−

m̄∑
m=0

R∗
(
Dtσ

m′

Υh,h′
(ξ),I,⋄

)
(t, x)

)
= Dtσ

∗
Υh,h′

(ξ),I,⋄
(t, x)−

ˆ
T3

Dtσ
∗
Υh,h′

(ξ),I,⋄
(t, x′) dx′ .

Next, from (ii) in Proposition A.4.3, (4.18), and (4.24a), we have that for (p, p′) = (3, 3/2) or
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(∞,∞) and 2 ≤ m ≤ m̄,

∥∥∥∥DNDM
t ϕ

0

Υh,h′
(ξ),I,⋄

∥∥∥∥
p′
≲ τ−1

q Γi+14
q

(
δq+n̄r

−2/3
q Γ2j+14

q

∣∣∣supp (ηi,j,k,ξ,⃗l,⋄ζI,⋄ξ )∣∣∣2/p + λ−20
q+n̄

)
×
(
λq+n̄/2+1

λq+n̄/2

) 4
3
− 2

p′

r2qλ
−1
q+n̄/2(λq+n̄/2+1)

NM
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
,

(9.79a)∣∣∣∣DNDM
t ϕ

0

Υh,h′
(ξ),I,⋄

∣∣∣∣ ≲ τ−1
q Γi+50

q πℓr
4/3
q

(
λq+n̄/2+1

λq+n̄/2

)4/3

λ−1
q+n̄/2

× (λq+n̄/2+1)
NM

(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
, (9.79b)∥∥∥∥DNDM

t ϕ
m

Υh,h′
(ξ),I,⋄

∥∥∥∥
p′
≲ τ−1

q Γi+16
q

(
δq+n̄r

−2/3
q Γ2j+14

q

∣∣∣supp (ηi,j,k,ξ,⃗l,⋄ζI,⋄ξ )∣∣∣2/p + λ−20
q+n̄

)

×

(
min

(
λq+n̄/2+m, λq+n̄

)
λq+n̄/2

) 4
3
− 2

p′

r2q(λ
−2
q+n̄/2+m−1λq+n̄/2+m)

× (min(λq+n̄/2+m, λq+n̄Γq+n̄))
NM

(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
,

(9.79c)∣∣∣∣DNDM
t ϕ

m

Υh,h′
(ξ),I,⋄

∣∣∣∣ ≲ τ−1
q Γi+50

q πℓr
4/3
q

(
min(λq+n̄/2+m, λq+n̄)

λq+n̄/2Γq

)4/3

(λ−2
q+n̄/2+m−1λq+n̄/2+m)

× (min(λq+n̄/2+m, λq+n̄Γq+n̄))
NM

(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
,

(9.79d)

for N ≤ Nfin/5 and M ≤ Nfin/5 − Ncut,x − 1. In the case m = 1, we have bounds which match

the bounds for m = 2 above, except that the inverse divergence gain of λ−2
q+n̄/2+m−1λq+n̄/2+m

is replaced with λ−2
q+n̄/2+3/2λq+n̄/2+1. Furthermore, we have from (A.172) and item (xvi) that

∥∥∥∥DNDM
t ϕ

∗
Υh,h′

(ξ),I,⋄

∥∥∥∥
∞

≲ δ
3/2
q+3n̄T

2Nind,t

q+n̄ λ−60
q+n̄(λq+n̄Γq+n̄)

N(τ−1
q Γi+14

q )M (9.80)

for N,M ≤ 3Nind. Finally, (iii) from Lemma A.4.3, (9.62a), (9.61a), and Lemma 9.2.2 give
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that for each 1 ≤ m ≤ m̄ and any q + 1 ≤ q′ ≤ q + n̄/2 and q + 1 ≤ q′′ ≤ q + n̄/2 +m− 1

supp

(
ϕ0

Υh,h′
(ξ),I,⋄

)
∩B(ŵq′ , λ

−1
q+1Γ

2
q) = ∅ , supp

(
ϕm
Υh,h′

(ξ),I,⋄

)
∩ supp ŵq′′ ,

supp

(
ϕ0

Υh,h′
(ξ),I,⋄

)
, supp

(
ϕm
Υh,h′

(ξ),I,⋄

)
⊆ supp

(
ηi,j,k,ξ,⃗l,⋄ζ

I,⋄
ξ

)
. (9.81)

We now sum over h, h′, (ξ), i, ⋄ (while recalling from (9.60) that summation over (ξ)

includes summation over i, j, k, ξ, l⃗, j as well as any indices needed for the application of the

Faa di Bruno formula) and set

ϕq+
n̄/2+1

υ :=
∑

(ξ),I,⋄,h′,h

ϕ0

Υh,h′
(ξ),I,⋄

, ϕq+
n̄/2+2

υ :=
∑

(ξ),I,⋄,h′,h

2∑
m=1

ϕm
Υh,h′

(ξ),I,⋄
(9.82)

ϕq+
n̄/2+m

υ :=
∑

(ξ),I,⋄,h′,h

ϕm
Υh,h′

(ξ),I,⋄
, ϕq+n̄υ :=

∑
(ξ),I,⋄,h′,h

m̄∑
m=m̄−1

ϕm
Υh,h′

(ξ),I,⋄
, ϕ∗

υ :=
∑

(ξ),I,⋄,h′,h

ϕ∗
Υh,h′

(ξ),I,⋄

for 3 ≤ m ≤ m̄− 2.

We can now conclude the proof of Lemma 9.4.6. First, we have that item (i) follows

from the definitions in (9.82) and (9.78a). Next, we have that (9.75) follows from the

same definitions, (9.81), and Lemma 9.2.2. We can achieve the nonlocal bounds in (9.74)

from (9.80) and summation over all indices (ξ), I, ⋄, h′, h, which from Lemma 8.4.4, (5.9),

Lemma 8.3.5, and the discussion following (9.60) is bounded by λ4q+n̄. The bound for mσυ

in item (iv) follows similarly from (A.174) (4.22), and a large choice of a∗ in (xix) to ensure

that we can put the prefactor of max(1, T )−1 in the amplitude. Finally, we may conclude

(9.73) from an application of Corollary 8.6.4 with H = ϕ•
Υh,h′

(ξ),I,⋄
(with the value of • according

to the divisions in (9.82)) and

ϖ = Γ50
q πℓr

4/3
q

(
min(λq+n̄/2+m, λq+n̄)

λq+n̄/2

)4/3

λ−2
q+n̄/2+m−1λq+n̄/2+m .
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Indeed appealing to (8.56b), (6.6), (5.20), (4.27c), and the fact that

r
4/3
q

(
min(λq+n̄/2+m, λq+n̄)

λq+n̄/2

)4/3

≤ Γ10
q

from the definition of rq, we conclude the proof.

9.5 Estimates for new velocity increments and their

potentials

Recall the definition of the mollified velocity increment ŵq+n̄ in Definition 9.2.1.

Lemma 9.5.1 (Estimates on ŵq+n̄). We have that ŵq+n̄ satisfies the following properties.

(i) For all N +M ≤ 2Nfin, we have that

∥∥DNDM
t,q+n̄−1ŵq+n̄

∥∥
L3(suppψi,q+n̄−1)

≲ Γ20
q δ

1/2
q+n̄r

−1/3
q (λq+n̄Γq+n̄−1)

N M
(
M,Nind,t,Γ

i−1
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1Γq+n̄−1

)
(9.83a)∥∥DNDM

t,q+n̄−1ŵq+n̄
∥∥
L∞(suppψi,q+n̄−1)

≲ Γ
C∞/2+16
q r−1

q (λq+n̄Γq+n̄−1)
N M

(
M,Nind,t,Γ

i−1
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1Γq+n̄−1

)
.

(9.83b)

(ii) For all N +M ≤ Nfin/4, we have that

∥∥DNDM
t,q+n̄−1 (wq+1 − ŵq+n̄)

∥∥
∞ ≲ δ3q+3n̄T

25Nind,t

q+n̄ (λq+n̄Γq+n̄−1)
N

×M
(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1Γq+n̄−1

)
.

(9.84)

Proof of Lemma 9.5.1. We prove items (i)–(ii) in steps. First, we apply Corollary (8.6.1)

with θ = 1, θ1 = 0, θ2 = 1, Hi,j,k,ξ,⃗l,I,⋄ = w
(•),I
(ξ),⋄ with • = p, c, p = 3, CH = δ

1/2
q+n̄Γ

12
q r

−1/3
q ,
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N∗ = M∗ = Nfin/4, Mt = Nind,t, Nx = ∞, λ = Λ = λq+n̄, τ
−1 = τ−1

q Γ4
q, T = Tq. From the

definition of w
(•),I
(ξ),⋄ and Corollary 9.3.2, we have that(8.46)–(8.47b) are satisfied, and so from

(8.48b), we conclude that for N,M ≤ Nfin/4

∥∥ψi,qDNDM
t,qwq+1

∥∥
3
≲ Γ20

q δ
1/2
q+n̄r

−1/3
q λNq+n̄M

(
N,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ8

q

)
. (9.85)

In the case p = ∞, we may aggregate estimates from Corollary 9.3.2 using the fact that only

a finite, q-independent number of terms w
(•),I
(ξ),⋄ are non-zero at any fixed point in space-time

to give the bound

∥∥ψi,qDNDM
t,qwq+1

∥∥
∞ ≲ Γ

C∞
2

+16
q r−1

q λNq+n̄M
(
N,Nind,t, τ

−1
q Γi+14

q ,T−1
q

)
. (9.86)

Next, from (9.24), which asserts that suppwq+1 ∩ supp ŵq′ = ∅ for q + 1 ≤ q′ ≤ q + n̄ − 1,

and from (5.14) applied with q′ = q + n̄− 1 and q′′ = q, we may upgrade (9.85)–(9.86) to

∥∥DNDM
t,q+n̄−1wq+1

∥∥
L3(suppψi,q+n̄−1)

≲ Γ20
q δ

1/2
q+n̄r

−1/3
q λNq+n̄M

(
N,Nind,t, τ

−1
q+n̄−1Γ

i−2
q+n̄−1,T

−1
q

)
(9.87a)∥∥DNDM

t,q+n̄−1wq+1

∥∥
L∞(suppψi,q+n̄−1)

≲ Γ
C∞
2

+16
q r−1

q λNq+n̄M
(
N,Nind,t, τ

−1
q+n̄−1Γ

i−2
q+n̄−1,T

−1
q

)
.

(9.87b)

We now apply Proposition A.6.1 with the choices

p = 3,∞ , Ng, Nc as in (xiii) , Mt = Nind,t , N∗ = Nfin/4 ,

Nγ = 2Nfin , Ω = suppψi,q+n̄−1 , v = ûq+n̄−1 , i = i ,

λ = λq+n̄ , Λ = λq+n̄Γq+n̄−1 , Γ = Γq+n̄−1, τ = τq+n̄−1Γ
−2
q+n̄−1 , T = Tq+n̄−1 ,

f = wq+1 , Cf,3 = Γ20
q δ

1/2
q+n̄r

−1/3
q , Cf,∞ = C̃f = Γ

C∞/2+16
q r−1

q , Cv = Λ
1/2
q+n̄−1 .

From (xiii) and (4.15), we have that (A.225) is satisfied. From (5.35b), we have that (A.226)

is satisfied. From (9.87), we have that (A.227a) is satisfied. In order to verify (A.227b), we
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apply Remark A.2.6 with the following choices. We set p = ∞, Nx = Nt = ∞, N∗ = Nfin/4,

Ω = T3 × R, v = w = ûq+n̄−1, Cw = Γimax+2
q+n̄−1 δ

1/2
q+n̄−1λ

2
q+n̄−1, λw = λ̃w = Λq+n̄−1, µw =

µ̃w = Γ−1
q+n̄−1T

−1
q+n̄−1 in (A.34), while in (A.27) and (A.28) we set v = ûq+n̄−1, Cv = Cw,

λv = λ̃v = Λq+n̄−1, µv = µ̃v = Γ−1
q+n̄−1T

−1
q+n̄−1, f = wq+1, Cf = Γ

C∞/2+16
q r−1

q , λf = λ̃f = λq+n̄,

µf = µ̃f = T−1
q . Then (A.27) and (A.28) are satisfied from (5.34) at level q + n̄− 1, (9.87),

(5.10), and (4.15). Next, (A.34) is satisfied from (5.35a) at level q+ n̄−1. Thus from (A.35)

and (4.15), we obtain that

∥∥DN∂Mt wq+1

∥∥
∞ ≲ Γ

C∞/2+16
q r−1

q λNq+n̄T
−M
q+n̄−1 (9.88)

for N +M ≤ Nfin/4, thus verifying the final assumption (A.227b) from Lemma A.6.1.

We first apply (A.228) to conclude that (9.83) holds. Finally, we have from (A.229) and

(4.19a) that the difference wq+1 − ŵq+n̄ satisfies (9.84).

In a similar fashion, we will now verify the inductive assumptions of subsubsection 5.5.2 in

the following proposition. We first recall the definitions of υq+1 and eq+1 from Remark 9.4.2

and the mollifier P̃q+n̄,x,t from Definition 9.2.1 and define

υ̂q+n̄ := P̃q+n̄,x,tυq+1, êq+n̄ := P̃q+n̄,x,teq+1 . (9.89)

Proposition 9.5.2 (Verifying (5.38), (5.39), and (5.41) and setting up (5.40) at level

q + 1). The velocity increment and velocity increment potentials satisfy the following.

(i) ŵq+n̄ can be decomposed as

ŵq+n̄ = divdυ̂q+n̄ + êq+n̄ , (9.90)

which written component-wise gives ŵ•
q+n̄ = ∂i1 · · · ∂id υ̂

(•,i1,··· ,id)
q+n̄ + ê•q+n̄.
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(ii) For all q + 1 ≤ q′ ≤ q + n̄− 1, the supports of υ̂q+n̄ and êq+n̄ satisfy

B

(
supp (ŵq′),

1

4
λq′Γ

2
q′

)
∩ (supp (υ̂q+n̄) ∪ supp (êq+n̄)) = ∅ . (9.91)

(iii) For N+M ≤ 3Nfin/2, we have that υ̂•q+n̄,k := λd−kq+n̄∂i1 · · · ∂ik υ̂
(•,i1,...,id)
q+n̄ , 0 ≤ k ≤ d, satisfies

the estimates

∣∣ψi,q+n̄−1D
NDM

t,q+n̄−1υ̂q+n̄,k
∣∣ < Γq+n̄

(
σ+
υ(p)

+ σ+
υ(c)

+ 2δq+3n̄

)1/2
r−1
q (λq+n̄Γq+n̄)

N

×M
(
M,Nind,t,Γ

i
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1Γ

2
q+n̄−1

)
.

(9.92)

(iv) For N +M ≤ 3Nfin/2, êq+n̄ satisfies

∥∥DNDM
t,q+n̄−1êq+n̄

∥∥
∞ ≤ δ3q+3n̄T

10Nind,t

q+n̄ λ−10
q+n̄(λq+n̄Γq+n̄)

N

×M
(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1Γ

2
q+n̄−1

)
. (9.93)

Proof of Proposition 9.5.2. We first note that (9.90) follows immediately from the definition

of υ̂q+n̄ and êq+n̄ in (9.89) and the identity in Remark 9.4.2.

Next, an immediate consequence of (9.49) and (9.23) is that

B

(
supp (ŵq′),

1

2
λq′Γ

2
q′ , 2Tq

)
∩ (supp (υq+1) ∪ supp (eq+1)) = ∅ .

for all q + 1 ≤ q′ ≤ q + n̄ − 1. Now notice that by properties of the mollification, we have

that

supp (υ̂q+n̄) ⊆ B

(
supp (υq+1),

(
λq+n̄Γ

1/2
q+n̄−1

)−1

,T−1
q+1

)
,

and similarly

supp (êq+n̄) ⊆ B

(
supp (eq+1),

(
λq+n̄Γ

1/2
q+n̄−1

)−1

,T−1
q+1

)
.
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With this we now see that (9.91) is satisfied.

Note that from (9.91) and (5.14) applied to q′ = q+ n̄− 1 and q′′ = q, we see that (9.64)

implies that for all N,M ≤ Nfin/5, 0 ≤ k ≤ d and l = p, c,

∣∣∣ψi,q+n̄−1D
NDM

t,q+n̄−1υ̂
(l)
q+n̄,k

∣∣∣ ≲ (σ+
υ(p)

+ δq+3n̄)
1/2r−1

q (λq+n̄Γ
1/10
q+n̄)

NM
(
M,Nind,t, τ

−1
q+n̄−1Γ

i−4
q+n̄−1,T

−1
q Γ9

q

)
.

(9.94)

Now we apply Proposition A.6.1 with the parameter choices

p = 3,∞ , Ng, Nc as in (xiii) , Mt = Nind,t , N∗ = Nfin/5 ,

Nγ = 2Nfin , Ω = suppψi,q+n̄−1 , v = ûq+n̄−1 , i = i , c = −1 ,

λ = λq+n̄ , Λ = λq+n̄Γq+n̄−1 , Γ = Γq+n̄−1, τ = τq+n̄−1Γ
−2
q+n̄−1 , T = Tq+n̄−1 ,

f = υ
(l)
q+1,k , Cf,3 = Γ20

q δ
1/2
q+n̄r

−1/3
q , Cf,∞ = C̃f = Γ

C∞/2+16
q r−1

q , Cv = Λ
1/2
q+n̄−1 .

In a similar way to the proof of Lemma 9.5.1, we see that all the assumptions of the propo-

sition are satisfied. Therefore, conclusion (A.229) implies that N,M ≤ Nfin/5, 0 ≤ k ≤ d and

l = p, c,

∥∥∥DNDM
t,q+n̄−1

(
υ̂
(l)
q+n̄,k − υ

(l)
q+1,k

)∥∥∥
∞

≲ δ3q+3n̄T
25Nind,t

q+n̄ (λq+n̄Γq+n̄−1)
NM

(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1Γq+n̄−1

)
.

Combining this estimate with the pointwise estimate (9.94) implies (9.92) for N,M ≤ Nfin/5.

The case when Nfin/5 ≤ N +M ≤ 3Nfin/2 follows from first noticing that conclusion (A.228)

implies that for all N,M ≤ 2Nfin, 0 ≤ k ≤ d and l = p, c, we have

∥∥∥ψi,q+n̄−1D
NDM

t,q+n̄−1υ̂
(l)
q+n̄,k

∥∥∥
∞

≲ Γ
C∞/2+16
q r−1

q (λq+n̄Γ
1/10
q+n̄)

NM
(
M,Nind,t, τ

−1
q+n̄−1Γ

i−4
q+n̄−1,T

−1
q+n̄−1Γq+n̄−1

)
.

Then combining this estimate with (4.20b) implies estimate (9.92) in this case.

Finally, to prove (9.93), we must upgrade the nonlocal derivative bound in (9.51). This

is trivial using the extra prefactors of T
20Nind,t

q+n̄ , and so we omit the details.
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Chapter 10

Convex integration in the

Euler-Reynolds system

10.1 Defining new error terms

We define Sq+1 by adding ŵq+n̄ to the Euler-Reynolds system for (uq, pq, Rq,−πq) in (6.2)

(recall also (5.2)) and collecting various error terms, which we shall show are well-defined in

the remainder of this section.

div(Sq+1) = ∂tŵq+n̄ + (uq · ∇)ŵq+n̄ + (ŵq+n̄ · ∇)uq + div(ŵq+n̄ ⊗ ŵq+n̄ +Rℓ − πℓId)

+ div
(
Rq
q −Rℓ +

(
πℓ − πqq

)
Id
)

= (∂t + ûq · ∇)wq+1 + wq+1 · ∇ûq︸ ︷︷ ︸
=: divSTN

+div
(
w

(p)
q+1 ⊗ w

(p)
q+1 +Rℓ − πℓId

)
︸ ︷︷ ︸

=: divSO

+ div
(
w

(p)
q+1 ⊗s w

(c)
q+1 + w

(c)
q+1 ⊗ w

(c)
q+1

)
︸ ︷︷ ︸

=: divSC

+div
(
Rq
q −Rℓ +

(
πℓ − πqq

)
Id
)︸ ︷︷ ︸

=:divSM1

(10.1)

+ (∂t + ûq · ∇)(ŵq+n̄ − wq+1) + ((ŵq+n̄ − wq+1) · ∇)ûq + div(ŵq+n̄ ⊗ ŵq+n̄ − wq+1 ⊗ wq+1)︸ ︷︷ ︸
=:divSM2

.
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In the second equality, we used (9.24) to exchange uq and ûq. (Recall also (5.4).) We note

that the symmetric stresses SO and SC are not simply the quantities inside parentheses

and take some care to construct; see subsubsections 10.2.1, 10.2.3. Also, we note that

∂twq+1 + (ûq · ∇)wq+1 + wq+1 · ∇ûq has mean-zero, so that it can be written in divergence

form divSTN ; see subsection 10.2.2. This is because the second and third terms can be

written in divergence form, and wq+1 is given by the curl of a vector-valued function (see

(9.7) and (9.15).) The same reasoning works for the terms in divSM2.

With the above definitions, we set

Rq+1 := Rq −Rq
q + Sq+1 . (10.2)

We can now see that (uq+1, pq, Rq+1,−(πq − πqq)) solves the Euler-Reynolds system (recall

from (9.17) that uq+1 = uq + ŵq+n̄)

∂tuq+1 + div (uq+1 ⊗ uq+1) +∇pq = div(−(πq − πqq)Id +Rq+1) , div uq+1 = 0 . (10.3)

We will show in the remainder of this section that the new stress error Sq+1 can be decom-

posed into components Skq+1 as

Sq+1 =

q+n̄∑
k=q+1

Skq+1 .
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10.2 Error estimates

10.2.1 Oscillation stress error SO

In order to define and analyze SO, cf. (10.1), we first consider

div
(
w

(p)
q+1 ⊗ w

(p)
q+1

)•
=

∑
ξ,i,j,k,⃗l,⋄

∂α

(
a(ξ),⋄(∇Φ−1

(i,k))
α
θBθ(ξ),⋄(Φ(i,k)) a(ξ),⋄(∇Φ−1

(i,k))
•
γB

γ
(ξ),⋄(Φ(i,k))

)
,

(10.4)

where • denotes the unspecified components of a vector field and we have used (9.25) from

Lemma 9.2.2 to eliminate all cross terms. Recalling from (9.4) and (9.12) that B(ξ),⋄ =

ρ⋄
(ξ)

∑
I ζ

I,⋄
ξ WI

(ξ),⋄, that the WI
(ξ),⋄’s are identical up to a shift, and the notational convention

for ρ⋄
(ξ) from Remark 7.2.7, we decompose

(B⊗ B)(ξ),⋄ =
(
ρ⋄
(ξ)

)2∑
I

(ζI,⋄ξ )2P ̸=0(WI
(ξ),⋄ ⊗WI

(ξ),⋄) +
(
ρ⋄
(ξ)

)2 P ̸=0

(∑
I

(ζI,⋄ξ )2

)〈
WI

(ξ),⋄ ⊗WI
(ξ),⋄
〉

+ P ̸=0

(
ρ⋄
(ξ)

)2〈∑
I

(ζI,⋄ξ )2

〉〈
WI

(ξ),⋄ ⊗WI
(ξ),⋄
〉
+
〈(

ρ⋄
(ξ)

)2〉〈∑
I

(ζI,⋄ξ )2

〉〈
WI

(ξ),⋄ ⊗WI
(ξ),⋄
〉
.

In particular, using (iii) and the definitions of ρ⋄
(ξ) and ρ(ξ) := ρξ,k from Proposition 7.2.1,

(4) from Proposition 7.1.5, (6) from Proposition 7.1.6, Definition 7.2.6, and (7.27), we obtain

that

(B⊗ B)(ξ),R =
(
ρ(ξ)

)6∑
I

(ζIξ)
6P ̸=0(WI

(ξ),R ⊗WI
(ξ),R) +

((
ρ(ξ)

)6 − 1
)
ξ ⊗ ξ + ξ ⊗ ξ , (10.5a)

(B⊗ B)(ξ),φ =
(
ρ(ξ)

)4∑
I

(ζIξ)
4P ̸=0(WI

(ξ),φ ⊗WI
(ξ),φ) + c0

(
ρ(ξ)

)4
r

2
3
q ξ ⊗ ξ P ̸=0

(∑
I

(ζIξ)
4

)

+ c0c1P ̸=0

((
ρ(ξ)

)4)
r

2
3
q ξ ⊗ ξ + c0c1c2r

2
3
q Γ

−2
q ξ ⊗ ξ , (10.5b)

for dimensional constants c0, c1, and c2 which are bounded independently of q and depend

only on the dimensional constants in (7.23) and (7.16) and the mean of
∑

I(ζ
I
ξ)

4. Since
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each vector field used to define the simple symmetric tensors in (10.5a) and (10.5b) does not

vary in the ξ-direction (see, (7.10), (i), and Definition 7.2.4), each simple symmetric tensor

satisfies ξ · ∇(B ⊗ B)(ξ),⋄ = 0. Then using that each vector field in (10.5a) and (10.5b) has

been composed with Φ(i,k) and the identity ∂α

(
(∇Φ−1

(i,k))
α
θ (B⊗ B)(ξ),⋄ ◦ Φ(i,k)ξ

θ
)
= ξθ(∂θ(B⊗

B)(ξ),⋄) ◦ Φ(i,k) = 0, we have that (10.4) can be expanded as

div
(
w

(p)
q+1 ⊗ w

(p)
q+1

)•
=
∑
ξ,i,j,k,⃗l

∂α

(
a2(ξ),R(∇Φ−1

(i,k))
α
θ (∇Φ−1

(i,k))
•
γ(ξ

θξγ)
)

(10.6a)

+
∑
ξ,i,j,k,⃗l

∂α

(
a2(ξ),φ(∇Φ−1

(i,k))
α
θ (∇Φ−1

(i,k))
•
γc0c1c2Γ

−2
q r

2
3
q (ξ

θξγ)
)

(10.6b)

+
∑
ξ,i,j,k,⃗l

B•
(ξ),R

(
P̸=0ρ

6
(ξ)

)
◦ Φ(i,k) (10.6c)

+
∑
ξ,i,j,k,⃗l

B•
(ξ),φ

(
P ̸=0ρ

4
ξ

)
◦ (Φ(i,k))c0c1r

2
3
q (10.6d)

+ c0
∑
ξ,i,j,k,⃗l

B•
(ξ),φr

2
3
q

(
ρ4
(ξ)P ̸=0

∑
I

(ζIξ)
4

)
◦Φ(i,k) (10.6e)

+
∑

ξ,i,j,k,⃗l,⋄

B•
(ξ),⋄

((
ρ⋄
(ξ)

)2∑
I

(ζI,⋄ξ )2P ̸=0(ϱ
I
(ξ),⋄)

2

)
◦ Φ(i,k) (10.6f)

where for convenience we set

B•
(ξ),⋄ := ξθξγ∂α

(
a2(ξ),⋄(∇Φ−1

(i,k))
α
θ (∇Φ−1

(i,k))
•
γ

)
, ϱI(ξ),⋄ := ξ ·WI

(ξ),⋄ . (10.7)

The first and second terms above in (10.6a) and (10.6b) cancel out −Rℓ+πℓId from (10.1)
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as follows:

∑
ξ,i,j,k,⃗l

a2(ξ),R∇Φ−1
(i,k) (ξ ⊗ ξ)∇Φ−⊤

(i,k)

=
(9.9)

∑
ξ,i,j,k,⃗l

δq+n̄Γ
2j−2
q ψ6

i,qω
6
j,qχ

6
i,k,qζ

2
q,R,i,k,ξ,⃗l

γ2ξ,Γ9
q

(
Rq,i,k

δq+n̄Γ
2j−2
q

)
∇Φ−1

(i,k) (ξ ⊗ ξ)∇Φ−⊤
(i,k)

=
(7.2),(9.8),(8.36a)

−
∑
i,j,k

ψ6
i,qω

6
j,qχ

6
i,k,q

(
Rℓ − πℓId

+
∑
ξ′,i′,j′

k′,l′

δq+n̄Γ
2j′−2
q CΓ−2

q∣∣∣∇Φ−1
(i′,k′)ξ

′
∣∣∣4/3 ψ4

i′,qω
4
j′,qχ

4
i′,k′,qX 4

q,ξ′,l′ ◦ Φi′,k′,qγ̃
2
ξ′∇Φ−1

(i′,k′)ξ
′ ⊗ ξ′

(
∇Φ−T

(i′,k′)

))
=

(5.8),(8.21),(8.1)
πℓId−Rℓ

−
∑
ξ′,i′,j′

k′,l′

δq+n̄Γ
2j′−2
q CΓ−2

q∣∣∣∇Φ−1
(i′,k′)ξ

′
∣∣∣4/3 ψ4

i′,qω
4
j′,qχ

4
i′,k′,qX 4

q,ξ′,l′ ◦ Φi′,k′,qγ̃
2
ξ′∇Φ−1

(i′,k′)ξ
′ ⊗ ξ′

(
∇Φ−T

(i′,k′)

)

=
(8.36b)

πℓId−Rℓ −
∑
ξ′,i′,j′

k′ ,⃗l′

δq+n̄Γ
2j′−2
q CΓ−2

q∣∣∣∇Φ−1
(i′,k′)ξ

′
∣∣∣4/3 ψ4

i′,qω
4
j′,qχ

4
i′,k′,qζ

2
q,φ,i′,k′,ξ′ ,⃗l′

γ̃2ξ′∇Φ−1
(i′,k′)ξ

′ ⊗ ξ′
(
∇Φ−T

(i′,k′)

)

=
(9.2)

πℓId−Rℓ −
∑
ξ′,i′,j′

k′ ,⃗l′

a2(ξ),φc0c1c2Γ
−2
q r

2/3
q ∇Φ−1

(i′,k′)ξ
′ ⊗ ξ′

(
∇Φ−T

(i′,k′)

)
︸ ︷︷ ︸

=(10.6b)

. (10.8)

The inverse divergence of the remaining terms (10.6c)-(10.6f) will therefore form the oscilla-

tion stress errors.

Lemma 10.2.1 (Applying inverse divergence). There exist symmetric stresses SmO for

m = 1, . . . , q + n̄ such that the following hold.

(i) div
(
w

(p)
q+1 ⊗ w

(p)
q+1 +Rℓ − πℓId

)
=

q+n̄∑
m=q+1

divSmO , where SmO can be split into local and

non-local errors as SmO = Sm,lO + Sm,∗O .
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(ii) For m = q + 1, . . . , q + n̄ and N,M ≤ Nfin/10, the local parts Sm,lO satisfy

∥∥∥ψi,qDNDM
t,qS

m,l
O

∥∥∥
3/2

≲ Γ−9
m δm+n̄λ

N
mM

(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ9

q

)
(10.9a)∥∥∥ψi,qDNDM

t,qS
m,l
O

∥∥∥
∞

≲ ΓC∞−9
m λNmM

(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ9

q

)
. (10.9b)

When m = q + 2, . . . , q + n̄ and q + 1 ≤ q′ ≤ m− 1, the local parts satisfy

B
(
supp ŵq′ , λ

−1
q′ Γq′+1

)
∩ suppSm,lO = ∅ . (10.10)

(iii) For m = q + 1, . . . , q + n̄ and N,M ≤ 2Nind, the non-local parts Sm,∗O satisfy

∥∥DNDM
t,qS

m,∗
O

∥∥
L∞ ≤ T

4Nind,t

q+n̄ δq+3n̄λ
N
mτ

−M
q . (10.11)

Remark 10.2.2 (Abstract formulation of the oscillation stress error). For the pur-

poses of analyzing the transport and Nash current errors in subsubsection 11.2.2 and stream-

lining the creation of pressure increments, it will be useful to abstract the properties of these

error terms. First, there exists a q-independent constant CH such that

Sm,lO =
∑

i,j,k,ξ,⃗l,⋄

CH∑
j′=0

H
α(j′)

i,j,k,ξ,⃗l,⋄
ρ
β(j′)

i,j,k,ξ,⃗l,⋄
◦ Φ(i,k) if m = q + 1, q + n̄/2 , (10.12a)

Sm,lO =
∑

i,j,k,ξ,⃗l,I,⋄

CH∑
j′=0

H
α(j′)

i,j,k,ξ,⃗l,I,⋄
ρ
β(j′)

i,j,k,ξ,⃗l,I,⋄
◦ Φ(i,k) if q + n̄/2 + 1 ≤ m ≤ q + n̄ . (10.12b)

These equalities will be proven in the course of proving Lemma 10.2.1. Next, the functions

H and ρ (with subscripts and superscripts suppressed for convenience) defined above satisfy

the following.

(i) For all N,M ≤ Nfin/10,

∣∣DNDM
t,qH

∣∣ ≲ πℓΓ
100
q Λqλ̄

NM
(
M,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
, (10.13)
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where λ̄ = λq+1Γ
−5
q for m = q + 1, q + n̄/2 while λ̄ = λq+n̄/2 for m ≥ q + n̄/2 + 1. For

the remaining values of m, Sm,lO is zero. We will prove (10.13) in Lemmas 10.2.3 and

10.2.4.

(ii) We have that

suppH ⊆ supp ηi,j,k,ξ,⃗l,⋄ if m = q + 1, q + n̄/2 (10.14a)

suppH ⊆ supp ηi,j,k,ξ,⃗l,⋄ζ
I,⋄
ξ if q + n̄/2 + 1 ≤ m ≤ q + n̄ (10.14b)

We will prove these claims in the course of proving Lemma 10.2.1.

(iii) For d as in (xvii) of section 4.1, there exist a tensor potential ϑ (we suppress the

indices at the moment for convenience) such that ρ = ∂i1...idϑ
(i1,...,id). Furthermore,

ϑ is (T/λq+1Γ
−4
q )3-periodic in the case m = q + 1, (T/λq+n̄/2)

3-periodic in the case

m = q + n̄/2, and (T/λq+n̄/2Γq)
3-periodic in the remaining cases. Finally, ϑ satisfies the

estimates

∥∥DN∂i1 . . . ∂ikϑ
(i1,...,id)

∥∥
Lp ≲ Γ12

q (λq+1Γ
−4
q )k−d−1M

(
N, d− k, λq+1Γ

−4
q , λq+1Γ

−1
q

)
if m = q + 1

(10.15a)∥∥DN∂i1 . . . ∂ikϑ
(i1,...,id)

∥∥
Lp ≲ Γ5

qλ
k−d−1
q+n̄/2 λ

N
q+n̄/2 if m = q + n̄/2 (10.15b)∥∥DN∂i1 . . . ∂ikϑ

(i1,...,id)
∥∥
Lp ≲

(
λq+n̄/2+1

λq+n̄rq

)2−2/p

Γ2
qλ

−1
q+n̄/2(λq+n̄/2Γq)

k−d

×M
(
N, d− k, λq+n̄/2Γq, λq+n̄/2+1

)
if m = q + n̄/2 + 1

(10.15c)∥∥DN∂i1 . . . ∂ikϑ
(i1,...,id)

∥∥
Lp ≲

(
min(λm, λq+n̄)

λq+n̄rq

)2−2/p

Γ2
qλ

−2
m−1λmλ

k−d
m−1λ

N
m

if q + n̄/2 + 2 ≤ m ≤ q + n̄ (10.15d)

for p = 3/2,∞, all N ≤ Nfin/5, and 0 ≤ k ≤ d. We will prove these estimates in the

course of proving Lemma 10.2.1 with the help of Remark A.3.6.
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(iv) In the cases m = q + 1, q + n̄/2, q + n̄/2 + 1, we claim no special support properties for

the potential ϑ. In the cases q + n̄/2 + 2 ≤ m ≤ q + n̄, we have that

supp (Hρ ◦ Φ) ∩B
(
supp ŵq′ , λ

−1
q′ Γq′+1

)
= ∅ (10.16)

for all q+ 1 ≤ q′ ≤ m− 1 (where m refers to the index in Sm,lO from (10.12a)). We will

prove this claim in the course of proving Lemma 10.2.1.

Proof of Lemma 10.2.1. To define SO, we recall the synthetic Littlewood-Paley decomposi-

tion (cf. Section 7.3). Indeed, since ϱI(ξ),⋄ depends only on the variables in the plane ξ⊥ from

(7.10) and is periodized to scale (λq+n̄rq)
−1= (λq+n̄/2Γq)

−1, we can decompose P ̸=0 in front

of (ϱI(ξ),⋄)
2 in (10.6f) into

P ̸=0 = P̃ξλq+n̄/2+1
P ̸=0 +

q+n̄+1∑
m=q+n̄/2+2

P̃ξ(λm−1,λm] + (Id− P̃ξλq+n̄+1
)

=: P̃ξq+n̄/2+1 +

q+n̄+1∑
m=q+n̄/2+2

P̃ξ(m−1,m] + (Id− P̃ξq+n̄+1) . (10.17)
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Assuming we can apply the inverse divergence from Proposition A.3.3, we define

Sq+1
O := (H +R∗)

 ∑
ξ,i,j,k,⃗l

B(ξ),R

(
P ̸=0ρ

6
ξ

)
◦ Φ(i,k) +

∑
ξ,i,j,k,⃗l

B(ξ),φc0c1r
2
3
q

(
P ̸=0ρ

4
ξ

)
◦ Φ(i,k)


(10.18a)

S
q+n̄/2
O := (H +R∗)

 ∑
ξ,i,j,k,⃗l

B(ξ),φc0r
2
3
q

(
ρ4
ξP ̸=0

(∑
I

(ζIξ)
4

))
◦ Φ(i,k)

 (10.18b)

S
q+n̄/2+1
O := (H +R∗)

 ∑
ξ,i,j,k,⃗l,I,⋄

B(ξ),⋄

((
ρ⋄
(ξ)

)2 (
ζI,⋄ξ

)2
P̃ξq+n̄/2+1P ̸=0(ϱ

I
(ξ),⋄)

2

)
◦ Φ(i,k)


(10.18c)

SmO := (H +R∗)

 ∑
ξ,i,j,k,⃗l,I

B(ξ),⋄

((
ρ⋄
(ξ)

)2 (
ζI,⋄ξ

)2
P̃ξ(m−1,m](ϱ

I
(ξ),⋄)

2

)
◦ Φ(i,k)

 (10.18d)

Sq+n̄O :=

q+n̄+1∑
m=q+n̄

(H +R∗)

 ∑
ξ,i,j,k,⃗l,I,⋄

B(ξ),⋄

((
ρ⋄
(ξ)

)2 (
ζI,⋄ξ

)2
P̃ξ(m−1,m](ϱ

I
(ξ),⋄)

2

)
◦ Φ(i,k)


(10.18e)

+ (H +R∗)

 ∑
ξ,i,j,k,⃗l,I,⋄

B(ξ),⋄

((
ρ⋄
(ξ)

)2 (
ζI,⋄ξ

)2
(Id− P̃ξq+n̄+1)(ϱ

I
(ξ),⋄)

2

)
◦ Φ(i,k)


(10.18f)

for m = q + n̄/2 + 2, · · · , q + n̄− 1. For q + 1 ≤ m < q + n̄, we decompose SmO into the local

part Sm,lO which involves the operator H and the nonlocal part Sm,∗O containing the remaining

terms. In the case of m = q + n̄, we set

Sq+n̄,lO :=

q+n̄+1∑
m=q+n̄

H

 ∑
ξ,i,j,k,⃗l,I,⋄

B(ξ),⋄

((
ρ⋄
(ξ)

)2 (
ζI,⋄ξ

)2
P̃ξ(m−1,m](ϱ

I
(ξ),⋄)

2

)
◦ Φ(i,k)

 (10.19)

and absorb the R∗ terms in (10.18e) and all the terms in (10.18f) into Sq+n̄,∗O . For the

undefined SmO corresponding to m = q + 2, · · · , q + n̄/2 − 1, we set them as identically zero.

The desired estimates will follow from applying Proposition A.3.3. While many of the
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parameter choices will vary depending on the case, we fix the following choices throughout

the proof:

p = 3/2,∞ , v = ûq , Dt = Dt,q , N∗ = Nfin/4 , M∗ = Nfin/5 , (10.20a)

λ′ = Λq , Mt = Nind,t , ν ′ = T−1
q Γ8

q , Ndec as in (xv) , (10.20b)

M◦ = N◦ = 2Nind , K◦ as in (xvi) , Cv = Λ
1/2
q . (10.20c)

Case 1: Estimates for (10.18a). Fix values of i, j, k, ξ, l⃗ and consider the term which includes

B(ξ),R, where we have abbreviated B
•
(ξ),R = B•

(ξ,i,j,k,⃗l),R
. We apply Proposition A.3.3 with the

low-frequency choices

G• = B•
(ξ),R , CG,3/2 =

∣∣∣supp (η2
i,j,k,ξ,⃗l,R

)
∣∣∣2/3 δq+n̄Γ2j+21

q Λq , CG,∞ = ΓC∞+30
q Λq ,

λ = λq+1Γ
−5
q , ν = τ−1

q Γi+13
q , Φ = Φ(i,k) ,

and the choices from (10.20). We have that (A.39) is satisfied by definition. Next, to check

(A.40), we observe that in B•
(ξ),R, the differential operator on a

2
ξ is ξ

θ(∇Φ−1
(i,k))

α
θ ∂θ. Therefore

G satisfies (A.40) for p = 3/2 from (9.36c) and for p = ∞ from the same inequality and

(8.27). By Corollary 8.2.4, Φ(i,k) satisfies (A.41) and (A.42a) for λ′ = Λq, and by (5.34) at

level q, we have that (A.42b) is satisfied.

To check the high-frequency assumptions, we set

ϱ =
(
P ̸=0ρ

6
ξ

)
, d as in (xvii) , ϑ = δi1i2δi3i4 . . . δid−1id∆

−d/2ϱ , (10.21a)

µ = Υ = Υ′ = λq+1Γ
−4
q , Λ = λq+1Γ

−1
q , C∗,p = Γ6

qλ
α
q+1 , (10.21b)

where α is chosen as in (4.14). Then from Proposition 7.2.1 and standard Littlewood-Paley

theory, we have that (A.43) is satisfied. Next, we have that (A.44) is satisfied by definition

and from (4.24a). In addition, we have that (A.45) is satisfied from (4.21). In order to check

the nonlocal assumptions in Part 4, we first appeal to (4.24a), which gives (A.52). We have
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that (A.53) is satisfied from (5.35b), and (A.54) is satisfied from (4.15) and (5.10). Finally,

we have that (A.55) is satisfied from (4.23b).

We therefore may appeal to the local conclusions (i)–(vi) of Proposition A.3.3 and the

nonlocal outputs from (A.56)–(A.57), from which we have the following. First, we note that

from (iii), we have that (10.12a) is satisfied. Next, abbreviating Gϱ ◦Φ as Ti,j,k,ξ,⃗l,R, we have

from (A.46) and (A.50) that for N ≤ Nfin

4
− d and M ≤ Nfin

5
,

∥∥∥DNDM
t,qHTi,j,k,ξ,⃗l,R

∥∥∥
3/2

≲
∣∣∣supp (η2

i,j,k,ξ,⃗l,R
)
∣∣∣2/3 δq+n̄Γ2j−2

q ΛqΓ
42
q

× λ−1
q+1λ

α+N
q+1 M

(
M,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
∥∥∥DNDM

t,qHTi,j,k,ξ,⃗l,R
∥∥∥
∞

≲ ΓC∞+48
q Λqλ

−1
q+1λ

α+N
q+1 M

(
M,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
,

≲ ΓC∞−9
q+1 λNq+1M

(
M,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
,

where we have used (4.10k) to achieve the last inequality. Notice that from (ii), the support

of divHTi,j,k,ξ,⃗l,R is contained in the support of Ti,j,k,ξ,⃗l,R, which itself is contained in the

support of ηi,j,k,ξ,⃗l,R. From this observation, we have that (10.14a) is satisfied. Finally, we

have that (10.15a) holds after defining a potential ϑ as in (10.21a) and appealing to standard

Littlewood-Paley estimates and (A.49a).

Now we may apply the aggregation Corollaries 8.6.1 and 8.6.3 with H = HTi,j,k,ξ,⃗l,R and

θ = θ2 = 2, p = 3/2 in the first case, or ϖ = ΓC∞−9
q+1 in the second case, to estimate

Sq+1,l
O,R :=

∑
i,j,k,ξ,⃗l

HTi,j,k,ξ,⃗l,R .

From (8.48a) and (8.48b) in the case p = 3/2, and (8.53a) in the case p = ∞, we thus have

that for N,M in the same range as above,

∥∥∥ψi,qDNDM
t,qS

q+1,l
O,R

∥∥∥
3/2

≲ δq+n̄ΛqΓ
50
q λ

−1
q+1λ

α+N
q+1 M

(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ8

q

)
∥∥∥ψi,qDNDM

t,qS
q+1,l
O,R

∥∥∥
∞

≲ ΓC∞−9
q+1 λNq+1M

(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ8

q

)
,
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and so (10.9a) and (10.9b) follow for this term from (4.10f) and (4.24a).

For the nonlocal term, we first note that the left-hand side of the equality in (i) has

zero mean, and so we may ignore the means of individual terms that get plugged into the

inverse divergence since their sum will vanish. Then from (A.56), (A.57), Remark A.3.4, and

Lemma 8.4.4, we have that for N,M ≤ 2Nind,∥∥∥∥∥∥DNDM
t,q

∑
i,j,k,ξ,⃗l

R∗Ti,j,k,ξ,⃗l,R

∥∥∥∥∥∥
∞

≤ λ−5
q+n̄δ

3/2
q+3n̄T

4Nind,t

q+n̄ λNq+1τ
−M
q ,

matching the desired estimate in (10.11).

Finally, we must estimate the terms which include B(ξ),φ from (10.18a). However, we

note that from Lemma 9.3.1 a2(ξ),φ, differs in size relative to a2(ξ),R by a factor of r
−2/3
q , which

is exactly balanced out by the factor of r
2/3
q in (10.18a); the other differences in size actually

make the estimates for a2(ξ),φ stronger than for a2(ξ),R. We therefore may argue exactly as above

(in fact the estimates are slightly better since ρ4
ξ < ρ6

ξ and the power on Γq is smaller), and

we omit further details.

Case 2: Estimates for (10.18b). As before, we fix i, j, k, ξ, l⃗. We apply Proposition A.3.3

with the low-frequency choices

G• = B•
(ξ),φc0r

2
3
q ρ

4
ξ(Φ(i,k)) , CG,3/2 =

∣∣∣supp η2
i,j,k,ξ,⃗l,φ

∣∣∣2/3 δq+n̄Γ2j+25
q Λq , CG,∞ = ΓC∞+35

q Λq ,

(10.22a)

λ = λq+1Γ
−1
q , ν = τ−1

q Γi+13
q , Φ = Φ(i,k) , (10.22b)

as well as the choices from (10.20). The estimates in (A.40) and the assumption in (A.39)

hold due to Proposition 7.2.1 and the estimates for B(ξ),φr
2/3
q from Case 1. (A.41), (A.42a),

and (A.42b) are satisfied as in the previous substep.
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To check the high-frequency assumptions, we set

ϱ = P ̸=0

(∑
I

(ζIξ)
4

)
, d as in (xviii) , ϑ = δi1i2δi3i4 . . . δid−1id∆

−d/2ϱ , (10.23a)

µ = Υ = Υ′ = Λ = λq+n̄/2 , C∗,3/2 = C∗,∞ = λαq+n̄/2 , (10.23b)

where α is chosen as in (4.14). Then from Definition 7.2.4, standard Littlewood-Paley theory,

and the same inequalities involving Ndec as in Case 1, we have that (A.43) is satisfied, as well

as the other high-frequency assumptions in (i)–(iv). The nonlocal assumptions are identical

to those of Case 1, and are satisfied trivially.

We therefore may appeal to the local conclusions (i)–(vi) of Proposition A.3.3 and (A.56)–

(A.57), from which we have the following. First, we note that from (iii), we have that (10.12a)

is satisfied. Next, abbreviating Gϱ ◦Φ as Ti,j,k,ξ,⃗l,φ, we have from (A.46) and (A.50) that for

N ≤ Nfin

4
− d and M ≤ Nfin

5
,

∥∥∥DNDM
t,qHTi,j,k,ξ,⃗l,φ

∥∥∥
3/2

≲
∣∣∣supp (η2

i,j,k,ξ,⃗l,φ
)
∣∣∣2/3 δq+n̄Γ2j−2

q ΛqΓ
50
q

× λ−1
q+n̄/2λ

N+α
q+n̄/2M

(
M,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
∥∥∥DNDM

t,qHTi,j,k,ξ,⃗l,φ
∥∥∥
∞

≲ ΓC∞+60
q Λqλ

−1
q+n̄/2λ

N+α
q+n̄/2M

(
M,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
,

≲ ΓC∞−9
q+n̄/2 λ

N
q+n̄/2M

(
M,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
,

where we have used (4.10k) to achieve the last inequality. Notice that from (ii), the support

of divHTi,j,k,ξ,⃗l,φ is contained in the support of Ti,j,k,ξ,⃗l,φ, which itself is contained in the

support of ηi,j,k,ξ,⃗l,φ. From this observation, we have that (10.14a) is satisfied. Finally, we

have that (10.15b) is satisfied from (A.49a) after arguing in a manner similar to that in Case

1.

Now we may apply the aggregation Corollaries 8.6.1 and 8.6.3 as in Case 1 to estimate

S
q+n̄/2,l
O :=

∑
i,j,k,ξ,⃗l

HTi,j,k,ξ,⃗l,φ .
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We find that for N,M in the same range as above,

∥∥∥ψi,qDNDM
t,qS

q+n̄/2,l
O

∥∥∥
3/2

≲ δq+n̄ΛqΓ
60
q λ

−1
q+n̄/2λ

N+α
q+n̄/2M

(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ8

q

)
∥∥∥ψi,qDNDM

t,qS
q+n̄/2,l
O

∥∥∥
∞

≲ ΓC∞−9
q+1 λNq+n̄/2M

(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ8

q

)
,

and so (10.9a) and (10.9b) follow for this term from (4.10f) and (4.24a). Finally, we must

verify (10.10) for S
q+n̄/2,l
O . This however follows from (iii), which asserts that the support of

S
q+n̄/2,l
O is contained in the support of ∪(ξ)a(ξ),φρ

φ
(ξ) ◦ Φ(i,k), and (i) of Lemma 9.2.2. Finally,

the nonlocal conclusions for S
q+n̄/2,l
O follow in much the same way as in Case 1, and we omit

further details.

Case 3: Estimates for (10.18c), (10.18d), and (10.18e) and ⋄ = R. Fix i, j, k, ξ, l⃗, I and set

G• = B•
ξ,i,j,k,⃗l,R

(
(ρR(ξ))

2(ζI,Rξ )2
)
◦ Φ(i,k) , Φ = Φ(i,k) , ν = τ−1

q Γi+13
q ,

CG,3/2 =
∣∣∣supp (η2

i,j,k,ξ,⃗l,R
(ζI,Rξ )2)

∣∣∣2/3 δq+n̄Γ2j+38
q Λq + λ−10

q+n̄ , CG,∞ = ΓC∞+40
q Λq , λ = λq+n̄/2 ,

(10.24)

as well as the choices from (10.20). We then have that (A.39) is satisfied as in the last step.

Next, we have that (A.40) is satisfied by combining the corresponding bounds for G• from

the last step with the bounds for ζI,Rξ from Definition 7.2.4.1 The bounds in (A.41)–(A.42b)

hold as before without any modifications. Finally, we have that the nonlocal assumptions in

(A.52)–(A.55) are satisfied for the same reasons as the previous cases. At this point, we split

the argument into subcases based on the differing synthetic Littlewood-Paley projectors in

(10.18d)–(10.18f).

Case 3a: Estimates for (10.18c) and ⋄ = R. In order to set up the high-frequency

1We have added the extra λ−10
q+n̄ in the CG,3/2 bound in order to facilitate the creation of a pressure

increment later.
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assumptions for this case, we set

µ = λq+n̄/2Γq = λq+n̄rq , ϱ = P̃ξq+n̄/2+1P ̸=0(ϱ
I
(ξ),R)

2 , ϑ as in Lemma 7.3.3 , d as in item (xvii)

C∗,3/2 = λαq+n̄/2+1 , C∗,∞ =

(
λq+n̄/2+1

λq+n̄rq

)2

λαq+n̄/2+1 , Υ = Υ′ = µ, Λ = λq+n̄/2+1 ,

where α is chosen as in (4.14). We then have that (A.43) is satisfied by appealing to esti-

mate (7.37a) from Lemma 7.3.3 with q = 1 and p = 3/2, where we note that the assumption

in (7.35) is satisfied with Cρ,q = 1 and λ = λq+n̄ from Proposition 7.1.5. We have in addition

that (A.44) and (A.45) are satisfied by definition and by appealing to the same parameter

inequalities as the previous steps. Finally, we have that the nonlocal assumption in (A.55)

is satisfied from (4.23b).

We therefore may appeal to the local conclusions (i)–(vi) of Proposition A.3.3 and (A.56)–

(A.57), from which we have the following. First, we note that from item (iv), (10.12b) is

satisfied. Next, abbreviating Gϱ ◦ Φ as Ti,j,k,ξ,⃗l,I,R, we have from (A.46) and (A.50) that for

N ≤ Nfin

4
− d and M ≤ Nfin

5
,

∥∥∥DNDM
t,qHTi,j,k,ξ,⃗l,I,R

∥∥∥
3/2

≲

(∣∣∣supp (η2
i,j,k,ξ,⃗l,R

(ζI,Rξ )2
)∣∣∣2/3 δq+n̄Γ2j+39

q Λq + λ−10
q+n̄

)
×
(
λq+n̄/2+1

λq+n̄/2

)2/3

λ−1
q+n̄/2λ

N+α
q+n̄/2+1M

(
M,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
∥∥∥DNDM

t,qHTi,j,k,ξ,⃗l,I,R
∥∥∥
∞

≲ ΓC∞+40
q

(
λq+n̄/2+1

λq+n̄/2

)2

Λqλ
−1
q+n̄/2λ

N+α
q+n̄/2+1M

(
M,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
,

≤ ΓC∞−9
q+n̄/2 λ

N
q+n̄/2+1M

(
M,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
.

We have used (4.13a) to simplify the second inequality. Notice that from (ii), the support

of divHTi,j,k,ξ,⃗l,I,R is contained in the support of Ti,j,k,ξ,⃗l,I,R, which itself is contained in the

support of ηi,j,k,ξ,⃗l,Rζ
I,R
ξ . From this observation, we have that (10.14b) is satisfied. Finally,

we have that (10.15c) is satisfied from (A.49a) and Lemma 7.3.3 applied with q = p = 3/2,∞.
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Now we may again apply the aggregation Corollaries 8.6.1 and 8.6.3 to estimate

S
q+n̄/2+1,l
O,R :=

∑
i,j,k,ξ,⃗l,I

HTi,j,k,ξ,⃗l,I,R .

From (8.48b) and (8.53b), we then have that for N,M in the same range as above,

∥∥∥ψi,qDNDM
t,qS

q+n̄/2+1,l
O,R

∥∥∥
3/2

≲ δq+n̄ΛqΓ
50
q

(
λq+n̄/2+1

λq+n̄/2

)2/3

(λq+n̄rq)
−1

× λNq+n̄/2+1M
(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ9

q

)
,

≤ Γ−10
q+n̄/2+1δq+n̄/2+1+n̄λ

N
q+n̄/2+1M

(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ9

q

)
,∥∥∥ψi,qDNDM

t,qS
q+n̄/2+1,l
O,R

∥∥∥
∞

≲ ΓC∞−9
q+n̄/2+1λ

N
q+n̄/2+1M

(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ9

q

)
,

where we have used (4.27d) to simplify the first inequality. Finally, the nonlocal conclusions

follow in much the same way as in the previous cases, and so we omit further details.

Case 3b: Estimates for (10.18d) and (10.18e) and ⋄ = R. In order to set up the high-

frequency assumptions for this case, we consider for the moment the cases whenm > q+n̄/2+2

and set

µ = λq+n̄/2Γq = λq+n̄rq , ϱ = P̃ξ(m−1,m](ϱ
I
(ξ),R)

2 , ϑ as in Lemma 7.3.4 , d as in item (xvii)

C∗,3/2 =
(
min(λm, λq+n̄)

λq+n̄rq

)2/3

, C∗,∞ =

(
min(λm, λq+n̄)

λq+n̄rq

)2

λαq+n̄/2+1 ,

Υ = λm−1 , Υ′ = λm , Λ = min(λm, λq+n̄) . (10.25)

We then have that (A.43) is satisfied by appealing to (7.40b) with q = 1 and p = 3/2,∞; we

note that (7.39) is satisfied for q = 1 and Cρ,q = 1 and λ = λq+n̄ as in the last step. Next,

we have that (A.44)–(A.45) are satisfied by definition and immediate computation and the

same inequalities as in the previous steps. Finally, we have that the nonlocal assumption in

(A.55) is satisfied from (4.23b).

In the case of m = q+ n̄/2+2, we have to take an extra step to minimize the gap between
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Υ and Υ′ in order to ensure that the second inequality in (A.44) is satisfied. Towards this

end, we decompose the synthetic Littlewood-Paley operator further as

P̃ξ(q+n̄/2+1,q+n̄/2+2] := P̃ξ(q+n̄/2+1,q+n̄/2+3/2] + P̃ξ(q+n̄/2+3/2,q+n̄/2+2] , (10.26)

where the q + n̄/2 + 3/2 portion of the projector correponds to the frequency which is the

geometric means of λq+n̄/2+1 and λq+n̄/2+2. This extra division helps us minimize the gap

between Υ and Υ′. Then we can set

µ = λq+n̄/2Γq = λq+n̄rq , ϱ = P̃ξ•(ϱI(ξ),R)2 , ϑ as in Lemma 7.3.4 , d as in item (xvii)

C∗,3/2 =
(
λq+n̄/2+2

λq+n̄rq

)2/3

, C∗,∞ =

(
λq+n̄/2+2

λq+n̄rq

)2

λαq+n̄/2+1 ,

Υ = λq+n̄/2+1 , Υ′ = λq+n̄/2+3/2 if • corresponds to the first projector ,

Υ = λq+n̄/2+3/2 , Υ′ = λq+n̄/2+2 if • corresponds to the second projector .

We then have that (A.43) is satisfied by appealing to (7.40b) with q = 1 and p = 3/2,∞ as

before. Next, we have that (A.44)–(A.45) are satisfied by definition and immediate compu-

tation (here we crucially use the extra subdivision to ensure that the second inequality in

(A.44) holds) and the same inequalities as in the previous steps. Finally, we again have that

the nonlocal assumption in (A.55) is satisfied from (4.23b).

We therefore may appeal to the local conclusions (i)–(vi) of Proposition A.3.3 and (A.56)–

(A.57), from which we have the following. First, we note that from item (iv), (10.12b) is

satisfied. Next, abbreviating Gϱ ◦ Φ as Ti,j,k,ξ,⃗l,I,R, we have from (A.46) and (A.50) that for
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N ≤ Nfin

4
− d and M ≤ Nfin

5
,

∥∥∥DNDM
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q
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,

where we have used (4.13a) to achieve the last inequality. Notice that from (ii), the sup-

port of divHTi,j,k,ξ,⃗l,I,R is contained in the support of Ti,j,k,ξ,⃗l,I,R, which itself is contained

in the support of ηi,j,k,ξ,⃗l,Rζ
I,R
ξ . From this observation, we have that (10.14b) is satisfied.

Furthermore, we have that (10.15d) is satisfied from (A.49a) and Lemma 7.3.3 applied with

q = p = 3/2,∞. Finally, we have that (10.16) is satisfied due to item (ii) and (7.40c). We

note also that (10.10) follows from (10.16) and (9.24).

Now we may again apply the aggregation Corollaries 8.6.1 and 8.6.3 to estimate

Sm,lO,R :=
∑

i,j,k,ξ,⃗l,I

HTi,j,k,ξ,⃗l,I,R .

From (8.48b) and (8.53b), we then have that for N,M in the same range as above,

∥∥∥ψi,qDNDM
t,qS

m,l
O,R

∥∥∥
3/2

≲ δq+n̄ΛqΓ
50
q

(
min(λm, λq+n̄)

λq+n̄rq

)2/3

λ−2
m−1

×min(λm, λq+n̄)
N+1M

(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ9

q

)
≲ Γ−10

m δm+n̄(min(λm, λq+n̄))
NM

(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ9

q

)
,∥∥∥ψi,qDNDM

t,qS
m,l
O,R

∥∥∥
∞

≲ ΓC∞−9
m (min(λm, λq+n̄))

NM
(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ9

q

)
where we have used (4.27d) to simplify the first inequality. Finally, the nonlocal conclusions

follow in much the same way as in the previous cases, and so we omit further details.
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Case 4: Estimates for (10.18c), (10.18d), and (10.18e) and ⋄ = φ. Estimates for these

follow from similar arguments as in the cases when ⋄ = R. Indeed, the only significant

differences are that the estimates for a2(ξ),φ than those of a2(ξ),R are worse by a factor of r
−2/3
q

from Lemma 9.3.1, while the estimates for ϱ encoded in the constants C∗,3/2 and C∗,∞ are

better by a factor of r
2/3
q from Proposition 7.1.6. Therefore, to compensate such loss or gain,

we define G• = B•
ξ,i,j,k,⃗l,φ

(
(ρφ(ξ))

2(ζI,φξ )2
)
◦ Φ(i,k)r

2/3
q with the extra factor r

2/3
q and define ϱ

analogous to the case ⋄ = R but with the extra factor r
−2/3
q . Then, the same choice of

parameters and functions as in the case of ⋄ = R will lead to the desired estimates. We omit

further details.

Case 5: Estimates for (10.18f). Here we apply Proposition A.3.3 with p = ∞ and the

following choices. The low-frequency assumptions in Part 1 are exactly the same as the L∞

low-frequency assumptions in Case 3 and Case 4. For the high-frequency assumptions, we

recall the choice of N∗∗ from (xvii) and set

ϱR = (Id− P̃ξq+n̄+1)P ̸=0

(
ϱI(ξ),R

)2
, ϱφ = (Id− P̃ξq+n̄+1)P ̸=0

(
ϱI(ξ),φ

)2
r−

2/3
q , ϑi1i2...id−1id

⋄ = δi1i2...id−1id∆−d/2ϱ⋄,

Λ = λq+n̄ , µ = Υ = Υ′ = λq+n̄/2Γq , , C∗,∞ =

(
λq+n̄
λq+n̄+1

)N∗∗

λ3q+n̄ , Ndec as in (xv) , d = 0 .

Then we have that item (i) is satisfied by definition, item (ii) is satisfied as in the previous

steps, (A.43) is satisfied using Propositions 7.1.5 and 7.1.6 and (7.37b) from Lemma 7.3.3,

(A.44) is satisfied by definition and as in the previous steps, and (A.45) is satisfied by (4.21).

For the nonlocal assumptions, we choose M◦, N◦ = 2Nind so that (A.52)–(A.54) are satisfied

as in Case 1, and (A.55) is satisfied from (4.23c). We have thus satisfied all the requisite

assumptions, and we therefore obtain nonlocal bounds very similar to those from the previous

steps, which are consistent with (10.11) at level q + n̄. We omit further details.

Lemma 10.2.3 (Low shells have no pressure increment). The errors Sq+1
O and S

q+n̄/2
O

require no pressure increment as they are already dominated by anticipated pressure. More
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precisely, we have that for N,M ≤ Nfin/10,

∣∣∣ψi,qDNDM
t,qS

q+1,l
O

∣∣∣ ≤ Γ−100
q+1 π

q+1
q λNq+1M

(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ8

q

)
, (10.27a)∣∣∣ψi,qDNDM

t,qS
q+n̄/2,l
O

∣∣∣ ≤ Γ−100
q+n̄/2π

q+n̄/2
q λNq+n̄/2M

(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ8

q

)
. (10.27b)

Proof. We first note that the application of Proposition A.3.3 in Case 1 of the proof of

Lemma 10.2.1 can be supplemented with Remark A.3.9. Specifically, we may set

π = πℓΓ
40
q Λq , (10.28)

so that (A.59) follows from the definition of B(ξ),R in (10.7) and (9.38a). Then from (A.47),

(A.49a), and (A.60), we have that

∣∣∣DNDM
t,qHTi,j,k,ξ,⃗l,R

∣∣∣ ≲ πℓΓ
50
q Λqλ

−1
q+1λ

N
q+1M

(
M,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
.

We pause also to note that (10.13) in this case follows from (A.47) and (A.60). Now applying

the aggregation Corollary 8.6.3 with H = HTi,j,k,ξ,⃗l,R, ϖ = πℓΓ
50
q Λq, and p = 1 along with

(5.20), (6.6), and (4.10f) gives (10.27a).

The proof of (10.27b) follows similarly from supplementing Case 2 of the proof of

Lemma 10.2.1 with pointwise assumptions. We omit further details.

Lemma 10.2.4 (Pressure increment). For every q + n̄/2 + 1 ≤ m ≤ q + n̄, there exists a

function σSm
O
= σ+

Sm
O
− σ−

Sm
O

such that the following hold.
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(i) We have that

∣∣∣ψi,qDNDM
t,qS

m,l
O

∣∣∣ < (σ+
Sm
O
+ δq+3n̄

)
(λmΓq)

N M
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
(10.29a)∣∣∣ψi,qDNDM

t,qσ
+
Sm
O

∣∣∣ < (σ+
Sm
O
+ δq+3n̄

)
(λmΓq)

N M
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
(10.29b)∥∥∥ψi,qDNDM

t,qσ
+
Sm
O

∥∥∥
3/2

≤ Γ−9
m δm+n̄ (λmΓq)

N M
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
(10.29c)∥∥∥DNDM

t σ
+
Sm
O

∥∥∥
∞

≤ ΓC∞−9
q+1 (λmΓq)

NM
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
(10.29d)∣∣∣ψi,qDNDM

t,qσ
−
Sm
O

∣∣∣ ≲ Γ−100
q+n̄/2π

q+n̄/2
q

(
λq+n̄/2Γq

)N M
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
(10.29e)

for all N,M < Nfin/100.

(ii) For m ≥ q + n̄/2 + 2, we have that

B
(
supp ŵq′ , λ

−1
q′ Γq′+1

)
∩ supp (σ+

Sm
O
) = ∅ ∀q + 1 ≤ q′ ≤ m− 1

B
(
supp ŵq′ , λ

−1
q′ Γq′+1

)
∩ supp (σ−

Sm
O
) = ∅ ∀q + 1 ≤ q′ ≤ q + n̄/2 .

(10.30)

(iii) Define

mσSm
O
(t) =

ˆ t

0

〈
Dt,qσSm

O

〉
(s) ds . (10.31)

Then we have that

∣∣∣∣ dM+1

dtM+1
mσSm

O

∣∣∣∣ ≤ (max(1, T ))−1δ2q+3n̄M
(
M,Nind,t, τ

−1
q ,T−1

q+1

)
(10.32)

for 0 ≤M ≤ 2Nind.

Proof of Lemma 10.2.4. We follow the case numbering from Lemma 10.2.1. Since we have

shown in Lemma 10.2.3 that the low shells have no pressure increment, we only need to ana-

lyze Cases 3 and 4. Since the only difference between Case 3 and Case 4 is the rebalancing

of r
2/3
q , we shall only hint at the proofs in Case 4 and focus on the case ⋄ = R. We divide
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into subcases 3a and 3b and apply Proposition A.4.4.

Case 3a: pressure increment for (10.18c) and ⋄ = R. Recall that Part 1 of Proposition A.4.4

requires preliminary assumptions which are the same as those from the inverse divergence,

along with pointwise bounds corresponding to Remark A.3.9. Since we have already chosen

parameters corresponding to the inverse divergence, we simply set π = πℓΓ
50
q Λq, which verifies

(10.13) in this case. Then the assumption in (A.59) follows from the pointwise estimates for

B(ξ),R used in Lemma 10.2.3 along with Proposition 7.2.1, Lemma 8.4.3, and Corollary 8.2.4

to estimate
(
(ρR(ξ))

2(ζI,Rξ )2
)
◦ Φ(i,k).

In order to check the additional assumptions from Part 2, we set

N∗∗ as in (xvii) , Ncut,x,Ncut,t as in (xi) , Γ = Γ
1/2
q , δtiny = δ2q+3n̄ , (10.33)

m̄ = 1 , µ0 = λq+n̄/2+1Γ
−1
q , µm̄ = µ1 = λq+n̄/2+1Γ

2
q .

Then (A.179a)–(A.179b) hold from (4.24a), (A.179c) holds from (4.23a), (A.180a) holds

from (4.17a), (A.180b) holds from (4.17b), (A.180c) holds from (4.24a), (A.180d) holds from

(4.21), (A.181a) holds by definition, (A.181b) holds by definition and immediate computa-

tion, (A.181c) holds due to (4.23b), and (A.181d) holds due to (4.23c).

At this point, we appeal to the conclusions from Part 3 to construct a pressure increment

and delineate its properties. First, from (A.182)–(A.183) and (4.24a), we have that there

exists a pressure increment σHT q+n̄/2+1

i,j,k,ξ,⃗l,I,R

= σ+

HT q+n̄/2+1

i,j,k,ξ,⃗l,I,R

− σ−
HT q+n̄/2+1

i,j,k,ξ,⃗l,I,R

such that for N,M ≤

Nfin/7,

∣∣∣DNDM
t,qHT

q+n̄/2+1

i,j,k,ξ,⃗l,I,R

∣∣∣ ≲ (σ+

HT q+n̄/2+1

i,j,k,ξ,⃗l,I,R

+ δ2q+3n̄

)
(λq+n̄/2+1Γq)

NM
(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ9

q

)
.

(10.34)

From (A.48) and (A.187), we have that

supp

(
σ+

HT q+n̄/2+1

i,j,k,ξ,⃗l,I,R

)
⊆ supp

(
HT q+n̄/2+1

i,j,k,ξ,⃗l,I,R

)
⊆ supp

(
a(ξ),R

(
ρR(ξ)ζ

I
ξ

)
◦ Φ(i,k)

)
. (10.35)
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Now define

σ±
S
q+n̄/2+1
O,R

=
∑

i,j,k,ξ,⃗l,I

σ±
HT q+n̄/2+1

i,j,k,ξ,⃗l,I,R

. (10.36)

Then (9.22) gives that (10.30) is satisfied for m = q + n̄/2 + 1. From (10.34), (8.45), (5.8),

and Corollary 8.6.3 with

H = HT q+n̄/2+1

i,j,k,ξ,⃗l,I,R
, ϖ =

[
σ+

HT q+n̄/2+1

i,j,k,ξ,⃗l,I,R

+ δ2q+3n̄

]
1supp a(ξ),RρR

(ξ)
ζI
ξ
, p = 1 ,

we have that for N,M ≤ Nfin/7,

∣∣∣∣∣∣ψi,qDNDM
t,q

∑
i′,j,k,ξ,⃗l,I

HT q+n̄/2+1

i′,j,k,ξ,⃗l,I,R

∣∣∣∣∣∣ ≲
(
σ+

S
q+n̄/2+1
O,R

+ δ2q+3n̄

)
× (λq+n̄/2+1Γq)

NM
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
.

(10.37)

We therefore have that (10.29a) is satisfied for m = q + n̄/2 + 1. From (A.184), (4.24a), and

(4.18), we have that for N,M ≤ Nfin/7,

∣∣∣∣DNDM
t,qσ

+

HT q+n̄/2+1

i,j,k,ξ,⃗l,I,R

∣∣∣∣ ≲ (σ+

HT q+n̄/2+1

i,j,k,ξ,⃗l,I,R

+ δ2q+3n̄

)
(λq+n̄/2+1Γq)

NM
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
.

(10.38)

From (10.38), (8.45), (5.8), and Corollary 8.6.3 with

H = σ+

HT q+n̄/2+1

i,j,k,ξ,⃗l,I,R

, ϖ =
[
H + δ2q+3n̄

]
1supp a(ξ),RρR

(ξ)
ζI
ξ
, p = 1 ,

we have that (10.29b) is satisfied for m = q + n̄/2 + 1.
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Next, from (A.185), we have that

∥∥∥∥σ±
HT q+n̄/2+1

i,j,k,ξ,⃗l,I,R

∥∥∥∥
3/2

≲

(∣∣∣supp (η2
i,j,k,ξ,⃗l,R

(ζI,Rξ )2)
∣∣∣2/3 δq+n̄Γ2j+38

q Λq + λ−10
q+n̄

)(
λq+n̄/2+1

λq+n̄rq

)2/3

λαq+n̄/2+1λ
−1
q+n̄/2 .

Now from (10.36), (4.27d), and Corollary 8.6.1 with θ = 2, θ1 = 0, θ2 = 2, H = σ±
HT q+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

,

and p = 3/2, we have that

∥∥∥∥ψi,qσ±
S
q+n̄/2+1
O,R

∥∥∥∥
3/2

≲ δq+n̄+n̄/2+1Γ
−10
q+n̄/2+1 .

Combined with (10.29b), this verifies (10.29c) at level q + n̄/2 + 1. Arguing now for p = ∞

from (A.185), we have that

∥∥∥∥σ±
HT q+n̄/2+1

i,j,k,ξ,⃗l,I,R

∥∥∥∥
∞

≲ ΓC∞+40
q Λq

(
λq+n̄/2+1

λq+n̄rq

)2

λαq+n̄/2+1λ
−1
q+n̄/2 .

Now from (10.36), (4.13a), and Corollary 8.6.3 with H = σ±
HT q+n̄/2+1

i,j,k,ξ,⃗l,I,R

, ϖ = 1supp a(ξ),RρR
(ξ)

ζI
ξ

and p = 1, we have that

∥∥∥∥ψi,qσ±
S
q+n̄/2+1
O,R

∥∥∥∥
∞

≲ ΓC∞+40
q Λq

(
λq+n̄/2+1

λq+n̄rq

)2

λαq+n̄/2+1λ
−1
q+n̄/2 ≤ ΓC∞−100

q+n̄/2+1 .

Combined again with (10.29b), this verifies (10.29d) at level q + n̄/2 + 1.

Finally, from (A.186), (4.18), (4.24a), (4.27e), (6.6), and (5.20), we have that for N,M ≤

Nfin/7,

∣∣∣∣DNDM
t,qσ

−
HT q+n̄/2+1

i,j,k,ξ,⃗l,I,R

∣∣∣∣ ≲ (λq+n̄/2+1

λq+n̄rq

)2/3

λαq+n̄/2+1λ
−1
q+n̄/2πℓΓ

50
q Λq

× (λq+n̄/2Γq)
NM

(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
≤ Γ−100

q πq+
n̄/2

q (λq+n̄/2Γq)
NM

(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
.

Applying (10.36), Corollary 8.6.3 with H = σ−
HT q+n̄/2+1

i,j,k,ξ,⃗l,I,R

, ϖ = Γ−100
q π

q+n̄/2
q 1supp a(ξ),RρR

(ξ)
ζI
ξ
and

p = 1, and (6.6), we have that (10.29e) is verified at level m = q + n̄/2 + 1. The estimate

186



for mσSm
O

in item (iii) in these cases follows from (A.193), (xvi), and a large choice of a∗ in

item (xix) to ensure that we can gain the advantageous prefactor of max(1, T )−1.

Case 3b: pressure increment for (10.18d) and (10.18e) and ⋄ = R. We set π = πℓΓ
50
q Λq

as in the previous case since the low-frequency portion of the error term is identical. Since

all the preliminary assumptions in Part 1 are now satisfied, we need to check the additional

assumptions from Part 2. In order to do so, we set

N∗∗ as in (xvii) , Ncut,x,Ncut,t as in (xi) , Γ = Γ
1/2
q , δtiny = δ2q+3n̄ , µ = λq+n̄/2Γq ,

µ0 = λq+n̄/2+1 , µ1 = λq+n̄/2+3/2Γ
2
q ,

µm′ = λq+n̄/2+m′Γ2
q if 2 ≤ m′ ≤ n̄/2 ,

m̄ = 1 for the first projector in (10.26) if m = q + n̄/2 + 2 ,

m̄ = 2 for the second projector in (10.26) if m = q + n̄/2 + 2 ,

m̄ = m− q − n̄/2 if m > q + n̄/2 + 2 . (10.39)

Then (A.179a)–(A.180a) hold as in the previous case, (A.180b) holds from (4.17b), (A.180c)–

(A.180d) hold as in the previous case, (A.181a) holds by definition, (A.181b) holds by defi-

nition and immediate computation, (A.181c) holds due to (4.23b), and (A.181d) holds due

to (4.23c).

At this point, we appeal to the conclusions from Part 3 to construct a pressure increment

and delineate its properties. First, from (A.182)–(A.183) and (4.24a), we have that for

q + n̄/2 + 2 ≤ m ≤ q + n̄+ 1, there exists a pressure increment σHTm
i,j,k,ξ,⃗l,I,R

= σ+
HTm

i,j,k,ξ,⃗l,I,R

−

σ−
HTm

i,j,k,ξ,⃗l,I,R

such that for N,M ≤ Nfin/7,

∣∣∣DNDM
t,qHTmi,j,k,ξ,⃗l,I,R

∣∣∣ ≲ (σ+
Htm

i,j,k,ξ,⃗l,I,R

+ δ2q+3n̄

)
(min(λm, λq+n̄)Γq)

NM
(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ9

q

)
.

(10.40)
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From (A.48), (A.187), and (7.40c), we have that

supp

(
σ+
HTm

i,j,k,ξ,⃗l,I,R

)
⊆ supp

(
HTm

i,j,k,ξ,⃗l,I,R

)
⊆ supp

(
a(ξ),R

(
ρR(ξ)ζ

I
ξ

)
◦ Φ(i,k)

)
∩B

(
supp ϱI(ξ),R, λ

−1
m−1

)
.

(10.41)

Now define

σ±
Sm
O,R

=
∑

i,j,k,ξ,⃗l,I

σ±
HTm

i,j,k,ξ,⃗l,I,R

if m ̸= q + n̄ , (10.42a)

σ±
Sm
O,R

=

q+n̄+1∑
m̃=q+n̄

∑
i,j,k,ξ,⃗l,I

σ±
HTm′

i,j,k,ξ,⃗l,I,R

if m = q + n̄ . (10.42b)

Then (9.22) and (9.24) give that (10.30) is satisfied for q + n̄/2 + 2 ≤ m ≤ q + n̄. From

(10.40), (8.45), (5.8), and Corollary 8.6.3 with

H = HTm
i,j,k,ξ,⃗l,I,R

, ϖ =

[
σ+
HTm

i,j,k,ξ,⃗l,I,R

+ δ2q+3n̄

]
1supp a(ξ),RρR

(ξ)
ζI
ξ
, p = 1 ,

we have that for N,M ≤ Nfin/7,

∣∣∣∣∣∣ψi,qDNDM
t,q

∑
i′,j,k,ξ,⃗l,I

HTm
i′,j,k,ξ,⃗l,I,R

∣∣∣∣∣∣ ≲
(
σ+
Sm
O,R

+ δ2q+3n̄

)
× (min(λm, λq+n̄)Γq)

NM
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
.

(10.43)

We therefore have that (10.29a) is satisfied for q + n̄/2 + 2 ≤ m ≤ q + n̄. From (A.184),

(4.24a), and (4.18), we have that for N,M ≤ Nfin/7,

∣∣∣∣DNDM
t,qσ

+
HTm

i,j,k,ξ,⃗l,I,R

∣∣∣∣ ≲ (σ+
HTm

i,j,k,ξ,⃗l,I,R

+ δ2q+3n̄

)
(min(λm, λq+n̄)Γq)

NM
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
.

(10.44)
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From (10.44), (8.45), (5.8), and Corollary 8.6.3 with

H = σ+
HTm

i,j,k,ξ,⃗l,I,R

, ϖ =
[
H + δ2q+3n̄

]
1supp a(ξ),RρR

(ξ)
ζI
ξ
, p = 1 ,

we have that (10.29b) is satisfied for q + n̄/2 + 2 ≤ m ≤ q + n̄.

Next, from (A.185), we have that

∥∥∥∥σ±
HTm

i,j,k,ξ,⃗l,I,R

∥∥∥∥
3/2

≲

(∣∣∣supp (η2
i,j,k,ξ,⃗l,R

(ζI,Rξ )2)
∣∣∣2/3 δq+n̄Γ2j+38

q Λq + λ−10
q+n̄

)(
min(λm, λq+n̄)

λq+n̄rq

)2/3

λ−2
m−1λm .

Now from (10.42), (4.27d), and Corollary 8.6.1 with θ = 2, θ1 = 0, θ2 = 2, H = σ±
HTm

i,j,k,ξ,⃗l,I,⋄
,

and p = 3/2, we have that

∥∥∥ψi,qσ±
Sm
O,R

∥∥∥
3/2

≲ δm+n̄Γ
−10
m .

Combined with (10.29b), this verifies (10.29c) at level m. Arguing now for p = ∞ from

(A.185), we have that

∥∥∥∥σ±
HTm

i,j,k,ξ,⃗l,I,R

∥∥∥∥
∞

≲ ΓC∞+40
q Λq

(
min(λm, λq+n̄)

λq+n̄rq

)2

λαmλ
−2
m−1λm .

Now from (10.42), (4.13a), and Corollary 8.6.3 with H = σ±
HTm

i,j,k,ξ,⃗l,I,R

, ϖ = 1supp a(ξ),RρR
(ξ)

ζI
ξ

and p = 1, we have that

∥∥∥ψi,qσ±
Sm
O,R

∥∥∥
∞

≲ ΓC∞+40
q Λq

(
min(λm, λq+n̄)

λq+n̄rq

)2

λαmλ
−1
q+n̄/2 ≤ ΓC∞−100

m .

Combined again with (10.29b), this verifies (10.29d) at level m.

Finally, from (A.186), (4.18), (4.24a), (4.27e), (6.6), and (5.20), we have that for N,M ≤
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Nfin/7,

∣∣∣∣DNDM
t,qσ

−
HTm

i,j,k,ξ,⃗l,I,R

∣∣∣∣ ≲ (min(λm, λq+n̄)

λq+n̄rq

)2/3

λ−2
m−1λmπℓΓ

50
q Λq

×min(λm, λq+n̄)Γq)
NM

(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
≤ Γ−100

q πq+
n̄/2

q (λq+n̄/2Γq)
NM

(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
.

Applying (10.42), Corollary 8.6.3 with H = σ−
HTm

i,j,k,ξ,⃗l,I,R

, ϖ = Γ−100
q π

q+n̄/2
q 1supp a(ξ),RρR

(ξ)
ζI
ξ
and

p = 1, and (6.6), we have that (10.29e) is verified at levels q + n̄/2 + 2 ≤ m ≤ q + n̄. The

bounds in item (iii) follow much as in the previous case, and we omit further details.

Case 4: pressure increment for ⋄ = φ. As we noted in the beginning of the proof, the

only differences between ⋄ = φ and ⋄ = R arise from the redistribution of r
2/3
q . We may

therefore define σSm
O,φ

for q + n̄/2 + 1 ≤ m ≤ q + n̄ and set

σ±
Sm
O
= σ±

Sm
O,R

+ σ±
Sm
O,φ

,

from which (10.29a)–(10.32) follow.

Lemma 10.2.5 (Pressure current). For every m ∈ {q+ n̄/2+1, . . . , q+ n̄}, there exists a

current error ϕSm
O

associated to the pressure increment σSm
O

defined by Lemma 10.2.4 which

satisfies the following properties.

(i) We have the decompositions and equalities

ϕSm
O
= ϕ∗

Sm
O
+

m∑
m′=q+n̄/2+1

ϕm
′

Sm
O
, ϕm

′

Sm
O
= ϕm

′,l
Sm
O

+ ϕm
′,∗

Sm
O

(10.45a)

divϕSm
O
= Dt,qσSm

O
− ⟨Dt,qσSm

O
⟩ . (10.45b)
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(ii) For q + n̄/2 + 1 ≤ m′ ≤ m and N,M ≤ 2Nind,

∣∣∣ψi,qDNDM
t,qϕ

m′,l
Sm
O

∣∣∣ < Γ−100
m′

(
πm

′

q

)3/2

r−1
m′ (λm′Γ2

m′)MM
(
M,Nind,t, τ

−1
q Γi+17

q ,T−1
q Γ9

q

)
(10.46a)∥∥∥DNDM

t,qϕ
m′,∗
Sm
O

∥∥∥
∞
+
∥∥∥DNDM

t,qϕ
∗
Sm
O

∥∥∥
∞
< T

2Nind,t

q+n̄ δ
3/2
q+3n̄(λmΓ

2
m)

Nτ−Mq . (10.46b)

(iii) For all q + n̄/2 + 1 ≤ m′ ≤ m and all q + 1 ≤ q′ ≤ m′ − 1,

B
(
supp ŵq′ , 1/2λ

−1
q′ Γq′+1

)
∩ supp

(
ϕm

′,l
Sm
O

)
= ∅ . (10.47)

Proof. We utilize the case numbering from Lemma 10.2.4. Note that the only cases which

require a pressure increments were Cases 3a and 3b, which correspond to the analysis of

(10.18c)–(10.18e) and ⋄ = R, and Case 4, which corresponds to the same terms but with

⋄ = φ. We combine the analysis for ⋄ = R and ⋄ = φ into a single argument, since as

explained in the previous lemmas, the estimates are essentially the same.

Case 3a/4a: pressure current error from (10.18c) and ⋄ = R,φ. In this case, we recall from

(10.33) that we have chosen m̄ = 1 in item (iii), µ0 = λq+n̄/2+1Γ
−1
q , and µm̄ = µ1 = λq+n̄/2+1Γ

2
q.

We therefore have from (A.182) that

σHT q+n̄/2+1

i,j,k,ξ,⃗l,I,⋄
= σ+

HT q+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

− σ−
HT q+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

= σ∗
HT q+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

+ σ0

HT q+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

+ σ1

HT q+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

.

We then define

σ∗
S
q+n̄/2+1
O

:=
∑

i,j,k,ξ,⃗l,I,⋄

σ∗
HT q+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

, σ
q+n̄/2+1

S
q+n̄/2+1
O

:=
∑

i,j,k,ξ,⃗l,I,⋄
•=0,1

σ•
HT q+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

,
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so that then using (A.188), we may define the current errors

ϕ∗
S
q+n̄/2+1
O

:=
∑

i,j,k,ξ,⃗l,I,⋄

ϕ∗
S
q+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

:=
∑

i,j,k,ξ,⃗l,I,⋄

(H +R∗)

(
Dt,qσ

∗
HT q+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

)
,

ϕ
q+n̄/2+1

S
q+n̄/2+1
O

:=
∑

i,j,k,ξ,⃗l,I,⋄
•=0,1

ϕ•
S
q+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

:=
∑

i,j,k,ξ,⃗l,I,⋄
•=0,1

(H +R∗)

(
Dt,qσ

•
HT q+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

)

= ϕ
q+n̄/2+1,l
Sm
O︸ ︷︷ ︸

all the H terms

+ ϕ
q+n̄/2+1,∗
Sm
O︸ ︷︷ ︸

all the R∗ terms

,

which satisfy

divϕ∗
S
q+n̄/2+1
O

= Dt,qσ
∗
S
q+n̄/2+1
O

−
ˆ
T3

Dt,qσ
∗
S
q+n̄/2+1
O

(t, x′) dx′ ,

divϕ
q+n̄/2+1

S
q+n̄/2+1
O

= Dt,qσ
q+n̄/2+1

S
q+n̄/2+1
O

−
ˆ
T3

Dt,qσ
q+n̄/2+1

S
q+n̄/2+1
O

(t, x′) dx′ .

We decompose the current error further into ϕ
q+n̄/2+1

S
q+n̄/2+1
O

= ϕ
q+n̄/2+1,l

S
q+n̄/2+1
O

+ ϕ
q+n̄/2+1,∗
S
q+n̄/2+1
O

using item ii.

In order to check (10.46a), we recall the parameter choices from Case 3a of Lemma 10.2.1

and the choice of π = πℓΓ
50
q Λq from Lemma 10.2.4 apply Part 4 of Proposition A.4.4, specif-

ically (A.189c). We then have from (4.24a) that for each i, j, k, ξ, l⃗, I, ⋄, • and M,N ≤ 2Nind

(after appending a superscript l to refer to the local portion),

∣∣∣∣DNDM
t,qϕ

•,l
S
q+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

∣∣∣∣ ≤ τ−1
q Γi+70

q πℓΛq

(
λq+n̄/2+1

λq+n̄rq

)2

λ−1
q+n̄/2

× (λq+n̄/2+1Γq)
NM

(
M,Nind,t − Ncut,t − 1, τ−1

q Γi+14
q ,T−1

q Γ9
q

)
.

(10.49)

Next, from (A.192), we have that

supp

(
ϕ•,l
S
q+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

)
⊆ B

(
HT q+n̄/2+1

i,j,k,ξ,⃗l,I,⋄
, 2λq+n̄/2+1Γ

−1
q

)
⊆ B

(
supp

(
a(ξ),⋄(ϱ

⋄
(ξ)ζ

I
ξ) ◦ Φ(i,k)

)
, 2λq+n̄/2+1Γ

−1
q

)
.

Then applying (9.22), we have that (10.47) is verified for m = m′ = q + n̄/2 + 1. Returning
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to the proof of (10.46a), we can now apply Corollary 8.6.4 with

H = ϕ•,l
S
q+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

, ϖ = Γ70
q πℓΛq

(
λq+n̄/2+1

λq+n̄rq

)2

λ−1
q+n̄/2 .

From (8.56b), (4.18), (6.6), (5.20), (4.10h), and (4.27b), we have that

∣∣∣∣∣∣ψi,q
∑

i′,j,k,ξ,⃗l,I,R,•

H
(
Dt,qσ

•
Htq+n̄/2+1

i,j,k,ξ,⃗l,I,R

)∣∣∣∣∣∣
≲

(8.56b)

r−1
q λq

(
πqq
)1/2︸ ︷︷ ︸

cost of Dt,q

πℓ︸︷︷︸
dominates

low-freq. coeff’s

Λqλ
−1
q+n̄/2︸ ︷︷ ︸

freq. gain

Γ76
q︸︷︷︸

lower order

(
λq+n̄/2+1Γq
λq+n̄/2

)2

︸ ︷︷ ︸
intermittency losses

λ−1
q+n̄/2︸ ︷︷ ︸

inv. div. gain

× (λq+n̄/2+1Γq)
NM

(
M,Nind,t − Ncut,t − 1, τ−1

q Γi+15
q ,T−1

q Γ9
q

)
≲

(6.6),(5.20)

r−1
q Γ100

q

(
πq+

n̄/2+1
q

δq+n̄
δq+n̄/2+1+n̄

)3/2

Λ2
q

(
λq+n̄/2+1Γq
λq+n̄/2

)2

λ−2
q+n̄/2

× (λq+n̄/2+1Γq)
NM

(
M,Nind,t − Ncut,t − 1, τ−1

q Γi+15
q ,T−1

q Γ9
q

)
≤

(4.18),(4.27b),(4.10h)
Γ−150
q r−1

q+n̄/2+1

(
πq+

n̄/2+1
q

)3/2
(λq+n̄/2+1Γq)

NM
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
(10.50)

for N,M ≤ 2Nind from (4.24a), which verifies (10.46a) at level q + n̄/2 + 1. In order to

achieve (10.46b), we appeal to (A.190)–(A.191), the choice of K◦ in item (xvi), (4.24a), and

an aggregation quite similar to previous nonlocal aggregations.

Case 3b/4b: pressure current error from (10.18d) and (10.18e) and ⋄ = R,φ. In this

case we consider the higher shells from the oscillation error. The general principle is that

the estimate will only be sharp in the m = m′ = q + n̄ double endpoint case, for which the

intermittency loss is most severe. We now explain why this is the case by parsing estimates

(10.49) and (10.50). We incur a material derivative cost of τ−1
q Γi+70

q , which is converted

into r−1
q λq(π

q
q)

1/2 using (5.23) and the rough definition of τ−1
q = δ

1/2
q λqr

−1/3
q , or equivalently

Corollary 8.6.4. The L3/2 size of the high-frequency coefficients from the oscillation error is

(λmλ
−1
q+n̄/2)

2/3; this encodes the intermittency loss from L1 to L3/2 of a squared, ≤ λm frequency

projected, L2 normalized pipe flow with minimum frequency λq+n̄/2 – see also the choices of
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C∗,3/2 from Lemma 10.2.1. This accounts for 2/3 of the squared power in the intermittency

losses. The low-frequency coefficient function from a quadratic oscillation error incurs a

derivative cost of Λq (which we have grouped with “frequency gain”) and is dominated by

πℓ. The negative power in the frequency gain will be λm and is determined by which shell

(indexed by m) of the oscillation error is being considered. The lower order terms may be

ignored. Next, we have an L3/2 → L∞ intermittency loss of (λm′λ−1
q+n̄/2)

4/3, which accounts

for 4/3 of the power in the intermittency losses and is used to pointwise dominate the high-

frequency portion (at frequency λm′ due to the frequency projector) of the pressure increment

using the L3/2 norm. By simply pointwise dominating the high-frequency portion of the

pressure increment, using this to compute the L1 norm of the resulting current error, and

showing that the result is dominated by existing pressure, we prevent a loop of new current

error and new pressure creation. Finally, we have an inverse divergence gain depending on

which synthetic Littlewood-Paley shell of the pressure increment we are considering. The

net effect is that the Λq from “frequency gain” and the λ−1
m′ from “inv. div. gain” upgrade

the π
3/2
ℓ to (πm

′
q )3/2, and the remaining λqλ

−1
m from the Dt,q cost and the frequency gain is

strong enough to absorb the intermittency loss since m′ ≤ m, with a perfect balance in the

case

m = m′ = q + n̄ =⇒
(
λq+n̄
λq+n̄/2

)2

λqλ
−1
q+n̄ ≈ 1 .

In order to fill in the details, we now recall the choices of m̄ and µm′ from (10.39).

For the sake of brevity we ignore the slight variation in the case of the first projector for

m = q + n̄/2 + 2 and focus on the second projector for m = q + n̄/2 + 2 and the other cases

q + n̄/2 + 2 < m ≤ q + n̄+ 1. We have from (A.182) that

σHTm
i,j,k,ξ,⃗l,I,⋄

= σ+
HTm

i,j,k,ξ,⃗l,I,⋄
− σ−

HTm
i,j,k,ξ,⃗l,I,⋄

= σ∗
HTm

i,j,k,ξ,⃗l,I,⋄
+

m−q−n̄/2∑
ι=0

σιHTm
i,j,k,ξ,⃗l,I,⋄

.
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We then define the frequency-projected pressure increments by

σ∗
Sm
O
=

∑
i,j,k,ξ,⃗l,I,⋄

σ∗
HTm

i,j,k,ξ,⃗l,I,⋄
, σ

q+n̄/2+1
Sm
O

=
∑

i,j,k,ξ,⃗l,I,⋄

σ0
HTm

i,j,k,ξ,⃗l,I,⋄
,

σ
q+n̄/2+2
Sm
O

=
∑

i,j,k,ξ,⃗l,I,⋄
ι=1,2

σιHTm
i,j,k,ξ,⃗l,I,⋄

,

σ
q+n̄/2+m′

Sm
O

=
∑

i,j,k,ξ,⃗l,I,⋄
ι=m′

σιHTm
i,j,k,ξ,⃗l,I,⋄

if q + n̄/2 +m′ = q + n̄/2 + ι ≤ m ≤ q + n̄− 1 , (10.51)

σq+n̄Sm
O

=
∑

i,j,k,ξ,⃗l,I,⋄
ι=

if ι m = q + n̄, q + n̄+ 1 .

Using (A.188), we may define the current errors

ϕ∗
Sm
O
=

∑
i,j,k,ξ,⃗l,I,R

(H +R∗)
(
Dt,qσ

∗
HTm

i,j,k,ξ,⃗l,I,⋄

)
, ϕ

q+n̄/2+1
Sm
O

=
∑

i,j,k,ξ,⃗l,I,⋄

(H +R∗)
(
Dt,qσ

0
HTm

i,j,k,ξ,⃗l,I,⋄

)
,

ϕ
q+n̄/2+2
Sm
O

=
∑

i,j,k,ξ,⃗l,I,⋄
ι=1,2

(H +R∗)
(
Dt,qσ

ι
HTm

i,j,k,ξ,⃗l,I,⋄

)
,

ϕ
q+n̄/2+m′

Sm
O

=
∑

i,j,k,ξ,⃗l,I,⋄
ι=m′

(H +R∗)
(
Dt,qσ

ι
HTm

i,j,k,ξ,⃗l,I,⋄

)
if q + n̄/2 +m′ = q + n̄/2 + ι < m ,

ϕq+n̄Sm
O

=
∑

i,j,k,ξ,⃗l,I,⋄
ι=m−q−n̄/2,m−q−n̄/2+1

(H +R∗)
(
Dt,qσ

ι
HTm

i,j,k,ξ,⃗l,I,⋄

)
.

As in the previous case, we may append superscripts of l and ∗ for q + n̄/2 + 1 ≤ m ≤

q + n̄ corresponding to the H and R∗ portions, respectively. We have thus verified item (i)

immediately from these definitions and from (A.188) and item (ii). In order to check (10.46a),

we define the temporary notation m′(ι) to make a correspondence between the value of ι

above and the superscript on the left-hand side, which determines which bin the current

errors go into. Specifically, we set m′(0) = 1, m′(1) = m′(2) = 2, m′(ι) = ι if q+ n̄/2+ ι < m,

andm′(m−q−n̄/2) = m′(m−q−n̄/2+1) = m−q−n̄/2. Then from Part 4 of Proposition A.4.4,
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specifically (A.189c), and (4.24a), we have that for each i, j, k, ξ, l⃗, I, ⋄, ι and M,N ≤ 2Nind,

∣∣∣DNDM
t,q(H +R∗)

(
Dt,qσ

ι
HTm

i,j,k,ξ,⃗l,I,⋄

)∣∣∣
≤ τ−1

q Γi+70
q πℓΛq

(
min(λm, λq+n̄)

λq+n̄/2

)2/3

λ−2
m−1λm

(
min(λq+n̄/2+m′(ι), λq+n̄)Γq

λq+n̄/2

)4/3

× λ−2
q+n̄/2+m′(ι)−1λq+n̄/2+m′(ι)

(
min(λq+n̄/2+m′(ι), λm)Γq

)N M
(
M,Nind,t − Ncut,t − 1, τ−1

q Γi+14
q ,T−1

q Γ9
q

)
.

Next, from (A.192) and the fact that q + n̄/2 +m′(ι) ≤ m, we have that

supp
(
H
(
Dt,qσ

ι
HTm

i,j,k,ξ,⃗l,I,⋄

))
⊆ B

(
HTm

i,j,k,ξ,⃗l,I,⋄, 2λq+n̄/2+m′(ι)−1Γ
−2
q

)
⊆ B

(
supp

(
a(ξ),⋄(ϱ

⋄
(ξ)ζ

I
ξ) ◦ Φ(i,k)ρ

I
(ξ),⋄
)
, λ−1

m−1 + 2λq+n̄/2+m′(ι)−1Γ
−2
q

)
⊆ B

(
supp

(
a(ξ),⋄(ϱ

⋄
(ξ)ζ

I
ξ) ◦ Φ(i,k)ρ

I
(ξ),⋄
)
, 2λq+n̄/2+m′(ι)−1

)
.

Then applying (9.22), we have that (10.47) is verified for m′ = q+ n̄/2+m′(ι). Returning to

the proof of (10.46a), we can now apply Corollary 8.6.4 with

H = H
(
Dt,qσ

ι
HTm

i,j,k,ξ,⃗l,I,⋄

)
,

ϖ = Γ70
q πℓΛq

(
min(λm, λq+n̄)

λq+n̄/2

)2/3

λ−2
m−1λm

(
min(λq+n̄/2+m′(ι), λq+n̄)Γq

λq+n̄/2

)4/3

λ−2
q+n̄/2+m′(ι)−1λq+n̄/2+m′(ι) .
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From (4.10h), (8.56b), (6.6), (5.20), and (4.26), we have that

∣∣∣∣∣∣ψi,q
∑

i′,j,k,ξ,⃗l,I,⋄

H
(
Dt,qσ

ι
HTm

i,j,k,ξ,⃗l,I,⋄

)∣∣∣∣∣∣
≲

(8.56b)

Γ76
q r

−1
q λq

(
πqq
)1/2

πℓΛq

(
min(λm, λq+n̄)

λq+n̄/2

)2/3

λ−2
m−1λm

(
min(λq+n̄/2+m′(ι), λq+n̄)Γq

λq+n̄/2

)4/3

× λ−2
q+n̄/2+m′(ι)−1λq+n̄/2+m′(ι)

(
min(λq+n̄/2+m′(ι), λm)Γq

)N M
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
≲

(6.6),(5.20)

Γ76
q r

−1
q λq

(
πq+

n̄/2+m′(ι)
q

δq+n̄
δq+n̄/2+m′(ι)+n̄

)3/2

Λq

(
min(λm, λq+n̄)

λq+n̄/2

)2/3

× λ−2
m−1λm

(
min(λq+n̄/2+m′(ι), λq+n̄)Γq

λq+n̄/2

)4/3

λ−2
q+n̄/2+m′(ι)−1λq+n̄/2+m′(ι)

×
(
min(λq+n̄/2+m′(ι), λm′)Γq

)N M
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
≤

(4.26),(4.10h)
Γ−150
m′ r−1

m′

(
πq+

n̄/2+m′(ι)
q

)3/2 (
min(λq+n̄/2+m′(ι), λm)Γq

)N M
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
,

for N,M ≤ 2Nind from (4.24a), which verifies (10.46a) at level m′. In order to achieve

(10.46b), we appeal to (A.190)–(A.191), the choice of K◦ in item xvi, and (4.24a).

10.2.2 Transport and Nash stress errors STN

Lemma 10.2.6 (Applying inverse divergence). There exist symmetric stresses STN =

SlTN + S∗
TN defined by

STN = H (Dt,qwq+1 + wq+1 · ∇ûq) +R∗ (Dt,qwq+1 + wq+1 · ∇ûq) =: SlTN + S∗
TN

which satisfy the following.

(i) For all N,M ≤ Nfin/10, the local part SlTN satisfies

∥∥ψi,qDNDM
t,qS

l
TN

∥∥
3/2

≲ Γ−100
q+n̄ δq+2n̄λ

N
q+n̄M

(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
(10.52a)∥∥ψi,qDNDM

t,qS
l
TN

∥∥
∞ ≲ ΓC∞−100

q+n̄ λNq+n̄M
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
. (10.52b)
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Furthermore, we have that

B
(
supp ŵq′ , λ

−1
q′ Γq′+1

)
∩ suppSlTN = ∅ (10.53a)

for all q + 1 ≤ q′ ≤ q + n̄− 1.

(ii) For N,M ≤ 2Nind the nonlocal part satisfies

∥∥DNDM
t,qS

∗
TN

∥∥
∞ ≤ T

4Nind,t

q+n̄ δ2q+3n̄λ
N
q+n̄τ

−M
q . (10.54)

Remark 10.2.7 (Abstract formulation of the transport and Nash stress errors).

For the purposes of analyzing the transport and Nash current errors in subsubsection 11.2.2

and streamlining the creation of pressure increments, it will again be useful to abstract the

properties of these error terms. We will prove every one of the following claims in the course

of of proving Lemma 10.2.6. First, there exists a q-independent constant CH such that

SlTN =
∑

i,j,k,ξ,⃗l,I,⋄

CH∑
j′=0

H
α(j′)

i,j,k,ξ,⃗l,I,⋄
ρ
β(j′)

i,j,k,ξ,⃗l,I,⋄
◦ Φ(i,k) . (10.55)

Next, the functions H and ρ (with subscripts and superscripts suppressed for convenience)

defined above satisfy the following.

(i) H satisfies

∣∣DNDM
t,qH

∣∣ ≲ πℓΛqλ
N
q+n̄/2M

(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ8

q

)
(10.56)

for all N,M ≤ Nfin/10.

(ii) We have that

suppH ⊆ supp
(
ηi,j,k,ξ,⃗l,⋄ζ

I,⋄
ξ

)
. (10.57)
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(iii) For d as in (xvii), there exist a tensor potential ϑ (we suppress the indices at the moment

for convenience) such that ρ = ∂i1...idϑ
(i1,...,id). Furthermore, ϑ is (T/λq+n̄/2Γq)

3-periodic

and satisfies the estimates

∥∥DN∂i1 . . . ∂ikϑ
(i1,...,id)

∥∥
Lp ≲ r

2/p−2
q λ−1+N+k−d

q+n̄ . (10.58)

for p = 3/2,∞, all N ≤ Nfin/5, and 0 ≤ k ≤ d.

(iv) We have that

supp (Hρ ◦ Φ) ∩B
(
supp ŵq′ , λ

−1
q′ Γq′+1

)
= ∅ (10.59)

for all q + 1 ≤ q′ ≤ q + n̄ − 1. We will prove this claim in the course of proving

Lemma 10.2.6.

Proof of Lemma 10.2.6. We start by considering either a Reynolds or current corrector de-

fined in subsection 9.1 and expanding

Dt,qwq+1,⋄ = Dt,q

( ∑
i,j,k,ξ,⃗l,I

curl
(
a(ξ),⋄(ρ

⋄
(ξ)ζ

I,⋄
ξ ) ◦ Φ(i,k)∇ΦT

(i,k)UI
(ξ),⋄ ◦ Φ(i,k)

))

=
∑

i,j,k,ξ,⃗l,I

Dt,q

(
a(ξ),⋄∇Φ−1

(i,k)

)
(ρ⋄

(ξ)ζ
I,⋄
ξ ) ◦ Φ(i,k)WI

(ξ),⋄ ◦ Φ(i,k)

+
∑

i,j,k,ξ,⃗l,I

Dt,q∇
(
(ρ⋄

(ξ)ζ
I,⋄
ξ ) ◦ Φ(i,k)a(ξ),⋄

)
×
(
∇Φ(i,k)UI

(ξ),⋄ ◦ Φ(i,k)

)
+

∑
i,j,k,ξ,⃗l,I

∇
(
(ρ⋄

(ξ)ζ
I,⋄
ξ ) ◦ Φ(i,k)a(ξ),⋄

)
×
(
Dt,q∇Φ(i,k)UI

(ξ),⋄ ◦ Φ(i,k)

)
(10.60)
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and

wq+1,⋄ · ∇ûq =
∑

i,j,k,ξ,⃗l,I

curl
(
a(ξ),⋄(ρ

⋄
(ξ)ζ

I,⋄
ξ ) ◦ Φ(i,k)∇ΦT

(i,k)UI
(ξ),⋄ ◦ Φ(i,k)

)
· ∇ûq

=
∑

i,j,k,ξ,⃗l,I

(
a(ξ),⋄∇Φ−1

(i,k)(ρ
⋄
(ξ)ζ

I,⋄
ξ ) ◦ Φ(i,k)WI

(ξ),⋄ ◦ Φ(i,k)

)
· ∇ûq

+
∑

i,j,k,ξ,⃗l,I

(
∇
(
(ρ⋄

(ξ)ζ
I,⋄
ξ ) ◦ Φ(i,k)a(ξ),⋄

)
×
(
∇Φ(i,k)UI

(ξ),⋄ ◦ Φ(i,k)

))
· ∇ûq .

(10.61)

We shall only consider the worst terms, which are the ones containingWI
(ξ),⋄. SinceDt,qwq+1,⋄

and wq+1,⋄ · ∇ûq are mean-zero (see the argument below the display in (10.1)), we can apply

H and R∗ from Proposition A.3.3 to each term in (10.60) while ignoring the last term in

(A.56).

We now fix values of i, j, k, ξ, l⃗, I, and ⋄ so that we are simply considering

Ti,j,k,ξ,⃗l,I,⋄ := Dt,q

(
a(ξ),⋄∇Φ−1

(i,k)

)
(ρ⋄

(ξ)ζ
I,⋄
ξ ) ◦ Φ(i,k)WI

(ξ),⋄ ◦ Φ(i,k) (10.62)

+∇ûq ·
(
a(ξ),⋄∇Φ−1

(i,k)

)
(ρ⋄

(ξ)ζ
I,⋄
ξ ) ◦ Φ(i,k)WI

(ξ),⋄ ◦ Φ(i,k) .

We apply Proposition A.3.3 along with Remark A.3.9 with the following choices. Let p ∈

{3/2,∞}. We set v = ûq, and Dt = Dt,q = ∂t + ûq · ∇. In order to verify the low-frequency

assumptions from Part 1 of Proposition A.3.3 and Remark A.3.9, we set

Gi,j,k,ξ,⃗l,I,R = rq

[
Dt,q

(
a(ξ),R∇Φ−1

(i,k)

)
(ρR(ξ)ζ

I,R
ξ ) ◦ Φ(i,k)ξ +∇ûq ·

(
a(ξ),R∇Φ−1

(i,k)

)
(ρR(ξ)ζ

I,R
ξ ) ◦ Φ(i,k)ξ

]
,

Gi,j,k,ξ,⃗l,I,φ = r
4/3
q

[
Dt,q

(
a(ξ),φ∇Φ−1

(i,k)

)
(ρφ(ξ)ζ

I,φ
ξ ) ◦ Φ(i,k)ξ +∇ûq ·

(
a(ξ),φ∇Φ−1

(i,k)

)
(ρφ(ξ)ζ

I,φ
ξ ) ◦ Φ(i,k)ξ

]
,

N∗ = Nfin/4 , M∗ = Nfin/5 , CG,3/2 = rq

∣∣∣supp (ηi,j,k,ξ,⃗l,⋄ζI,⋄ξ )
∣∣∣2/3 δ1/2q+n̄Γi+j+20

q τ−1
q + rqλ

−10
q+n̄ ,

CG,∞ = ΛqΓ
2+C∞
q , λ = λq+⌊n̄/2⌋ , ν = τ−1

q Γi+13
q , Mt = Nind,t , ν ′ = T−1

q Γ8
q ,

v = ûq , Φ = Φ(i,k) , Dt = Dt,q , λ′ = Λq , π = πℓΛq . (10.63)
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Then we have that (A.39) is satisfied by definition, and (A.41)–(A.42b) are satisfied as in the

proof of Lemma 10.2.1. In order to check (A.40), we appeal to Lemma 9.3.1, estimate (8.13b)

for (∇Φ(i,k))
−1, estimate (8.40) from Lemma 8.4.3 to estimate ζI,⋄ξ ◦Φ(i,k), Proposition 7.2.1,

and (5.34). Specifically, we have that for all N,M ≤ 9Nind,∥∥∥∥∥DNDM
t,qGi,j,k,ξ,⃗l,I,⋄

∥∥∥∥∥
3/2

≲ CG,3/2λNq+⌊n̄/2⌋M
(
M,Nind,t − 1, τ−1

q Γi+13
q ,T−1

q Γ8
q

)
≲ CG,3/2λNq+⌊n̄/2⌋M

(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ8

q

)
, (10.64)∣∣∣∣∣DNDM

t,qGi,j,k,ξ,⃗l,I,⋄

∣∣∣∣∣ ≲ rqΓ
50
q π

1/2
ℓ τ−1

q Γiqλ
N
q+⌊n̄/2⌋M

(
M,Nind,t − 1, τ−1

q Γi+13
q ,T−1

q Γ8
q

)
≲ rqr

−1
q−n̄Γ

100
q πℓΛqλ

N
q+⌊n̄/2⌋M

(
M,Nind,t − 1, τ−1

q Γi+13
q ,T−1

q Γ8
q

)
≲ πℓΛqλ

N
q+⌊n̄/2⌋M

(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ8

q

)
, (10.65)

where we have used (4.18) to upgrade the sharp derivatives to Nind,t in both inequalities,

(5.23), (4.10b), and (6.6) to convert τ−1
q Γiq into π

1/2
ℓ Γ50

q Λqr
−1
q−n̄ in the pointwise bounds, and

(4.10h) to absorb the Γ100
q . In order to obtain an L∞ bound, we can appeal to (10.65) and

(6.14b). Thus we have that (A.40) and (A.59) are satisfied in all cases.

In order to verify the high-frequency assumptions from Part 2 of Proposition A.3.3, we

set

rqϱR = ϱI(ξ),R , rqϑR as defined in item (1) from Proposition 7.1.5

r
4/3
q ϱφ = ϱI(ξ),φ , r

4/3
q ϑφ defined similarly but adjusted to fit Proposition 7.1.6

Ndec as in (xv) , d as in (xvii) , C∗,3/2 = r−
2/3

q , C∗,∞ = r−2
q ,

µ = λq+n̄rq = λq+n̄/2Γq , Υ = Υ′ = Λ = λq+n̄ . (10.66)

Then we have that (i) is satisfied from (7.9), (ii) is satisfied by the construction of wq+1 in

subsection 9.1, and (A.43) is satisfied from Proposition 7.1.5 or the corresponding estimates

in Proposition 7.1.6. Finally, we have that (A.44) follows by definition and from (4.24a),
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while (A.45) is satisfied from (4.21).

We therefore may appeal to the local conclusions (i)–(vi) and (A.56)–(A.57), from which

we have the following. First, we note that from (iii), we have that (10.55) is satisfied. Next,

we have from (A.46), (A.50), and (A.60) that for N ≤ Nfin

4
− d and M ≤ Nfin

5
,

∥∥∥DNDM
t,q

(
H
(
Ti,j,k,ξ,⃗l,I,⋄

))∥∥∥
3/2

≲

(∣∣∣supp (ηi,j,k,ξ,⃗l,I,⋄ζI,⋄ξ )
∣∣∣2/3 δ1/2q+n̄r1/3q Γi+j+25

q τ−1
q + λ−10

q+n̄

)
× λ−1+N

q+n̄ M
(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ8

q

)
, (10.67)∣∣∣DNDM

t,q

(
H
(
Ti,j,k,ξ,⃗l,I,⋄

))∣∣∣ ≲ πℓΛqr
−2
q λ−1+N

q+n̄ M
(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ8

q

)
. (10.68)

Notice that from (ii), the support of divHTi,j,k,ξ,⃗l,I,R is contained in the support of Ti,j,k,ξ,⃗l,I,R,

which itself is contained in the support of ηi,j,k,ξ,⃗l,Rζ
I,R
ξ . From this observation, we have that

(10.57) is satisfied. Furthermore, we have that (10.58) is satisfied from (A.49a) and the esti-

mates from Proposition 7.1.5 and 7.1.6. Next, we have that (10.56) is satisfied from (A.60).

Finally, we have that (10.59) holds due to item (ii) and item (7) from Proposition 7.1.5. We

note also that (10.53a) follows from (10.57), (10.59), and (9.24).

In order to aggregate L3/2 estimates, we appeal to Corollary 8.6.1 with θ1 = θ2 = 1,

H = H
(
Ti,j,k,ξ,⃗l,I,⋄

)
, (5.8) at level q, and (4.10i) to write that

∥∥∥∥∥∥ψi,q
∑

i′,j,k,ξ,⃗l,I,⋄

DNDM
t,q

(
H
(
Ti′,j,k,ξ,⃗l,I,⋄

))∥∥∥∥∥∥
3/2

≲ Γ50+Cb
q δ

1/2
q+n̄r

1/3
q λ−1+N

q+n̄ τ−1
q M

(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ8

q

)
≲ Γ−25

q+n̄δq+2n̄λ
N
q+n̄M

(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ8

q

)
. (10.69)

In order to aggregate pointwise estimates, we appeal to Corollary 8.6.3 with the same choice

of H and φ = πℓΛqr
−2
q 1supp (η

i,j,k,ξ,⃗l,R
ζI,R
ξ ). Then from (8.53b), (8.45), (6.3b), and (4.13a), we
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have that∣∣∣∣∣∣ψi,q
∑

i′,j,k,ξ,⃗l,I,⋄

DNDM
t,q

(
H
(
Ti′,j,k,ξ,⃗l,I,⋄

))∣∣∣∣∣∣ ≲ πℓΛqr
−2
q λ−1+N

q+n̄ M
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ8

q

)
≤ ΓC∞−200

q+n̄ λNq+n̄M
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ8

q

)
.

To conclude the proof for the leading order term from Dt,qwq+1, we must still estimate the

nonlocal R∗ portion of the inverse divergence. In order to check the nonlocal assummptions,

we again set

M◦ = N◦ = 2Nind , K◦ as in (xvi) .

Then from (4.23b) and Remark A.3.4, we have that (A.52)–(A.55) are satisfied. We note

that Dt,qwq+1 + wq+1 · ∇ûq has zero mean, and so we may ignore the means of individual

terms that get plugged into the inverse divergence since their sum will vanish. Then from

(A.56), (A.57), and Remark A.3.4, we have that for N,M ≤ 2Nind,∥∥∥∥∥∥DNDM
t,q

∑
i,j,k,ξ,⃗l

R∗Ti,j,k,ξ,⃗l,⋄

∥∥∥∥∥∥
∞

≤ δ2q+3n̄T
2Nind,t

q+n̄ λNq+n̄τ
−M
q ,

matching the desired estimate in (10.54).

At this point, we can construct the pressure increment and associated current error

coming from the Nash and transport errors. Since the proofs of both lemmas are completely

analogous to the proofs of the corresponding lemmas for the highest frequency shell from

(10.18e) of the oscillation error, we omit the majority of the details and merely note the

minor differences required in a combined proof.

Lemma 10.2.8 (Pressure increment). There exists a function σSTN
= σ+

STN
− σ−

STN
such

that the following hold.
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(i) We have that

∣∣ψi,qDNDM
t,qSTN

∣∣ < (σ+
STN

+ δq+3n̄

)
(λq+n̄Γq)

N M
(
M,Nind,t, τ

−1
q Γi+17

q ,T−1
q Γ9

q

)
(10.70a)∣∣ψi,qDNDM

t,qσ
+
STN

∣∣ < (σ+
STN

+ δq+3n̄

)
(λq+n̄Γq)

N M
(
M,Nind,t, τ

−1
q Γi+17

q ,T−1
q Γ9

q

)
(10.70b)∥∥ψi,qDNDM

t,qσ
+
STN

∥∥
3/2

≤ Γ−9
q+n̄δq+2n̄ (λq+n̄Γq)

N M
(
M,Nind,t, τ

−1
q Γi+17

q ,T−1
q Γ9

q

)
(10.70c)∥∥ψi,qDNDM

t,qσ
+
STN

∥∥
∞ ≤ ΓC∞−9

q+n̄ (λq+n̄Γq)
N M

(
M,Nind,t, τ

−1
q Γi+17

q ,T−1
q Γ9

q

)
(10.70d)∣∣ψi,qDNDM

t,qσ
−
STN

∣∣ ≤ Γ−100
q+n̄/2π

q+n̄/2
q

(
λq+n̄/2Γq

)N M
(
M,Nind,t, τ

−1
q Γi+17

q ,T−1
q Γ9

q

)
(10.70e)

for all N,M < Nfin/100.

(ii) For all q + 1 ≤ q′ ≤ q + n̄/2 and q + 1 ≤ q′′ ≤ q + n̄− 1, we have that

B
(
supp ŵq′ , λ

−1
q′ Γq′+1

)
∩ suppσ−

STN
= B

(
supp ŵq′′ , λ

−1
q′′ Γq′′+1

)
∩ suppσ+

STN
= ∅ .

(10.71)

(iii) Define

mσSTN
(t) =

ˆ t

0

⟨Dt,qσSTN
⟩ (s) ds . (10.72)

Then we have that for 0 ≤M ≤ 2Nind,

∣∣∣∣ dM+1

dtM+1
mσSTN

∣∣∣∣ ≤ (max(1, T ))−1δq+3n̄M
(
M,Nind,t, τ

−1
q ,T−1

q+1

)
. (10.73)

Lemma 10.2.9 (Pressure current). There exists a current error ϕSTN
associated to the

pressure increment σSTN
defined by Lemma 10.2.8 which satisfies the following properties.
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(i) We have the decomposition and equalities

ϕSTN
= ϕ∗

STN
+

q+n̄∑
m′=q+n̄/2+1

ϕm
′

STN
, ϕm

′

STN
= ϕm

′,l
STN

+ ϕm
′,∗

STN
(10.74a)

divϕSTN
= Dt,qσSTN

− ⟨Dt,qσSTN
⟩ . (10.74b)

(ii) For all N,M ≤ 2Nind,

∣∣∣ψi,qDNDM
t,qϕ

k′,l
STN

∣∣∣ < Γ−100
k′ r−1

k′

(
πk

′

q

)3/2 (
λk′Γ

2
m′

)N M
(
M,Nind,t, τ

−1
q Γi+18

q ,T−1
q Γ9

q

)
,

(10.75)∥∥∥DNDM
t,qϕ

k′,∗
STN

∥∥∥
L∞

< T
2Nind,t

q+n̄ δ
3/2
q+3n̄(λq+n̄Γ

2
q)
Nτ−Mq . (10.76)

(iii) For all m′, q′ with q + 1 ≤ q′ ≤ m′ − 1 and q + n̄/2 + 1 ≤ m′ ≤ q + n̄, we have that

B
(
supp ŵq′ , 1/2λ

−1
q′ Γq′+1

)
∩ suppϕk

′,l
STN

= ∅ . (10.77)

Proofs of Lemmas 10.2.8 and 10.2.9. As in Lemmas 10.2.4 and 10.2.5 in the casem = q + n̄,

the proofs of Lemmas 10.2.8 and 10.2.9 use Proposition A.4.4 to estimate a single error term

indexed by i, j, k, ξ, l⃗, I, ⋄, and then aggregate estimates according to Corollaries 8.6.1–8.6.4.

We now identify the minor differences between the applications of these various tools to the

transport/Nash error and the oscillation error.

We first check the preliminary assumptions from Part 1 of Proposition A.4.4. Let us

first compare the low-frequency parameter choices for the transport error in (10.63) to the

low-frequency parameter choices for the error terms in (10.18e), which was analyzed in Case

3b from Lemma 10.2.1. First, we have that the vector field G in (10.63) is different than the

vector field in (10.24), but it retains the exact same support properties due to the presence

of ρ⋄
ξζ

⋄
ξ in both. Next, we claim that CG,p is effectively smaller in (10.63) than in (10.24).

In the case p = ∞, this is immediate, so we focus on the case 3/2. We use (4.10b), (4.10h),
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and (4.10g) to write that

τ−1
q rq ≤ Γ50

q λqδ
1/2
q r

−1/3
q−n̄ rq ≤ δ

1/2
q+n̄ΛqΓ

−50
q .

The difference between Γi+jq in (10.63) and Γ2j
q in (10.24) only matters in the application of

Corollaries 8.6.1–8.6.4. Indeed, trading a j for an i simply necessitates a difference choice of

θ1 and θ2, and the only difference in the output is the factor of Γθ1Cb
q which must be absorbed

in the latter case. The reader is invited to check inequalities (4.26), (4.27b), (4.13a), (4.27d),

and (4.27e), each of which has a Γ5Cb
q on the left-hand side that can therefore absorb this

extra insignificant factor. Next, we have that the choices of Mt,M∗, N∗, λ, ν, ν
′ are the same,

and the choice of ϖ = πℓΓ
50
q Λq from the beginning of Lemma 10.2.4 is larger than the choice

of ϖ from (10.63) for the transport error. Finally, the vector field v and associated material

derivative Dt from item (ii) are identical in both cases.

Next, we compare the high-frequency parameter choices from item (iii) in the case of the

oscillation error in (10.25) to the choices for the transport error in (10.66). The potential ϑ

in (10.66) is supported in a λ−1
q+n̄ neighborhood of ϱI(ξ),⋄, while for the oscillation error, the

support is larger due to the presence of the synthetic Littlewood-Paley projector P̃(λq+n̄−1,q+n̄]

applied to (ϱI(ξ),⋄)
2. Thus the potential for transport error has more advantageous support

properties than that of the oscillation error. Next, the choices of µ and Λ are identical, while

the choices of Υ and Υ′ are more advantageous for the transport error than they are for the

oscillation error in the case m = q + n̄. Indeed, this is because the inverse divergence gain

in the transport error is a full λq+n̄ from (7.9), while the highest shell of the oscillation error

only gains λq+n̄−1 due to the presence of the synthetic Littlewood-Paley projector. Next,

the choices of C∗,p are identical due to our choice of rescaling in the transport error, and the

choices of Ndec and d are identical as well. Therefore, all assumptions from item (iii) are

stronger for the transport error than the oscillation error. Finally, we note that the nonlocal

assumptions in item (v) are not changed in any significant way, and so we may treat the
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nonlocal transport error terms in the same way as the nonlocal oscillation error terms.

Moving to the additional assumptions from Part 2 of Proposition A.4.4, we have that

all inequalities in (A.179), (A.180a), (A.180c), (A.180d) are identical. The inequality in

(A.180b) follows in the same was as in the oscillation error; indeed, all nonlocal error bounds

can be treated in the same way via a large choice of d or N∗∗. The inequalities in item (iii)

are the same for the transport error as for the highest shell of the oscillation error, since these

inequalities relate to the synthetic Littlewood-Paley projection of a function which oscillates

at frequency ≈ Λ = λq+n̄.

Now that we have highlighted the unimportant differences in the set-up, we merely note

that the sharp material derivative cost in Lemmas 10.2.6–10.2.9 is worse by a factor of Γq

than the corresponding estimates in Lemmas 10.2.1–10.2.5. This is due to the fact that the

transport error loses a material derivative. This concludes the proofs of Lemmas 10.2.8 and

10.2.9.

10.2.3 Divergence corrector error SC

We will write the divergence corrector error as

SC = SC1 + SC2 , for divSC1 = div
(
w

(p)
q+1 ⊗s w

(c)
q+1

)
, SC2 = w

(c)
q+1 ⊗ w

(c)
q+1 ,

(10.78)

and estimate them in the following lemma.

Lemma 10.2.10 (Basic estimates and applying inverse divergence). There exist

symmetric stresses SmC for m ∈ {q + ⌊n̄/2⌋+ 1, . . . , q + n̄} such that the following hold.

(i) div
(
w

(p)
q+1 ⊗s w

(c)
q+1 + w

(c)
q+1 ⊗ w

(c)
q+1

)
=
∑q+n̄

m=q+⌊n̄/2⌋+1 divS
m
C , where S

m
C can be split into

local and non-local errors as SmC = Sm,lC + Sm,∗C .
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(ii) For the same range of m and for all N,M ≤ Nfin/10, the local parts Sm,lC satisfy

∥∥∥ψi,qDNDM
t,qS

m,l
C

∥∥∥
3/2

≲ Γ−9
m δm+n̄λ

N
mM

(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ8

q

)
(10.79a)∥∥∥ψi,qDNDM

t,qS
m,l
C

∥∥∥
∞

≲ Γ−9
m λNmM

(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ8

q

)
. (10.79b)

(iii) For q + n̄/2 + 1 ≤ m ≤ q + n̄ and q + 1 ≤ q′ ≤ m− 1, the local parts satisfy

suppSm,lC ∩B
(
supp ŵq′ , λ

−1
q′ Γq′+1

)
= ∅ . (10.80)

(iv) For the same range of m and N,M ≤ 2Nind, the nonlocal parts Sm,∗C satisfy

∥∥DNDM
t,qS

m,∗
C

∥∥
∞ ≤ T

4Nind,t

q+n̄ δq+3n̄λ
N
mτ

−M
q . (10.81)

Remark 10.2.11 (Abstract formulation of the divergence corrector errors). For

the purposes of analyzing the transport and Nash current errors in subsubsection 11.2.2

and streamlining the creation of pressure increments, it will again be useful to abstract the

properties of these error terms. As we shall see in the course of the proofs of Lemma 10.2.10

and 10.2.12, these error terms may be decomposed and analyzed in exactly the same way as

the oscillation errors with q + n̄/2+ 1 ≤ m ≤ q + n̄ in Remark 10.2.2. This is not surprising,

since both error terms are quadratic in wq+1, and morally speaking, one expects the estimates

for terms involving divergence correctors to be slightly better.

Proof of Lemma 10.2.10. The analysis in the proof generally follows that of the divergence

corrector errors in [35], and we shall occasionally refer to algebraic identities from those

arguments. The main difference is that we have to incorporate the synthetic Littlewood-

Paley projector in certain terms before applying the inverse divergence operator in order to

upgrade the material derivatives later. However, synthetic Littlewood-Paley projectors have

already been applied to terms which are quadratic in high frequency objects in Lemma 10.2.1,
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and so we may pirate a significant portion of the analysis from there as well.

Step 1: Analyze div
(
w

(p)
q+1 ⊗s w

(c)
q+1

)
.

We first write

div
(
w

(p)
q+1 ⊗s w

(c)
q+1

)•
=

∑
⋄,i,j,k,ξ,⃗l,I

∂m

(
a(ξ),⋄

(
ρ⋄
(ξ)ζ

I,⋄
ξ ϱI(ξ),⋄

)
◦ Φ(i,k)ξ

ℓ
(
Amℓ ϵ•pr + A•

ℓϵmpr
)

× ∂p

(
a(ξ),⋄

(
ρ⋄
(ξ)ζ

I,⋄
ξ

)
◦ Φ(i,k)

)
∂rΦ

s
(i,k)(UI

(ξ),⋄)
s ◦ Φ(i,k)

)
,

(10.82)

where we have used Lemma 9.2.2, the definition of WI
(ξ),⋄ in (7.9) (and the corresponding

version for L3 normalized pipes), ϵi1i2i3 is the Levi-Civita alternating tensor, we implicitly

contract the repeated indices ℓ,m, p, r, s, and the • refers to the indices of the vectors on

either side of the above display. Using that {ξ, ξ′, ξ′′} is an orthonormal basis associated

with the direction vector ξ with ξ× ξ′ = ξ′′ and decomposing as in [35, (7.50)], we have that

∂p

(
a(ξ),⋄

(
ρ⋄
(ξ)ζ

I,⋄
ξ

)
◦ Φ(i,k)

)
= ∂pΦ

n
(i,k)ξ

nξℓAjℓ∂j

(
a(ξ),⋄

(
ρ⋄
(ξ)ζ

I,⋄
ξ

)
◦ Φ(i,k)

)
︸ ︷︷ ︸

=:ap,good
(ξ),⋄

(10.83)

+ ∂pΦ
n
(i,k)(ξ

′)n(ξ′)ℓAjℓ∂j

(
a(ξ),⋄

(
ρ⋄
(ξ)ζ

I,⋄
ξ

)
◦ Φ(i,k)

)
+ ∂pΦ

n
(i,k)(ξ

′′)n(ξ′′)ℓAjℓ∂j

(
a(ξ),⋄

(
ρ⋄
(ξ)ζ

I,⋄
ξ

)
◦ Φ(i,k)

)
︸ ︷︷ ︸

=:ap,bad
(ξ),⋄

,

where we have also set A = A(i,k) = (∇Φ(i,k))
−1. Indeed, the good differential operator

appearing in ap,good(ξ),⋄ only costs ΛqΓ
13
q (see Lemma 9.3.1), so that we will leave ap,good(ξ),⋄ inside

the divergence and dump the symmetric stress inside of the divergence into Sq+n̄C . On the

other hand, ap,bad(ξ),⋄ contains an expensive derivative at λq+⌊n̄/2⌋, but ξ
ℓAmℓ ∂m only costs ΛqΓ

13
q ,

which will be crucially used below.

209



Splitting the terms involved with ap,bad(ξ),⋄ from (10.82) as in [35, (7.52)], we further analyze

∑
⋄,i,j,k,ξ,⃗l,I

∂m

(
a(ξ),⋄

(
ρ⋄
(ξ)ζ

I,⋄
ξ ϱI,⋄(ξ)

)
◦ Φ(i,k)ξ

ℓ
(
Amℓ ϵ•pr + A•

ℓϵmpr
)
ap,bad(ξ),⋄ ∂rΦ

s
(i,k)(UI

(ξ),⋄)
s ◦ Φ(i,k)

)
= V•

1 +V•
2

(10.84)

where V1 contains Amℓ ϵ•pr, and V2 contains A•
ℓϵmpr. To analyze V1, we use that ∂m and

ξℓAmℓ commute, so that

ξℓAmℓ ∂m
(
(ϱI(ξ),⋄(UI

(ξ),⋄)
s) ◦ Φ(i,k)

)
= 0 .

Furthermore, the differential operator ξℓAmℓ ∂m landing anywhere else costs only ΛqΓ
13
q from

(9.36). Then we have in total that

V•
1 =

∑
⋄,i,j,k,ξ,⃗l,I

∂m

(
a(ξ),⋄

(
ρ⋄
(ξ)ζ

I,⋄
ξ

)
◦ Φ(i,k)ξ

ℓAmℓ ϵ•pra
p,bad
(ξ),⋄ ∂rΦ

s
(i,k)

) (
ϱI(ξ),⋄(UI

(ξ),⋄)
s
)
◦ Φ(i,k)

(10.85)

=:
∑

⋄,i,j,k,ξ,⃗l,I

(C1,I
(ξ),⋄)

•s (ϱI(ξ),⋄(UI
(ξ),⋄)

s
)
◦ Φ(i,k)

is a product of a high-frequency, mean-zero potential which has gained one factor of λq+n̄,

and a low-frequency object which has lost one costly derivative at frequency λq+⌊n̄/2⌋, and
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one cheap derivative at frequency ΛqΓ
13
q . To analyze V2, we follow [35, 7.56] to get

V•
2 =

∑
⋄,i,j,k,ξ,⃗l,I

∂m

(
a(ξ),⋄

(
ρ⋄
(ξ)ζ

I,⋄
ξ ϱI,⋄(ξ)

)
◦ Φ(i,k)ξ

ℓA•
ℓϵmpra

p,bad
(ξ),⋄ ∂rΦ

s
(i,k)(U

I,⋄
(ξ))

s ◦ Φ(i,k)

)
=

∑
⋄,i,j,k,ξ,⃗l,I

(
∂m
(
ξℓA•

ℓϵmpr∂rΦ
s
(i,k)

)
a(ξ),⋄(ρ

⋄
(ξ)ζ

I,⋄
ξ ) ◦ Φ(i,k)a

p,bad
(ξ),⋄ + am,good(ξ),⋄ ξℓA•

ℓϵmpra
p,bad
(ξ),⋄ ∂rΦ

s
(i,k)

− a(ξ),⋄(ρ
⋄
(ξ)ζ

I,⋄
ξ ) ◦ Φ(i,k)ξ

ℓA•
ℓϵmpr∂m(a

p,good
(ξ),⋄ )∂rΦ

s
(i,k)

)(
ϱI,⋄(ξ)(U

I,⋄
(ξ))

s
)
◦ Φ(i,k)

+
∑

⋄,i,j,k,ξ,⃗l,I

a(ξ),⋄ξ
ℓA•

ℓϵmpra
p,bad
(ξ),⋄ ∂rΦ

s
(i,k)∂m

(
ϱI,⋄(ξ)(U

I,⋄
(ξ))

s
)
◦ Φ(i,k) . (10.86)

=:
∑

⋄,i,j,k,ξ,⃗l,I

(C2,I
(ξ),⋄)

•s (ϱI(ξ),⋄(UI
(ξ),⋄)

s
)
◦ Φ(i,k)

In the second equality above we have used the identities ϵmpr∂m(a
p,bad
(ξ),⋄ ) = −ϵmpr∂m(ap,good(ξ),⋄ ),

which follows from (10.83), and ϵmpra
m,bad
(ξ),⋄ ap,bad(ξ),⋄ = 0. Furthermore, we recall from [35, pgs.

42-43] that the last term on the right-hand side of the second equality vanishes. As before,

the slow function C2,I
(ξ),⋄ contains two spatial derivatives, one cheap and one expensive.

Step 2: Definition of SmC and their properties

Now, we define the stress error SmC from the divergence corrector. From (5) of Proposition

7.1.5 and (5) of Proposition 7.1.6, we know that ϱI(ξ),⋄(UI
(ξ),⋄)

s has zero mean. As in the

oscillation stress error, we decompose ϱI(ξ),⋄(UI
(ξ),⋄)

s, applying the synthetic Littlewood-Paley

decomposition suggested in (7.34), and set for q + n̄/2 + 1 < m < q + n̄,

S
q+n̄/2+1
C := (H +R∗)

 ∑
⋄,i,j,k,ξ,⃗l,I

(C1,I
(ξ),⋄ + C2,I

(ξ),⋄)
•sP̃q+n̄/2+1

(
ϱI(ξ),⋄(UI

(ξ),⋄)
s
)
◦ Φ(i,k)

 (10.87a)

SmC := (H +R∗)

 ∑
⋄,i,j,k,ξ,⃗l,I

(C1,I
(ξ),⋄ + C2,I

(ξ),⋄)
•sP̃(m−1,m]

(
ϱI(ξ),⋄(UI

(ξ),⋄)
s
)
◦ Φ(i,k)

 (10.87b)
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Sq+n̄C := w
(c)
q+1 ⊗ w

(c)
q+1 (10.87c)

+
∑

⋄,i,j,k,ξ,⃗l,I

a(ξ),⋄

(
ρ⋄
(ξ)ζ

I,⋄
ξ ϱI(ξ),⋄

)
◦ Φ(i,k)ξ

ℓ
(
Amℓ ϵ•pr + A•

ℓϵmpr
)
ap,good(ξ),⋄ ∂rΦ

s
(i,k)(UI

(ξ),⋄)
s ◦ Φ(i,k)

(10.87d)

+

q+n̄+1∑
m=q+n̄

(H +R∗)

 ∑
⋄,i,j,k,ξ,⃗l,I

(C1,I
(ξ),⋄ + C2,I

(ξ),⋄)
•s(P̃(m−1,m] + Id− P̃q+n̄+1)

(
ϱI(ξ),⋄(UI

(ξ),⋄)
s
)
◦ Φ(i,k)

 .

(10.87e)

Here, the terms involved with the operators R∗ or Id− P̃q+n̄+1 will go into the nonlocal part

and all the remaining terms will be included in the local parts.

The conclusions of Lemma 10.2.10 for the terms (10.87a), (10.87b), and the terms involv-

ing P̃(m−1,m] in (10.87e) follow similarly to Case 3 from the proof of Lemma 10.2.1. Indeed,

we fix indices i, j, k, ξ, l⃗, I, s, ⋄ = R, and apply Proposition A.3.3 to

G•
R = λ−1

q+n̄(C
1,I
(ξ),R + C2,I

(ξ),R)
•s, ϱR =


λq+n̄P̃q+n̄/2+1

(
ϱI(ξ),R(UI

(ξ),R)
s
)

for (10.87a)

λq+n̄P̃(m−1,m]

(
ϱI(ξ),R(UI

(ξ),R)
s
)

for (10.87b), (10.87e),

with the same choice of the rest of parameters as in Case 3. In the case of ⋄ = φ, as in

Case 3, Gφ and ϱφ will have extra r
2/3
q and r

−2/3
q , respectively, with the replacement of R

with φ in C1,I
(ξ),R, C

1,I
(ξ),R, and ϱ

I
(ξ),R(UI

(ξ),R)
s. The assumptions in (A.40) and (A.43) of Propo-

sition A.3.3 can be verified using Lemma 9.3.1, Lemma 7.3.3, Lemma 7.3.4, item (6) from

Proposition 7.1.5 and item (6) from Proposition 7.1.6.2 The rest of the assumptions follow

exactly as in Case 3 from the proof of Lemma 10.2.1. We note now that the support of the

low-frequency function G is the same as in the oscillation error due to the presence of ρ⋄
(ξ)ζ

⋄
ξ

and their derivatives. In addition, the support of the high-frequency potentials is the same

2Note that we have traded λq+n̄ between G•
R and ρR so that the parameter choices are the same as

the oscillation error. We also note that thanks to the extra gain λq+n̄/2/λq+n̄ in the estimate of GR and Gφ

compared with Case 3, all the error terms are actually small enough in amplitude to absorbed into the
highest shell. The only reason to use the synthetic Littlewood-Paley decomposition here is to ensure that
we can upgrade material derivatives via dodging later.
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as in the oscillation error since UI
(ξ),⋄ and ϱI(ξ),⋄ are both supported in a 2λ−1

q+n̄ neighborhood

of the pipe potential from (7.9) and item (7). Finally, to deal with the remaining term in

(10.87e), we may use the same type of arguments as in Case 4 in the proof of Lemma 10.2.1.

For the sake of both the readers and authors, we omit these details.

Lastly, we consider (10.87c) and (10.87d), which are absorbed into Sq+n̄,lC . From Lemma 9.2.2,

we have that

w
(c)
q+1 ⊗ w

(c)
q+1 =

∑
⋄,i,j,k,ξ,⃗l,I

(
∇
(
a(ξ),⋄(ρ

⋄
(ξ)ζ

I,⋄
ξ ) ◦ Φ(i,k)

)
×
(
∇ΦT

(i,k)UI
(ξ),⋄ ◦ Φ(i,k)

))
⊗
(
∇
(
a(ξ),⋄(ρ

⋄
(ξ)ζ

I,⋄
ξ ) ◦ Φ(i,k)

)
×
(
∇ΦT

(i,k)UI
(ξ),⋄ ◦ Φ(i,k)

))
.

(10.88)

It follows immediately from estimate (9.44) with r = 3,∞, (5.8) at level q, and Lemma 8.5.1

with r1 = ∞, r2 = 1 that for N,M ≤ Nfin/10,

∥∥∥ψi,qDNDM
t,q

(
w

(c)
q+1 ⊗ w

(c)
q+1

)∥∥∥
∞

≲ ΓC∞+9
q λNq+n̄M

(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ8

q

)
∥∥∥ψi,qDNDM

t,q

(
w

(c)
q+1 ⊗ w

(c)
q+1

)∥∥∥3/2

3/2
≲ r2q

∑
⋄,i,j,k,ξ,⃗l,I

∣∣∣supp (ηi,j,k,ξ,⃗l,⋄ζI,⋄ξ )∣∣∣ δ3/2q+n̄Γ3j+21
q λ

3N/2
q+n̄

× (M
(
M,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
)
3/2

≲ r2qδ
3/2
q+n̄Γ

30
q λ

3N/2
q+n̄(M

(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ8

q

)
)
3/2 .

The estimate for the L∞ norm matches (10.79b) for m = q + n̄ after using (4.13a). For the

L3/2 estimate, taking cube roots and using the parameter inequality (4.10g) matches (10.79a)

for m = q+ n̄. Finally, we have that the support of this error term is contained in wq+1; then

(10.80) is immediate from Lemma 9.2.2. On the other hand, one can observe that (10.87d)

enjoys the exact same properties as w
(c)
q+1 ⊗w

(c)
q+1, and hence we get the desired conclusion in

a similar way.
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Lemma 10.2.12 (Pressure increment). For every q + n̄/2 + 1 ≤ m ≤ q + n̄, there exists

a function σSm
C
= σ+

Sm
C
− σ−

Sm
C

such that the following hold.

(i) We have that for all N,M < Nfin/100 and q + n̄/2 + 1 ≤ m ≤ q + n̄− 1,

∣∣∣ψi,qDNDM
t,qS

m,l
C

∣∣∣ < (σ+
Sm
C
+ δq+3n̄

)
(λmΓq)

N M
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
,

(10.89a)∣∣∣ψi,qDNDM
t,qS

q+n̄,l
C

∣∣∣ < (σ+

Sq+n̄
C

+ σ+
υ + δq+3n̄

)
(λq+n̄Γq+n̄)

N M
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
,

(10.89b)

where σ+
υ is defined as in (9.65). Furthermore, for any integer q+ n̄/2 < m ≤ q+ n̄ and

for all N,M < Nfin/100,

∣∣∣ψi,qDNDM
t,qσ

+
Sm
C

∣∣∣ < (σ+
Sm
C
+ δq+3n̄

)
(λmΓq)

N M
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
(10.90a)∥∥∥ψi,qDNDM

t,qσ
+
Sm
C

∥∥∥
3/2

≤ Γ−9
m δm+n̄ (λmΓq)

N M
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
(10.90b)∥∥∥DNDM

t,qσ
+
Sm
C

∥∥∥
∞

≤ ΓC∞−9
m (λmΓq)

N M
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
(10.90c)∣∣∣ψi,qDNDM

t,qσ
−
Sm
C

∣∣∣ < Γ−100
q+n̄/2π

q+n̄/2
q

(
λq+n̄/2Γq

)N M
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
.

(10.90d)

(ii) For q + n̄/2 + 1 ≤ m ≤ q + n̄, we have that

B
(
supp ŵq′ , λ

−1
q′ Γq′+1

)
∩ supp (σ+

Sm
C
) = ∅ ∀q + 1 ≤ q′ ≤ m− 1

B
(
supp ŵq′ , λ

−1
q′ Γq′

)
∩ supp (σ−

Sm
C
) = ∅ ∀q + 1 ≤ q′ ≤ q + n̄/2 .

(10.91)

(iii) Define

mσSm
C
(t) =

ˆ t

0

〈
Dt,qσSm

C

〉
(s) ds . (10.92)
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Then we have that for 0 ≤M ≤ 2Nind,

∣∣∣∣ dM+1

dtM+1
mσSm

C

∣∣∣∣ ≤ (max(1, T ))−1δq+3n̄M
(
M,Nind,t, τ

−1
q ,T−1

q+1

)
. (10.93)

Lemma 10.2.13 (Pressure current). For every q+ n̄/2 < m ≤ q+ n̄, there exists a current

error ϕSm
C
associated to the pressure increment σSm

C
defined by Lemma 10.2.12 which satisfies

the following properties.

(i) We have the decompositions and equalities

ϕSm
C
= ϕ∗

Sm
C
+

m∑
k=q+n̄/2+1

ϕkSm
C
, ϕkSm

C
= ϕk,lSm

C
+ ϕk,∗Sm

C
(10.94a)

divϕSm
C
= Dt,qσSm

C
− ⟨Dt,qσSm

C
⟩ . (10.94b)

(ii) For q + n̄/2 + 1 ≤ k ≤ m and N,M ≤ 2Nind,

∣∣∣ψi,qDNDM
t,qϕ

k,l
Sm
C

∣∣∣ < Γ−100
k r−1

k

(
πkq
)3/2

(λkΓq)
N M

(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
(10.95a)∥∥∥DNDM

t,qϕ
k,∗
Sm
C

∥∥∥
L∞

≤ δ
3/2
q+3n̄T

2Nind,t

q+n̄ λNmτ
−M
q . (10.95b)

(iii) For all q + n̄/2 + 1 ≤ k ≤ m and all q + 1 ≤ q′ ≤ k − 1,

B
(
supp ŵq′ , 1/2λ

−1
q′ Γq′+1

)
∩ supp

(
ϕk,lSm

C

)
= ∅ . (10.96)

Proofs of Lemmas 10.2.12-10.2.13. Case 0: pressure for (10.87a), (10.87b), and (10.87e).

The pressure increment and the current error associated to each piece in the local part of

(10.87a), (10.87b), and (10.87e) can be constructed in the same way as in Lemma 10.2.4-

10.2.5. Indeed, the proof relies on Proposition A.4.4, and (GR, ϱR), (Gφ, ϱφ) given in the

proof of Lemma 10.2.10 have the exact same properties required in the proposition as the one

given in Case 3 of the proof of Lemma 10.2.1. In particular, the preliminary assumptions

215



(iv) holds with π̄ given as in (10.28) due to (9.38). Therefore, we get the same conclusions

by repeating the same arguments. In particular, all conclusions from Lemma 10.2.12–10.2.13

are obtained in the cases m < q + n̄. Furthermore, when m = q + n̄, we denote the pressure

increment and the current error associated to (10.87e) by σ(10.87e) = σ+
(10.87e) − σ−

(10.87e) and

ϕk(10.87e) = ϕk,l(10.87e)+ϕ
k,∗
(10.87e), respectively. Since these error terms are defined using the same

parameter choices as the oscillation error, we obtain estimates consistent with (10.90a)–

(10.96) for these error terms. We note also that we obtain a version of (10.89b) which does

not require the introduction of σ+
υ on the right-hand side; later error terms will require σ+

υ .

Case 1: (10.87c) needs no new pressure increment. From (9.70b), we have that

∣∣ψi,qDNDM
t,q(10.87c)

∣∣ ≲ Γ−2
q (σ+

υ + δq+3n̄) (λq+n̄Γq+n̄)
N M

(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
forN,M ≤ Nfin/100. This estimate is consistent with (10.89b), and since no pressure increment

is created here, we need not check any of the conclusion in (10.90a)–(10.91).

Case 2: pressure for (10.87d). The general idea for this error term is that since it is given

as a product of two slightly altered velocity increments, we can apply Lemma A.4.3 (which

was used to construct pressure increments for velocity increments already in subsection 9.4)

to construct pressure increments σ±
(10.87d) and current errors ϕk(10.87d). So we fix the indices

i, j, k, ξ, l⃗, I, ⋄ and apply Lemma A.4.3 to the functions υ̂b,⋄ = υ̂b,i,j,k,ξ,⃗l,I,⋄ defined by υ̂b,⋄ =
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Gb⋄ρb⋄ ◦ Φ(i,k), b = 1, 2, where

υ̂1,⋄ := r
1/3
q λ

1/3
q λ

−1/3
q+n̄a(ξ),⋄

(
ρ⋄
(ξ)ζ

I,⋄
ξ ϱI(ξ),⋄

)
◦ Φ(i,k)

υ̂2,⋄ := r−
1/3

q λ−
1/3

q λ
1/3
q+n̄ξ

ℓ
(
Amℓ ϵ•pr + A•

ℓϵmpr
)
ap,good(ξ),⋄ ∂rΦ

s
(i,k)(UI

(ξ),⋄)
s ◦ Φ(i,k)

G1R := λ
1/3
q λ

−1/3
q+n̄a(ξ),R

(
ρR(ξ)ζ

I,R
ξ

)
◦ Φ(i,k), ρ1R := r

1/3
q ϱI(ξ),R

G1φ := r
1/3
q λ

1/3
q λ

−1/3
q+n̄a(ξ),φ

(
ρφ(ξ)ζ

I,φ
ξ

)
◦ Φ(i,k), ρ1φ := ϱI(ξ),φ

G2R := r−
2/3

q λ−
1/3

q λ
1/3
q+n̄λ

−1
q+n̄ξ

ℓ
(
Amℓ ϵ•pr + A•

ℓϵmpr
)
ap,good(ξ),R ∂rΦ

s
(i,k), ρ2R := r

1/3
q λq+n̄(UI

(ξ),R)
s

G2φ := r−
1/3

q λ−
1/3

q λ
1/3
q+n̄λ

−1
q+n̄ξ

ℓ
(
Amℓ ϵ•pr + A•

ℓϵmpr
)
ap,good(ξ),φ ∂rΦ

s
(i,k), ρ2φ := λq+n̄(UI

(ξ),φ)
s .

We then set the following choices for the application of Lemma A.4.3:

N∗ =M∗ = Nfin/10, Mt = Nind,t, M◦ = N◦ = 2Nind, K◦ as in (xvi) ,

Φ = Φ(i,k), v = ûq, Dt = Dt,q, λ′ = Λq, ν ′ = T−1
q Γ8, Cv = Λ

1/2
q , Γ = Γ

1/10
q ,

CG,3 =
∣∣∣supp (ηi,j,k,ξ,⃗l,⋄ζI,⋄ξ )∣∣∣1/3 (δq+2n̄Γ

−20
q+n̄)

1/2Γjq + λ−10
q+2n̄, CG,∞ = Γ

C∞
2

−20
q+n̄ r

2/3
q , π = πℓΓ

30
q r

−2/3
q Λ

2/3
q λ

−2/3
q+n̄ ,

Cρ,3 := 1, Cρ,∞ = r−
2/3

q , λ = λq+n̄/2, Λ = λq+n̄, ν = τ−1
q Γi+13

q , rG = rυ̂ = 1, µ = λq+n̄rq

δtiny = δq+3n̄, m̄ = m+ 1− (q + n̄/2), µ0 = λq+n̄/2+1, µ1 = λq+n̄/2+3/2, µk = λq+n̄/2+k ,

Ncut,x,Ncut,t as in (xi) , Ndec as in (xv) , d, N∗∗ as in (xvii) .

First, the verification of the assumptions from part 1 of Lemma A.4.3 can be done in a similar

manner as in the proofs of Lemmas 9.4.4 and 9.4.6. We omit further details, but note that

in this case, the intermittency parameters are chosen as 1 and G has extra factor λ
1/3
q λ

−1/3
q+n̄

instead. From the definitions, the support properties of the low frequency functions Gb⋄

and the high frequency functions ρb⋄ are essentially the same as those of the corresponding

functions in Lemmas 9.4.4 and 9.4.6.

As a consequence of (A.165), we have pressure increments associated to υ̂b,⋄, b = 1, 2,

217



which satisfies

∣∣DNDM
t,qυ̂b,⋄

∣∣ ≲ (σ+
υ̂b,⋄

+ δq+3n̄)
1/2(λq+n̄Γq)

NM
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
for any N,M ≤ Nfin/10. This implies that

∣∣DNDM
t,q(υ̂1,⋄υ̂2,⋄)

∣∣ ≲ (σ+
υ̂1,⋄

+ σ+
υ̂2,⋄

+ δq+3n̄)(λq+n̄Γq)
NM

(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
for any N,M ≤ Nfin/10. Then appealing to the same conclusions used in (9.77a)–(9.77f), we

have that

∣∣DNDM
t,qσ

+
υ̂b

∣∣ ≲ (σ+
υ̂b
+ δq+3n̄)(λq+n̄Γq)

NM
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
∥∥DNDM

t,qσ
+
υ̂b

∥∥
3/2

≲

[∣∣∣supp (ηi,j,k,ξ,⃗l,⋄ζI,⋄ξ )∣∣∣2/3 δq+2n̄Γ
−20
q+n̄Γ

2j
q + δq+3n̄

]
× (λq+n̄Γq)

NM
(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ9

q

)
∥∥DNDM

t,qσ
+
υ̂b

∥∥
∞

≲ ΓC∞−40
q+n̄ (λq+n̄Γq)

NM
(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ9

q

)
∣∣DNDM

t,qσ
−
υ̂b

∣∣ ≲ πℓΓ
41
q λ

1/3
q λ

−1/3
q+n̄ (λq+n̄/2Γq)

NM
(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ9

q

)
for all N,M ≤ Nfin/100. We reintroduce the indices i, j, k, ξ, l⃗, I and define the pressure

increment associated to (10.87d) by

σ±
(10.87d) :=

∑
i,j,k,ξ,⃗l,I,b,⋄

σ±
υ̂
b,i,j,k,ξ,⃗l,I,⋄

.

The estimates (10.89a) and (10.90a) associated to (10.87d) follow using an aggregation pro-

cedure identical to that used in the proofs of Lemmas 9.4.4 and 9.4.6, and so we omit further

details.

Lastly, we define ϕk,l(10.87d) and ϕk,∗(10.87d) as in the proofs of Lemmas 9.4.4 and 9.4.6 and
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obtain (10.95a), (10.95b), and (10.96) as in the cited Lemmas. Setting

σ±
Sq+n̄
C

:= σ±
(10.87e) + σ±

(10.87d), ϕk
Sq+n̄,l
C

:= ϕk(10.87e) + ϕk(10.87d)

and collecting the properties of these objects obtained above, we conclude (10.90a)–(10.96)

and (10.89b).

10.2.4 Mollification error SM

Recalling from subsection 10.1 that divSM2 has mean-zero, we first define the mollification

error SM = SM1 + SM2 by

SM1 := Rq
q −Rℓ +

(
πℓ − πqq

)
Id =: Sq+1,∗

M (10.97)

SM2 := R∗ [(∂t + ûq · ∇)(ŵq+n̄ − wq+1) + (ŵq+n̄ − wq+1)⊗ ûq] + ŵq+n̄ ⊗ ŵq+n̄ − wq+1 ⊗ wq+1 =: Sq+n̄,∗M .

For the undefined mollification stress errors Sk,lM , Sk,∗M , we set them as zero.

Lemma 10.2.14 (Basic estimates and applying inverse divergence). The mollifica-

tion error Sq+1,∗
M and Sq+n̄,∗M satisfy

∥∥DNDM
t,qS

q+1,∗
M

∥∥
∞ ≤ Γ9

q+1δq+3n̄T
2Nind,t

q+1 (λq+1Γq+1)
N M

(
M,Nind,t, τ

−1
q ,T−1

q

)
. (10.98a)∥∥DNDM

t,q+n̄−1S
q+n̄,∗
M

∥∥
∞ ≤ Γ9

q+n̄δq+3n̄T
2Nind,t

q+n̄ (λq+n̄Γq+n̄)
N M

(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1

)
.

(10.98b)

for all N +M ≤ 2Nind.

Proof of Lemma 10.2.14. From (6.9), we have

∥∥DNDM
t,qSM

∥∥
∞ ≲ Γq+1T

2Nind,t

q+1 δ2q+3n̄λ
N
q+1M

(
M,Nind,t, τ

−1
q ,Γ−1

q T−1
q

)
for all N +M ≤ 2Nind, which immediately leads to (10.98a).

219



To deal with SM2, we recall from (9.84) that

∥∥DNDM
t,q+n̄−1 (wq+1 − ŵq+n̄)

∥∥
∞ ≲ δ3q+3n̄T

25Nind,t

q+n̄ (λq+n̄Γq+n̄−1)
N M

(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1

)
.

for all N + M ≤ Nfin/4. Using Lemma 9.2.2, we note that Dt,q−n̄−1wq+1 = Dt,qwq+1 and

Dt,q−n̄−1ŵq+n̄ = Dt,qŵq+n̄. Then, writing ŵq+n̄ ⊗ ŵq+n̄ − wq+1 ⊗ wq+1 = (ŵq+n̄ − wq+1) ⊗

ŵq+n̄ + wq+1 ⊗ (ŵq+n̄ − wq+1) and using (9.83) and (9.87), we have

∥∥ψi,q+n̄−1D
NDM

t,q+n̄−1[ŵq+n̄ ⊗ ŵq+n̄ − wq+1 ⊗ wq+1]
∥∥
∞

≤ δq+3n̄T
2Nind,t

q+n̄ (λq+n̄Γq+n̄)
N M

(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1

)
, (10.99)

for all N +M ≤ 2Nind.

As for the remaining term, we first upgrade the material derivative in the estimate for

ûq. Applying Lemma A.5.1 to F l = 0, F ∗ = ûq, k = q + n̄, N⋆ = 3Nfin/4 with (5.35a), we get

∥∥DNDM
t,q+n̄−1ûq

∥∥
∞ ≲ T−1

q λNq+n̄T
−M
q+n̄−1

Here, we used (4.15). Then, we use Remark A.3.5 with (4.15), setting

G = Dt,q+n̄−1(ŵq+n̄ − wq+1) (or G = (ŵq+n̄ − wq+1)⊗ ûq), v = ûq+n̄−1

CG,∞ = δ3q+n̄T
20Nind,t

q+n̄ , λ = λ′ = λq+n̄Γq+n̄−1, Mt = Nind,t, ν = ν ′ = T−1
q+n̄, Cv = Λ

1/2
q+n̄−1

N∗ = Nfin/9, M∗ = Nfin/10, N◦ =M◦ = 2Nind .

As a result, with a suitable choice of positive integer K◦ to have

δ3q+n̄T
20Nind,t

q+n̄ λ5q+n̄2
2Nind ≤ λ−K◦

q+n̄ ≤ δq+3n̄T
10Nind,t

q+n̄ ,
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we get

∥∥DNDM
t,q+n̄−1R∗(Dt,q(ŵq+n̄ − wq+1))

∥∥
∞ =

∥∥DNDM
t,q+n̄−1R∗(Dt,q+n̄−1(ŵq+n̄ − wq+1))

∥∥
∞

(10.100)

≲ δq+3n̄T
10Nind,t

q+n̄ (λq+n̄Γq+n̄)
NT−M

q+n̄ (10.101)

≤ δq+3n̄T
2Nind,t

q+n̄ (λq+n̄Γq+n̄)
NM

(
M,Nind,t, τ

−1
q+n̄,T

−1
q+n̄

)
,

(10.102)

for all N +M ≤ 2Nind. This completes the proof of (10.98b).

10.3 Upgrading material derivatives and Dodging Hy-

pothesis 5.4.4

Definition 10.3.1 (Definition of Rq+1 and S
m
q+1). Recalling Lemma 10.2.1, Lemma 10.2.6,

Lemma 10.2.10, and Lemma 10.2.14, we define Smq+1 := Sm,lq+1+S
m,∗
q+1 for all q+1 ≤ m ≤ q+ n̄

by

Sm,lq+1 := Sm,lO + Sm,lTN + Sm,lC + Sm,lM , (10.103a)

Sm,∗q+1 := Sm,∗O + Sm,∗TN + Sm,∗C + Sm,∗M . (10.103b)

Here, any undefined terms are taken to be 0. We then define the primitive stress error Rq+1

at q + 1 step by

Rq+1 :=

q+n̄∑
m=q+1

R
m

q+1 , R
m

q+1 = Rm
q + Smq+1 . (10.104)
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The local part Rm,l
q+1 and the non-local part R

m,∗
q+1 are defined by

Rm,l
q+1 := Rm,l

q + Sm,lq+1 , R
m,∗
q+1 := Rm,∗

q + Sm,∗q+1 . (10.105)

We note that by the above definition, we have that

R
m

q+1 = Rm,l
q+1 +R

m,∗
q+1 . (10.106)

We sometimes also use the notation R
m,l

q+1 to denote Rm,l
q+1, since it will be shown later that

the local portion of R
m,l

q+1 remains unchanged throughout the rest of the analysis.

Lemma 10.3.2 (Upgrading material derivatives and verifying Hypothesis 5.4.4).

The new stress errors Smq+1 = Sm,lq+1 + Sm,∗q+1 satisfy the following.

(i) Rm,l
q+1 satisfies Hypothesis 5.4.4 with q replaced by q + 1.

(ii) For q + 2 ≤ m ≤ q + n̄/2, the symmetric stresses Sm,lq+1 obey the estimates

∣∣∣ψi,m−1D
NDM

t,m−1S
m,l
q+1

∣∣∣ ≲ Γ−50
m πmq Λ

N
mM

(
M,Nind,t,Γ

i−5
m−1τ

−1
m−1,T

−1
q Γ9

q

)
(10.107)

for N,M ≤ Nfin/10. For the same range of N,M , the symmetric stress Sq+1,l
q+1 obeys the

estimates

∣∣∣ψi,qDNDM
t,qS

q+1,l
q+1

∣∣∣ ≲ Γ−50
q+1π

q+1
q ΛNq+1M

(
M,Nind,t,Γ

i+19
q τ−1

q ,T−1
q Γ9

q

)
. (10.108)

(iii) For q + n̄/2 + 1 ≤ m ≤ q + n̄ and N,M ≤ Nfin/100, the symmetric stresses Sm,lq+1 obey the

estimates

∣∣∣ψi,m−1D
NDM

t,m−1S
m,l
q+1

∣∣∣ ≲ (σ+
Sm
O
+ σ+

Sm,l
C

+ 1{m=q+n̄}
(
σ+
STN

+ σ+
υ

)
+ δq+3n̄

)
× (λmΓm)

NM
(
M,Nind,t,Γ

i−5
m−1τ

−1
m−1,T

−1
q Γ9

q

)
. (10.109a)
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(iv) For all q + 1 ≤ m ≤ q + n̄ and N +M ≤ 2Nind, the symmetric stresses Sm,∗q+1

∥∥DNDM
t,m−1S

m,∗
q+1

∥∥
L∞ ≤ Γ2

q+1T
2Nind,t

q+1 δ2q+3n̄λ
N
mM

(
M,Nind,t, τ

−1
m−1,T

−1
m−1

)
. (10.110)

Proof of Lemma 10.3.2. In order to prove the claim in item (i), note that for the portion of

Rm,l
q+1 coming from Rm,l

q (c.f. (10.104)), the claim follows by the inductive hypothesis itself.

For the portion coming from Sm,lq+1, we may appeal to (10.103) and (10.10), (10.53a), and

(10.80).

Next, we may prove (10.108) directly from (10.27a), since from Lemma 10.2.6 and

Lemma 10.2.10, the transport, Nash, and divergence corrector errors do not contribute to

Sq+1,l
q+1 . In order to prove (10.107), we note that from Lemma 10.2.6 and Lemma 10.2.10, the

transport, Nash, and divergence corrector errors do not contribute to Sm,lq+1 for q + 2 ≤ m ≤

q + n̄/2. Then from Lemmas 10.2.1 and 10.2.3, we need only consider the case m = q + n̄/2,

for which we have that for N,M ≤ Nfin/10,

∣∣∣ψi,m−1D
NDM

t,m−1S
m,l
q+1

∣∣∣ =
(5.8)

∣∣∣∣∣ψi,m−1

∑
i′

ψ6
i′,qD

NDM
t,m−1S

m,l
q+1

∣∣∣∣∣
≲

(10.10)

∑
i′:ψi′,qψi,m−1 ̸=0

∣∣∣ψi′,qDNDM
t,qS

m,l
q+1

∣∣∣
≲

(10.27b),(5.14)

Γ−100
m πmq λ

N
mM

(
M,Nind,t, τ

−1
m−1Γ

i−5
m−1,T

−1
q Γ9

q

)
. (10.111)

In order to prove (10.109a), we utilize a very similar argument to the one used to produce

(10.111). The only difference is that instead of appealing to (10.27b), we appeal to (10.29a),

(10.70a), (10.89a), and (10.89b). We omit further details.

Finally, we must prove (10.110). The proof is however very simliar to (6.9), and so we

omit further details.
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Chapter 11

Error estimates for the relaxed local

energy inequality

11.1 Defining new current error terms

We will define ϕq+1 by adding ŵq+n̄ to uq on the left-hand side of (5.3) and collecting new

errors generated by the addition. Recall that in (10.3) we added ŵq+n̄ to the Euler-Reynolds

system and obtained the equation

∂tuq+1 + div (uq+1 ⊗ uq+1) +∇pq = div
(
Rq+1 − (πq − πqq)Id

)
(11.1)

for uq+1 = uq + ŵq+n̄, where

Rq+1 = Rq −Rq
q + Sq+1 (11.2a)

divSq+1 = ∂tŵq+n̄ + uq · ∇ŵq+n̄ + ŵq+n̄ · ∇uq + div
(
ŵq+n̄ ⊗ ŵq+n̄ +Rq

q − πqqId
)
. (11.2b)
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We recall that κq = 1/2tr (Rq − πqId), κ
q
q = 1/2tr (Rq

q − πqqId) and set1

κq+1 :=
1

2
tr (Rq+1 − (πq − πqq)Id) = κq − κqq +

1

2
tr (Sq+1) = κq − κℓ +

1

2
tr (Sq+1 − SM1) ,

(11.3a)

φq+1 = φq − φqq + ϕq+1 , (11.3b)

where divϕq+1 will include the new errors. We now introduce a function of time mϕq+1
(t) to

account for the fact that the new errors may not have zero mean for each time and expect

to obtain

∂t

(
1

2
|uq+1|2

)
+ div

((
1

2
|uq+1|2 + pq

)
uq+1

)
= (∂t + ûq+1 · ∇)κq+1 + div

(
(Rq+1 − πqId + πqqId)ûq+1

)
+ divφq+1 +mϕq+1

− E .

(11.4)

Towards this end, we first note that since div ûq = 0, we have

div ((Rq − πqId)ûq) + ûq · div
(
Rq+1 −Rq + πqqId

)
= div

(
(Rq+1 − πqId + πqqId)ûq

)
+∇ûq :

(
Rq − πqqId−Rq+1

)
. (11.5)

1We are using the definition of SM1 from (10.1) to achieve the third equality.
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We now add and subtract div
(
(Rq+1 − πqId + πqqId)ûq+1

)
in the second to last equality below

to obtain

∂t

(
1

2
|uq + ŵq+n̄|2

)
+ div

((
1

2
|uq + ŵq+n̄|2 + pq

)
(uq + ŵq+n̄)

)
=

(5.3)
(∂t + ûq · ∇)κq + div((Rq − πqId)ûq) + divφq + (∂t + uq · ∇)

(
1

2
|ŵq+n̄|2

)
+ div

(
1

2
|ŵq+n̄|2ŵq+n̄

)
+ ŵq+n̄ · (∂tuq + (uq · ∇)uq +∇pq) +∇uq : ŵq+n̄ ⊗ ŵq+n̄

+ uq · (∂tŵq+n̄ + (uq · ∇)ŵq+n̄ + (ŵq+n̄ · ∇)uq + div(ŵq+n̄ ⊗ ŵq+n̄))− E

=
(9.24)

(∂t + ûq · ∇)κq + div((Rq − πqId)ûq) + divφq + (∂t + ûq · ∇)

(
1

2
|ŵq+n̄|2

)
+ div

(
1

2
|ŵq+n̄|2ŵq+n̄

)
+ ŵq+n̄ · (∂tuq + (uq · ∇)uq +∇pq) +∇ûq : ŵq+n̄ ⊗ ŵq+n̄

+ ûq · (∂tŵq+n̄ + (uq · ∇)ŵq+n̄ + (ŵq+n̄ · ∇)uq + div(ŵq+n̄ ⊗ ŵq+n̄))− E

=
(11.2a),
(11.2b)

(∂t + ûq · ∇)

(
1

2
|ŵq+n̄|2 + κq

)
+ div((Rq − πqId)ûq) + div

(
1

2
|ŵq+n̄|2ŵq+n̄ + φq

)

+ ŵq+n̄ · (∂tuq + (uq · ∇)uq +∇pq) +∇ûq : ŵq+n̄ ⊗ ŵq+n̄ + ûq · div(Rq+1 −Rq + πqqId)− E

=
(11.5)

(∂t + ûq · ∇)

(
1

2
|ŵq+n̄|2 + κq

)
+ div

(
1

2
|ŵq+n̄|2ŵq+n̄ + φq

)
+ div((Rq+1 − πqId + πqqId)ûq+1)

+ ŵq+n̄ · (∂tuq + (uq · ∇)uq +∇pq)− div
(
(Rq+1 − πqId + πqqId)(ûq+1 − ûq)

)
+∇ûq : (ŵq+n̄ ⊗ ŵq+n̄ +Rq − πqqId−Rq+1)− E

= (∂t + ûq+1 · ∇)κq+1 + div
(
(Rq+1 − πqId + πqqId)ûq+1

)
+ divφq+1 +mϕq+1

− E . (11.6)
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We see that the final quantity on the right-hand side of (11.6) will hold provided that

divϕq+1 +m′
ϕq+1

=
(11.3b)

(∂t + ûq · ∇)

(
1

2
|ŵq+n̄|2 + κq

)
− (∂t + ûq+1 · ∇)κq+1

− div
(
(Rq+1 − πqId + πqqId)(ûq+1 − ûq)

)
+ ŵq+n̄ · (∂tuq + (uq · ∇)uq +∇pq)

+∇ûq : (ŵq+n̄ ⊗ ŵq+n̄ +Rq − πqqId−Rq+1) + div

(
1

2
|ŵq+n̄|2ŵq+n̄ + φqq

)
=

(11.3a)
(∂t + ûq · ∇)

(
1

2
|ŵq+n̄|2 + κqq −

1

2
tr (Sq+1)

)
+ (∂t + ûq · ∇)κq+1 − (∂t + ûq+1 · ∇)κq+1

− div
(
(Rq+1 − πqId + πqqId)(ûq+1 − ûq)

)
+ ŵq+n̄ · (∂tuq + (uq · ∇)uq +∇pq)

+∇ûq : (ŵq+n̄ ⊗ ŵq+n̄ +Rq − πqqId−Rq+1) + div

(
1

2
|ŵq+n̄|2ŵq+n̄ + φqq

)
=

(11.3a)
(∂t + ûq · ∇)

(
1

2
|wq+1|2 + κqq −

1

2
tr (Sq+1)

)
︸ ︷︷ ︸

=:divϕT+m′
T

− div((ûq+1 − ûq)κq+1)− div
((
Rq+1 − (πq − πqq)Id

)
(ûq+1 − ûq)

)︸ ︷︷ ︸
=:divϕR

+ wq+1 · (∂tuq + (uq · ∇)uq +∇pq)︸ ︷︷ ︸
=:divϕL+m′

L

+∇ûq : (wq+1 ⊗ wq+1 +Rq−πqqId−Rq+1)︸ ︷︷ ︸
=:divϕN+m′

N

,

+ div

(
1

2
|w(p)

q+1|2w
(p)
q+1 + φℓ

)
︸ ︷︷ ︸

=:divϕO

+div

(
1

2
|w(c)

q+1|2w
(p)
q+1 + (w

(c)
q+1 · w

(p)
q+1)w

(p)
q+1 +

1

2
|wq+1|2w(c)

q+1

)
︸ ︷︷ ︸

=:divϕC

+ div(φqq − φℓ) + (∂t + ûq · ∇)
1

2

(
|ŵq+n̄|2 − |wq+1|2

)
+

1

2
div
(
|ŵq+n̄|2ŵq+n̄ − |wq+1|2wq+1

)
︸ ︷︷ ︸

=:divϕM1+m′
M1

+ (ŵq+n̄ − wq+1) · (∂tuq + (uq · ∇)uq +∇pq) +∇ûq : (ŵq+n̄ ⊗ ŵq+n̄ − wq+1 ⊗ wq+1)︸ ︷︷ ︸
=:divϕM2+m′

M2

,
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where mT ,mN ,mL,mM1,mM2 are functions of time only and are given by

mT (t) :=

ˆ t

0

〈
(∂t + ûq · ∇)

(
1

2
|wq+1|2 + κℓ −

1

2
tr (Sq+1)

)〉
(s) ds (11.7a)

mN(t) :=

ˆ t

0

⟨∇ûq : (wq+1 ⊗ wq+1 +Rq −Rq+1)⟩ (s) ds (11.7b)

mL(t) :=

ˆ t

0

⟨wq+1 · (∂tûq + (ûq · ∇)ûq +∇pq)⟩ (s) ds (11.7c)

mM1(t) :=

ˆ t

0

〈
(∂t + ûq · ∇)

1

2

(
|ŵq+n̄|2 − |wq+1|2

)〉
(s) ds (11.7d)

mM2(t) :=

ˆ t

0

⟨(ŵq+n̄ − wq+1) · (∂tuq + (uq · ∇)uq +∇pq)⟩ (s) ds

+

ˆ t

0

⟨∇ûq : (ŵq+n̄ ⊗ ŵq+n̄ − wq+1 ⊗ wq+1)⟩ (s) ds (11.7e)

and mϕq+1
:= mT +mN +mL +mM1 +mM2.

With these definitions in hand, we can rewrite (11.6) for (uq+1, pq, Rq+1, φq+1,−(πq−πqq))

as

∂t

(
1

2
|uq+1|2

)
+ div

((
1

2
|uq+1|2 + pq

)
uq+1

)
= (∂t + ûq+1 · ∇)(κq+1 +mϕq+1

) + div
(
(Rq+1 − (πq − πqq)Id)ûq+1

)
+ divφq+1 − E .

(11.8)

The primitive current error ϕq+1 will consist of ϕ
k

q+1, so that ϕq+1 =
∑q+n̄

q+1 ϕ
k

q+1.
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11.2 Error estimates

11.2.1 Oscillation current error

Recalling the definition of B(ξ),φ and B(ξ),R from Definition 7.2.6, we have

(BaBbBb)(ξ),φ = ρ3
(ξ),φ

∑
I

(ζIξ)
6P ̸=0

[
(WI

(ξ),φ)a(WI
(ξ),φ)b(WI

(ξ),φ)b
]
+ P ̸=0ρ

3
(ξ),φξaξbξb + ξaξbξb

(BaBbBb)(ξ),R = ρ3
(ξ),R

∑
I

(ζIξ)
9P ̸=0

[
(WI

(ξ),R)a(WI
(ξ),R)b(WI

(ξ),R)b
]

where we used ⟨|WI
(ξ),φ|2WI

(ξ),φ⟩ = |ξ|2ξ from Proposition 7.1.6 item (5), ⟨ρ3
(ξ),φ⟩ = 1 from

Proposition 7.2.1 item (iii),
∑

I(ζ
I
ξ)

6 = 1 from (7.27), and ⟨|WI
(ξ),R|2WI

(ξ),R⟩ = 0 from Propo-

sition 7.1.5 item (5). Using that all cross-terms from |w(p)
q+1|2w

(p)
q+1 (as defined in (9.5) and

(9.13)) vanish due to Lemma 9.2.2 item (iii), and the fact that (∇Φ−1
(i,k)ξ) ·∇ gives zero when

applied to (WI
(ξ),⋄ρ(ξ),⋄ζ

I
ξ) ◦ Φ(i,k), it then follows that

1

2
div
(
|w(p)

q+1|2w
(p)
q+1

)
=

1

2
div

 ∑
i,j,k,ξ,⃗l,I,⋄

a3(ξ),⋄
(
ρ3
(ξ),⋄(ζ

I
ξ)

3⋄) ◦ Φ(i,k)

∣∣∣∇Φ−1
(i,k)W

I
(ξ),⋄ ◦ Φ(i,k)

∣∣∣2∇Φ−1
(i,k)W

I
(ξ),⋄ ◦ Φ(i,k)


=

1

2

∑
ξ,i,j,k,⃗l

div
(
a3(ξ),φ|∇Φ−1

(i,k)ξ|
2∇Φ−1

(i,k)ξ
)
+
∑
ξ,i,j,k,⃗l

b(ξ),φP ̸=0

(
ρ3
(ξ),φ

)
(Φ(i,k))

+
∑

ξ,i,j,k,⃗l,I,⋄

b(ξ),⋄
(
ρ3
(ξ),⋄(ζ

I
ξ)

3⋄P ̸=0(ϱ
I
(ξ),⋄)

3
)
(Φ(i,k)) , (11.9)

where the γ component of b(ξ),⋄ is given by bγ(ξ),⋄ =
1/2ξa∂γ

(
a3(ξ),⋄|∇Φ−1

(i,k)ξ|2(∇Φ−1
(i,k))

γ
a

)
, ϱ(ξ),⋄

is the pipe density defined in (10.7), and we are using the notation 3⋄ in the power of ζIξ as

a stand-in for 6 or 9 in the current and Reynolds cases, respectively.

By the choice of a(ξ),φ, the first term cancels out φℓ up to a higher-frequency error

term. Indeed, using (9.2), Proposition 7.1.2, (8.36c) to yield a formula for the summation of
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ζ3
q,φ,i,k,ξ,⃗l

, (8.32), (5.8) at level q, (8.1) at level q, and (8.21), we have that

1

2

∑
ξ,i,j,k,⃗l

a3(ξ),φ|∇Φ−1
(i,k)ξ|

2(∇Φ−1
(i,k))

γ
aξa

=
1

2
δ
3/2
q+n̄r

−1
q

∑
ξ,i,j,k,⃗l

Γ3(j−1)
q ψ6

i,qω
6
j,qχ

6
i,k,qζ

3
q,φ,i,k,ξ,⃗l

γ̃3ξ

(
φq,i,k

δ
3/2
q+n̄r

−1
q Γ

3(j−1)
q

)
(∇Φ−1

(i,k))
γ
aξa

=
1

2
δ
3/2
q+n̄r

−1
q

∑
ξ,i,j,k,l⊥

Γ3(j−1)
q ψ6

i,qω
6
j,qχ

6
i,k,qX 3

q,ξ,l⊥ ◦ Φ(i,k)γ̃
3
ξ

(
φq,i,k

δ
3/2
q+n̄r

−1
q Γ

3(j−1)
q

)
(∇Φ−1

(i,k))
γ
aξa

=
∑
ξ,i,j,k

ψ6
i,qω

6
j,qχ

6
i,k,qc3

(
− 1

c3
φγℓ

)

+
1

2

∑
ξ,i,j,k,l⊥

δ
3/2
q+n̄r

−1
q Γ3(j−1)

q ψ6
i,qω

6
j,qχ

6
i,k,qγ̃

3
ξ

(
φq,i,k

δ
3/2
q+n̄r

−1
q Γ

3(j−1)
q

)
(∇Φ−1

(i,k))
γ
aξa︸ ︷︷ ︸

=: 2b̃γ
(ξ)

(
P ̸=0X 3

q,ξ,l⊥

)
◦ Φ(i,k)

= −(φℓ)
γ +

∑
ξ,i,j,k,l⊥

b̃γ(ξ)
(
P̸=0X 3

q,ξ,l⊥

) (
Φ(i,k)

)
. (11.10)

The inverse divergence of the remaining terms will form new current errors. We first

recall the synthetic Littlewood-Paley decomposition (cf. Section 7.3). Since ϱI(ξ),⋄ is defined

on the plane ξ⊥ and is periodized to scale (λq+n̄rq)
−1= (λq+⌊n̄/2⌋Γq)

−1 from (9.4), (9.12), and

Propositions 7.1.5, 7.1.6, we can decompose P ̸=0 in front of (ϱI(ξ),⋄)
3 into

P ̸=0 = P̃ξλq+⌊n/2⌋+1
P ̸=0 +

q+n̄+1∑
m=q+⌊n/2⌋+2

P̃ξ(m−1,m] + (1− P̃ξq+n̄+1) .

Assuming we can apply the inverse divergence operator from Proposition A.3.3 (with the

adjustments set out in Remark A.3.8 for scalar fields and the additions in Remark A.3.9 for
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pointwise bounds), we define

ϕ
q+1

O := (H +R∗)
∑
ξ,i,j,k,⃗l

b(ξ),φ
(
P ̸=0ρ

3
(ξ),φ

)
(Φ(i,k))︸ ︷︷ ︸

=: tq+1

i,j,k,ξ,⃗l,φ

(11.11a)

+ (H +R∗)
∑

ξ,i,j,k,l⊥

∂γ b̃
γ
(ξ)

(
P ̸=0X 3

q,ξ,l⊥

) (
Φ(i,k)

)︸ ︷︷ ︸
=: t̃q+1

i,j,k,ξ,l⊥,φ

(11.11b)

ϕ
q+⌊n/2⌋+1

O := (H +R∗)
∑

ξ,i,j,k,⃗l,I,⋄

b(ξ),⋄

(
ρ3
(ξ),⋄(ζ

I
ξ)

3⋄P̃ξq+⌊n/2⌋+1P ̸=0(ϱ
I
(ξ),⋄)

3
)
(Φ(i,k))︸ ︷︷ ︸

=: t
q+⌊n/2⌋+1

i,j,k,ξ,⃗l,I,⋄

(11.11c)

ϕ
m

O := (H +R∗)
∑

ξ,i,j,k,⃗l,I,⋄

b(ξ),⋄

(
ρ3
(ξ),⋄(ζ

I
ξ)

3⋄P̃ξ(m−1,m]P ̸=0(ϱ
I
(ξ),⋄)

3
)
(Φ(i,k))︸ ︷︷ ︸

=: tm
i,j,k,ξ,⃗l,I,⋄

(11.11d)

ϕ
q+n̄

O :=

q+n̄+1∑
m=q+n̄

(H +R∗)
∑

ξ,i,j,k,⃗l,I,⋄

b(ξ),⋄

(
ρ3
(ξ),⋄(ζ

I
ξ)

3⋄P̃ξ(m−1,m]P ̸=0(ϱ
I
(ξ),⋄)

3
)
(Φ(i,k))︸ ︷︷ ︸

= tm
i,j,k,ξ,⃗l,I,⋄

(11.11e)

+ (H +R∗)

 ∑
ξ,i,j,k,⃗l,I,⋄

b(ξ),⋄

(
ρ3
(ξ),⋄(ζ

I
ξ)

3⋄(1− P̃ξq+n̄+1)P ̸=0(ϱ
I
(ξ),⋄)

3
)
(Φ(i,k))

 ,

(11.11f)

where (11.11d) is defined for q + n̄/2 + 1 < m < q + n̄. We justify these applications and

record estimates on the outputs in the following Lemma.

Lemma 11.2.1 (Current error and pressure increment). There exist current errors ϕ
m

O

for m = q+1, . . . , q+n̄ and pressure increments σ+

ϕ
m
O
= σϕmO −σ

−
ϕ
m
O
for m = q+n̄/2+1, . . . , q+n̄

such that the following hold.

(i) We have the equality

1

2
div
(
|w(p)

q+1|2w
(p)
q+1 + φℓ

)
=

q+n̄∑
m=q+1

divϕ
m

O =

q+n̄∑
m=q+1

div
(
ϕ
m,l

O + ϕ
m,∗
O

)
.
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(ii) The lowest shell has no pressure increment; more precisely, σ+

ϕ
q+1
O

≡ 0, and for N,M ≤

Nfin/100,

∣∣∣ψi,qDNDM
t,qϕ

q+1

O

∣∣∣ < Γ65
q Λqλ

−1
q+1(π

q
q)

3/2r−1
q λNq+1M

(
M,Nind,t, τqΓ

i+14
q ,Γ8

qT
−1
q

)
. (11.12)

(iii) For all m = q + n̄/2 + 1, . . . , q + n̄, we have that

∣∣∣ψi,qDNDM
t,qϕ

m,l

O

∣∣∣ ≲ ((σ+

ϕ
m
O
)
3/2r−1

m + δ2q+3n̄

)
(λmΓq)

N M
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
(11.13a)∣∣∣ψi,qDNDM

t,qσ
+

ϕ
m
O

∣∣∣ ≲ (σ+

ϕ
m
O
+ δ2q+3n̄

)
(λmΓq)

N M
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
(11.13b)∥∥∥ψi,qDNDM

t,qσ
+

ϕ
m
O

∥∥∥
3/2
< δm+n̄Γ

−9
m (λmΓq)

N M
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
(11.13c)∥∥∥ψi,qDNDM

t,qσ
+

ϕ
m
O

∥∥∥
∞
< ΓC∞−9

m (λmΓq)
N M

(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
(11.13d)∣∣∣ψi,qDNDM

t,qσ
−
ϕ
m
O

∣∣∣ < ( λq
λq+⌊n̄/2⌋

) 2
3

πqq
(
λq+⌊n̄/2⌋Γq

)N M
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
(11.13e)

for all N,M ≤ Nfin/100. Furthermore, we have that for all m′ ≥ q + n̄/2 + 1,

B
(
supp ŵq′ , λ

−1
q′ Γq′+1

)
∩ suppϕ

m,l

O = ∅ ∀q + 1 ≤ q′ ≤ m− 1

B
(
supp ŵq′ , λ

−1
q′ Γq′+1

)
∩ supp (σ+

ϕ
m′
O

) = ∅ ∀q + 1 ≤ q′ ≤ m′ − 1

B
(
supp ŵq′ , λ

−1
q+1Γ

2
q

)
∩ supp (σ−

ϕ
m′
O

) = ∅ ∀q + 1 ≤ q′ ≤ q + n̄/2 .

(11.14)

(iv) For all m = q + 1, . . . , q + n̄ and N,M ≤ 2Nind, the non-local part ϕ̄m,∗O satisfies

∥∥DNDM
t,qϕ̄

m,∗
O

∥∥
L∞ ≤ T

2Nind,t

q+n̄ δ
3/2
q+3n̄λ

N
mτ

−M
q . (11.15)

Proof. The equality in (i) follows from (11.9)–(11.11), assuming for the moment that all

quantities in (11.11) are well-defined. We now split the proof up into cases. We first treat
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ϕ
q+1

O as defined in (11.11a)–(11.11b) and prove (11.12) and (11.15) for m = q + 1. Next,

we treat (11.11c) and prove (11.13a)–(11.15) for m = q + n̄/2 + 1 using Proposition A.3.3 in

conjunction with Remark A.3.9. Afterwards we treat the intermediate shells from (11.11d)

and a portion of the last shell (11.11e), and prove (11.13a)–(11.15) for q+ n̄/2+2 ≤ m ≤ q+ n̄

using Proposition A.4.5. Finally, we treat (11.11f), which will be absorbed to the nonlocal

part of the current error. We will therefore prove (11.15) using Proposition A.3.3. We fix

the following choices throughout the proof,

v = ûq , Φ = Φ(i,k) , Cv = Λ
1/2
q , ν ′ = T−1

q Γ8
q , λ′ = Γ13

q Λq ,

2M∗ = N∗ =
Nfin

3
, Mt = Nind,t , M◦ = N◦ = 2Nind , K◦ as in (xvi)

while the remaining parameters will vary depending on the case.

Case 1a: Analysis for (11.11a). Fix ξ, i, j, k, and l⃗. In order to check the low-frequency

assumptions in Part 1, high-frequency assumptions in Part 2, and nonlocal assumptions in

Part 4 of Proposition A.3.3, we set

p = ∞ , G = b(ξ),φ , CG,∞ = r−1
q δ

3/2
q+n̄Γ

3j+34
q Λq , λ = Γ13

q Λq , ν = τ−1
q Γi+13

q , π = Γ36
q π

3/2
ℓ r−1

q ΛqΓ
10
q ,

ϱ = P ̸=0ρ
3
(ξ),φ , ϑi1i2...id−1id = δi1i2...id−1id∆−d/2ϱ , C∗,1 = C∗,∞ = Γ6

qλ
α
q+1 , µ = λq+1Γ

−4
q ,

Υ = Υ′ = λq+1Γ
−4
q , Λ = λq+1Γ

−1
q , Ndec as in (xv) , d as in (xvii) ,

where α is chosen as in (4.14). Then we have that (A.39)–(A.40) are satisfied by definition

and by (9.36a), (A.41)–(A.42b) hold from Corollary 8.2.4 and (5.34) at level q, (A.59) holds

from (9.38b), (i)–(ii) hold by definition and item i from Proposition 7.2.1, (A.43) holds due

to standard Littlewood-Paley theory, (A.44) holds by definition and by (4.24a), (A.45) holds

due to (4.21), (A.52) holds by (4.24a), (A.53)–(A.54) hold from Remark A.3.4, and (A.55)

holds from (4.23b).

From (A.46) and (A.56), we have that (11.11a) is well-defined. From (A.47), (A.49),
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(A.60), (6.6), and (4.24a), we have that for N,M ≤ Nfin/7,

∣∣∣DNDM
t,qH tq+1

i,j,k,ξ,⃗l,φ

∣∣∣ ≲ Γ60
q (πqq)

3/2Λqr
−1
q λ−1

q+1λ
N
q+1M

(
M,Nind,t, τ

−1
q Γi+13

q ,T−1
q Γ8

q

)
.

Notice that from (ii), the support of Htq+1

i,j,k,ξ,⃗l,φ
is contained in the support of ti,j,k,ξ,⃗l, which

is contained inside the support of ηi,j,k,ξ,⃗l,φ from the definition of b(ξ),φ. Thus we may apply

Corollary 8.6.3 with H = Htq+1

i,j,k,ξ,⃗l,φ
, ϖ = Γ60

q (πqq)
3/2r−1

q λ−1
q+1Λq1supp η

i,j,k,ξ,⃗l,φ
, and p = 1 to

deduce that∣∣∣∣∣∣ψi,qDNDM
t,q

∑
i′,j,k,ξ,⃗l,φ

H tq+1

i′,j,k,ξ,⃗l,φ

∣∣∣∣∣∣ ≲ Γ60
q π

3/2
ℓ Λqr

−1
q λ−1

q+1M
(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ8

q

)
.

(11.17)

From (A.57) and summing over the values of i, j, k, ξ, l⃗, ⋄ which may be non-zero at a fixed

point in time using (5.8) and (5.9) to control i, (8.5) to control k, (8.25) to control j, (8.30)

and (8.33) to control l⃗, and using that ξ takes only finitely many values, we have from (A.57)

and Remark A.3.4 that for all M0, N0 ≤ 2Nind,∣∣∣∣∣∣DNDM
t,q

∑
i,j,k,ξ,⃗l,φ

R∗tq+1

i,j,k,ξ,⃗l,φ

∣∣∣∣∣∣ ≤ λ−2
q+n̄δ

3/2
q+3n̄T

2Nind,t

q+n̄ λNq+1τ
−M
q . (11.18)

Combining (11.17)–(11.18) and using (6.6), we have an estimate consistent with (11.12), and

an estimate consistent with (11.15) for m = q + 1.

Case 1b: Analysis for (11.11b). Fix ξ, i, j, and k. In order to check the low-frequency

assumptions in Part 1, high-frequency assumptions in Part 2, and nonlocal assumptions in
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Part 4 of Proposition A.3.3, we set

p = ∞ , G = ∂γ b̃
γ
(ξ) , CG,∞ = r−1

q δ
3/2
q+n̄Γ

3j+34
q Λq , λ = Γ13

q Λq , ν = τ−1
q Γi+13

q , π = Γ36
q π

3/2
ℓ r−1

q ΛqΓ
10
q ,

ϱ = P ̸=0

∑
l⊥

X 3
q,ξ,l⊥ , ϑi1i2...id−1id = δi1i2...id−1id∆−d/2ϱ , C∗,1 = C∗,∞ = λαq+1 , µ = CΓλq+1Γ

−5
q ,

Υ = Υ′ = Λ = λq+1Γ
−5
q , Ndec as in (xv) , d as in (xvii) .

Then we have that (A.39)–(A.40) are satisfied by definition and by (5.37) at level q, (8.28),

(8.3), Corollary 8.2.4 at level q, and (9.40), (A.41)–(A.42b) hold from Corollary 8.2.4 and

(5.34) at level q, (A.59) holds from (8.22c) and the same estimates which justified (A.39)–

(A.40), (i)–(ii) hold by definition and from (8.30), (A.43) holds due to standard Littlewood-

Paley theory, (A.44) holds by definition and by (4.24a), (A.45) holds due to (4.21), (A.52)

holds by (4.24a), (A.53)–(A.54) hold from Remark A.3.4, and (A.55) holds from (4.23b).

At this point, the remainder of the argument is essentially identical to that of Case 1a.

Indeed, the only differences are that the support of the localized output is contained inside

the support of ψi,qωj,qχi,k,q, and so instead of appealing to the abstract aggregation lemma,

we may appeal directly to (5.8) and (8.21). Eschewing further details, we have concluded

the analysis of ϕq+1
O and proven (11.12) and (11.15) at level m = q + 1.

Case 2: Analysis for (11.11c). Fix ξ, i, j, k, l⃗, I, and ⋄. In order to check the low-frequency,

preliminary assumptions in Part 1 of Proposition A.4.5, we set

p = 1,∞ , Gφ = b(ξ),φ
(
ρ3
(ξ),φ(ζ

I
ξ)

3φ
)
◦ Φ(i,k) , GR = r−1

q b(ξ),R
(
ρ3
(ξ),R(ζ

I
ξ)

3R
)
◦ Φ(i,k) ,

CG⋄,1 = δ
3/2
q+n̄r

−1
q Γ3j+40

q Λq

∣∣∣supp (ηi,j,k,ξ,⃗l,⋄ζI,⋄ξ )∣∣∣+λ−15
q+n̄ , CG⋄,∞ = δ

3/2
q+n̄r

−1
q Γ3j+40

q Λq ,

λ = λq+n̄/2 , ν = τ−1
q Γi+13

q , π = Γ35
q πℓΛ

2/3
q , rG = rq . (11.20)

Then we have that (A.39) is satisfied by definition, (A.40) is satisfied by (9.36b), (9.36d),

Corollary 8.2.4, (7.23), and Definition 7.2.4, (A.41)–(A.42b) hold from Corollary 8.2.4 and

(5.34) at level q, and (A.132b) holds from (9.38). In order to check the high-frequency,
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preliminary assumptions in Part 1 of Proposition A.4.5, we set

ϱR = P̃ξq+n̄/2+1P ̸=0(ϱ
I
(ξ),R)

3rq , ϱφ = P̃ξq+n̄/2+1P ̸=0(ϱ
I
(ξ),φ)

3 , ϑi1i2...id−1id
⋄ = δi1i2...id−1id∆−d/2ϱ⋄ ,

C∗,1 = Γqλ
α
q+n̄/2+1 , C∗,∞ =

(
λq+n̄/2+1

λq+n̄/2Γq

)2

λαq+n̄/2+1 , µ = Υ = Υ′ = λq+n̄/2Γq , Λ = λq+n̄/2+1 ,

Ndec as in (xv) , d as in (xvii)

Now (i)–(ii) hold by definition and from (9.4) and (9.12) (which specify the minimum fre-

quency of µ = λq+n̄/2Γq), (A.43) holds due to Propositions 7.1.5 and 7.1.6 and estimate

(7.37a) from Lemma 7.3.3 applied with λr = µ, λ = λq+n̄, λ0 = λq+n̄/2+1, ρ = ϱ⋄, and q = 1,

(A.44) holds by definition and by (4.24a), (A.45) holds due to (4.21), (A.52) holds by (4.24a),

(A.53)–(A.54) hold from Remark A.3.4, and (A.55) holds from (4.23b). In order to check

the additional assumptions in Part 2 of Proposition A.4.5, we set

N∗∗ as in (xvii) , Ncut,x,Ncut,t as in (xi) , Γ = Γ
1
10
q , δtiny = δ2q+3n̄ , rϕ = rq+n̄/2+1 ,

(11.22)

δ
3/2
ϕ,p = CG⋄,pC∗,p(λq+n̄/2Γq)

−1rq+n̄/2+1 , m̄ = 1 , µ0 = λq+n̄/2+1Γ
−1
q , µm̄ = µ1 = λq+n̄/2+1Γ

2
q .

Then (A.197a)–(A.197b) hold from (4.24a), (A.197c) holds from (4.23a), (A.198a) holds

by definition, (A.198b) holds from (4.17a), (A.198c) holds from (4.17b), (A.198d) holds

from (4.24a), (A.198e) holds from (4.21), (A.199a) holds by definition, (A.199b) holds by

definition and immediate computation, (A.199c) holds due to (4.23b), and (A.199d) holds

due to (4.23c).

From (A.57) and summing over the values of i, j, k, ξ, l⃗, ⋄, I which may be non-zero at

a fixed point in time in a manner similar to that from Case 1a, we have from (A.57) and

Remark A.3.4 that for all M◦, N◦ ≤ 2Nind,∣∣∣∣∣∣DNDM
t,q

∑
i,j,k,ξ,⃗l,⋄,I

R∗t
q+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

∣∣∣∣∣∣ ≤ λ−2
q+n̄δ

3/2
q+3n̄T

2Nind,t

q+n̄ λNq+1τ
−M
q . (11.23)
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This verifies (11.15) at level m = q + n̄/2 + 1. From (A.200)–(A.201) and (4.24a), we have

that there exists a pressure increment σHtq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄
= σ+

Htq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

− σ−
Htq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

such that for

N,M ≤ Nfin/7,

∣∣∣DNDM
t,qHt

q+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

∣∣∣ ≲ ((σ+

Htq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

)3/2

r−1
q+1 + δ2q+3n̄

)
(λq+n̄/2+1Γq)

NM
(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ9

q

)
.

(11.24)

From (A.48) and (A.205), we have that

supp

(
σ+

Htq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

)
⊆ supp

(
Htq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

)
⊆ supp

(
a(ξ),⋄

(
ρ⋄
(ξ)ζ

I
ξ

)
◦ Φ(i,k)

)
. (11.25)

Now define

σ±
ϕ
q+n̄/2+1
O

=
∑

i,j,k,ξ,⃗l,I,⋄

σ±
Htq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

. (11.26)

Then (9.22) gives that (11.14) is satisfied for m′ = q + n̄/2 + 1. From (11.24), (8.45), (5.8),

and Corollary 8.6.3 with

H = Htq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄
, ϖ =

[(
σ+

Htq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

)3/2

r−1
q+n̄/2+1 + δ2q+3n̄

]
1supp a(ξ),⋄(ρ

⋄
(ξ)

ζI
ξ)◦Φ(i,k)

, p = 1 ,

we have that for N,M ≤ Nfin/7,

∣∣∣∣∣∣ψi,qDNDM
t,q

∑
i′,j,k,ξ,⃗l,I,⋄

Htq+n̄/2+1

i′,j,k,ξ,⃗l,I,⋄

∣∣∣∣∣∣ ≲
((

σ+

ϕ
q+n̄/2+1
O

)3/2

r−1
q+n̄/2+1 + δ2q+3n̄

)
× (λq+n̄/2+1Γq)

NM
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
.

(11.27)

In combination with the bound in (11.23), we have that (11.13a) is satisfied form = q+n̄/2+1.
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From (A.202), (4.24a), and (4.18), we have that for N,M ≤ Nfin/7,

∣∣∣∣DNDM
t,qσ

+

Htq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

∣∣∣∣ ≲ (σ+

Htq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

+ δ2q+3n̄

)
(λq+n̄/2+1Γq)

NM
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
.

(11.28)

From (11.28), (8.45), (5.8), and Corollary 8.6.3 with

H = σ+

Htq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

, ϖ =
[
H + δ2q+3n̄

]
1supp a(ξ),⋄(ρ

⋄
(ξ)

ζI
ξ)◦Φ(i,k)

, p = 1 ,

we have that (11.13b) is satisfied for m = q + n̄/2 + 1.

Next, from (A.203), we have that

∥∥∥∥σ±
Htq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

∥∥∥∥
3/2

≲

(
δq+n̄r

−2/3
q Γ2j+30

q Λ
2/3
q

∣∣∣supp (ηi,j,k,ξ,⃗l,⋄ζI,⋄ξ )∣∣∣2/3 +λ−10
q+n̄

)
(λq+n̄/2Γq)

−2/3r
2/3
q+n̄/2+1 .

Now from (11.26), (4.27c), and Corollary 8.6.1 with θ = 2, θ1 = 0, θ2 = 2, H = σ±
Htq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

,

and p = 3/2, we have that

∥∥∥∥ψi,qσ±
ϕ
q+n̄/2+1
O

∥∥∥∥
3/2

≲ δq+n̄r
−2/3
q Γ33

q Λ
2/3
q (λq+n̄/2Γq)

−2/3r
2/3
q+n̄/2+1

≤ δq+n̄+n̄/2+1Γ
−10
q+n̄/2+1 .

Combined with (11.13b), this verifies (11.13c) at level q + n̄/2 + 1. Arguing now for p = ∞

from (A.203) and using (8.27), we have that

∥∥∥∥σ±
Htq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

∥∥∥∥
∞

≲ δq+n̄r
−2/3
q Γ2j+30

q Λ
2/3
q

(
λq+n̄/2+1

λq+n̄/2Γq

)4/3

(λq+n̄/2Γq)
−2/3r

2/3
q+n̄/2+1 (11.29)

≲ Γ36+C∞
q

(
λq+n̄/2+1

λq+n̄/2Γq

)4/3

Λ
2/3
q (λq+n̄/2Γq)

−2/3 ≤ ΓC∞−11
q+n̄/2+1 .

Now from (11.26) and Corollary 8.6.3 withH = σ±
Htq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

,ϖ = ΓC∞−11
q+n̄/2+11supp a(ξ),⋄(ρ

⋄
(ξ)

ζI
ξ)◦Φ(i,k)
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and p = 1, we have that

∥∥∥∥ψi,qσ±
ϕ
q+n̄/2+1
O

∥∥∥∥
∞

≤ ΓC∞−10
q+n̄/2+1 .

Combined again with (11.13b), this verifies (11.13d) at level q + n̄/2 + 1.

Finally, from (A.204), (6.6), (4.18), (4.10h), and (4.24a), we have that for N,M ≤ Nfin/7,

∣∣∣∣DNDM
t,qσ

−
Htq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

∣∣∣∣ ≲ (rq+n̄/2+1

rq

)2/3

Γ28
q π

q
qΛ

2/3
q λ

−2/3
q+n̄/2(λq+n̄/2Γq)

NM
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
≤ Γ−10

q

(
λq

λq+n̄/2

)2/3

πqq(λq+n̄/2Γq)
NM

(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
.

Applying (11.26) and Corollary 8.6.3 withH = σ−
Htq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

,ϖ =
(

λq
λq+n̄/2

)2/3

πqqΓ
−1
q 1supp a(ξ),⋄(ρ

⋄
(ξ)

ζI
ξ)◦Φ(i,k)

and p = 1, we have that (11.13e) is verified at level m = q + n̄/2 + 1.

Case 3: Analysis for (11.11d) and (11.11e). Fix ξ, i, j, k, l⃗, I, and ⋄. In order to check the

low-frequency, preliminary assumptions in Part 1 of Proposition A.4.5, we may use the exact

same choices as in (11.20). In order to check the high-frequency, preliminary assumptions in

Part 1 of Proposition A.4.5, we set

ϱR =
(
P̃ξ(q+n̄/2+1,q+n̄/2+3/2] + P̃ξ(q+n̄/2+3/2,q+n̄/2+2]

)
(ϱI(ξ),R)

3rq if m = q + n̄/2 + 2 ,

ϱφ =
(
P̃ξ(q+n̄/2+1,q+n̄/2+3/2] + P̃ξ(q+n̄/2+3/2,q+n̄/2+2]

)
(ϱI(ξ),φ)

3 if m = q + n̄/2 + 2

ϱR = P̃ξ(m−1,m](ϱ
I
(ξ),R)

3rq , ϱφ = P̃ξ(m−1,m](ϱ
I
(ξ),φ)

3 if m ̸= q + n̄/2 + 2

ϑi1i2...id−1id
⋄ given by Lemma 7.3.4, , C∗,1 = 1 , C∗,∞ =

(
min(λm, λq+n̄)

λq+n̄/2Γq

)2

, µ = λq+n̄/2Γq ,

Υ = λq+n̄/2+1 , Υ′ = Λ = λq+n̄/2+3/2 for the first projector if m = q + n̄/2 + 2 ,

Υ = λq+n̄/2+3/2 , Υ′ = Λ = λq+n̄/2+2 for the second projector if m = q + n̄/2 + 2 ,

Υ = λm−1 , Υ′ = Λ = min (λm, λq+n̄) if m ̸= q + n̄/2 + 2 ,

Ndec as in (xv) , d as in (xvii), .
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Now (i)–(ii) hold by definition and from (9.4) and (9.12) as before, (A.43) holds due to

Propositions 7.1.5 and 7.1.6 and estimate (7.40b) from Lemma 7.3.4 applied with the obvious

choices, (A.44) holds by definition, by (4.24a), and by our extra splitting in the case m =

q + n̄/2 + 2, and (A.45) and (A.52)–(A.55) hold after appealing to the same parameter

inequalities as the previous case. In order to check the additional assumptions in Part 2 of

Proposition A.4.5, we set

N∗∗ as in (xvii) , Ncut,x,Ncut,t as in (xi) , Γ = Γ
1
10
q , δtiny = δ2q+3n̄ , rϕ = rmin(m,q+n̄) ,

δ
3/2
ϕ,p = CG⋄,pC∗,pΥ′Υ−2rmin(m,q+n̄) , µ0 = λq+n̄/2+1 , µ1 = λq+n̄/2+3/2Γ

2
q ,

µm′ = λq+n̄/2+m′Γ2
q if 2 ≤ m′ ≤ n̄/2 + 1 ,

m̄ = 1 for the first projector if m = q + n̄/2 + 2 ,

m̄ = 2 for the second projector if m = q + n̄/2 + 2 ,

m̄ = m− q − n̄/2 if m > q + n̄/2 + 2 . (11.31)

Then (A.197a)–(A.198e) hold after appealing to the same inequalities as in the previous case,

(A.199a) holds by definition, (A.199b) holds by definition and immediate computation, and

(A.199c)–(A.199d) hold as in the previous case.

First, we have that (11.15) at level m′ for q + n̄/2 + 2 ≤ m′ ≤ q + n̄ is satisfied by an

argument essentially identical to that of the previous case. Next, from (A.200)–(A.201) and

(4.24a), we have that for q + n̄/2 + 2 ≤ m ≤ q + n̄ + 1, there exists a pressure increment

σ+
Htm

i,j,k,ξ,⃗l,I,⋄
such that for N,M ≤ Nfin/7,

∣∣∣DNDM
t,qHtmi,j,k,ξ,⃗l,I,⋄

∣∣∣ ≲ ((σ+
Htm

i,j,k,ξ,⃗l,I,⋄

)3/2

r−1
min(m,q+n̄) + δ2q+3n̄

)
× (min(λm, λq+n̄)Γq)

NM
(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ9

q

)
.

(11.32)
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From (A.48), (A.205), and (7.40c), we have that

supp

(
σ+
Htm

i,j,k,ξ,⃗l,I,⋄

)
⊆ supp

(
Htm

i,j,k,ξ,⃗l,I,⋄

)
⊆ supp

(
a(ξ),⋄

(
ρ⋄
(ξ)ζ

I
ξ

)
◦ Φ(i,k)

)
∩B

(
supp ϱI(ξ),⋄, λ

−1
m−1

)
.

(11.33)

Now define

σ±
ϕ
m
O
=

∑
i,j,k,ξ,⃗l,I,⋄

σ±
Htm

i,j,k,ξ,⃗l,I,⋄
if m ̸= q + n̄ , (11.34)

σ±
ϕ
q+n̄
O

=

q+n̄+1∑
m′=q+n̄

∑
i,j,k,ξ,⃗l,I,⋄

σ±
Htm′

i,j,k,ξ,⃗l,I,⋄
if m = q + n̄ , (11.35)

Then (9.22)–(9.24) and (11.33) give that (11.14) is satisfied for q + n̄/2 + 2 ≤ m′ ≤ q + n̄.

From (11.32), (8.45), (5.8), and Corollary 8.6.3 with

H = Htm
i,j,k,ξ,⃗l,I,⋄ , ϖ =

[(
σ+
Htm

i,j,k,ξ,⃗l,I,⋄

)3/2

r−1
min(m,q+n̄) + δ2q+3n̄

]
1supp a(ξ),⋄(ρ

⋄
(ξ)

ζI
ξ))◦Φ(i,k)

, p = 1 ,

we have that for N,M ≤ Nfin/7 and q + n̄/2 + 2 ≤ m < q + n̄,

∣∣∣∣∣∣ψi,qDNDM
t,q

∑
i′,j,k,ξ,⃗l,I,⋄

Htm
i′,j,k,ξ,⃗l,I,⋄

∣∣∣∣∣∣ ≲
((

σ+

ϕ
m
O

)3/2

r−1
min(m,q+n̄) + δ2q+3n̄

)
× (λmΓq)

NM
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
. (11.36)

An analogous statement holds if m = q+ n̄, with the only change being the extra summation

needed on the left-hand side, which leads to (11.13a) for q + n̄/2 + 2 ≤ m ≤ q + n̄. From

(A.202), (4.24a), and (4.18), we have that for N,M ≤ Nfin/7,

∣∣∣∣DNDM
t,qσ

+
Htm

i,j,k,ξ,⃗l,I,⋄

∣∣∣∣ ≲ (σ+
Htm

i,j,k,ξ,⃗l,I,⋄
+ δ2q+3n̄

)
(min(λm, λq+n̄)Γq)

NM
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
.

(11.37)
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From (11.37), (8.45), (5.8), and Corollary 8.6.3 with

H = σ+
Htm

i,j,k,ξ,⃗l,I,⋄
, ϖ =

[
H + δ2q+3n̄

]
1supp a(ξ),⋄(ρ

⋄
(ξ)

ζI
ξ)◦Φ(i,k)

, p = 1 ,

we have that (11.13b) is satisfied for q + n̄/2 + 2 ≤ m ≤ q + n̄.

Next, from (A.203), we have that

∥∥∥∥σ±
Htm

i,j,k,ξ,⃗l,I,⋄

∥∥∥∥
3/2

≲

(
δq+n̄r

−2/3
q Γ2j+30

q Λ
2/3
q

∣∣∣supp (ηi,j,k,ξ,⃗l,⋄ζI,⋄ξ )∣∣∣2/3 + λ−10
q+n̄

)(
λ2m−1λ

−1
m

)−2/3
r
2/3
min(m,q+n̄) .

Now from (11.34)–(11.35), (4.27c), and Corollary 8.6.1 with θ = 2, θ1 = 0, θ2 = 2, H =

σ±
Htm

i,j,k,ξ,⃗l,I,⋄
, and p = 3/2, we have that

∥∥∥ψi,qσ±
ϕ
m
O

∥∥∥
3/2

≲ δq+n̄r
−2/3
q Γ33

q Λ
2/3
q

(
λ2m−1λ

−1
m

)−2/3
r
2/3
min(m,q+n̄)

≤ δm+n̄Γ
−10
m .

Combined with (11.13b), this verifies (11.13c) for q+ n̄/2+2 ≤ m′ ≤ q+ n̄. Arguing now for

p = ∞ from (A.203), we have that

∥∥∥∥σ±
Htm

i,j,k,ξ,⃗l,I,⋄

∥∥∥∥
∞

≲ δq+n̄r
−2/3
q Γ2j+30

q Λ
2/3
q

(
min(λm, λq+n̄)

λq+n̄/2Γq

)4/3 (
λ2m−1λ

−1
m

)−2/3
r
2/3
min(m,q+n̄) .

Now from (11.34)–(11.35), (8.27), (4.13a), and Corollary 8.6.3 with H = σ±
Htm

i,j,k,ξ,⃗l,I,⋄
, ϖ =

1supp a(ξ),⋄(ρ
⋄
(ξ)

ζI
ξ)◦Φ(i,k)

and p = 1, we have that

∥∥∥ψi,qσ±
ϕ
m
O

∥∥∥
∞

≲ Γ36+C∞
q

(
min(λm, λq+n̄)

λq+n̄/2Γq

)4/3

Λ
2/3
q

(
λ2m−1λ

−1
m

)−2/3
r
2/3
min(m,q+n̄)r

−2/3
q

≤ ΓC∞−10
q+n̄/2+1 .

Combined again with (11.13b), this verifies (11.13d) at level q + n̄/2 + 2 ≤ m′ ≤ q + n̄.

Finally, from (A.204), (6.6), (4.18), (4.10h), and (4.24a), we have that for N,M ≤ Nfin/7
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and q + n̄/2 + 3 ≤ m ≤ q + n̄+ 1,

∣∣∣∣DNDM
t,qσ

−
Htm

i,j,k,ξ,⃗l,I,⋄

∣∣∣∣ ≲ (rmin(m,q+n̄)

rq

)2/3

Γ40
q π

q
qΛ

2/3
q

(
λ2m−1λ

−1
m

)−2/3
(λq+n̄/2Γq)

NM
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
≤ Γ−10

q

(
λq

λq+n̄/2

)2/3

πqq(λq+n̄/2Γq)
NM

(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
.

A similar inequality holds for m = q+ n̄/2+2 after using the extra splitting of the Littlewood-

Paley projector to mitigate the loss from λ−1
m−1λm. Then applying (11.34)–(11.35) and Corol-

lary 8.6.3 with H = σ−
Htm

i,j,k,ξ,⃗l,I,⋄
, ϖ = Γ−10

q

(
λq

λq+n̄/2

)2/3

πqq1supp a(ξ),⋄(ρ
⋄
(ξ)

ζI
ξ)◦Φ(i,k)

and p = 1, we

have that (11.13e) is verified.

Case 4: Analysis for (11.11f). We expect that the error term in (11.11f) is vanishingly

small due to the Littlewood-Paley projector on the cubed pipe density. Therefore no pressure

increment will be necessary, and we do not even need a local portion of the inverse divergence.

We thus apply Proposition A.3.3 with p = ∞ and the following choices. The low-frequency

assumptions in Part 1 are exactly the same as the L∞ low-frequency assumptions in the

previous two steps. For the high-frequency assumptions, we recall the choice of N∗∗ from

(xvii) and set

ϱφ = (Id− P̃ξq+n̄+1)P ̸=0

(
ϱI(ξ),φ

)3
, ϱR = (Id− P̃ξq+n̄+1)P ̸=0

(
ϱI(ξ),R

)3
rq , ϑi1i2...id−1id

⋄ = δi1i2...id−1id∆−d/2ϱ⋄ ,

µ = Υ = Υ′ = λq+n̄/2Γq , Λ = λq+n̄ , C∗,∞ =

(
λq+n̄
λq+n̄+1

)N∗∗

λ3q+n̄ , Ndec as in (xv) , d = 0 .

Then we have that item i is satisfied by definition, item ii is satisfied as in the previous

steps, (A.43) is satisfied using Propositions 7.1.5 and 7.1.6 and (7.37b) from Lemma 7.3.3,

(A.44) is satisfied by definition and as in the previous steps, and (A.45) is satisfied by (4.21).

For the nonlocal assumptions, we choose M◦, N◦ = 2Nind so that (A.52)–(A.54) are satisfied

as in Case 1, and (A.55) is satisfied from (4.23c). We have thus satisfied all the requisite

assumptions, and we therefore obtain nonlocal bounds very similar to those from the previous

steps, which are consistent with (11.15) at level q + n̄. We omit further details.
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Lemma 11.2.2 (Pressure current). For every m′ ∈ {q+ n̄/2+ 1, . . . , q+ n̄}, there exist a

current error ϕ
ϕ
m′
O

associated to the pressure increment σ
ϕ
m′
O

defined by Lemma 11.2.1 and a

function of time mϕ
ϕ
m′
O

which satisfy the following properties.

(i) We have the decompositions and equalities

ϕ
ϕ
m′
O

= ϕ∗
ϕ
m′
O

+
m′∑

m=q+n̄/2+1

ϕm
ϕ
m′
O

, ϕm
ϕ
m′
O

= ϕm,l
ϕ
m′
O

+ ϕm,∗
ϕ
m′
O

(11.38a)

divϕ
ϕ
m′
O

+m′
σϕ

ϕ
m′
O

= Dt,qσ
ϕ
m′
O

. (11.38b)

(ii) For q + n̄/2 + 1 ≤ m ≤ m′ and N,M ≤ 2Nind,

∣∣∣∣ψi,qDNDM
t,qϕ

m,l

ϕ
m′
O

∣∣∣∣ < Γ−100
m

(
πmq
)3/2

r−1
m (λmΓ

2
m)

MM
(
M,Nind,t, τ

−1
q Γi+17

q ,T−1
q Γ9

q

)
(11.39a)∥∥∥∥DNDM

t,qϕ
m,∗
ϕ
m′
O

∥∥∥∥
∞
+
∥∥∥DNDM

t,qϕ
∗
ϕ
m′
O

∥∥∥
∞
< T

2Nind,t

q+n̄ δ
3/2
q+3n̄(λm′Γ2

m′)Nτ−Mq . (11.39b)

(iii) For all q + n̄/2 + 1 ≤ m ≤ m′ and all q + 1 ≤ q′ ≤ m− 1,

B
(
supp ŵq′ , 1/2λ

−1
q′ Γq′+1

)
∩ supp

(
ϕm,l
ϕ
m′
O

)
= ∅ . (11.40)

(iv) The function of time mσϕ
ϕ
m′
O

satisfies that for M ≤ 2Nind,

mσ
ϕ
m′
O

(t) =

ˆ T

0

〈
Dt,qσ

ϕ
m′
O

〉
(s) ds ,

∣∣∣∣ dM+1

dtM+1
mσϕ

ϕ
m′
O

∣∣∣∣ ≤ (max(1, T ))−1δq+3n̄τ
−M
q .

(11.41)

Proof. We follow the case numbering from Lemma 11.2.1. Note that the only cases which re-

quire a pressure increments are Cases 2 and 3, which correspond to the analysis of (11.11c)–

(11.11e).

Case 2: In this case, we recall from (11.22) that we have chosen m̄ = 1 in item iii, µ0 =
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λq+n̄/2+1Γ
−1
q , and µm̄ = µ1 = λq+n̄/2+1Γ

2
q. We therefore have from (A.206a) that

ϕHtq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄
= ϕ∗

Htq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

+ ϕ0

Htq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

+ ϕ1

Htq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

.

and define the current error ϕ
ϕ
q+n̄/2+1
O

:=
∑

i,j,k,ξ,⃗l,I,⋄ ϕϕq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄
which has a decomposition

into

ϕ∗
ϕ
q+n̄/2+1
O

=
∑

i,j,k,ξ,⃗l,I,⋄

ϕ∗
ϕ
q+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

, ϕ
q+n̄/2+1

ϕ
q+n̄/2+1
O

=
∑

i,j,k,ξ,⃗l,I,⋄
ι=0,1

ϕι
ϕ
q+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

(11.42a)

which satisfies (11.38b) from (A.206). We make a further decomposition into the local and

nonlocal parts, ϕ
q+n̄/2+1

ϕ
q+n̄/2+1
O

= ϕ
q+n̄/2+1,l

ϕ
q+n̄/2+1
O

+ ϕ
q+n̄/2+1,∗
ϕ
q+n̄/2+1
O

from item (ii).

In order to check (11.39a), we recall the parameter choices from Case 2 of the previous

lemma and apply Part 4 of Proposition A.4.5, specifically (A.207c). We then have from

(4.24a) and (6.6) that for each i, j, k, ξ, l⃗, I, ⋄, ι and M,N ≤ 2Nind, (after appending a super-

script l to refer to the local portion)

∣∣∣∣DNDM
t,qϕ

ι,l

ϕ
q+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

∣∣∣∣ ≤ τ−1
q Γi+60

q πqqΛ
2/3
q λ

−2/3
q+n̄/2

(
rq+n̄/2+1

rq

)2/3(λq+n̄/2+1Γq
λq+n̄/2

)4/3

λ−1
q+n̄/2

× (λq+n̄/2+1Γ
2
q)
NM

(
M,Nind,t − Ncut,t − 1, τ−1

q Γi+14
q ,T−1

q Γ9
q

)
.

(11.43)

Next, from (A.210) and (11.25), we have that

supp

(
ϕι,l
ϕ
q+n̄/2+1
i,j,k,ξ,⃗,I,⋄

)
⊆ B

(
Htq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄
, 2λq+n̄/2+1Γ

−1
q

)
⊆ B

(
supp

(
a(ξ),⋄(ϱ

⋄
(ξ)ζ

I
ξ) ◦ Φ(i,k)

)
, 2λq+n̄/2+1Γ

−1
q

)
.

Then applying (9.22), we have that (11.40) is verified for m = q + n̄/2 + 1. Returning to the
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proof of (11.39a), we can now apply Corollary 8.6.4 with

H = ϕι,l
ϕ
q+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

, ϖ = Γ50
q πℓΛ

2/3
q

(
rq+n̄/2+1

rq

)2/3

λ
−2/3
q+n̄/2

(
λq+n̄/2+1Γq
λq+n̄/2

)4/3

λ−1
q+n̄/21supp a(ξ),⋄(ρ

⋄
(ξ)

ζI
ξ)◦Φ(i,k)

.

From (8.56b), (4.18), (6.6), (5.20), (4.24a), and (4.27a), we have that

∣∣∣∣∣∣ψi,q
∑

i′,j,k,ξ,⃗l,I,⋄,ι

H
(
Dt,qσ

ι

Htq+n̄/2+1

i,j,k,ξ,⃗l,I,⋄

)∣∣∣∣∣∣
≲ Γqr

−1
q λq

(
πqq
)1/2︸ ︷︷ ︸

cost of Dt,q

πqq︸︷︷︸
dominates 2/3 power
of low-freq. coeff’s

Λ
2/3
q λ

−2/3
q+n̄/2︸ ︷︷ ︸

2/3 power of freq. gain

Γ51
q

(
rq+n̄/2+1

rq

)2/3

︸ ︷︷ ︸
lower order

(
λq+n̄/2+1Γq
λq+n̄/2

)4/3

︸ ︷︷ ︸
intermittency loss

λ−1
q+n̄/2︸ ︷︷ ︸

inv. div. gain

× (λq+n̄/2+1Γ
2
q)
NM

(
M,Nind,t − Ncut,t − 1, τ−1

q Γi+15
q ,T−1

q Γ9
q

)
≲ Γqr

−1
q λq

(
πq+

n̄/2+1
q

δq+n̄
δq+n̄/2+1+n̄

)3/2

λ
2/3
q λ

−2/3
q+n̄/2

(
λq+n̄/2+1Γq
λq+n̄/2

)4/3

λ−1
q+n̄/2

× (λq+n̄/2+1Γ
2
q)
NM

(
M,Nind,t − Ncut,t − 1, τ−1

q Γi+15
q ,T−1

q Γ9
q

)
≤ Γ−150

q r−1
q

(
πq+

n̄/2+1
q

)3/2
(λq+n̄/2+1Γ

2
q)
NM

(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
(11.44)

for all N,M ≤ 2Nind, which verifies (11.39a) at level q+ n̄/2+1. In order to achieve (11.39b),

we appeal to (A.208)–(A.209), the choice of K◦ in item (xvi), (4.23b), and (4.24a). Finally,

the proof of (11.41) follows from (A.211) in a very similar way, the only difference being

that we need a large choice of a∗ in item (xix) in order to have the advantageous prefactor

of max(1, T )−1.

Case 3: In this case we consider the higher shells from the oscillation error. The general

principle is that the estimate will only be sharp in the m = m′ = q + n̄ double endpoint

case, for which the intermittency loss is most severe. We now explain why this is the case by

parsing estimates (11.43) and (11.44). We incur a material derivative cost of τ−1
q Γi+60

q , which

is converted into r−1
q λq(π

q
q)

1/2 using (5.23) and the rough definition of τ−1
q = δ

1/2
q λqr

−1/3
q , or

equivalently Corollary 8.6.4. The rescaled size of the high-frequency coefficients from the

oscillation error is always 1 (see the choices of C∗,1 from the last lemma), and remains so upon

246



being raised to the 2/3 power in the sample lemma. The low-frequency coefficient function

from a trilinear oscillation error incurs a derivative cost of λq (which we have grouped with

“frequency gain”) and is dominated by (πℓ)
3/2r−1

q , at which point the r−1
q is scaled out due

to the L1 − L3/2 scaling balance between current and stress errors (see (A.136a)–(A.136b)).

The negative power in the frequency gain is determined by which shell of the oscillation

error is being considered. The lower order terms may essentially be ignored. Next, we have

an L3/2 → L∞ intermittency loss, which is used to pointwise dominate the high-frequency

portion of the pressure increment using the L3/2 norm and prevent a loop of new current

error and new pressure creation. Finally, we have an inverse divergence gain depending on

which synthetic Littlewood-Paley shell of the pressure increment we are considering. The

net effect is that the “frequency gain” upgrades the πℓ to π
m
q since m ≤ m′, the half power

of πqq is upgraded using λ
1/3
q from the cost of Dt,q and λ

−1/3
m from the inverse divergence gain,

and the remaining λ
2/3
q λ

−2/3
m is strong enough to absorb the intermittency loss, with a perfect

balance in the case

m = m′ = q + n̄ =⇒
(
λq+n̄
λq+n̄/2

)4/3

λ
2/3
q λ

−2/3
q+n̄ ≈ 1 .

In order to fill in the details, we now recall the choices of m̄ and µm from (11.31).

For the sake of brevity we ignore the slight variation in the case of the first projector for

m′ = q + n̄/2 + 2 and focus on the second projector for m′ = q + n̄/2 + 2 and the other cases

q + n̄/2 + 2 < m′ ≤ q + n̄. We have from (A.206) that

ϕHtm′
i,j,k,ξ,⃗l,I,⋄

= ϕ∗
Htm′

i,j,k,ξ,⃗l,I,⋄
+

m′−q−n̄/2∑
ι=0

ϕιHtm′
i,j,k,ξ,⃗l,I,⋄

.
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and define the current error ϕ
ϕ
m′
O

:=
∑

i,j,k,ξ,⃗l,I,⋄ ϕHtm′
i,j,k,ξ,⃗l,I,⋄

which has a decomposition into

ϕ∗
ϕ
m′
O

=
∑

i,j,k,ξ,⃗l,I,⋄

ϕ∗
Htm′

i,j,k,ξ,⃗l,I,⋄
, ϕ

q+n̄/2+1

ϕ
m′
O

=
∑

i,j,k,ξ,⃗l,I,⋄

ϕ0
Htm′

i,j,k,ξ,⃗l,I,⋄
,

ϕ
q+n̄/2+2

ϕ
m′
O

=
∑

i,j,k,ξ,⃗l,I,⋄
ι=1,2

ϕιHtm′
i,j,k,ξ,⃗l,I,⋄

,

σ
q+n̄/2+m

ϕ
m′
O

=
∑

i,j,k,ξ,⃗l,I,⋄
ι=m

ϕιHtm′
i,j,k,ξ,⃗l,I,⋄

if q + n̄/2 +m = q + n̄/2 + ι≤m′ .

As in the previous case, we make further decomposition into the local and nonlocal parts,

ϕ
q+n̄/2+m

ϕ
m′
O

= ϕ
q+n̄/2+m,l

ϕ
m′
O

+ ϕ
q+n̄/2+m,∗

ϕ
m′
O

using (ii). We have thus verified (11.38a) and (11.38b)

immediately from these definitions and from (A.206) and item ii. In order to check (11.39a),

we define the temporary notationm(ι) to make a correspondence between the value of ι above

and the superscript on the left-hand side, which determines which bin the current errors go

into. Specifically, we set m(0) = 1, m(1) = m(2) = 2, m(ι) = ι if q + n̄/2 + ι≤m′.Then

from Part 4 of Proposition A.4.5, specifically (A.207c), and (4.24a), we have that for each

i, j, k, ξ, l⃗, I, ⋄, ι and M,N ≤ 2Nind,

∣∣∣∣DNDM
t,qH

(
Dt,qσ

ι
Htm′

i,j,k,ξ,⃗l,I,⋄

)∣∣∣∣
≲ τ−1

q Γi+60
q πqqΛ

2/3
q

(
rq+n̄/2+m(ι)

rq

)2/3 (
λ−2
m′−1λm′

)2/3(min(λq+n̄/2+m(ι), λq+n̄)Γq
λq+n̄/2

)4/3

× λ−2
q+n̄/2+m(ι)−1λq+n̄/2+m(ι)

(
min(λq+n̄/2+m(ι), λm′)Γ2

q

)N M
(
M,Nind,t − Ncut,t − 1, τ−1

q Γi+14
q ,T−1

q Γ9
q

)
.

Next, from (A.210) and (11.33), we have that

supp

(
H
(
Dt,qσ

ι
Htm′

i,j,k,ξ,⃗l,I,⋄

))
⊆ B

(
Htm′

i,j,k,ξ,⃗l,I,⋄, 2λq+n̄/2+m(ι)−1Γ
−2
q

)
⊆ B

(
supp

(
a(ξ),⋄(ϱ

⋄
(ξ)ζ

I
ξ) ◦ Φ(i,k)ρ

I
(ξ),⋄
)
, λ−1

m−1 + 2λq+n̄/2+m(ι)−1Γ
−2
q

)
.

Then applying (9.22), we have that (11.40) is verified for m = q + n̄/2 +m(ι). Returning to
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the proof of (11.39a), we can now apply Corollary 8.6.4 with

H = H
(
Dt,qσ

ι
Htm′

i,j,k,ξ,⃗l,I,⋄

)
,

ϖ = Γ60
q π

q
q

(
Λqλm′

λ2m′−1

·
rq+n̄/2+m(ι)

rq

)2/3(min(λq+n̄/2+m(ι), λq+n̄)Γq
λq+n̄/2

)4/3 λq+n̄/2+m(ι)

λ2q+n̄/2+m(ι)−1

1supp a(ξ),⋄(ρ
⋄
(ξ)

ζI
ξ)◦Φ(i,k)

.

From (4.10h), (8.56b), (4.18), (6.6), (5.20), (4.24a), and (4.25), we have that

∣∣∣∣∣∣ψi,q
∑

i′,j,k,ξ,⃗l,I,⋄

H
(
Dt,qσ

ι
Htm′

i,j,k,ξ,⃗l,I,⋄

)∣∣∣∣∣∣
≲ Γqr

−1
q λq

(
πqq
)1/2

Γ60
q π

q
qΛ

2/3
q

(
rq+n̄/2+m(ι)

rq

)2/3 (
λ−2
m′−1λm′

)2/3(min(λq+n̄/2+m(ι), λq+n̄)Γq
λq+n̄/2

)4/3

× λ−2
q+n̄/2+m(ι)−1λq+n̄/2+m(ι)

(
min(λq+n̄/2+m(ι), λm′)Γ2

q

)N M
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
≲ Γqr

−1
q λq

(
πq+

n̄/2+m(ι)
q

δq+n̄
δq+n̄/2+m(ι)+n̄

)3/2

Λ
2/3
q

(
λ−2
m′−1λm′

)2/3(min(λq+n̄/2+m(ι), λq+n̄)Γq
λq+n̄/2

)4/3

× λ−2
q+n̄/2+m(ι)−1λq+n̄/2+m(ι)

(
min(λq+n̄/2+m(ι), λm′)Γ2

q

)N M
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
≤ Γ−150

q r−1
q

(
πq+

n̄/2+m(ι)
q

)3/2 (
min(λq+n̄/2+m(ι), λm′)Γ2

q

)N M
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
(11.45)

for all N,M ≤ 2Nind, which verifies (11.39a) at level m > q + n̄/2 + 1. In order to achieve

(11.39b) and (11.41), we appeal to (A.208)–(A.209), (A.211), the choice of K◦ in item (xvi),

(4.23b), and (4.24a).

11.2.2 Transport and Nash current errors

In this section, we estimate the current error

div
(
ϕT + ϕN

)
= (∂t + ûq · ∇)

(
1

2
|wq+1|2 + κqq −

tr (Sq+1)

2

)
(11.46)

+ (∇ûq) :
(
wq+1 ⊗ wq+1 +Rq − πqqId−Rq+1

)
−m′

T −m′
N .
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Recall that from (10.6) and (10.8), we have

(
w

(p)
q+1 ⊗ w

(p)
q+1

)α,•
− πℓId +Rℓ =

∑
ξ,i,j,k,⃗l

Aα,•(ξ),R(P ̸=0ρ
6
ξ)(Φ(i,k)) (11.47a)

+
∑
ξ,i,j,k,⃗l

Aα,•(ξ),φP ̸=0ρ
4
ξ(Φ(i,k))c0c1r

2
3
q (11.47b)

+ c0
∑
ξ,i,j,k,⃗l

Aα,•(ξ),φr
2
3
q

(
ρ4
ξP ̸=0

∑
I

(ζIξ)
4

)
◦ Φ(i,k) (11.47c)

+
∑

ξ,i,j,k,⃗l,⋄

Aα,•(ξ),⋄

(
ρ2⋄
ξ

∑
I

(ζIξ)
2⋄P ̸=0(ϱ

I
ξ,⋄)

2

)
(Φ(i,k)) (11.47d)

where Aα,•(ξ),⋄ := ξθξγ
(
a2(ξ),⋄(∇Φ−1

(i,k))
α
θ (∇Φ−1

(i,k))
•
γ

)
. To shorten notation, we introduce the

following notation to denote the operator

LTN := (∂t + ûq · ∇)
1

2
tr + (∇ûq) : . (11.48)

Using (10.2), we then write

(∂t+ûq · ∇)

(
1

2
|wq+1|2 + κqq −

tr (Sq+1)

2

)
+ (∇ûq) :

(
wq+1 ⊗ wq+1 +Rq − πqqId−Rq+1

)
= LTN

(
w

(p)
q+1 ⊗ w

(p)
q+1 +Rℓ − πℓId

)
(11.49)

+ LTN

(
w

(p)
q+1 ⊗s w

(c)
q+1

)
(11.50)

+ LTN

(
Rq
q − πqqId−Rℓ + πℓId− Sq+1 + w

(c)
q+1 ⊗ w

(c)
q+1

)
. (11.51)

From (11.47), we have that (11.49) is actually equal to

(11.49) = LTN
(
(11.47a) + (11.47b) + (11.47c) + (11.47d)

)
. (11.52)

These terms will have a good form since Dt,q can never land on the high-frequency object,

and so we will estimate them directly using the inverse divergence. We will estimate (11.50)
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directly, using the fact that the high-frequency part of a product of principal and corrector

parts has zero mean from Proposition 7.1.5, item 5 and Proposition 7.1.6, item 5, and so is

amenable to the inverse divergence. The last term, on the other hand, can be written as

(11.51) = −LTN (SO + STN + SC1 + SM2) (11.53)

using (10.97) and (10.78). We now split the analysis of these error terms into several lemmas.

Lemma 11.2.3 (Current error and pressure increment from (11.49)). There exist

vector fields ϕTNW and a function mTNW of time such that

(11.49) = LTN
(
(11.47a) + (11.47b) + (11.47c) + (11.47d)

)
= divϕTNW +m′

TNW , ϕTNW =

q+n̄∑
m=q+1

ϕ
m

TNW

where ϕ
m

TNW = ϕ
m,l

TNW + ϕ
m,∗
TNW for m ∈ {q + 1, . . . , q + n̄} satisfy the following.

(i) The errors ϕ
q+1

TNW and ϕ
q+⌊n̄/2⌋
TNW require no pressure increment. More precisely, we have

that for N,M ≤ Nfin/100,

∣∣∣ψi,qDNDM
t,qϕ

q+1,l

TNW

∣∣∣ < Γ−100
q+1

(
πq+1
q

)3/2
r−1
q+1λ

N
q+1M

(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ8

q

)
,

(11.54a)∣∣∣ψi,qDNDM
t,qϕ

q+⌊n̄/2⌋,l
TNW

∣∣∣ < Γ−100
q+n̄/2

(
πq+

n̄/2
q

)3/2
r−1
q+n̄/2λ

N
q+⌊n̄/2⌋M

(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ8

q

)
.

(11.54b)
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(ii) For q + n̄/2 + 1 ≤ m ≤ n̄, there exists functions σϕmTNW
= σ+

ϕ
m
TNW

− σ−
ϕ
m
TNW

such that

∣∣∣ψi,qDNDM
t,qϕ

m,l

TNW

∣∣∣ ≲ ((σ+

ϕ
m
TNW

)
3/2r−1

m + δ2q+3n̄

)
(λmΓq)

N M
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
(11.55a)∣∣∣ψi,qDNDM

t,qσ
+

ϕ
m
TNW

∣∣∣ ≲ (σ+

ϕ
m
TNW

+ δq+3n̄

)
(λmΓq)

N M
(
M,Nind,t, τ

−1
q Γi+17

q ,T−1
q Γ9

q

)
(11.55b)∥∥∥ψi,qDNDM

t,qσ
+

ϕ
m
TNW

∥∥∥
3/2

≲ δm+n̄Γ
−9
m (λmΓq)

N M
(
M,Nind,t, τ

−1
q Γi+17

q ,T−1
q Γ9

q

)
(11.55c)∥∥∥ψi,qDNDM

t,qσ
+

ϕ
m
TNW

∥∥∥
∞

≲ ΓC∞−9
q+1 (λmΓq)

N M
(
M,Nind,t, τ

−1
q Γi+17

q ,T−1
q Γ9

q

)
(11.55d)∣∣∣ψi,qDNDM

t,qσ
−
ϕ
m
TNW

∣∣∣ ≲ ( λq
λq+⌊n̄/2⌋

)2/3

πqq
(
λq+⌊n̄/2⌋Γq

)N M
(
M,Nind,t, τ

−1
q Γi+17

q ,T−1
q Γ9

q

)
(11.55e)

for all N,M ≤ Nfin/100. Furthermore, we have that for q + 1 ≤ m′ ≤ m − 1 and

q + 1 ≤ q′′ ≤ q + n̄/2,

suppσ−
ϕ
m
TNW

∩B
(
supp ŵq′′ , λ

−1
q′′ Γq′′+1

)
= suppσ+

ϕ
m
TNW

∩B
(
supp ŵm′ , λ−1

m′Γm′+1

)
= ∅ .

(11.56)

(iii) When m = q + 2, . . . , q + n̄ and q + 1 ≤ q′ ≤ m− 1, the local parts satisfy

B
(
supp ŵq′ , λ

−1
q′ Γq′+1

)
∩ suppϕ

m,l

TNW = ∅ . (11.57)

(iv) For m = q + 1, . . . , q + n̄ and N,M ≤ 2Nind, the non-local parts ϕ
m,∗
O satisfy

∥∥∥DNDM
t,qϕ

m,∗
TNW

∥∥∥
L∞

≤ T
2Nind,t

q+n̄ δ
3/2
q+3n̄λ

N
mτ

−M
q . (11.58)

(v) For M ≤ 2Nind, the time function mTNW satisfies

mTNW (t) =

ˆ t

0

⟨(11.49)(s)⟩ ds ,
∣∣∣∣ dM+1

dtM+1
mTNW

∣∣∣∣ ≤ (max(1, T ))−1 δ2q+3n̄τ
−M
q . (11.59)
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Proof. The analysis of this error is similar to that of the oscillation stress error dealt with

in subsection 10.2.1, Lemmas 10.2.1–10.2.5. We will invert the divergence on this error term

using Proposition A.3.3 and apply Proposition A.4.5 to construct the pressure increment.

Let us define

ϕ
q+1

TNW := (H +R∗)

 ∑
ξ,i,j,k,⃗l

LTN

(
Aα,•(ξ),R

)
(P ̸=0ρ

6
ξ)(Φ(i,k))


+ (H +R∗)

 ∑
ξ,i,j,k,⃗l

LTN

(
Aα,•(ξ),φ

)
P ̸=0ρ

4
ξ(Φ(i,k))c0c1r

2
3
q

 (11.60a)

ϕ
q+⌊n/2⌋
TNW := (H +R∗)

 ∑
ξ,i,j,k,⃗l

LTN

(
Aα,•(ξ),φ

)
c0r

2
3
q

(
ρ4
ξP ̸=0

∑
I

(ζIξ)
4

)
◦ Φ(i,k)

 (11.60b)

ϕ
q+⌊n/2⌋+1

TNW := (H +R∗)

 ∑
ξ,i,j,k,⃗l,I,⋄

LTN

(
Aα,•(ξ),⋄

)(
ρ2⋄
ξ (ζIξ)

2⋄P̃ξq+n̄+1P ̸=0(ϱ
I
ξ,⋄)

2
)
(Φ(i,k))


(11.60c)

ϕ
m

TNW := (H +R∗)

 ∑
ξ,i,j,k,⃗l,I,⋄

LTN

(
Aα,•(ξ),⋄

)(
ρ2⋄
ξ (ζIξ)

2⋄P̃ξ(m−1,m](ϱ
I
ξ,⋄)

2
)
(Φ(i,k))


(11.60d)

ϕ
q+n̄

TNW :=

q+n̄+1∑
m=q+n̄

(H +R∗)

 ∑
ξ,i,j,k,⃗l,I,⋄

LTN

(
Aα,•(ξ),⋄

)(
ρ2⋄
ξ (ζIξ)

2⋄P̃ξ(m−1,m](ϱ
I
ξ,⋄)

2
)
(Φ(i,k))


(11.60e)

+ (H +R∗)

 ∑
ξ,i,j,k,⃗l,I,⋄

LTN

(
Aα,•(ξ),⋄

)(
ρ2⋄
ξ (ζIξ)

2⋄
(
Id− P̃ξq+n̄+1

)
(ϱIξ,⋄)

2
)
(Φ(i,k))


(11.60f)

for m = q+ n̄/2+2, · · · , q+ n̄− 1. We decompose ϕ
m

TNW into the nonlocal part ϕ
m,∗
TNW which

involves the operator R∗ or Id− P̃ξq+n̄+1 and the local part ϕ
m,l

TNW containing the remaining

terms. For the undefined ϕ
m

TNW corresponding to m = q+ 2, · · · , q+ n̄/2− 1, we set them as

identically zero.
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The construction of the pressure increment and the desired estimates will follow from

applying Propositions A.3.3 and A.4.5. While many of the parameter choices will vary

depending on the case, we fix the following choices throughout the proof:

v = ûq , Dt = Dt,q , N∗ = Nfin/4 , M∗ = Nfin/5 , (11.61a)

λ′ = Λq , Mt = Nind,t , ν ′ = T−1
q Γ8

q , Ndec as in (xv) . (11.61b)

Case 1: Estimates for (11.60a). Fix values of i, j, k, ξ, l⃗ and consider the term which

includes LTNA(ξ),R. We apply Proposition A.3.3 with the low-frequency choices

G = LTNA(ξ),R , CG,3/2 =
∣∣∣supp (η2

i,j,k,ξ,⃗l,R
)
∣∣∣ τ−1
q Γi+13

q δq+n̄Γ
2j+8
q , CG,∞ = ΓC∞+14

q τ−1
q Γimax+13

q ,

π = Γ50
q τ

−1
q Γiqψi,qπℓ , λ = λq+1Γ

−5
q , ν = τ−1

q Γi+14
q , Φ = Φ(i,k) ,

and the choices from (11.61). By Corollary 8.2.4, Φ(i,k) satisfies (A.41) and (A.42a), and by

(5.34) at level q and (4.10b), we have that (A.42b) is satisfied. To check (A.40), we observe

that LTN involves a material derivative and a multiplication by ∇ûq. Therefore, by (5.34), G

satisfies (A.40) for p = 3/2 from (9.36c) and for p = ∞ from the same inequality and (8.27).

Also, (A.59) is satisfied by (9.38). To check the high-frequency assumptions, we set (exactly

as in the analogous case for the oscillation stress error - see Lemmas 10.2.1–10.2.5)

ϱ =
(
P ̸=0ρ

6
ξ

)
, d as in (xvii) , ϑ = δi1i2δi3i4 . . . δid−1id∆

−d/2ϱ ,

µ = Υ = Υ′ = λq+1Γ
−4
q , Λ = λq+1Γ

−1
q , C∗,1 = Γ6

qλ
α
q+1 .

Since the choice of parameters is exactly the same as in the oscillation stress error, we see

that the other high frequency assumptions are satisfied. In order to check the nonlocal

assumptions, we set

M◦ = N◦ = 2Nind , K◦ as in (xvi) , Cv = Λ
1/2
q . (11.63)
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Then from (4.23b) and Remark A.3.4, we have that (A.52)–(A.55) are satisfied.

We can therefore apply Remark A.3.9. Note that (A.59) follows from the definition of

LTNA(ξ),R in (10.7) and (9.38a). Then, abbreviating Gϱ◦Φ as ti,j,k,ξ,⃗l,R, from (A.47), (A.49a),

and (A.60), we have that for all N ≤ Nfin

4
− d and M ≤ Nfin

5

∣∣∣DNDM
t,qHti,j,k,ξ,⃗l,R

∣∣∣ ≲ τ−1
q Γiqψi,qπℓΓ

60
q λ

−1
q+1λ

N+α
q+1 M

(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ8

q

)
.

Notice that from (ii), we have

supp (divHti,j,k,ξ,⃗l,R) ⊆ supp ti,j,k,ξ,⃗l,R ⊆ supp ηi,j,k,ξ,⃗l,R . (11.64)

As for the terms which include Aα,•(ξ),φ from (11.60a), we note that from Lemma 9.3.1

a2(ξ),φ differs in size relative to a2(ξ),R by a factor of r
−2/3
q , which is exactly balanced out by

the factor of r
2/3
q in (11.60a). We therefore may argue exactly as above (in fact the estimates

are slightly better since ρ4
ξ < ρ6

ξ), and we omit further details. In this case, we use the

abbreviation ti,j,k,ξ,⃗l,φ instead of ti,j,k,ξ,⃗l,R, which will satisfy an analogous support property

to (11.64).

We now set

ϕ
q+1,l

TNW =
∑

i,j,k,ξ,⃗l,⋄

Hti,j,k,ξ,⃗l,⋄ .

Using (11.64) and applying the aggregation Corollary 8.6.4 with H = Hti,j,k,ξ,⃗l,⋄ and

ϖ = πℓΓ
60λ−1+α

q+1 , λ = Λ = λq+1, τ = τqΓ
−14
q , T = TqΓ

−8
q

to get an estimate from (8.56a),

∣∣∣ψi,qDNDM
t,qϕ

q+1,l

TNW

∣∣∣ ≲ r−1
q λq(π

q
q)

1/2πℓΓ
61
q λ

−1
q+1λ

N+α
q+1 M

(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ8

q

)
.
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for N,M in the same range as above. Then, (11.54a) follows from this term using (6.6),

(5.20b) and (4.24a).

For the non-local term, from (A.57), and Remark A.3.4, we have that for N,M ≤ 2Nind,∥∥∥∥∥∥DNDM
t,q

∑
i,j,k,ξ,⃗l

R∗ti,j,k,ξ,⃗l,R

∥∥∥∥∥∥
∞

≤ δ
3/2
q+3n̄T

2Nind,t
q λNq+1τ

−M
q ,

matching the desired estimate in (11.58). The estimate in (11.59) follows similarly using

Remark A.3.7 and a large choice of a∗ as in Lemma 11.2.2, and we omit further details. The

version of these estimates in the later cases will again be similar, and so we do not address

them again.

Case 2: Estimates for (11.60b). As before, we fix i, j, k, ξ, l⃗. We apply Proposition

A.3.3 with Remark A.3.9 with the low-frequency choices

G = LTNA(ξ),φc0r
2/3
q ρ4

ξ(Φ(i,k)) , CG,3/2 =
∣∣∣supp η2

i,j,k,ξ,⃗l,φ

∣∣∣ τ−1
q Γiqδq+n̄Γ

20
q , CG,∞ = ΓC∞+20

q τ−1
q Γimax

q ,

(11.65a)

π = Γ50
q τ

−1
q Γiqψi,qπℓ , λ = λq+1Γ

−1
q , ν = τ−1

q Γi+13
q , Φ = Φ(i,k) , (11.65b)

as well as the choices from (11.61). As in the previous substep, (A.41), (A.42a), and (A.42b)

are satisfied. The estimates in (A.40) hold due to Proposition 7.2.1 and the estimates for

LTNA(ξ),φ from Case 1.

To check the high-frequency assumptions, we set the parameters and functions exactly

as in Case 2 in the proof of Lemma 10.2.1. Since we work with p = 1 instead of p = 3
2
, the

only difference is that C∗,1 := C∗,∞ = λαq+n̄/2 instead of C∗,3/2. Then, as before, high-frequency

assumptions in (i)–(iv) can be verified. The nonlocal assumptions are identical to those of

Case 1, and are satisfied trivially. The non-local parameters are set to be the same as in the

previous case.

We therefore may appeal to the local conclusions (i)–(vi) and (A.56)–(A.57), from which
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we have the following. First, abbreviating Gϱ◦Φ as ti,j,k,ξ,⃗l,φ, we have from (A.46) and (A.50)

that for N ≤ Nfin

4
− d and M ≤ Nfin

5
,

∣∣∣DNDM
t,qHti,j,k,ξ,⃗l,φ

∣∣∣ ≲ τ−1
q Γiqψi,qπℓΓ

50
q λ

−1
q+n̄/2λ

N+α
q+n̄/2M

(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ8

q

)
,

Notice that from (ii), the support of divHti,j,k,ξ,⃗l,φ is contained in supp ti,j,k,ξ,⃗l,φ ⊂ supp
(
ηi,j,k,ξ,⃗l,φ

)
.

Thus as before we may apply the aggregation Corollary 8.6.4 with H = Hti,j,k,ξ,⃗l,R and

ϖ = πℓΓ
50λ−1

q+n̄/2, λ = Λ = λq+n̄/2, τ = τqΓ
−14
q , T = TqΓ

−8
q

to estimate

ϕ
q+n̄/2,l

TNW =
∑
i,j,k,ξ,⃗l

Hti,j,k,ξ,⃗l,φ .

From (8.56a), we thus have that for N,M in the same range as above,

∣∣∣ψi,qDNDM
t,qϕ

q+n̄/2,l

TNW

∣∣∣ ≲ r−1
q λq(π

q
q)

1/2πℓΓ
50
q λ

−1
q+n̄/2λ

N+α
q+n̄/2M

(
M,Nind,t, τqΓ

i+15
q ,T−1

q Γ8
q

)
.

and so we can conclude (11.54b) as before. we must verify (11.57) for ϕ
q+n̄/2,l

TNW . This however

follows from (iii), which asserts that the support of ϕ
q+n̄/2,l

TNW is contained in ∪(ξ)supp (a(ξ),φρ
φ
(ξ)◦

Φ(i,k)), and (i) of Lemma 9.2.2. The non-local conclusions also follow in much the same way

as in Case 1, and we omit further details.

Case 3: Estimates of the local portions of (11.60c), (11.60d), and (11.60e). Fix

ξ, i, j, k, l⃗, I, and ⋄. In order to check the low-frequency, preliminary assumptions in Part
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1 of Proposition A.4.5, we set

p = 1,∞ , GR = LTN

(
Aα,•(ξ),⋄

) (
ρ2⋄
ξ (ζIξ)

2⋄) (Φ(i,k)) , Gφ = LTN

(
Aα,•(ξ),⋄

) (
ρ2⋄
ξ (ζIξ)

2⋄) (Φ(i,k))r
2/3
q ,

CG⋄,1 = δq+n̄τ
−1
q Γi+2j+20

q

∣∣∣supp (ηi,j,k,ξ,⃗l,⋄ζI,⋄ξ )∣∣∣+ λ−10
q+n̄ , CG⋄,∞ = δq+n̄τ

−1
q Γi+2j+20

q ,

λ = λq+n̄/2 , ν = τ−1
q Γi+14

q , Φ = Φ(i,k) , π = Γ50
q πℓλ

2/3
q , rG = rq . (11.66)

Then we have that (A.39) is satisfied by definition, (A.40) is satisfied by (9.36b), (9.36d),

Corollary 8.2.4, (7.23), and Definition 7.2.4, (A.41)–(A.42b) hold from Corollary 8.2.4 and

(5.34) at level q, and (A.132b) holds from (9.38), Remark 5.3.2, and (6.6).

In order to check the high-frequency, preliminary assumptions in Part 1 of Proposi-

tion A.4.5, we choose parameters and functions exactly same as in Case 3 and Case 4 of

Lemma 10.2.1. The only difference is that we use C∗,1 instead of C∗,3/2. Indeed, we choose

C∗,1 = λαq+n̄/2+1 in both cases Case 3a and Case 3b. Then, it is enough to check (A.43),

which holds true due to Propositions 7.1.5 and 7.1.6 and estimate (7.37a) from Lemma 7.3.3

or 7.3.4 with q = 1. In order to check the additional assumptions in Part 2 of Proposi-

tion A.4.5, we again choose the same parameters and functions as in as in Case 3 and Case

4 of Lemma 10.2.4, and set the extra parameters as δϕ,p and rϕ are

δ
3/2
ϕ,p = CG⋄,pC∗,pΥ′Υ−2rmin(m,q+n̄) , rϕ = rmin(m,q+n̄) .

Compared to Proposition A.4.4, we only need to check (A.198c), (A.199c), and (A.199d),

which can be verified by (4.17b), (4.23b), and (4.23c).

Using the abbreviation tm
i,j,k,ξ,⃗l,I,⋄ for Gϱ ◦Φ at the level of q+ n̄/2+2 ≤ m ≤ q+ n̄+1, as

a consequence of (A.200)–(A.202), (4.24a), (4.18), (6.6), and (4.10h), there exists a pressure
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increment σ+
Htm

i,j,k,ξ,⃗l,I,⋄
such that for N,M ≤ Nfin/7,

∣∣∣DNDM
t,qHtmi,j,k,ξ,⃗l,I,⋄

∣∣∣ ≲ ((σ+
Htm

i,j,k,ξ,⃗l,I,⋄

) 3
2

r−1
min(m,q+n̄) + δ2q+3n̄

)
× (min(λm, λq+n̄)Γq)

NM
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
.

(11.67)∣∣∣∣DNDM
t,qσ

+
Htm

i,j,k,ξ,⃗l,I,⋄

∣∣∣∣ ≲ (σ+
Htm

i,j,k,ξ,⃗l,I,⋄
+ δ2q+3n̄

)
(min(λm, λq+n̄)Γq)

NM
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
.

(11.68)∣∣∣∣DNDM
t,qσ

−
Htm

i,j,k,ξ,⃗l,I,⋄

∣∣∣∣ ≲ (rmin(m,q+n̄)

rq

)2/3

Γ28
q πℓΛ

2/3
q

(
λ2m−1λ

−1
m

)−2/3
(λq+n̄/2Γq)

NM
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
≤ Γ−10

q

(
λq

λq+n̄/2

)2/3

πqq(λq+n̄/2Γq)
NM

(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
.

From (A.48), (A.205), and (7.40c), we have that

supp

(
σ+
Htm

i,j,k,ξ,⃗l,I,⋄

)
⊆ supp

(
Htm

i,j,k,ξ,⃗l,I,⋄

)
⊆ supp

(
a(ξ),⋄

(
ρ⋄
(ξ)ζ

I
ξ

)
◦ Φ(i,k)

)
∩B

(
supp ϱI(ξ),⋄, λ

−1
m−1

)
◦Φ(i,k) , (11.69)

supp

(
σ−
Htm

i,j,k,ξ,⃗l,I,⋄

)
⊆ supp

(
a(ξ),⋄

(
ρ⋄
(ξ)ζ

I
ξ

)
◦ Φ(i,k)

)
(11.70)

Then, we can obtain the desired estimates for

ϕ
m.l

TNW =
∑

i,j,k,ξ,⃗l,I,⋄

Htm
i,j,k,ξ,⃗l,I,⋄, ϕ

q+n̄.l

TNW =

q+n̄+1∑
m=q+n̄

∑
i,j,k,ξ,⃗l,I,⋄

Htm
i,j,k,ξ,⃗l,I,⋄, ,

σ±
ϕ
m
TNW

=
∑

i,j,k,ξ,⃗l,I,⋄

σ±
Htm

i,j,k,ξ,⃗l,I,⋄
σ±
ϕ
q+n̄
TNW

=

q+n̄+1∑
m=q+n̄

∑
i,j,k,ξ,⃗l,I,⋄

σ±
Htm

i,j,k,ξ,⃗l,I,⋄
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for q + n̄/2 + 1 ≤ m < q + n̄ by applying Corollary 8.6.3 with p = 1 and

H = Htm
i,j,k,ξ,⃗l,I,⋄ , ϖ = Htm

i,j,k,ξ,⃗l,I,⋄1supp a(ξ),⋄(ρ
⋄
(ξ)

ζI
ξ)◦Φ(i,k)

, for (11.55a)

H = σ+
Htm

i,j,k,ξ,⃗l,I,⋄
, ϖ =

[
H + δ2q+3n̄

]
1supp a(ξ),⋄(ρ

⋄
(ξ)

ζI
ξ)◦Φ(i,k)

, for (11.55b)

H = σ−
Htm

i,j,k,ξ,⃗l,I,⋄
, ϖ =

(
λq

λq+n̄/2

)2/3

πℓ1supp a(ξ),⋄(ρ
⋄
(ξ)

ζI
ξ)◦Φ(i,k)

, for (11.13e) .

Also, (9.22)–(9.24), (11.69), and (11.70) give that (11.57) and (11.56) are satisfied for q +

n̄/2 + 1 ≤ m′ ≤ q + n̄.

Next, from (A.203), we have that

∥∥∥∥σ±
Htm

i,j,k,ξ,⃗l,I,⋄

∥∥∥∥
3/2

≲ δ
2/3
q+n̄τ

−2/3
q Γ

2/3(i+2j+24)
q

∣∣∣supp (ηi,j,k,ξ,⃗l,⋄ζI,⋄ξ )∣∣∣2/3 (λ2m−1λ
−1
m

)−2/3
r
2/3
min(m,q+n̄) ,∥∥∥∥σ±

Htm
i,j,k,ξ,⃗l,I,⋄

∥∥∥∥
∞

≲ δ
2/3
q+n̄τ

−2/3
q Γ

2/3(i+2j+24)
q

(
min(λm, λq+n̄)

λq+n̄/2Γq

)4/3 (
λ2m−1λ

−1
m

)−2/3
r
2/3
min(m,q+n̄)

≲ Γ
2
3(

C∞
2

+18)
q−n̄ r

−2/3
q−n̄ r

2/3
min(m,q+n̄)Γ

2
3
(40+C∞)

q

(
min(λm, λq+n̄)

λq+n̄/2Γq

)4/3

Λ
2/3
q

(
λ2m−1λ

−1
m

)−2/3

(11.71)

≤ ΓC∞−11
q+n̄/2+1 .

The last two inequalities follow from (5.10), (8.27) and (4.13a). Then, we apply Corol-

lary 8.6.1 to θ = 2, θ1 = 2/3, θ2 = 4/3, H = σ±
Htm

i,j,k,ξ,⃗l,I,⋄
, and p = 3/2, which gives

∥∥∥ψi,qσ±
ϕ
m
TNW

∥∥∥
3/2

≲ δ
2/3
q+n̄τ

−2/3
q Γ20+2/3Cb

q

(
λ2m−1λ

−1
m

)−2/3
r
2/3
min(m,q+n̄) ≤ δm+n̄Γ

−10
m .

from (4.27c). Combined with (11.55b), this verifies (11.55c) for q + n̄/2 + 2 ≤ m′ ≤ q + n̄.

On the other hand, from Corollary 8.6.3 with H = σ±
Htm

i,j,k,ξ,⃗l,I,⋄
, ϖ = ΓC∞−11

q+n̄/2+11supp a(ξ),⋄ρ
⋄
(ξ)

ζI
ξ

and p = 1, we have that

∥∥∥ψi,qσ±
ϕ
m
O

∥∥∥
∞

≤ ΓC∞−10
q+n̄/2+1 .
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Combined again with (11.55b), this verifies (11.55d) at level q+ n̄/2+1 ≤ m′ ≤ q+ n̄. Lastly,

we have that (11.58) at level m′ for q + n̄/2 + 1 ≤ m′ < q + n̄ and for the nonlocal part of

(11.60e) are satisfied by an argument essentially identical to that of the previous case.

Case 4: Estimate of (11.60f). Here we apply Proposition A.3.3 with p = ∞ and the

following choices. The low-frequency assumptions in Part 1 are exactly the same as the L∞

low-frequency assumptions in the previous two steps. For the high-frequency assumptions,

we recall the choice of N∗∗ from (xvii) and set

ϱR = (Id− P̃ξq+n̄+1)P ̸=0

(
ϱI(ξ),R

)2
, ϱφ = (Id− P̃ξq+n̄+1)P ̸=0

(
ϱI(ξ),φ

)2
r−

2/3
q , ϑi1i2...id−1id

⋄ = δi1i2...id−1id∆−d/2ϱ⋄ ,

Λ = λq+n̄ , µ = Υ = Υ′ = λq+n̄/2Γq , C∗,∞ =

(
λq+n̄
λq+n̄+1

)N∗∗

λ3q+n̄ , Ndec as in (xv) , d = 0 .

Then we have that item (i) is satisfied by definition, item (ii) is satisfied as in the previous

steps, (A.43) is satisfied using Propositions 7.1.5 and 7.1.6 and (7.37b) from Lemma 7.3.3,

(A.44) is satisfied by definition and as in the previous steps, and (A.45) is satisfied by

(4.21). For the non-local assumptions, we choose M◦, N◦ = 2Nind so that (A.52)–(A.54)

are satisfied as in Case 1, and (A.55) is satisfied from (4.23c). We have thus satisfied all

the requisite assumptions, and we therefore obtain non-local bounds very similar to those

from the previous steps, which are consistent with (11.58) at level q + n̄. We omit further

details.

Lemma 11.2.4 (Current error and pressure increment from divergence correc-

tors). There exist vector fields ϕTNC and a function mTNC of time such that

(11.50) = div
(
ϕTNC

)
+m′

TNC , ϕTNC =

q+n̄∑
m=q+n̄/2+1

divϕ
m

TNC , (11.72)

where ϕ
m

TNC = ϕ
m,l

TNC + ϕ
m,∗
TNC for q + n̄/2 + 1 ≤ m ≤ q + n̄ satisfy the following.
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(i) For q + n̄/2 + 1 ≤ m ≤ q + n̄, there exist functions σϕmTNC
= σ+

ϕ
m
TNC

− σ−
ϕ
m
TNC

such that

∣∣∣ψi,qDNDM
t,qϕ

m

TNC

∣∣∣ ≲ ((σ+

ϕ
m
TNC

)
3/2r−1

m + δ2q+3n̄

)
(λmΓq)

N M
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
(11.73a)∣∣∣ψi,qDNDM

t,qσ
+

ϕ
m
TNC

∣∣∣ ≲ (σ+

ϕ
m
TNC

+ δq+3n̄

)
(λmΓq)

N M
(
M,Nind,t, τ

−1
q Γi+17

q ,T−1
q Γ9

q

)
(11.73b)∥∥∥ψi,qDNDM

t,qσ
+

ϕ
m
TNC

∥∥∥
3/2

≲ δm+n̄Γ
−9
m (λmΓq)

N M
(
M,Nind,t, τ

−1
q Γi+17

q ,T−1
q Γ9

q

)
(11.73c)∥∥∥ψi,qDNDM

t,qσ
+

ϕ
m
TNC

∥∥∥
∞

≲ ΓC∞−9
m (λmΓq)

N M
(
M,Nind,t, τ

−1
q Γi+17

q ,T−1
q Γ9

q

)
(11.73d)∣∣∣ψi,qDNDM

t,qσ
−
ϕ
m
TNC

∣∣∣ ≲ ( λq
λq+⌊n̄/2⌋

) 2
3

πqq
(
λq+⌊n̄/2⌋Γq

)N M
(
M,Nind,t, τ

−1
q Γi+17

q ,T−1
q Γ9

q

)
(11.73e)

for all N,M ≤ Nfin/100. Furthermore, we have that for q + 1 ≤ m′ ≤ m − 1 and

q + 1 ≤ q′′ ≤ q + n̄/2,

suppσ−
ϕ
m
TNC

∩B
(
supp ŵq′′ , λ

−1
q′′ Γq′′+1

)
= suppσ+

ϕ
m
TNC

∩B
(
supp ŵm′ , λ−1

m′Γm′+1

)
= ∅ .

(11.74)

(ii) For all q + n̄/2 + 1 ≤ m ≤ q + n̄ and q + 1 ≤ q′ ≤ m− 1, the local parts satisfy

B
(
supp ŵq′ , λ

−1
q′ Γq′+1

)
∩ suppϕm,lTNC = ∅ . (11.75)

(iii) For all q + n̄/2 + 1 ≤ m ≤ q + n̄ and N,M ≤ 2Nind, the non-local parts ϕ
m,∗
TNC satisfy

∥∥∥DNDM
t,qϕ

m,∗
TNC

∥∥∥
L∞

≤ T
2Nind,t

q+n̄ δ
3/2
q+3n̄λ

N
mτ

−M
q . (11.76)
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(iv) For M ≤ 2Nind, the time function mTNC satisfies

mTNC(t) =

ˆ t

0

⟨(11.50)(s)⟩ ds ,
∣∣∣∣ dM+1

dtM+1
mTNC

∣∣∣∣ ≤ (max(1, T ))−1 δ2q+3n̄M
(
M,Nind,t, τ

−1
q ,T−1

q+1

)
.

(11.77)

Proof. The proof is similar to Step 2 of the proof of Lemma 10.2.10. In fact, it is much

simpler since the Dt,q in LTN is always a “good” derivative. We provide a few details below.

First note that

LTN

(
w

(p)
q+1 ⊗s w

(c)
q+1

)
=

∑
⋄,i,j,k,ξ,⃗l,I

LTN

[
a(ξ),⋄

(
ρ⋄
(ξ)ζ

I,⋄
ξ ϱI(ξ),⋄

)
◦ Φ(i,k)ξ

ℓ
(
Amℓ ϵ•pr + A•

ℓϵmpr
)

× ∂p

(
a(ξ),⋄

(
ρ⋄
(ξ)ζ

I,⋄
ξ

)
◦ Φ(i,k)

)
∂rΦ

s
(i,k)(UI

(ξ),⋄)
s ◦ Φ(i,k)

]
=

∑
⋄,i,j,k,ξ,⃗l,I

LTN

[
a(ξ),⋄

(
ρ⋄
(ξ)ζ

I,⋄
ξ

)
◦ Φ(i,k)ξ

ℓ
(
Amℓ ϵ•pr + A•

ℓϵmpr
)

× ∂p

(
a(ξ),⋄

(
ρ⋄
(ξ)ζ

I,⋄
ξ

)
◦ Φ(i,k)

)
∂rΦ

s
(i,k)

]
(ϱI(ξ),⋄UI

(ξ),⋄)
s ◦ Φ(i,k)

=:
∑

⋄,i,j,k,ξ,⃗l,I

G⋄,i,j,k,ξ,⃗l,I(ϱ
I
(ξ),⋄UI

(ξ),⋄)
s ◦ Φ(i,k)

We note that (ϱI(ξ),⋄UI
(ξ),⋄)

s has mean 0 (by property (5) of Proposition 7.1.5 and (5) of

Proposition 7.1.6) and is Td

λq+n̄/2Γq
-periodic. So just as in the Divergence corrector stress

error, we apply the synthetic Littlewood-Paley decomposition suggested in (7.34) and define
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the current errors as follows

ϕ
q+n̄/2+1

TNC :=
∑

⋄,i,j,k,ξ,⃗l,I

(H +R∗)
(
G⋄,i,j,k,ξ,⃗l,I P̃λq+n̄/2+1

(ϱI(ξ),⋄UI
(ξ),⋄)

s ◦ Φ(i,k)

)
(11.78)

ϕ
m

TNC :=
∑

⋄,i,j,k,ξ,⃗l,I

(H +R∗)
(
G⋄,i,j,k,ξ,⃗l,I P̃(λm−1,λm](ϱ

I
(ξ),⋄UI

(ξ),⋄)
s ◦ Φ(i,k)

)
(11.79)

ϕ
q+n̄

TNC :=

q+n̄+1∑
m=q+n̄

∑
⋄,i,j,k,ξ,⃗l,I

(H +R∗)
(
G⋄,i,j,k,ξ,⃗l,I P̃(λm−1,λm](ϱ

I
(ξ),⋄UI

(ξ),⋄)
s ◦ Φ(i,k)

)
(11.80)

+
∑

⋄,i,j,k,ξ,⃗l,I

(H +R∗)
(
G⋄,i,j,k,ξ,⃗l,I

(
Id− P̃λq+n̄+1

)
(ϱI(ξ),⋄UI

(ξ),⋄)
s ◦ Φ(i,k)

)
(11.81)

We shall apply the inverse divergence operator to each term in the sum separately with the

following choices. In all cases, we set

GR = λ−1
q+n̄GR,i,j,k,ξ,⃗l,I , Gφ = λ−1

q+n̄r
2/3
q Gφ,i,j,k,ξ,⃗l,I .

We choose the high-frequency potentials as in Step 2 of the proof of Lemma 10.2.10, and

choose the rest of parameters and functions required in Proposition A.4.5 the same as in

Case 3 of the proof of Lemma 11.2.3. In fact, the size of G⋄,1 and G⋄,∞ is smaller than the

one in Case 3. By the same argument as in Case 3, we then get the same conclusion as in

Lemma 11.2.3 for ϕ
m

TNC . We omit further details.

Lemma 11.2.5 (Current error and pressure increment from (11.51)). There exist

vector field ϕTNS and a function mTNS of time such that

(11.51) = −LTN (SO + STN + SC1 + SM2) = divϕTNS +m′
TNS , ϕTNS =

q+n̄∑
m=q+1

ϕ
m

TNS ,

where ϕ
m

TNS = ϕ
m,l

TNS + ϕ
m,∗
TNS + ϕ

∗
TNS satisfies the following properties.
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(i) For m = q + 1, q + n̄/2, the local part ϕ
m

TNS satisfies

∣∣∣ψi,qDNDM
t,qϕ

m,l

TNS

∣∣∣ ≲ Γ−12
q (πmq )

3/2r−1
q λNmM

(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ8

q

)
(11.82)

for M,N ≤ Nfin/100.

(ii) For m = q+ n̄/2+1, . . . , q+ n̄, there exists functions σϕmTNS
= σ+

ϕ
m
TNS

− σ−
ϕ
m
TNS

such that

∣∣∣ψi,qDNDM
t,qϕ

m,l

TNS

∣∣∣ ≲ ((σ+

ϕ
m
TNS

)
3/2r−1

m + δ2q+3n̄

)
(λmΓq)

N M
(
M,Nind,t, τ

−1
q Γi+17

q ,T−1
q Γ9

q

)
(11.83a)∣∣∣ψi,qDNDM

t,qσ
+

ϕ
m
TNS

∣∣∣ < (σ+

ϕ
m
TNS

+ δq+2n̄

)
(λmΓq)

N M
(
M,Nind,t, τ

−1
q Γi+18

q ,T−1
q Γ9

q

)
(11.83b)∥∥∥ψi,qDNDM

t,qσ
+

ϕ
m
TNS

∥∥∥
3/2
< δm+n̄Γ

−9
m (λmΓq)

N M
(
M,Nind,t, τ

−1
q Γi+18

q ,T−1
q Γ9

q

)
(11.83c)∥∥∥ψi,qDNDM

t,qσ
+

ϕ
m
TNS

∥∥∥
∞
< ΓC∞−9

q+n̄/2+1 (λmΓq)
N M

(
M,Nind,t, τ

−1
q Γi+18

q ,T−1
q Γ9

q

)
(11.83d)∣∣∣ψi,qDNDM

t,qσ
−
ϕ
m
TNS

∣∣∣ < ( λq
λq+⌊n̄/2⌋

) 2
3

πqq
(
λq+⌊n̄/2⌋Γq

)N M
(
M,Nind,t, τ

−1
q Γi+18

q ,T−1
q Γ9

q

)
(11.83e)

for M,N ≤ Nfin/200.

(iii) For q+ n̄/2+1 ≤ m ≤ q+ n̄, q+1 ≤ m′ ≤ m−1, q+1 ≤ q′′ ≤ q+ n̄/2, q+1 ≤ k ≤ q + n̄,

and q + 1 ≤ k′ ≤ k − 1, we have that

suppσ−
ϕ
m
TNS

∩B
(
supp ŵq′′ , λ

−1
q′′ Γq′′+1

)
= suppσ+

ϕ
m
TNS

∩B
(
supp ŵm′ , λ−1

m′Γm′+1

)
= ∅ .

(11.84a)

B
(
supp ŵk′ , λ

−1
k′ Γk′+1

)
∩ suppϕ

k,l

TNS = ∅ . (11.84b)
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(iv) For m = q + 1, . . . , q + n̄, the non-local parts ϕSm,∗
△

and ϕ
∗
Sm,l
△

satisfy

∥∥∥DNDM
t,qϕ

m,∗
TNS

∥∥∥
∞

≤ T
2Nind,t

q+n̄ δ
3/2
q+3n̄λ

N
mτ

−M
q , (11.85a)∥∥∥DNDM

t,q+n̄−1ϕ
∗
TNS

∥∥∥
∞

≤ δ
3
2
q+3n̄(λq+n̄Γq+n̄−1)

NM
(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1Γq+n̄−1

)
(11.85b)

for all N,M ≤ Nind/4.

(v) For M ≤ 2Nind, the time function mTNS satisfies

mTNS(t) =

ˆ t

0

⟨(11.51)(s)⟩ ds ,
∣∣∣∣ dM+1

dtM+1
mTNS

∣∣∣∣ ≤ (max(1, T ))−1 δ2q+3n̄M
(
M,Nind,t, τ

−1
q ,T−1

q+1

)
.

(11.86)

Proof. Recall from (11.53) that (11.51) consists of −LTN(S△) where △ represents O, TN ,

C1, or M2. We first consider the terms involving the local part of S△, and then deal with

the terms with the non-local parts.

Case 1. Current error from the terms −LTN(Sm,l△ ) with m = q + 1 or m = q + n̄/2. In this

case, we first note that Sm,l△ is non-trivial only when △ = O. Recall the expression of Sm,lO

from (10.12a) of Remark 10.2.2, which gives

LTNS
m,l
O =

∑
i,j,k,ξ,⃗l,⋄

CH∑
j′=0

(LTNH
α(j′)

i,j,k,ξ,⃗l,⋄
)ρ
β(j′)

i,j,k,ξ,⃗l,⋄
◦ Φ(i,k) .

In order to get the associated current error, we fix indices j′, ⋄, i, j, k, ξ, l⃗ and apply the inverse

divergence Proposition A.3.3 and Remark A.3.9 with the following choice of parameters and

functions. Set

G = −(λq+1Γ
−4
q )−1LTNH

α(j′)

i,j,k,ξ,⃗l,⋄
, ϱ = λq+1Γ

−4
q ρ

β(j′)

i,j,k,ξ,⃗l,⋄
, m = q + 1

G = −λ−1
q+n̄/2LTNH

α(j′)

i,j,k,ξ,⃗l,⋄
, ϱ = λq+n̄/2ρ

β(j′)

i,j,k,ξ,⃗l,⋄
, m = q + n̄/2 .
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We choose the rest of parameters and functions the same as in Case 1 and Case 2 in the

proof of Lemma 11.2.3, except for N∗ = Nfin/50 and M∗ = Nfin/100. 2 With this change, (A.39)

and (A.44) still hold from (4.24a). The rest of assumptions are satisfied as in Case 1,2. As

a result, in the case of m = q + 1 or m = q + n̄/2, we obtain the associated current error

ϕ
m

TNS = ϕ
m,l

TNS + ϕ
m,∗
TNS which satisfy

divϕ
m

TNS = −LTNSm,lO + ⟨LTNSm,lO ⟩ (11.87)

and the same properties as ϕ
m

TNW have, except that the range of N and M in the estimates

are restricted to N,M ≤ Nfin/100. In particular, (11.82), (11.84b) for k = q + 1, q + n̄/2, and

(11.85) with m = q + 1, q + n̄/2 hold. Finally, (11.86) holds due to similar arguments as in

previous lemmas, and we omit further details throughout this proof.

Case 2. Current error and pressure increment from the terms −LTN(Sm,l△ ) with q+ n̄/2+1 ≤

m ≤ q+ n̄. Since SM2 only have the non-local parts, we consider only when △ = O, TN,C1.

Recall from Remarks 10.2.2, 10.2.7 and 10.2.11 that for △ = O, TN,C1, we have

LTNS
m,l
△ =

∑
i,j,k,ξ,⃗l,I,⋄

CH∑
j′=0

(LTNH
α(j′)

△,i,j,k,ξ,⃗l,I,⋄
)ρ
β(j′)

△,i,j,k,ξ,⃗l,I,⋄
◦ Φ(i,k) . (11.88)

With this representation (11.88), we fix indices△, j′, ⋄, i, j, k, ξ, l⃗ and apply Proposition A.4.5

to construct desired current errors and pressure increments.

Case 2-1. Consider △ = O,C1. Observe that H
α(j′)

△,i,j,k,ξ,⃗l,I,⋄
and ρ

β(j′)

△,i,j,k,ξ,⃗l,I,⋄
, △ = O,C1,

have the same properties in Remark 10.2.2, 10.2.11. Set the parameters and functions in

the proposition the same as in Case 3 in the proof of Lemma 11.2.3, except for N∗ = Nfin/50,

2In fact, the actual size of G is smaller than the one in Case 1 and Case 2.
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M∗ = Nfin/100,

G = −(λq+n̄/2Γq)
−1LTNH

α(j′)

△,i,j,k,ξ,⃗l,I,⋄
, ϱ = λq+n̄/2Γqρ

β(j′)

△,i,j,k,ξ,⃗l,I,⋄
, when m = q + n̄/2 + 1

G = −(λ2m−1λ
−1
m )−1LTNH

α(j′)

△,i,j,k,ξ,⃗l,I,⋄
, ϱ = λ2m−1λ

−1
m ρ

β(j′)

△,i,j,k,ξ,⃗l,I,⋄
, otherwise .

Then, (A.39), (A.44), (A.197a), (A.197b), (A.198d) still hold from (4.24a) and (4.24a). The

rest of assumptions are all satisfied as we see in Case 3. Therefore, as before, in each case

of m, we obtain the associated current error ϕ
m

TN△ = ϕ
m,l

TN△ + ϕ
m,∗
TN△ and pressure increment

σϕmTN△
= σ+

ϕ
m
TN△

− σ−
ϕ
m
TN△

, which satisfy

−LTNSm△ +
〈
LTNS

m
△
〉
= divϕ

m

TN△, (11.89)

and share the same properties as ϕ
m

TNW and σϕmTNW
have in the restricted range of N,M . In

particular, (11.83), (11.84), and (11.85) holds with the replacement of ϕ
m,l

TNS and σ±
ϕ
m
TNS

with

ϕ
m,l

TN△ and σ±
ϕ
m
TN△

.

Case 2-2. Consider △ = TN . Comparing the properties of H
α(j′)

△,i,j,k,ξ,⃗l,I,⋄
and ρ

β(j′)

△,i,j,k,ξ,⃗l,I,⋄

in Remark 10.2.2 when m = q + n̄ with those in Remark 10.2.11, one can see that

G = −λ−1
q+n̄LTNH

α(j′)

△,i,j,k,ξ,⃗l,I,⋄
, ϱ = λq+n̄ρ

β(j′)

△,i,j,k,ξ,⃗l,I,⋄

satisfies the same estimates as G and ϱ defined in Case 2-1 when m = q + n̄, except that

G when △ = TN has more expensive sharp material derivative cost by Γq. Thereefore,

repeating the same argument, we can obtain the associated current error ϕ
q+n̄

TN△ = ϕ
q+n̄,l

TN△ +

ϕ
q+n̄,∗
TN△ and pressure increment σ

ϕ
q+n̄
TN△

= σ+

ϕ
q+n̄
TN△

− σ−
ϕ
q+n̄
TN△

, which satisfy

−LTNSq+n̄△ +
〈
LTNS

q+n̄
△
〉
= divϕ

q+n̄

TN△, (11.90)

and share the same properties as ϕ
q+n̄

TNW and σ
ϕ
q+n̄
TNW

have in the restricted range of N,M
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expect that the sharp material derivative have extra Γq cost. In particular, (11.83), (11.84),

and (11.85) holds with the replacement of ϕ
q+n̄,l

TNS and σ±
ϕ
q+n̄
TNS

with ϕ
q+n̄,l

TN△ and σ±
ϕ
q+n̄
TN△

.

Lastly, we define

ϕ
m

TNS := ϕ
m

TNO + ϕ
m

TNC1 + ϕ
m

TNTN , σϕmTNS
:= σϕmTNO

+ σϕmTNC1
+ σϕmTNT

and the local and nonlocal parts of ϕ
m

TNS and the superscript ± part of σϕmTNS
analogously.

Here, we set undefined current errors ϕ
m

TN△ and pressure increments σϕmTN△
= 0 as zero.

Then, combining the analysis in Case 2-1, 2-2, (11.83), (11.84), and (11.85) for ϕ
m,∗
TNS can

be verified.

Case 3. Current error from the terms −LTN(Sm,∗△ ) with q + 1 ≤ m ≤ q + n̄. Lastly, we

construct ϕ
∗
TNS satisfying

divϕ
∗
TNS = −

q+n̄∑
m=q+1

P ̸=0LTN (Sm,∗O + Sm,∗TN + Sm,∗C1 + Sm,∗M2 )

and (11.85). The terms on the right-hand side are not be intermittent, so there is no

pressure increment generated from them. We fix △ and m, and apply Remark A.3.5 of

Proposition A.3.3. We first consider when △ ̸= M2. Set N∗ = M∗ = Nind − 1, M◦ = N◦ =

Nind/4,

G = −LTNSm,∗△ , CG,∞ = τ−1
q T

4Nind,t

q+n̄ δq+3n̄, λ = λq+n̄, ν = ν ′ = T−1
q ,

v = ûq , Dt = Dt,q , λ′ = λqΓq , Cv = Λ
1/2
q ,

and choose a natural number K◦ such that

T
2Nind,t

q+n̄ δ
3/2
q+n̄ ≤ λ−K◦

q+n̄ ≤ T
2Nind,t+1
q+n̄ δ

3/2
q+n̄

Then, all the assumptions are satisfied by (10.11), (10.54), (10.81), (5.34), Corollary 8.2.4.
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In particular, (A.55) can be verified by the choice of sufficiently large a. As a result of

Remark A.3.5, summing over m, we have ϕ
∗
TN△ which satisfies

divϕ
∗
TN△ = −

q+n̄∑
m=q+1

P ̸=0LTNS
m,∗
△ ,

∥∥∥DNDM
t,qϕ

∗
TN△

∥∥∥
∞

≤ T
2Nind,t+1
q+n̄ δ

3/2
q+3n̄λ

N
q+n̄T

−M
q

for N,M ≤ Nind/4. Lastly, we apply Lemma A.5.1 to ϕ
∗
TN△, we have

∥∥∥DNDM
t,q+n̄−1ϕ

∗
TN△

∥∥∥
∞

≤ T
Nind,t+1
q+n̄ δ

3/2
q+3n̄λ

N
q+n̄(Tq+n̄−1Γq+n̄−1)

−M

≤ Tq+n̄δ
3/2
q+3n̄λ

N
q+n̄M

(
M, τ−1

q−n̄−1,T
−1
q+n̄−1

)
for N,M ≤ Nind/4.

Next, we consider △ = M2. As we see from (10.97), Sm,∗M2 is non-trivial only when

m = q + n̄. We first note that when q + 1 ≤ k < q + n̄,

∥∥DNDM
t,q+n̄−1ŵk

∥∥
∞ =

∥∥DNDM
t,kŵk

∥∥
∞ ≲ Γ

C∞/2+18
q r−1

q (λkΓk)
N(T−1

k−1Γk−1)
M

for N +M ≤ 3Nfin/2 + 1, from Hypothesis 5.4.1, (5.36), (5.10), and (4.2b). Also, applying

Lemma A.5.1 to (5.34), we have

∥∥DNDM
t,q+n̄−1∇ûq

∥∥
∞ ≲ T−1

q+n̄λqΓ
C∞/2+18
q r−1

q (λq+n̄−1Γq+n̄−1)
N(T−1

q+n̄−1Γq+n̄−1)
M

Combining these with (10.98b), we have from (9.83b) that

∥∥DNDM
t,q+n̄−1LTNS

q+n̄,∗
M2

∥∥
∞ ≤

∥∥DNDM+1
t,q+n̄−1S

q+n̄,∗
M2

∥∥
∞

+
∥∥DNDM

t,q+n̄−1[((ŵq+n̄−1 − ŵq) · ∇)tr +∇ûq :]Sq+n̄,∗M2

∥∥
∞

≤ T
2Nind,t−2
q+n̄ δq+3n̄(λq+n̄Γq+n̄)

N(T−1
q+n̄−1Γq+n̄−1)

M

for N +M ≤ 2Nind − 1. Therefore, we apply Remark A.3.5 of Proposition A.3.3 by setting
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N∗ =M∗ = Nind − 1, M◦ = N◦ = Nind/4,

G = −LTNSm,∗△ , CG,∞ = T
2Nind,t−2
q+n̄ δq+3n̄, λ = λq+n̄Γq+n̄, ν = ν ′ = T−1

q+n̄−1Γq+n̄−1 ,

v = ûq+n̄−1 , Dt = Dt,q+n̄−1 , λ′ = λq+n̄−1Γq+n̄−1 , Cv = Λ
1/2
q+n̄−1 ,

and choosing a natural number K◦ so that

δ
3/2
q+3n̄T

Nind
q+n̄ ≤ (λq+n̄Γq+n̄)

−K◦ ≤ δ
3/2
q+3n̄T

Nind+1
q+n̄ .

Then all required assumptions are satisfied as before. As a result of the remark, we obtain

ϕ
∗
TNM2 such that divϕ

∗
TNM2 = −

∑q+n̄
m=q+1 P ̸=0LTNS

m,∗
M2 , and for N,M ≤ Nind/4,

∥∥∥DNDM
t,q+n̄−1ϕ

∗
TNM2

∥∥∥
∞

≤ T
Nind,t+1
q+n̄ δ

3/2
q+3n̄(λq+n̄Γq+n̄)

N(T−1
q+n̄−1Γq+n̄−1)

M

≤ Tq+n̄δ
3/2
q+3n̄(λq+n̄Γq+n̄)

NM
(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1Γq+n̄−1

)
.

Lastly, we set ϕ
∗
TNS := ϕ

∗
TNO + ϕ

∗
TNC1 + ϕ

∗
TNTN + ϕ

∗
TNM2 and collect the properties of ϕ

∗
TN△

to conclude (11.85).

Remark 11.2.6 (Collecting pressure and current errors from transport-Nash). We

now collect all current errors and pressure increments generated by (11.49)–(11.51) and set

ϕ
m

TN := ϕ
m

TNW + ϕ
m

TNC + ϕ
m

TNS , σϕmTN
:= σϕmTNW

+ σϕmTNC
+ σϕmTNS

, (11.91)

where the quantities on the right-hand side are constructed in Lemmas 11.2.3, 11.2.4, and

11.2.5. We use a similar notation for the various functions of time m, so that recalling

(11.7), we have that mT + mN = mTNW + mTNC + mTNS. Then summing over m, we have

the transport and Nash current error ϕTN . We similarly collect the local and nonlocal parts

of ϕ
m

TN and the ± part of the pressure increments σϕmTN
.
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Lastly, we define and analyze the current error associated to the pressure increments

ϕ
m

TN .

Lemma 11.2.7 (Pressure current). For every m′ ∈ {q+ n̄/2+ 1, . . . , q+ n̄}, there exist a

current error ϕ
ϕ
m′
TN

associated to the pressure increments σ
ϕ
m′
TN

and a function mσ
ϕ
m′
TN

of time

that satisfy the following properties.

(i) We have the decompositions and equalities

divϕ
ϕ
m′
TN

+m′
σ
ϕ
m′
TN

= Dt,qσ
ϕ
m′
TN

, (11.92a)

ϕ
ϕ
m′
TN

= ϕ∗
ϕ
m′
TN

+
m′∑

m=q+n̄/2+1

ϕm
ϕ
m′
TN

, ϕm
ϕ
m′
TN

= ϕm,l
ϕ
m′
TN

+ ϕm,∗
ϕ
m′
TN

. (11.92b)

(ii) For q + n̄/2 + 1 ≤ m ≤ m′ and N,M ≤ 2Nind,

∣∣∣ψi,qDNDM
t,qϕ

m,l

ϕ
m′
TN

∣∣∣ < Γ−100
m

(
πmq
)3/2

r−1
m (λmΓ

2
m)

MM
(
M,Nind,t, τ

−1
q Γi+18

q ,T−1
q Γ9

q

)
(11.93a)∥∥∥∥DNDM

t,qϕ
m,∗
ϕ
m′
TN

∥∥∥∥
∞
< T

2Nind,t

q+n̄ δ
3/2
q+3n̄(λm′Γ2

m′)Nτ−Mq , (11.93b)∥∥∥DNDM
t,qϕ

∗
ϕ
m′
TN

∥∥∥
∞
< T

2Nind,t

q+n̄ δ
3/2
q+3n̄(λq+n̄Γ

2
q+n̄)

Nτ−Mq . (11.93c)

(iii) For all q + n̄/2 + 1 ≤ m ≤ m′ and all q + 1 ≤ q′ ≤ m− 1,

B
(
supp ŵq′ , 1/2λ

−1
q′ Γq′+1

)
∩ supp

(
ϕm,l
ϕ
m′
TN

)
= ∅ . (11.94)

(iv) For M ≤ 2Nind, the mean part mσ
ϕ
m′
TN

satisfies

∣∣∣∣ dM+1

dtM+1
mσ

ϕ
m′
TN

∣∣∣∣ ≤ (max(1, T ))−1δq+3n̄M
(
M,Nind,t, τ

−1
q ,T−1

q+1

)
. (11.95)

Proof. Recall from (11.91) that the pressure increment σ
ϕ
m′
TN

consists of σ
ϕ
m′
TNW

, σ
ϕ
m′
TNC

, σ
ϕ
m′
TNS

.
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We first construct the pressure current for σ
ϕ
m′
TNW

. Recall its construction in Case 3 of the

proof of Lemma 11.2.3. As a result of the application of Proposition A.4.5 to tm
′

i,j,k,ξ,⃗l,I,⋄, from

Part 4 of the proposition, we obtain a pressure current ϕi,j,k,ξ,⃗l,I,⋄ which has a decomposition

ϕi,j,k,ξ,⃗l,I,⋄ = ϕ
∗
i,j,k,ξ,⃗l,I,⋄ +

m̄∑
m=0

ϕ
m

i,j,k,ξ,⃗l,I,⋄ = (H +R∗)Dt,qσHtm′
i,j,k,ξ,⃗l,I,⋄

.

Repeating a similar argument in the proof of Lemma 11.2.2 including aggregation over all

indices i, j, k, ξ, l⃗, I, ⋄, we get the same point-wise estimate for ϕ
m,l

ϕ
m′
TNW

as (11.44) or (11.45)

except for an extra factor Γq in the sharp material derivative cost. Applying the same

analysis, the same estimate holds for the pressure current of the pressure increments σ
ϕ
m′
TNC

and σ
ϕ
m′
TNS

except for another extra factor Γq in the sharp material derivative cost. Combining

all these estimates, we obtain (11.93a). The proof of (11.92a), (11.93b)–(11.95) also follows

from arguments similar to those used to prove the corresponding properties in Lemma 11.2.2.

11.2.3 Linear current error

Lemma 11.2.8 (Definition and basic estimates). There exists a current error ϕL = ϕ
q+n̄

L

and a function of time mL such that the following hold.

(i) We have the equality and decomposition

divϕ
q+n̄

L +m′
L = wq+1 · (∂tuq + uq · ∇uq +∇pq) , ϕ

q+n̄

L = ϕ
q+n̄,l

L + ϕ
q+n̄,∗
L . (11.96)
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(ii) For all N +M ≤ Nind/4, we have that

∣∣∣ψi,q+n̄−1D
NDM

t,q+n̄−1ϕ
q+n̄,l

L

∣∣∣ ≤ Γ−100
q+n̄

((
πq+n̄q

)3/2
+
(
σ+
υ

)3/2)
r−1
q+n̄

× (λq+n̄Γq+n̄)
NM

(
M,Nind,t, τq+n̄−1Γ

i+4
q+n̄−1,T

−1
q+n̄−1Γ

2
q+n̄−1

)
(11.97a)∥∥∥DNDM

t,q+n̄−1ϕ
q+n̄,∗
L

∥∥∥
∞

≤ δ
3/2
q+2n̄(λq+n̄Γq+n̄)

NM
(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1Γ

2
q+n̄−1

)
.

(11.97b)

(iii) For all q + 1 ≤ q′ ≤ q + q + n̄− 1, we have that

supp
(
ϕq+n̄,lL

)
∩B

(
ŵq′ ,Γq′−1λ

−1
q′

)
= ∅ . (11.98)

(iv) The time function mL satisfies m′
L = ⟨wq+1 · (∂tuq + uq · ∇uq +∇pq)⟩ and

∣∣∣∣ dM+1

dtM+1
mL

∣∣∣∣ ≤ (max(1, T ))−1δq+3n̄M
(
M,Nind,t, τ

−1
q ,T−1

q+1

)
for M ≤ Nind/4 . (11.99)

Proof. Step 0: Splitting the error term and upgrading material derivatives. We

use the Euler-Reynolds system (5.2), the mollified stresses and pressures from (6.8) and (6.4),

respectively, and the formula for the velocity increment potential from Remark 9.4.2 to split

the error

wq+1· (∂tuq + uq · ∇uq +∇pq) = wq+1 · div (Rq − πqId)

= (wq+1 − eq+1) · div

(
q+n̄−1∑
m=q

Rm
ℓ −

q+Npr−1∑
m=q

πmℓ Id

)
︸ ︷︷ ︸

=divϕ
q+n̄
L1 +m′

L1

+ eq+1 · div

(
q+n̄−1∑
m=q

Rm
ℓ −

q+Npr−1∑
m=q

πmℓ Id

)
︸ ︷︷ ︸

=divϕ
q+n̄
L2 +m′

L2

+ wq+1 · div

(
q+n̄−1∑
m=q

(Rm
q −Rm

ℓ )−
q+Npr−1∑
m=q

(πmq − πmℓ )Id

)
︸ ︷︷ ︸

=divϕ
q+n̄
L3 +m′

L3

.
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Notice that the tail of the sum
∑∞

q+Npr
πkq of πq does not appear because of (5.19). The term

ϕ
q+n̄

L1 is the main term and requires sharp estimates from the inverse divergence operator

from Lemma A.3.12, while ϕ
q+n̄

L2 and ϕ
q+n̄

L3 may be estimated much more brutally.

Step 1: Estimating the main local term. In order to estimate ϕ
q+n̄

L1 , we need to up-

grade the material derivative estimates on wq+1 − eq+1 = divdυq+1. Towards this end, we

claim that on suppψi,m and for all N ≤ Nfin/4 − 2d2, M ≤ Nfin/5, and q + 1 ≤ m ≤ q + n̄− 1,

λd−kq+n̄

∣∣DNDM
t,m∂i1 · · · ∂ikυq+1

∣∣ ≲ (σ+
υ + δq+3n̄)

1/2r−1
q (λq+n̄Γq+n̄)

NM
(
M,Nind,t, τ

−1
m Γi−5

m ,T−1
q Γ9

q

)
.

(11.100)

This estimate follows from dodging; more precisely, we appeal to (iii) and (9.49) from

Lemma 9.4.1, and (ii) from Lemma 9.2.2 to assert that for all m = q + 1, . . . , q + n̄ − 1,

ŵm · ∇υq+1 ≡ 0. Then using (9.64) from Lemma 9.4.4 and applying (5.8) and (5.14) con-

cludes the proof.

We now fix i ≤ imax and m = q + 1, q + 2, . . . , q + n̄− 1 (the cases m = q and m ≥ q + n̄

will require minor modifications) and apply Lemma A.3.12 with the following choices:

G = div (Rm
ℓ − πmℓ Id)

• , ϱ = (wq+1 − eq+1)
• , ϑ = υ•q+1 , v = ûm−1 , λ′ = ΛmΓm ,

ν ′ = T−1
m−1Γ

12
m−1 , ν = τ−1

m−1Γ
i+23
m−1 , N∗ = Nfin/4 − 2d2 , M∗ = Nfin/5 , d as in (xvii) ,

π′ =
(
σ+
υ + δq+3n̄

)1/2
r−1
q , Ω = suppψi,m−1 , π = 2Γ3

mπ
m
ℓ ΛmΓm , Mt = Nind,t ,

λ = ΛmΓm , Υ = Λ = λq+n̄Γq+n̄ , M◦ = N◦ = 3Nind , K◦ as in (xvi) .

Then we have that (A.42b) is satisfied (5.34), (A.97a) is satisfied from (6.4c) and (6.8),

(A.97b) is satisfied from (9.64) and (9.94), and (A.98) is satisfied by definition and by

(4.24a).
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We then conclude from (A.100) that for all N ≤ Nfin/4 − 2d2 − d and M ≤ Nfin/5,

∣∣1suppψi,m−1
DNDM

t,m−1H ((wq+1 − eq+1)
•div (Rm

ℓ − πmℓ Id)
•)
∣∣

≲ Γ3
mπ

m
ℓ ΛmΓm

(
σ+
υ + δq+2n̄

)1/2
r−1
q λ−1

q+n̄(λq+n̄Γq+n̄)
NM

(
M,Nind,t, τ

−1
m−1Γ

i+4
m−1,T

−1
m Γ2

m−1

)
.

(11.101)

From (A.99) and (9.49), we have that

supp (H ((wq+1 − eq+1)
•div (Rm

ℓ − πmℓ Id)
•)) ⊆ supp υq+1 , (11.102)

which leads to (11.98) from (9.49) and (9.23). Indeed, from (9.49) and Lemma 7.1.7, we

have

supp (υq+1) ⊆
⋃

ξ,i,j,k,⃗l,I,⋄

supp
(
χi,k,qζq,⋄,i,k,ξ,⃗l

(
ρ⋄
(ξ)ζ

I,⋄
ξ

)
◦ Φ(i,k)

)
∩B

(
supp ϱI(ξ),⋄ ◦ Φ(i,k), 3λ

−1
q+n̄

)
.

In order to have effective dodging with ŵq′ , q + 1 ≤ q′ ≤ q + n̄/2, we appeal to (9.23). Also,

using (11.101)–(11.102) and appealing to a similar dodging and upgrading argument which

produced the bound (9.94), we have that for all N ≤ Nfin/4 − 2d2 − d and M ≤ Nfin/5,

∣∣1suppψi,q+n̄−1
DNDM

t,q+n̄−1H ((wq+1 − eq+1)
•div (Rm

ℓ − πmℓ Id)
•)
∣∣

≲ Γ3
mπ

m
ℓ ΛmΓm

(
σ+
υ + δq+2n̄

)1/2
r−1
q λ−1

q+n̄(λq+n̄Γq+n̄)
NM

(
M,Nind,t, τ

−1
m−1Γ

i+4
m−1,T

−1
m−1Γ

2
m−1

)
≤ Γ−101

q+n̄ π
q+n̄
q

(
σ+
υ + δq+2n̄

)1/2
r−1
q (λq+n̄Γq+n̄)

NM
(
M,Nind,t, τ

−1
q+n̄−1Γ

i−5
q+n̄−1,T

−1
q+n̄−1Γ

2
q+n̄−1

)
,

(11.103)

where we have used (5.20), (6.6), and (4.10f) to conclude the last line. Finally, the estimates

in (11.99) follow as usual from Remark A.3.7, and we omit the details now and in the rest

of this proof.

In the case m = q, we make slight changes in the choices of v, π, Ω, ν, and ν ′ based on

(6.3c) and (5.34). Then, applying the same reasoning as for the case m = q+1 for example,
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we find that in fact (11.103) holds for m = q. In the cases q + n̄ ≤ m < q + Npr, we set

G = div (πmℓ Id)
•, v = ûq+n̄−1, and make suitable changes to the parameters and functions

based on (6.5c) and (5.34) for q′ = q + n̄− 1. Concluding as before, we find that

∣∣1suppψi,q+n̄−1
DNDM

t,q+n̄−1H ((wq+1 − eq+1) · div (πmℓ Id))
∣∣

≲ Γ3
mπ

m
ℓ Λq+n̄−1Γ

2
q+n̄−1

(
σ+
υ + δq+2n̄

)1/2
r−1
q λ−1

q+n̄

× (λq+n̄Γq+n̄)
NM

(
M,Nind,t, τ

−1
q+n̄−1Γ

i+4
q+n̄−1,T

−1
q+n̄−1Γ

2
q+n̄−1

)
≤ Γ−101

q+n̄ π
q+n̄
q

(
σ+
υ + δq+2n̄

)1/2
r−1
q (λq+n̄Γq+n̄)

NM
(
M,Nind,t, τ

−1
q+n̄−1Γ

i+4
q+n̄−1,T

−1
q+n̄−1Γ

2
q+n̄−1

)
(11.104)

for all N ≤ Nfin/4− 2d2 − d and M ≤ Nfin/5. In the last inequality, we have used (6.6), (5.18),

and (5.20) to write that πmℓ Λq+n̄−1λ
−1
q+n̄ ≤ 2πq+n̄−1

q Λq+n̄−1λ
−1
q+n̄ ≤ πq+n̄q Γ−150

q+n̄ .

We can now set

ϕ
q+n̄,l

L = H

(wq+1 − eq+1) · div

(
q+n̄−1∑
m=q

Rm
ℓ −

q+n̄+Npr−1∑
m=q

πmℓ Id

)• ,

which is well-defined over various values of i since the algorithm used to define H is indepen-

dent of the value of i. Summing the estimate in (11.103)–(11.104) over the various values of

m and using Cauchy-Schwarz, (5.17), and (4.24a) gives (11.97a).

Step 2: Estimating the main nonlocal term and remainder terms. We first finish

the application of Lemma A.3.12 to the main terms by setting up the nonlocal assumptions

and output in Part 3. In the case of q + 1 ≤ m ≤ q + n̄ − 1, we first have that (A.52) is

satisfied by (4.24a), (A.53) is satisfied with Cv = Λ
1/2
m−1 by (5.35b), and (A.54) is satisfied by

(4.15). Next, we set CG,∞ = C∗,∞ = λ2q+n̄. Then (A.101a) is satisfied from the bound for G

from Step 1, the bounds in Lemma 6.0.1, equations (6.3)–(6.4) for πℓ and π
m
ℓ , respectively.

Furthermore, (A.101b) is satisfied from (9.64) and (9.66b). Choosing d and K◦ according to

items (xvi)–(xvii) so that they satisfy (4.22) and (4.23b), we have that (A.102) is satisfied.
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Then from (A.103)–(A.104), we have that for N,M ≤ 3Nind,

∥∥DNDM
t,m−1R∗ ((wq+1 − eq+1)

•div(Rm
ℓ − πmℓ Id)

•)
∥∥
∞ ≤ T

2Nind,t

q+n̄ δ
3/2
q+3n̄(λq+n̄Γq+n̄)

NT−M
m−1 .

(11.105a)

In the remaining cases, we repeat the same argument and obtain that for N,M ≤ 3Nind,

∥∥DNDM
t,qR∗ ((wq+1 − eq+1)

•div(Rℓ − πℓId)
•)
∥∥
∞ ≤ T

2Nind,t

q+n̄ δ
3/2
q+3n̄(λq+n̄Γq+n̄)

NT−M
q (11.105b)∥∥DNDM

t,q+n̄−1R∗ ((wq+1 − eq+1)
•div(πmℓ Id)

•)
∥∥
∞ ≤ T

2Nind,t

q+n̄ δ
3/2
q+3n̄(λq+n̄Γq+n̄)

NT−M
q+n̄−1

(11.105c)

for q + n̄ ≤ m < q + Npr. We will upgrade the material derivatives at the end of Step 2.

Next, we treat the second error identified in Step 0, namely the remainder term which

includes eq+1. In the case of q + 1 ≤ m ≤ q + n̄ − 1, we apply Lemma A.3.12 with the

following choices:

G = div (Rm
ℓ − πmℓ Id)

• , ϱ = ϑ = e•q+1 , v = ûm−1 , λ′ = ΛmΓm ,

ν = ν ′ = T−1
m−1Γ

2
m−1 , N∗ = Nfin/4 − 2d2 , M∗ = Nfin/5 , d = 0 , λ = ΛmΓm ,

π′ = C∗,∞ = δ3q+3n̄T
20Nind,t

q+n̄ λ−10
q+n̄ , Ω = T3 × R , π = 2Γ3

mπ
m
ℓ ΛmΓm , ,

Υ = Λ = λq+n̄Γq+n̄ , M◦ = N◦ = 3Nind , K◦ such that T
−10Nind,t

q+n̄ ≤ ΛK◦ ≤ T
−10Nind,t−1
q+n̄ .

Then we have that (A.97a) is satisfied as in Step 1, (A.97b) is satisfied by (9.51), and

(A.98) is satisfied as in Step 1. Since d = 0, we move straight to the nonlocal assumptions

and output, for which all assumptions from item (i) in Proposition A.3.3 and (A.101a) are

satisfied as in the beginning of Step 2, (A.101b) is satisfied by (9.51), and (A.102) is satisfied
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from direct computation. We therefore have from (A.104) that

∥∥DNDM
t,m−1R∗ (div (Rm

ℓ − πmℓ Id)
• e•q+1

)∥∥
∞ ≲ T

5Nind,t

q+n̄ δ3q+3n̄(T
−1
m−1Γ

2
m−1)

M(λq+n̄Γq+n̄)
N

(11.106a)

for N,M ≤ 3Nind. Similarly, we have that for N,M ≤ 3Nind and q + n̄ ≤ m < q + Npr,

∥∥DNDM
t,qR∗ (div (Rℓ − πℓId)

• e•q+1

)∥∥
∞ ≲ T

5Nind,t

q+n̄ δ3q+3n̄(λq+n̄Γq+n̄)
NM

(
M,Nind,t, τ

−1
q ,T−1

q Γ2
q

)
(11.106b)∥∥DNDM

t,q+n̄−1R∗ (div (πmℓ Id)• e•q+1

)∥∥
∞

≲ T
4Nind,t

q+n̄ δ3q+3n̄(λq+n̄Γq+n̄)
NM

(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1Γ

2
q+n̄−1

)
(11.106c)

Finally, we treat the third error identified in Step 0, namely the remainder term which

includes the differences between mollified and inductive stresses and pressures. In the case

of q ≤ m ≤ q + n̄− 1, we apply Lemma A.3.12 with the following choices:

G = div
(
Rm
q −Rm

ℓ − (πmq − πmℓ )Id
)•
, ϱ = ϑ = w•

q+1 , v = ûm−1 , λ′ = ΛmΓm ,

ν = ν ′ = T−1
m−1Γ

2
m−1 , N∗ =M∗ = Nind − 1 , d = 0 , λ = ΛmΓm ,

π′ = C∗,∞ = λ2q+n̄ , Ω = T3 × R , π = Γm+1T
4Nind,t

m+1 δ2m+3n̄ΛmΓm , Mt = Nind,t ,

Υ = Λ = λq+n̄Γq+n̄ , M◦ = N◦ = Nind/4 , K◦ such that δ3q+3n̄T
3Nind,t+3
q+n̄ ≤ Λ−K◦ ≤ δ3q+3n̄T

3Nind,t+2
q+n̄ .

Then we have that (A.97a) is satisfied from (6.11), (A.97b) is satisfied by (9.50a) and Sobolev

embedding, and (A.98) is satisfied as in Step 1. Since d = 0, we move straight to the nonlocal

assumptions and output, for which all assumptions from item (i) in Proposition A.3.3 are

satisfied as in the beginning of Step 2. Next, we have that (A.101a) is equivalent to (A.97a),

(A.101b) is equivalent to (A.97b), and (A.102) is satisfied from direct computation. We
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therefore have from (A.104) that for N,M ≤ 3Nind,

∥∥DNDM
t,m−1R∗ (div ((Rm

q −Rm
ℓ )− (πmq − πmℓ )Id

)•
w•
q+1

)∥∥
∞

≤ T
3Nind,t+1
q+n̄ δ3q+3n̄(T

−1
m−1Γ

2
m−1)

M(λq+n̄Γq+n̄)
N (11.107a)

In the remaining cases, we have

∥∥DNDM
t,qR∗ (div ((Rq

q −Rℓ)− (πqq − πℓ)Id
)
· wq+1

)∥∥
∞

≤ T
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q+n̄ δ3q+3n̄(λq+n̄Γq+n̄)

NM
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−1
q ,T−1

q Γ2
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)
(11.107b)∥∥DNDM

t,q+n̄−1R∗ (div ((πmq − πmℓ )Id
)
wq+1

)∥∥
∞

≤ T
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q+n̄ δ3q+3n̄(λq+n̄Γq+n̄)

NM
(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1Γ

2
q+n̄−1

)
(11.107c)

for N,M ≤ 3Nind and q + n̄ ≤ m < q + Npr.

We can now set

ϕ
q+n̄,∗
L = R∗

[
(wq+1 − eq+1) · div

[
q+n̄−1∑
m=q

Rm
ℓ −

q+n̄+Npr−1∑
m=q

πmℓ Id

]]

+R∗

[[
q+n̄−1∑
m=q

Rm
ℓ −

q+n̄+Npr−1∑
m=q

πmℓ Id

]
· eq+1

]

+R∗

[
div

[
q+n̄−1∑
m=q

(Rm
q −Rm

ℓ )−
q+n̄+Npr−1∑

m=q

(πmq − πmℓ )Id

]
· wq+1

]
.

Wemust now upgrade the material derivatives in the estimates (11.105a), (11.106a), (11.107a)

in order to match the bound in (11.97b). Specifically, we apply Remark A.2.6 with p = ∞,

Nx = Nt = ∞, N∗ = Nind/4, Ω = T3 × R, v = ûm−1, w = ûq+n̄−1 − ûm−1, and parameter

choices according to (5.32), which verifies (A.34), parameter choices according to (5.34),

which verifies (A.27), and parameter choices according to (11.105)–(11.107), which verify

(A.28). We however emphasize the choice of Cf = T
Nind,t+1
q+n̄ δ3q+3n̄, which can be used to

absorb lossy material derivative estimates. We then have from (A.35) that (11.97b) holds,
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concluding the proof.

11.2.4 Stress current error

From subsection 11.1, the stress current error is given by

−ϕR = (ûq+1 − ûq)κq+1 +
(
Rq+1 − (πq − πqq)Id

)
(ûq+1 − ûq) .

Next, we recall from (5.4) that ûq+1 − ûq = ŵq+1, and that from (11.3a),

κq+1 =
1

2
tr (−πqId + πqqId +Rq+1) = −3

2
(πq − πqq) +

1

2
trRq+1 .

Lemma 11.2.9 (Definition and basic estimates). The current error ϕR satisfies the

following.

(i) We have the decomposition

ϕR = ϕ
q+1,l

R +

q+n̄∑
m=q+1

ϕ
m,∗
R . (11.108)

(ii) For all N,M such that N +M ≤ Nind/4 and q + 1 ≤ m ≤ q + n̄, we have that

∣∣∣ψi,qDNDM
t,qϕ

q+1,l

R

∣∣∣ ≤ Γ−99
q+1

(
πq+1
q

)3/2
r−1
q+1Λ

N
q+1M

(
M,Nind,t,Γ

i+20
q τ−1

q ,Γ10
q T−1

q

)
(11.109a)∥∥∥DNDM

t,m−1ϕ
m,∗
R

∥∥∥
L∞

≤ δ2q+3n̄Λ
N
mM

(
M,Nind,t, τ

−1
m−1,T

−1
m−1

)
. (11.109b)

(iii) The local part ϕ
q+1,l

R has the support property,

B
(
supp ŵq, λ

−1
q Γq+1

)
∩ suppϕ

q+1,l

O = ∅ . (11.110)
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Proof. Recalling (5.5), (5.22), (10.103), and (10.104), we define

−ϕq+1,l

R = ŵq+1

[
−3

2
(πq − πqq) +

q+n̄∑
m=q+1

1

2
trR

m,l

q+1

]
+

[
−(πq − πqq)Id +

q+n̄∑
m=q+1

R
m,l

q+1

]
ŵq+1

= ŵq+1

[
−3

2
(πq − πqq) +

q+n̄∑
m=q+1

1

2
tr
(
Rm,l
q + Sm,lq+1

)]
+

[
−(πq − πqq)Id +

q+n̄∑
m=q+1

Rm,l
q + Sm,lq+1

]
ŵq+1

(11.111)

−ϕm,∗R = ŵq+1
1

2
trR

m,∗
q+1 +R

m,∗
q+1ŵq+1 for q + 1 ≤ m ≤ q + n̄ . (11.112)

In order to prove (11.109a) for ϕ
q+1,l

R , it suffices to prove the estimate for the second term

from the second line of (11.111), as it is clear that the first term will obey identical estimates.

We first consider the term with the stresses, before handling the term with the pressures

next. The crucial first step is to employ dodging to eliminate most of the terms from (11.111).

Specifically, we have from (5.5) (which gives that Rq+n̄,l
q ≡ 0) and (5.30) that

(
q+n̄∑

m=q+1

Rm,l
q

)
ŵq+1 = Rq+1,l

q ŵq+1 .

Therefore, we have from (5.21a), (5.22) and (5.21c) that for N +M ≤ 2Nind,

∣∣ψi,qDNDM
t,qR

q+1,l
q ŵq+1

∣∣ ≤ N∑
N1=0

M∑
M1=0

i+1∑
i′=i−1

∣∣∣ψi,qDN1DM1
t,q R

q+1,l
q+1

∣∣∣ ∣∣ψi′,qDN−N1DM−M1
t,q ŵq+1

∣∣
≤ πq+1

q (πq+1
q )

1/2r−1
q−n̄+1Λ

N
q+1M

(
M,Nind,t,Γ

i+20
q τ−1

q ,T−1
q Γ10

q

)
≤ Γ−101

q+1

(
πq+1
q

)3/2
r−1
q+1Λ

N
q+1M

(
M,Nind,t,Γ

i+20
q τ−1

q ,T−1
q Γ10

q

)
,

where we have used (4.10h) to achieve the final inequality.

In order to prove a similar estimate for the term with pressures, we appeal to (5.6) and
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(5.31a) to write that for N +M ≤ 2Nind,

∣∣ψi,qDNDM
t,q

[
(π − πqq)ŵq+1

]∣∣ = ∣∣∣∣∣ψi,qDNDM
t,q

[(
∞∑

k=q+1

πkq

)
ŵq+1

]∣∣∣∣∣
≲ ΓqΓ

−100
q+1 (πq+1

q )
3/2r−1

q+1Λ
N
q+1M

(
M,Nind,t,Γ

i+20
q τ−1

q ,Γ10
q T−1

q

)
.

Combined with the previous estimate, this concludes the proof of (11.109a) for terms from

(11.111) which involve stresses Rm,l
q and pressure.

In order to prove (11.109a) for terms from (11.111) which involve stresses Sm,lq+1 defined in

(10.103), we again employ the dodging results from (10.10), (10.53a), and (10.80) to write

that
q+n̄∑

m=q+1

Sm,lq+1ŵq+1 = Sq+1,l
q+1 ŵq+1 .

Then from (10.108) and (5.21c), we have that for N +M ≤ 2Nind,

∣∣∣ψi,qDNDM
t,qS

q+1,l
q+1 ŵq+1

∣∣∣ ≤ N∑
N1=0

M∑
M1=0

i+1∑
i′=i−1

∣∣∣ψi,qDN1DM1
t,q S

q+1,l
q+1

∣∣∣ ∣∣ψi′,qDN−N1DM−M1
t,q ŵq+1

∣∣
≲ Γ−50

q+1π
q+1
q (πq+1

q )
1/2r−1

q−n̄+1Λ
N
q+1M

(
M,Nind,t,Γ

i+20
q τ−1

q ,T−1
q Γ10

q

)
≤ Γ−101

q+1

(
πq+1
q

)3/2
r−1
q+1Λ

N
q+1M

(
M,Nind,t,Γ

i+20
q τ−1

q ,T−1
q Γ10

q

)
,

concluding the proof of (11.109a).

Lastly, the nonlocal estimate (11.109b) follows immediately from (5.21c), (5.22), (10.110),

and immediate computation. We omit further details. Also, the support property (11.110)

can be easily obtained from the definition (11.111) of ϕ
q+1,l

R and Hypothesis 5.4.1.

11.2.5 Divergence correctors

Lemma 11.2.10 (Divergence corrector current error and the associated pressure

increment). There exist current errors ϕ
m

C = ϕ
m,l

C + ϕ
m,∗
C and pressure increments σϕmC =

σ+

ϕ
m
C
− σ−

ϕ
m
C
for m = q + n̄/2 + 1, . . . , q + n̄ such that the following hold.
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(i) We have the equality

div

(
1

2
|w(c)

q+1|2w
(p)
q+1 + (w

(c)
q+1 · w

(p)
q+1)w

(p)
q+1 +

1

2
|wq+1|2w(c)

q+1

)
=

q+n̄∑
m=q+n̄/2+1

divϕmC .

(ii) For all N,M ≤ 2Nind, we have that

∣∣∣ψi,qDNDM
t,qϕ

m,l

C

∣∣∣ ≲ (σ+

ϕ
m
C
+ δq+3n̄)

3/2r−1
m (λmΓq)

N M
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
(11.113a)∣∣∣ψi,qDNDM

t,qϕ
q+n̄

C

∣∣∣ ≲ (σ+

ϕ
q+n̄,l
C

+ σ+
υ + δq+3n̄)

3/2r−1
m (λq+n̄Γq)

N M
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
,

(11.113b)

where the first estimate holds for m = q + n̄/2 + 1, . . . , q + n̄− 1, and σ+
υ is defined as

in Lemma 9.4.4 in the second estimate. In addition, for all m = q + n̄/2 + 1, . . . , q + n̄

and N,M ≤ Nfin/200, we have that

∣∣∣ψi,qDNDM
t,qσ

+

ϕ
m
C

∣∣∣ ≲ (σ+

ϕ
m
C
+ δ2q+3n̄

)
(λmΓq)

N M
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
(11.113c)∥∥∥ψi,qDNDM

t,qσ
+

ϕ
m
C

∥∥∥
3/2
< δm+n̄Γ

−9
m (λmΓq)

N M
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
(11.113d)∥∥∥ψi,qDNDM

t,qσ
+

ϕ
m
C

∥∥∥
∞
< ΓC∞−9

m (λmΓq)
N M

(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
(11.113e)∣∣∣ψi,qDNDM

t,qσ
−
ϕ
m
C

∣∣∣ < πq+
n̄/2

q

(
λq+⌊n̄/2⌋Γq

)N M
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
(11.113f)

Finally, we have that for all m = q + n̄/2 + 1, . . . , q + n̄,

B
(
supp ŵq′ , λ

−1
q′ Γq′+1

)
∩ suppϕ

m,l

C = ∅ ∀q + 1 ≤ q′ ≤ m− 1 (11.114a)

B
(
supp ŵq′ , λ

−1
q′ Γq′+1

)
∩ supp (σ+

ϕ
m
C
) = ∅ ∀q + 1 ≤ q′ ≤ m− 1 (11.114b)

B
(
supp ŵq′ , λ

−1
q+1Γ

2
q

)
∩ supp (σ−

ϕ
m
C
) = ∅ ∀q + 1 ≤ q′ ≤ q + n̄/2 . (11.114c)
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(iii) For all m = q + n̄/2 + 1, . . . , q + n̄ and N,M ≤ 2Nind, the non-local part ϕ̄m,∗C satisfies

∥∥DNDM
t,qϕ̄

m,∗
C

∥∥
L∞ ≤ T

2Nind,t

q+n̄ δ
3/2
q+3n̄λ

N
mτ

−M
q , (11.115)

Lemma 11.2.11 (Pressure current). For every m′ ∈ {q+ n̄/2+1, . . . , q+ n̄}, there exists

a current error ϕ
ϕ
m′
C

associated to the pressure increment σ
ϕ
m′
C

in the sense of

divϕ
ϕ
m′
C

= Dt,qσ
ϕ
m′
C

−
ˆ
T3

Dt,qσ
ϕ
m′
C

(t, x′) dx′ . (11.116)

The current error ϕ
ϕ
m′
C

has a decomposition

ϕ
ϕ
m′
C

= ϕ∗
ϕ
m′
C

+
m′∑

m=q+n̄/2+1

ϕm
ϕ
m′
C

= ϕ∗
ϕ
m′
C

+
m′∑

m=q+n̄/2+1

ϕm,l
ϕ
m′
C

+ ϕm,∗
ϕ
m′
C

,

where the local parts ϕm,l
ϕ
m′
C

and the nonlocal parts ϕm,∗
ϕ
m′
C

and ϕ∗
ϕ
m′
C

satisfy the following properties.

(i) For q + n̄/2 + 1 ≤ m ≤ m′ and N,M ≤ 2Nind,

∣∣∣∣ψi,qDNDM
t,qϕ

m,l

ϕ
m′
C

∣∣∣∣ < Γ−100
m

(
πmq
)3/2

r−1
m (λmΓ

2
m)

MM
(
M,Nind,t, τ

−1
q Γi+17

q ,T−1
q Γ9

q

)
(11.117a)∥∥∥∥DNDM

t,qϕ
m,∗
ϕ
m′
C

∥∥∥∥
∞

∥∥∥DNDM
t,qϕ

∗
ϕ
m′
C

+
∥∥∥
∞
< T

2Nind,t

q+n̄ δ
3/2
q+3n̄(λmΓ

2
m)

Nτ−Mq . (11.117b)

(ii) For all q + n̄/2 + 1 ≤ m ≤ m′ and all q + 1 ≤ q′ ≤ m− 1,

B
(
supp ŵq′ , 1/2λ

−1
q′ Γq′+1

)
∩ suppϕm,l

ϕ
m′
C

= ∅ . (11.118)

(iii) For M ≤ 2Nind, the mean part ⟨Dt,qσ
ϕ
m′
C

⟩ satisfies

∣∣∣∣ dMdtM ⟨Dt,qσ
ϕ
m′
C

⟩
∣∣∣∣ ≤ (max(1, T ))−1δq+3n̄M

(
M,Nind,t, τ

−1
q ,T−1

q Γ9
q

)
. (11.119)
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Proof of Lemma 11.2.10–11.2.11. Step 1: Analyze the error. We first decompose

1

2
|w(c)

q+1|2w
(p)
q+1 + (w

(c)
q+1 · w

(p)
q+1)w

(p)
q+1 +

1

2
|wq+1|2w(c)

q+1

=
1

2
|w(c)

q+1|2w
(p)
q+1 +

1

2
w

(c)
q+1|w

(c)
q+1|2 +

(
w

(c)
q+1 · w

(p)
q+1

)
w

(c)
q+1 (11.120)

+ (w
(c)
q+1 · w

(p)
q+1)w

(p)
q+1 +

1

2
|w(p)

q+1|2w
(c)
q+1 . (11.121)

The first set (11.120) of terms is simpler because each term has two divergence correctors

and thus will be absorbed directly into ϕ
q+n̄,l

C . The second set (11.121) is more delicate, so

we now rewrite this term using a few algebraic identities similar to the divergence corrector

error terms in the Euler-Reynolds system (analyzed in Lemma 10.2.10).

Taking the divergence operator to the first term in (11.121) and using UI,s
(ξ),⋄ to denote

the s component of the vector field UI
(ξ),⋄ (the potential for WI,s

(ξ),⋄), we have that

div
(
w

(p)
q+1,⋄(w

(c)
q+1,⋄ · w

(p)
q+1,⋄)

)
= ξℓAmℓ ∂m

(
ξθAnθa

2
(ξ),⋄

(
ρ⋄
(ξ)ζ

I,⋄
ξ ϱI(ξ),⋄

)2
◦ Φ(i,k)ϵnpr∂p

(
a(ξ),⋄

(
ρ⋄
(ξ)ζ

I,⋄
ξ

)
◦ Φ(i,k)

)
∂rΦ

s
(i,k)U

I,s
(ξ),⋄ ◦ Φ(i,k)

)
=: (C0)

I
(ξ),⋄

(
(ϱI(ξ),⋄)

2UI,s
(ξ),⋄

)
◦ Φ(i,k) . (11.122)

As we see in the second and the third line, for the time being we omit the summation over

the indices ⋄, i, j, k, ξ, l⃗, I for convenience, until we reintroduce them. In the first equality,

observe that we have commuted ξℓAmℓ with ∂m so that we see the good differential operator

ξℓAmℓ ∂m, which can only cost ΛqΓ
13
q from Lemma 9.3.1. This is because it can never land

on a high-frequency object (any of ρ⋄
(ξ), ζ

I,⋄
ξ , ϱI(ξ),⋄,UI

(ξ),⋄). In particular, this term can be

written in the form appearing in the second equality. We will treat this term similar to the

oscillation current error.
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Next, we write the divergence of the second term in (11.121) as

div
(
w

(c)
q+1,⋄|w

(p)
q+1,⋄|2

)
= ∂m

(
ϵmpr

(
ap,bad(ξ),⋄ + ap,good(ξ),⋄

)
∂rΦ

s(UI
(ξ),⋄)

s ◦ Φ(i,k) a
2
(ξ),⋄(ρ

⋄
(ξ)ζ

I,⋄
ξ ϱI(ξ),⋄)

2 ◦ Φ(i,k)ξ
ℓAjℓξ

nAjn

)
=: V3 +V4 ,

recalling the notation from (10.83). The term inside of the divergence inV4 enjoys properties

identical to the terms in (11.120); indeed, the good differential operator in ap,good(ξ),⋄ only costs

ΛqΓ
13
q , and so we absorb these terms into ϕq+n̄,lC . On the other hand, we deal with the term

V3 using (10.83) and (7.8) to expand

V3 = ∂m

[
ϵmpr

(
∂pΦ

n
(i,k)(ξ

′)n(ξ′)ℓAjℓ∂j

(
a(ξ),⋄

(
ρ⋄
(ξ)ζ

I,⋄
ξ

)
◦ Φ(i,k)

)
+ ∂pΦ

n
(i,k)(ξ

′′)n(ξ′′)ℓAjℓ∂j

(
a(ξ),⋄

(
ρ⋄
(ξ)ζ

I,⋄
ξ

)
◦ Φ(i,k)

))
× 1

3
∂rΦ

s
(i,k)

(
−(ξ′)sφ

′′

ξ + (ξ′′)sφ′
ξ

)
◦ Φ(i,k) a

2
(ξ),⋄(ρ

⋄
(ξ)ζ

I,⋄
ξ ϱI(ξ),⋄)

2 ◦ Φ(i,k)ξ
ℓAjℓξ

nAjn

]
.

Note importantly that this term includes factors of either ∂pΦ
n
(i,k)(ξ

′)n or ∂pΦ
n
(i,k)(ξ

′′)n from

ap,bad(ξ),⋄ and ∂rΦ
s
(i,k)(ξ

′)s or ∂rΦ
s
(i,k)(ξ

′′)s from UI,s
(ξ),⋄. We immediately see from the alternating

property of the Levi-Civita tensor that the terms including

ϵmpr
(
∂pΦ

n
(i,k)(ξ

′)n∂rΦ
s
(i,k)(ξ

′)s + ∂pΦ
n
(i,k)(ξ

′′)n∂rΦ
s
(i,k)(ξ

′′)s
)

vanish. Thus we only have to consider the cross terms, for example the term

∂m

[
ϵmpr∂pΦ

n
(i,k)(ξ

′)n(ξ′)ℓAjℓ∂j

(
a(ξ),⋄

(
ρ⋄
(ξ)ζ

I,⋄
ξ

)
◦ Φ(i,k)

)
× 1

3
∂rΦ

s
(i,k)(ξ

′′)sφ′
ξ ◦ Φ(i,k) a

2
(ξ),⋄(ρ

⋄
(ξ)ζ

I,⋄
ξ ϱI(ξ),⋄)

2 ◦ Φ(i,k)ξ
ℓAjℓξ

nAjn

]
. (11.123)

Our first claim is that the vector indexed by m inside the parentheses is actually parallel to
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ξℓAmℓ , which means that we have the good differential operator! To see this, we write

ϵmpr∂pΦ
n(ξ′)n∂rΦ

s(ξ′′)s ∥ ξℓAmℓ

⇐⇒ ϵmpr∂pΦ
n(ξ′)n∂rΦ

s(ξ′′)s∂mΦ
k ∥ ξℓAmℓ ∂mΦ

k = ξk

⇐⇒ ϵmpr∂pΦ
n(ξ′)n∂rΦ

s(ξ′′)s∂mΦ
k(ξ′)k = ϵmpr∂pΦ

n(ξ′)n∂rΦ
s(ξ′′)s∂mΦ

k(ξ′′)k = 0 .

But the last two expressions are again equal to zero by the alternating property of the Levi-

Civita tensor! Thus we have shown that the ∂m on the outside of the expression in (11.123)

will only cost ΛqΓ
13
q , and furthermore that it cannot land on ϱI(ξ),⋄ ◦Φ(i,k) or φ

′
ξ ◦Φ(i,k) (which

is a component of UI
(ξ),⋄). Therefore, we write

V3 = (C31)
I
(ξ),⋄(φ

′
ξ(ϱ

I
(ξ),⋄)

2) ◦ Φ(i,k) + (C32)
I
(ξ),⋄(φ

′′
ξ (ϱ

I
(ξ),⋄)

2) ◦ Φ(i,k) (11.124)

where (C3r)
I
(ξ),⋄, r = 1, 2, are defined by

(C31)
I
(ξ),⋄ :=

1

3
ξℓA

m
ℓ ∂m
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ϵmpr∂pΦ

n
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]
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(
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(
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)
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2
(ξ),⋄(ρ

⋄
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I,⋄
ξ )2 ◦ Φ(i,k)ξ

ℓAjℓξ
nAjn

]
,

and [fm]∥ξ denotes the m
th component of the projection of f onto the vector ξℓA•

ℓ . The anal-

ysis of V3 will then mimic exactly the analysis of (11.122), since we have a good differential

operator in ∂m and one costly differential operator ∂j landing on ζI,⋄ξ .

Step 2: Define the current error, pressure increment, and current error, and

verify their properties. Based on the analysis above, we now define the current errors

288



as

ϕ̄
q+n̄/2+1
C := (H +R∗)

[
(C0)

I,s
(ξ),⋄P̃λq+n̄/2+1

(
(ϱI(ξ),⋄)

2UI,s
(ξ),⋄

)
◦ Φ(i,k)

]
(11.125a)

+ (H +R∗)
[
(C31)

I
(ξ),⋄P̃λq+n̄/2+1

(φ′
ξ(ϱ

I
(ξ),⋄)

2) ◦ Φ(i,k)

]
(11.125b)

+ (H +R∗)
[
(C32)

I
(ξ),⋄P̃λq+n̄/2+1

(φ′′
ξ (ϱ

I
(ξ),⋄)

2) ◦ Φ(i,k)

]
(11.125c)

for the lowest shell,

ϕ̄mC := (H +R∗)
[
(C0)

I,s
(ξ),⋄P̃(λm−1,λm]

(
(ϱI(ξ),⋄)

2UI,s
(ξ),⋄

)
◦ Φ(i,k)

]
(11.126a)

+ (H +R∗)
[
(C31)

I
(ξ),⋄P̃(λm−1,λm](φ

′
ξ(ϱ

I
(ξ),⋄)

2) ◦ Φ(i,k)

]
(11.126b)

+ (H +R∗)
[
(C32)

I
(ξ),⋄P̃(λm−1,λm](φ

′′
ξ (ϱ

I
(ξ),⋄)

2) ◦ Φ(i,k)

]
(11.126c)

for q + n̄/2 + 1 < m < q + n̄, and

ϕ̄q+n̄C :=

q+n̄+1∑
m=q+n̄

(H +R∗)
[
(C0)

I,s
(ξ),⋄

(
P̃(λm−1,λm] +

(
Id− P̃λq+n̄+1

))(
(ϱI(ξ),⋄)

2UI,s
(ξ),⋄

)
◦ Φ(i,k)

]
(11.127a)

+

q+n̄+1∑
m=q+n̄

(H +R∗)
[
(C31)

I
(ξ),⋄

(
P̃(λm−1,λm] +

(
Id− P̃λq+n̄+1

))
(φ′

ξ(ϱ
I
(ξ),⋄)

2) ◦ Φ(i,k)

]
(11.127b)

+

q+n̄+1∑
m=q+n̄

(H +R∗)
[
(C32)

I
(ξ),⋄

(
P̃(λm−1,λm] +

(
Id− P̃λq+n̄+1

))
(φ′′

ξ (ϱ
I
(ξ),⋄)

2) ◦ Φ(i,k)

]
(11.127c)

+ (11.120) + ϵ•pra
p,good
(ξ),⋄ ∂rΦ

s(UI
(ξ),⋄)

s ◦ Φ(i,k) a
2
(ξ),⋄(ρ

⋄
(ξ)ζ

I,⋄
ξ ϱI(ξ),⋄)

2 ◦ Φ(i,k)ξ
ℓAjℓξ

nAjn .

(11.127d)

The terms involved with R∗ or Id − P̃λq+n̄+1 go into the non-local parts while the rest goes

into the local parts. Indeed, in the case of (11.125a), (11.126a), (11.127a) for example, fix
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indices ξ, i, j, k, l⃗, I, and set when ⋄ = φ

Gφ =
(C0)

I,s
(ξ),φ

λq+n̄
,

ϱφ
λq+n̄

=


P̃λq+n̄/2+1

(
(ϱI(ξ),φ)

2UI,s
(ξ),φ

)
for (11.125a)

P̃(λm−1,λm]

(
(ϱI(ξ),φ)

2UI,s
(ξ),φ

)
for (11.126a), the first term of (11.127a)

(Id− P̃λq+n̄+1)
(
(ϱI(ξ),φ)

2UI,s
(ξ),φ

)
for the second term of (11.127a),

and when ⋄ = R,

GR =
(C0)

I,s
(ξ),R

λq+n̄rq
,

ϱR
λq+n̄

=


rqP̃λq+n̄/2+1

(
(ϱI(ξ),R)

2UI,s
(ξ),R

)
for (11.125a)

rqP̃(λm−1,λm]

(
(ϱI(ξ),R)

2UI,s
(ξ),R

)
for (11.126a), the first term of (11.127a)

rq(Id− P̃λq+n̄+1)
(
(ϱI(ξ),R)

2UI,s
(ξ),R

)
for the second term of (11.127a) .

Notice that ϱI(ξ),⋄(UI
(ξ),⋄)

s has zero mean from (5) of Proposition 7.1.5 and (5) of Proposition

7.1.6. The rest of parameters and the functions are chosen the same as in Case 2—Case 4 of

the proof of Lemma 11.2.1. The assumptions in (A.40) and (A.43) of Proposition A.3.3 can

be verified using Lemma 9.3.1, Lemma 7.3.3, Lemma 7.3.4, item (6) from Proposition 7.1.5

and item (6) from Proposition 7.1.6, and we leave the details to the reader; the rest of the

conditions of the inverse divergence are then satisfied exactly as the oscillation error, and we

omit further details. We note only that the support properties for both G⋄ and ρ⋄ are also

the same as in the oscillation error, and so we can expect the same support (and dodging)

properties to hold for the output of the inverse divergence in this case.

Thus we can apply the inverse divergence from Proposition A.3.3 (with the adjustments

set out in Remark A.3.8 for scalar fields). With these choices, we also apply Proposition A.4.5

to construct the associated pressure increments and pressure currents. Note that as in Case

3 of the proof of Lemma 11.2.1, when m = q + n̄/2 + 2, we split the synthetic Littlewood-

Paley operator P̃(λm−1,λm] further into P̃(λq+n̄/2+1,λq+n̄/2+3/2] + P̃(λq+n̄/2+3/2,λq+n̄/2+2] and apply the

propositions to each of them. The analysis of (11.125b), (11.125c), (11.126b), (11.126c),
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(11.127b), (11.127c) is similar; we replace UI,s
(ξ),⋄ by φ′

ξ or φ′′
ξ and (C0)

I,s
(ξ),⋄ by (C31)

I
(ξ),⋄ or

(C32)
I
(ξ),⋄. As a result, we get the same conclusion as that for the oscillation current error.

More precisely, we can verify (11.113a)–(11.115) for q+ n̄/2+1 ≤ m < q+ n̄, (11.39a)–(11.40)

for q + n̄/2 + 1 ≤ m′ < q + n̄, and these properties associated to (11.127a)–(11.127c).

Lastly, we consider (11.127d). From (9.70a) and (9.70b), the error terms in (11.120)

satisfy

∣∣ψi.qDNDM
t,q(11.120)

∣∣ ≲ (σ+
υ + δq+3n̄)

3/2r−1
q (λq+n̄Γ

1/10
q+n̄)

NM
(
M,Nind,t, τ

−1
q Γi+16

q ,T−1
q Γ9

q

)
.

Therefore, (11.120) does not contribute to the pressure increment σ
ϕ
m,l
C

. Recalling (9.24),

one can also verify (11.114) for (11.120). On the other hand, the remaining term in (11.127d)

generates a new pressure increment. Indeed, fix values of i, j, k, ξ, l⃗, I, ⋄ and apply Lemma

A.4.3 to the functions υ̂b,⋄ = υ̂b,i,j,k,ξ,⃗l,I,⋄ defined by

υ̂1,⋄ := r
1/3
q a(ξ),⋄

(
ρ⋄
(ξ)ζ

I,⋄
ξ ϱI(ξ),⋄

)
◦ Φ(i,k)

υ̂3,⋄ := r−
1/3

q ϵ•pra
p,good
(ξ),⋄ ∂rΦ

sξℓAjℓξ
nAjnU

I,s
(ξ),⋄ ◦ Φ(i,k) .

The pressure increment συ̂1,⋄ associated to υ̂1,⋄ has already been constructed in the proof

of Lemmas 10.2.12-10.2.13. The increment συ̂3,⋄ associated to υ̂3,⋄ can be also constructed

similar to συ̂2 from the proof of Lemmas 10.2.12-10.2.13. In fact we can choose all the same

parameters, and the support properties are also identical, as in the proofs of Lemmas 10.2.12

and 10.2.13. As a consequence, συ̂b,⋄ , b = 1, 3 satisfy

∣∣DNDM
t,qυ̂b

∣∣ ≲ (σ+
υ̂b
+ δq+3n̄)

1/2(λq+n̄Γq)
NM

(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
(11.128)

for any N,M ≤ Nfin/10, which implies that the second term in (11.127d) obeys

∣∣DNDM
t,q(r

−1/3
q υ̂21υ̂3)

∣∣ ≲ (σ+
υ̂1
+ σ+

υ̂3
+ δq+3n̄)

3/2r−
1/3

q (λq+n̄Γq)
NM

(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ9

q

)
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for any N,M ≤ Nfin/10. Furthermore, we appeal to the same conclusions used in Case 3 of

the proof of Lemma 11.2.1 or (9.77a)–(9.77f) from Lemmas 9.4.4–9.4.6 to conclude that

∣∣DNDM
t,qσ

+
υ̂b

∣∣ ≲ (σ+
υ̂b
+ δq+3n̄)(λq+n̄Γq)

NM
(
M,Nind,t, τ

−1
q Γi+15

q ,T−1
q Γ9

q

)
(11.129a)∥∥DNDM

t,qσ
+
υ̂b

∥∥
3/2

≲

[∣∣∣supp (ηi,j,k,ξ,⃗l,⋄ζI,⋄ξ )∣∣∣2/3 δq+n̄r4/3q Γ2j+14
q + δq+3n̄

]
× (λq+n̄Γq)

NM
(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ9

q

)
(11.129b)∥∥DNDM

t,qσ
+
υ̂b

∥∥
∞

≲ ΓC∞+30
q (λq+n̄Γq)

NM
(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ9

q

)
(11.129c)∣∣DNDM

t,qσ
−
υ̂b

∣∣ ≲ πℓΓ
30
q (λq+n̄/2Γq)

NM
(
M,Nind,t, τ

−1
q Γi+14

q ,T−1
q Γ9

q

)
(11.129d)

for all N,M ≤ Nfin/100. We reintroduce the indices i, j, k, ξ, l⃗, I, and define the pressure

increment associated to (11.127d) by

σ±
(11.127d) :=

∑
b=1,3

∑
i,j,k,ξ,⃗l,I,⋄

σ±
υ̂
b,i,j,k,ξ,⃗l,I,⋄

.

The estimates (11.113b) and (11.113c) associated to (11.127d) follow using an aggregation

procedure identical to that used in the proofs of Lemmas 9.4.4 and 9.4.6, and so we omit

further details. Lastly, we define the pressure current ϕk,l(11.127d) and ϕk,∗(11.127d) associated to

σ(11.127d), as in the proofs of Lemmas 9.4.4 and 9.4.6 and obtain conclusions consistent with

Lemma 11.2.11. We summarize by setting

σ±
ϕ
q+n̄
C

:= σ±
(11.127a) + σ±

(11.127b) + σ±
(11.127c) + σ±

(11.127d)

ϕk
ϕ
q+n̄
C

:= ϕk(11.127a) + ϕk(11.127b) + ϕk(11.127c) + ϕk(11.127d),

and collecting the properties of these objects obtained above, we conclude the proof.
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11.2.6 Mollification current error

Recall from subsection 11.1 the definition of the mollification errors ϕM1 and ϕM2. We recall

the operators R∗ from (A.56) and LTN from (11.48) and regroup the terms by setting

ϕ
q+1

M := φqq − φℓ

ϕ
q+n̄

M3 :=
1

2

(
|ŵq+n̄|2ŵq+n̄ − |wq+1|2wq+1

)
ϕ
q+n̄

M4 := R∗ [LTN (ŵq+n̄ ⊗ ŵq+n̄ − wq+1 ⊗ wq+1) + (ŵq+n̄ − wq+1) · (∂tuq + (uq · ∇)uq +∇pq)] .

Now notice that div(ϕ
q+1

M + ϕ
q+n̄

M3 + ϕ
q+n̄

M4 ) = div(ϕM1 + ϕM2). We also define

ϕ
q+n̄

M := ϕ
q+n̄

M3 + ϕ
q+n̄

M4 , (11.130)

and recalling (11.7), we set

mM4(t) :=

ˆ t

0

⟨LTN (ŵq+n̄ ⊗ ŵq+n̄ − wq+1 ⊗ wq+1) + (ŵq+n̄ − wq+1) · (∂tuq + (uq · ∇)uq +∇pq)⟩ (s) ds ,

(11.131)

so that mM4 = mM1 +mM2.

Lemma 11.2.12 (Basic estimates and applying inverse divergence). For all N+M ≤

Nind/4, the mollification errors ϕ
q+1

M and ϕ
q+n̄

M satisfy

∥∥∥DNDM
t,qϕ

q+1

M

∥∥∥
∞

≤ δ
3/2
q+3n̄λ

N
q+1M

(
M,Nind,t, τ

−1
q ,Γ−1

q T−1
q

)
, (11.132a)∥∥∥DNDM

t,q+n̄−1ϕ
q+n̄

M

∥∥∥
∞

≤ Γ9
q+n̄δ

3/2
q+3n̄T

2Nind,t

q+n̄ (λq+n̄Γq+n̄)
N M

(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1Γq+n̄−1

)
.

(11.132b)

In addition, the mean portion mM4 satisfies

∣∣∣∣ dM+1

dtM+1
mM4

∣∣∣∣ ≤ (max(1, T ))−1δq+3n̄M
(
M,Nind,t, τ

−1
q ,T−1

q+1

)
for M ≤ Nind/4 . (11.133)
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Proof of Lemma 11.2.12. We have that (11.132a) follows immediately from (6.10). Next, in

order to handle ϕ
q+n̄

M3 , we recall from (9.84) that

∥∥DNDM
t,q+n̄−1 (wq+1 − ŵq+n̄)

∥∥
∞ ≲ δ3q+3n̄T

25Nind,t

q+n̄ (λq+n̄Γq+n̄−1)
N M

(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1

)
.

for all N + M ≤ Nfin/4. Using Lemma 9.2.2, we note that Dt,q+n̄−1wq+1 = Dt,qwq+1 and

Dt,q+n̄−1ŵq+n̄ = Dt,qŵq+n̄. Then writing

|ŵq+n̄|2ŵq+n̄−|wq+1|2wq+1 = (ŵq+n̄−wq+1)|ŵq+n̄|2+wq+1(ŵq+n̄−wq+1)·ŵq+n̄+wq+1wq+1·(ŵq+n̄−wq+1)

and using (9.83), (9.84), and (9.87), we have that for all N +M ≤ 2Nind,

∥∥DNDM
t,q+n̄−1[|ŵq+n̄|2ŵq+n̄ − |wq+1|2wq+1]

∥∥
∞

≤ δq+3n̄T
2Nind,t

q+n̄ (λq+n̄Γq+n̄)
N M

(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1Γq+n̄−1

)
. (11.134)

As for the remaining term ϕ
q+n̄

M4 , we first upgrade the material derivative in the estimate for

ûq. Applying Lemma A.5.1 to F l = 0, F ∗ = ûq, k = q + n̄, N⋆ = 3Nfin/4 with (5.35a) and

using (4.15), we have that

∥∥DNDM
t,q+n̄−1ûq

∥∥
∞ ≲ T−1

q λNq+n̄T
−M
q+n̄−1 .

We can now tackle the part of the error term that involves LTN . To estimate this, we use

Remark A.3.5 with (4.15), setting

G = LTN (ŵq+n̄ ⊗ ŵq+n̄ − wq+1 ⊗ wq+1) , v = ûq+n̄−1

CG,∞ = δq+3n̄T
2Nind,t

q+n̄ , λ = λ′ = λq+n̄Γq+n̄, Mt = Nind,t, ν = ν ′ = T−1
q+n̄, Cv = Λ

1/2
q+n̄−1

N∗ = Nfin/9, M∗ = Nfin/10, N◦ =M◦ = 2Nind .
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As a result, with a suitable choice of positive integer K◦ so that

δq+3n̄T
2Nind,t

q+n̄ λ5q+n̄2
2Nind ≤ λ−K◦

q+n̄ ≤ δq+3n̄T
Nind,t

q+n̄ ,

we find that for all N +M ≤ 2Nind,

∥∥DNDM
t,q+n̄−1R∗ [LTN (ŵq+n̄ ⊗ ŵq+n̄ − wq+1 ⊗ wq+1)]

∥∥
∞ ≲ δq+3n̄T

Nind,t

q+n̄ (λq+n̄Γq+n̄)
NT−M

q+n̄

≤ δq+3n̄(λq+n̄Γq+n̄)
NM

(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄

)
.

(11.135)

The estimate for the mean portion follows in the usual way from Remark A.3.7.

Now we deal with the other part of the error term. Recall from (5.2) that

∂tuq + (uq · ∇)uq +∇pq = div(Rq − πqId) .

We apply Lemma A.3.12 with the following choices:

G = div (Rq − πqId)
• , ϱ = ϑ = (ŵq+n̄ − wq+1)

• , v = ûq+n̄−1 , λ′ = λq+n̄−1Γq+n̄−1 ,

ν = ν ′ = T−1
q+n̄−1Γ

2
q+n̄−1 , N∗ = Nind/2 , M∗ = Nind/2 , d = 0 , λ = Λq+n̄Γq+n̄ ,

π′ = C∗,∞ = δ3q+3n̄T
25Nind,t

q+n̄ , Ω = T3 × R , π = Γq+n̄−1πqΛq+n̄−1 , Mt = Nind,t ,

Υ = Λ = λq+n̄Γq+n̄−1 , M◦ = N◦ = Nind/4 , K◦ such that T
−10Nind,t

q+n̄ ≤ ΛK◦ ≤ T
−10Nind,t−1
q+n̄ .

The analysis here is similar to the analysis for the nonlocal transport-Nash current errors,

and so we omit the details but note that one can easily check that (A.97a), (A.97b), and

(A.98) are satisfied. Since d = 0, we move straight to the non-local assumptions and output,

which again can be easily checked by direct computation or using similar arguments as for
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other nonlocal error terms. We therefore have from (A.104) that for N +M ≤ Nind/4,

∥∥DNDM
t,q+n̄−1R∗ (div (Rq − πqId)

• (ŵq+n̄ − wq+1)
•)
∥∥
∞

≲ T
3Nind,t

q+n̄ δ3q+3n̄(λq+n̄Γq+n̄)
NM

(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1Γq+n̄

)
(11.136)

Promotion of the material derivatives again follows standard arguments and Lemma A.5.1,

and we omit further details.

11.3 Upgrading material derivatives

Definition 11.3.1 (Definition of ϕq+1 and φq+1). Recalling Lemmas 11.2.1, 11.2.3, 11.2.4,

11.2.5, 11.2.8, 11.2.9, 11.2.10, and 11.2.12, we define ϕq+1 =
∑q+n̄

m=q+1 ϕ
m

q+1 and ϕ
m

q+1 =

ϕ
m,l

q+1 + ϕ
m,∗
q+1 for q + 1 ≤ m ≤ q + n̄ by

ϕ
m,l

q+1 = ϕ
m,l

O + ϕ
m,l

W + ϕ
m,l

TNC + ϕ
l

Sm,l
O

+ ϕ
l

Sm,l
TN

+ ϕ
l

Sm,l
C1

+ ϕ
l

Sm,l
M2

+ 1m=q+n̄ϕ
q+n̄,l

L + 1m=q+1ϕ
q+1,l

R + ϕ
m,l

C

(11.137a)

ϕ
m,∗
q+1 = ϕ

m,∗
O + ϕ

m,∗
W + ϕ

m,∗
TNC + ϕ

∗
Sm,l
O

+ ϕ
∗
Sm,l
TN

+ ϕ
∗
Sm,l
C1

+ ϕ
∗
Sm,l
M2

+ ϕSm,∗
O

+ ϕSm,∗
TN

+ ϕSm,∗
C1

+ ϕSm,∗
M2

+ 1m=q+n̄ϕ
q+n̄,∗
L + ϕ

m,∗
R + ϕ

m,∗
C + ϕ

m

M (11.137b)

Here, any undefined terms are taken to be 0. We then define the primitive current error φq+1

by

φq+1 :=

q+n̄∑
m=q+1

φmq+1 , φmq+1 = φmq + ϕ
m

q+1 , (11.138)

which we note is consistent with (11.3b).

Lemma 11.3.2 (Upgrading material derivatives). The new current errors ϕ
m

q+1 =
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ϕ
m,l

q+1 + ϕ
m,∗
q+1 satisfy the following. For N +M ≤ Nind/4, we have that

∣∣∣ψi,q+n̄/2−1D
NDM

t,q+n̄/2−1ϕ
q+n̄/2

q+1

∣∣∣ ≲ Γ−50
q+n̄/2π

q+n̄/2
q r−1

q+n̄/2Λ
N
q+n̄/2M

(
M,Nind,t, τ

−1
q+n̄/2−1Γ

i−5
q+n̄/2−1,T

−1
q Γ11

q

)
.

(11.139)

For the same range of N +M , the current error ϕ
q+1

q+1 obeys the estimate

∣∣∣ψi,qDNDM
t,qϕ

q+1

q+1

∣∣∣ ≲ Γ−50
q+1π

q+1
q r−1

q+1Λ
N
mM

(
M,Nind,t, τ

−1
q Γi+20

q ,T−1
q Γ10

q

)
. (11.140)

Finally, we have that for q + n̄/2 + 1 ≤ m ≤ q + n̄ and the same range of N +M ,

∣∣∣ψi,m−1D
NDM

t,m−1ϕ
m

q+1

∣∣∣ ≲ (σ+
m,q+1 + 1m=q+n̄Γ

−50
q+n̄π

q+n̄
q + δq+3n̄

)3/2
r−1
m

× (λmΓm)
NM

(
M,Nind,t,Γ

i+18
q τ−1

q ,T−1
q Γ11

q

)
. (11.141)

Proof of Lemma 11.3.2. We have that (11.140) follows immediately from (11.12), (11.54a),

(11.58), (11.82), (11.85), (11.109a), (11.109b), (11.132a), (5.17), (5.20), and (4.10f). In order

to prove the remaining estimates, we appeal to Lemma A.5.1. The proof is very similar to

the proofs of items (ii)–(iv), and so we omit most of the details. The basic idea is however

that nonlocal error terms can be upgraded trivially using the minuscule amplitude, and the

local error terms can be upgraded using the dodging conclusions that have been included in

Lemmas 11.2.1, 11.2.3, 11.2.4, 11.2.5, 11.2.8, 11.2.9, 11.2.10, and 11.2.12.
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Chapter 12

Inductive cutoffs

12.1 New mollified velocity increment and definition

of the velocity cutoff functions

We first recall the definition of ŵq+n̄ in (9.17). We have that for a mollifier P̃q+n̄,x,t at spatial

scale λ−1
q+n̄Γ

−1/2
q+n̄−1 and temporal scale T−1

q+1, we have

ŵq+n̄ = P̃q+n̄,x,twq+1 . (12.1)

Before defining the velocity cutoff functions, we need the following translations between

Γq′−1 and Γq′ .

Definition 12.1.1 (Translating Γ’s between q′− 1 and q′). Given i, j, q′ ≥ 0, we define

i∗ = i∗(j, q
′) = i∗(j) = min{i ≥ 0: Γiq′ ≥ Γjq′−1}

j∗(i, q
′) = max{j : i∗(j) ≤ i} .
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A consequence of this definition is the inequality

Γi−1
q′ < Γ

j∗(i,q)
q′−1 ≤ Γiq′ . (12.3)

We also note that for j = 0, we have that i∗(j) = 0. Finally, a simple computation shows

that i∗(j) has an upper bound which depends on j but not q.

We may now define the velocity cutoff functions using the cutoff functions presented in

Lemma 8.3.1, although Γq will be replaced with Γq+n̄ throughout.

Definition 12.1.2 (Intermediate cutoff functions). For stage q+1 of the iteration where

q + n̄ ≥ 1, m ≤ Ncut,t, and jm ≥ 0, we define

h2m,jm,q+n̄(x, t) = Γ
−2i∗(jm)
q+n̄ δ−1

q+n̄r
2/3
q

(
τ−1
q+n̄−1Γ

i∗(jm)+2
q+n̄

)−2m
Ncut,x∑
N=0

(λq+n̄Γq+n̄)
−2N

∣∣DNDm
t,q+n̄−1ŵq+n̄

∣∣2 .
(12.4)

We then define ψm,im,jm,q+n̄ by

ψm,im,jm,q+n̄(x, t) = γm,q+n̄

(
Γ
−2(im−i∗(jm))(m+1)
q+n̄ h2m,jm,q+n̄(x, t)

)
(12.5)

for im > i∗(jm), while for im = i∗(jm),

ψm,i∗(jm),jm,q+n̄(x, t) = γ̃m,q+n̄
(
h2m,jm,q+n̄(x, t)

)
. (12.6)

The intermediate cutoff functions ψm,im,jm,q+n̄ are equal to zero for im < i∗(jm).

The indices im and jm will be shown to take values no larger than imax. With these

definitions and using (8.14) and (8.15), it follows that

∑
im≥0

ψ6
m,im,jm,q+n̄ =

∑
im≥i∗(jm)

ψ6
m,im,jm,q+n̄ =

∑
{im : Γim

q+n̄≥Γjm
q+n̄−1}

ψ6
m,im,jm,q+n̄ ≡ 1 (12.7)
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for any m, and for |im − i′m| ≥ 2,

ψm,im,jm,q+n̄ψm,i′m,jm,q+n̄ = 0 . (12.8)

Definition 12.1.3 (mth Velocity Cutoff Function). At stage q + 1 and for im ≥ 0, we

inductively define the mth velocity cutoff function

ψ6
m,im,q+n̄ =

∑
{jm : im≥i∗(jm)}

ψ6
jm,q+n̄−1ψ

6
m,im,jm,q+n̄ . (12.9)

We shall employ the notation

i⃗ = {im}Ncut,t

m=0 =
(
i0, ..., iNcut,t

)
∈ NNcut,t+1

0 (12.10)

to signify a tuple of non-negative integers of length Ncut,t + 1.

Definition 12.1.4 (Velocity cutoff function). At stage q + 1 and for 0 ≤ i ≤ imax, we

define

ψ6
i,q+n̄ =

∑
{⃗
i : max

0≤m≤Ncut,t
im=i

}
Ncut,t∏
m=0

ψ6
m,im,q+n̄ . (12.11)

For i⃗ as in the sum of (12.11), we shall denote

supp

(
Ncut,t∏
m=0

ψm,im,q+n̄

)
=

Ncut,t⋂
m=0

supp (ψm,im,q+n̄) =: supp (ψ⃗i,q+n̄) . (12.12)

This implies that (x, t) ∈ supp (ψi,q+n̄) if and only if there exists i⃗ ∈ NNcut,t+1
0 such that

max0≤m≤Ncut,t im = i, and (x, t) ∈ supp (ψ⃗i,q+n̄).
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12.2 Partitions of unity, dodging, and simple bounds

on velocity increments

Lemma 12.2.1 (ψm,im,q+n̄ - Partition of unity). For all m, we have that

∑
im≥0

ψ6
m,im,q+n̄ ≡ 1 , ψm,im,q+n̄ψm,i′m,q+n̄ = 0 for |im − i′m| ≥ 2 . (12.13)

Proof of Lemma 12.2.1. The proof proceeds inductively in a manner very similar to the

proof of [7, Lemma 6.7]. To show the first part of (12.13), we may use (12.7) and (12.9) and

reorder the summation to obtain

∑
im≥0

ψ6
m,im,q =

∑
im≥0

∑
{jm : i∗(jm)≤im}

ψ6
jm,q−1ψ

6
m,im,jm,q(x, t)

=
∑
jm≥0

ψ6
jm,q−1

∑
{im : im≥i∗(jm)}

ψ6
m,im,jm,q︸ ︷︷ ︸

≡1 by (12.7)

=
∑
jm≥0

ψ6
jm,q−1 ≡ 1

where the last ineqaulity follows from the inductive assumption (5.8).

The proof of the second claim is more involved and will be split into cases. Using the

definition in (12.9), we have that

ψm,im,q+n̄ψm,i′m,q+n̄ =
∑

{jm:im≥i∗(jm)}

∑
{j′m:i′m≥i∗(j′m)}

ψ6
jm,q+n̄−1ψ

6
j′m,q+n̄−1ψ

6
m,im,jm,q+n̄ψ

6
m,i′m,j

′
m,q+n̄

.

Recalling the inductive assumption (5.8), we have that the above sum only includes pairs of

indices jm and j′m such that |jm − j′m| ≤ 1. So we may assume that

(x, t) ∈ suppψm,im,jm,q ∩ suppψm,i′m,j′m,q, (12.14)

where |jm − j′m| ≤ 1. The first and simplest case is the case jm = j′m. We then appeal to

(12.8) to deduce that it must be the case that |im − i′m| ≤ 1 in order for (12.14) to be true.
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Before moving to the second and third cases, we recall from the proof of [7, Lemma 6.7]

that by symmetry it will suffice to prove that ψm,im,q+n̄ψm,i′m,q+n̄ ≡ 0 when i′m ≤ im − 2. We

then consider the second case in (12.14), in which j′m = jm + 1. When im = i∗(jm), we use

that i∗(jm) ≤ i∗(jm + 1) to obtain

i′m ≤ im − 2 = i∗(jm)− 2 < i∗(jm + 1) = i∗(j
′
m) ,

and so by Definition 12.1.2, we have that ψm,i′m,j′m,q+n̄ = 0. Thus we need only now consider

im > i∗(jm) in order to finish the proof of the second case from (12.14). From (12.14),

items (1)–(2) from Lemma 8.3.1, and Definition 12.1.2, we have that

hm,jm,q+n̄(x, t) ∈
[
1

2
Γ
(m+1)(im−i∗(jm))
q+n̄ ,Γ

(m+1)(im+1−i∗(jm))
q+n̄

]
, (12.15a)

hm,jm+1,q+n̄(x, t) ≤ Γ
(m+1)(i′m+1−i∗(jm+1))
q+n̄ . (12.15b)

Note that from the definition of hm,jm,q+n̄ in (12.4), we have that

Γ
(m+1)(i∗(jm+1)−i∗(jm))
q+n̄ hm,jm+1,q+n̄ = hm,jm,q+n̄ .

Then, since i′m ≤ im − 2, from (12.15b) we have that

Γ
−(m+1)(im−i∗(jm))
q+n̄ hm,jm,q+n̄ = Γ

−(m+1)(im−i∗(jm))
q+n̄ hm,jm+1,q+n̄Γ

(m+1)(i∗(jm+1)−i∗(jm))
q+n̄

≤ Γ
−(m+1)(im−i∗(jm))
q+n̄ Γ

(m+1)(i′m+1−i∗(jm+1))
q+n̄ Γ

(m+1)(i∗(jm+1)−i∗(jm))
q+n̄

= Γ
(m+1)(i′m+1−im)
q+n̄

≤ Γ
−(m+1)
q+n̄ .

Sincem ≥ 0, the above estimate contradicts the lower bound on hm,jm,q+n̄ in (12.15a) because

Γ−1
q+n̄ ≪ 1/2 for a sufficiently large.

We move to the third and final case, j′m = jm − 1. As before, if im = i∗(jm), then since
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i∗(jm) ≤ i∗(jm − 1) + 1, we have that

i′m ≤ im − 2 = i∗(jm)− 2 ≤ i∗(jm − 1)− 1 < i∗(jm − 1) = i∗(j
′
m) ,

which by Definition 12.1.2 implies that ψm,i′m,j′m,q+n̄ = 0, and there is nothing to prove. Thus,

we only must consider the case im > i∗(jm). Using the definition (12.4) we have that

hm,jm,q+n̄ = Γ
(m+1)(i∗(jm−1)−i∗(jm))
q+n̄ hm,jm−1,q+n̄ .

On the other hand, for i′m ≤ im − 2 we have from (12.15b) that

hm,jm−1,q+n̄ ≤ Γ
(m+1)(i′m+1−i∗(jm−1))
q+n̄ ≤ Γ

(m+1)(im−1−i∗(jm−1))
q+n̄ .

Therefore, combining the above two displays and the inequality −i∗(jm) ≥ −i∗(jm − 1)− 1,

we obtain the bound

Γ
−(m+1)(im−i∗(jm))
q+n̄ hm,jm,q+n̄ ≤ Γ

−(m+1)(im−i∗(jm))
q+n̄ Γ

(m+1)(i∗(jm−1)−i∗(jm))
q+n̄ Γ

(m+1)(im−1−i∗(jm−1))
q+n̄

= Γ
−(m+1)
q+n̄ ,

As before, since m ≥ 0 this produces a contradiction with the lower bound on hm,jm,q+n̄

given in (12.15a), since Γ−1
q+n̄ ≪ 1/2.

Lemma 12.2.2 (ψi,q+n̄ - Partition of unity). We have that

∑
i≥0

ψ6
i,q+n̄ ≡ 1 , ψi,q+n̄ψi′,q+n̄ ≡ 0 for |i− i′| ≥ 2 . (12.16)

Proof of Lemma 12.2.2. To prove the first claim for q+ n̄ ≥ 1, let us introduce the notation

Λi =

{⃗
i = (i0, ..., iNcut,t) : max

0≤m≤Ncut,t

im = i.

}
(12.17)
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Then

ψ6
i,q+n̄ =

∑
i⃗∈Λi

Ncut,t∏
m=0

ψ6
m,im,q+n̄ ,

and thus

∑
i≥0

ψ6
i,q =

∑
i≥0

∑
i⃗∈Λi

Ncut,t∏
m=0

ψ6
m,im,q =

∑
i⃗∈N

Ncut,t+1

0

(
Ncut,t∏
m=0

ψ6
m,im,q

)

=

Ncut,t∏
m=0

(∑
im≥0

ψ6
m,im,q

)
=

Ncut,t∏
m=0

1 = 1

after using (12.13).

To prove the second claim, assume towards a contradiction that there exists |i− i′| ≥ 2

such that ψi,qψi′,q ≥ 0. Then

0 ̸= ψ6
i,q+n̄ψ

6
i′,q+n̄ =

∑
i⃗∈Λi

∑
i⃗′∈Λi′

Ncut,t∏
m=0

ψ6
m,im,q+n̄ψ

6
m,i′m,q+n̄

. (12.18)

In order for (12.18) to be non-vanishing, by (12.13), there must exist i⃗ = (i0, ..., iNcut,t) ∈ Λi

and i⃗′ = (i′0, ..., i
′
Ncut,t

) ∈ Λi′ such that |im − i′m| ≤ 1 for all 0 ≤ m ≤ Ncut,t. By the definition

of i and i′, there exist m∗ and m′
∗ such that

im∗ = max
m

im = i, i′m′
∗
= max

m
i′m = i′.

But then

i = im∗ ≤ i′m∗ + 1 ≤ i′m′
∗
+ 1 = i′ + 1 , i′ = i′m′

∗
≤ im′

∗ + 1 ≤ im∗ + 1 = i+ 1,

implying that |i− i′| ≤ 1, a contradiction.

Lemma 12.2.3 (Lower order derivative bounds on ŵq+n̄). If (x, t) ∈ supp (ψm,im,jm,q+n̄)
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then

hm,jm,q+n̄ ≤ Γ
(m+1)(im+1−i∗(jm))
q+n̄ . (12.19)

Moreover, if im > i∗(jm) we have

hm,jm,q+n̄ ≥ (1/2)Γ
(m+1)(im−i∗(jm))
q+n̄ (12.20)

on the support of ψm,im,jm,q+n̄. As a consequence, we have that for all 0 ≤ m,M ≤ Ncut,t and

0 ≤ N ≤ Ncut,x,

∥∥DNDm
t,q+n̄−1ŵq+n̄

∥∥
L∞(suppψm,im,q+n̄)

≤ δ
1/2
q+n̄r

−1/3
q Γim+1

q+n̄ (λq+n̄Γq+n̄)
N(τ−1

q+n̄−1Γ
im+3
q+n̄ )m (12.21a)∥∥DNDM

t,q+n̄−1ŵq+n̄
∥∥
L∞(suppψi,q+n̄)

≤ δ
1/2
q+n̄r

−1/3
q Γi+1

q+n̄(λq+n̄Γq+n̄)
N(τ−1

q+n̄−1Γ
i+3
q+n̄)

M . (12.21b)

Proof of Lemma 12.2.3. Estimates (12.19) and (12.20) follow directly from the definitions

of γ̃m,q+n̄ and γm,q+n̄ in Lemma 8.3.1 and the definition of hm,jm,q+n̄ in (12.4). In order to

prove (12.21a), we note that for (x, t) ∈ supp (ψm,im,q+n̄), by (12.9) there must exist a jm

with i∗(jm) ≤ im such that (x, t) ∈ supp (ψm,im,jm,q+n̄). Using (12.19), we conclude that

∥∥DNDm
t,q+n̄−1ŵq+n̄

∥∥
L∞(suppψm,im,jm,q+n̄)

≤ δ
1/2
q+n̄r

−1/3
q Γim+1

q+n̄ (λq+n̄Γq+n̄)
N (τ−1

q+n̄−1Γ
im+3
q+n̄

)m
(12.22)

which completes the proof of (12.21a). The proof of (12.21b) follows from the fact that we

have employed the maximum over m of im to define ψi,q+n̄ in (12.1.4).

Corollary 12.2.4 (Higher order derivative bounds on ŵq+n̄). For N +M ≤ 2Nfin and

i ≥ 0, we have the bound

∥∥DNDM
t,q+n̄−1ŵq+n̄

∥∥
L∞(suppψi,q+n̄)

≤ Γi+1
q+n̄δ

1/2
q+n̄r

−1/3
q (λq+n̄Γq+n̄)

NM
(
M,Nind,t,Γ

i+3
q+n̄τ

−1
q+n̄−1,T

−1
q+n̄−1Γq+n̄−1

)
. (12.23)
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Proof of Corollary 12.2.4. When 0 ≤ N ≤ Ncut,x and 0 ≤ M ≤ Ncut,t ≤ Nind,t, the desired

bound was already established in (12.21b). For the remaining cases in which eitherN > Ncut,x

or M > Ncut,t, note that if 0 ≤ m ≤ Ncut,t and (x, t) ∈ suppψm,im,q+n̄, there exists jm ≥ 0

with i∗(jm) ≤ im such that (x, t) ∈ suppψjm,q+n̄−1. Thus, we may appeal to (9.83b), which

gives that for N +M ≤ 2Nfin,

∣∣DNDM
t,q+n̄−1ŵq+n̄(x, t)

∣∣ ≲ Γ
C∞/2+16
q r−1

q (λq+n̄Γq+n̄−1)
NM

(
M,Nind,t,Γ

jm−1
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1Γq+n̄−1

)
.

Since i∗(jm) ≤ im implies Γjmq+n̄−1 ≤ Γimq+n̄, we deduce that for N +M ≤ 2Nfin,

∥∥DNDM
t,q+n̄−1ŵq+n̄

∥∥
L∞(suppψm,im,q+n̄)

≲ Γ
C∞/2+16
q r−1

q (λq+n̄Γq+n̄−1)
NM

(
M,Nind,t,Γ

im
q+n̄τ

−1
q+n̄−1,T

−1
q+n̄−1Γq+n̄−1

)
≤ Γim+1

q+n̄ δ
1/2
q+n̄r

−1/3
q (λq+n̄Γq+n̄)

NM
(
M,Nind,t,Γ

im+3
q+n̄ τ

−1
q+n̄−1,T

−1
q+n̄−1Γq+n̄−1

)
after using that either N > Ncut,x or M > Ncut,t, the parameter inequality (4.17b), and a

large choice of a to absorb the implicit constant in the spare factor of Γq+n̄. The desired

estimate in (12.23) then follows from taking the maximum overm from Definition 12.1.4.

12.3 Pure spatial derivatives

In this section we prove that the cutoff functions ψi,q+n̄ satisfy sharp spatial derivative

estimates which are consistent with (5.11) for q′ = q + n̄.

Lemma 12.3.1 (Spatial derivatives for the cutoffs). Fix q + n̄ ≥ 1, 0 ≤ m ≤ Ncut,t,

and im ≥ 0. For all jm ≥ 0 such that im ≥ i∗(jm), all i ≥ 0, and all N ≤ Nfin, we have

1supp (ψjm,q+n̄−1)
|DNψm,im,jm,q+n̄|
ψ

1−N/Nfin

m,im,jm,q+n̄

≲ (λq+n̄Γq+n̄)
N , (12.24a)

|DNψi,q+n̄|
ψ

1−N/Nfin

i,q+n̄

≲ (λq+n̄Γq+n̄)
N . (12.24b)

306



Proof of Lemma 12.3.1. Step 1: proof of (12.24a). We distinguish two cases. The first

case is when ψ = γ̃m,q, or ψ = γm,q and we have the lower bound

h2m,jm,q+n̄Γ
−2(im−i∗(jm))(m+1)
q+n̄ ≥ 1

4
Γ
2(m+1)
q+n̄ , (12.25)

so that (8.18) applies. The goal is then to apply [7, Lemma A.5] to the function ψ = γ̃m,q

or ψ = γm,q with the choices Γψ = Γm+1
q+n̄ , Γ = Γ

(m+1)(im−i∗(jm))
q+n̄ , and h = h2m,jm,q+n̄. The

assumption in [7, equation (A.24)] holds by (8.16) or (8.18) for all N ≤ Nfin, and so we need

to obtain bounds on the derivatives of h2m,jm,q+n̄ which are consistent with assumption in [7,

equation (A.25)] of [7, Lemma A.5]. For B ≤ Nfin, the Leibniz rule gives

∣∣DBh2m,jm,q+n̄
∣∣

≲ (λq+n̄Γq+n̄)
B

B∑
B′=0

Ncut,x∑
n=0

Γ
−i∗(jm)
q+n̄ (τ−1

q+n̄−1Γ
i∗(jm)+2
q+n̄ )−m(λq+n̄Γq+n̄)

−n−B′
δ
−1/2
q+n̄ r

1/3
q |Dn+B′

Dm
t,q+n̄−1ŵq+n̄|

× Γ
−i∗(jm)
q+n̄ (τ−1

q+n̄−1Γ
i∗(jm)+2
q+n̄ )−m(λq+n̄Γq+n̄)

−n−B+B′
δ
−1/2
q+n̄ r

1/3
q |Dn+B−B′

Dm
t,q+n̄−1ŵq+n̄| .

(12.26)

For the terms with L ∈ {n+B′, n+B −B′} ≤ Ncut,x, we may appeal to appeal to estimate

(12.19), which gives

Γ
−i∗(jm)
q+n̄ (τ−1

q+n̄−1Γ
i∗(jm)+2
q+n̄ )−m(λq+n̄Γq+n̄)

−Lδ
−1/2
q+n̄ r

1/3
q

∥∥DLDm
t,q+n̄−1ŵq+n̄

∥∥
L∞(suppψm,im,jm,q+n̄)

≤ Γ
(m+1)(im+1−i∗(jm))
q+n̄ . (12.27)

On the other hand, for Ncut,x < L ∈ {n + B′, n + B − B′} ≤ Ncut,x + B ≤ 2Nfin − Nind,t, we
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may appeal to appeal to (9.83b), and since m ≤ Ncut,t < Nind,t, we deduce that

Γ
−i∗(jm)
q+n̄ (τ−1

q+n̄−1Γ
i∗(jm)+2
q+n̄ )−m(λq+n̄Γq+n̄)

−Lδ
−1/2
q+n̄ r

1/3
q

∥∥DLDm
t,q+n̄−1ŵq+n̄

∥∥
L∞(suppψjm,q+n̄−1)

≲ Γ
−i∗(jm)(m+1)−2m
q+n̄ τmq+n̄−1(λq+n̄Γq+n̄)

−Lδ
−1/2
q+n̄ r

1/3
q Γ

C∞/2+16
q r−1

q (λq+n̄Γq+n̄−1)
L(τ−1

q+n̄−1Γ
jm−1
q+n̄−1)

m

≲ Γ
−i∗(jm)(m+1)−2m
q+n̄ δ

−1/2
q+n̄ r

1/3
q Γ

C∞/2+16
q r−1

q

(
Γq+n̄−1

Γq+n̄

)L
Γ
m(jm−1)
q+n̄−1

≤ Γ
(im+1−i∗(jm))(m+1)
q+n̄ . (12.28)

In the last inequality we have used that im ≥ i∗(jm) in order to convert Γ
m(jm−1)
q+n̄−1 into Γmimq+n̄

and (4.17c), which is applicable by the assumption that L > Ncut,x. Summarizing the bounds

(12.26)–(12.28), since n ≤ Ncut,x and Nind,t ≤ Nfin, we arrive at

1supp (ψjm,q+n̄−1ψm,im,jm,q+n̄)

∣∣DBh2m,jm,q+n̄
∣∣ ≲ (λq+n̄Γq+n̄)

BΓ
2(m+1)(im+1−i∗(jm))
q+n̄

whenever B ≤ Nfin. Thus, the assumption in [7, A.25] holds with Ch = Γ
2(m+1)(im+1−i∗(jm))
q+n̄ ,

λ = λ̃ = λq+n̄Γq+n̄, N∗ = ∞, N = Nfin, M = 0. Note that with these choices of parameters,

we have ChΓ
−2
ψ Γ−2 = 1. We may thus apply [7, Lemma A.5] and conclude that

1supp (ψjm,q+n̄−1)

∣∣DNψm,im,jm,q+n̄
∣∣

ψ
1−N/Nfin

m,im,jm,q+n̄

≲ (λq+n̄Γq+n̄)
N

for all N ≤ Nfin, proving (12.24a) in the first case.

Recalling the inequality (12.25), the second case is when ψ = γm,q and

h2m,jm,q+n̄Γ
−2(im−i∗(jm))(m+1)
q+n̄ ≤ 1

4
Γ
2(m+1)
q+n̄ . (12.29)

However, since γm,q is uniformly equal to 1 when the left hand side of the above display

takes values in
[
1, 1

4
Γ
2(m+1)
q

]
from item (2) in Lemma 8.3.1, (12.24a) is trivially satisfied in

this range of values of the left-hand side. Thus the analysis of the second case reduces to
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analyzing the subcase when

h2m,jm,q+n̄Γ
−2(im−i∗(jm))(m+1)
q+n̄ ≤ 1 . (12.30)

As in the first case, we aim to apply [7, Lemma A.5] with h = h2m,jm,q, but now with

Γψ = 1 and Γ = Γ
(m+1)(im−i∗(jm))
q+n̄ . From (8.17), the assumption in [7, (A.24)] holds. Towards

estimating derivatives of h, for the terms with L ∈ {n + B′, n + B − B′} ≤ Ncut,x, (12.30)

gives immediately that

Γ
−i∗(jm)
q+n̄ (τ−1

q+n̄−1Γ
i∗(jm)+2
q+n̄ )−m(λq+n̄Γq+n̄)

−Lδ
−1/2
q+n̄ r

1/3
q

∥∥DLDm
t,q+n̄−1ŵq+n̄

∥∥
L∞(suppψm,im,jm,q+n̄)

≤ Γ
(m+1)(im−i∗(jm))
q+n̄ . (12.31)

Conversely, when Ncut,x > L, we may argue as in the estimates which gave (12.28), except

we achieve the slightly improved bound of Γ
(m+1)(im−i∗(jm))
q+n̄ as above. We then arrive at

1supp (ψjm,q+n̄−1ψm,im,jm,q+n̄)

∣∣DBh2m,jm,q+n̄
∣∣ ≲ Γ

2(m+1)(im−i∗(jm))
q+n̄ (λq+n̄Γq+n̄)

B

whenever B ≤ Nfin. Thus, the assumption in [7, (A.25)] now holds with the same choices

as before, except now Ch = Γ
2(m+1)(im−i∗(jm))
q+n̄ , λ = λ̃ = λq+n̄Γq+n̄. Note that with these new

choices of parameters, we still have ChΓ−2
ψ Γ−2 = 1. We may thus apply [7, Lemma A.5] and

conclude that

1supp (ψjm,q+n̄−1)

∣∣DNψm,im,jm,q+n̄
∣∣

ψ
1−N/Nfin

m,im,jm,q+n̄

≲ (λq+n̄Γq+n̄)
N

for all N ≤ Nfin, proving (12.24a) in the second case.

Step 2: differentiating ψm,im,q. From the definition (12.9) and the bound (12.24a), we
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next estimate derivatives of the mth velocity cutoff function ψm,im,q and claim that

|DNψm,im,q+n̄|
ψ

1−N/Nfin

m,im,q+n̄

≲ (λq+n̄Γq+n̄)
N (12.32)

for all im ≥ 0 and all N ≤ Nfin. We prove (12.32) by induction on N . When N = 0 the

bound trivially holds, which gives the induction base. For the induction step, assume that

(12.32) holds for all N ′ ≤ N − 1. By the Leibniz rule from Lemma A.2.1 with p = 6, we

obtain

DN(ψ6
m,im,q+n̄) = 6ψ5

m,im,q+n̄D
Nψm,im,q+n̄ +

∑
{
α :

∑6
i=1 αi=N ,

αi<N ∀ i

}
(

N

α1, . . . , α6

) 6∏
i=1

Dαiψm,im,q+n̄

(12.33)

and thus

DNψm,im,q+n̄

ψ
1−N/Nfin

m,im,q+n̄

=
DN(ψ6

m,im,q+n̄)

6ψ
6−N/Nfin

m,im,q+n̄

− 1

6

∑
{
α :

∑p
i=1 αi=N ,

αi<N ∀ i

}
(

N

α1, . . . , α6

) 6∏
i=1

Dαiψm,im,q+n̄

ψ
1−αi/Nfin

m,im,q+n̄

.

Since αi ≤ N − 1, by the induction assumption (12.32) we obtain

∣∣DNψm,im,q+n̄
∣∣

ψ
1−N/Nfin

m,im,q+n̄

≲
|DN(ψ6

m,im,q+n̄)|
ψ

6−N/Nfin

m,im,q+n̄

+ (λq+n̄Γq+n̄)
N . (12.34)

Thus establishing (12.32) for the Nth derivative reduces to bounding the first term on the
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right side of the above. For this purpose we recall (12.9) and (A.21a) and compute

∣∣DN(ψ6
m,im,q+n̄)

∣∣
ψ

6−N/Nfin

m,im,q+n̄

=
1

ψ
6−N/Nfin

m,im,q+n̄

∑
{jm : i∗(jm)≤im}

N∑
K=0

(
N

K

)
DK(ψ6

jm,q+n̄−1)D
N−K(ψ6

m,im,jm,q+n̄)

=
ψ

6−K/Nfin

jm,q+n̄−1ψ
6−(N−K)/Nfin

m,im,jm,q+n̄

ψ
6−N/Nfin

m,im,q+n̄

∑
{jm : i∗(jm)≤im}

N∑
K=0

(
N

K

)

×
∑

α:
∑6

i=1 αi=K

(
K

α1, . . . , α6

) 6∏
i=1

Dαiψjm,q+n̄−1

ψ
1−αi/Nfin

jm,q+n̄−1

×
∑

β:
∑6

i=1 βi=N−K

(
N −K

β1, . . . , β6

) 6∏
i=1

Dβiψm,im,jm,q+n̄

ψ
1−βi/Nfin

m,im,jm,q+n̄

.

Since K,N −K ≤ N , and ψjm,q+n̄−1, ψm,im,jm,q+n̄ ≤ 1, we have by (12.9) that

ψ
6−K/Nfin

jm,q+n̄−1ψ
6−(N−K)/Nfin

m,im,jm,q+n̄

ψ
6−N/Nfin

m,im,q+n̄

≤
ψ

6−N/Nfin

jm,q+n̄−1ψ
6−N/Nfin

m,im,jm,q+n̄

ψ
6−N/Nfin

m,im,q+n̄

≤ 1 .

Then the estimate (12.24a) and the inductive assumption (5.11) conclude the proof of (12.32).

In particular, note that this bound is independent of the value of im.

Step 3: proof of (12.24b) In order to conclude the proof of the Lemma, we must argue that

(12.32) implies (12.24b). Recalling (12.11), we have that ψ6
i,q+n̄ is given as a sum of products

of ψ6
m,im,q+n̄, for which suitable derivative bounds are available due to (12.32). Thus, the

proof of (12.24b) is again done by induction on N , mutatis mutandi to the proof of (12.32).

Indeed, we note that ψ6
m,im,q+n̄ was also given as a sum of squares of cutoff functions for

which derivative bounds were available. The proof of the induction step is thus again based

on the application of the Leibniz rule for ψ6
i,q+n̄; in order to avoid redundancy we omit these

details.
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12.4 Maximal index appearing in the cutoff

Lemma 12.4.1 (Maximal i index in the definition of ψi,q+n̄). There exists imax =

imax(q + n̄) ≥ 0, determined by (12.38) below, such that if λ0 is sufficiently large, then

ψi,q+n̄ ≡ 0 for all i > imax , (12.35a)

Γimax
q+n̄ ≤ Γ

C∞/2+18
q δ

−1/2
q+n̄ r

−2/3
q , (12.35b)

imax(q) ≤
C∞ + 12

(b− 1)εΓ
. (12.35c)

Proof of Lemma 12.4.1. Assume i ≥ 0 is such that supp (ψi,q+n̄) ̸= ∅. We will prove that

Γiq+n̄ ≤ Γ
C∞/2+18
q δ

−1/2
q+n̄ r

−2/3
q . (12.36)

From (12.11) it follows that for any (x, t) ∈ supp (ψi,q+n̄), there must exist at least one

i⃗ = (i0, . . . , iNcut,t) such that max
0≤m≤Ncut,t

im = i and ψm,im,q+n̄(x, t) ̸= 0 for all 0 ≤ m ≤ Ncut,t.

Therefore, in light of (12.9), for each suchm there exists a maximal jm such that i∗(jm) ≤ im,

with (x, t) ∈ supp (ψjm,q+n̄−1) ∩ supp (ψm,im,jm,q+n̄). In particular, this holds for any of

the indices m such that im = i. For the remainder of the proof, we fix such an index

0 ≤ m ≤ Ncut,t.

If we have i = im = i∗(jm) = i∗(jm, q), then using that (x, t) ∈ supp (ψjm,q+n̄−1) and the

inductive assumption (5.10), we have that jm ≤ imax(q + n̄− 1). Now using (5.10), (4.10j),

and the inequalities Γi−1
q+n̄ < Γjmq+n̄−1 ≤ Γ

imax(q+n̄−1)
q+n̄−1 , we deduce that

Γiq+n̄ ≤ Γq+n̄Γ
imax(q+n̄−1)
q+n̄−1 ≤ Γq+n̄Γ

C∞/2+18
q−1 δ

−1/2
q+n̄−1r

−2/3
q−1 ≤ Γ

C∞/2+18
q δ

−1/2
q+n̄ r

−2/3
q ,

Thus, in this case (12.36) holds.

On the other hand, if i = im ≥ i∗(jm) + 1, then from (12.20) we have that

|hm,jm,q+n̄(x, t)| ≥ (1/2)Γ
(m+1)(im−i∗(jm))
q+n̄ .
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Now from the pigeonhole principle, there exists 0 ≤ n ≤ Ncut,x such that

|DnDm
t,q+n̄−1ŵq+n̄(x, t)| ≥

1

2Ncut,x

Γ
(m+1)(im−i∗(jm))
q+n̄ Γ

i∗(jm)
q+n̄ δ

1/2
q+n̄r

−1/3
q (λq+n̄Γq+n̄)

n(τ−1
q+n̄−1Γ

i∗(jm)+2
q+n̄ )m

≥ 1

2Ncut,x

Γimq+n̄δ
1/2
q+n̄r

−1/3
q (λq+n̄Γq+n̄)

n(τ−1
q+n̄−1Γ

im+2
q+n̄ )m ,

and we also know that (x, t) ∈ supp (ψjm,q+n̄−1). By (9.83b) and the inequality Ncut,t ≤ Nind,t

from (4.18), we know that

|DnDm
t,q+n̄−1ŵq+n̄(x, t)| ≤ Γ

C∞/2+17
q r−1

q (λq+n̄Γq+n̄−1)
n(τ−1

q+n̄−1Γ
jm−1
q+n̄−1)

m

≤ Γ
C∞/2+17
q r−1

q (λq+n̄Γq+n̄)
n(τ−1

q+n̄−1Γ
im
q+n̄)

m ,

where in the last inequality we used the assumption that im ≥ i∗(jm) and converted the

Γjm−1
q+n̄−1 into Γimq+n̄. The proof is now completed, since the previous two inequalities and

im = i imply that

Γiq+n̄ ≤ 2Ncut,xδ
−1/2
q+n̄ r

−2/3
q Γ

C∞/2+17
q ≤ δ

−1/2
q+n̄ r

−2/3
q Γ

C∞/2+18
q , (12.37)

where in the last inequality we used (4.12) and a large choice of a to ensure that Γ0 ≥ 2Ncut,x.

In view of the above inequality, the value of imax is chosen as

imax(q) = sup{i′ : Γi′q+n̄ ≤ Γ
C∞/2+18
q r−

2/3
q δ

−1/2
q+n̄ } . (12.38)

With this definition, if i > imax(q + n̄), then supp (ψi,q+n̄) = ∅. To show that imax(q + n̄) is

bounded independently of q, simple (and brutal) computations give that

log(Γ
C∞/2+18
q δ

−1/2
q+n̄ r

−2/3
q )

log(Γq+n̄)
≤ C∞ + 12

(b− 1)εΓ
,

verifying that (12.35c) holds.
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12.5 Mixed derivative estimates

We will use the notation Dq+n̄ = ŵq+n̄ · ∇ for the directional derivative in the direction

of ŵq+n̄. With this notation we have Dt,q+n̄ = Dt,q+n̄−1 + Dq+n̄. Next, we recall from [7,

equations (6.54)-(6.55)] that

DK
q+n̄ =

K∑
j=1

fj,KD
j , (12.39)

where

fj,K =
∑

{γ∈NK : |γ|=K−j}

cj,K,γ

K∏
ℓ=1

Dγℓŵq+n̄ . (12.40)

The cj,K,γ’s are explicitly computable coefficients that depend only on K, j, and γ. With the

notation in (12.40) we have the following bounds.

Lemma 12.5.1 (Bounds for DK
q+n̄). For q + n̄ ≥ 1 and 1 ≤ K ≤ 2Nfin, the functions

{fj,K}Kj=1 defined in (12.40) obey the estimate

∥Dafj,K∥L∞(suppψi,q+n̄)
≲ (Γi+1

q+n̄δ
1/2
q+n̄r

−1/3
q )K(λq+n̄Γq+n̄)

a+K−j (12.41)

for any a ≤ 2Nfin −K + j, and any 0 ≤ i ≤ imax(q + n̄).

Proof of Lemma 12.5.1. Note that no material derivative appears in (12.40), and thus to

establish (12.41) we appeal to Corollary 12.2.4 with M = 0 and (9.83b). From the product

rule we obtain that

∥Dafj∥L∞(suppψi,q+n̄)
≲

∑
{γ∈NK : |γ|=K−j}

∑
{α∈Nk : |α|=a}

K∏
ℓ=1

∥∥Dαℓ+γℓŵq+n̄
∥∥
L∞(suppψi,q+n̄)

≲
∑

{γ∈NK : |γ|=K−j}

∑
{α∈Nk : |α|=a}

K∏
ℓ=1

Γi+1
q+n̄δ

1/2
q+n̄r

−1/3
q (λq+n̄Γq+n̄)

αℓ+γℓ

≲ (Γi+1
q+n̄δ

1/2
q+n̄r

−1/3
q )K(λq+n̄Γq+n̄)

a+K−j
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since |γ| = K − j.

Lemma 12.5.2 (Mixed derivatives for ŵq+n̄). For q + n̄ ≥ 1 and 0 ≤ i ≤ imax, we have

that

∥∥DNDK
q+n̄D

M
t,q+n̄−1ŵq+n̄

∥∥
L∞(suppψi,q+n̄)

≲ (Γi+1
q+n̄δ

1/2
q+n̄r

−1/3
q )K+1(λq+n̄Γq+n̄)

N+KM
(
M,Nind,t,Γ

i+3
q+n̄τ

−1
q+n̄−1,T

−1
q+n̄−1Γq+n̄−1

)
≲ (Γi+1

q+n̄δ
1/2
q+n̄r

−1/3
q )(λq+n̄Γq+n̄)

N(Γi−5
q+n̄τ

−1
q+n̄)

KM
(
M,Nind,t,Γ

i+3
q+n̄τ

−1
q+n̄−1,T

−1
q+n̄−1Γq+n̄−1

)
holds for 0 ≤ K +N +M ≤ 2Nfin.

Proof of Lemma 12.5.2. The second estimate in the Lemma follows from the parameter in-

equality (4.10b). In order to prove the first estimate, we let 0 ≤ a ≤ N and 1 ≤ j ≤ K.

From estimate (12.23), we obtain that

∥∥DN−a+jDM
t,q+n̄−1ŵq+n̄

∥∥
L∞(suppψi,q+n̄)

≲ Γi+1
q+n̄δ

1/2
q+n̄r

−1/3
q (λq+n̄Γq+n̄)

N−a+j

×M
(
M,Nind,t,Γ

i+3
q+n̄τ

−1
q+n̄−1,T

−1
q+n̄−1Γq+n̄−1

)
for N − a+ j +M ≤ Nfin, which may be combined with (12.39)–(12.41) to obtain that

∥∥DNDK
q+n̄D

M
t,q+n̄−1ŵq+n̄

∥∥
L∞(suppψi,q+n̄)

≲
N∑
a=0

K∑
j=1

∥Dafj,K∥L∞(suppψi,q+n̄)

∥∥DN−a+jDM
t,q+n̄−1ŵq+n̄

∥∥
L∞(suppψi,q+n̄)

≲ (Γi+1
q+n̄δ

1/2
q+n̄r

−1/3
q )K+1(λq+n̄Γq+n̄)

N+KM
(
M,Nind,t,Γ

i+3
q+n̄τ

−1
q+n̄−1,T

−1
q+n̄−1Γq+n̄−1

)
holds for N +M +K ≤ 2Nfin, concluding the proof of the lemma.

Lemma 12.5.3 (More mixed derivatives for ŵq+n̄ and derivatives for ûq+n̄). For
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q + n̄ ≥ 1, k ≥ 1, α, β ∈ Nk with |α| = K, |β| =M , and K +M ≤ 3Nfin/2 + 1, we have

∥∥∥∥∥(
k∏
i=1

DαiDβi
t,q+n̄−1

)
ŵq+n̄

∥∥∥∥∥
L∞(suppψi,q+n̄)

≲ Γi+1
q+n̄δ

1/2
q+n̄r

−1/3
q (λq+n̄Γq+n̄)

KM
(
M,Nind,t,Γ

i+3
q+n̄τ

−1
q+n̄−1,Γq+n̄−1T

−1
q+n̄−1

)
. (12.42)

Next, we have that

∥∥∥∥∥DN
( k∏
i=1

Dαi
q+n̄D

βi
t,q+n̄−1

)
ŵq+n̄

∥∥∥∥∥
L∞(suppψi,q+n̄)

≲ (Γi+1
q+n̄δ

1/2
q+n̄r

−1/3
q )K+1(λq+n̄Γq+n̄)

N+KM
(
M,Nind,t,Γ

i+3
q+n̄τ

−1
q+n̄−1,Γq+n̄−1T

−1
q+n̄−1

)
(12.43a)

≲ Γi+1
q+n̄δ

1/2
q+n̄r

−1/3
q (λq+n̄Γq+n̄)

N(Γi−5
q+n̄τ

−1
q+n̄)

KM
(
M,Nind,t,Γ

i+3
q+n̄τ

−1
q+n̄−1,Γq+n̄−1T

−1
q+n̄−1

)
(12.43b)

holds for all 0 ≤ K +M +N ≤ 3Nfin/2 + 1. Lastly, we have the estimate

∥∥∥∥∥(
k∏
i=1

DαiDβi
t,q+n̄

)
Dûq+n̄

∥∥∥∥∥
L∞(suppψi,q+n̄)

≲ τ−1
q+n̄Γ

i−5
q+n̄(λq+n̄Γq+n̄)

KM
(
M,Nind,t,Γ

i−5
q+n̄τ

−1
q+n̄,Γq+n̄−1T

−1
q+n̄−1

)
(12.44)

for all K +M ≤ 3Nfin/2, the estimate

∥∥∥∥∥(
k∏
i=1

DαiDβi
t,q+n̄

)
ûq+n̄

∥∥∥∥∥
L∞(suppψi,q+n̄)

≲ Γi+1
q+n̄δ

1/2
q+n̄r

−1/3
q λ2q+n̄(λq+n̄Γq+n̄)

KM
(
M,Nind,t,Γ

i−5
q+n̄τ

−1
q+n̄,Γq+n̄−1T

−1
q+n̄−1

)
(12.45)

for all K +M ≤ 3Nfin/2 + 1, and the estimate

∥∥DK∂Mt ûq+n̄
∥∥
∞ ≤ λ

1/2
q+n̄(λq+n̄Γq+n̄)

KT−M
q+n̄ (12.46)
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for all K +M ≤ 2Nfin.

Proof of Lemma 12.5.3. We note that (12.43b) follows directly from (12.43a) by appealing

to (4.10b). We first show that (12.42) holds, then establish (12.43a), and lastly, prove the

bounds (12.44)–(12.46).

Proof of (12.42). The statement is proven by induction on k. For k = 1 the estimate holds

for K +M ≤ 2Nfin from Corollary 12.2.4. For the induction step, assume that (12.42) holds

for any k′ ≤ k − 1. We denote

Pk′ =
( k′∏
i=1

DαiDβi
t,q+n̄−1

)
ŵq+n̄ (12.47)

and write

( k∏
i=1

DαiDβi
t,q+n̄−1

)
ŵq+n̄ = (DαkDβk

t,q+n̄−1)(D
αk−1D

βk−1

t,q+n̄−1)Pk−2

= (Dαk+αk−1D
βk+βk−1

t,q+n̄−1 )Pk−2 +Dαk

[
Dβk
t,q+n̄−1, D

αk−1

]
D
βk−1

t,q+n̄−1Pk−2 .

(12.48)

The first term in (12.48) already obeys the correct bound, since we know that (12.42) holds

for k′ = k − 1. In order to treat the second term on the right side of (12.48), we use [7,

Lemma A.12] to write the commutator as

Dαk

[
Dβk
t,q+n̄−1, D

αk−1

]
D
βk−1

t,q+n̄−1Pk−2

= Dαk

∑
1≤|γ|≤βk

βk!

γ!(βk − |γ|)!

(
αk−1∏
ℓ=1

(adDt,q+n̄−1)
γℓ(D)

)
D
βk+βk−1−|γ|
t,q+n̄−1 Pk−2 . (12.49)

From [7, Lemma A.13] and the Leibniz rule we claim that one may expand

αk−1∏
ℓ=1

(adDt,q+n̄−1)
γℓ(D) =

αk−1∑
j=1

gjD
j (12.50)
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for some explicit functions gj which obey the estimate

∥Dagj∥L∞(suppψi,q)
≲ (λq+n̄−1Γq+n̄−1)

a+αk−1−jM
(
|γ|,Nind,t,Γ

i+1
q+n̄τ

−1
q+n̄−1,Γ

−1
q+n̄−1T

−1
q+n̄−1

)
(12.51)

for all a such that a + αk−1 − j + |γ| ≤ 3Nfin/2. The claim (12.51) requires a proof, which

we sketch next. Using the definition (12.9) and the inductive estimate (5.34) at level q′ =

q + n̄− 1 and with k = 1, we have that

∥∥DaDb
t,q+n̄−1Dûq+n̄−1

∥∥
L∞(suppψm,im,q+n̄)

≲
∑

{jm : Γjm
q+n̄−1≤Γim

q+n̄}

∥∥DaDb
t,q+n̄−1Dûq+n̄−1

∥∥
L∞(suppψjm,q+n̄−1)

≲
∑

{jm : Γjm
q+n̄−1≤Γim

q+n̄}

τ−1
q+n̄−1Γ

jm+1
q+n̄−1(λq+n̄−1Γq+n̄−1)

aM
(
b,Nind,t,Γ

jm+1
q+n̄−1τ

−1
q+n̄−1,Γ

−1
q+n̄−1T

−1
q+n̄−1

)
≲ (λq+n̄−1Γq+n̄−1)

aM
(
b+ 1,Nind,t,Γ

im+1
q+n̄ τ

−1
q+n̄−1,Γ

−1
q+n̄−1T

−1
q+n̄−1

)
for any 0 ≤ m ≤ Ncut,t and for all a+ b ≤ 3Nfin/2. Thus, from the definition (12.11) we deduce

that

∥∥DaDb
t,q+n̄−1Dûq+n̄−1

∥∥
L∞(suppψi,q+n̄)

≲ (λq+n̄−1Γq+n̄−1)
aM

(
b+ 1,Nind,t,Γ

im+1
q+n̄ τ

−1
q+n̄−1,Γ

−1
q+n̄−1T

−1
q+n̄−1

)
(12.52)

for all a+ b ≤ 3Nfin/2. When combined with the formula in [7, equation (A.49)], which allows

us to write

(adDt,q+n̄−1)
γ(D) = fγ,q+n̄−1 · ∇ (12.53)

for an explicit function fγ,q+n̄−1 which is defined in terms of ûq+n̄−1, estimate (12.52) and
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the Leibniz rule gives the estimate

∥Dafγ,q+n̄−1∥L∞(suppψi,q)
≲ (λq+n̄−1Γq+n̄−1)

aM
(
γ,Nind,t,Γ

i+1
q+n̄τ

−1
q+n̄−1,Γ

−1
q+n̄−1T

−1
q+n̄−1

)
(12.54)

for all a + γ ≤ 3Nfin/2. In order to conclude the proof of (12.50)–(12.51), we use (12.53) to

write

αk−1∏
ℓ=1

(adDt,q+n̄−1)
γℓ(D) =

αk−1∏
ℓ=1

(fγℓ,q+n̄−1 · ∇) =

αk−1∑
j=1

gjD
j ,

and now the claimed estimate for gj follows from the previously established bound (12.54)

for the fγℓ,q−1’s and their derivatives and the Leibniz rule.

With (12.50)–(12.51) and (12.42) with k′ = k−1 in hand, we return to (12.49) and obtain

∥∥∥Dαk

[
Dβk
t,q+n̄−1, D

αk−1

]
D
βk−1

t,q+n̄−1Pk−2

∥∥∥
L∞(suppψi,q+n̄)

≲
αk−1∑
j=1

∑
1≤|γ|≤βk

∥∥∥Dαk

(
gj D

jD
βk+βk−1−|γ|
t,q+n̄−1 Pk−2

)∥∥∥
L∞(suppψi,q+n̄)

≲
αk−1∑
j=1

∑
1≤|γ|≤βk

αk∑
a′=0

∥∥∥Dαk−a′gj

∥∥∥
L∞(suppψi,q+n̄)

∥∥∥Da′+jD
βk+βk−1−|γ|
t,q+n̄−1 Pk−2

∥∥∥
L∞(suppψi,q+n̄)

≲
αk−1∑
j=1

βk∑
|γ|=1

αk∑
a′=0

Γi+1
q+n̄δ

1/2
q+n̄r

−1/3
q (λq+n̄Γq+n̄)

αk−a′+αk−1−jM
(
|γ|,Nind,t,Γ

i+1
q+n̄τ

−1
q+n̄−1,Γ

−1
q+n̄−1T

−1
q+n̄−1

)
× (λq+n̄Γq+n̄)

a′+j+K−αk−1−αkM
(
M − |γ|,Nind,t,Γ

i+3
q+n̄τ

−1
q+n̄−1,Γq+n̄−1T

−1
q+n̄−1

)
≲ Γi+1

q+n̄δ
1/2
q+n̄r

−1/3
q (λq+n̄Γq+n̄)

KM
(
M,Nind,t,Γ

i+3
q+n̄τ

−1
q+n̄−1,Γq+n̄−1T

−1
q+n̄−1

)
(12.55)

for K +M ≤ 3Nfin/2 + 1. The +1 in the range of derivatives is simply a consequence of the

fact that the summand in the third line of the above display starts with j ≥ 1 and with

|γ| ≥ 1, so that only 3Nfin/2 derivatives may fall on gj, which is the extent of the bounds from

(12.51). This concludes the proof of the inductive step for (12.42).

Proof of (12.43a). This estimate follows from Lemma A.2.2. Indeed, letting v = f = ŵq+n̄,
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B = Dt,q+n̄−1, Ω = suppψi,q+n̄, p = ∞, the previously established bound (12.42) allows

us to verify conditions (A.22)–(A.23) of Lemma A.2.2 with N∗ = 3Nfin/2 + 1, Cv = Cf =

Γi+1
q+n̄δ̂

1/2
q+n̄r

−1/3
q , λv = λf = λ̃v = λ̃f = Γq+n̄λq+n̄, Nx = ∞, µv = µf = Γi+3

q+n̄τ
−1
q+n̄−1, µ̃v = µ̃f =

Γq+n̄−1T
−1
q+n̄−1, and Nt = Nind,t. The bound (12.43a) now is a direct consequence of (A.24).

Proof of (12.44). First we consider the bound (12.44), inductively on k. For the case k = 1

we appeal to estimate (A.26) in Lemma A.2.2 with the operators A = Dq+n̄, B = Dt,q+n̄−1

and the functions v = ŵq+n̄ and f = Dûq+n̄, so that Dn(A + B)mf = DnDm
t,q+n̄Dûq+n̄.

As before, the assumption (A.22) holds due to (12.42) with the same parameter choices.

Verifying condition (A.23) is this time more involved, and follows by rewriting f = Dûq =

Dŵq + Dûq−1. By using (12.42), and the parameter inequality (4.10b), we conveniently

obtain

∥∥∥∥∥(
k∏
i=1

DαiDβi
t,q+n̄−1

)
Dŵq+n̄

∥∥∥∥∥
L∞(suppψi,q+n̄)

≲ Γi−5
q+n̄τ

−1
q+n̄(λq+n̄Γq+n̄)

KM
(
M,Nind,t,Γ

i−5
q+n̄τ

−1
q+n̄,Γq+n̄−1T

−1
q+n̄−1

)
(12.56)

for all |α| + |β| = K + M ≤ 3Nfin/2 (note that the maximal number of derivatives is not

3Nfin/2 + 1 anymore, but instead it is just 3Nfin/2; the reason is that we are estimating Dŵq

and not ŵq). On the other hand, from the inductive assumption (5.34) with q′ = q + n̄− 1

we obtain that

∥∥∥∥∥(
k∏
i=1

DαiDβi
t,q+n̄−1

)
Dûq+n̄−1

∥∥∥∥∥
L∞(suppψj,q+n̄−1)

≲ τ−1
q+n̄−1Γ

j−4
q+n̄−1(λq+n̄−1Γq+n̄−1)

KM
(
M,Nind,t,Γ

j
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1Γq+n̄

)
for K + M ≤ 3Nfin/2. Recalling the definitions (12.9)–(12.11) and the notation (12.12),

we have that (x, t) ∈ supp (ψi,q+n̄) if and only if (x, t) ∈ supp (ψ⃗i,q+n̄), and so for every

m ∈ {0, . . . ,Ncut,t}, there exists jm with Γjmq+n̄−1 ≤ Γimq+n̄ ≤ Γiq+n̄ and (x, t) ∈ supp (ψjm,q+n̄−1).
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Thus, the above stated estimate and (4.10b) imply that

∥∥∥∥∥(
k∏
i=1

DαiDβi
t,q+n̄−1

)
Dûq+n̄−1

∥∥∥∥∥
L∞(suppψi,q+n̄)

≲ τ−1
q+n̄Γ

i−10
q+n̄ (λq+n̄−1Γq+n̄−1)

KM
(
M,Nind,t,Γ

i−10
q+n̄ τ

−1
q+n̄,T

−1
q+n̄−1Γq+n̄

)
(12.57)

whenever K +M ≤ 3Nfin/2. Combining (12.56) and (12.57), we may now verify condition

(A.23) for f = Dûq+n̄, with p = ∞, Ω = supp (ψi,q+n̄), Cf = Γi−5
q+n̄τ

−1
q+n̄, λf = λ̃f = λq+n̄Γq+n̄,

Nx = ∞, µf = Γi−5
q+n̄τ

−1
q+n̄, µ̃f = Γq+n̄−1T

−1
q+n̄−1, Nt = Nind,t, and N∗ = 3Nfin/2. We may thus

appeal to (A.26) and obtain that

∥∥DKDM
t,q+n̄Dûq+n̄

∥∥
L∞(suppψi,q+n̄)

≲ Γi−5
q+n̄τ

−1
q+n̄(λq+n̄Γq+n̄)

KM
(
M,Nind,t,Γ

i−5
q+n̄τ

−1
q+n̄,Γq+n̄−1T

−1
q+n̄−1

)
whenever K +M ≤ 3Nfin/2, concluding the proof of (12.44) for k = 1.

In order to prove (12.44) for a general k, we proceed by induction. Assume the estimate

holds for every k′ ≤ k − 1. Proving (12.44) at level k is done in the same way as we have

established the induction step (in k) for (12.42). We let

P̃k′ =

(
k′∏
i=1

DαiDβi
t,q+n̄

)
Dûq+n̄

and decompose

(
k∏
i=1

DαiDβi
t,q+n̄

)
Dûq+n̄ = (Dαk+αk−1D

βk+βk−1

t,q+n̄ )P̃k−2 +Dαk

[
Dβk
t,q+n̄, D

αk−1

]
D
βk−1

t,q+n̄P̃k−2 .

Note that the first term is directly bounded using the induction assumption at level k − 1.

To bound the commutator term, similarly to (12.49)–(12.51), we obtain that

Dαk

[
Dβk
t,q+n̄, D

αk−1

]
D
βk−1

t,q+n̄P̃k−2 = Dαk

∑
1≤|γ|≤βk

βk!

γ!(βk − |γ|)!

(
αk−1∑
j=1

g̃jD
j

)
D
βk+βk−1−|γ|
t,q+n̄ P̃k−2 ,
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where one may use the previously established bound (12.44) with k = 1 (instead of (12.52))

to estimate ∥Dag̃j∥L∞(suppψi,q+n̄)
The estimate

∥∥∥Dαk

[
Dβk
t,q+n̄, D

αk−1

]
D
βk−1

t,q+n̄P̃k−2

∥∥∥
L∞(suppψi,q+n̄)

≲ τ−1
q+n̄Γ

i−5
q+n̄(λq+n̄Γq+n̄)

KM
(
M,Nind,t,Γ

i−5
q+n̄τ

−1
q+n̄,Γq+n̄−1T

−1
q+n̄−1

)
(12.58)

follows similarly to (12.55), from the estimate for g̃j and the bound (12.44) with k− 1 terms

in the product. This concludes the proof of estimate (12.44).

Proof of (12.45). The proof of this bound is nearly identical to that of (12.44), as is readily

seen for k = 1: we just need to replace Dŵq+n̄ estimates with ŵq+n̄ estimates, and Dûq+n̄−1

bounds with ûq+n̄−1 bounds. For instance, instead of (12.56), we appeal to (12.43b) and

obtain a bound for DKDM
t,q+n̄ŵq+n̄ which is better than (12.56) by a factor of λq+n̄Γq+n̄, and

which holds for K +M ≤ 3Nfin/2 + 1. This estimate is sharper than required by (12.45).

The estimate for DKDM
t,q+n̄ûq+n̄−1 is obtained similarly to (12.57), except that instead of

appealing to the induction assumption (5.34) at level q′ = q + n̄ − 1, we use (5.35a) with

q′ = q + n̄−1. The estimates hold for K+M ≤ 3Nfin/2+1. These arguments establish (12.45)

with k = 1. The case of general k ≥ 2 is treated inductively exactly as before, because the

commutator term is bounded in the same way as (12.58), except that K + 1 is replaced by

K. To avoid redundancy, we omit these details.

Proof of (12.46). The proof of this bound is immediate from (9.83b), the definition of ŵq+n̄

in Lemma 9.5.1, the inductive assumption (5.35b), and the triangle inequality.

12.6 Material derivatives

Remark 12.6.1 (Rewriting ψi,q+n̄). In order to take material derivatives of ψi,q+n̄, we

need to take advantage of certain cancellations. For this purpose, we introduce the summed
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cutoff function

Ψ6
m,i,q+n̄ =

i∑
im=0

ψ6
m,im,q+n̄ (12.59)

for any given 0 ≤ m ≤ Ncut,t and note via Lemma 12.2.1 that

D(Ψ6
m,i,q+n̄) = D(ψ6

m,i,q+n̄)1supp (ψm,i+1,q+n̄) . (12.60)

With the notation (12.59) we return to the definition (12.11) and note that

ψ6
i,q+n̄ =

Ncut,t∑
m=0

ψ6
m,i,q+n̄

m−1∏
m′=0

Ψ6
m′,i,q+n̄

Ncut,t∏
m′′=m+1

(Ψ6
m′′,i,q+n̄ − ψ6

m′′,i,q+n̄)

=

Ncut,t∑
m=0

ψ6
m,i,q+n̄

m−1∏
m′=0

Ψ6
m′,i,q+n̄

Ncut,t∏
m′′=m+1

Ψ6
m′′,i−1,q+n̄ . (12.61)

Inspecting (12.61) and using identity (12.60) and the definitions (12.12), (12.59), we see

that

(x, t) ∈ supp (Dt,q+n̄−1ψ
6
i,q+n̄) =⇒ ∃⃗i ∈ NNcut,t+1

0 and ∃0 ≤ m ≤ Ncut,t

with im ∈ {i− 1, i} and max
0≤m′≤Ncut,t

im′ = i

such that (x, t) ∈ supp (ψ⃗i,q+n̄) ∩ supp (Dt,q+n̄−1ψm,im,q+n̄)

and im′ ≤ im whenever m < m′ ≤ Ncut,t . (12.62)

The generalization of characterization (12.62) to higher order material derivatives DM
t,q+n̄−1

is direct: (x, t) ∈ supp (DM
t,q+n̄−1ψ

6
i,q+n̄) implies that there exists i⃗ ∈ NNcut,t+1

0 with maximal

index equal to i, such that for every 0 ≤ m ≤ Ncut,t for which (x, t) ∈ supp (ψ⃗i,q+n̄) ∩

supp (Dt,q+n̄−1ψm,im,q+n̄), we have im′ ≤ im ∈ {i − 1, i} whenever m < m′. Using this

characterization, we may prove the following.

Lemma 12.6.2 (Mixed derivatives for intermediate velocity cutoff functions). Let
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q + n̄ ≥ 1, 0 ≤ i ≤ imax(q + n̄), and fix i⃗ ∈ NNcut,t+1
0 such that max0≤m≤Ncut,t im = i, as in the

right side of (12.62). Fix 0 ≤ m ≤ Ncut,t such that im ∈ {i − 1, i} and such that im′ ≤ im

for all m ≤ m′ ≤ Ncut,t, again as in the right hand side of (12.62). Lastly, fix jm such that

i∗(jm) ≤ im. For N,K,M, k ≥ 0, α, β ∈ Nk such that |α| = K and |β| =M , we have

1supp (ψ⃗i,q+n̄)
1supp (ψjm,q+n̄−1)

ψ
1−(K+M)/Nfin

m,im,jm,q+n̄

∣∣∣∣∣
(

k∏
l=1

DαlDβl
t,q+n̄−1

)
ψm,im,jm,q+n̄

∣∣∣∣∣
≲ (λq+n̄Γq+n̄)

KM
(
M,Nind,t − Ncut,x,Γ

i+3
q+n̄τ

−1
q+n̄−1,Γq+n̄−1T

−1
q+n̄−1

)
(12.63)

for all K such that 0 ≤ K +M ≤ Nfin. Moreover,

1supp (ψ⃗i,q+n̄)
1supp (ψjm,q+n̄−1)

ψ
1−(N+K+M)/Nfin

m,im,jm,q+n̄

∣∣∣∣∣DN

(
k∏
l=1

Dαl
q+n̄D

βl
t,q+n̄−1

)
ψm,im,jm,q+n̄

∣∣∣∣∣
≲ (λq+n̄Γq+n̄)

N(τ−1
q+n̄Γ

i−5
q+n̄)

KM
(
M,Nind,t − Ncut,x,Γ

i+3
q+n̄τ

−1
q+n̄−1,Γq+n̄−1T

−1
q+n̄−1

)
(12.64)

holds whenever 0 ≤ N +K +M ≤ Nfin.

Proof of Lemma 12.6.2. Note that for M = 0 estimate (12.63) was already established in

(12.24a). The bound (12.64) with M = 0, i.e., an estimate for the DNDK
q+n̄ψm,im,jm,q+n̄,

holds by appealing to the expansion (12.39)–(12.40), the bound (12.41) (which is applicable

since in the context of estimate (12.64) we work on the support of ψ⃗i,q+n̄), to the bound

(12.63) with M = 0, and to (4.10b). The rest of the proof is dedicated to the case M ≥ 1.

The proofs are very similar to the proof of Lemma 12.3.1, but we additionally need to appeal

to bounds and arguments from the proof of Lemma 12.5.3.

Proof of (12.63). We start with the case k = 1 and estimate DKDM
t,q+n̄−1ψm,im,jm,q+n̄ for

K + M ≤ Nfin and M ≥ 1. We note that the operator Dt,q+n̄−1 is a scalar differential

operator, and thus the Faa di Bruno argument which was used to bound (12.24a) may be

repeated. As was done there, we recall the definitions (12.5)–(12.6) and split the analysis in

two cases, according to whether (12.25) or (12.30) holds.
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Let us first consider the case (12.25). Our goal is to apply [7, Lemma A.5] to the

function ψ = γm,q+n̄ or ψ = γ̃m,q+n̄, with Γψ = Γm+1
q+n̄ , Γ = Γ

(m+1)(im−i∗(jm))
q+n̄ , h(x, t) =

h2m,jm,q+n̄(x, t), and Dt = Dt,q+n̄−1. The estimate in [7, (A.24)] again holds by (8.16) and

(8.18), and so it remains to obtain a bound on the derivatives of (hm,jm,q+n̄(x, t))
2 on the set

supp (ψ⃗i,q) ∩ supp (ψjm,q−1ψm,im,jm,q) in order to satisfy [7, (A.25)]. Similarly to (12.26), for

K ′ +M ′ ≤ Nfin the Leibniz rule and definition (12.4) gives

∣∣∣DK′
DM ′

t,q+n̄−1h
2
m,jm,q+n̄

∣∣∣
≲ (λq+n̄Γq+n̄)

K′
(τ−1
q+n̄−1Γ

2
q+n̄)

M ′
Γ
−2(m+1)i∗(jm)
q+n̄

×
K′∑

K′′=0

M ′∑
M ′′=0

Ncut,x∑
n=0

(τ−1
q+n̄−1Γ

2
q+n̄)

−m−M ′′
(λq+n̄Γq+n̄)

−n−K′′
δ
−1/2
q+n̄ r

1/3
q |Dn+K′′

Dm+M ′′

t,q+n̄−1ŵq+n̄|

× (τ−1
q+n̄−1Γ

2
q+n̄)

−m−M ′+M ′′
(λq+n̄Γq+n̄)

−n−K′+K′′
δ
−1/2
q+n̄ r

1/3
q |Dn+K′−K′′

Dm+M ′−M ′′

t,q+n̄−1 ŵq+n̄| .

(12.65)

By the characterization (12.62), for every (x, t) in the support described on the left side of

(12.63) we have that for every m ≤ R ≤ Ncut,t, there exists iR ≤ im and jR with i∗(jR) ≤ iR,

such that (x, t) ∈ suppψjR,q+n̄−1ψR,iR,jR,q+n̄. As a consequence, for the terms in the sum

(12.65) with L ∈ {n+K ′′, n+K ′−K ′′} ≤ Ncut,x and R ∈ {m+M ′′,m+M ′−M ′′} ≤ Ncut,t,

we may appeal to estimate (12.19) which gives a bound on hR,jR,q+n̄, and thus obtain

(τ−1
q+n̄−1Γ

2
q+n̄)

−R(λq+n̄Γq+n̄)
−Lδ

−1/2
q+n̄ r

1/3
q

∥∥DLDR
t,q−1ŵq+n̄

∥∥
L∞(suppψR,iR,jR,q+n̄)

≤ Γ
(R+1)i∗(jR)
q+n̄ Γ

(R+1)(iR+1−i∗(jR))
q+n̄

≤ Γ
(R+1)(im+1)
q+n̄ .
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On the other hand, if L > Ncut,x, or if R > Ncut,t, then by (9.83b), we have that

(τ−1
q+n̄−1Γ

2
q+n̄)

−R(λq+n̄Γq+n̄)
−Lδ

−1/2
q+n̄ r

1/3
q

∥∥DLDR
t,q+n̄−1ŵq+n̄

∥∥
L∞(suppψjm,q+n̄−1)

≤ Γ
C∞/2+16
q r−1

q Γ−L
q+n̄Γ

L
q+n̄−1Γ

−2R
q+n̄M

(
R,Nind,t,Γ

jm−1
q+n̄−1, τq+n̄−1T

−1
q+n̄−1

)
≤ M

(
R,Nind,t,Γ

im−1
q+n̄ , τq+n̄−1T

−1
q+n̄−1

)
. (12.66)

since Ncut,x and Ncut,t were taken sufficiently large to obey (4.17) and im ≥ i∗(jm). Combining

(12.65)–(12.66), we have that

1supp (ψ⃗i,q+n̄)
1supp (ψjm,q+n̄−1)

∣∣∣DK′
DM ′

t,q+n̄−1h
2
m,jm,q+n̄

∣∣∣
≲ Γ

2(m+1)(im−i∗(jm)+1)
q+n̄ (λq+n̄Γq+n̄)

K′M
(
M ′,Nind,t − Ncut,t, τ

−1
q+n̄−1Γ

i+3
q+n̄,T

−1
q+n̄−1

)
(12.67)

for all K ′ +M ′ ≤ Nfin. The upshot of (12.67) is that the condition in [7, (A.25)] is now

verified, with Ch = Γ
2(m+1)(im−i∗(jm)+1)
q+n̄ , and λ = λ̃ = Γq+n̄λq+n̄, µ = τ−1

q+n̄−1Γ
i+3
q+n̄, µ̃ = T−1

q+n̄−1,

and Nt = Nind,t − Ncut,t. We obtain from [7, (A.26)] and the fact that (ΓψΓ)
−2Ch = 1 that

(12.63) holds when k = 1 for those (x, t) such that hm,jm,q+n̄(x, t) satisfies (12.25). The

case when hm,jm,q+n̄(x, t) satisfies the bound (12.30) is nearly identical, as was the case in

the proof of Lemma 12.3.1. The only changes are that now Γψ = 1 (according to (8.17)),

and that the constant Ch which we read from the right side of (12.67) is now improved to

Γ
2(m+1)(im−i∗(jm))
q+n̄ . These two changes offset each other, resulting in the same exact bound.

Thus, we have shown that (12.63) holds when k = 1.

The general case k ≥ 1 in (12.63) is obtained via induction on k, in precisely the same

fashion as the proof of estimate (12.42) in Lemma 12.5.3. At the heart of the matter lies a

commutator bound similar to (12.55), which is proven in precisely the same way by appealing

to the fact that we work on supp (ψ⃗i,q+n̄) ⊂ supp (ψi,q+n̄), and thus bound (12.51) is available;

in turn, this bound provides sharper space and material estimates than required in (12.63),

completing the proof. In order to avoid redundancy we omit further details.
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Proof of (12.64). This estimate follows from Lemma A.2.2 in a manner identical to the

proof of [7, (6.77)], and we omit the details.

Lemma 12.6.3 (Mixed spatial and material derivatives for velocity cutoffs). Let

q + n̄ ≥ 1, 0 ≤ i ≤ imax(q + n̄), N,K,M, k ≥ 0, and let α, β ∈ Nk be such that |α| = K and

|β| =M . Then we have

1

ψ
1−(K+M)/Nfin

i,q+n̄

∣∣∣∣∣
(

k∏
l=1

DαlDβl
t,q+n̄−1

)
ψi,q+n̄

∣∣∣∣∣
≲ (λq+n̄Γq+n̄)

KM
(
M,Nind,t − Ncut,t,Γ

i+3
q+n̄−1τ

−1
q+n̄−1,Γq+n̄+1T

−1
q+n̄−1

)
(12.68)

for K +M ≤ Nfin, and

1

ψ
1−(N+K+M)/Nfin

i,q+n̄

∣∣∣∣∣DN

(
k∏
l=1

Dαl
q+n̄D

βl
t,q+n̄−1

)
ψi,q+n̄

∣∣∣∣∣
≲ (λq+n̄Γq+n̄)

N(Γi−5
q+n̄τ

−1
q+n̄)

KM
(
M,Nind,t − Ncut,t,Γ

i+3
q+n̄−1τ

−1
q+n̄−1,Γq+n̄+1T

−1
q+n̄−1

)
(12.69)

holds for N +K +M ≤ Nfin.

Proof of Lemma 12.6.3. Note that forM = 0 estimate (12.68) holds by (12.24b). The bound

(12.69) holds for M = 0, due to the expansion (12.39)–(12.40), the bound (12.41) on the

support of ψi,q+n̄, the bound (12.68) with M = 0, and to the parameter inequality (4.10b).

The rest of the proof is dedicated to the cases M ≥ 1 for both bounds.

The argument is very similar to the proof of Lemma 12.3.1 and so we only emphasize the

main differences. We start with the proof of (12.68). We claim that in a the same way that

(12.24a) was shown to imply (12.32), one may show that estimate (12.63) implies that for

any i⃗ and 0 ≤ m ≤ Ncut,t as on the right side of (12.62) (in particular, as in Lemma 12.5.3),
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we have that

1supp (ψ⃗i,q+n̄)

ψ
1−(K+M)/Nfin

m,im,q+n̄

∣∣∣∣∣
(

k∏
l=1

DαlDβl
t,q+n̄−1

)
ψm,im,q+n̄

∣∣∣∣∣
≲ (λq+n̄Γq+n̄)

KM
(
M,Nind,t − Ncut,x,Γ

i+3
q+n̄−1τ

−1
q+n̄−1,Γq+n̄T

−1
q+n̄−1

)
. (12.70)

The proof of the above estimate is done by induction on k. For k = 1, the first step in

establishing (12.70) is to use the Leibniz rule and induction on the number of material

derivatives to reduce the problem to an estimate for ψ
−6+(K+M)/Nfin

m,im,q+n̄
DKDM

t,q+n̄−1(ψ
6
m,im,q+n̄);

this is achieved in precisely the same way that (12.34) was proven. The derivatives of

ψ6
m,im,q+n̄ are now bounded via the Leibniz rule and the definition (12.9). Indeed, when

DK′
DM ′
t,q+n̄−1 derivatives fall on ψ6

m,im,jm,q+n̄, the required bound is obtained from (12.63),

which gives the same upper bound as the one required by (12.70). On the other hand, if

DK−K′
DM−M ′

t,q+n̄−1 derivatives fall on ψ
6
jm,q+n̄−1, the required estimate is provided by (5.37) with

q′ = q + n̄ − 1 and i replaced by jm; the resulting estimates are strictly better than what

is required by (12.70). This shows that estimate (12.70) holds for k = 1. We then proceed

inductively in k ≥ 1, in the same fashion as the proof of estimate (12.42) in Lemma 12.5.3;

the corresponding commutator bound is applicable because we work on supp (ψm,im,q+n̄) ∩

supp (ψi,q+n̄). In order to avoid redundancy we omit these details, and conclude the proof of

(12.70).

As in the proof of Lemma 12.3.1, we are now able to show that (12.68) is a consequence of

(12.70). As before, by induction on the number of material derivatives and the Leibniz rule

we reduce the problem to an estimate for ψ
−6+(K+M)/Nfin

i,q+n̄

∏k
l=1D

αlDβl
t,q+n̄−1(ψ

6
i,q+n̄); see the

proof of (12.34) for details. In order to estimate derivatives of ψ6
i,q+n̄, we use identities (12.60)
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and (12.61), which imply upon applying a differential operator, say Dt,q+n̄−1, that

Dt,q+n̄−1(ψ
6
i,q+n̄)

= Dt,q+n̄−1

(
Ncut,t∑
m=0

m−1∏
m′=0

Ψ6
m′,i,q+n̄ · ψ6

m,i,q+n̄ ·
Ncut,t∏

m′′=m+1

Ψ6
m′′,i−1,q+n̄

)

=

Ncut,t∑
m=0

m−1∑
m̄′=0

Dt,q+n̄−1(ψ
6
m̄′,i,q+n̄)

∏
0≤m′≤m−1
m′ ̸=m̄′

Ψ6
m′,i,q+n̄ · ψ6

m,i,q+n̄ ·
Ncut,t∏

m′′=m+1

Ψ6
m′′,i−1,q+n̄

+

Ncut,t∑
m=0

Ncut,t∑
m̄′′=m+1

m−1∏
m′=0

Ψ6
m′,i,q+n̄ · ψ6

m,i,q+n̄ ·Dt,q+n̄−1(Ψ
6
m̄′′,i−1,q+n̄)

∏
m+1≤m′′≤Ncut,t

m′′ ̸=m̄′′

Ψ6
m′′,i−1,q+n̄

+

Ncut,t∑
m=0

m−1∏
m′=0

Ψ6
m′,i,q+n̄ ·Dt,q+n̄−1(ψ

6
m,i,q+n̄) ·

Ncut,t∏
m′′=m+1

Ψ6
m′′,i−1,q+n̄ . (12.71)

Higher order material derivatives of ψ6
i,q+n̄, and mixtures of space and material derivatives

are obtained similarly, by an application of the Leibniz rule. Equality (12.71) in particular

justifies why we have only proven (12.70) for i⃗ and 0 ≤ m ≤ Ncut,t as on the right side of

(12.62)! With (12.70) and (12.71) in hand, we now repeat the argument from the proof of

Lemma 12.3.1 (see the two displays below (12.34)) and conclude that (12.68) holds.

In order to conclude the proof of the Lemma, it remains to establish (12.69). This bound

follows now directly from (12.68) and an application of Lemma A.2.2 (to be more precise,

we need to use the proof of this Lemma), in precisely the same way that (12.63) was shown

earlier to imply (12.64). As there are no changes to be made to this argument, we omit these

details.

12.7 Lr size of the velocity cutoffs

The purpose of this section is to show that the inductive estimate (5.13) holds with q′ = q + n̄.

Lemma 12.7.1 (Support estimate). For all 0 ≤ i ≤ imax(q + n̄) and 1 ≤ r ≤ ∞, we have
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that

∥ψi,q+n̄∥r ≲ Γ
−3i+Cb

r
q+n̄ (12.72)

where Cb is defined in (5.13) and thus depends only on b.

Proof of Lemma 12.7.1. First, note that the cases 1 < r ≤ ∞ follow from the case r = 1

and interpolation. Next, observe that if i ≤ 1/3Cb, then (12.72) trivially holds because

0 ≤ ψi,q+n̄ ≤ 1 for all q + n̄ ≥ 1 once a is chosen to be sufficiently large. Thus, we only

consider i such that 1/3Cb < i ≤ imax(q + n̄).

First, we note that Lemma 12.2.1 implies that the functions Ψm,i′,q+n̄ defined in (12.59)

satisfy 0 ≤ Ψ2
m,i′,q ≤ 1, and thus (12.61) implies that

∥ψi,q+n̄∥1 ≤
Ncut,t∑
m=0

∥ψm,i,q+n̄∥1 . (12.73)

Next, we let j∗(i) = j∗(i, q + n̄) be themaximal index of jm appearing in (12.9). In particular,

recalling also (12.3), we have that

Γi−1
q+n̄ < Γ

j∗(i)
q+n̄−1 ≤ Γiq+n̄ < Γ

j∗(i)+1
q+n̄−1 . (12.74)

Using (12.9), in which we simply write j instead of jm, the fact that 0 ≤ ψ2
j,q+n̄−1, ψ

2
m,i,j,q+n̄ ≤

1, and the inductive assumption (5.13) at level q + n̄− 1, we may deduce that

∥ψm,i,q+n̄∥1 ≤
∥∥ψj∗(i),q+n̄−1

∥∥
1
+
∥∥ψj∗(i)−1,q+n̄−1

∥∥
1
+

j∗(i)−2∑
j=0

∥ψj,q+n̄−1ψm,i,j,q+n̄∥1

≤ Γ
−3j∗(i)+Cb

q+n̄−1 + Γ
−3j∗(i)+3+Cb

q+n̄−1 +

j∗(i)−2∑
j=0

|supp (ψj,q+n̄−1ψm,i,j,q+n̄)| . (12.75)

The second term on the right side of (12.75) is estimated using the last inequality in (12.74)
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as

Γ
−3j∗(i)+3+Cb

q+n̄−1 ≤ Γ−3i
q+n̄Γ

6+Cb
q+n̄−1 ≤ Γ−3i+Cb−1

q+n̄ Γ
6+Cb−b(Cb−1)
q+n̄−1 = Γ−3i+Cb−1

q+n̄ (12.76)

where in the last equality we have used the definition of Cb in (5.13). Clearly, the first term

on the right side of (12.75) is also bounded by the right side of (12.76). We are left to

estimate the terms appearing in the sum on the right side of (12.75). The key fact is that

for any j ≤ j∗(i) − 2 we have that i ≥ i∗(j) + 1; this can be seen to hold because b < 2.

Recalling (12.20), for j ≤ j∗(i)− 2 we have that

supp (ψj,q+n̄−1ψm,i,j,q+n̄) ⊆
{
(x, t) ∈ supp (ψj,q+n̄−1) : h

3
m,j,q+n̄ ≥ 1

8
Γ
3(m+1)(i−i∗(j))
q+n̄

}
⊆
{
(x, t) : ψ6

j±,q+n̄−1h
3
m,j,q+n̄ ≥ 1

8
Γ
3(m+1)(i−i∗(j))
q+n̄

}
. (12.77)

In the second inclusion of (12.77) we have appealed to (5.8) at level q + n̄−1. By Chebyshev’s

inequality and the definition of hm,j,q+n̄ in (12.4) we deduce that

|supp (ψj,q+n̄−1ψm,i,j,q+n̄)| ≤ (2Ncut,x)
3Γ

−3(m+1)(i−i∗(j))
q+n̄

Ncut,x∑
n=0

Γ
−3i∗(j)
q+n̄ δ

−3/2
q+n̄ rq(λq+n̄Γq+n̄)

−3n

×
(
τ−1
q+n̄−1Γ

i∗(j)+2
q+n̄

)−3m ∥∥ψj±,q+n̄−1D
nDm

t,q+n̄−1ŵq+n̄
∥∥3
3
.

Since in the above display we have that m ≤ Ncut,t ≤ Nind,t from (4.18), we may combine

the above estimate with (9.83a) to deduce that

|supp (ψj,q+n̄−1ψm,i,j,q+n̄)| ≤ 8N4
cut,xΓ

−3(m+1)(i−i∗(j))
q+n̄ Γ

−3i∗(j)
q+n̄ Γ60

q

(
Γj−1
q+n̄−1Γ

−i∗(j)−2
q+n̄

)3m
≤ 8N4

cut,xΓ
60
q Γ−3i

q+n̄

≤ Γ−3i+Cb−1
q+n̄ . (12.78)

We have used here that Γjq+n̄−1 ≤ Γ
i∗(j)
q+n̄ , that m ≥ 0, and that Cb ≥ 62 since b ≤ 25/24 from
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(ii).

Combining (12.73), (12.75), (12.76), and (12.78) we deduce that

∥ψi,q+n̄∥1 ≤ Ncut,t j∗(i) Γ
−3i+Cb−1
q+1 .

In order to conclude the proof of the Lemma, we use that Ncut,t is a constant independent

of q, and that by (12.75) and (5.9) we have

j∗(i) ≤ i
log Γq+n̄
log Γq+n̄−1

≤ imax(q + n̄− 1)b ≤ C∞ + 12

(b− 1)εΓ
b .

Thus j∗(i) is also bounded from above by a constant independent of q, and upon taking a

sufficiently large we conclude the proof.

12.8 Verifying Eqn. (5.14)

The following lemma verifies the inductive assumption (5.14) at level q′ = q + n̄.

Lemma 12.8.1 (Overlapping and timescales). Let q′′ ∈ {q+1, . . . , q+ n̄}. Assume that

ψi,q+n̄ψi′′,q′′ ̸≡ 0. Then it must be the case that τq+n̄Γ
−i
q+n̄ ≤ τq′′Γ

−i′′−25
q′′ .

Proof of Lemma 12.8.1. We split the proof into two steps. In the first step, we prove the

claim for q′′ = q+ n̄−1, while in the second step we prove the claim for the remaining cases.

Step 1: We must prove that if ψi,q+n̄ψi′′,q+n̄−1 ̸≡ 0, then τq+n̄Γ
−i
q+n̄ ≤ τq+n̄−1Γ

−i′′−25
q+n̄−1 . By

(12.11), if ψi,q+n̄(t, x) ̸= 0, then there exists i⃗ = (i0, . . . , iNcut,t) such that maxm im = i, and

ψm,im,q+n̄ ̸= 0 for all 0 ≤ i ≤ Ncut,t. By (12.9) and Definition (12.1.1), for each im there

exists a corresponding jm such that ψjm,q+n̄−1(t, x) ̸= 0 and Γimq+n̄ ≥ Γjmq+n̄−1. From (5.8) and

(4.10b), it then follows that if ψm,im,q+n̄ψj′,q+n̄−1 ̸= 0, then

τq+n̄Γ
−im
q+n̄ ≤ τq+n̄−1Γ

−j′−40
q+n̄−1 .
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Then (12.11) gives that if ψi,q+n̄ψi′′,q+n̄−1 ̸≡ 0,

τq+n̄Γ
−i
q+n̄ ≤ τq+n̄−1Γ

−i′′−30
q+n̄−1 .

Step 2: Suppose that q′′ ≤ q + n̄− 2 and that ψi,q+n̄(t, x)ψi′′,q′′(t, x) ̸= 0. Then from (5.8),

there exists j such that ψi,q+n̄(t, x)ψj,q+n̄−1(t, x)ψi′′,q′′(t, x) ̸= 0. Applying the result of Step

1 in combination with the inductive assumption (5.14) concludes the proof.
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Chapter 13

Pressure increment

13.1 New pressure increment and new anticipated pres-

sure

We collect the pressure increments generated by new errors and new velocity increment

potentials. Recall that Lemma 9.4.4 defined a pressure increment (συ) associated to velocity

increment potentials, Lemmas 10.2.4, 10.2.8, and 10.2.12 defined pressure increments (σSm
O
,

σSTN
, and σSm

C
, respectively) associated to various stress errors, and Lemmas 11.2.1, 11.2.3,

11.2.4, 11.2.5, and 11.2.10 and Remark 11.2.6 defined pressure increments (σϕmO , σϕ
m
TN

, and

σ
ϕ
M
C
) associated to various current errors. Then fixing m such that q + n̄/2+ 1 ≤ m ≤ q + n̄,

we define

σm,q+1 := σSm
O
+ σSm

C
+ σϕmO + σϕmTN

+ σϕmC + 1{m=q+n̄} (σSTN
+ συ) . (13.1)

Recalling that every pressure increment referenced above has a decomposition σ• = σ+
• −σ−

• ,

we define σ+
m,q+1 and σ−

m,q+1 in the obvious way.

Next, associated to each pressure increment σ• listed above is a function of time mσ•

which satisfies m′
σ• = ⟨Dt,qσ•⟩ (see Lemmas 9.4.4, 10.2.4, 10.2.8, 10.2.12, 11.2.2, 11.2.7, and
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11.2.11), and so we define

mm,q+1 := mσSm
O
+mσSm

C
+mσϕmO

+mσϕmTN
+mϕ

m
C
+ 1{m=q+n̄}

(
mσSTN

+mσυ

)
. (13.2)

Furthermore, recall that Lemma 9.4.6 defined a current error associated to velocity pressure

increments, Lemmas 10.2.5, 10.2.9, and 10.2.13 defined current errors associated to various

stress error pressure increments, and Lemmas 11.2.2, 11.2.7, and 11.2.11 defined current

errors associated to various current error pressure increments. Then fixing m,m′ such that

q + n̄/2 + 1 ≤ m′ ≤ m ≤ q + n̄, we define

ϕm
′,l

m,q+1 := ϕm
′,l

Sm
O

+ ϕm
′,l

Sm
C

+ ϕm
′,l

ϕ
m
O

+ ϕm
′,l

ϕ
m
TN

+ ϕm
′,l

ϕ
m
C

+ 1{m=q+n̄}

(
ϕm

′,l
STN

+ ϕm
′,l

συ

)
(13.3a)

ϕm
′,∗

m,q+1 := ϕm
′,∗

Sm
O

+ ϕm
′,∗

Sm
C

+ ϕm
′,∗

ϕ
m
O

+ ϕm
′,∗

ϕ
m
TN

+ ϕm
′,∗

ϕ
m
C

+ 1{m=q+n̄}

(
ϕm

′,∗
STN

+ ϕm
′,∗

υ

)
+ 1{m′=m}

(
ϕ∗
Sm
O
+ ϕ∗

Sm
C
+ ϕ∗

ϕ
m
O
+ ϕ∗

ϕ
m
TN

+ ϕ∗
ϕ
m
C
+ 1{m=q+n̄}

(
ϕ∗
STN

+ ϕ∗
υ

))
.

(13.3b)

Now we set

ϕm,q+1 :=
m∑

m′=q+n̄/2+1

ϕm
′,l

m,q+1 + ϕm
′,∗

m,q+1 , (13.4)

so that the aforementioned lemmas give the equality

divϕm,q+1 = Dt,qσm,q+1 −m′
m,q+1 = Dt,qσm,q+1 − ⟨Dt,qσq+1,m⟩ . (13.5)

By appealing to the lemmas mentioned above, we have that the σm,q+1’s satisfy the properties

listed in the following lemma; we refer the reader to Sections 9, 10, and 11 for more details.

Lemma 13.1.1 (Collected properties of error terms and pressure increments). For

each q + n̄/2 + 1 ≤ m ≤ q + n̄, σm,q+1 satisfies the following properties.
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(i) For any 0 ≤ k ≤ d, we have that

∣∣∣ψi,qDNDM
t,qS

m,l
q+1

∣∣∣ ≲ (σ+
m,q+1 + δq+3n̄

)
(λmΓm)

NM
(
M,Nind,t,Γ

i+18
q τ−1

q ,T−1
q Γ9

q

)
(13.6a)∣∣∣ψi,qDNDM

t,qϕ̄
m,l
q+1

∣∣∣ ≲ (σ+
m,q+1 + 1m=q+n̄Γ

−50
q+n̄π

q+n̄
q + δq+3n̄

)3/2
r−1
m

× (λmΓm)
NM

(
M,Nind,t,Γ

i+18
q τ−1

q ,T−1
q Γ9

q

)
(13.6b)

where the first bound holds for N+M ≤ 2Nind, and the second bound holds for N+M ≤

Nind/4.

(ii) For N,M ≤ Nfin/200, we have that

∥∥ψi,qDNDM
t,qσ

+
m,q+1

∥∥
3/2

≲ Γ−9
m δm+n̄(λmΓm)

NM
(
M,Nind,t,Γ

i+18
q τ−1

q ,T−1
q Γ9

q

)
(13.7a)∥∥ψi,qDNDM

t,qσ
+
m,q+1

∥∥
∞ ≲ ΓC∞−9

m (λmΓm)
NM

(
M,Nind,t,Γ

i+18
q τ−1

q ,T−1
q Γ9

q

)
(13.7b)∣∣ψi,qDNDM

t,qσ
+
m,q+1

∣∣ ≲ (σ+
m,q+1 + δq+3n̄

)
(λmΓm)

NM
(
M,Nind,t,Γ

i+18
q τ−1

q ,T−1
q Γ9

q

)
(13.7c)∣∣ψi,qDNDM

t,qσ
−
m,q+1

∣∣ ≲ Γ−100
q+n̄/2π

q+n̄/2
q (λq+n̄/2Γq+n̄/2)

NM
(
M,Nind,t,Γ

i+18
q τ−1

q ,T−1
q Γ9

q

)
.

(13.7d)

(iii) σm,q+1 and σ+
m,q+1 have the support properties

B(supp ŵq′ , λ
−1
q′ Γq′+1) ∩ σm,q+1 = ∅ ∀q + 1 ≤ q′ ≤ q + n̄/2 , (13.8a)

B(supp ŵq′ , λ
−1
q′ Γq′+1) ∩ σ+

m,q+1 = ∅ ∀q + 1 ≤ q′ ≤ m− 1 . (13.8b)

Remark 13.1.2 (Upgrading material derivatives). As a consequence of (13.7a), (13.7b),

(13.7c), and (13.8b), we may apply Lemma A.5.1 to F = F l = σ±
m,q+1 to upgrade the material
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derivative estimates. In particular, we obtain that

∥∥ψi,m−1D
NDM

t,m−1σ
+
m,q+1

∥∥
3/2

≲ Γ−9
m δm+n̄(λmΓm)

NM
(
M,Nind,t,Γ

i−5
m−1τ

−1
m−1,T

−1
m−1Γ

−1
m−1

)
(13.9a)∥∥ψi,m−1D

NDM
t,m−1σ

+
m,q+1

∥∥
∞ ≲ ΓC∞−9

m (λmΓm)
NM

(
M,Nind,t,Γ

i−5
m−1τ

−1
m−1,T

−1
m−1Γ

−1
m−1

)
(13.9b)∣∣ψi,m−1D

NDM
t,m−1σ

+
m,q+1

∣∣ ≲ (σ+
m,q+1 + δq+3n̄

)
(λmΓm)

NM
(
M,Nind,t,Γ

i−5
m−1τ

−1
m−1,T

−1
m−1Γ

−1
m−1

)
(13.9c)∣∣ψi,q+n̄/2−1D

NDM
t,q+n̄/2−1σ

−
m,q+1

∣∣ ≲ Γ−100
q+n̄/2π

q+n̄/2
q (λq+n̄/2Γq+n̄/2)

N

×M
(
M,Nind,t,Γ

i−5
q+n̄/2−1τ

−1
q+n̄/2−1,T

−1
q+n̄/2−1Γ

−1
q+n̄/2−1

)
.

(13.9d)

for N,M ≤ Nfin/200. Then, applying Lemma A.2.3 to v = ûm−1, f = σ±
m,q+1, p = ∞, and

Ω = supp (ψi,m−1) (or Ω = N (x) where N (x) is a closed neighborhood of x contained in

supp (ψi,m−1)), we have

∥∥DNDM
t,m−1∇σ+

m,q+1

∥∥
L∞(suppψi,m−1)

≲ ΓC∞−9
m (λmΓm)

N+1M
(
M,Nind,t,Γ

i−5
m−1τ

−1
m−1,T

−1
m−1Γ

−1
m−1

)
(13.10a)∣∣ψi,m−1D

NDM
t,m−1∇σ+

m,q+1

∣∣ ≲ (σ+
m,q+1 + δq+3n̄

)
(λmΓm)

N+1

×M
(
M,Nind,t,Γ

i−5
m−1τ

−1
m−1,T

−1
m−1Γ

−1
m−1

)
(13.10b)∣∣ψi,q+n̄/2−1D

NDM
t,q+n̄/2−1∇σ−

m,q+1

∣∣ ≲ Γ−100
q+n̄/2π

q+n̄/2
q (λq+n̄/2Γq+n̄/2)

N+1

×M
(
M,Nind,t,Γ

i−5
q+n̄/2−1τ

−1
q+n̄/2−1,T

−1
q+n̄/2−1Γ

−1
q+n̄/2−1

)
,

(13.10c)

for N < Nfin/200 and M ≤ Nfin/200.

Definition 13.1.3 (Pressure increment σq+1 and decomposition into σkq+1). Define

constants

am,q,k := 2k−q−1

(
δk+n̄
δm+n̄

)
Γ9
m, Am,q =

q+Npr∑
k=m

am,q,k , (13.11)
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where Npr is chosen in item (x). With these constants in hand, we define

σq+1 :=

q+n̄∑
m=q+n̄/2+1

Am,qσm,q+1︸ ︷︷ ︸
=:σ̃m,q+1

, σ±
q+1 :=

q+n̄∑
m=q+n̄/2+1

Am,qσ
±
m,q+1︸ ︷︷ ︸

=:σ̃±
m,q+1

. (13.12)

Then reorganizing terms in σq+1 based on amplitude, have that

σq+1 =

q+Npr∑
k=q+n̄/2

σkq+1 , (13.13)

where

σ
q+n̄/2
q+1 = −σ−

q+1 , σkq+1 =

min(k,q+n̄)∑
m=q+n̄/2+1

am,q,kσ
+
m,q+1, for all q + n̄/2 + 1 ≤ k ≤ q + Npr .

(13.14)

As a direct consequence of Lemma 13.1.1 and Definition 13.1.3, we have that σkq+1 satisfies

the following properties.

Lemma 13.1.4 (Properties of σq+1 and σkq+1). For all q+ n̄/2 ≤ k ≤ q+Npr, the pressure

increment σkq+1 has the following properties.

(i) σkq+1 has the support property

B(supp ŵq′ , λ
−1
q′ Γq′+1) ∩ supp (σkq+1) = ∅ ∀q + 1 ≤ q′ ≤ q + n̄/2 . (13.15)

(ii) For all q + n̄/2 + 1 ≤ k ≤ q + n̄ and N,M ≤ Nfin/200, we have that σkq+1 satisfies

∥∥ψi,k−1D
NDM

t,k−1σ
k
q+1

∥∥
3/2

≲ δk+n̄(λkΓk)
NM

(
M,Nind,t,Γ

i−3
k−1τ

−1
k−1,T

−1
k−1Γ

−1
k−1

)
, (13.16a)∥∥ψi,k−1D

NDM
t,k−1σ

k
q+1

∥∥
∞ ≲ ΓC∞

k (λkΓk)
NM

(
M,Nind,t,Γ

i−3
k−1τ

−1
k−1,T

−1
k−1Γ

−1
k−1

)
. (13.16b)
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For all q + n̄+ 1 ≤ k ≤ q + Npr and N,M ≤ Nfin/200, we have that σkq+1 satisfies

∥∥ψi,q+n̄DNDM
t,q+n̄σ

k
q+1

∥∥
3/2

≲ δk+n̄(λq+n̄Γq+n̄)
NM

(
M,Nind,t,Γ

i−3
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−1
q+n̄,T

−1
q+n̄Γ

−1
q+n̄

)
(13.17a)∥∥ψi,q+n̄DNDM

t,q+n̄σ
k
q+1

∥∥
∞ ≲ ΓC∞

q+n̄(λq+n̄Γq+n̄)
NM

(
M,Nind,t,Γ

i−3
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−1
q+n̄,T

−1
q+n̄Γ

−1
q+n̄

)
.

(13.17b)

(iii) For q + n̄/2 + 1 ≤ k ≤ q + n̄ and 0 ≤ k′ ≤ d, we have that

∣∣ψi,qDNDM
t,qS

k
q+1

∣∣ ≤ Γ−8
k

(
σkq+1 + δq+2n̄

)
(λkΓk)

NM
(
M,Nind,t,Γ

i+18
q τ−1

q ,T−1
q Γ9

q

)
,

(13.18a)∣∣ψi,qDNDM
t,qϕ̄

k
q+1

∣∣ ≤ Γ−13
k

(
σkq+1 + 1m=q+n̄Γ

−50
q+n̄π

q+n̄
q + δq+2n̄

)3/2
r−1
k

× (λkΓk)
NM

(
M,Nind,t,Γ

i+18
q τ−1

q ,T−1
q Γ9

q

)
, (13.18b)

where the first bound holds for N+M ≤ 2Nind, and the second bound holds for N+M ≤

Nind/4.

(iv) For q + n̄/2 + 1 ≤ k ≤ q + Npr and N,M ≤ Nfin/200 and q + 1 ≤ k′ ≤ min(k − 1, q + n̄),

we have that

∣∣ψi,k′DNDM
t,k′σ

k
q+1

∣∣ ≲ (σkq+1 + Γ−100
q δk+n̄)(min(λkΓk, λq+n̄Γq+n̄))

NM
(
M,Nind,t,Γ

i−3
k′ τ

−1
k′ ,T

−1
k′ Γ

−1
k′

)
.

(13.19)

For the same range of N and M , we have that

∣∣∣ψi,q+n̄/2−1D
NDM

t,q+n̄/2−1σ
q+n̄/2
q+1

∣∣∣ ≤ Γ−25
q+n̄/2π

q+n̄/2
q (λq+n̄/2Γq+n̄/2)

N (13.20)

×M
(
M,Nind,t,Γ

i−3
q+n̄/2−1τ

−1
q+n̄/2−1,T

−1
q+n̄/2−1Γ

−1
q+n̄/2−1

)
.

(13.21)
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(v) For all q + n̄/2 + 1 ≤ k ≤ k′ ≤ q + Npr, we have that

δk′+n̄
δk+n̄

σkq+1 ≤ 2k−k
′
σk

′

q+1 . (13.22)

(vi) For all q + n̄ ≤ k′ ≤ k ≤ q + Npr, we have that

σkq+1 ≤ σk
′

q+1. (13.23)

Proof of Lemma 13.1.4. Proof of item (i). The proof of this item is immediate from Def-

inition 13.1.3 and item (iii) from Lemma 13.1.1.

Proof of item (ii). We first consider the estimates for q + n̄/2 ≤ k ≤ q + n̄. From Re-

mark 13.1.2, which ensures that every σ+
m,q+1 has size Γ

−9
m δm+n̄ in L3/2, and Definition 13.1.3,

which ensures that the term in σkq+1 coming from σm,q+1 has been rescaled by a factor of

δk+n̄δ
−1
m+n̄Γ

−9
m , we have that (13.16a) holds when N = M = 0. Similarly, when N = M = 0,

we have that (13.16b) holds since ΓC∞
k is increasing in k. In order to prove the versions of

these estimates which involve derivatives, we must use Remark A.2.6 and eqn. (5.14) (at level

q since we do not require Dt,q+n̄−1) to upgrade the estimates in Remark 13.1.2, since σkq+1 is

comprised of rescaled versions of σm,q+1 for m ≤ k which came with Dt,m−1 estimates. We

omit further details and simply note that the material derivative cost and the assumptions

required in (A.34) follow from (5.34) at level q (i.e. we apply (5.34) for q′ ≤ q + n̄− 1), and

that the pointwise bounds follow from the usual trick of choosing Ω to be a neighborhood

centered at a point (x, t) and then shrinking the diameter of Ω to zero and using continuity.

Finally, the proofs of the estimates for q+ n̄+1 ≤ k ≤ q+Npr are quite similar, except that

we have to use (5.14) at level q + 1 (which has been verified in Lemma 12.8.1), and (5.34)

at level q + 1 (i.e. q′ = q + n̄), which has been verified in Lemma 12.5.3.

Proof of item (iii). To obtain (iii), we use (13.6a), (13.6b), (13.11), and (13.12) to give the

inequality σkq+1 ≥ σ+
k,q+12

k−q−1Γ9
k, nonlocal estimates for Sk,∗q+1 from Lemma 10.3.2, nonlocal
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estimates for current errors from Section 11, and spare factors of Γ
−1/2
k to absorb implicit

constants.

Proof of item (iv). In order to prove (13.19), we first prove the estimate when no deriva-

tives have been applied. First note that δq+3n̄δk+n̄δ
−1
m+n̄Γ

9
m ≤ δk+n̄Γ

−100
q , since m ≤ q + n̄ so

that the definition of δq′ and (4.10k) can absorb Γ−500
q . Then since both sides are linear in

σkq+1, the rescalings involved in the definition of σkq+1, (13.9c), and the inequality just noted

give the proper amplitude bound. At this point we must upgrade material derivative in a

manner analogous to that which is required to prove the L3/2 and L∞ bounds from item (ii),

and so omit further details. In order to prove (13.21), first note that am,q,k is at most Γ10
m

if k = m and we choose a0 sufficiently large, and am,k,q ≪ 1 if k > m. Then using (13.14),

(13.12), and the fact that Γ2
q > Γq+n̄ since bn̄ < 2 from (4.2b), the estimate without deriva-

tives follows from (13.9d). Upgrading material derivatives then follows in the usual way, and

we omit further details.

Proof of item (v). Since k′ ≥ k, we have from (13.14) that

δk′+n̄
δk+n̄

σkq+1 =

min(k,q+n̄)∑
m=q+n̄/2+1

δk′+n̄
δk+n̄

am,q,kσ
+
m,q+1 =

min(k,q+n̄)∑
m=q+n̄/2+1

2k−q−1 δk′+n̄
δm+n̄

Γ9
mσ

+
m,q+1

= 2k−k
′
min(k,q+n̄)∑
m=q+n̄/2+1

am,q,k′σ
+
m,q+1 ≤ 2k−k

′
σk

′

q+1 .

Proof of item (vi). This estimate follows from the observation in the proof of the previous

item that am,k,q ≪ 1 if k > m, (13.13), (13.14), and a large choice of a0 which can be used

to absorb implicit constants.

Finally, we can define the new pressure πq+1.

Definition 13.1.5 (New pressure πq+1 and decomposition into πkq+1). We define πkq+1,
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k ≥ q + 1, by

πkq+1 := πkq + σkq+1 + 2k−q−1δk+n̄ for q + n̄/2 ≤ k ≤ q + Npr , (13.24)

πkq+1 := πkq for q + 1 ≤ k ≤ q + n̄/2 − 1, q + Npr + 1 ≤ k <∞ .

Then πq+1 =
∑∞

k=q+1 π
k
q+1 satisfies

πq+1 = πq − πqq + σq+1 +

q+Npr∑
k=q+n̄/2

2k−q−1δk+n̄ . (13.25)

13.2 Inductive assumptions on the new pressure

In this section, we verify the inductive assumptions on πkq+1 which are required in subsec-

tions 5.3–5.5.

Lemma 13.2.1 (L3/2, L∞, and pointwise bounds on πkq+1). The inductive assumptions

(5.15) and (5.16) are verified at step q + 1.

Proof. We first consider (5.15a)–(5.15c). In the case that q+1 ≤ k ≤ q+ n̄/2−1, we have that

πkq+1 = πkq from Definition 13.1.5, so that the desired estimates follow trivially from inductive

assumptions (5.15a)–(5.15c) at step q. In the case that q + n̄/2 ≤ k ≤ q + n̄, we have from

Definition 13.1.5 that πkq+1 = πkq +σ
k
q+1+2k−q−1δk+n̄. Therefore, the desired estimates follow

from the inductive assumptions and Lemma 13.1.4. In order to get (5.16a)–(5.16c), we have

from Definition 13.1.5 that πkq+1 = πkq +σ
k
q+1+2k−q−1δk+n̄. Then the desired estimates follow

again from the inductive assumptions and Lemma 13.1.4.

Lemma 13.2.2 (Lower and upper bounds for πkq+1). Inductive assumptions (5.17)–

(5.20) are verified at step q + 1.

Proof. In order to prove (5.17) at level q + 1, we first consider the cases when q + 1 ≤ k ≤
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q + n̄/2 − 1. In these cases the inductive assumption (5.17) and Definition 13.1.5 imply that

πkq+1 = πkq ≥ δk+n̄ .

For the case k = q + n̄/2, we use (13.21) and (13.24) to write that

π
q+n̄/2
q+1 = πq+

n̄/2
q + σ

q+n̄/2
q+1 + 2

n̄/2−1δq+n̄/2+n̄ ≥ δq+n̄/2+n̄ ,

concluding the proof of (5.17) at level q + 1. For the remaining cases, we use (5.20) at the

level of q + 1, so that we postpone the proof to the end.

Next, from Definition 13.1.5, the inductive assumption (5.18), and (13.23), we have that

for q + n̄ ≤ k′ < k < q + Npr,

πkq+1 = πkq + σkq+1 + 2k−q−1δk+n̄ ≤ πk
′

q + σk
′

q+1 + δk′+n̄ ≤ πk
′

q+1 .

In the endpoint case when k = q + Npr, we use that π
k+Npr
q ≡ Γq+Nprδq+Npr+n̄ from (5.19), in

which case a similar string of inequalities then concludes the proof that (5.18) is satisfied at

level q + 1.

From Definition 13.1.5 and (5.19) at level q, we have that

πkq+1 = Γkδk+n̄

for k ≥ q + Npr + 1, so that the inductive assumption (5.19) for q + 1 holds true.

Finally, we must prove (5.20) at level q+1. We split into cases depending on the value of

q′′. If q′′ ≥ q + Npr + 1, then we have from Definition 13.1.5, the Sobolev inequality applied
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to (5.15a), (5.16a), and (13.16a), and (4.16) that

δq′′+n̄
δq′+n̄

πq
′

q+1 ≤
δq′′+n̄
δq′+n̄

(
πq

′

q + 1{q+n̄/2≤q′≤q+Npr}max(0, σq
′

q+1) + 2Nprδq′+n̄

)
≤ δq′′+n̄
δq′+n̄

(
∥πq′q ∥∞ + 1{q+n̄/2≤q′≤q+Npr}∥σ

q′

q+1∥∞
)
+2Nprδq′′+n̄

≤ δq′′+n̄
(
ΓqΓq+NprΛ

3
q+n̄ + 2Npr

)
≤ Γ−1

q Γq+Npr+1δq′′+n̄

≤ 2q
′−q′′Γq′′δq′′+n̄ = 2q

′−q′′πq
′′

q+1 .

Note that in the inequalities above, we have assumed a large choice of a0 to absorb the

implicit constant. Next, in the cases when q + 1 + n̄/2 ≤ q′′ ≤ q + Npr, we first note that

σq
′′

q+1 ≥ 0 and σ
q+n̄/2
q+1 ≤ 0 since all the minus portions of the pressure have been absorbed into

σ
q+n̄/2
q+1 in (13.13) and (13.14). As a consequence of these facts, Definition 13.1.5, (5.20), and

(13.22), we have that

δq′′+n̄
δq′+n̄

πq
′

q+1 ≤
δq′′+n̄
δq′+n̄

(
πq

′

q + 1{q+n̄/2≤q′≤q+Npr}max{0, σq
′

q+1}+2q
′−q−1δq′+n̄

)
≤ 2q

′−q′′
(
πq

′′

q +max{0, σq
′′

q+1}+2q
′′−q−1δq′′+n̄

)
= 2q

′−q′′πq
′′

q+1 .

Now for the case q′′ = q + n̄/2, we only must consider q′ ≤ q + n̄/2 − 1, and so from Defini-

tions 13.1.3 and 13.1.5 and (13.21),

δq+n̄/2+n̄

δq′+n̄
πq

′

q+1 =
δq+n̄/2+n̄

δq′+n̄
πq

′

q ≤ 2q
′−q+n̄/2πq+

n̄/2
q

=
(
πq+

n̄/2
q + σ

q+n̄/2
q+1

)
+
((

2q
′−q+n̄/2 − 1

)
πq+

n̄/2
q − σ

q+n̄/2
q+1

)
≤ π

q+n̄/2
q+1 +

(
−1/2 + Γ−25

q+n̄/2

)
πq+

n̄/2
q

≤ π
q+n̄/2
q+1 .

In the final cases q′′ < q + n̄/2, we have from Definition 13.1.5 and inductive assumption
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(5.20) that

δq′′+n̄
δq′+n̄

πq
′

q+1 =
δq′′+n̄
δq′+n̄

πq
′

q ≤ πq
′′

q = πq
′′

q+1 ,

concluding the proof of (5.20) at level q + 1.

Lastly, we consider (5.17) for k > q + n̄/2. We first note that from (5.17) for q + 1 ≤ k ≤

q + n̄/2 and (5.20) at level q + 1, we have that for all q + n̄/2 + 1 ≤ k′ <∞,

πk
′

q+1 > 2k
′−q−n̄/2 δk′+n̄

δq+n̄/2+n̄

π
q+n̄/2
q+1 > δk′+n̄ ,

and so

πkq+1 ≥ δk+n̄ ∀q + 1 ≤ k <∞ .

Lemma 13.2.3 (Pressure dominates velocity). The inductive assumptions in (5.21c),

(5.23), and (5.40) are verified at level q + 1.

Proof. Step 1: Verification of (5.40) at level q+1. From (9.92) and the definition

of σq+n̄q in Definition 13.1.3, which give an extra prefactor of Γ9
q+n̄, we have that

∣∣ψi,q+n̄−1D
NDM

t,q+n̄−1υ̂q+n̄,k′
∣∣ ≤ Γ−4

q+n̄

(
σq+n̄q+1 + δq+2n̄

)1/2
r−1
q

× (λq+n̄Γq+n̄)
NM

(
M,Nind,t,Γ

i
q+n̄−1τ

−1
q+n̄−1,Γ

2
q+n̄−1T

−1
q+n̄−1

)
for all N +M ≤ 3Nfin/2. Then using the definition of πq+n̄q+1 from Definition 13.1.5 gives the

proof of (5.40) for q′ = q + n̄; in fact we retain the extra smallness prefactor of Γ−4
q+n̄, which

we shall use in the next step of this proof. In order to verify (5.40) for q ≤ q′ ≤ q + n̄ − 1,

we appeal to Definition 13.1.5 for the definition of πq
′

q+1. Noticing that πq
′

q+1 ≥ πq
′
q for all

q′ ≥ q+1 except for q′ = q+ n̄/2, we have that the verification of (5.40) for q ≤ q′ ≤ q + n̄−1,
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q′ ̸= q + n̄/2 is trivial. In the case q′ = q + n̄/2, we use (13.21) and (13.24) to write that

π
q+n̄/2
q+1 ≥ 1/2πq+

n̄/2
q ,

from which (5.40) follows using the increase from Γq to Γq+1 in (5.40) at level q versus level

q + 1, respectively.

Step 2: Verification of (5.21c) at level q + 1. We first consider the cases q + 1 ≤

k ≤ q + n̄ − 1. From the same reasoning as above, which showed that πkq+1 ≥ 1/2πkq for

q + 1 ≤ k ≤ q + n̄ − 1, we have that (5.21c) trivially holds. In the case k = q + n̄, we

use (5.38) at level q′ = q + n̄ (which has been verified in Proposition 9.5.2) and (5.40) for

q′ = q + n̄, k = d (which we just verified with extra factor gain), (5.41) at level q′ = q + n̄

(which has been verified in (9.93)), and (13.24) to write that for N +M ≤ 3Nfin/2

∣∣ψi,q+n̄−1D
NDM

t,q+n̄−1ŵq+n̄
∣∣ = ∣∣ψi,q+n̄−1D

NDM
t,q+n̄−1 (υ̂q+n̄,d + êq+n̄)

∣∣
≤ Γ−3

q+n̄

(
(πq+n̄q+1 )

1/2r−1
q + δ3q+3n̄

)
(λq+n̄Γq+n̄)

N

×M
(
M,Nind,t,Γ

i
q+n̄−1τ

−1
q+n̄−1,Γ

2
q+n̄−1T

−1
q+n̄−1

)
≤ (πq+n̄q+1 )

1/2r−1
q (λq+n̄Γq+n̄)

NM
(
M,Nind,t,Γ

i
q+n̄−1τ

−1
q+n̄−1,Γ

2
q+n̄−1T

−1
q+n̄−1

)
,

which verifies (5.21c) at level q + 1 with q′ = q + n̄.

Step 3: Verification of (5.23) for q′ = q + n̄. We will prove that

imax∑
i=0

ψ2
i,q+n̄δq+n̄r

−2/3
q Γ2i

q+n̄ ≲ r−2
q πq+n̄q+1 (13.26)

for a q-independent implicit constant, from which (5.23) for q′ = q + n̄ follows by using the

extra factor of Γq+n̄ to absorb the implicit constant and the powers of 2. From (12.11) and
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the fact that all cutoff functions are bounded in between 0 and 1, we have that

imax∑
i=0

ψ2
i,q+n̄δq+n̄r

−2/3
q Γ2i

q+n̄ ≲ δq+n̄r
−2/3
q

imax∑
i=0

Γ2i
q+n̄

∑
{⃗
i : max

0≤m≤Ncut,t
im=i

}
Ncut,t∏
m=0

ψ2
m,im,q+n̄

≤
Ncut,t∑
m=0

δq+n̄r
−2/3
q

∑
im≥0

ψ2
m,im,q+n̄Γ

2im
q+n̄ . (13.27)

Therefore it will suffice to show that the right-hand side of (13.26) dominates the double

sum above. We will in fact fix m, take the sum over im ≥ 0, multiply by Γq+n̄, and show

that this is dominated by the right-hand side of (13.26). Using that m is bounded by Ncut,t

and choosing a large enough will then conclude the proof.

From the definition of ψm,im,q+n̄ in (12.9), we have that

Γ2im
q+n̄ψ

2
m,im,q+n̄ ≲ Γ2im

q+n̄

∑
{jm:i∗(jm)≤im}

ψ2
jm,q+n̄−1ψ

2
m,im,jm,q+n̄

= Γ
2i∗(jm)
q+n̄ ψ2

jm,q+n̄−1ψ
2
m,i∗(jm),jm,q+n̄ + Γ2im

q+n̄

∑
{jm:i∗(jm)<im}

ψ2
jm,q+n̄−1ψ

2
m,im,jm,q+n̄ .

(13.28)

From (12.3), we know that the first term above is dominated by

Γ2jm+4
q+n̄−1ψ

2
jm,q+n̄−1 .

Since m and im only take finitely many values, we may bound the contribution to the right-

hand sides of (13.27) and (13.28) from the terms with jm such that i∗(jm) = im by an implicit

constant multiplied by

∑
jm≥0

Γ2jm+4
q+n̄−1ψ

2
jm,q+n̄−1δq+n̄r

−2/3
q ≤ r−2

q−1π
q+n̄−1
q Γ5

q+n̄−1

δq+n̄r
−2/3
q

δq+n̄−1r
−2/3
q−1

≤ Γ−2
q+n̄r

−2
q πq+n̄q .
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Here we have used the inductive assumption (5.23) to achieve the first inequality above and

the inequalities (4.10c) and (5.20) to achieve the second inequality. We have thus concluded

that the lowest terms with im = i∗(jm) from (13.28), summed over im and appropriately

weighted, are indeed dominated by the right-hand side of (13.26).

We now must consider the rest of the terms in (13.28), for which i∗(jm) < im. Assume

that (t, x) ∈ supp (ψ2
jm,q+n̄−1ψ

2
m,im,jm,q+n̄). By (12.4) and Lemma 8.3.1, item (2), and there

exists n ≤ Ncut,x such that

1

4Ncut,x

≤ Γ
−2im(m+1)
q+n̄ δ−1

q+n̄r
2/3
q (λq+n̄Γq+n̄)

−2n(τ−1
q+n̄−1Γ

2
q+n̄)

−2m|DnDm
t,q+n̄−1ŵq+n̄|2 .

Note that due to Definition 12.1.1, the fact that we consider (t, x) ∈ supp (ψ2
jm,q+n̄−1ψ

2
m,im,jm,q+n̄),

and (12.7), which gives im ≥ i∗(jm), we have that Γ−im
q+n̄Γ

jm
q+n̄−1 ≤ 1. Now using (4.18) and

that we are on the support of ψj,q+n̄−1 by assumption so that we may appeal to (9.71), we

have that

Γ2im
q+n̄δq+n̄r

−2/3
q ≲ (λq+n̄Γq+n̄)

−2n(τ−1
q+n̄−1Γ

2+im
q+n̄ )−2m

(
σ+
υ + δq+3n̄

)
r−2
q (λq+n̄Γq+n̄)

2n(τ−1
q+n̄−1Γ

jm−5
q+n̄−1)

2m

≤
(
σ+
υ + δq+3n̄

)
r−2
q . (13.29)

Note now that from (13.1) and the subsequent sentence, which shows that σ+
q+n̄,q+1 ≥ σ+

υ ,

Definition 13.1.3, which shows that σq+n̄q+1 ≥ σ+
q+n̄,q+1, and Definition 13.1.5, which shows that

πq+n̄q+1 ≥ σq+n̄q+1 + δq+3n̄, we have that σ+
υ + δq+3n̄ ≤ πq+n̄q+1 . Thus, (13.26) follows from summing

(13.29) over im ≥ 0, from which we find that

∑
im≥0

∑
{jm:i∗(jm)<im}

ψ2
jm,q+n̄−1ψ

2
m,im,jm,q+n̄Γ

2im
q+n̄δq+n̄r

−2/3
q ≲ r−2

q πq+n̄q+1 .

Now summing over 0 ≤ m ≤ Ncut,t concludes the proof of (13.26) and thus (5.23) at level

q + 1 with q′ = q + n̄.

Step 4: Verification of (5.23) for q+1 ≤ q′ ≤ q + n̄− 1. Recall that in Step 1, we
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showed that

πq
′

q+1 ≥ 1/2πq
′

q q′ ≥ q + 1 . (13.30)

Therefore we may use (5.23) at level q to write that

imax∑
i=0

ψ2
i,q′δq′r

−2/3
q′−n̄Γ

2i
q′ ≤ 2q−q

′
Γq′r

−2
q′−n̄π

q′

q

= 2q+1−q′Γq′r
−2
q′−n̄

(
1/2πq

′

q

)
≤ 2q+1−q′Γq′r

−2
q′−n̄π

q′

q+1 ,

concluding the proof of (5.23) at level q + 1.

Lemma 13.2.4 (Pressure dodging at level q + 1). Hypothesis 5.4.5 is verified at step

q + 1.

Proof. We must show that for all q + 1 < k ≤ q + n̄, k ≤ k′, and N +M ≤ 2Nind,

∣∣∣ψi,k−1D
NDM

t,k−1

(
ŵkπ

k′

q+1

)∣∣∣ < Γq+1Γ
−100
k

(
πkq+1

)3/2
r−1
k ΛNk M

(
M,Nind,t,Γ

i+1
k−1τ

−1
k−1,Γ

−1
k T−1

k

)
.

We divide up the proof into cases based on the value of k′.

Case 1: q + 1 < k ≤ k′ < q + n̄/2. From (13.24), we have that πk
′
q+1 = πk

′
q , and so using

Hypothesis 5.4.5 at level q and (13.30), we have that for N +M ≤ 2Nind,

∣∣∣ψi,k−1D
NDM

t,k−1

(
ŵkπ

k′

q+1

)∣∣∣ = ∣∣∣ψi,k−1D
NDM

t,k−1

(
ŵkπ

k′

q

)∣∣∣
< ΓqΓ

−100
k

(
πkq
)3/2

r−1
k ΛNk M

(
M,Nind,t,Γ

i+1
k−1τ

−1
k−1,Γ

−1
k T−1

k

)
< Γq+1Γ

−100
k

(
πkq+1

)3/2
r−1
k ΛNk M

(
M,Nind,t,Γ

i+1
k−1τ

−1
k−1,Γ

−1
k T−1

k

)
.

Case 2: q+1 < k ≤ k′ = q+n̄/2. In this case, we have from (13.24) that π
q+n̄/2
q+1 = π

q+n̄/2
q +

σ
q+n̄/2
q+1 +2n̄/2−1δq+n̄/2+n̄. Then considering just the contribution ŵkπ

q+n̄/2
q to ŵkπ

q+n̄/2
q+1 from the
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first term, we have from Hypothesis 5.4.5 at level q and (13.30) that for N +M ≤ 2Nind,

∣∣ψi,k−1D
NDM

t,k−1

(
ŵkπ

q+n̄/2
q

)∣∣ < ΓqΓ
−100
k

(
πkq
)3/2

r−1
k ΛNk M

(
M,Nind,t,Γ

i+1
k−1τ

−1
k−1,Γ

−1
k T−1

k

)
< 1/2Γq+1Γ

−100
k

(
πkq+1

)3/2
r−1
k ΛNk M

(
M,Nind,t,Γ

i+1
k−1τ

−1
k−1,Γ

−1
k T−1

k

)
.

Next, we have from (13.15) that ŵkσ
q+n̄/2
q+1 ≡ 0 for q + 1 < k ≤ q + n̄/2, and so we may ignore

the contribution from σ
q+n̄/2
q+1 . Finally, in order to bound the contribution coming from the

constant term δq+n̄/2+n̄, we use (5.17) and (5.21c) at level q + 1 and (4.10h) to write that

∣∣ψi,k−1D
NDM

t,k−1

(
ŵk2

n̄/2−1δq+n̄/2+n̄

)∣∣ ≤ 2
n̄/2−1Γq+1r

−1
k−n̄(π

k
q+1)

1/2δk+n̄

× ΛNk M
(
M,Nind,t,Γ

i+1
k−1τ

−1
k−1,Γ

−1
k T−1

k

)
< 1/2Γq+1Γ

−100
k

(
πkq+1

)3/2
r−1
k ΛNk M

(
M,Nind,t,Γ

i+1
k−1τ

−1
k−1,Γ

−1
k T−1

k

)
.

Case 3: q + 1 < k ≤ k′, q + 1 < k ≤ q + n̄, and q + n̄/2 + 1 ≤ k′ < ∞. From

Definition 13.1.5, we have that in these cases, either πkq+1 = πkq +σ
k
q+1+2k−q−1δk+n̄ or πkq+1 =

πkq . We therefore first make a few preliminary calculations to help bound the contributions

from πkq and 2k−q−1δk+n̄ before dividing up further into subcases. We first recall (5.17) at

level q + 1,

πkq+1 ≥ δk+n̄ ∀q + 1 ≤ k <∞ . (13.32)

Then, we have from (5.21c) at level q + 1 that for all q + 1 < k ≤ k′ ≤ q + n̄− 1, k ≤ k′,

∣∣ψi,k−1D
NDM

t,k−1 (ŵkδk′+n̄)
∣∣ ≤ Γq+1r

−1
k−n̄(π

k
q+1)

1/2δk+n̄Λ
N
k M

(
M,Nind,t,Γ

i+1
k−1τ

−1
k−1,Γ

−1
k T−1

k

)
< 1/3Γq+1Γ

−100
k

(
πkq+1

)3/2
r−1
k ΛNk M

(
M,Nind,t,Γ

i+1
k−1τ

−1
k−1,Γ

−1
k T−1

k

)
.

(13.33)

Next, we have from Hypothesis 5.4.5 at level q and (13.30) that for q+1 < k ≤ q + n̄−1

350



and k ≤ k′ <∞,

∣∣∣ψi,k−1D
NDM

t,k−1

(
ŵkπ

k′

q

)∣∣∣ < ΓqΓ
−100
k

(
πkq
)3/2

r−1
k ΛNk M

(
M,Nind,t,Γ

i+1
k−1τ

−1
k−1,Γ

−1
k T−1

k

)
< 1/3Γq+1Γ

−100
k

(
πkq+1

)3/2
r−1
k ΛNk M

(
M,Nind,t,Γ

i+1
k−1τ

−1
k−1,Γ

−1
k T−1

k

)
.

(13.34)

We claim that the above estimate holds in addition for k = q + n̄ and k ≤ k′ < ∞. Indeed

from (5.16c) and (5.18) at level q, (5.21c) at level q + 1, (13.30), and (4.10h), we have that

∣∣∣ψi,q+n̄−1D
NDM

t,q+n̄−1

(
ŵq+n̄π

k′

q

)∣∣∣ ≲ Γq+1r
−1
q (πq+n̄q+1 )

1/2Γqπ
k′

q Λ
N
q+n̄M

(
M,Nind,t,Γ

i+1
q+n̄−1τ

−1
q+n̄−1,Γ

−1
q+n̄T

−1
q+n̄

)
< Γq+1Γ

−101
k

(
πq+n̄q+1

)3/2
r−1
q+n̄Λ

N
q+n̄M

(
M,Nind,t,Γ

i+1
q+n̄−1τ

−1
q+n̄−1,Γ

−1
q+n̄T

−1
q+n̄

)
.

(13.35)

Finally, we use Definition 13.1.3, equations (13.11)–(13.14) and the dodging ensured by

(13.8b) to write that for q + 1 < k ≤ q + n̄, k ≤ k′, and q + n̄/2 + 1 ≤ k′ <∞,

∣∣∣ψi,k−1D
NDM

t,k−1

(
ŵkσ

min(k′,q+n̄)
q+1

)∣∣∣ =
∣∣∣∣∣∣

k′∑
m=q+n̄/2+1

ψi,k−1D
NDM

t,k−1

(
am,q,k′ŵkσ

+
m,q+1

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
k∑

m=q+n̄/2+1

ψi,k−1D
NDM

t,k−1

(
am,q,k′ŵkσ

+
m,q+1

)∣∣∣∣∣∣ .
Then using (5.21c) and eqn. (5.14) at level q + 1, (13.7c), and (13.8b), we have that the

quantity above is controlled by

N∑
N1=0

M∑
M1=0

∣∣ψi,k−1D
N1DM1

t,k−1ŵk
∣∣ ∣∣∣∣∣∣

k∑
m=q+n̄/2+1

am,q,k′1suppψi,k−1
DN−N1DM−M1

t,k−1 σ+
m,q+1

∣∣∣∣∣∣
≲
∑
N1,M1

∣∣ψi,k−1D
N1DM1

t,k−1ŵk
∣∣ ∑
i′:ψi′,qψi,k−1 ̸≡0

k∑
m=q+n̄/2+1

am,q,k1suppψi′,q

∣∣DN−N1DM−M1
t,q σ+

m,q+1

∣∣
≲ Γq+1r

−1
k−n̄(π

k
q+1)

1/2(σkq+1 + Γ−100
q δk+n̄)Λ

N
k M

(
M,Nind,t,Γ

i
k−1τ

−1
k−1,Γ

−1
k T−1

k

)
≤ Γ−101

k

(
πkq+1

)3/2
r−1
k ΛNk M

(
M,Nind,t,Γ
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k−1τ

−1
k−1,Γ

−1
k T−1

k

)
. (13.36)
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Here, the second inequality follows from 0 ≤ am,q,k′ ≤ am,q,k because of k ≤ k′, and the third

inequality follows from the proof of (13.19).

Case 3a: q + 1 < k ≤ q + n̄, k ≤ k′, and q + n̄/2 + 1 ≤ k′ ≤ q + Npr. In these cases, we

have from Definition 13.1.5 that πkq+1 = πkq + σkq+1 + 2k−q−1δk+n̄. Then combining (13.33),

(13.34), (13.35), and (13.36) concludes the proof.

Case 3b: q+1 < k ≤ q + n̄, k ≤ k′, and q+Npr +1 ≤ k′ <∞. In these cases, we have

from Definition 13.1.5 that πkq+1 = πkq . Then (13.34) gives the desired estimate.

13.3 The Euler-Reynolds system and the relaxed LEI

adapted to new pressure

In this section, we upgrade the Euler-Reynold system (10.3) and the relaxed local energy

inequality (11.8) adapted to the new pressure defined in subsections 13.1 and 13.2.

Lemma 13.3.1 (Relaxed equations at level q + 1). The inductive assumptions (5.2)–(5.7)

are satisfied at level q + 1.

Proof. We first set a few notations and definitions. Referring to (13.2), (13.3), and Defini-

tion (13.1.5), we first define ϕP1 and m′
P1 by

m′
P1 :=

3

2

q+n̄∑
m=q+n̄/2+1

Am,qm
′
m,q+1 , ϕP1 :=

3

2

q+n̄∑
m=q+n̄/2+1

Am,qϕm,q+1 . (13.37)

From the definition (13.12) of σq+1 and (13.5), we therefore have that

3

2
Dt,qσq+1 = divϕP1 +m′

P1 . (13.38)

In particular, m′
P1 =

3
2
⟨Dt,qσq+1⟩. Recalling (10.105) and (11.7), we now define

Rq+n̄,∗
q+1 = R

q+n̄,∗
q+1 +

2

3
(mT +mN +mL +mM1 +mM2 +mP1)Id , (13.39)
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and we do not modify the local part of the Reynolds stress that was defined in (10.105), nor

do we modify any of the nonlocal portions for q+1 ≤ m ≤ q + n̄− 1. We then define a new

pressure and a new stress error at step q + 1 by

pq+1 = −σq+1 + pq ,

Rq+1 = Rq+1 +
2

3
(mT +mN +mL +mM1 +mM2 +mP1)Id =

(11.7)
Rq+1 +

2

3

(
mϕq+1

+mP1

)
Id ,

(13.40)

which verifies (5.5).

Recalling Definition 13.1.5, (13.25), and (10.3), we now have that (uq+1, pq+1, Rq+1,−πq+1)

solves the Euler-Reynolds system

∂tuq+1 + div (uq+1 ⊗ uq+1) +∇pq+1 = div(−πq+1Id +Rq+1) , (13.41)

where we have used that the constant term in (13.25) and the terms with functions of time

m• in Rq+1 vanish inside of the divergence. Thus we have verified (5.2). Note that we have

also verified (5.6) as well. Recalling (9.17), we have in addition that (5.4) is verified, and so

it only remains to check (5.7) and (5.3) at level q + 1.

Let us set

κq+1 =
1

2
tr (Rq+1 − πq+1Id)) . (13.42)

Then we can now rewrite (11.8) as the relaxed local energy inequality for (uq+1, pq+1, Rq+1,−πq+1, φq+1)

adapted to the upgraded stress error Rq+1 and the new pressure πq+1. Specifically, we have
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that

∂t

(
1

2
|uq+1|2

)
+ div

((
1

2
|uq+1|2 + pq+1

)
uq+1

)
=

(11.8),(13.40)
(∂t + ûq+1 · ∇)(κq+1 +mϕq+1

) + div
(
(Rq+1 − (πq − πqq)Id)ûq+1

)
+ divφq+1 − E − div (σq+1uq+1)

=
(11.3a),

divûq+1≡0
∇m•≡0

(∂t + ûq+1 · ∇)

1

2
tr

Rq+1 −

πq − πqq + σq+1 +

q+Npr∑
k=q+n̄/2

2k−q−1δk+n̄ −
2

3

(
mϕq+1

+mP1

) Id



+ div

(Rq+1 −

πq − πqq + σq+1 +

q+Npr∑
k=q+n̄/2

2k−q−1δk+n̄ −
2

3

(
mϕq+1

+mP1

) Id

 ûq+1


+ divφq+1 − E − div (σq+1(uq+1 − ûq+1)) +

3

2
(∂t + ûq+1 · ∇)σq+1 −m′

P1

=
(13.25),(13.40),

(13.42)

(∂t + ûq+1 · ∇)κq+1 + div ((Rq+1 − πq+1Id)ûq+1)

+ divφq+1 − E − div (σq+1(uq+1 − ûq+1)) +
3

2
(∂t + ûq+1 · ∇)︸ ︷︷ ︸
=∂t+(ûq+ŵq+1)·∇

σq+1 −m′
P1

=
(13.15),(13.13)

(∂t + ûq+1 · ∇)κq+1 + div ((Rq+1 − πq+1Id)ûq+1)

+ divφq+1 − E − div(σq+1(uq+1 − ûq+1))︸ ︷︷ ︸
=:divϕP2

+
3

2
(∂t + ûq · ∇)σq+1 −m′

P1︸ ︷︷ ︸
=divϕP1

= (∂t + ûq+1 · ∇)κq+1 + div ((Rq+1 − πq+1Id)ûq+1) + divφq+1︸ ︷︷ ︸
=div(φq+1+ϕP1+ϕP2)

−E . (13.43)

Thus we have verified (5.3), and recalling (11.138), we have that (5.7) is verified as well.

13.4 Pressure current error

In this subsection, we analyze the new pressure current errors ϕP1 and ϕP2 defined in (13.43).
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13.4.1 Pressure current error I

Recalling the definition of ϕm,q+1 from (13.3)–(13.5) and the definition of ϕP1 from (13.37),

we decompose ϕP1 into

ϕP1 =
3

2

q+n̄∑
m=q+n̄/2+1

m∑
m′=q+n̄/2+1

(
Am,qϕ

m′,l
m,q+1 + Am,qϕ

m′,∗
m,q+1

)

=
3

2

q+n̄∑
m′=q+n̄/2+1

(
q+n̄∑
m=m′

Am,qϕ
m′,l
m,q+1 +

q+n̄∑
m=m′

Am,qϕ
m′,∗
m,q+1

)

=:

q+n̄∑
m′=q+n̄/2+1

ϕm
′,l

P1 + ϕm
′,∗

P1 . (13.44)

Lemma 13.4.1 (Properties of ϕP1). For all q + n̄/2+1 ≤ m ≤ q + n̄, the terms ϕm,lP1 and

ϕm,∗P1 satisfy the following properties.

(i) The local part ϕm,lP1 satisfies

∣∣∣ψi,qDNDM
t,qϕ

m,l
P1

∣∣∣ < Γ−80
m (πmq )

3/2r−1
m ΛNmM

(
M,Nind,t, τ

−1
q Γi+18

q ,T−1
q Γ11

q

)
(13.45a)

suppϕm,lP1 ∩B(supp ŵq′ , λ
−1
q′ Γq′) = ∅, q + 1 ≤ q′ ≤ m− 1 (13.45b)

for all N,M < Nfin/200.

(ii) For all N,M ≤ 2Nind, the non-local part ϕm,∗P1 satisfies

∥∥ψi,qDNDM
t,qϕ

m,∗
P1

∥∥
∞ ≲ δ

3/2
q+3n̄T

2Nind,t

q+n̄ ΛNmM
(
M,Nind,t, τ

−1
q ,T−1

q Γ9
q

)
(13.46)

Remark 13.4.2. Applying Lemma A.5.1 to F ℓ = ϕk,lP1 and F ∗ = ϕk,∗P1, for q +
n̄/2+1 ≤ k ≤

q + n̄ we can upgrade the material derivatives in the estimates (13.45a) to obtain that for

N +M ≤ 2Nind,

∣∣ψi,k−1D
NDM

t,k−1ϕ
k
P1

∣∣ < Γ−60
k (πkq )

3/2r−1
k ΛNk M

(
M,Nind,t, τ

−1
k−1Γ

i
k−1,T

−1
k−1

)
. (13.47)
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Proof of Lemma 13.4.1. From the definition (13.11) of Am,q, we have that Am,q ≤ Γ10
m . Re-

calling the definition (13.3) of ϕm
′

m,q+1, it is immediate that ϕm
′

m,q+1 satisfy the same properties

delineated in Lemma 9.4.6 (for the current errors associated to velocity pressure increments),

Lemmas 10.2.5, 10.2.9, and 10.2.13 (for the current errors associated to stress error pres-

sure increments), and Lemmas 11.2.2, 11.2.7, and 11.2.11 (for the current errors associated

to current error pressure increments). Therefore, the lemma follows from the definition

(13.44).

13.4.2 Pressure current error II

Here we deal with the error

divϕP2 = div(σq+1(uq+1 − ûq+1)) .

Recall from (5.4) at level q + 1 that

uq+1 − ûq+1 =

q+n̄∑
q′=q+2

ŵq′ .

By the definition of σq+1 in (13.12) and the dodging properties (13.8a), (13.8b), and (13.15),

we first write

σq+1

q+n̄∑
q′=q+2

ŵq′ =

q+n̄∑
q′=q+n̄/2+1

σq+1ŵq′

=

q+n̄∑
m=q+n̄/2+1

q+n̄∑
q′=m+1

σ̃+
m,q+1ŵq′ +

q+n̄∑
m=q+n̄/2+1

σ̃+
m,q+1ŵm −

q+n̄∑
q′=q+n̄/2+1

σ−
q+1ŵq′ .
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Since div
(
σq+1

∑q+n̄
q′=q+2 ŵq′

)
has zero mean, we recall the identity (5.38) at level q + 1 and

set

ϕq
′

P2 :=

 q′−1∑
m=q+n̄/2+1

(H +R∗)(∇σ̃+
m,q+1 · (divdυ̂q′))


︸ ︷︷ ︸

=:ϕq
′

P21

+ σ̃+
q′,q+1ŵq′︸ ︷︷ ︸
=:ϕq

′
P22

− (H +R∗)(∇σ−
q+1 · (divdυ̂q′))︸ ︷︷ ︸

=:ϕq
′

P23

+

 q′−1∑
m=q+n̄/2+1

R∗(∇σ̃+
m,q+1 · êq′)

−R∗(∇σ−
q+1 · êq′)︸ ︷︷ ︸

=:ϕq
′

P∗

(13.48)

ϕP2 :=

q+n̄∑
q′=q+n̄/2+1

ϕq
′

P2 .

As before, the terms including R∗ are non-local and the rest are local.

Lemma 13.4.3 (Properties of σmP2). For q +
n̄/2 + 1 ≤ m ≤ q + n̄, the error ϕmP2 has no

pressure increment; for N +M ≤ 2Nind, it satisfies

∣∣ψi,m−1D
NDM

t,m−1ϕ
m
P2

∣∣ < Γ−80
m

(
πmq+1

)3/2
r−1
m ΛNmM

(
M,Nind,t, τ

−1
m−1Γ

i+3
m−1,T

−1
m−1Γ

2
m−1

)
.

(13.49)

Proof. We divide the proof up into cases based on the decomposition in (13.48).

Step 1: Estimate of ϕmP22. By (13.9c), the definition of Am,q and σ̃+
m,q+1 in Defini-

tion 13.1.3, Definition 13.1.5, which shows that πmq+1 ≥ σ+
m,q+1 ≥ σ̃m,q+1Γ

−25
m , (5.21c) at

level q + 1 to bound ŵm, and (4.10h) to absorb errant factors of Γm, we have that for
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N +M ≤ 2Nind and q + n̄/2 + 1 ≤ m ≤ q + n̄,

∣∣ψi,m−1D
NDM

t,m−1(σ̃
+
m,q+1ŵm)

∣∣ ≲ ∑
N1+N2=N
M1+M2=M

∣∣ψi,m−1D
N1DM1

t,m−1σ̃
+
m,q+1

∣∣ ∣∣ψi,m−1D
N2DM2

t,m−1ŵm
∣∣

≲ (σ̃+
m,q+1 + δq+3n̄)

(
πmq+1

)1/2
Γq+1r

−1
m−n̄Λ

N
m

×M
(
M,Nind,t, τ

−1
m−1Γ

i
m−1,T

−1
m−1Γ

2
m−1

)
≲ Γ−101

m

(
πmq+1

)3/2
r−1
m ΛNmM

(
M,Nind,t, τ

−1
m−1Γ

i
m−1,T

−1
m−1Γ

2
m−1

)
.

Therefore, ϕmP22 satisfies the desired pointwise estimate.

Step 2: Estimates of ϕq
′

P21, ϕq
′

P23, and ϕq
′

P∗. We first carry out the preliminary step of

upgrading material derivatives on ∇σ±
m,q+1, which will be required for all three terms. We

apply Remark A.2.6 inductively to v = ûm−1, f = ∇σ±
m,q+1, and w = ŵm, . . . , ŵq′−1, and

Ω = supp (ψi,q′−1). The assumptions in the remark are satisfied due to (5.34), Remark 13.1.2,

and (5.32). As a result, we have that for q + n̄/2 + 1 ≤ m ≤ q′ − 1,

∣∣ψi,q′−1D
NDM

t,q′−1∇σ+
m,q+1

∣∣ ≲ (σ+
m,q+1 + δq+3n̄)Λ

N
q′−1M

(
M,Nind,t,Γ

i+3
q′−1τ

−1
q′−1,Γq′−1T

−1
q′−1

)
(13.50a)∣∣ψi,q′−1D

NDM
t,q′−1∇σ+

m,q+1

∣∣ ≲ Γ−100
q+n̄/2π

q+n̄/2
q+1 ΛNq′−1M

(
M,Nind,t,Γ

i+3
q′−1τ

−1
q′−1,Γq′−1T

−1
q′−1

)
(13.50b)

for N,M < Nfin/200. In a similar way, we have

∥∥DNDM
t,q′−1∇σ̃

m,+
q+1

∥∥
∞ ≲ λmΓ

C∞+2
m ΛNq′−1M

(
M,Nind,t, τ

−1
q′−1Γ

imax+3
q′−1 ,T−1

q′−1Γ
−1
q′−1

)
(13.51a)∥∥DNDM

t,q′−1∇σ−
q+1

∥∥
∞ ≲ λq+n̄/2Γ

C∞−50
q+n̄/2 ΛNq′−1M

(
M,Nind,t, τ

−1
q′−1Γ

imax+3
q′−1 ,T−1

q′−1Γ
−1
q′−1

)
(13.51b)

for N,M < Nfin/200 and q+ n̄/2 ≤ m ≤ q+ n̄. The first inequality holds for m+1 ≤ q′ ≤ q+ n̄,

while the second one holds for q + n̄/2 + 1 ≤ q′ ≤ q + n̄.
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Step 2a: We now estimate ϕm
′

P21 by applying Lemma A.3.12 with

G = ∇σ̃+
m,q+1, ϑ = υ̂q′ , π = λmΓ

25
mπ

m
q+1, π′ = Γq+1Γq′(π

q′

q+1)
1/2r−1

q′−n̄ , Mt = Nind,t, v = ûq′−1,

Ω = supp (υ̂q′ψi,q′−1) , λ = λ′ = λmΓm, Υ = λq′ , Λ = λq′Γq′ , ν = Γi+3
q′−1τ

−1
q′−1, ν ′ = T−1

q′−1Γ
2
q′−1,

CG,∞ = λmΓ
C∞+1
m , C∗,∞ = Γq+1Γq′(Γq+1Γ

C∞+1
q′ )

1/2r−1
q′−n̄ , d as in (xvii)/(9.48) ,

M◦ = N◦ = 2Nind , K◦ as in (4.22) , N∗ =M∗ = Nfin/300 .

Then we have that (A.42b) is satisfied due to (5.34) at level q + 1, (A.97a) is satisfied due

to and Definitions 13.1.5 and 13.1.3 and (13.10b), (A.97b) is satisfied due to (5.40) at level

q + 1, all assumptions from item (i) in Part 4 of Proposition A.3.3 are satisfied due to

Remark A.3.4, (A.101a) and (A.101b) are satisfied due to (5.15) at level q + 1, and (A.102)

is satisfied due to (4.23b). Then from (A.100), (4.10h), (xviii), and (5.20) at level q + 1, we

have that for q + n̄/2 + 1 ≤ m ≤ q + n̄ and m+ 1 ≤ q′ ≤ q + n̄ and N +M ≤ 2Nind,

∣∣ψi,q′−1D
NDM

t,q′−1H(∇σ̃m,+q+1 · divdυ̂q′)
∣∣

≲ λmΓ
25
mπ

m
q+1 · λ−1

q′ Γq+1Γq′
(
πq

′

q+1

)1/2

r−1
q′−n̄(λq′Γq′)

NM
(
M,Nind,t,Γ

i+3
q′−1τ

−1
q′−1,T

−1
q′−1Γ

2
q′−1

)
≲ Γ−100

q′

(
πq

′

q+1

)3/2

r−1
q′ (λq′Γq′)

N M
(
M,Nind,t,Γ

i+3
q′−1τ

−1
q′−1,T

−1
q′−1Γ

2
q′−1

)
.

From (A.104) and for the same range of N and M , we also have that

∥∥DNDM
t,q′−1R∗(∇σ̃m,+q+1 · divdυ̂q′)

∥∥
∞ ≲ Γ−100

q+n̄ δ
3
2
q+3n̄(λq+n̄Γq+n̄)

NM
(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1Γ

2
q+n̄−1

)
,

concluding the proof of the desired estimates for ϕq
′

P21.

Step 2b: In the case of ϕq
′

P23, we instead set

G = ∇σ−
q+1, CG,∞ = Γq+1λq+n̄/2Γ

C∞+2
q+n̄/2 , λ = λ′ = λq+n̄/2Γq+n̄/2, π = λq+n̄/2Γ

25
q+n̄/2π

q+n̄/2
q+1 ,
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while the remaining parameters stay the same. Concluding again as before, we have that

∣∣ψi,q′−1D
NDM

t,q′−1H(∇σ−
q+1 · divdυ̂q′)

∣∣
≲ λq+n̄/2Γq+n̄/2π

q+n̄/2
q+1 · λ−1

q′ Γq+1Γq′
(
πq

′

q+1

)1/2

r−1
q′−n̄λ

N
q′M

(
M,Nind,t,Γ

i+3
q′−1τ

−1
q′−1,T

−1
q′−1Γ

2
q′−1

)
≤ Γ−100

q′

(
πq

′

q+1

)3/2

r−1
q′ (λq′Γq′)

N M
(
M,Nind,t,Γ

i+3
q′−1τ

−1
q′−1,T

−1
q′−1Γ

2
q′−1

)
,∥∥DNDM

t,q′−1R∗(∇σ−
q+1 · divdυ̂q′)

∥∥
∞ ≤ Γ−100

q′ δ
3
2

q′+n̄r
−1
q′ λ

N
q′+n̄M

(
M,Nind,t,Γ

i+3
q′+n̄−1τ

−1
q′+n̄−1,T

−1
q′+n̄−1Γ

2
q′+n̄−1

)
,

for q + n̄/2 + 1 ≤ q′ ≤ q + n̄, where the range of N and M are the same as before.

Step 2c: Finally, we must estimate ϕq
′

P∗. By Remark A.3.5 and using (13.51), (5.41), and

(9.93), we have that for N +M ≤ 2Nind,

q+n̄∑
m=q+n̄/2

q+n̄∑
q′=m+1

∥∥DNDM
t,q′−1R∗(∇σ̃m,+q+1 · êq′)

∥∥
∞ +

q+n̄∑
q′=q+⌊n̄/2⌋+1

∥∥DNDM
t,q′−1R∗(∇σ−

q+1 · êq′)
∥∥
∞

≤ Γ−100
q+n̄ δ

3
2
q+2n̄r

−1
q ΛNq′M

(
M,Nind,t, τ

−1
q′+n̄−1,T

−1
q′−1Γ

2
q′−1

)
.

1

13.5 Inductive estimates on the new errors

Lemma 13.5.1 (Inductive pointwise error estimates). The inductive assumptions

(5.21a), (5.21b), and (5.22) are satisfied at level q + 1.

Proof. We recall from (10.104) and (13.40) the definition of the stress error

Rq+1 = Rq+1 +
2

3

(
mϕq+1

+mP1

)
Id =

q+n̄∑
m=q+1

(
Rm
q + Smq+1

)
+

2

3

(
mϕq+1

+mP1

)
Id .

1need δq+2n̄T
3Nind,t
q λ−10

q λq+n̄Γ
C∞+2
q+n̄ Λ5

q+n̄2
Nind,t ≤ Γ−100

q+n̄ δ
3
2
q+2n̄r

−1
q .
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Recall also the definition of

φq+1 = φq+1 + ϕP1 + ϕP2 =

q+n̄∑
m=q+1

(
φmq + ϕ

m

q+1

)
+ ϕP1 + ϕP2

from (11.138), (13.43), (13.44), and (13.48). We therefore define the new current errors ϕkq+1

by

φkq+1 = φ̄kq+1 + ϕkP1 + ϕkP2 .

In order to prove (5.21a) and (5.21b) at level q + 1, we first consider the cases q + 1 ≤ k ≤

q + n̄/2. Recall from Lemma 10.3.2 and Lemma 11.3.2 that

∣∣ψi,k−1D
NDM

t,k−1S
k
q+1

∣∣ ≲ Γ−10
k πkqΛ

N
k M

(
M,Nind,t,Γ

i+19
k−1 τ

−1
k−1,T

−1
k−1Γ

9
k−1

)
∣∣∣ψi,k−1D

NDM
t,k−1ϕ

k

q+1

∣∣∣ ≲ Γ−10
k (πkq )

3/2r−1
k ΛNk M

(
M,Nind,t,Γ

i+19
k−1 τ

−1
k−1,T

−1
k−1Γ

9
k−1

)
,

where the first bound holds for N +M ≤ 2Nind, the second holds for N +M ≤ Nind/4, and

we have used the lower bound on πkq given in (5.17). Then (5.21a) and (5.21b) at level q+1

follow from the definitions recalled at the beginning of the proof, (5.21a) and (5.21b) at level

q, the estimates just recorded, and (13.30).

In the cases when q + n̄/2 + 1 ≤ k ≤ q + n̄, we upgrade the material derivatives in

(13.18a) and (13.19) applying Lemma A.5.1 to F := Skq+1 = Sk,lq+1 + Sk,∗q+1 =: F l + F ∗ and

F := ϕ̄kq+1 = ϕ̄k,lq+1 + ϕ̄k,∗q+1 =: F l + F ∗, obtaining that

∣∣ψi,k−1D
NDM

t,k−1S
k
q+1

∣∣ ≤ Γ−8
k

(
σkq+1 + δk+n̄

)
(λkΓk)

NM
(
M,Nind,t,Γ

i+18
k−1 τ

−1
k−1,T

−1
k−1Γ

−1
k−1

)
(13.52a)∣∣∣ψi,k−1D

NDM
t,k−1ϕ

k

q+1

∣∣∣ ≤ Γ−13
k

(
σkq+1 + 1m=q+n̄Γ

−50
q+n̄π

q+n̄
q + 1m=q+1Γ

−50
q+1π

q+1
q δq+2n̄

)3/2
r−1
k

× (λkΓk)
NM

(
M,Nind,t,Γ

i
k−1τ

−1
k−1,T

−1
k−1Γ

−1
k−1

)
(13.52b)
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for N +M ≤ 2Nind. In addition, recalling the definitions in (13.2), (13.37), and (11.7), and

the estimates given in Lemmas 9.4.4, 10.2.4, 10.2.8, 10.2.12, 11.2.2, 11.2.3, 11.2.4, 11.2.5,

11.2.7, 11.2.8, and 11.2.11, we have that for M ≤ 2Nind,

∣∣∣∣ dMdtM (mϕq+1
+mP1

)∣∣∣∣ ≤ δq+5n̄/2M
(
M,Nind,t, τ

−1
q ,T−1

q+1

)
.

Then, using (13.47), (13.49), Definitions 13.1.3 and 13.1.5, and (13.30), we conclude the

proofs of (5.21a) and (5.21b).

Finally, we note that the nonlocal bounds in (5.22) follow from (13.39), (10.110) from

Lemma 10.3.2, and the estimate just above.
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Appendix A

Appendix and toolkit

A.1 Decoupling lemmas and consequences of the Faà

di Bruno formula

We begin with an Lp decoupling lemma in the spirit of that from [7]. Some adjustments

to the proof are required to treat the cases p ̸= 1, 2,∞ and d ̸= 3, as well as the slight

adjustment to the assumption (A.3) on the high-frequency function, which provides a slight

increase in generality. Note that the first inequality in (A.1) is implied by the second and

the assumption that λ ≥ 2, and so in practice we shall only check the second inequality.

Lemma A.1.1 (Lp decoupling). Let Ndec, κ, λ ≥ 1 be such that

(
2 · 2π

√
d

κ

)
· λ ≤ 2

3
, λNdec+d+1 ·

(
2 · 2π

√
d

κ

)Ndec

≤ 1 . (A.1)

Let p ∈ [1,∞), and for d ≥ 1, let f be a Td-periodic function such that there exists Cf such

that for all 0 ≤ j ≤ Ndec + d+ 1,

∥∥Djf
∥∥
Lp ≤ Cfλj . (A.2)
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Let g be a Td-periodic function and Cg > 0 a constant such that for any cube T of side-length

2π/κ,

κ
d/p ∥g∥Lp(T ) ≤ Cg . (A.3)

Then there exists a dimensional constant C = C(p, d) which is independent of f and g such

that

∥fg∥Lp(Td) ≤ C(p, d)CfCg . (A.4)

Proof of Lemma A.1.1. Let {Tj}j be disjoint cubes of side-length 2π/κ such that

⋃
j

Tj = Td .

For any Lebesgue integrable function h, let

h̄j := −
ˆ
Tj

h(x) dx .

Note that from Jensen’s inequality, we have that

|h̄j|p =

∣∣∣∣∣−
ˆ
Tj

h(x) dx

∣∣∣∣∣
p

≤ −
ˆ
Tj

|h(x)|p dx = |h|pj . (A.5)
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For any x ∈ Tj, we have that

|f(x)|p =
(
|f̄j|+ |f(x)− f̄j|

)p
≤ 2p

(
|f̄j|p + |f(x)− f̄j|p

)
≤ 2p

(
|f̄j|p +

(
sup
x∈Tj

|f(x)− f̄j|

)p)

≤ 2p

(
|f̄j|p +

(
2π

√
d

κ
sup
Tj

|Df |

)p)

≤ 2p|f |pj + 2p

(
2π

√
d

κ

)p

sup
Tj

|Df |p , (A.6)

where in the last line we have used (A.5). Iterating, we obtain

|f(x)|p ≤ 2p|f |pj + 2p

(
2π

√
d

κ

)p(
2p|Df |pj + 2p

(
2π

√
d

κ

)p

sup
Tj

|D2f |p
)

≤
Ndec−1∑
m=0

2(m+1)p

(
2π

√
d

κ

)mp

|Dmf |pj +

(
2 · 2π

√
d

κ

)Ndecp ∥∥DNdecf
∥∥p
L∞ .

Multiplying by g, integrating over Tj, and using (A.3), we obtain1

∥fg∥pLp =
∑
j

ˆ
T j

|fg|p

≤
∑
j

ˆ
Tj

|g|p
Ndec−1∑
m=0

2(m+1)p

(
2π

√
d

κ

)mp

|Dmf |pj +

(
2 · 2π

√
d

κ

)Ndecp ∥∥DNdecf
∥∥p
L∞ Cpg

=
∑
j

−
ˆ
Tj

|g|p
Ndec−1∑
m=0

2(m+1)p

(
2π

√
d

κ

)mp

∥Dmf∥pLp(Tj)
+

(
2 · 2π

√
d

κ

)Ndecp ∥∥DNdecf
∥∥p
L∞ Cpg

≤ (C(d))pCpg
Ndec−1∑
m=0

2(m+1)p

(
2π

√
d

κ

)mp

Cpfλ
mp +

(
2 · 2π

√
d

κ

)Ndecp (
C ′(d)CfλNdec+d+1Cg

)p
≤ (C(d))pCpg2p · 3 · C

p
f + (C ′(d))pCpfC

p
g

=: (C(p, d))pCpfC
p
g . (A.7)

1Note that in the third line, we move the average from |Dmf |p to |g|p. In the fourth line, we used the
assumption (A.3) on g. In the second to last line, we used the assumption (A.1).
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Taking pth roots on both sides concludes the proof.

We now recall the multivariable Faà di Bruno formula (see for example the appendix in

[7]). Let g = g(x1, . . . , xd) = f(h(x1, . . . , xd)), where f : Rm → R, and h : Rd → Rm are Cn

functions. Let α ∈ Nd
0 be such that |α| = n, and let β ∈ Nm

0 be such that 1 ≤ |β| ≤ n. We

then define

p(α, β) =

{
(k1, . . . , kn; ℓ1, . . . , ℓn) ∈ (Nm

0 )
n × (Nd

0)
n : ∃s with 1 ≤ s ≤ n s.t.

|kj|, |ℓj| > 0 ⇔ 1 ≤ j ≤ s, 0 ≺ ℓ1 ≺ . . . ≺ ℓs,

s∑
j=1

kj = β,
s∑
j=1

|kj|ℓj = α

}
.

(A.8)

The multivariable Faà di Bruno formula states that

∂αg(x) = α!
n∑

|β|=1

(∂βf)(h(x))
∑
p(α,β)

n∏
j=1

(∂ℓjh(x))kj

kj!(ℓj!)kj
. (A.9)

Throughout this manuscript, we must estimate only finitely many derivatives. Therefore

we ignore the factorials in (A.9) and absorb them into the implicit constant of the symbol

“≲.” We now recall the following lemma from [7], which gives a useful consequence of the

Faà di Bruno formula.

Lemma A.1.2 (Compositions with flow maps). Given a smooth function f : Rd×R →

R, suppose that for λ ≥ 1 the vector field Φ: Rd × R → Rd satisfies the estimate

∥∥DN+1Φ
∥∥
L∞(supp f)

≲ λN (A.10)

for 0 ≤ N ≤ N∗. Then for any 1 ≤ N ≤ N∗ we have

∣∣DN (f ◦ Φ) (x, t)
∣∣ ≲ N∑

m=1

λN−m |(Dmf) ◦ Φ(x, t)| (A.11)
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and thus trivially we obtain

∣∣DN (f ◦ Φ) (x, t)
∣∣ ≲ N∑

m=0

λN−m |(Dmf) ◦ Φ(x, t)| .

for any 0 ≤ N ≤ N∗.

Many estimates will require estimates for derivatives of products of functions which de-

couple and which are composed with a diffeomorphism.

Lemma A.1.3 (Decoupling with flow maps). Let p ∈ [1,∞], and fix integers N∗ ≥M∗ ≥

Ndec ≥ 1. Fix d ≥ 2 and f : Rd×R → R, and let Φ: Rd×R → Rd be a vector field satisfying

DtΦ = (∂t + v · ∇)Φ = 0. Denote by Φ−1 the inverse of the flow Φ, which is the identity

at a time slice which intersects the support of f . Assume that for some λ, τ−1,T−1 ≥ 1 and

Cf > 0 the function f satisfies the estimates

∥∥DNDM
t f
∥∥
Lp ≲ CfλNM

(
M,Nt, τ

−1,T−1
)

(A.12)

for all N ≤ N∗ and M ≤M∗, and that Φ and Φ−1 are bounded for all N ≤ N∗ by

∥∥DN+1Φ
∥∥
L∞(supp f)

≲ λN (A.13)∥∥DN+1Φ−1
∥∥
L∞(supp f)

≲ λN . (A.14)

Lastly, suppose that there exist ϱ : Td → R and parameters Λ ≥ Υ ≥ µ and Cϱ > 0 such that

for any cube T of side length µ−1,

1

µd/p

∥∥DNϱ
∥∥
Lp(T )

+
∥∥DNϱ

∥∥
Lp(Td)

≲ CϱM (N,Nx,Υ,Λ) (A.15)

for all 0 ≤ N ≤ N∗. If the parameters

λ ≤ µ ≤ Υ ≤ Λ
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satisfy

Λd+1 ≤
(

µ

4π
√
3λ

)Ndec

, (A.16)

and we have

2Ndec + d+ 1 ≤ N∗ , (A.17)

then for N ≤ N∗ and M ≤M∗ we have the bound

∥∥DNDM
t (f ϱ ◦ Φ)

∥∥
Lp ≲ CfCϱM (N,Nx,Υ,Λ)M

(
M,Nt, τ

−1,T−1
)
. (A.18)

Remark A.1.4. We note that if estimate (A.12) is known to hold for N +M ≤ N◦ for some

N◦ ≥ 2Ndec+ d+1 (instead of N ≤ N∗ and M ≤M∗), and if the bounds (A.13)–(A.14) hold

for all N ≤ N◦, then it follows from the method of proof that the bound (A.18) holds for

N +M ≤ N◦ and M ≤ N◦ − 2Ndec − d− 1. The only modification required is that instead

of considering the cases N ′ ≤ N∗ − Ndec − d − 1 and N ′ > N∗ − Ndec − d − 1, we now split

into N ′ +M ≤ N◦ − Ndec − d− 1 and N ′ +M > N◦ − Ndec − d− 1. In the second case we

use that N −N ′′ ≥ N0 −M − Ndec − d− 1 ≥ Ndec, where the last inequality holds precisely

because M ≤ N◦ − 2Ndec − d− 1.

Proof of Lemma A.1.3. SinceDtΦ = 0 we haveDM
t (ϱ◦Φ) = 0. Furthermore, since div v ≡ 0,

we have that Φ and Φ−1 preserve volume. Then using Lemma A.1.2, which we may apply

due to (A.13), we have

∥∥DNDM
t (f ϱ ◦ Φ)

∥∥
Lp ≲

N∑
N ′=0

∥∥∥DN ′
DM
t f D

N−N ′
(ϱ ◦ Φ)

∥∥∥
Lp

≲
N∑

N ′=0

N−N ′∑
N ′′=0

λN−N ′−N ′′
∥∥∥DN ′

DM
t f (DN ′′

ϱ) ◦ Φ
∥∥∥
Lp

≲
N∑

N ′=0

N−N ′∑
N ′′=0

λN−N ′−N ′′
∥∥∥(DN ′

DM
t f
)
◦ Φ−1DN ′′

ϱ
∥∥∥
Lp
. (A.19)
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In (A.19) let us first consider the case N ′ ≤ N∗ − Ndec − d − 1. Due to assumption (A.14),

we may apply Lemma A.1.2, and appealing to (A.12) we have that

∥∥∥Dn
(
(DN ′

DM
t f) ◦ (Φ−1, t)

)∥∥∥
Lp

≲
n∑

n′=0

λn−n
′
∥∥∥(Dn′+N ′

DM
t f) ◦ Φ−1

∥∥∥
Lp

≲ Cf
n∑

n′=0

λn−n
′
λn

′+N ′M
(
M,Nt, τ

−1,T−1
)

≲
(
CfλN

′M
(
M,Nt, τ

−1,T−1
))
λn (A.20)

for all n ≤ Ndec+d+1. This bound matches (A.2), with Cf replaced by CfλN
′M (M,Nt, τ

−1,T−1).

Since the function DN ′′
ϱ satisfies (A.15), we may apply (A.20), the fact that λ ≤ Υ ≤ Λ,

assumption (A.16), and Lemma A.1.1 to conclude that

∥∥∥(DN ′
DM
t f
)
◦ Φ−1DN ′′

ϱ
∥∥∥
Lp

≲ CfλN
′M

(
M,Nt, τ

−1,T−1
)
CϱM (N ′′, Nx,Υ,Λ) .

Inserting this bound back into (A.19) concludes the proof of (A.18) for N ′ ≤ N∗−Ndec−d−1

as considered in this case.

Next, let us consider the case N ′ > N∗ − Ndec − d− 1. Since 0 ≤ N ′ ≤ N , in particular

this implies that N > N∗ − Ndec − d− 1. Using furthermore that N ′′ ≤ N −N ′ and (A.17),

we also obtain that N − N ′′ ≥ N ′ > N∗ − Ndec − d − 1 ≥ Ndec. Then Hölder’s inequality,

the fact that Φ−1 is volume preserving, the Sobolev embedding W d+1,1 ⊂ L∞, the ordering
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Λ ≥ Υ ≥ µ ≥ 1, and assumption (A.16) implies that

λN−N ′−N ′′
∥∥∥(DN ′

DM
t f
)
◦ Φ−1DN ′′

ϱ
∥∥∥
Lp

≲ λN−N ′−N ′′
∥∥∥DN ′

DM
t f
∥∥∥
Lp

∥∥∥DN ′′
ϱ
∥∥∥
L∞

≲ λN−N ′−N ′′CfλN
′M

(
M,Nt, τ

−1,T−1
)
CϱM (N ′′ + d+ 1, Nx,Υ,Λ)

≲ CfCϱM (N,Nx,Υ,Λ)M
(
M,Nt, τ

−1,T−1
)
Λd+1

(
λ

Υ

)N−N ′′

≲ CfCϱM (N,Nx,Υ,Λ)M
(
M,Nt, τ

−1,T−1
)
Λd+1

(
λ

µ

)Ndec

≲ CfCϱM (N,Nx,Υ,Λ)M
(
M,Nt, τ

−1,T−1
)
.

Combining the above estimate with (A.19), we deduce that the bound (A.18) holds also for

N ′ > N∗ − Ndec − d− 1, concluding the proof of the lemma.

A.2 Sums and iterates of operators and commutators

with material derivatives

We first record the following identity for material and spatial derivatives applied to functions

raised to a positive integer power.

Lemma A.2.1 (Leibniz rule with material and spatial derivatives). Let d ≥ 2 be

given, g : Td → R be a smooth function, v : Td × R → Rd a divergence-free vector field,

and set Dt = ∂t + v · ∇, and p ∈ N. Fix M,N ∈ N, and use α = (α1, α2, . . . , αp) and

β = (β1, β2, . . . , βp) to denote multi-indices with |α| = N, |β| = M . Then we have the
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identities

DNDM
t g

p =
∑

{
α,β :

∑p
i=1 αi=N ,∑p

i=1 βi=M

}
(

N

α1, . . . , αp

)(
M

β1, . . . , βp

) p∏
i=1

DαiDβi
t g (A.21a)

pgp−1DNDM
t g = DNDM

t g
p −

∑
α,β :

∑p
i=1 αi=N ,∑p

i=1 βi=M ,
αi+βi<N+M ∀ i



(
N

α1, . . . , αp

)(
M

β1, . . . , βp

) p∏
i=1

DαiDβi
t g .

(A.21b)

We recall [7, Lemma A.10]. We have generalized the statement slightly so that it applies

in Td rather than just T3; in fact the statement and proof should have nothing to do with

the dimension.

Lemma A.2.2. Fix Nx, Nt, N∗ ∈ N, Ω ∈ Td×R a space-time domain, and let v be a vector

field and B a differential operator. For k ≥ 1 and α, β ∈ Nk such that |α| + |β| ≤ N∗, we

assume that we have the bounds

∥∥∥∥∥
(

k∏
i=1

DαiBβi

)
v

∥∥∥∥∥
L∞(Ω)

≲ CvM
(
|α|, Nx, λv, λ̃v

)
M (|β|, Nt, µv, µ̃v) (A.22)

for some Cv ≥ 0, 1 ≤ λv ≤ λ̃v, and 1 ≤ µv ≤ µ̃v. With the same notation and restrictions

on |α|, |β|, let f be a function which for some p ∈ [1,∞] obeys

∥∥∥∥∥
(

k∏
i=1

DαiBβi

)
f

∥∥∥∥∥
Lp(Ω)

≲ CfM
(
|α|, Nx, λf , λ̃f

)
M (|β|, Nt, µf , µ̃f ) (A.23)

for some Cf ≥ 0, 1 ≤ λf ≤ λ̃f , and 1 ≤ µf ≤ µ̃f . Denote

λ = max{λf , λv}, λ̃ = max{λ̃f , λ̃v}, µ = max{µf , µv}, µ̃ = max{µ̃f , µ̃v}.
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Then, for

A = v · ∇

we have the bounds

∥∥∥∥∥Dn

(
k∏
i=1

AαiBβi

)
f

∥∥∥∥∥
Lp(Ω)

≲ CfC|α|
v M

(
n+ |α|, Nx, λ, λ̃

)
M (|β|, Nt, µ, µ̃) (A.24)

≲ CfM
(
n,Nx, λ, λ̃

)
(Cvλ̃)|α|M (|β|, Nt, µ, µ̃)

≲ CfM
(
n,Nx, λ, λ̃

)
M
(
|α|+ |β|, Nt,max{µ, Cvλ̃},max{µ̃, Cvλ̃}

)
(A.25)

as long as n+ |α|+ |β| ≤ N∗. As a consequence, if k = m then (A.25) and an expansion of

the operator (A+B)M imply that for all n+m ≤ N∗,

∥Dn(A+B)mf∥Lp(Ω) ≲ CfM
(
n,Nx, λ, λ̃

)
M
(
m,Nt,max{µ, Cvλ̃},max{µ̃, Cvλ̃}

)
.

(A.26)

A corollary of the previous lemma is the commutator lemma [7, Lemma A.14], which we

now record along with several useful remarks.

Lemma A.2.3. Let p ∈ [1,∞]. Fix Nx, Nt, N∗,M∗ ∈ N, let v be a vector field, let Dt =

∂t + v · ∇ be the associated material derivative, and let Ω be a space-time domain. Assume

that the vector field v obeys

∥∥DNDM
t Dv

∥∥
L∞(Ω)

≲ CvM
(
N + 1, Nx, λv, λ̃v

)
M (M,Nt, µv, µ̃v) (A.27)

for N ≤ N∗ and M ≤M∗. Moreover, let f be a function which obeys

∥∥DNDM
t f
∥∥
Lp(Ω)

≲ CfM
(
N,Nx, λf , λ̃f

)
M (M,Nt, µf , µ̃f ) (A.28)
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for all N ≤ N∗ and M ≤M∗. Denote

λ = max{λf , λv}, λ̃ = max{λ̃f , λ̃v}, µ = max{µf , µv}, µ̃ = max{µ̃f , µ̃v}.

Let m,n, ℓ ≥ 0 be such that n + ℓ ≤ N∗ and m ≤ M∗. Then, we have that the commutator

[Dm
t , D

n] is bounded as

∥∥Dℓ [Dm
t , D

n] f
∥∥
Lp(Ω)

≲ CfCvλ̃vM
(
ℓ+ n,Nx, λ, λ̃

)
M
(
m− 1, Nt,max{µ, Cvλ̃v},max{µ̃, Cvλ̃v}

)
(A.29)

≲ CfM
(
ℓ+ n,Nx, λ, λ̃

)
M
(
m,Nt,max{µ, Cvλ̃v},max{µ̃, Cvλ̃v}

)
.

(A.30)

Moreover, we have that for k ≥ 2, and any α, β ∈ Nk with |α| ≤ N∗ and |β| ≤ M∗, the

estimate

∥∥∥∥∥
(

k∏
i=1

DαiDβi
t

)
f

∥∥∥∥∥
Lp(Ω)

≲ CfM
(
|α|, Nx, λ, λ̃

)
M
(
|β|, Nt,max{µ, Cvλ̃v},max{µ̃, Cvλ̃v}

)
(A.31)

holds.

Remark A.2.4. If instead of (A.27) and (A.28) holding for N ≤ N∗ andM ≤M∗, we know

that both of these inequalities hold for all N+M ≤ N◦ for some N◦ ≥ 1, then the conclusions

of the Lemma hold as follows: the bounds (A.29) and (A.30) hold for ℓ+n+m ≤ N◦, while

(A.31) holds for |α|+ |β| ≤ N◦. We refer to [7] for further discussion.

Remark A.2.5. If the assumption (A.28) is replaced by

∥∥DNDM
t f
∥∥
Lp(Ω)

≲ CfM
(
N − 1, Nx, λf , λ̃f

)
M (M,Nt, µf , µ̃f ) , (A.32)
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whenever 1 ≤ N ≤ N∗, then the conclusion (A.31) instead becomes

∥∥∥∥∥
(

k∏
i=1

DαiDβi
t

)
f

∥∥∥∥∥
Lp(Ω)

≲ CfM
(
|α| − 1, Nx, λ, λ̃

)
M
(
|β|, Nt,max{µ, Cvλ̃v},max{µ̃, Cvλ̃v}

)
(A.33)

whenever |α| ≥ 1. We again refer to [7] for further discussion.

Remark A.2.6. Fix p ∈ [1,∞], Nx, Nt, N∗ ∈ N, and a space-time domain Ω ∈ Td × R.

Define Dt = ∂t+(v ·∇) as in Lemma A.2.3. Suppose that for k ≥ 1 and α, β ∈ Nk such that

|α|+ |β| ≤ N∗, we have the bounds

∥∥∥∥∥
(

k∏
i=1

DαiDβi
t

)
w

∥∥∥∥∥
L∞(Ω)

≲ CwM
(
|α|, Nx, λw, λ̃w

)
M (|β|, Nt, µw, µ̃w) (A.34)

for some Cw ≥ 0, 1 ≤ λw ≤ λ̃w, and 1 ≤ µw ≤ µ̃w. Then, under the assumption (A.27) and

(A.28) in Lemma A.2.3 with M∗ = N∗, we have that for all N,M ≤ N∗,

∥∥DN(Dt + (w · ∇))Mf
∥∥
Lp(Ω)

≲ CfM
(
n,Nx, λ, λ̃

)
M (m,Nt, µ, µ̃) (A.35)

where

λ = max{λf , λv, λw}, λ̃ = max{λ̃f , λ̃v, λ̃w}, µ = max{µf , µv, µw, Cvλ̃v, Cwλ̃w},

µ̃ = max{µ̃f , µ̃v, µ̃w, Cvλ̃v, Cwλ̃w} .

If (A.27) and (A.28) hold for N +M ≤ N∗, as in Remark A.2.4, then (A.35) holds also for

N +M ≤ N∗.

374



A.3 Inversion of the divergence

Proposition A.3.1 (Inverse divergence iteration step). Let n ≥ 2 be given. Fix a

zero-mean Tn-periodic function ϱ and a zero-mean Tn-periodic symmetric tensor field ϑ(i,j)

which are related by ϱ = ∂ijϑ
(i,j). Let Φ be a volume preserving diffeomorphism of Tn. Define

the matrix A = (∇Φ)−1. Given a vector field Gk, we have

Gk(ϱ ◦ Φ) = ∂ℓR
kℓ + Ek (A.36)

where the symmetric stress Rkℓ is given by

Rkℓ = GkAℓi(∂jϑ
(i,j) ◦ Φ) +GℓAki (∂jϑ

(i,j) ◦ Φ)−Gn∂nΦ
mAkiA

ℓ
j(∂mϑ

(i,j) ◦ Φ) , (A.37)

and the error term Ek is given by

Ek = −∂ℓ(GℓAki )(∂jϑ
(i,j) ◦ Φ)− (∂ℓG

k)Aℓi(∂jϑ
(i,j) ◦ Φ) + ∂n(G

ℓAki ∂ℓΦ
m)Anj (∂mϑ

(i,j) ◦ Φ) .

(A.38)

Remark A.3.2 (Linearity with respect to G). From (A.37) and (A.38), it is clear

that the symmetric stress and error term are linear in G; more precisely, each term of

the symmetric stress and error may be written as a product of flow maps, high frequency

functions, and a single component of either G or ∇G. This will be a useful observation when

determining the support properties of the symmetric stresses and error terms.

Proof of Proposition A.3.1. By the definition of A, we have Anℓ ∂kΦ
ℓ = δnk, and the volume-

preserving property of Φ gives the Piola identity ∂nA
n
ℓ = 0. These then imply a useful
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identity (∂ℓφ) ◦ Φ = ∂n(A
n
ℓ (φ ◦ Φ)). Using this, we first get

Gk(ϱ ◦ Φ) = Gk(∂i∂jϑ
(i,j) ◦ Φ) = Gk∂ℓ(A

ℓ
i(∂jϑ

(i,j) ◦ Φ)) = ∂ℓ(G
kAℓi(∂jϑ

(i,j) ◦ Φ))− (∂ℓG
k)Aℓi(∂jϑ

(i,j) ◦ Φ)

= ∂ℓ(G
kAℓi(∂jϑ

(i,j) ◦ Φ) +GℓAki (∂jϑ
(i,j) ◦ Φ))−GℓAki ∂ℓΦ

m(∂m∂jϑ
(i,j)) ◦ Φ

− ∂ℓ(G
ℓAki )(∂jϑ

(i,j) ◦ Φ)− (∂ℓG
k)Aℓi(∂jϑ

(i,j) ◦ Φ) .

In the last equality,the first two terms match the first two terms in ∂ℓR
kℓ, while the last two

terms will go into the error term Ek. To deal with the remaining term, we use

GℓAki ∂ℓΦ
m(∂m∂jϑ

(i,j)) ◦ Φ = GℓAki ∂ℓΦ
m∂n(A

n
j (∂mϑ

(i,j) ◦ Φ))

= ∂n(G
ℓ∂ℓΦ

mAkiA
n
j (∂mϑ

(i,j) ◦ Φ))− ∂n(G
ℓAki ∂ℓΦ

m)Anj (∂mϑ
(i,j) ◦ Φ) .

Indeed, plugging this identity into the second term, we obtain the symmetric stress Rkℓ and

error term Ek. Note that the first term above is symmetric due to the assumed symmetry

of ϑ(i,j).

With the iterative step in hand, we can now state the proposition which contains our

main inverse divergence algorithm. The spirit of the statement and proof is similar to the

corresponding statements and proofs in [7, 35], modulo minor adjustments. After stating

the main proposition, we record a number of useful remarks which follow from the proof.

Proposition A.3.3 (Main inverse divergence operator). Let dimension n ≥ 2 and

Lebesgue exponent p ∈ [1,∞] be free parameters. The remainder of the proposition is com-

posed first of low and high-frequency assumptions, which then produce a localized output

satisfying a number of properties. Finally, the proposition concludes with nonlocal assump-

tions and output.

Part 1: Low-frequency assumptions
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(i) Let G be a vector field and assume there exist a constant CG,p > 0 and parameters

N∗ ≥M∗ ≥ 1 , (A.39)

Mt, and λ, ν, ν
′ ≥ 1 such that

∥∥DNDM
t G

∥∥
Lp ≲ CG,pλNM (M,Mt, ν, ν

′) (A.40)

for all N ≤ N∗ and M ≤M∗.

(ii) Fix an incompressible vector field v(t, x) : R × Tn → Rn and denote its material

derivative by Dt = ∂t+ v · ∇. Let Φ be a volume preserving diffeomorphism of Tn such

that

DtΦ = 0 and ∥∇Φ− Id∥L∞(suppG) ≤ 1/2 . (A.41)

Denote by Φ−1 the inverse of the flow Φ, which is the identity at a time slice which

intersects the support of G. Assume that the velocity field v and the flow functions Φ

and Φ−1 satisfy the bounds

∥∥DN+1Φ
∥∥
L∞(suppG)

+
∥∥DN+1Φ−1

∥∥
L∞(suppG)

≲ λ′N (A.42a)∥∥DNDM
t Dv

∥∥
L∞(suppG)

≲ νλ′NM (M,Mt, ν, ν
′) , (A.42b)

for all N ≤ N∗, M ≤M∗, and some λ′ > 0.

Part 2: High-frequency assumptions

(i) Let ϱ : Tn → R be a zero mean scalar function such that there exists a large positive even

integer d ≫ 1 and a smooth, mean-zero, adjacent-pairwise symmetric tensor potential2

2We use ij for 1 ≤ j ≤ d to denote any number in the set {1, . . . , n}. We refer to Lemma 7.3.3 for the
meaning of adjacent-pairwise symmetric.
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ϑ(i1,...,id) : Tn → R(n
d) such that ϱ(x) = ∂i1 . . . ∂idϑ

(i1...id)(x).

(ii) There exists a parameter µ ≥ 1 such that ϱ and ϑ are (T/µ)n-periodic.

(iii) There exist parameters 1 ≪ Υ ≤ Υ′ ≤ Λ, C∗,p > 0 such that for all 0 ≤ N ≤ N∗ and

all 0 ≤ k ≤ d,

∥∥DN∂i1 . . . ∂ikϑ
(i1,...,id)

∥∥
Lp ≲ C∗,pΥk−dM (N, d− k,Υ′,Λ) . (A.43)

(iv) There exists Ndec such that the above parameters satisfy

λ′, λ≪ µ ≤ Υ ≤ Υ′ ≤ Λ , max(λ, λ′)Υ−2Υ′ ≤ 1 , N∗ − d ≥ 2Ndec + n+ 1 ,

(A.44)

where by in the first inequality in (A.44) we mean that

Λn+1

(
µ

2π
√
3max(λ, λ′)

)−Ndec

≤ 1 . (A.45)

Part 3: Localized output

(i) There exist tensors R and E such that

G ϱ ◦ Φ = divR + E =: div (H (Gϱ ◦ Φ)) + E . (A.46)

We use the notation R = H(Gϱ ◦ Φ) for the symmetric stress.

(ii) The support of R is a subset of suppG ∩ suppϑ.

(iii) There exists an explicitly computable positive integer CH, an explicitly computable func-
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tion r(j) : {0, 1, . . . , CH} → N and explicitly computable tensors

ρβ(j) , β(j) = (β1, β2, . . . , βr(j)) ∈ {1, . . . , n}r(j) ,

Hα(j) , α(j) = (α1, α2, . . . , αr(j), k, ℓ) ∈ {1, . . . , n}r(j)+2

of rank r(j) and r(j) + 2, respectively, all of which depend only on G, ϱ, Φ, n, d, such

that the following holds. The symmetric, localized stress R can be decomposed into a

sum of symmetric, localized stresses as3

Hkℓ(Gϱ ◦ Φ) = Rkℓ =

CH∑
j=0

Hα(j)ρβ(j) ◦ Φ . (A.47)

Furthermore, we have that

suppHα(j) ⊆ suppG , supp ρβ(j) ⊆ suppϑ . (A.48)

(iv) For all N ≤ N∗ − d/2, M ≤M∗, and j ≤ CH, we have the subsidiary estimates4

∥∥DNρβ(j)
∥∥
Lp ≲ C∗,pΥ−2Υ′M (N, 1,Υ′,Λ) (A.49a)∥∥DNDM

t H
α(j)
∥∥
Lp ≲ CG,p (max(λ, λ′))

N M (M,Mt, ν, ν
′) . (A.49b)

(v) For all N ≤ N∗ − d/2 and M ≤M∗, we have the main estimate

∥∥DNDM
t R
∥∥
Lp ≲ CG,pC∗,pΥ′Υ−2M (N, 1,Υ′,Λ)M (M,Mt, ν, ν

′) (A.50)

3The contraction is on the first r(j) indices, and the resulting rank two tensor is symmetric.
4In fact it is clear from the algorithm that as j increases, the estimates become much stronger. For

simplicity’s sake we simply record identical estimates for each term which are sufficient for our aims.
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(vi) For N ≤ N∗ − d/2 and M ≤M∗ the error term E in (A.46) satisfies

∥∥DNDM
t E

∥∥
Lp ≲ CG,pC∗,pmax(λ, λ′)

d/2
(
Υ′Υ−2

)d/2
ΛNM (M,Mt, ν, ν

′) . (A.51)

Part 4: Nonlocal assumptions and output

(i) Let N◦,M◦ be integers such that

1 ≤M◦ ≤ N◦ ≤ M∗/2 , (A.52)

and let K◦ be a positive integer.5 Assume that in addition to the bound (A.42b) we

have the following global lossy estimates

∥∥DN∂Mt v
∥∥
L∞ ≲ Cvλ′Nν ′M (A.53)

for all M ≤M◦ and N +M ≤ N◦ +M◦, where

Cvλ′ ≲ ν ′ . (A.54)

(ii) Assume that d is large enough so that

CG,pC∗,pmax(λ, λ′)
d/4(Υ′Υ−2)

d/4Λn+2+K◦

(
1 +

max{ν ′, CvΛ}
ν

)M◦

≤ 1 . (A.55)

Then we may write

E = divRnonlocal +

 
T3

Gϱ ◦ Φ dx =: div (R∗(Gϱ ◦ Φ)) +
 
T3

Gϱ ◦ Φ dx , (A.56)

5K◦ serves as an extra amplitude gain which will be used later to eat some material derivative losses.
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where Rnonlocal = R∗(Gϱ ◦ Φ) is a traceless symmetric stress which satisfies

∥∥DNDM
t Rnonlocal

∥∥
L∞ ≤ 1

ΛK◦
max(λ, λ′)

d/4(Υ′Υ−2)
d/4ΛNνM (A.57)

for N ≤ N◦ and M ≤M◦.

Remark A.3.4 (Lossy derivatives on v and estimates for Rnonlocal). Let us specify

the estimates we expect to obtain from (A.57) for the nonlocal error term Rnonlocal. For our

applications, we need to choose parameters so that the estimate reads

∥∥DNDM
t Rnonlocal

∥∥
L∞ ≤ λ−10

q+n̄δ
2
q+3n̄T

4Nind,t

q+n̄ λNq+n̄τ
−M
q (A.58)

for N,M ≤ 2Nind. We therefore choose N◦ = M◦ = 2Nind, and since in applications M∗ will

be at least Nfin/10000, we have from (4.24a) that M◦ ≤ N◦ ≤ M∗/2. Next, we choose K◦ large

enough so that λ−K◦
q ≤ δ2q+3n̄T

4Nind,t

q+n̄ λ−100
q+n̄ , which follows from (4.22). The lossy estimates

in (A.53) follow from the inductive assumption (5.35b) with Cv = Λ
1/2
q ; note that (A.54) is

precisely (4.15). Finally, the inequality in (A.55) will be a consequence of our choices of

λ, λ′,Υ′,Υ, which from (4.10d) give a gain of at least Γ
−⌊d/40⌋
q , and (4.23b).

Remark A.3.5 (Special case for negligible error terms). The inverse divergence oper-

ator defined in the proposition can be applied to an input without the structure of low and

high frequency parts when ϱ = 1 and CG,p are sufficiently small. More precisely, we keep the

low-frequency assumption (Part 1), replace the high-frequency assumptions (Part 2) with

ϱ = 1, and set Υ = Υ′ = Λ = max(λ, λ′), C∗,p = 1, d = 0. 6 Then, as long as CG,p is small

enough to satisfy (A.55), the conclusions in Part 4 hold. In particular, we have that

G = divR∗G+

 
T 3

Gdx .

Note that R∗G = RG in the special case, where R is the usual inverse divergence operator

6Since we do not need decoupling, µ does not need to be specified.
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defined in (A.80).

Remark A.3.6 (High frequency part of the output as a potential). In order to obtain

the conclusions in Remarks 10.2.2, 10.2.7, and 10.2.11, we need to write ρβ(j) as a potential.

This can be done if the potentials ϑ(i1,··· ,id) used in the application of the inverse divergence

in Section 10 can be written as ϑ(i1,··· ,id) = ∂id+1···i2dθ
(id+1,··· ,i2d), where θ satisfies

∥∥DNdivkθ(i1,··· ,i2d)
∥∥
Lp ≲ C∗,pΥk−2dM (N, 2d− k,Υ′,Λ)

for 0 ≤ k ≤ 2d and N ≤ N∗. This is easily ensured by initially choosing ϱ as ϱ =

∂i1···i2dθ
(i1,··· ,i2d), where we save half of the divergences for later to enable the application

of the inverse divergence algorithm a second time in Section 11. Since the inverse divergence

algorithm shows that ρβ(j) consists of spatial derivatives and divergences of ϑ, it is clear that

ρβ(j) can be written in potential form as ρβ(j) = ∂id+1···id+k
θ
(id+1,··· ,ik,β(j))

for some potential

θ
(id+1,··· ,ik,β(j))

. Furthermore, we have

∥∥∥DN∂id+1···id+k
θ
(id+1,··· ,id+k,β(j))

∥∥∥
Lp

≲ C∗,p(Υ−2Υ′)Υk−dM (N, d− k + 1,Υ′,Λ)

for 0 ≤ k ≤ d and N ≤ N∗ − d/2.

Remark A.3.7 (Mean of the error term). We claim that the mean ⟨G(ϱ ◦ Φ)⟩ satisfies

∣∣∣∣ dMdtM ⟨G(ϱ ◦ Φ)⟩
∣∣∣∣ ≤ Λ−K◦(max(λ, λ′)Υ−1)

3
4
dM (M,Mt, ν, ν

′)

forM ≤M◦. To see this, first note that since v is incompressible, dM

dtM
⟨G(ϱ◦Φ)⟩ = ⟨(DM

t G)(ϱ◦

Φ)⟩. Then using Lemma A.1.1 with (A.45), (A.40), (A.42a), (A.43), and (A.55), we have
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the desired estimate

∣∣∣∣ ˆ
T3

(DM
t G)(ϱ ◦ Φ)dx

∣∣∣∣ = ∣∣∣∣ ˆ
T3

(DM
t G) ◦ Φ−1divdϑdx

∣∣∣∣ = ∣∣∣∣ˆ
T3

∂(i1,··· ,id)((D
M
t G) ◦ Φ−1)ϑ(i1,··· ,id)dx

∣∣∣∣
≲
∥∥∂(i1,··· ,id)((DM

t G) ◦ Φ−1)
∥∥
1

∥∥ϑ(i1,··· ,id)
∥∥
1

≲ CG,pC∗,p(max(λ, λ′))dΥ−dM (M,Mt, ν, ν
′)

≤ Λ−K◦(max(λ, λ′)Υ−1)
3
4
dM (M,Mt, ν, ν

′) .

Inn particular, under the same choice of parameters suggested in Remark A.3.4, we have

∣∣∣∣ dMdtM ⟨G(ϱ ◦ Φ)⟩
∣∣∣∣ ≤ λ−10

q+n̄δ
2
q+3n̄T

4Nind,t

q+n̄ τ−Mq

for M ≤ 2Nind.

Remark A.3.8 (Inverse divergence for scalar fields). Adjusting the above proposition

so that G is a scalar field and the output is a vector field is simple; one can make the

substitution G →

G, 0, . . . , 0︸ ︷︷ ︸
n−1 0′s

, apply the Proposition to the newly constructed vector

field, and take the first row or column of the symmetric stress as the output.

Remark A.3.9 (Inverse divergence with pointwise bounds). Let us consider the

setting in which all the inductive assumptions from the proposition hold, or are adjusted

according to Remark A.3.8, but we know in addition that there exists a smooth, non-negative

function π such that

∣∣DNDM
t G

∣∣ ≲ πλNM (M,Mt, ν, ν
′) . (A.59)

for N ≤ N∗ and M ≤ M∗. Then it is clear from the algorithm utilized in the proof that we

may additionally conclude that

∣∣DNDM
t H

α(j)
∣∣ ≲ π (max(λ, λ′))

N M (M,Mt, ν, ν
′) (A.60)
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for N ≤ N∗ − ⌊d/2⌋ and M ≤M∗.

Remark A.3.10 (Avoiding abuses of notations). Proposition A.3.3, and indeed many

of the other “abstract nonsense” lemmas and propositions in the manuscript, are written

using generic notations such as λ, CG,3/2, etc. Application of the lemma or proposition then

requires specification of values for these various inputs. Occasionally several such lemmas or

propositions will be applied in succession; for example, repeated applications of the inverse

divergence as in Corollary A.3.11. In such situations, we shall add bars above all symbols in

the statements of the “abstract nonsense” lemmas, and then specify an input for the “bar

variable.” For example, applying Proposition A.3.3 to a term from the sum in (A.47) (which

has the same form as the input of the inverse divergence, just with different parameters!)

would be done using the parameter choices CG,p = CG,p, λ = max(λ, λ′), C∗,p = C∗,pΥ−2Υ′,

and N∗ = N∗ − ⌊d/2⌋, which are all valid choices due to (A.49).

Proof of Proposition A.3.3. We divide the proof into four steps. First, we collect some simple

preliminary bounds. Next, we apply Proposition A.3.1 the first time and show that an error

term is produced which obeys the estimates required in (A.50). Afterwards we indicate

how to apply the algorithm ⌊d/2⌋ − 1 more times to produce R and E obeying (A.50) and

(A.51), respectively. By construction, both R and E will be supported in suppG∩suppϑ◦Φ.

The support property for R and the conclusions in (A.47), (A.49), (A.50), and (A.51) will be

proven along the way. Finally, we outline how to obtain the bounds in (A.57) for the nonlocal

portion of the inverse divergence. The entire proof follows closely the method of proof of [7,

Proposition A.18], the main differences being the slight adjustment to the iteration step due

to the difference between Proposition A.3.1 and [7, Proposition A.17], and the slightly more

general assumption in (A.43) compared to [7, A.69]. The only significant difference to the

conclusion is that the amplitude gain is Υ′Υ−2, cf. (A.50) compared to [7, A.73].
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Step 1: An application of Lemma A.2.3, or more precisely Remark A.2.5, yields

∥∥∥DN ′′
DM
t D

N ′
DΦ
∥∥∥
L∞(suppG)

≲ λ′N
′+N ′′M (M,Mt, ν, ν

′) (A.61)

whenever N ′ +N ′′ ≤ N∗ and M ≤M∗. We similarly obtain

∥∥∥DN ′′
DM
t D

N ′
(DΦ)−1

∥∥∥
L∞(suppG)

≲ λ′N
′+N ′′M (M,Mt, ν, ν

′) (A.62)

from the Fa’a di Bruno formula (A.9), the formula for matrix inversion in B1/2(Id), the

Liebniz rule, and (A.61). Another application of Lemma A.2.3 yields

∥∥∥DN ′′
DM
t D

N ′
G
∥∥∥
Lp

≲ CG,pλN
′+N ′′M (M,Mt, ν, ν

′) (A.63)

whenever N ′ +N ′′ ≤ N∗ and M ≤M∗. These preliminary bounds are similar to those from

the beginning of the proof of [7, Proposition A.18], and we refer there for further details.

Step 2: For notational purposes, let ϱ(0) = ϱ and ϱ
(i1,...,id)
(d) = ϑ(i1,...,id), and for 1 ≤

k < d let ϱ
id−k+1,...,id
(k) = ∂i1 . . . ∂id−k

ϑ(i1,...,id). Then ϱ(k−1) = divϱ(k) (assuming contraction

along the proper index, which we omit in a slight abuse of notation), and for any “pairwise

permutation”7 σ : {d − k + 1, . . . , d} → {d − k + 1, . . . , d}, ϱid−k+1,...,id
(k) = ϱ

iσ(d−k+1),...,iσ(d)

(k) , so

that ϱ(k) is pairwise symmetric. We also define G(0) = G. Since ρ(0) = divdivρ(2) where ρ(2)

is pairwise symmetric, we deduce from Proposition A.3.1, identities (A.36)–(A.38) that

Gk
(0)ϱ(0) ◦ Φ = ∂ℓR

kℓ
(0) +Gijkm

(1) ∂mϱ
(i,j)
(2) ◦ Φ . (A.64)

The symmetric stress R(0) is given by

Rkℓ
(0) =

(
Gk

(0)A
ℓ
iδmj +Gℓ

(0)A
k
i δmj −Gn∂nΦ

mAkiA
ℓ
j

)︸ ︷︷ ︸
=:Sijkℓm

(0)

(∂mϱ
(i,j)
(2) ) ◦ Φ , (A.65)

7We refer again to Lemma 7.3.3 for the meaning of this.
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and the error terms are given by

Gijkm
(1) = −∂ℓ(Gℓ

(0)A
k
i )δjm − ∂ℓG

k
(0)A

ℓ
iδjm + ∂n(G

ℓ
(0)A

k
i ∂ℓΦ

m)Anj , (A.66)

where as before we denote (∇Φ)−1 = A. We first show that the symmetric stress Rkℓ
(0) defined

in (A.65) satisfies the estimate (A.50). First, we note that from (i) and (ii), the function

∂mϱ
(i,j)
(2) has zero mean, is (T/µ)3 periodic, and satisfies

∥∥∥DN∂mϱ
(i,j)
(2)

∥∥∥
Lp

≲ C∗,pΥ−2Υ′M (N, 1,Υ′,Λ) (A.67)

for N ≤ N∗− 1, in view of (A.43). Second, we note that since DtΦ = 0, material derivatives

may only land on the components of the 5-tensor S(0). Third, the components of the 5-tensor

S(0) are sums of terms which are linear in G(0) and multilinear in A and DΦ. In particular,

due to our assumption (A.40) and the previously established bounds in (A.61) and (A.62),

upon applying the Leibniz rule, we obtain that

∥∥DNDM
t S(0)

∥∥
Lp ≲ CG,pmax(λ, λ′)NM (M,Mt, ν, ν

′) (A.68)

for N ≤ N∗ and M ≤ M∗. Having collected these estimates, the Lp norm of the space-

material derivatives of R(0) is obtained from Lemma A.1.3. As dictated by (A.65) we apply

this lemma with f = S(0) and φ = ∂mϱ
(i,j)
(2) . Due to (A.68), the bound (A.12) holds with

Cf = CG and a spatial derivative cost of max(λ, λ′). Due to (A.42a), the assumptions

(A.13) and (A.14) are verified. Next, due to (A.67), the assumption (A.15) is verified, with

Nx = 1 and Cφ = C∗,pΥ−2Υ′Λα. Lastly, assumption (A.45) verifies the condition (A.16) of

Lemma A.1.3. Thus, applying estimate (A.18) we deduce that

∥∥DNDM
t R(0)

∥∥
Lp ≲ CG,pC∗,pΥ−2Υ′M (N, 1,Υ′,Λ)M (M,Mt, ν, ν

′) (A.69)
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for all N ≤ N∗ − 1 and M ≤ M∗, which is precisely the bound stated in (A.50). Here we

have used that N∗ ≥ 2Ndec + n+ 1, which gives that (A.17) is satisfied.

Step 3: To continue the iteration, we first analyze the second term in (A.64). The point

is that this term has the same structure as what we started with; for every fixed i, j,m, we

may replace Gk
(0) by G

ijkm
(1) , and we replace ϱ(0) with ∂mϱ

(i,j)
(2) ; the only difference is that the

bounds for this term are better. Indeed, from (A.66) we see that the 4-tensor G(1) is the sum

of various entries from the tensors DG(0) ⊗ A and DG(0) ⊗ A⊗ A⊗DΦ. Recalling (A.61),

(A.62), and (A.63) and using the Leibniz rule, we deduce that

∥∥∥DN ′′
DM
t D

N ′
Gijkm

(1)

∥∥∥
Lp

≲ CG,pmax(λ, λ′)N
′+N ′′+1M (M,Mt, ν, ν

′) (A.70)

for N ′ + N ′′ ≤ N∗ − 1 and M ≤ M∗. The only caveat is that the bounds hold for one

fewer spatial derivative. In order to iterate Proposition A.3.1, for simplicity we ignore the

i, j, k,m indices, since the argument works in exactly the same way in each case. Specifically,

we write Gijkm
(1) simply as Gk

(1), and for the sake of convenience we suppress indices on the

tensors Dϱ(k) and use D as a stand-in for ∂m. We first note that Dϱ(2) = divdiv
(
Dϱ(4)

)
,

where Dϱ(4) is a symmetric 2-tensor once both indices have been specified on the left-hand

side of the equality for Dϱ(2). Thus, using identities (A.36)–(A.38) and (in a slight abuse of

notation) reusing the indices we previously tossed away, we obtain that the second term in

(A.64) may be written as

Gk
(1)(Dϱ(2)) ◦ Φ = ∂ℓR

kℓ
(1) +Gijkm

(2) (∂mDϱ
(i,j)
(4) ) ◦ Φ (A.71)

where the symmetric stress R(1) is given by

Rkℓ
(1) =

(
Gk

(1)A
ℓ
iδmj +Gℓ

(1)A
k
i δmj −Gn

(1)∂nΦ
mAkiA

ℓ
j

)︸ ︷︷ ︸
=:Sijkℓm

(1)

(∂mDϱ
(i,j)
(4) ) ◦ Φ , (A.72)
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the error terms are computed as

Gijkm
(2) = −∂ℓ(Gℓ

(1)A
k
i )δjm − ∂ℓG

k
(1)A

ℓ
iδjm + ∂n(G

ℓ
(1)A

k
i ∂ℓΦ

m)Anj . (A.73)

We emphasize that by combining (A.65) and (A.66) with (A.72) and (A.73), we may compute

the tensors S(1) and G(2) explicitly in terms of just space derivatives of G, DΦ, and A. Using

a similar argument to the one which was used to prove (A.68), but by appealing to (A.70)

instead of (A.63), we deduce that for N ≤ N∗ − 1 and M ≤M∗,

∥∥DNDM
t S(1)

∥∥
Lp ≲ CG,pmax(λ, λ′)N+1M (M,Mt, ν, ν

′) . (A.74)

Using the bound (A.74) and the estimate

∥∥DN(∂mDϱ(4))
∥∥
Lp ≲ C∗,pΥ−4Υ′2M (N, 2,Υ′,Λ) ,

which is a consequence of (A.43), we may deduce from Lemma A.1.3 that

∥∥DNDM
t R(1)

∥∥
Lp ≲ CG,pC∗,pmax(λ, λ′)(Υ−2Υ′)2M (N, 2,Υ′,Λ)M (M,Mt, ν, ν

′) (A.75)

for N ≤ N∗ − 2 and M ≤ M∗, which is an estimate that is even better than (A.69), aside

from the fact that we have lost a spatial derivative. This shows that the first term in (A.71)

satisfies the expected bound. The low-frequency portion of the second term in (A.71) may

in turn be shown to satisfy

∥∥∥DN ′′
DM
t D

N ′
Gijkm

(2)

∥∥∥
Lp

≲ CG,pmax(λ, λ′)2+N
′+N ′′M (M,Mt, ν, ν

′) (A.76)

for N ′ +N ′′ ≤ N∗ − 2 and M ≤M∗.

At this point there is a clear roadmap for iterating this procedure ⌊d/2⌋ times, where the

limit on the number of steps comes from that fact that ϱ(k) is only defined for 0 ≤ k ≤ d, and
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each step in the iteration increases the value of k by 2. Without spelling out these details,

the iteration procedure described above produces

G(0)ϱ(0) ◦ Φ =

⌊d/2⌋−1∑
k=0

divR(k) +G(⌊d/2⌋) :
(
D⌊d/2⌋ϱ(2⌊d/2⌋)

)
◦ Φ︸ ︷︷ ︸

=:E

(A.77)

where each of the ⌊d/2⌋ symmetric stresses satisfies

∥∥DNDM
t R(k)

∥∥
Lp ≲ CG,pC∗,pmax(λ, λ′)k

(
Υ−2Υ′)k+1

ΛNM (M,Mt, ν, ν
′) (A.78)

for N ≤ N∗ − k − 1 and M ≤ M∗. Furthermore, the formulae in (A.47) and (A.48) can

be computed explicitly from the algorithm already detailed above by keeping track of the

high-low product structure of each term in each R(k) and Remark A.3.2, although we forego

the details. The subsidiary estimates are precisely those from (A.67) and (A.68), which are

immediate for the terms from the first step of the parametrix expansion, and which follow for

the higher order terms by transferring the amplitude gains from the high-frequency function

onto the low-frequency function, and using (A.44). Each component of the the error tensor

G(⌊d/2⌋) in (A.77) is recursively computable solely in terms of G, DΦ, and A and their spatial

derivatives and satisfies

∥∥∥DN ′′
DM
t D

N ′
G(⌊d/2⌋)

∥∥∥
Lp

≲ CG,pmax(λ, λ′)⌊
d/2⌋+N ′+N ′′M (M,Mt, ν, ν

′) (A.79)

for N ′ + N ′′ ≤ N∗ − ⌊d/2⌋ and M ≤ M∗. Lastly, a final application of Lemma A.1.3, which

is valid due to with (A.79) and the assumption N∗ − d ≥ 2Ndec + n+1, shows that estimate

(A.51) holds.

Step 4: Finally, we turn to the proof of (A.56) and (A.57). Recall that E is defined by

the second term in (A.77), and thus
ffl
Tn Gϱ ◦ Φdx =

ffl
Tn Edx. Using the standard nonlocal
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inverse-divergence operator

(Rf)ij = −1

2
∆−2∂i∂j∂kf

k − 1

2
∆−1∂kδijf

k +∆−1∂iδjkf
k +∆−1∂jδikf

k (A.80)

we may define

Rnonlocal = RE .

By the definition ofR we have thatRnonlocal is traceless, symmetric, and satisfies divRnonlocal =

E −
ffl
Tn Edx, i.e. (A.56) holds.

Using the formulas in (A.224a), (A.224b), the assumption (A.53), and the fact that D

and ∂t commute with R, we deduce that for every N ≤ N◦ and M ≤M◦ we have

∥∥DNDM
t Rnonlocal

∥∥
L∞ ≲

∑
M ′≤M

N ′+M ′≤N+M

M−M ′∑
K=0

CKv (λ′)N−N ′+Kν ′−(M−M ′−K)
∥∥∥DN ′

∂M
′

t RE
∥∥∥
L∞

≲
∑
M ′≤M

N ′+M ′≤N+M

(λ′)N−N ′
ν ′−(M−M ′)

∥∥∥DN ′
∂M

′

t E
∥∥∥
L∞

(A.81)

where in the last inequality we have used that by assumption Cvλ′ ≲ ν ′−1, and thatR : Lp(Tn) →

Lp(Tn) is a bounded operator.

Our goal is to appeal to estimate (A.26) in Lemma A.2.2, with A = −v · ∇, B = Dt and

f = E in order to estimate the L∞ norm of DN ′
∂M

′
t E = DN ′

(A + B)M
′
E. First, we claim

that v satisfies the lossy estimate

∥∥DNDM
t v
∥∥
L∞ ≲ Cvλ′Nν ′−M (A.82)

for M ≤ M◦ and N + M ≤ N◦ + M◦. This estimate does not follow immediately from

either (A.42b) or (A.53). For this purpose, we apply Lemma A.2.2 with f = v, B = ∂t,

A = v · ∇, and p = ∞. Using (A.53), and the fact that B = ∂t and D commute, we
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obtain that bounds (A.22) and (A.23) hold with Cf = Cv, λv = λ̃v = λf = λ̃f = λ′, and

µv = µ̃v = µf = µ̃f = ν ′−1. Since A + B = Dt, we obtain from the bound (A.26) and the

assumption Cvλ′ ≲ ν ′−1 that (A.82) holds.

Second, we claim that for any k ≥ 1 we have

∥∥∥∥∥
(

k∏
i=1

DαiDβi
t

)
v

∥∥∥∥∥
L∞(suppG)

≲ Cvλ′|α|ν ′|β| (A.83)

whenever |β| ≤ M◦ and |α| + |β| ≤ N◦ + M◦. To see this, we use Lemma A.2.3 with

f = v, p = ∞, and Ω = suppG. From (A.42b) we have that (A.27) holds with Cv = ν/λ′,

λv = λ̃v = λ′, µv = ν, and µ̃v = ν ′. On the other hand, from (A.82) we have that (A.28)

holds with Cf = Cv, λf = λ̃f = λ′, and µf = µ̃f = ν ′−1. We then deduce from (A.31) that

(A.83) holds.

Third, we claim that

∥∥∥∥∥
(

k∏
i=1

DγiDβi
t

)
E

∥∥∥∥∥
L∞(suppG)

≲ CG,pC∗,pmax(λ, λ′)⌊
d/2⌋(Υ′Υ−2)⌊

d/2⌋Λ|γ|+n+1M (|β|,Mt, ν, ν
′)

(A.84)

holds whenever |γ| ≤ N∗ − ⌊d/2⌋ − n − 1 and |β| ≤ M∗. This estimate again follows from

Lemma A.2.3, this time with f = E, by appealing to the previously established bound (A.51)

and the Sobolev embedding W n+1,1(Tn) ↪→ L∞(Tn).

At last, we are in the position to apply Lemma A.2.2. The bound (A.83) implies that as-

sumption (A.22) holds with B = Dt, λv = λ̃v = λ′, and µv = µ̃v = ν ′. The bound (A.84) im-

plies that assumption (A.23) of Lemma A.2.2 holds with Cf = CG,pC∗,pmax(λ, λ′)⌊d/2⌋(Υ′Υ−2)⌊d/2⌋Λn+1,

λf = λ̃f = Λ, µf = ν, and µ̃f = ν ′. We may now use estimate (A.26), and the assumption

that Λ ≥ λ, λ′ to deduce that

∥∥∥DN ′
∂M

′

t E
∥∥∥
L∞

≲ CG,pC∗,pmax(λ, λ′)⌊
d/2⌋(Υ′Υ−2)⌊

d/2⌋ΛN
′+n+1(max{CvΛ, ν ′})M

′
(A.85)
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holds whenever M ′ ≤M◦ and N
′+M ′ ≤ N◦+M◦. Combining (A.81) and (A.85) we deduce

that

∥∥DNDM
t Rnonlocal

∥∥
L∞ ≲ CG,pC∗,pmax(λ, λ′)⌊

d/2⌋(Υ′Υ−2)⌊
d/2⌋Λn+1

×
∑
M ′≤M

N ′+M ′≤N+M

λ′N−N ′
ν ′−(M−M ′)ΛN

′
(max{CvΛ, ν ′})M

′

≲ CG,pC∗,pmax(λ, λ′)⌊
d/2⌋(Υ′Υ−2)⌊

d/2⌋ΛN+n+1(max{CvΛ, ν ′})M (A.86)

whenever N ≤ N◦ and M ≤ M◦. Estimate (A.57) follows by appealing to the assumption

(A.55).

Observe that in the proof of Proposition A.3.3, ρβ(j) consists of∇ϱ(2),∇2ϱ(4), · · · ,∇⌊d/2⌋ϱ2⌊d/2⌋;

recall that ϱ(0) = ϱ = divdϑ and ϱ(k−1) = divϱ(k) = divd−(k−1)ϑ. Keeping this in mind, when

ϱ is given as div(2d)
2

ϑ, we can apply the proposition iteratively to get

G(ρ ◦ Φ) = divdR + E.

The details are described in the following corollary. Since this operator will be applied to

velocity increments, some of the adjustments are specified for this particular application.

Corollary A.3.11 (Iterated inverse divergence for scalar fields). We suppose that the

same assumptions hold as in Proposition A.3.3 together with Remark A.3.8 except for the

following substitutions.

(i) Fix Ndec, N∗,M∗d ≥ 1 such that d is even and N∗ − d2 ≥ 2Ndec + n+1+M∗ (replacing

(A.39) and the last inequality in (A.44)).

(ii) ϱ is given as an iterated divergence ϱ = div(d
2)ϑ̃ (replacing (i)).

(iii) There exist parameters 1 ≪ Υ ≤ Υ′ = Λ and C∗,p > 0 such that for all 0 ≤ N ≤ N∗
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and all 0 ≤ k ≤ d2, (A.43) is replaced with

∥∥∥DN∂i1 . . . ∂ik ϑ̃
(i1,...,id2 )

∥∥∥
Lp

≲ C∗,pΥk−d2Υ′N . (A.87)

Additionally, we assume that there exists a smooth, non-negative function π such that

∣∣DNDM
t G

∣∣ ≲ π
1
2 r

− 1
3

G λNM (M,Mt, ν, ν
′) (A.88)

for N ≤ N∗ and M ≤M∗. Then, we have that

G(ϱ ◦ Φ) = divdR + E (A.89)

for a rank dpot tensor R and error E satisfying the following properties.

(i) The support of R is a subset of suppG ∩ supp (ϑ̃ ◦ Φ), and hence so is the support of

E.

(ii) There exists an explicitly computable positive integer CH , an explicitly computable func-

tion r(j) : {0, 1, . . . , CH} and explicitly computable tensors

ρβ(j) , β(j) = (β1, β2, . . . , βr(j)) ∈ {1, . . . , n}r(j) ,

Hα(j) , α(j) = (α1, α2, . . . , αr(j)) ∈ {1, . . . , n}r(j)+d ,

of rank r(j) and r(j)+d, respectively, all of which depend only on G, ϱ,Φ, n, d such that

the following holds. The localized stress R can be decomposed into a sum of localized

stresses as

R =

CH∑
j=0

Hα(j)(ρβ(j) ◦ Φ) .
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Furthermore, we have that

suppHα(j) ⊆ suppG , supp ρβ(j) ⊆ supp ϑ̃ . (A.90)

(iii) We have the subsidiary estimates

∥∥DNρβ(j)
∥∥
Lp ≲ C∗,p(Υ−2Υ′)dΛN (A.91a)

for all N ≤ N∗ − d2 and j ≤ CH, and∥∥∥∥∥
k∏
i=1

DαiDβi
t H

α(j)

∥∥∥∥∥
Lp

≲ CG,p (max(λ, λ′))
|α| M (|β|,Mt, ν, ν

′) (A.91b)∣∣∣∣∣
k∏
i=1

DαiDβi
t H

α(j)

∣∣∣∣∣ ≲ π
1
2 r−

1
3 (max(λ, λ′))|α|M (|β|,Mt, ν, ν̃) . (A.91c)

for all integer k ≥ 1, multi-indices α, β ∈ Nk with |α| ≤ N∗ − d2 and |β| ≤ M∗, and

j ≤ CH.

(iv) We have the main estimate

∥∥∥∥∥
k∏
i=1

DαiDβi
t R

∥∥∥∥∥
Lp

≲ CG,pC∗,p(Υ′Υ−2)dΥ′|α|M (|β|,Mt, ν, ν
′) (A.92)

for all integer k ≥ 1, multi-indices α, β ∈ Nk with |α| ≤ N∗ − d2 and |β| ≤ M∗, and

j ≤ CH.

(v) For N ≤ N∗ − d2 and M ≤M∗ the error term E in (A.89) satisfies8

∥∥DNDM
t E

∥∥
Lp ≲ CG,pC∗,pmax(λ, λ′)

d/2
(
Υ′Υ−2

)d/2
ΛNM (M,Mt, ν, ν

′)
d−1∑
k=0

(
Υ′

Υ

)2k

.

(A.93)
8In our applications, Υ = Υ′, so the sum of loss factors is irrelevant. If one wanted to be more precise,

this loss could be eliminated using a more careful algorithm and a few more conditions on the relative sizes
of all the frequencies.
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Proof. The proof is based on applying Proposition A.3.3 d times. In the first iteration, we

get

G(ϱ ◦ Φ) =
CH∑
j1=0

div
(
Hα(j1)(ρβ(j1) ◦ Φ)

)
+ E(1)

where Hα(j1) satisfies (A.49b) and (A.53). From (A.47) and Remark A.3.8, we have that the

rank of Hα(j1) is one larger than the rank of ρβ(j1). Also, replacing π by π1/2r−1/3 in Remark

A.3.9, we get

|DNDM
t H

α(j1)| ≲ π
1
2 r−

1
3λNM (M,Mt, ν, ν̃)

for N ≤ N∗ − d/2 and M ≤M∗. In addition, E(1) satisfies (A.93). Since we use the same Φ,

all assumptions on G and Φ in the proposition holds for N∗ replaced with N∗ − d/2. From

the proof of Proposition A.3.3 we note that ρβ(j) consists of ∇kϱ(2k), 1 ≤ k ≤ d/2, which

can be written as ∇kdivd
2−2kϑ̃ = divd(∇kdivd

2−2k−dϑ̃). Then, ∇kϱ(2k) and its potential

∇kdivd
2−2k−dϑ̃ satisfy (i), (ii) in the assumption of Proposition A.3.3 and

∥∥∥DN∂i1 · · · ∂ik′ (∇
kdivd

2−2k−dϑ̃)
∥∥∥ ≲ C∗,pΥ−2k−d+k′Υ′N+k

for any N ≤ N∗ − k and 0 ≤ k′ ≤ d. In particular, we have

∥∥DNρβ(j1)
∥∥
Lp ≲ C∗,pΥ−2Υ′Υ′N (A.94)

for N ≤ N∗−d/2 and j1 ≤ CH. This implies that (A.43) holds for C∗,p replaced with C∗,pΥ
′Υ−2

and N∗ with N∗ − d/2 and ϑ with the potential of ρβ(j), respectively. Furthermore, from the

construction it is easy to see that

supp
(
ρβ(j)

)
⊂ supp (ϑ̃) .
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Iterating this process d times, we get

G(ϱ ◦ Φ) =
CH∑
j1=0

div
(
Hα(j1)(ρβ(j1) ◦ Φ)

)
+ E(1) =

CH∑
j1,j2=0

div2
(
Hα(j1,j2)(ρβ(j1,j2) ◦ Φ)

)
+ divE(2) + E(1)

=:

CH∑
j=0

divd
(
Hα(j)(ρβ(j) ◦ Φ)

)
+

d∑
k=1

divk−1E(k) .

As a result, we get (A.89), where E is defined by

E :=
d∑

k=1

divk−1E(k) .

Since we have

suppHα(j) ⊂ · · · ⊂ supp (Hα(j1)) ⊂ supp (G), supp ρβ(j1) ⊂ supp (ϑ̃) ,

(A.90) holds. Therefore, (i) and (ii) have been verified, as has (A.94) and (A.91a). Further-

more, we have

∥∥DNDM
t H

α(j)
∥∥
Lp ≲ CG,p (max(λ, λ′))

N M (M,Mt, ν, ν
′)∣∣DNDM

t H
α(j)
∣∣ ≲ π

1
2 r−

1
3 (max(λ, λ′))NM (M,Mt, ν, ν̃) .∥∥DNDM

t R
∥∥
Lp ≲ CG,pC∗,p(Υ′Υ−2)dΛNM (M,Mt, ν, ν

′)

for all integers N ≤ N∗ − d2 and M ≤M∗. Also, E
(k) satisfies

∥∥DNDM
t E

(k)
∥∥
Lp ≲ CG,pC∗,p(Υ′Υ−2)k−1max(λ, λ′)

d/2
(
Υ′Υ−2

)d/2
Υ′NM (M,Mt, ν, ν

′)

for 1 ≤ k ≤ d, N ≤ N∗ − k · d/2, and M ≤M∗.

Finally, we apply Lemma A.2.3 to upgrade these estimates to the one with commutations

of the operators, (A.91b), (A.91c), (A.92), and (A.93). We will work only for (A.91b), then
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the last will follow by a similar argument. To avoid confusion in the notations, we rewrite

some repeated symbols from Lemma A.2.3 with bars above on the left-hand side of the

equalities below, while the right-hand side are parameters given in the assumptions of the

Corollary. Set p = p, N t =Mt, N∗ = N∗−dd/2, M∗ =M∗, v = v, Ω = suppG, Cv = ν(λ′)−1,

λv = λ̃v = λ′, µv = µf = ν, µ̃v = µ̃f = ν̃, f = Hα(j), and λf = λ̃f = max(λ, λ′). Then,

as a consequence of the lemma, we have (A.91b). For (A.91c), we work at each point x in

a similar way, but set Ω = Ω(x) as a small closed neighborhood of x contained in supp (G)

and use the continuity of π so that supΩ(x) π ≤ 2π(x).

Finally, we shall need a simpler case of the inverse divergence, when the density is not

flowed and the input is a scalar field.

Lemma A.3.12 (Inverse divergence without flow map). Fix dimension n ≥ 2. Let G

be a smooth scalar field and let d be a non-negative integer such that the smooth scalar field ϱ

and tensor field ϑ defined on R×Tn satisfy ϱ = ∂i1 . . . ∂idϑ
(i1...id)(x) (note that no symmetry

assumptions needed).

Part 1: Algorithm for inverse divergence

We have a decomposition

Gϱ =: div(H(Gϱ)) + E (A.95)

where the vector field H(Gϱ) and scalar field E are defined by

H(Gϱ)• :=
d−1∑
k=0

(−1)d−k+1∂ik+2
. . . ∂idG div(k)︸ ︷︷ ︸

∂i1 ,...,∂ik

ϑ(i1,...,ik,•,ik+2,...,id), E = (−1)d∇dG : ϑ ,

(A.96)

where we use the convention ∂ik+2
· · · ∂idG = G and ϑ(i1,...,ik,•,ik+2,...,id) = ϑ(i1,...,id−1,•) when

k = d− 1.
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Part 2: Localized assumptions and output

Fix a set Ω ⊂ R × Tn. Let parameters N∗ ≥ M∗ ≥ 1 be given. Define v and Dt as in

Part 1 of Proposition A.3.3, where v satisfies (A.42b) with λ′, ν, ν ′, N∗,M∗ and L∞(suppG)

replaced with L∞(Ω). Let smooth, non-negative functions π and π′ be given such that

∣∣DNDM
t G

∣∣ ≲ πλNM (M,Mt, ν, ν
′) on Ω (A.97a)

Υd−k ∣∣DNDM
t ∂i1 . . . ∂ikϑ

(i1,...,id)
∣∣ ≲ π′ΛNM (M,Mt, ν, ν

′) on Ω (A.97b)

for N ≤ N∗ and M ≤M∗, where the parameters satisfy

λ′, λ ≤ Υ ≤ Λ, max(λ, λ′)Υ−1 ≤ 1, N∗ ≥ d, λ, ν, ν ′ ≥ 1 . (A.98)

Then H(Gϱ) satisfies

supp (H(Gϱ)) ⊆ supp (Gϑ) , (A.99)

and for N ≤ N∗ − d and M ≤M∗,

∣∣DNDM
t H(Gϱ)

∣∣ ≲ ππ′Υ−1ΛNM (M,Mt, ν, ν
′) on Ω . (A.100)

Part 3: Nonlocal assumptions and output

Finally, we assume that all assumptions from (i) in Part 4 in Proposition A.3.3 hold. Next,

we assume that for N ≤ N∗ and M ≤M∗,

∥∥DNDM
t G

∥∥
L∞ ≲ CG,∞λN(ν ′)M , (A.101a)∥∥DNDM

t ∂i1 . . . ∂ikϑ
(i1,...,id)

∥∥
L∞ ≲ C∗,∞Υk−dΛN(ν ′)M . (A.101b)
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Also, we choose d large enough to satisfy

CG,∞C∗,∞(max(λ, λ′)Υ−1)
d/2ΛK◦

(
1 +

max{ν ′, CvΛ}
ν

)M◦

≤ 1 . (A.102)

Then we may write

E =: div (R∗(Gϱ)) +

 
T3

Gϱdx , (A.103)

where R∗(Gϱ) is a vector field which satisfies

∥∥DNDM
t R∗(Gϱ)

∥∥
L∞ ≲

1

ΛK◦
(max(λ, λ′)Υ−1)

d/2ΛNνM (A.104)

for N ≤ N◦ and M ≤M◦.

Proof of Lemma A.3.12. With the definition (A.96) in hand, we can easily check (A.95)–

(A.100). To define R∗(Gϱ), we use the standard operator (Rf)i = ∆−1∂i and let R∗(Gϱ) =

RE. The desired estimate for R∗(Gϱ) follows as in the Proof of Proposition A.3.3 with

minor modifications, and we leave the details to the reader.

A.4 Sample lemma

Lemma A.4.1 (Pressure increment for stress error). Let v be an incompressible vector

field on R × T3. Denote its material derivative by Dt = ∂t + v · ∇. We use large positive

integers N† ≥M† ≫Mt for counting derivatives and specify additional constraints that they

must satisfy in assumptions (i)–(iv).

Suppose a stress error S = H ρ ◦ Φ and a non-negative, continuous function π are given

such that the following hold.

(i) There exist constants CG,p and Cρ,p9 for p = 3/2 and p = ∞ and frequency paramaters

9In practice, Cρ,p = C∗,pζ−2ξΛα from (A.49a). We shall also assume that these constants are ordered in
the obvious way, i.e. C•,3/2 ≤ C•,∞.
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λ,Λ, ν, ν ′ such that

∥∥DNDM
t H

∥∥
p
≲ CG,pλNM (M,Mt, ν, ν

′) (A.105a)∣∣DNDM
t H

∣∣ ≲ πλNM (M,Mt, ν, ν
′) (A.105b)∥∥DNρ

∥∥
p
≲ Cρ,pΛN (A.105c)

∥S∥p ≲ CG,pCρ,p =: δS,p . (A.105d)

for all N ≤ N†, M ≤M†.

(ii) There exist a frequency parameter µ, a parameter Γ for measuring small losses in

derivative costs,10 and a positive integer Ndec such that ρ is (T/µ)3-periodic and λ ≪

µ ≤ Λ, whereby we mean that

(ΛΓ)4 ≤
(

µ

4π
√
3(λΓ)

)Ndec

. (A.106)

(iii) Let Φ be a volume preserving flow of T3 such that DtΦ = 0 and Φ is the identity at a

time slice which intersects the support of H, and

∥∥DN+1Φ
∥∥
L∞(suppH)

+
∥∥DN+1Φ−1

∥∥
L∞(suppH)

≲ λN (A.107a)∥∥DNDM
t Dv

∥∥
L∞(suppH)

≲ νλNM (M,Mt, ν, ν
′) (A.107b)

for all N ≤ N†, M ≤M†.

10In practice, Γ = Γq′ for some q′, which then makes Γ a small power of λ or Λ.
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(iv) There exist positive integers Ncut,x,Ncut,t and a small parameter δtiny ≤ 1 such that11

Ncut,t ≤ Ncut,x , (A.108a)

(CG,∞ + 1) (Cρ,∞ + 1)Γ−Ncut,t ≤ δtiny , CG,3/2 , Cρ,3/2 , (A.108b)

2Ndec + 4 ≤ N† − Ncut,x . (A.108c)

Then one can construct a pressure increment σS = σ+
S − σ−

S associated to the stress error S,

where

σS := Π(H) (Π(ρ) ◦ Φ− ⟨Π(ρ)⟩) , (A.109a)

σ+
S := Π(H)Π(ρ) ◦ Φ) , (A.109b)

and

Π(H) :=

(
C2
G,3/2 +

Ncut,x∑
N=0

Ncut,t∑
M=0

(λΓ)−2N(νΓ)−2M |DNDM
t H|2

) 1
2

− CG,3/2 , (A.110a)

Π(ρ) :=

(
C2
ρ,3/2 +

Ncut,x∑
N=0

(ΛΓ)−2N |DNρ|2
) 1

2

− Cρ,3/2 , (A.110b)

and which has the properties listed below.

(i) σ+
S dominates derivatives of S with suitable weights, so that for all N ≤ N† and M ≤

M†,

∣∣DNDM
t S
∣∣ ≲ (σ+

S + δtiny)(ΛΓ)
NM (M,Mt, νΓ, ν

′Γ) . (A.111)

(ii) σ+
S dominates derivatives of itself with suitable weights, so that for all N ≤ N†−Ncut,x,

11The choice of Ncut,t is such that Γ−Ncut,t can absorb a Sobolev loss from H or ρ, or help absorb small
remainder terms into the miniscule constant δtiny.
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M ≤M† − Ncut,t,

∣∣DNDM
t σ

+
S

∣∣ ≲ (σ+
S + δtiny)(ΛΓ)

NM (M,Mt − Ncut,t, νΓ, ν
′Γ) . (A.112)

(iii) σ+
S and σ−

S have the same size as S, so that

∥∥σ+
S

∥∥
p
≲ δS,p,

∥∥σ−
S

∥∥
p
≲ δS,p . (A.113)

Furthermore Π(H) and Π(ρ) have the same size as H and ρ, so that for N ≤ N†−Ncut,x,

M ≤M† − Ncut,t, and p = 3/2,∞

∥∥DNDM
t Π(H)

∥∥
p
≲ CG,p(λΓ)NM (M,Mt − Ncut,t, νΓ, ν

′Γ) ,
∥∥DNΠ(ρ)

∥∥
p
≲ Cρ,p(ΛΓ)N .

(A.114)

We note also that Π(ρ) is (T/µ)3-periodic.

(iv) π dominates σ−
S and Π(H) and their derivatives with suitable weights, so that for all

N ≤ N† − Ncut,x and M ≤M† − Ncut,t,

∣∣DNDM
t σ

−
S

∣∣ ≲ π ∥Π(ρ)∥1 (λΓ)
NM (M,Mt − Ncut,t, νΓ, ν

′Γ) , (A.115a)∣∣DNDM
t Π(H)

∣∣ ≲ π(λΓ)NM (M,Mt − Ncut,t, νΓ, ν
′Γ) . (A.115b)

(v) σ+
S and σ−

S are supported on supp (S) and supp (H), respectively.

Proof of Lemma A.4.1. We break the proof into steps in which we prove each of the items

(i)–(v).

Proof of (i): We first use (A.107a) and DtΦ = 0 from (iii) and Lemma A.1.2 to deduce
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that for N ≤ N† and M ≤M†,

|DNDM
t S| = |DN((DM

t H)(ρ) ◦ Φ)| ≤
∑

N1+N2=N

|DN1(DM
t H)||DN2(ρ ◦ Φ))|

≲
∑

N1+N2=N

|DN1(DM
t H)|

N2∑
n2=1

(λΓ)N2−n2 |(Dn2ρ) ◦ Φ| . (A.116)

Estimate (A.111) will then follow from (A.116) and the following claims;

Π(H) ≲ CG,∞ (A.117a)

Π(ρ) ≲ Cρ,∞ (A.117b)

|DN1DM
t H| ≲ (Π(H) + CG,∞Γ−Ncut,t)(λΓ)N1M (M,Mt, νΓ, ν

′Γ) (A.117c)

λN2−n2 |Dn2ρ| ≲ (Π(ρ) + Cρ,∞Γ−Ncut,t)(ΛΓ)N2 (A.117d)

for any integers 0 ≤ N1, n2 ≤ N†, M ≤ M†. Indeed, the above claims, (A.108a)–(A.108b),

and (A.116) give that for N ≤ N† and M ≤M†,

|DNDM
t S| ≲ (Π(H) + CG,∞Γ−Ncut,t)(Π(ρ) ◦ Φ + Cρ,∞Γ−Ncut,t)(ΛΓ)NM (M,Mt, νΓ, ν

′Γ)

≲
(
Π(H)Π(ρ) ◦ Φ + Γ−Ncut,t

(
CG,∞Π(ρ) ◦ Φ + Cρ,∞Π(H) + CG,∞Cρ,∞Γ−Ncut,t

))
× (ΛΓ)NM (M,Mt, νΓ, ν

′Γ)

≲ (σ+
s + δtiny)(ΛΓ)

NM (M,Mt, νΓ, ν
′Γ) .

The proofs of the claims are then given as follows. The first is immediate from the definition

of Π(H) and the computation

Π(H) ≲ CG,∞

⇐=
(
Π(H) + CG,3/2

)2
≲ C2

G,∞ + C2
G,3/2

⇐= (λΓ)−2N(νΓ)−2M |DNDM
t H|2 ≲ C2

G,∞ ,
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which holds for N ≤ Ncut,x and M ≤ Ncut,t from (A.105a). A similar computation holds for

Π(ρ). For the next two claims, if M ≤ Ncut,t and N1, N2 ≤ Ncut,x, an argument quite similar

to the above computation shows that

|DN1(DM
t H)| ≲ Π(H)(λΓ)N1(νΓ)M , (A.118a)

λN2−n2 |(Dn2ρ) ◦ Φ| ≲ (ΛΓ)N2Π(ρ) ◦ Φ . (A.118b)

If however M > Ncut,t, N1 > Ncut,x, or N2 > Ncut,x, we use (A.108a)–(A.108b) and (A.105a)

in the first two cases and (A.105c) in the third case to obtain, respectively, that

∥∥DN1(DM
t H)

∥∥
L∞ ≲ CG,∞λN1M (M,Mt, ν, ν

′) ≲ Γ−Ncut,tCG,∞λN1M (M,Mt, νΓ, ν
′Γ)

(A.119a)∥∥DN1(DM
t H)

∥∥
L∞ ≲ Γ−Ncut,tCG,∞(λΓ)N1M (M,Mt, ν, ν

′) (A.119b)

λN2−n2 ∥Dn2ρ∥L∞ ≲ Γ−Ncut,tCρ,∞(ΛΓ)N2 , (A.119c)

concluding the proof of the claims and thus (A.111).

Proof of (ii): We first show by induction that for integers K ≥ 0 and N,M such that

N +M = K,N ≤ N† − Ncut,x, and M ≤M† − Ncut,t,

|DNDM
t Π(H)| ≲

(
Π(H) + CG,∞Γ−Ncut,t

)
(λΓ)NM (M,Mt − Ncut,t, νΓ, ν

′Γ) . (A.120)

When K = 0 the claim is immediate. Now, suppose by induction that (A.120) holds true

for any K ≤ K0, K0 ∈ N∪ {0}. To obtain (A.120) for K0 + 1, we first note that for N ′′,M ′′

such that 0 < N ′′ +M ′′, |DN ′′
DM ′′
t Π(H)| = |DN ′′

DM ′′
t (Π(H) + CG,3/2)|. We then obtain the
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inequality

∣∣DNDM
t Π(H)

∣∣ = ∣∣DNDM
t

(
Π(H) + CG,3/2

)∣∣
≲

1∣∣Π(H) + CG,3/2
∣∣
[ ∣∣DNDM

t

(
(Π(H) + CG,3/2)2

)∣∣
+

∑
0≤N ′≤N
0≤M ′≤M

0<N ′+M ′≤K0

∣∣∣DN ′
DM ′

t Π(H)
∣∣∣ ∣∣∣DN−N ′

DM−M ′

t Π(H)
∣∣∣ ] ,

(A.121)

which follows from Lemma A.2.1 with p = 2 and the positivity of
∣∣Π(H) + CG,3/2

∣∣. Using the

inductive assumption (A.120), which is valid since 0 < N ′ +M ′ ≤ K0, and (A.108b), the

second term can be controlled by

1∣∣Π(H) + CG,3/2
∣∣ (Π(H) + CG,∞Γ−Ncut,t

)2
(λΓ)NM (M,Mt − Ncut,t,Γν,Γν

′)

≲
(
Π(H) + CG,∞Γ−Ncut,t

)
(λΓ)NM (M,Mt − Ncut,t,Γν,Γν

′) . (A.122)

As for the first term, we have that

∣∣DNDM
t

(
(Π(H) + CG,3/2)2

)∣∣∣∣Π(H) + CG,3/2
∣∣

≤ 1∣∣Π(H) + CG,3/2
∣∣ Ncut,x∑
n=0

Ncut,t∑
m=0

(λΓ)−2n(νΓ)−2m
∣∣DNDM

t |DnDm
t H|2

∣∣
=

1∣∣Π(H) + CG,3/2
∣∣ Ncut,x∑
n=0

Ncut,t∑
m=0

∑
0≤N ′≤N
0≤M ′≤M

(λΓ)−2n(νΓ)−2m
∣∣∣DN ′

DM ′

t DnDm
t H

∣∣∣ ∣∣∣DN−N ′
DM−M ′

t DnDm
t H

∣∣∣ .
(A.123)

To bound the quantity above, we first claim that for multi-indices α, β ∈ Nk with k ≥ 2,

|α| ≤ N†, and |β| ≤M†,

∣∣∣∣∣
k∏
i=1

DαiDβi
t H

∣∣∣∣∣ (x) ≲ (Π(H)(x) + CG,∞Γ−Ncut,t
)
(λΓ)|α|M (|β|,Mt, νΓ, ν

′Γ) . (A.124)
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To prove this claim, let Ω(x) ⊆ supp (H) be a closed set containing x. Then applying

Lemma A.2.3 with p = ∞, Nt =Mt, N∗ = N†,M∗ =M†, Ω = Ω(x), Cv = νλ−1, λv = λ̃v = λ,

µv = ν, µ̃v = ν ′, f = H, Cf = supΩ(x)(Π(H) + CG,∞Γ−Ncut,t), λf = λ̃f = λΓ, µf = νΓ, and

µ̃f = ν ′Γ, we have that (A.27) is satisfied from (A.107b), and (A.28) is satisfied by (A.117c)

and the assumption on |α|, |β|. Then (A.31) gives that

∣∣∣∣∣
k∏
i=1

DαiDβi
t H

∣∣∣∣∣ (x) ≲
(
sup
Ω(x)

Π(H) + CG,∞Γ−Ncut,t

)
(λΓ)|α|M (|β|,Mt, νΓ, ν

′Γ) . (A.125)

Since Ω(x) is arbitrary and Π(H) is continuous, we have proven (A.124). Plugging the bound

in (A.124) into (A.123), we find that

∣∣DNDM
t

(
(Π(H) + CG,3/2)2

)∣∣∣∣Π(H) + CG,3/2
∣∣ ≲

1∣∣Π(H) + CG,3/2
∣∣ (Π(H)(x) + CG,∞Γ−Ncut,t

)2
× (λΓ)NM (M,Mt − Ncut,t, νΓ, ν

′Γ) ,

which matches the desired bound in (A.120) after using (A.108b). This concludes the proof

of (A.120).

Arguing in a similar way (in fact the proof is simpler since only spatial derivatives are

required), we also have that for each integer 0 ≤ N ≤ N† − Ncut,x,

∣∣DNΠ(ρ)
∣∣ ≲ (Π(ρ) + Cρ,∞Γ−Ncut,t

)
(ΛΓ)N , (A.126a)∣∣DN(Π(ρ) ◦ Φ)

∣∣ ≲ (Π(ρ) ◦ Φ + Cρ,∞Γ−Ncut,t
)
(ΛΓ)N . (A.126b)

Combining (A.120), (A.126b), and the choice of δtiny from (A.108b), we obtain the desired

estimate (A.112).

Proof of (iii): Observe that by the construction of Π(H), (A.105a), and a computation

similar to that used to produce (A.117a), we have
∥∥Π(H) + CG,3/2

∥∥
p
≲ CG,p for p = 3/2,∞,
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and so ∥Π(H)∥p ≲ CG,p. It follows from (A.120) and (A.108b) that

∥∥DNDM
t Π(H)

∥∥
p
≲ CG,p(λΓ)NM (M,Mt − Ncut,t, νΓ, ν

′Γ) (A.127)

for N ≤ N† − Ncut,x and M ≤ M† − Ncut,t. Similarly, by the construction of Π(ρ), (A.105c)

and (A.126a), we have that ∥Π(ρ)∥p ≲ Cρ,p, and so

∥∥DNΠ(ρ)
∥∥
p
≲ Cρ,p(ΛΓ)N (A.128)

forN ≤ N†−Ncut,x. Thus (A.114) is verified. Also, by the construction of Π(ρ), its periodicity

easily follows from (ii). Next, we can immediately deduce from the definition of σ−
S the easier

bound

∥∥σ−
S

∥∥
p
≲ ∥Π(H)∥p ∥Π(ρ)∥1 ≲ CG,pCρ,p = δS,p .

In the case of σ+
S and p = 3/2, we additionally apply Lemma A.1.3 by setting

N∗ = N† − Ncut,x, M∗ =M† − Ncut,t, f = Π(H), Φ = Φ ,

λ = λΓ, τ−1 = νΓ, T−1 = ν ′Γ,

Cf = CG,3/2, v = v, ϱ = Π(ρ), µ = µ,

Υ = Λ = ΛΓ, Cϱ = Cρ,3/2, Nt =Mt − Ncut,t .

Then (A.12) is verified from (A.127), (A.13)–(A.14) follow from (A.107a), (A.15) follows

from (A.128) and the periodicity of Π(ρ), (A.16) follows from (A.106), and (A.17) follows

from (A.108c). We then obtain from (A.18) that

∥∥σ+
S

∥∥
3/2

≲ CG,3/2Cρ,3/2 = δS,3/2 .

407



Finally, the estimate for
∥∥σ+

S

∥∥
∞ is trivial, so that (A.113) holds and (iii) is totally verified.

Proof of (iv): We first prove (A.115b) by induction; namely, for each integer K = N+M ≥

0, N ≤ N† − Ncut,x, M ≤M† − Ncut,t,

|DNDM
t Π(H)| ≲ π(λΓ)NM (M,Mt − Ncut,t, νΓ, νΓ

′) . (A.129)

The proof uses an argument quite similar to the proof of (A.120). The base case follows

from writing that

Π(H) ≲ π

⇐⇒ Π(H) + CG,3/2 ≲ π + CG,3/2

⇐=
(
Π(H) + CG,3/2

)2
≲ π2 + C2

G,3/2 ,

which can be seen to hold from the definition of Π(H) and (A.105b). For the inductive step,

we argue starting from (A.121), although with slightly different steps to follow. Using the

inductive assumption from (A.129) to control one term and the bound (A.120) to control

the other term, and (A.108b), we have that the second term from (A.121) may be bounded

by

1∣∣Π(H) + CG,3/2
∣∣π (Π(H) + CG,∞Γ−Ncut,t

)
(λΓ)NM (M,Mt − Ncut,t,Γν,Γν

′)

≲ π(λΓ)NM (M,Mt − Ncut,t,Γν,Γν
′) . (A.130)

Thus it remains to control the first term from (A.121). Towards this end, we claim that for

multi-indices α, β ∈ Nk with k ≥ 2, |α| ≤ N†, and |β| ≤M†,

∣∣∣∣∣
k∏
i=1

DαiDβi
t H

∣∣∣∣∣ (x) ≲ π(x)(λΓ)|α|M (|β|,Mt, νΓ, ν
′Γ) . (A.131)

We apply Lemma A.2.3 with precisely the same choices as in the proof of (A.124), save for
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the choice of Cf = supΩ(x) π. Then (A.27) is satisfied from (A.107b), and (A.28) is satisfied

by (A.105b). Then applying (A.31), shrinking Ω(x) to a point, and using the continuity of

π provides (A.131). Plugging this bound into (A.123) and using (A.124) and (A.108b), we

find that for N ≤ N† − Ncut,x and M ≤M† − Ncut,t,

∣∣∣DNDM
t

(
(Π(H) + C2/3

G,3/2)
2
)∣∣∣∣∣Π(H) + CG,3/2

∣∣
≲

1∣∣Π(H) + CG,3/2
∣∣π (Π(H) + CG,∞Γ−Ncut,t

)
(λΓ)NM (M,Mt − Ncut,t, νΓ, ν

′Γ)

≲ π(λΓ)NM (M,Mt − Ncut,t, νΓ, ν
′Γ) ,

which combined with (A.130) concludes the proof of (A.115b). To prove (A.115a), we use

(A.115b) and the definition of σ−
S .

Proof of (v): By the definition of Π(H) and Π(ρ), it is easy to see that supp (Π(H)) ⊆

supp (H) and supp (Π(ρ)) ⊆ supp (ρ), and so (v) is verified.

Lemma A.4.2 (Pressure increment for current error). Let v be an incompressible

vector field on R × T3. Denote its material derivative by Dt = ∂t + v · ∇. We use large

positive integers N∗ ≥ M∗ ≫ Mt for counting derivatives and specify additional constraints

that they must satisfy in assumptions (i)–(iv).

Suppose a current error ϕ = H ρ◦Φ and a non-negative, continuous function π are given

such that the following hold.

(i) There exist constants CG,p and Cρ,p for p = 1,∞, frequency parameters λ,Λ, ν, ν ′, and

intermittency parameters 0 < rG, rϕ ≤ 1 such that

∥∥DNDM
t H

∥∥
p
≲ CG,pλNM (M,Mt, ν, ν

′) (A.132a)∣∣DNDM
t H

∣∣ ≲ π
3/2r−1

G λNM (M,Mt, ν, ν
′) (A.132b)∥∥DNρ

∥∥
p
≲ Cρ,pΛN (A.132c)

∥ϕ∥p ≲ CG,pCρ,p =: δ
3/2
ϕ,pr

−1
ϕ (A.132d)
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for all N ≤ N∗, M ≤M∗.

(ii) There exist a frequency parameter µ, a parameter Γ for measuring small losses in

derivative costs, and a positive integer Ndec such that ρ is (T/µ)3-periodic and λ≪ µ ≤

Λ, whereby we mean that

(ΛΓ)4 ≤
(

µ

4π
√
3(λΓ)

)Ndec

. (A.133)

(iii) Let Φ be a volume preserving flow of T3 such that DtΦ = 0 and Φ is the identity at a

time slice which intersects the support of H, and

∥∥DN+1Φ
∥∥
L∞(suppH)

+
∥∥DN+1Φ−1

∥∥
L∞(suppH)

≲ λN (A.134a)∥∥DNDM
t Dv

∥∥
L∞(suppH)

≲ νλNM (M,Mt, ν, ν
′) (A.134b)

for all N ≤ N∗, M ≤M∗.

(iv) There exist positive integers Ncut,x,Ncut,t and a small parameter δtiny ≤ 1 such that

Ncut,x ≥ Ncut,t (A.135a)

(CG,∞ + 1) (Cρ,∞ + 1)Γ−Ncut,t ≤ δ
3/2
tiny , CG,1 , Cρ,1 , (A.135b)

2Ndec + 4 ≤ N∗ − Ncut,x − 4 . (A.135c)

Then one can construct a pressure increment σϕ associated to the current error ϕ, where

σϕ = r
2/3
ϕ Π(H) (Π(ρ) ◦ Φ− ⟨Π(ρ)⟩) , (A.136a)

σ+
ϕ := r

2/3
ϕ Π(H)Π(ρ) ◦ Φ , (A.136b)
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and

Π(H) :=

(
C2
G,1 +

Ncut,x∑
N=0

Ncut,t∑
M=0

(λΓ)−2N(νΓ)−2M |DNDM
t H|2

) 1
3

− C2/3
G,1 , (A.137a)

Π(ρ) :=

(
C2
ρ,1 +

Ncut,x∑
N=0

(ΛΓ)−2N |DNρ|2
) 1

3

− C2/3
ρ,1 , (A.137b)

and which has the properties listed below.

(i) σ+
ϕ dominates derivatives of ϕ with suitable weights, so that for all N ≤ N∗ and M ≤

M∗,

∣∣DNDM
t ϕ
∣∣ ≲ ((σ+

ϕ )
3/2r−1

ϕ + δtiny
)
(ΛΓ)NM (M,Mt, νΓ, ν

′Γ) . (A.138)

(ii) σ+
ϕ dominates derivatives of itself with suitable weights, so that for all N ≤ N∗−Ncut,x,

M ≤M∗ − Ncut,t,

∣∣DNDM
t σ

+
ϕ

∣∣ ≲ (σ+
ϕ + δtiny

)
(ΛΓ)NM (M,Mt, ν, ν

′) . (A.139)

(iii) σ+
ϕ and σ−

ϕ have size comparable to ϕ, so that

∥∥σ+
ϕ

∥∥
3/2

≲ δϕ,1 ,
∥∥σ−

ϕ

∥∥
3/2

≲ δϕ,1 , (A.140a)∥∥σ+
ϕ

∥∥
∞ ≲ δϕ,∞ ,

∥∥σ−
ϕ

∥∥
∞ ≲ δϕ,∞ . (A.140b)

Furthermore, Π(H) and Π(ρ) have size comparable to H and ρ, respectively, so that for
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all N ≤ N∗ − Ncut,x and M ≤M∗ − Ncut,t,

∥∥DNDM
t Π(H)

∥∥
3/2

≲ C2/3
G,1(λΓ)

NM (M,Mt − Ncut,t, νΓ, ν
′Γ) ,

∥∥DNΠ(ρ)
∥∥

3/2
≲ C2/3

ρ,1(ΛΓ)
N ,

(A.141a)∥∥DNDM
t Π(H)

∥∥
∞ ≲ C2/3

G,∞(λΓ)NM (M,Mt − Ncut,t, νΓ, ν
′Γ) ,

∥∥DNΠ(ρ)
∥∥
∞ ≲ C2/3

ρ,∞(ΛΓ)N ,

(A.141b)

We note also that Π(ρ) is (T/µ)3-periodic.

(iv) π dominates σ−
ϕ and Π(H) and their derivatives with suitable weights, so that for all

N ≤ N∗ − Ncut,x and M ≤M∗ − Ncut,t,

∣∣DNDM
t σ

−
ϕ

∣∣ ≲ ( rϕ
rG

)2/3

π ∥Π(ρ)∥1 (λΓ)
NM (M,Mt − Ncut,t, νΓ, ν

′Γ) , (A.142a)∣∣DNDM
t Π(H)

∣∣ ≲ r
−2/3
G π(λΓ)NM (M,Mt − Ncut,t, νΓ, ν

′Γ) . (A.142b)

(v) σ+
ϕ and σ−

ϕ are supported on supp (ϕ) and supp (H), respectivly.

Proof of Lemma A.4.2. We break the proof into steps in which we prove each of the items

(i)–(v). The proof follows quite closely the proof of Lemma A.4.1, save for various rescalings

related to the different scalings for current errors versus stress errors.

Proof of (i): We first use (A.134a) and DtΦ = 0 from (iii) and Lemma A.1.2 to deduce

that for N ≤ N∗ and M ≤M∗,

|DNDM
t ϕ| = |DN((DM

t H)(ρ) ◦ Φ)| ≤
∑

N1+N2=N

|DN1(DM
t H)||DN2(ρ ◦ Φ))|

≲
∑

N1+N2=N

|DN1(DM
t H)|

N2∑
n2=1

(λΓ)N2−n2 |(Dn2ρ) ◦ Φ| . (A.143)
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Estimate (A.138) will then follow from (A.143) and the following claims;

Π(H) ≲ C2/3
G,∞ (A.144a)

Π(ρ) ≲ C2/3
ρ,∞ (A.144b)

|DN1DM
t H| ≲

(
Π

3/2(H) + CG,∞Γ−Ncut,t
)
(λΓ)N1M (M,Mt, νΓ, ν

′Γ) (A.144c)

λN2−n2 |Dn2ρ| ≲
(
Π

3/2(ρ) + Cρ,∞Γ−Ncut,t
)
(ΛΓ)N2 (A.144d)

for any integers 0 ≤ N1, n2 ≤ N∗, M ≤ M∗. Indeed, the above claims, (A.135a)–(A.135b),

and (A.143) give that for N ≤ N∗ and M ≤M∗,

∣∣DNDM
t ϕ
∣∣ ≲ (Π3/2(H) + CG,∞Γ−Ncut,t

) (
Π

3/2(ρ) ◦ Φ + Cρ,∞Γ−Ncut,t
)
(ΛΓ)NM (M,Mt, νΓ, ν

′Γ)

≲
(
(Π(H)Π(ρ) ◦ Φ)3/2 + Γ−Ncut,t

(
CG,∞Π

3/2(ρ) ◦ Φ + Cρ,∞Π
3/2(H) + CG,∞Cρ,∞Γ−Ncut,t

))
× (ΛΓ)NM (M,Mt, νΓ, ν

′Γ)

≲
(
(σ+

s )
3/2r−1

ϕ + δtiny
)
(ΛΓ)NM (M,Mt, νΓ, ν

′Γ) .

The proofs of the claims are then given as follows. The first is immediate from the definition

of Π(H) and the computation

Π(H) ≲ C2/3
G,∞

⇐=
(
Π(H) + C2/3

G,1

)3
≲ C2

G,∞ + C2
G,1

⇐= (λΓ)−2N(νΓ)−2M |DNDM
t H|2 ≲ C2

G,∞ ,

which holds for N ≤ Ncut,x and M ≤ Ncut,t from (A.132a). A similar computation holds for

Π(ρ). Next, ifM ≤ Ncut,t and N1, N2 ≤ Ncut,x, a computation similar to the one above shows
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that

|DN1(DM
t H)| ≲ Π

3/2(H)(λΓ)N1(νΓ)M , (A.145a)

λN2−n2 |(Dn2ρ) ◦ Φ| ≲ (ΛΓ)N2Π
3/2(ρ) ◦ Φ . (A.145b)

If however M > Ncut,t, N1 > Ncut,x, or N2 > Ncut,x, we use (A.135a)–(A.135b) and (A.132a)

in the first two cases and (A.132c) in the third case to obtain, respectively, that

∥∥DN1(DM
t H)

∥∥
L∞ ≲ CG,∞λN1M (M,Mt, ν, ν

′) ≲ Γ−Ncut,tCG,∞λN1M (M,Mt, νΓ, ν
′Γ)

(A.146a)∥∥DN1(DM
t H)

∥∥
L∞ ≲ Γ−Ncut,tCG,∞(λΓ)N1M (M,Mt, ν, ν

′) (A.146b)

λN2−n2 ∥Dn2ρ∥L∞ ≲ Γ−Ncut,tCρ,∞(ΛΓ)N2 , (A.146c)

concluding the proof of the claims and thus of (A.138).

Proof of (ii): We first show by induction that for integers K ≥ 0 and N,M such that

N +M = K,N ≤ N∗ − Ncut,x, and M ≤M∗ − Ncut,t,

|DNDM
t Π(H)| ≲

(
Π(H) + (CG,∞Γ−Ncut,t)

2/3
)
(λΓ)NM (M,Mt − Ncut,t, νΓ, ν

′Γ) . (A.147)

When K = 0 the claim is immediate. Now, suppose by induction that (A.147) holds true

for any K ≤ K0, K0 ∈ N∪ {0}. To obtain (A.147) for K0 + 1, we first note that for N ′′,M ′′

such that 0 < N ′′ +M ′′, |DN ′′
DM ′′
t Π(H)| = |DN ′′

DM ′′
t (Π(H) + C2/3

G,1)|. We then obtain the
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inequality

∣∣DNDM
t Π(H)

∣∣ = ∣∣∣DNDM
t

(
Π(H) + C2/3

G,1

)∣∣∣
≲

1∣∣∣Π(H) + C2/3
G,1

∣∣∣2
[ ∣∣∣DNDM

t

(
(Π(H) + C2/3

G,1)
3
)∣∣∣

+
∑

α,β :
∑3

i=1 αi=N ,∑3
i=1 βi=M ,

αi+βi<N+M ∀ i



3∏
i=1

∣∣∣DαiDβi
t

(
Π(H) + C2/3

G,1

)∣∣∣ ] ,
(A.148)

which follows from Lemma A.2.1 with p = 3 and the positivity of
∣∣∣Π(H) + C2/3

G,1

∣∣∣. Using the

inductive assumption (A.147), which is valid since 0 < N ′ +M ′ ≤ K0, and (A.135b), the

second term can be controlled by

1∣∣∣Π(H) + C2/3
G,1

∣∣∣2
(
Π(H) + C2/3

G,1

) (
Π(H) + (CG,∞Γ−Ncut,t)

2/3
)2

(λΓ)NM (M,Mt − Ncut,t,Γν,Γν
′)

≲
(
Π(H) + (CG,∞Γ−Ncut,t)

2/3
)
(λΓ)NM (M,Mt − Ncut,t,Γν,Γν

′) . (A.149)

As for the first term, we have that

∣∣∣DNDM
t

(
(Π(H) + C2/3

G,1)
3
)∣∣∣∣∣∣Π(H) + C2/3

G,1

∣∣∣2
≤ 1∣∣∣Π(H) + C2/3

G,1

∣∣∣2
Ncut,x∑
n=0

Ncut,t∑
m=0

(λΓ)−2n(νΓ)−2m
∣∣DNDM

t |DnDm
t H|2

∣∣
=

1∣∣∣Π(H) + C2/3
G,1

∣∣∣2
Ncut,x∑
n=0

Ncut,t∑
m=0

∑
0≤N ′≤N
0≤M ′≤M

(λΓ)−2n(νΓ)−2m
∣∣∣DN ′

DM ′

t DnDm
t H

∣∣∣ ∣∣∣DN−N ′
DM−M ′

t DnDm
t H

∣∣∣ .
(A.150)

To bound the quantity above, we first claim that for multi-indices α, β ∈ Nk with k ≥ 2,
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|α| ≤ N∗, and |β| ≤M∗,

∣∣∣∣∣
k∏
i=1

DαiDβi
t H

∣∣∣∣∣ (x) ≲ (Π(H)
3/2(x) + CG,∞Γ−Ncut,t

)
(λΓ)|α|M (|β|,Mt, νΓ, ν

′Γ) . (A.151)

To prove this claim, let Ω(x) ⊆ suppH be a closed set containing x. Then applying

Lemma A.2.3 with p = ∞, Nt = Mt, N∗ = Ncut,x, M∗ = Ncut,t, Ω = Ω(x), Cv = νλ−1,

λv = λ̃v = λ, µv = ν, µ̃v = ν ′, f = H, Cf = supΩ(x)

(
Π3/2(H) + CG,∞Γ−Ncut,t

)
, λf = λ̃f = λΓ,

µf = νΓ, and µ̃f = ν ′Γ, we have that (A.27) is satisfied from (A.134b), and (A.28) is satisfied

by (A.144c). Then (A.31) gives that

∣∣∣∣∣
k∏
i=1

DαiDβi
t H

∣∣∣∣∣ (x) ≲
(
sup
Ω(x)

Π(H)
3/2 + CG,∞Γ−Ncut,t

)
(λΓ)|α|M (|β|,Mt, νΓ, ν

′Γ) . (A.152)

Since Ω(x) is arbitrary and Π(H) is continuous, we have proven (A.151). Plugging this

bound into (A.150), we find that

∣∣∣DNDM
t

(
(Π(H) + C2/3

G,1)
3
)∣∣∣∣∣∣Π(H) + C2/3

G,1

∣∣∣2 ≲
1∣∣∣Π(H) + C2/3

G,1

∣∣∣2
(
Π

3/2(H) + CG,∞Γ−Ncut,t
)2

× (λΓ)NM (M,Mt − Ncut,t, νΓ, ν
′Γ) ,

which matches the desired bound in (A.147) after using (A.135b). This concludes the proof

of (A.147).

Arguing in a similar way (in fact the proof is simpler since only spatial derivatives are

required), we also have that for each integer 0 ≤ N ≤ N∗ − Ncut,x,

∣∣DN(Π(ρ) ◦ Φ)
∣∣ ≲ (Π(ρ) ◦ Φ + (Cρ,∞Γ−Ncut,t)

2/3
)
(ΛΓ)N , (A.153a)∣∣DNΠ(ρ)

∣∣ ≲ (Π(ρ) + (Cρ,∞Γ−Ncut,t)
2/3
)
(ΛΓ)N . (A.153b)

Combining (A.147), (A.153a), and the choice of δtiny from (A.135b), we obtain the desired

416



estimate (A.139).

Proof of (iii): Observe that by the construction of Π(H), (A.132a), and a computa-

tion similar to that used to produce (A.144a), we have
∥∥∥Π(H) + C2/3

G,1

∥∥∥
3/2

≲ C2/3
G,1, and so

∥Π(H)∥3/2 ≲ C2/3
G,1, with analogous bounds holding for ρ. It follows from (A.147) and (A.135b)

that

∥∥DNDM
t Π(H)

∥∥
3/2

≲ C2/3
G,1(λΓ)

NM (M,Mt − Ncut,t, νΓ, ν
′Γ) (A.154)

for N ≤ N∗ − Ncut,x and M ≤ M∗ − Ncut,t. If the left-hand side is measured instead in L∞,

we may appeal to (A.144a) to deduce that (A.154) holds with CG,∞ in place of CG,1. Arguing

similarly for Π(ρ) but appealing to (A.153a) and (A.144b), we have that (A.141a)–(A.141b)

are verified. Also, by the construction of Π(ρ), its periodicity easily follows from (ii). Next,

we can immediately deduce from the definition of σ−
S and for p = 3/2,∞ the easier bound

∥∥σ−
S

∥∥
p
≲ r

2/3
ϕ ∥Π(H)∥p ∥Π(ρ)∥1 ,

which matches the desired bounds in (A.140a)–(A.140b) for σ−
ϕ after using the aforemen-

tioned bounds for Π(H),Π(ρ) and recalling the definition of δϕ,· from (A.132d). In the case

of σ+
ϕ and p = 3/2, we additionally apply Lemma A.1.3 by setting

N∗ = N∗ − Ncut,x, M∗ =M∗ − Ncut,t, f = Π(H), Φ = Φ ,

λ = λΓ, τ−1 = νΓ, T−1 = ν ′Γ,

Cf = C2/3
G,1, v = v, ϱ = Π(ρ), µ = µ,

Υ = Λ = ΛΓ, Cϱ = C2/3
ρ,1, Nt =Mt − Ncut,t .

Then (A.12) is verified from (A.154), (A.13)–(A.14) follow from (A.134a), (A.15) follows

from (A.153b) and the periodicity of Π(ρ), (A.16) follows from (A.133), and (A.17) follows
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from (A.135c). We then obtain from (A.18) that

∥∥σ+
S

∥∥
3/2

≲ r
2/3
ϕ C2/3

G,1C
2/3
ρ,1 = δϕ,1 .

Finally, the estimate for
∥∥σ+

S

∥∥
∞ is trivial, so that (A.140a)–(A.140b) holds for σ+

ϕ , and (iii)

is totally verified.

Proof of (iv): We first prove (A.142b) by induction; namely, for each integer K = N+M ≥

0, N ≤ N∗ − Ncut,x, M ≤M∗ − Ncut,t,

|DNDM
t Π(H)| ≲ r

−2/3
G π(λΓ)NM (M,Mt − Ncut,t, νΓ, νΓ

′) . (A.155)

The proof uses an argument quite similar to the proof of (A.147). The base case follows

from writing that

Π(H) ≲ π r
−2/3
G

⇐⇒ Π(H) + C2/3
G,1 ≲ π r

−2/3
G + C2/3

G,1

⇐=
(
Π(H) + C2/3

G,1

)3
≲ π3r−2

G + C2
G,1 ,

which can be seen to hold from the definition of Π(H) and (A.132b). For the inductive

step, we argue starting from (A.148), although with slightly different steps to follow. Using

the inductive assumption from (A.155) to control the term from the trilinear product in

the second term with the highest number of derivatives,12 the bound (A.147) to control the

other two terms from the trilinear product, and (A.135b), we have that the second term

12In fact any term which has been differentiated at all will suffice, so that we may replace Π(H) + C2/3
G,1

with simply Π(H).
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from (A.148) may be bounded by

1∣∣∣Π(H) + C2/3
G,1

∣∣∣2 r−
2/3

G π
(
Π(H) +

(
CG,∞Γ−Ncut,t

)2/3)2
(λΓ)NM (M,Mt − Ncut,t,Γν,Γν

′)

≲ r
−2/3
G π(λΓ)NM (M,Mt − Ncut,t,Γν,Γν

′) . (A.156)

Thus it remains to control the first term from (A.148). Towards this end, we claim that for

multi-indices α, β ∈ Nk with k ≥ 2, |α| ≤ N∗, and |β| ≤M∗,

∣∣∣∣∣
k∏
i=1

DαiDβi
t H

∣∣∣∣∣ (x) ≲ π
3/2(x)r−1

G (λΓ)|α|M (|β|,Mt, νΓ, ν
′Γ) . (A.157)

As in the proof of (A.151), we apply Lemma A.2.3 with precisely the same choices as led to

the bound in (A.152), save for the choice of Cf = supΩ(x) π
3/2r−1

G . Then (A.27) is satisfied from

(A.134b), and (A.28) is satisfied by (A.132b). Then applying (A.31), shrinking Ω(x) to a

point, and using the continuity of π provides (A.157). Then plugging this bound into (A.150)

and using (A.151) and (A.135b), we find that for N ≤ N∗ − Ncut,x and M ≤M∗ − Ncut,t,

∣∣∣DNDM
t

(
(Π(H) + C2/3

G,1)
3
)∣∣∣∣∣∣Π(H) + C2/3

G,1

∣∣∣2
≲

1∣∣∣Π(H) + C2/3
G,1

∣∣∣2πr−
2/3

G

(
Π

3/2(H) + CG,∞Γ−Ncut,t
)4/3

(λΓ)NM (M,Mt − Ncut,t, νΓ, ν
′Γ)

≲ πr
−2/3
G

Π2(H) +
(
CG,∞Γ−Ncut,t

)4/3∣∣∣Π(H) + C2/3
G,1

∣∣∣2 (λΓ)NM (M,Mt − Ncut,t, νΓ, ν
′Γ)

≲ πr
−2/3
G (λΓ)NM (M,Mt − Ncut,t, νΓ, ν

′Γ) ,

which combined with (A.156) concludes the proof of (A.142b). To prove (A.142a), we use

(A.142b) and the definition of σ−
ϕ .

Proof of (v): By the definition of Π(H) and Π(ρ), it is easy to see that supp (Π(H)) ⊆

supp (H) and supp (Π(ρ)) ⊆ supp (ρ), and so (v) is verified.
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Lemma A.4.3 (Pressure increment and upgrade error from velocity increment

potential). We begin with assumptions which allow for the construction of a pressure in-

crement and an upgrade current error. Then we delineate a number of properties satisfied

by the pressure increment, before applying the material derivative and inverse divergence to

produce a current error satisfying additional properties.

Part 1: Assumptions

Let v be an incompressible vector field on R × T3. Denote its material derivative by Dt =

∂t + v · ∇. We use large positive integers N∗∗, d, K◦, N∗ ≥ M∗ ≫ Mt, and 1 ≤ M◦ ≤ N◦ ≤

1/2(M∗ − Ncut,t − 1 − N∗∗) and specify additional constraints that they must satisfy below.

Suppose a velocity increment potential υ̂ = G(ρ ◦Φ) and a non-negative continuous function

π are given such that the following hold.

(i) There exist constants CG,p and Cρ,p for p = 3,∞, frequency parameters λ,Λ, ν, ν ′, and

intermittency parameters rG, rυ̂ ≤ 1 such that

∥∥DNDM
t G

∥∥
p
≲ CG,pλNM (M,Mt, ν, ν

′) (A.158a)∣∣DNDM
t G

∣∣ ≲ π
1
2 r

− 1
3

G λNM (M,Mt, ν, ν
′) (A.158b)∥∥DNρ

∥∥
p
≲ Cρ,pΛN (A.158c)

∥υ̂∥p ≲ CG,pCρ,p =: δ
1
2

υ̂,pr
− 1

3

υ̂ (A.158d)

for all N ≤ N∗, M ≤M∗.

(ii) There exist frequency parameters µ and λ′, a parameter Γ = Λα for 0 < α ≪ 1 for

measuring small losses in derivative costs, and a positive integer Ndec such that ρ is

(T/µ)3-periodic and λ, λ′ ≪ µ ≤ Λ, whereby we mean that

max(λ, λ′)Γµ−1 ≤ 1 , (ΛΓ)4 ≤
(

µ

4π
√
3max(λ′, λ)Γ

)Ndec

. (A.159a)

(iii) Let Φ be a volume preserving flow of T3 such that DtΦ = 0 and Φ is the identity at a
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time slice which intersects the support of G, and

∥∥DN+1Φ
∥∥
L∞(suppG)

+
∥∥DN+1Φ−1

∥∥
L∞(suppG)

≲ λ′N (A.160a)∥∥DNDM
t Dv

∥∥
L∞(suppG)

≲ νλ′NM (M,Mt, ν, ν
′) (A.160b)

for all N ≤ N∗, M ≤M∗. Furthermore, assume that we have the lossy estimate

∥∥DN∂Mt v
∥∥
L∞ ≲ Cvλ′N(ν ′)M , Cvλ′ ≲ ν ′ (A.160c)

for all M ≤M◦ and N +M ≤ N◦ +M◦.

(iv) There exist positive integers Ncut,x, Ncut,t and a small parameter δtiny ≤ 1 such that

Ncut,t ≤ Ncut,x , (A.161a)

(C2
G,∞ + 1)(C2

ρ,∞ + 1)Γ−2Ncut,t ≤ δtiny , C2
G,3 , C2

ρ,3 , (A.161b)

2Ndec + 4 ≤ N∗ − Ncut,x −N∗∗ . (A.161c)

(v) Let an increasing sequence of frequencies {µ0, · · · , µm̄}, µ < µ0 < · · · < µm̄−1 < ΛΓ <

µm̄ be given satisfying

max(λ, λ′)Γµ−2
m−1µm ≤ 1 (A.162)

for all 1 ≤ m < m̄.
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(vi) Assume that d and N∗∗ are sufficiently large so that

νΓC2
G,pC2

ρ,p(max(λ, λ′)Γ)⌊
d/2⌋µ−⌊d/2⌋(ΛΓ)5+K◦

(
1 +

max{ν ′Γ, CvΛΓ}
νΓ

)M◦

≤ 1 ,

(A.163a)

νΓC2
G,pC2

ρ,p(max(λ, λ′)Γ)⌊
d/2⌋(µmµ

−2
m−1)

⌊d/2⌋(ΛΓ)5+K◦

(
1 +

max{ν ′Γ, CvΛΓ}
νΓ

)M◦

≤ 1 ,

(A.163b)

νΓC2
G,∞C2

ρ,3((ΛΓ)µ
−1
m̄ )N∗∗(ΛΓ)5+K◦

(
1 +

max{ν ′Γ, CvΛΓ}
νΓ

)M◦

≤ 1 ,

(A.163c)

for 1 ≤ m ≤ m̄.

Part 2: Pressure increment

There exists a pressure increment συ̂ = σ+
υ̂ −σ

−
υ̂ associated to the velocity increment potential

υ̂ which is defined by

συ̂ := r2υ̂Π(G) (Π(ρ) ◦ Φ− ⟨Π(ρ)⟩) =: σ+
υ̂ − σ−

υ̂ , (A.164a)

Π(G) :=

Ncut,x∑
N=0

Ncut,t∑
M=0

(λΓ)−2N(νΓ)−2M |DNDM
t G|2 , (A.164b)

Π(ρ) :=

Ncut,x∑
N=0

(ΛΓ)−2N |DNρ|2 , (A.164c)

may be decomposed as

συ̂ = σ∗
υ̂ +

m̄∑
m=0

σmυ̂ , (A.164d)

and satisfies the properties listed below.

(i) (σ+
υ̂ )

1/2 dominates derivatives of υ̂ with suitable weights, so that

∣∣DNDM
t υ̂
∣∣ ≲ (σ+

υ̂ + δtiny)
1/2r−1

υ̂ (ΛΓ)NM (M,Mt, νΓ, ν
′Γ) . (A.165)
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for all N ≤ N∗, M ≤M∗.

(ii) σ+
υ̂ dominates derivatives of itself with suitable weights, so that

|DNDM
t σ

+
υ̂ | ≲ (σ+

υ̂ + δtiny)(ΛΓ)
NM (M,Mt − Ncut,t, νΓ, ν

′Γ) (A.166)

for all N ≤ N∗ − Ncut,x, M ≤M∗ − Ncut,t.

(iii) Let (p, p′) = (3, 3/2) or (∞,∞). Then σ+
υ̂ and σ−

υ̂ satisfy

∥∥σ+
υ̂

∥∥
p′
≲ δυ̂,pr

4/3
υ̂ ,

∥∥σ−
υ̂

∥∥
p′
≲ δυ̂,pr

4/3
υ̂ .

We note also that Π(ρ) is (T/µ)3-periodic. Furthermore, Π(G) and Π(ρ) have the same

size as G and ρ, so that for N ≤ N∗ − Ncut,x and M ≤M∗ − Ncut,t,

∥∥DNDM
t Π(G)

∥∥
p′
≲ C2

G,p(λΓ)
NM (M,Mt − Ncut,t, νΓ, ν

′Γ) ,
∥∥DNΠ(ρ)

∥∥
p′
≲ C2

ρ,p(ΛΓ)
N .

(A.167)

(iv) π dominates σ−
υ̂ and Π(G) and its derivatives with suitable weights, so that

∣∣DNDM
t Π(G)

∣∣ ≲ πr
−2/3
G (λΓ)NM (M,Mt − Ncut,t, νΓ, ν

′Γ) , (A.168a)

|DNDM
t σ

−
υ̂ | ≲ πr

−2/3
G ∥Π(ρ)∥1 r

2
υ̂(λΓ)

NM (M,Mt − Ncut,t, νΓ, ν
′Γ) (A.168b)

for all N ≤ N∗ − Ncut,x, M ≤M∗ − Ncut,t.

(v) We have the support properties

supp (σ+
υ̂ ) ⊂ supp (υ̂) , supp (σ−

υ̂ ) ⊆ supp (G) . (A.169)

Part 3: Current error

There exists an upgrade current error ϕυ̂ which satisfies the following properties.
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(i) We have the decomposition and equalities

ϕυ̂ = ϕ∗
υ̂︸︷︷︸

nonlocal

+
m̄∑
m=0

ϕmυ̂︸ ︷︷ ︸
local

= (H +R∗)(Dtσ
∗
υ̂) +

m̄∑
m=0

R∗(Dtσ
m
υ̂ )︸ ︷︷ ︸

nonlocal

+
m̄∑
m=0

H(Dtσ
m
υ̂ )︸ ︷︷ ︸

local

,

(A.170a)

div (ϕmυ̂ (t, x) +R∗(Dtσ
m
υ̂ )(t, x)) = Dtσ

m
υ̂ (t, x)−

ˆ
T3

Dtσ
m
υ̂ (t, x

′) dx′ , (A.170b)

div

(
ϕ∗
υ̂(t, x)−

m̄∑
m=0

R∗(Dtσ
m
υ̂ )(t, x)

)
= Dtσ

∗
υ̂(t, x)−

ˆ
T3

Dtσ
∗
υ̂(t, x

′) dx′ . (A.170c)

(ii) Let (p, p′) = (3, 3/2) or (∞,∞). The current error ϕmυ̂ satisfies

∥∥DNDM
t ϕ

0
υ̂

∥∥
p′
≲ νΓ2C2

G,pC2
ρ,3

(
µ0

µ

) 4
3
− 2

p′

r2υ̂µ
−1µN0 M (M,Mt − Ncut,t − 1, νΓ, ν ′Γ) ,

(A.171a)∣∣DNDM
t ϕ

0
υ̂

∣∣ ≲ νΓ2πr
−2/3
G C2

ρ,3

(
µ0

µ

)4/3

r2υ̂µ
−1µN0 M (M,Mt − Ncut,t − 1, νΓ, ν ′Γ) ,

(A.171b)∥∥DNDM
t ϕ

m
υ̂

∥∥
p′
≲ νΓ2C2

G,pC2
ρ,3

(
min(µm,ΛΓ)

µ

) 4
3
− 2

p′

r2υ̂(µ
−2
m−1µm)

×min(µm,ΛΓ)
NM (M,Mt − Ncut,t − 1, νΓ, ν ′Γ) , (A.171c)∣∣DNDM

t ϕ
m
υ̂

∣∣ ≲ νΓ2πr
−2/3
G C2

ρ,3

(
min(µm,ΛΓ)

µ

)4/3

r2υ̂µ
−2
m−1µm

× (min(µm,ΛΓ))
NM (M,Mt − Ncut,t − 1, νΓ, ν ′Γ) ,

(A.171d)

for any 1 ≤ m ≤ m̄, N ≤ N∗ − d/2 − Ncut,x − N∗∗, and M ≤ M∗ − Ncut,t − 1 − N∗∗.

Furthermore, we have that ϕ∗
υ̂ satisfies

∥∥DNDM
t ϕ

∗
υ̂

∥∥
∞ ≲ µ−K◦

0 (ΛΓ)N(νΓ)M (A.172)

for all N ≤ N◦ and M ≤M◦.
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(iii) We have the support properties13

supp (ϕ0
υ̂) ⊆ supp (G) , supp (ϕmυ̂ ) ⊆ suppG ∩B

(
supp ρ, 2µ−1

m−1

)
◦ Φ (A.173)

for all 0 < m ≤ m̄.

(iv) For all M ≤M∗ − Ncut,t − 1, we have that the mean ⟨Dtσυ̂⟩ satisfies

∣∣∣∣ dMdtM ⟨Dtσυ̂⟩
∣∣∣∣ ≲ (ΛΓ)−K◦M (M,Mt − Ncut,t,−1, νΓ, ν ′Γ) . (A.174)

Proof. Step 1: Constructing συ̂ and verifying the properties in Part 2.

For the moment we ignore the decomposition in (A.164d) and handle the rest of the conclu-

sions in Part 2. Towards a proof of (i), we first have that Π(G) ≲ C2
G,∞ and Π(ρ) ≲ C2

ρ,∞.

The proof of these is similar to (A.117a) and (A.117b), and we omit the details. Also, using

a method of proof similar to that used to obtain (A.117c) and (A.117d), we can show that

|DN1DM
t G| ≲ (Π(G) + C2

G,∞Γ−2Ncut,t)
1/2(λΓ)N1M (M,Mt, νΓ, ν

′Γ) (A.175a)

λN2−n2|Dn2ρ| ≲ (Π(ρ) + C2
ρ,∞Γ−2Ncut,t)

1/2(ΛΓ)N2 (A.175b)

for any integers 0 ≤ N1, N2 ≤ N∗, 0 ≤ n2 ≤ N2 and M ≤ M∗. Then, (i) follows as in the

proof of (A.111).

Next, to prove (ii), we again claim that for N ≤ N∗ − Ncut,x and M ≤M∗ − Ncut,t,

|DNDM
t Π(G)| ≲

(
Π(G) + C2

G,∞Γ−2Ncut,t
)
(λΓ)NM (M,Mt − Ncut,t, νΓ, ν

′Γ) (A.176a)∣∣DNΠ(ρ)
∣∣ ≲ (Π(ρ) + C2

ρ,∞Γ−2Ncut,t
)
(ΛΓ)N (A.176b)∣∣DN(Π(ρ) ◦ Φ)

∣∣ ≲ (Π(ρ) ◦ Φ + C2
ρ,∞Γ−2Ncut,t

)
(ΛΓ)N . (A.176c)

13For any Ω ∈ T3, we use Ω◦Φ(i,k) to refer to the space-time set Φ−1
(i,k)(t, ·)Ω whose characteristic function

is annihilated by Dt.
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The proof of the claims is similar to, and in fact easier, than the proofs of the analogous

estimates in (A.120) and (A.126b). Indeed, instead of (A.121), we simply have from the

Leibniz rule that

∣∣DNDM
t Π(G)

∣∣ ≤ Ncut,x∑
n=0

Ncut,t∑
m=0

(λΓ)−2n(νΓ)−2m
∣∣DNDM

t |DnDm
t G|

2
∣∣

=

Ncut,x∑
n=0

Ncut,t∑
m=0

∑
0≤N ′≤N
0≤M ′≤M

(λΓ)−2n(νΓ)−2m
∣∣∣DN ′

DM ′

t DnDm
t G
∣∣∣ ∣∣∣DN−N ′

DM−M ′

t DnDm
t G
∣∣∣ ,

at which point we apply (A.175a). A similar argument produces the other two bounds listed

above. Then (A.176a)–(A.176c) imply (ii) as in the proof of Proposition A.4.1.

Regarding (iii), as before, the estimate for G in (A.167) follows from (A.158a), (A.176a),

and (A.161b). The estimate for Π(ρ) follows similarly from (A.158c), (A.176b), and (A.161b).

Therefore, (A.167) is verified, and as a consequence
∥∥σ−

υ̂

∥∥
p′

≲ δυ̂,pr
4/3
υ̂ follows after us-

ing (A.158d). The periodicity of Π(ρ) is immediate from the definition and the periodic-

ity assumption on ρ. To obtain
∥∥σ+

υ̂

∥∥
3
≲ δυ̂,3/2r

4/3
υ̂ , we use Lemma A.1.3 as in the proof

of (A.140a), for example. The assumptions in the lemma can be verified using (A.167),

(A.160a), (A.159a), and (A.161c) and the recently observed periodicity. Therefore, the de-

sired estimate for σ+
υ̂ in L3/2 follows from (A.18). The L∞ estimate follows trivially from

(A.167).

Next, we consider (iv). Similar to the proof of (A.176a), one can obtain

|DNDM
t Π(G)| ≲ πr

−2/3
G (λΓ)NM (M,Mt − Ncut,t, νΓ, νΓ

′) (A.177)

for any integer N ≤ N∗ − Ncut,x and M ≤ M∗ − Ncut,t. Then we have (A.168a), and hence

(A.168b) holds. Finally, (A.169) is immediate from the definitions in (A.164), concluding

the proof of all claims in Part 2 except (A.164d).

Step 2: Constructing the current errors ϕmυ̂ and verifying the properties in Part 3.
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We first define σmυ̂ in order to verify (A.164d). Using the synthetic Littlewood-Paley decom-

position from (7.34) and Definition 7.3.1, we write

P ̸=0Π(ρ) = P̃µ0P ̸=0(Π(ρ)) +

(
m̄∑
m=1

P̃(µm−1,µm](Π(ρ))

)
+
(
Id− P̃µm̄

)
︸ ︷︷ ︸

=:P∗

(Π(ρ)) . (A.178)

For convenience, we use the abbreviations P0 for P̃µ0P ̸=0 and Pm for P̃(µm−1,µm] for 1 ≤ m ≤ m̄.

Define σmυ̂ , σ
∗
υ̂, ϕ

m
υ̂ , and ϕ

∗
υ̂ by

συ̂ = σ∗
υ̂ +

m̄∑
m=0

σmυ̂ := r2υ̂Π(G)(P∗Π(ρ)) ◦ Φ) + r2υ̂

m̄∑
m=0

Π(G)(P̃m(Π(ρ)) ◦ Φ) ,

ϕmυ̂ := H(Dtσ
m
υ̂ ), ϕ∗

υ̂ := (H +R∗)σ∗
υ̂ +

m̄∑
m=0

R∗(Dtσ
m
υ̂ ) .

Assuming that everything above is well-defined, we have verified (i). We aim to apply Propo-

sition A.3.3 with Remarks A.3.8 and A.3.9 in separate cases according to which projector is

being applied above. In order to apply the inverse divergence, we may however first treat

the low-frequency assumptions from Part 1, which are the same in all cases (irrespective of

which projector is being applied). We therefore set

N∗ = N∗ − Ncut,x −N∗∗ , M∗ =M∗ − Ncut,t − 1−N∗∗ , M t =Mt − Ncut,t − 1

G = DtΠ(G), CG,3/2 = νΓC2
G,3, CG,∞ = νΓC2

G,∞, µ = µ , λ
′
= λ′ ,

Φ = Φ, λ = max(λ, λ′)Γ, ν = νΓ, ν ′ = ν ′Γ , π = νΓπr
−2/3
G , v = v ,

where we have used the convention set out in Remark A.3.10 to rewrite the symbols from

Lemma A.4.1 with bars above on the left-hand side of the equalities below, while the right-

hand side are parameters given in the assumptions of this Lemma. Then we have that

(A.39) is verified from the assumption N∗ ≥M∗ and (A.161a), (A.40) follows from conclusion

(A.167), and (A.59) follows from conclusion (A.168a). Next, we see that (A.41), (A.42a),

(A.42b), and (A.53) hold from (A.160a)–(A.160c). At this point we split into cases based on

427



which projector is applied and address parts 2-4 of Proposition A.3.3 in order to conclude

the proof of this Lemma.

Step 2a: Lowest shell. For the case m = 0, we appeal to Lemma 7.3.3 with q = 3/2,

λ = ΛΓ, ρ = P ̸=0Π(ρ), and α such that λα in (7.37a) is equal to Γ. Specifically, to verify the

assumptions in Part 2 of Proposition A.3.3, we set for p′ = 3/2,∞

ϱ = P0Π(ρ) , ϑ as defined in (7.37a) , C∗,p′ = C2
ρ,3

(
µ0

µ

) 4
3
− 2

p′

,

µ = µ , Υ = Υ
′
= µ , Λ = µ0 , d = d .

Then (7.35) is satisfied with Cp,3/2 = C2
ρ,3 and λ = ΛΓ from standard Littlewood-Paley

theory, (A.167), and the choices from Step 1 which led to that conclusion, and so from

(7.37a) we have that (A.43) is satisfied. From (A.159a), (A.161c), and the choice of N∗

above, we have that (A.44)–(A.45) are satisfied. Continuing onto the nonlocal assumptions

from Proposition A.3.3, we have that (A.52)–(A.54) are satisfied from (A.160c) and the

assumptions from Part 1 on M◦ and N◦. We have that (A.55) is satisfied from (A.163a).

We then appeal to the conclusions (A.46)–(A.51) and (A.56)–(A.57) to conclude as follows.

From (A.50), we obtain (A.171a). The pointwise bound in (A.171b) holds due to (A.60),

(A.49a), and (A.47). Next, we obtain (A.172) for the portion of ϕ∗
υ̂ coming from this case

m = 0 from (A.57). Finally, we obtain (A.173) from (A.48), concluding the proof of the

desired conclusions for m = 0 .

Step 2b: Intermediate shells. For the cases 1 ≤ m ≤ m̄, we appeal to Lemma 7.3.4

with q = 3/2 and ρ = P ̸=0Π(ρ). Specifically, to verify the assumptions in Part 2 of Proposi-

tion A.3.3, we set for p′ = 3/2,∞

ϱ = PmΠ(ρ), C∗,3/2 = C2
ρ,3, C∗,∞ = min((µm/µ)

4/3C2
ρ,3, C2

ρ,∞) , Υ = µm−1 ,

Υ
′
= Λ = min(µm,ΛΓ) , ϑ as defined in Lemma 7.3.4 , α as in the previous substep .
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Then (7.39) is satisfied with Cp,3/2 = C2
ρ,3 as in the last substep, and so from (7.40b) we

have that (A.43) is satisfied. From (A.159a), (A.161c), (A.162), and the choice of N∗ above,

we have that (A.44)–(A.45) are satisfied. Continuing onto the nonlocal assumptions from

Proposition A.3.3, we have that (A.52)–(A.54) are satisfied as in the last substep. We have

that (A.55) is satisfied from (A.163b). We then appeal to the conclusions (A.46)–(A.51)

and (A.56)–(A.57) to conclude as follows. From (A.50), we obtain (A.171c). The pointwise

bound in (A.171d) holds due to (A.60), (A.49a), and (A.47). Next, we obtain (A.172) for

the portion of ϕ∗
υ̂ coming from this case 1 ≤ m ≤ m̄ from (A.57). Finally, we obtain (A.173)

from (A.48) and (7.40c), concluding the proof of the desired conclusions for 1 ≤ m ≤ m̄.

Step 2c: Highest shell. For the case m = m̄, we appeal to Lemma 7.3.3 with q = 3/2,

λ = ΛΓ, ρ = P ̸=0Π(ρ), and α such that λα in (7.37a) is equal to Γ. Specifically, to verify the

assumptions in Part 2 of Proposition A.3.3, we set for p′ = ∞

ϱ = P∗P0Π(ρ) , ϑ as defined in (7.37b) , C∗,p′ = C2
ρ,3(ΛΓ)

3

(
ΛΓ

µm̄

)N∗∗

,

µ = Υ = Υ
′
= µ , Λ = ΛΓ , d = 0 .

Then (7.35) is satisfied as in the previous substeps, and so from (7.37b) we have that (A.43)

is satisfied. We have that (A.44)–(A.45) are satisfied as in the first substep. The nonlocal

assumptions are satisfied as in the previous substeps, except that we now have (A.55) from

(A.163c). The only conclusion we require at this point is to produce a bound matching

(A.172), which follows from (A.57).

Step 3: Verification of (A.174). Since the vector field v is incompressible, dM

dtM
⟨Dtσυ̂⟩ =
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⟨DM+1
t συ̂⟩. Since Π(ρ) is periodic in (T/µ)2, we have that for M + 1 ≤M∗ − Ncut,t − 1,

∣∣∣∣ ˆ
T3

DM+1
t Π (G) (P ̸=0Π(ρ)) ◦ Φ dx

∣∣∣∣
=

∣∣∣∣ˆ
T3

DM+1
t Π (G) ◦ Φ−1∆⌊ d

4
⌋∆−⌊ d

4
⌋ (P ̸=0Π(ρ)) dx

∣∣∣∣
=

∣∣∣∣ˆ
T3

∆⌊ d
4
⌋ (DM+1

t Π (G) ◦ Φ−1
)
∆−⌊ d

4
⌋ (P ̸=0Π(ρ)) dx

∣∣∣∣
≲
∥∥∥∆⌊ d

4
⌋ (DM+1

t Π (G) ◦ Φ−1
)∥∥∥

3/2

∥∥∥∆−⌊ d
4
⌋ (P ̸=0Π(ρ))

∥∥∥
1

≲ CG,3/2(max(λ, λ′)Γ)
d/2µ−d/2C∗,3/2Υ−2Υ′M (M + 1,Mt − Ncut,t, νΓ, ν

′Γ)

≤ (ΛΓ)−K◦M (M,Mt − Ncut,t − 1, νΓ, ν ′Γ) .

Here, we have used Lemma A.1.1, (A.167), (A.160a), (A.163b), and standard Littlewood-

Paley theory.

Proposition A.4.4 (Pressure increment and upgrade error for stress error). We

begin with preliminary assumptions, which include all of the assumptions and conclusions

from the inverse divergence in Proposition A.3.3 and the pointwise bounds in Remark A.3.9.

We then include additional assumptions, which allow for the application of Lemma A.4.1

to the stress error and Proposition A.3.3 to the material derivative of the output. We thus

obtain a pressure increment which satisfies a number of properties. Finally, the material

derivative of this pressure increment produces a current error which itself satisfies a number

of properties.

Part 1: Preliminary assumptions

(i) There exists a vector field G, constants CG,p for p = 3/2,∞, and parametersMt, λ, ν, ν
′, N∗,M∗

such that (A.39) and (A.40) are satisfied. There exists a smooth, non-negative scalar

function π such that (A.59) holds.

(ii) There exists an incompressible vector field v, associated material derivative Dt = ∂t +

v · ∇, a volume preserving diffeomorphism Φ, inverse flow Φ−1, and parameter λ′ such
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that (A.41)–(A.42b) are satisfied.

(iii) There exists a zero mean scalar function ϱ, a mean-zero tensor potential ϑ, constants

C∗,p for p = 3/2,∞, and parameters µ,Υ,Υ′,Λ,Ndec, d such that (i)–(iii) and (A.43)–

(A.45) are satisfied.

(iv) The symmetric stress S = H(Gϱ ◦ Φ) and nonlocal error E satisfy the conclusions in

(A.46), (ii)–(vi), as well as the conclusion (A.60) from Remark A.3.9.

(v) There exist integers N◦,M◦, K◦ such that (A.52)–(A.55) are satisfied, and as a conse-

quence conclusions (A.56)–(A.57) hold.

Part 2: Additional assumptions

(i) There exists a large positive integer N∗∗ and integers positive Ncut,x,Ncut,t such that we

have the additional inequalities

N∗ − 2d− Ncut,x −N∗∗ − 3 ≥M∗ , (A.179a)

M∗ − Ncut,t − 1 ≥ 2N◦ , (A.179b)

N∗∗ ≥ 2d+ 3 (A.179c)

(ii) There exist parameters Γ = Λα for 0 < α≪ 1 and δtiny satisfying

Ncut,t ≤ Ncut,x , (A.180a)

(CG,∞ + 1)
(
C∗,∞Υ′Υ−2 + 1

)
Γ−Ncut,t ≤ δtiny , CG,3/2 , C∗,3/2Υ′Υ−2 , (A.180b)

2Ndec + 4 ≤ N∗ −N∗∗ − Ncut,x − 3d− 3 , (A.180c)

(ΛΓ)4 ≤
(

µ

2π
√
3Γmax(λ, λ′)

)Ndec

. (A.180d)

(iii) There exists a parameter m̄ and an increasing sequence of frequencies {µ0, · · · , µm̄}
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satisfying

µ < µ0 < · · · < µm̄−1 ≤ Λ < ΛΓ < µm̄ , (A.181a)

max(λ,λ′)Γ
(
µ−2
m−1µm + µ−1

)
≤ 1 , (A.181b)

CG,3/2C∗,3/2νΓ(max(λ, λ′)Γ)⌊
d/4⌋ (max

(
µ−1, µmµ

−2
m−1

))⌊d/4⌋
× (µm̄)

5+K◦

(
1 +

max{ν ′, Cvµm̄}
ν

)M◦

≤ 1 , (A.181c)

CG,3/2νΓC∗,3/2
(
ΛΓ

µm̄

)N∗∗

(µm̄)
8+K◦

(
1 +

max{ν ′, Cvµm̄}
ν

)M◦

≤ 1 , (A.181d)

for all 1 ≤ m ≤ m̄.

Part 3: Pressure increment

(i) There exists a pressure increment σS, where we have a decomposition

σS = σ+
S − σ−

S = σ∗
S +

m̄∑
m=0

σmS . (A.182)

(ii) σ+
S dominates derivatives of S with suitable weights, so that

∣∣DNDM
t S
∣∣ ≲ (σ+

S + δtiny) (ΛΓ)
N M (M,Mt, νΓ, ν

′Γ) . (A.183)

for all N ≤ N∗ − ⌊d/2⌋, M ≤M∗.

(iii) σ+
S dominates derivatives of itself with suitable weights, so that

∣∣DNDM
t σ

+
S

∣∣ ≲ (σ+
S + δtiny) (ΛΓ)

N M (M,Mt − Ncut,t, νΓ, ν
′Γ) (A.184)

for all N ≤ N∗ − ⌊d/2⌋ − Ncut,x, M ≤M∗ − Ncut,t.

432



(iv) σ+
S and σ−

S have the same size as S, so that for p = 3/2,∞,

∥∥σ+
S

∥∥
p
,
∥∥σ−

S

∥∥
p
≲ CG,pC∗,pΥ′Υ−2 . (A.185)

(v) π dominates σ−
S and its derivatives with suitable weights, so that

∣∣DNDM
t σ

−
S

∣∣ ≲ C∗,3/2Υ−2Υ′π(max(λ, λ′)Γ)NM (M,Mt − Ncut,t, νΓ, ν
′Γ) (A.186)

for all N ≤ N∗ − ⌊d/2⌋ − Ncut,x, M ≤M∗ − Ncut,t.

(vi) We have the support properties

supp (σ+
S ) ⊆ supp (S) , supp (σ−

S ) ⊆ supp (G) . (A.187)

Part 4: Current error

(i) There exists a current error ϕ, where we have the decomposition and equalities

ϕ = ϕ∗
S +

m̄∑
m=0

ϕmS = (H +R∗)(Dtσ
∗
S) +

m̄∑
m=0

(H +R∗)(Dtσ
m
S ) , (A.188a)

divϕmS (t, x) = Dtσ
m
S (t, x)−

ˆ
T3

Dtσ
m
S (t, x

′) dx′ , (A.188b)

divϕ∗
S(t, x) = Dtσ

∗
S(t, x)−

ˆ
T3

Dtσ
∗
S(t, x

′) dx′ . (A.188c)
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(ii) ϕmS can be written as ϕmS = ϕm,lS + ϕm,∗S , and for 1 ≤ m ≤ m̄, these satisfy

∥∥DNDM
t ϕ

m
S

∥∥
3/2

≲ νΓ2CG,3/2C∗,3/2Υ′Υ−2µ−2
m−1µm (min(µm,ΛΓ))

N M (M,Mt − Ncut,t − 1, νΓ, ν ′Γ) ,

(A.189a)∥∥DNDM
t ϕ

m
S

∥∥
∞ ≲ νΓ2CG,∞C∗,3/2Υ′Υ−2

(
min(µm,ΛΓ)

µ

)4/3

µ−2
m−1µm

× (min(µm,ΛΓ))
N M (M,Mt − Ncut,t − 1, νΓ, ν ′Γ) ,

(A.189b)∣∣∣DNDM
t ϕ

m,l
S

∣∣∣ ≲ νΓ2πC∗,3/2Υ′Υ−2

(
min(µm,ΛΓ)

µ

)4/3

µ−2
m−1µm

× (min(µm,ΛΓ))
N M (M,Mt − Ncut,t − 1, νΓ, ν ′Γ) ,

(A.189c)

for all N ≤ N∗−2d−Ncut,x, M ≤M∗−Ncut,t−1. For m = 0 and the same range of N

and M , ϕmS and ϕm,lS satisfy identical bounds but with µ2
m−1µm replaced with Γµ−1 and

min(µm,ΛΓ) replaced with µ0 in all three bounds. Furthermore, the nonlocal portions

satisfy the improved estimate

∥∥DNDM
t ϕ

m,∗
S

∥∥
∞ ≲ (min(µm,ΛΓ))

N−K◦ (max(λ, λ′)Γ)⌊
d/4⌋ (max

(
µ−1, µmµ

−2
m−1

))⌊d/4⌋
(νΓ)M

(A.190)

for all N ≤ N◦,M ≤M◦, and the remainder term ϕ∗
S satisfies the improved estimate

∥∥DNDM
t ϕ

∗
S

∥∥
∞ ≲ (ΛΓ)−K◦(max(λ, λ′)Γ)⌊

d/4⌋ (max
(
µ−1, µmµ

−2
m−1

))⌊d/4⌋
(ΛΓ)N (νΓ)M

(A.191)

in the same range of N and M .
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(iii) We have the support properties14

supp (ϕm,lS ) ⊆ suppG ∩B
(
suppϑ, 2µ−1

m−1

)
◦ Φ for 1 ≤ m ≤ m̄ , supp

(
ϕ0,l
S

)
⊆ suppG .

(A.192)

(iv) For all M ≤M∗ − Ncut,t − 1, we have that the mean ⟨DtσS⟩ satisfies

∣∣∣∣ dMdtM ⟨DtσS⟩
∣∣∣∣ ≲ (ΛΓ)−K◦(max(λ, λ′)Γ)⌊

d/4⌋µ−⌊d/4⌋M (M,Mt − Ncut,t,−1, νΓ, ν ′Γ) .

(A.193)

Proof. Step 1: Defining and estimating σS to verify (A.183)–(A.187). From (A.47)

of Proposition A.3.3, we have that S can be written as

S =

CH∑
j=0

Hα(j)ρβ(j) ◦ Φ ,

where Hα(j) and ρβ(j) satisfy the bounds in (A.49a), (A.49b). In addition, we have the

pointwise bounds on Hα(j) in terms of π given by (A.60) in Remark A.3.9. For each 0 ≤

j ≤ CH, we shall apply Lemma A.4.1 with the following choices, where we have used the

convention set out in Remark A.3.10 to rewrite the symbols from Lemma A.4.1 with bars

above on the left-hand side of the equalities below, while the right-hand side are parameters

given in the assumptions of this Proposition:

v = v , N † = N∗ − ⌊d/2⌋ , M † =M∗ , M t =Mt ,

H = Hα(j), CG,3/2 = CG,3/2 , CG,∞ = CG,∞ ,

ρ = ρβ(j), Cρ,3/2 = C∗,3/2Υ′Υ−2 , Cρ,∞ = C∗∞Υ′Υ−2,

λ = max(λ, λ′) , Λ = Λ, Γ = Γ , Φ = Φ ,

π = π , ν = ν , ν ′ = ν ′ , µ = µ , Ndec = Ndec ,

14For any Ω ∈ T3, we use Ω◦Φ(i,k) to refer to the space-time set Φ−1
(i,k)(t, ·)Ω whose characteristic function

is annihilated by Dt.
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and Ncut,x, Ncut,t, and δtiny as in preliminary assumption (ii). From (A.49), (A.60), and

(A.50), we have that (A.105a)-(A.105d) are satisfied. Assumption (A.106) is satisfied from

(A.180d). All the assumptions in (iii) are satisfied from preliminary assumption (ii) from this

proposition. Finally, all assumptions in (iv) are satisfied from the additional assumption (ii)

from this Proposition.

We may then apply (A.109a)–(A.110b) from Lemma A.4.1 to obtain for 0 ≤ j ≤ CH the

pressure increments σjS = σ+,j
S − σ−,j

S , and we then collect terms to define

σ+
S :=

CH∑
j=0

σ+,j
S , σ−

S :=

CH∑
j=0

σ−,j
S , σS := σ+

S − σ−
S .

From conclusions (i)–(v) of Lemma A.4.1, we have that (A.183)–(A.187) are satisfied.

Step 2: Decomposing σS to verify (A.182), and defining and estimating ϕmS to

verify (A.188)–(A.192). From (A.109a)–(A.109b), we have that

σS =

CH∑
j=0

Π
(
Hα(j)

) (
P ̸=0Π(ρ

β(j))
)
◦ Φ . (A.194)

Note further that Π(ρβ(j)) is (T/µ)3-periodic and has derivative cost ΛΓ from (A.114), con-

clusion (iii) from Lemma A.4.1. So we use the sequence of frequencies µ0, . . . , µm̄ to apply

the synthetic Littlewood-Paley decomposition (à la (7.34)) to Π(ρβ(j)) and write

Π(ρβ(j)) = P̃µ0(Π(ρβ(j))) +

(
m̄∑
m=1

P̃(µm−1,µm](Π(ρ
β(j)))

)
+
(
Id− P̃µm̄

)
Π(ρβ(j)) . (A.195)

From now on, we shall abbreviate notation by writing P0 for P̃µ0 , Pm for P̃(µm−1,µm] for

1 ≤ m ≤ m̄, and P∗ for Id− P̃µm̄ , so that we may use (A.195) to write

σS = σ∗
S +

m̄∑
m=0

σmS :=

CH∑
j=0

Π
(
Hα(j)

)
P∗ (Π (ρβ(j))) ◦ Φ +

m̄∑
m=0

CH∑
j=0

Π
(
Hα(j)

)
Pm
(
Π
(
ρβ(j)

))
◦ Φ .

(A.196)

436



We aim to apply Proposition A.3.3 with Remarks A.3.8, A.3.9 to the material derivative of

each of the terms in (A.196), which would produce

ϕ := ϕ∗
S +

m̄∑
m=0

ϕmS =:

CH∑
j=0

(H +R∗)
(
DtΠ(H

α(j))
(
P∗P ̸=0Π(ρ

β(j))
)
◦ Φ
)︸ ︷︷ ︸

=:ϕ∗,j

+
m̄∑
m=0

CH∑
j=0

(H +R∗)
(
DtΠ(H

α(j))
(
PmP ̸=0Π(ρ

β(j))
)
◦ Φ
)︸ ︷︷ ︸

=:ϕm,j

= (H +R∗)(Dtσ
∗
S) +

m̄∑
m=0

(H +R∗)(Dtσ
m
S ) .

Assuming that we succeed in doing so, we have at least verified (A.182) and (A.188). Now in

order to apply the inverse divergence with the pointwise bounds from Remark A.3.9, we first

treat the low-frequency assumptions from Part 1, which are the same in all cases (irrespective

of the projector on Π(ρβ(j))). Specifically, we shall use the convention from Remark A.3.10

and in all cases set

p = 3/2,∞ , v = v , N∗ = N∗ − d− ⌊d/2⌋ − Ncut,x , M∗ =M∗ − Ncut,t − 1 , M t =Mt − Ncut,t − 1 ,

G = DtΠ(H
α(j)), CG,p = νΓCG,p , µ = µ , λ = max(λ, λ′)Γ , Φ = Φ , λ

′
= λ′ ,

ν = νΓ , ν ′ = ν ′Γ , Φ = Φ , π = νΓπ , Ndec = Ndec , d = d .

Then (A.39) is satisfied from the additional assumption (A.179a), and (A.40) is satisfied from

the conclusion (A.114) and the parameter choices from Step 1 which led to that conclusion.

The estimates in (A.41), (A.42a) and (A.42b) hold from assumption (ii) from this Propo-

sition. The pointwise bound in (A.59) holds with M t = Mt − Ncut,t − 1 and π = νΓπ due

to (A.115b), which was verified in Step 1. At this point we split into cases based on which

projector is applied to P ̸=0Π(ρ
β(j)) in (A.196) and address parts 2-4 of Proposition A.3.3.

Step 2a: Lowest shell. For the case m = 0, we appeal to Lemma 7.3.3 with q = 3/2,

λ = ΛΓ, ρ = P ̸=0Π(ρ
β(j)), and α such that λα in (7.37a) is equal to Γ. Specifically, to verify
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the assumptions in Part 2 of Proposition A.3.3, we set for p = 3/2,∞

ϱ = P0P ̸=0Π(ρ
β(j)) , ϑ as defined in (7.37a) , C∗,p = ΓC∗,3/2Υ−2Υ′

(
µ0

µ

) 4
3
− 2

p

,

µ = µ , Υ = Υ
′
= µ , Λ = µ0 , d = d .

Then (7.35) is satisfied with Cp,3/2 = C∗,3/2Υ−2Υ′ and λ = ΛΓ from standard Littlewood-

Paley theory, (A.114), and the choices from Step 1 which led to that conclusion, and so from

(7.37a) we have that (A.43) is satisfied. From (A.180d), (A.181a), (A.181b), the choice of N∗

above, (A.114), and (A.180c), we have that (A.44)–(A.45) are satisfied. Continuing onto the

nonlocal assumptions from Proposition A.3.3, we have that (A.52)–(A.54) are satisfied from

preliminary assumption (v) and (A.179b). We have that (A.55) is satisfied from (A.181c).

We then appeal to the conclusions (A.46)–(A.51) and (A.56)–(A.57) to conclude as follows.

First, we set

ϕ0,l
S = H(Dtσ

0
S) , ϕ0,∗

S = R∗(Dtσ
0
S) .

From (A.50), we obtain both (A.189a) and (A.189b), but with the appropriate modifications

for m = 0 as indicated. The pointwise bound in (A.189c) holds due to (A.60), (A.49a), and

(A.47). Next, we obtain (A.190) for m = 0 from (A.57). Finally, we obtain (A.192) from

(A.48), concluding the proof of the desired conclusions for m = 0 .

Step 2b: Intermediate shells. For the cases 1 ≤ m ≤ m̄, we appeal to Lemma 7.3.4

with q = 3/2 and ρ = P ̸=0Π(ρ
β(j)). Specifically, to verify the assumptions in Part 2 of

Proposition A.3.3, we set for p = 3/2,∞

ϱ = PmP ̸=0Π(ρ
β(j)) , ϑ = µ−d

m−1Θ
µm−1,µm
ρ as defined in Lemma 7.3.4 ,

C∗,p = C∗,3/2Υ−2Υ′
(
min(µm,ΛΓ)

µ

) 4
3
− 2

p

, Υ = µm−1 , Υ
′
= Λ = min(µm,ΓΛ) ,

d = d , µ = µ , α as in the previous substep.

Then (7.39) is satisfied exactly as in the previous substep, and so from (7.40a)–(7.40b) we
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have that (A.43) is satisfied. As before, we use (A.180d), (A.181a), (A.181b), the choice of

N∗ above, (A.114), and (A.180c) to see that (A.44)–(A.45) are satisfied. Continuing onto

the nonlocal assumptions from Proposition A.3.3, we have that (A.52)–(A.54) are satisfied

as in the previous substep, and (A.55) is satisfied from (A.181c). We then appeal to the

conclusions (A.46)–(A.51) and (A.56)–(A.57) to conclude as follows. First, we set

ϕm,lS = H(Dtσ
m
S ) , ϕm,∗S = R∗(Dtσ

m
S ) .

From (A.50), we obtain both (A.189a) and (A.189b). The pointwise bound in (A.189c) holds

due to (A.60), (A.49a), and (A.47). Next, we obtain (A.190) from (A.57). Finally, we obtain

(A.192) from (A.48) and (7.40c), concluding the proof for 1 ≤ m ≤ m̄.

Step 2c: Highest shell. For the case with the highest shell, corresponding to the

projector P∗ from (A.196), we appeal to Lemma 7.3.3 with q = 3/2, λ = ΛΓ, ρ = P ̸=0Π(ρ
β(j)).

Specifically, to verify the assumptions in Part 2 of Proposition A.3.3, we set for p = 3/2,∞

ϱ = P∗P ̸=0Π(ρ
β(j)) , ϑ = ϑ as defined in (7.37b) ,

C∗,p =

(
ΛΓ

µm̄

)N∗∗

C∗,3/2Υ−2Υ′(ΛΓ)3 , Υ = Υ
′
= µ , Λ = ΓΛ ,

d = 0 , N∗ = N∗ − Ncut,x −N∗∗ − 3 .

We note that we have altered the definition of N∗ compared to the previous two substeps for

convenience. But from (A.179c), we have in fact made it smaller, so that the low-frequency

assumptions from the inverse divergence are still satisfied. Then (7.35) is satisfied exactly as

in the first substep, and so from (7.37b) we have that (A.43) is satisfied. We use (A.180d),

(A.181a), (A.181b), the altered choice of N∗ above, (A.114), and (A.180c) to see that (A.44)–

(A.45) are satisfied. Continuing onto the nonlocal assumptions from Proposition A.3.3, we

have that (A.52)–(A.54) are satisfied as in the previous substep, and (A.55) is satisfied from

(A.181d). We then appeal to the conclusions (A.46)–(A.51) and (A.56)–(A.57) to conclude
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as follows. First, we set

ϕ∗
S = (H +R∗)(Dtσ

∗
S) .

We may ignore (A.50) since d = 0. Then the only conclusion we require is (A.191), which

follows from (A.57).

Step 3: Verification of (A.193). Since the vector field v is incompressible, dM

dtM
⟨DtσS⟩ =

⟨DM+1
t σS⟩. From (A.194), we have

DM+1
t σS =

CH∑
j=0

DM+1
t Π

(
Hα(j)

) (
P ̸=0Π(ρ

β(j))
)
◦ Φ .

Since Π(ρβ(j)) is periodic in (T/µ)2, we have that for M + 1 ≤M∗ − Ncut,t − 1

∣∣∣∣ ˆ
T3

DM+1
t Π

(
Hα(j)

) (
P ̸=0Π(ρ

β(j))
)
◦ Φdx

∣∣∣∣
=

∣∣∣∣ˆ
T3

DM+1
t Π

(
Hα(j)

)
◦ Φ−1∆⌊ d

4
⌋∆−⌊ d

4
⌋ (P ̸=0Π(ρ

β(j))
)
dx

∣∣∣∣
=

∣∣∣∣ˆ
T3

∆⌊ d
4
⌋ (DM+1

t Π
(
Hα(j)

)
◦ Φ−1

)
∆−⌊ d

4
⌋ (P ̸=0Π(ρ

β(j))
)
dx

∣∣∣∣
≲
∥∥∥∆⌊ d

4
⌋ (DM+1

t Π
(
Hα(j)

)
◦ Φ−1

)∥∥∥
3/2

∥∥∥∆−⌊ d
4
⌋ (P ̸=0Π(ρ

β(j))
)∥∥∥

1

≲ CG,3/2(max(λ, λ′)Γ)
d/2µ−d/2C∗,3/2Υ−2Υ′M (M + 1,Mt − Ncut,t, νΓ, ν

′Γ)

≤ (ΛΓ)−K◦(max(λ, λ′)Γ)⌊
d/4⌋µ−⌊d/4⌋M (M,Mt − Ncut,t − 1, νΓ, ν ′Γ) .

Here, we have used Lemma A.1.1, (A.114), (A.107a), (A.181c), and standard Littlewood-

Paley theory.

Proposition A.4.5 (Pressure increment and upgrade error from current error).

We begin with preliminary assumptions, which include all of the assumptions and conclusions

from the inverse divergence in Proposition A.3.3 and the pointwise bounds in Remark A.3.9.

We then include additional assumptions, which allow for the application of Lemma A.4.2 to

the current error and Proposition A.3.3 to the material derivative of the output. We thus

obtain a pressure increment which satisfies a number of properties. Finally, the material
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derivative of this pressure increment produces a current error which itself satisfies a number

of properties.

Part 1: Preliminary assumptions

(i) There exists a scalar field G, constants CG,p for p = 1,∞, and parametersMt, λ, ν, ν
′, N∗,M∗

such that (A.39) and (A.40) are satisfied. There exists a smooth, non-negative scalar

function π and a parameter rG such that (A.132b) holds with H replaced by G.

(ii) There exists an incompressible vector field v, associated material derivative Dt = ∂t +

v · ∇, a volume preserving diffeomorphism Φ, inverse flow Φ−1, and parameter λ′ such

that (A.41)–(A.42b) are satisfied.

(iii) There exists a zero mean scalar function ϱ, a mean-zero tensor potential ϑ, constants

C∗,p for p = 1,∞, and parameters µ,Υ,Υ′,Λ,Ndec, d such that (i)–(iii) and (A.43)–

(A.45) are satisfied.

(iv) The current error φ = H(Gϱ ◦ Φ) and nonlocal error E satisfy the conclusions in

(A.46), (ii)–(vi), as well as the conclusion (A.60) from Remark A.3.9 with π replaced

by π3/2r−1
G .

(v) There exist integers N◦,M◦, K◦ such that (A.52)–(A.55) are satisfied, and as a conse-

quence conclusions (A.56)–(A.57) hold.

Part 2: Additional assumptions

(i) There exists a large positive integer N∗∗ and positive integers Ncut,x,Ncut,t such that we

have the additional inequalities

N∗ − 2d− Ncut,x −N∗∗ − 3 ≥M∗ , (A.197a)

M∗ − Ncut,t − 1 ≥ 2N◦ , (A.197b)

N∗∗ ≥ 2d+ 3 (A.197c)
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(ii) There exist parameters Γ = Λα for 0 < α≪ 1, δtiny, rϕ, and δϕ,p for p = 1,∞ satisfying

0 < rϕ ≤ 1 , δ
3/2
ϕ,p = CG,pC∗,pΥ′Υ−2rϕ , (A.198a)

Ncut,t ≤ Ncut,x , (A.198b)

(CG,∞ + 1)
(
C∗,∞Υ′Υ−2 + 1

)
Γ−Ncut,t ≤ δtiny

3/2 , CG,1 , C∗,1Υ′Υ−2 , (A.198c)

2Ndec + 4 ≤ N∗ −N∗∗ − Ncut,x − 3d− 3 , (A.198d)

(ΛΓ)4 ≤
(

µ

2π
√
3Γmax(λ, λ′)

)Ndec

. (A.198e)

(iii) There exists a parameter m̄ and an increasing sequence of frequencies {µ0, · · · , µm̄}

satisfying

µ < µ0 < · · · < µm̄−1 ≤ Λ < ΛΓ < µm̄ , (A.199a)

max(λ,λ′)Γ
(
µ−2
m−1µm + µ−1

)
≤ 1 , (A.199b)

(CG,1C∗,1rϕ)
2/3νΓ(max(λ, λ′)Γ)⌊

d/4⌋ (max
(
µ−1, µmµ

−2
m−1

))⌊d/4⌋
× (µm̄)

5+K◦

(
1 +

max{ν ′, Cvµm̄}
ν

)M◦

≤ 1 , (A.199c)

(CG,1C∗,1rϕ)
2/3 νΓ

(
ΛΓ

µm̄

)N∗∗

(µm̄)
8+K◦

(
1 +

max{ν ′, Cvµm̄}
ν

)M◦

≤ 1 , (A.199d)

for all 1 ≤ m ≤ m̄.

Part 3: Pressure increment

(i) There exists a pressure increment σφ, where we have a decomposition

σφ = σ+
φ − σ−

φ = σ∗
φ +

m̄∑
m=0

σmφ . (A.200)
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(ii) σ+
φ dominates derivatives of φ with suitable weights, so that

∣∣DNDM
t φ
∣∣ ≲ ((σ+

φ )
3/2r−1

ϕ + δtiny
)
(ΛΓ)N M (M,Mt, νΓ, ν

′Γ) . (A.201)

for all N ≤ N∗ − ⌊d/2⌋, M ≤M∗.

(iii) σ+
φ dominates derivatives of itself with suitable weights, so that

∣∣DNDM
t σ

+
φ

∣∣ ≲ (σ+
φ + δtiny) (ΛΓ)

N M (M,Mt − Ncut,t, νΓ, ν
′Γ) (A.202)

for all N ≤ N∗ − ⌊d/2⌋ − Ncut,x, M ≤M∗ − Ncut,t.

(iv) σ+
φ and σ−

φ have size comparable to φ, so that

∥∥σ+
φ

∥∥
3/2
,
∥∥σ−

φ

∥∥
3/2

≲ δϕ,1 ,
∥∥σ+

φ

∥∥
∞ ,
∥∥σ−

φ

∥∥
∞ ≲ δϕ,∞ . (A.203)

(v) π dominates σ−
φ and its derivatives with suitable weights, so that

∣∣DNDM
t σ

−
φ

∣∣ ≲ ( rϕ
rG

)2/3 (
C∗,1Υ−2Υ′)2/3 π(max(λ, λ′)Γ)NM (M,Mt − Ncut,t, νΓ, ν

′Γ)

(A.204)

for all N ≤ N∗ − ⌊d/2⌋ − Ncut,x, M ≤M∗ − Ncut,t.

(vi) We have the support properties

supp (σ+
φ ) ⊆ supp (φ) , supp (σ−

φ ) ⊆ supp (G) . (A.205)

Part 4: Current error
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(i) There exists a current error ϕφ, where we have the decomposition and equalities

ϕφ = ϕ∗
φ +

m̄∑
m=0

ϕmφ = (H +R∗)(Dtσ
∗
φ) +

m̄∑
m=0

(H +R∗)(Dtσ
m
φ ) , (A.206a)

divϕmφ (t, x) = Dtσ
m
φ (t, x)−

ˆ
T3

Dtσ
m
φ (t, x

′) dx′ , (A.206b)

divϕ∗
φ(t, x) = Dtσ

∗
φ(t, x)−

ˆ
T3

Dtσ
∗
φ(t, x

′) dx′ , (A.206c)

(ii) ϕmφ can be written as ϕmφ = ϕm,lφ + ϕm,∗φ and for 1 ≤ m ≤ m̄ these satisfy

∥∥DNDM
t ϕ

m
φ

∥∥
3/2

≲ νΓ2
(
CG,1C∗,1Υ′Υ−2rϕ

)2/3
µ−2
m−1µm (min(µm,ΛΓ))

N M (M,Mt − Ncut,t − 1, νΓ, ν ′Γ) ,

(A.207a)∥∥DNDM
t ϕ

m
φ

∥∥
∞ ≲ νΓ2

(
CG,∞C∗,1Υ′Υ−2rϕ

)2/3(min(µm,ΛΓ)

µ

)4/3

µ−2
m−1µm

× (min(µm,ΛΓ))
N M (M,Mt − Ncut,t − 1, νΓ, ν ′Γ) ,

(A.207b)∣∣DNDM
t ϕ

m,l
φ

∣∣ ≲ νΓ2π

(
rϕ
rG

)2/3 (
C∗,1Υ′Υ−2

)2/3(min(µm,ΛΓ)

µ

)4/3

µ−2
m−1µm

× (min(µm,ΛΓ))
N M (M,Mt − Ncut,t − 1, νΓ, ν ′Γ) ,

(A.207c)

for all N ≤ N∗−2d−Ncut,x, M ≤M∗−Ncut,t−1. For m = 0 and the same range of N

and M , ϕmφ and ϕm,lφ satisfy identical bounds but with µ2
m−1µm replaced with Γµ−1 and

min(µm,ΛΓ) replaced with µ0 in all three bounds. Furthermore, the nonlocal portions

satisfy the improved estimate

∥∥DNDM
t ϕ

m,∗
φ

∥∥
∞ ≲ (min(µm,ΛΓ))

N−K◦ (max(λ, λ′)Γ)⌊
d/4⌋ (max

(
µ−1, µmµ

−2
m−1

))⌊d/4⌋
(νΓ)M ,

(A.208)
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for all N ≤ N◦,M ≤M◦, and the remainder term ϕ∗
φ satisfies the improved estimate

∥∥DNDM
t ϕ

∗
φ

∥∥
∞ ≲ (ΛΓ)−K◦(max(λ, λ′)Γ)⌊

d/4⌋ (max
(
µ−1, µmµ

−2
m−1

))⌊d/4⌋
(ΛΓ)N (νΓ)M

(A.209)

in the same range of N and M .

(iii) We have the support properties

supp (ϕm,lφ ) ⊆ suppG ∩B
(
suppϑ, 2µ−1

m−1

)
◦ Φ for 1 ≤ m ≤ m̄ , supp

(
ϕ0,l
φ

)
⊆ suppG .

(A.210)

(iv) For all M ≤M∗ − Ncut,t − 1, we have that the mean ⟨DtσS⟩ satisfies

∣∣∣∣ dMdtM ⟨Dtσφ⟩
∣∣∣∣ ≲ (ΛΓ)−K◦(max(λ, λ′)Γ)⌊

d/4⌋µ−⌊d/4⌋M (M,Mt − Ncut,t − 1, νΓ, ν ′Γ)

(A.211)

Proof. Step 1: Defining and estimating σφ to verify (A.201)--(A.205). From (A.47)

of Proposition A.3.3, we have that φ can be written as

φ =

CH∑
j=0

Hα(j)ρβ(j) ◦ Φ ,

where Hα(j) and ρβ(j) satisfy the bounds in (A.49a), (A.49b). In addition, we have the

pointwise bounds on Hα(j) in terms of π3/2r−1
G given by (A.60) in Remark A.3.9, but with

the modifications listed in preliminary assumption (i). For each 0 ≤ j ≤ CH, we shall

apply Lemma A.4.2 with the following choices, where we have used the convention set out

in Remark A.3.10 to rewrite the symbols from Lemma A.4.2 with bars above on the left-

hand side of the equalities below, while the right-hand side are parameters given in the
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assumptions of this Proposition:

v = v , N∗ = N∗ − ⌊d/2⌋ , M∗ =M∗ , M t =Mt ,

H = Hα(j), CG,1 = CG,1 , CG,∞ = CG,∞ ,

ρ = ρβ(j), Cρ,1 = C∗,1Υ−2Υ′ , Cρ,∞ = C∗,∞Υ−2Υ′ , rG = rG , rϕ = rϕ

λ = max(λ, λ′) , Λ = Λ, Γ = Γ , Φ = Φ ,

π = π , ν = ν , ν ′ = ν ′ , µ = µ , Ndec = Ndec ,

and Ncut,x, Ncut,t, and δtiny as in preliminary assumption (ii). From (A.49), the modified

version of (A.60), which is listed in preliminary assumption (i), (A.50), and (A.198a), we

have that (A.132a)–(A.132d) are satisfied. Assumption (A.133) is satisfied from (A.198e). All

the assumptions in (iii) are satisfied from preliminary assumption (ii) from this proposition.

Finally, all assumptions in (iv) are satisfied from the additional assumption (ii) from this

Proposition.

We may then apply (A.136a)–(A.137b) from Lemma A.4.2 to obtain for 0 ≤ j ≤ CH the

pressure increments σjφ = σ+,j
φ − σ−,j

φ , and we then collect terms to define

σ+
φ :=

CH∑
j=0

σ+,j
φ , σ−

φ :=

CH∑
j=0

σ−,j
φ , σφ := σ+

φ − σ−
φ .

From conclusions (i)–(v) of Lemma A.4.2, we have that (A.201)–(A.205) are satisfied.

Step 2: Decomposing σφ to verify (A.200), and defining and estimating ϕmφ to verify

(A.206)--(A.210) From (A.136a)–(A.137b), we have that

σφ = r
2/3
ϕ

CH∑
j=0

Π
(
Hα(j)

) (
P ̸=0Π(ρ

β(j))
)
◦ Φ . (A.212)

Note further that Π(ρβ(j)) is (T/µ)3-periodic and has derivative cost ΛΓ from (A.141a), con-
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clusion (iii) from Lemma A.4.2. So we decompose as in (A.195) to write

Π(ρβ(j)) = P̃µ0(Π(ρβ(j))) +

(
m̄∑
m=1

P̃(µm−1,µm](Π(ρ
β(j)))

)
+
(
Id− P̃µm̄

)
Π(ρβ(j)) . (A.213)

Using the same abbreviations used in (A.196), from (A.213) we may write

σφ = σ∗
φ +

m̄∑
m=0

σmφ := r
2/3
ϕ

CH∑
j=0

Π
(
Hα(j)

)
P∗ (Π (ρβ(j))) ◦ Φ + r

2/3
ϕ

m̄∑
m=0

CH∑
j=0

Π
(
Hα(j)

)
Pm
(
Π
(
ρβ(j)

))
◦ Φ .

(A.214)

We aim to apply Proposition A.3.3 with Remarks A.3.8, A.3.9 to the material derivative of

each of the terms in (A.214), which would produce

ϕφ := ϕ∗
φ +

m̄∑
m=0

ϕmφ =: r
2/3
ϕ

CH∑
j=0

(H +R∗)
(
DtΠ(H

α(j))
(
P∗P ̸=0Π(ρ

β(j))
)
◦ Φ
)︸ ︷︷ ︸

=:ϕ∗,j

+ r
2/3
ϕ

m̄∑
m=0

CH∑
j=0

(H +R∗)
(
DtΠ(H

α(j))
(
PmP ̸=0Π(ρ

β(j))
)
◦ Φ
)︸ ︷︷ ︸

=:ϕm,j

= (H +R∗)(Dtσ
∗
φ) +

m̄∑
m=0

(H +R∗)(Dtσ
m
φ ) .

Assuming that we succeed in doing so, we have at least verified (A.200) and (A.206). Now

in order to apply the inverse divergence with the pointwise bounds from Remark A.3.9, we

again first treat the low-frequency assumptions from Part 1, which are the same in all cases

(irrespective of the projector on Π(ρβ(j))). Specifically, we shall use the convention from

Remark A.3.10 and in all cases set

p = 3/2,∞ , v = v , N∗ = N∗ − d− ⌊d/2⌋ − Ncut,x , M∗ =M∗ − Ncut,t − 1 , M t =Mt − Ncut,t − 1 ,

G = r
2/3
ϕ DtΠ(H

α(j)), CG,3/2 = r
2/3
ϕ νΓC2/3

G,1 , µ = µ , λ = max(λ, λ′)Γ , Φ = Φ , λ
′
= λ′ ,

ν = νΓ , ν ′ = ν ′Γ , Φ = Φ , π = νΓπr
−2/3
G , Ndec = Ndec , d = d , CG,∞ = r

2/3
ϕ νΓC2/3

G,∞ .
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Then (A.39) is satisfied from the additional assumption (A.197a), and (A.40) is satisfied

from the conclusion (A.141a) and the parameter choices from Step 1 which led to that

conclusion. The estimates in (A.41), (A.42a) and (A.42b) hold from assumption (ii) from

this Proposition. The pointwise bound in (A.59) holds with M t = Mt − Ncut,t − 1 and

π = νΓπr
−2/3
G due to (A.142b), which was verified in Step 1. At this point we split into

cases based on which projector is applied to P ̸=0Π(ρ
β(j)) in (A.214) and address parts 2-4 of

Proposition A.3.3.

Step 2a: Lowest shell. For the case m = 0, we appeal to Lemma 7.3.3 with q = 3/2,

λ = ΛΓ, ρ = P ̸=0Π(ρ
β(j)), and α such that λα in (7.37a) is equal to Γ. Specifically, to verify

the assumptions in Part 2 of Proposition A.3.3, we set for p = 3/2,∞

ϱ = P0P ̸=0Π(ρ
β(j)) , ϑ as defined in (7.37a) , C∗,p = Γ

(
C∗,1Υ−2Υ′)2/3(µ0

µ

) 4
3
− 2

p

,

µ = µ , Υ = Υ
′
= µ , Λ = µ0 , d = d .

Then (7.35) is satisfied with Cp,3/2 = (C∗,1Υ−2Υ′)
2/3

and λ = ΛΓ from standard Littlewood-

Paley theory, (A.141a), and the choices from Step 1 which led to that conclusion, and so from

(7.37a) we have that (A.43) is satisfied. From (A.198e), (A.199a), (A.199b), the choice of

N∗ above, (A.141a) and (A.141b), and (A.198d), we have that (A.44)–(A.45) are satisfied.

Continuing onto the nonlocal assumptions from Proposition A.3.3, we have that (A.52)–

(A.54) are satisfied from preliminary assumption (v) and (A.197b). We have that (A.55) is

satisfied from (A.199c). We then appeal to the conclusions (A.46)–(A.51) and (A.56)–(A.57)

to conclude as follows. First, we set

ϕ0,l
φ = H(Dtσ

0
φ) , ϕ0,∗

φ = R∗(Dtσ
0
φ) .

From (A.50), we obtain both (A.207a) and (A.207b), but with the appropriate modifications

for m = 0 as indicated. The pointwise bound in (A.207c) holds due to (A.60), (A.49a), and

(A.47). Next, we obtain (A.208) for m = 0 from (A.57). Finally, we obtain (A.210) from
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(A.48), concluding the proof of the desired conclusions for m = 0 .

Step 2b: Intermediate shells. For the cases 1 ≤ m ≤ m̄, we appeal to Lemma 7.3.4

with q = 3/2 and ρ = P ̸=0Π(ρ
β(j)). Specifically, to verify the assumptions in Part 2 of

Proposition A.3.3, we set for p = 3/2,∞

ϱ = PmP ̸=0Π(ρ
β(j)) , ϑ = µ−d

m−1Θ
µm−1,µm
ρ as defined in Lemma 7.3.4 ,

C∗,p =
(
C∗,1Υ−2Υ′)2/3(min(µm,ΛΓ)

µ

) 4
3
− 2

p

, Υ = µm−1 , Υ
′
= Λ = min(µm,ΓΛ) ,

d = d , µ = µ , α as in the previous substep .

Then (7.39) is satisfied exactly as in the previous substep, and so from (7.40a)–(7.40b) we

have that (A.43) is satisfied. As before, we use (A.198e), (A.199a), (A.199b), the choice

of N∗ above, (A.141a) and (A.141b), and (A.198d) to see that (A.44)–(A.45) are satisfied.

Continuing onto the nonlocal assumptions from Proposition A.3.3, we have that (A.52)–

(A.54) are satisfied as in the previous substep, and (A.55) is satisfied from (A.199c). We

then appeal to the conclusions (A.46)–(A.51) and (A.56)–(A.57) to conclude as follows. First,

we set

ϕm,lφ = H(Dtσ
m
φ ) , ϕm,∗φ = R∗(Dtσ

m
φ ) .

From (A.50), we obtain both (A.207a) and (A.207b). The pointwise bound in (A.207c) holds

due to (A.60), (A.49a), and (A.47). Next, we obtain (A.208) from (A.57). Finally, we obtain

(A.210) from (A.48) and (7.40c), concluding the proof for 1 ≤ m ≤ m̄.

Step 2c: Highest shell. For the case with the highest shell, corresponding to the

projector P∗ from (A.214), we appeal to Lemma 7.3.3 with q = 3/2, λ = ΛΓ, ρ = P ̸=0Π(ρ
β(j)).
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Specifically, to verify the assumptions in Part 2 of Proposition A.3.3, we set for p = 3/2,∞

ϱ = P∗P̸=0Π(ρ
β(j)) , ϑ = ϑ as defined in (7.37b) ,

C∗,p =

(
ΛΓ

µm̄

)N∗∗ (
C∗,1Υ−2Υ′)2/3 (λΓ)3 , Υ = Υ

′
= µ , Λ = ΓΛ ,

d = 0 , N∗ = N∗ − Ncut,x −N∗∗ − 3 .

We note that we have altered the definition of N∗ compared to the previous two substeps for

convenience. But from (A.197c), we have in fact made it smaller, so that the low-frequency

assumptions from the inverse divergence are still satisfied. Then (7.35) is satisfied exactly as

in the first substep, and so from (7.37b) we have that (A.43) is satisfied. We use (A.198e),

(A.199a), (A.199b), the altered choice of N∗ above, (A.141a) and (A.141b), and (A.198d)

to see that (A.44)–(A.45) are satisfied. Continuing onto the nonlocal assumptions from

Proposition A.3.3, we have that (A.52)–(A.54) are satisfied as in the previous substep, and

(A.55) is satisfied from (A.199d). We then appeal to the conclusions (A.46)–(A.51) and

(A.56)–(A.57) to conclude as follows. First, we set

ϕ∗
φ = (H +R∗)(Dtσ

∗
φ) .

We may ignore (A.50) since d = 0. Then the only conclusion we require is (A.209), which

follows from (A.57).

Step 3: Verification of (A.211). The proof is similar to (A.193). Indeed, we have

r
2/3
ϕ

∣∣∣∣ ˆ
T3

DM+1
t Π

(
Hα(j)

) (
P ̸=0Π(ρ

β(j))
)
◦ Φdx

∣∣∣∣
≲ r

2/3
ϕ

∥∥∥∆⌊ d
4
⌋ (DM+1

t Π
(
Hα(j)

)
◦ Φ−1

)∥∥∥
3/2

∥∥∥∆−⌊ d
4
⌋ (P ̸=0Π(ρ

β(j))
)∥∥∥

3/2

≲ r
2/3
ϕ C2/3

G,1(max(λ, λ′)Γ)
d/2µ−d/2(C∗,1Υ−2Υ′)

2/3M (M + 1,Mt − Ncut,t, νΓ, ν
′Γ)

≲ (ΛΓ)−K◦(Υ−2Υ′)
2/3(max(λ, λ′)Γ)⌊

d/4⌋µ−⌊d/4⌋M (M,Mt − Ncut,t − 1, νΓ, ν ′Γ) .
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using Lemma A.1.1, (A.141a), (A.107a), (A.199c) with standard Littlewood-Paley theory.

Then, recalling dM

dtM
⟨Dtσφ⟩ = ⟨DM+1

t σφ⟩ and using the representation (A.212) of Dtσφ, we

obtain (A.211).

A.5 Upgrading material derivatives

Lemma A.5.1 (Upgrading material derivatives). Fix p ∈ [1,∞] and a positive integer

N⋆ ≤ 3Nfin/4. Assume that a tensor F is given with a decomposition F = F l + F ∗ which

satisfy

∥∥ψi,qDNDM
t,qF

l
∥∥
p
≲ Cp,FλNFM

(
M,Nind,t,Γ

i+c
q τ−1

q ,Γ−1
q T−1

q

)
(A.215a)∥∥DNDM

t,qF
∗∥∥

∞ ≲ C∗,FT
Nind,t

q+n̄ λNF τ
−M
q (A.215b)

for all M + N ≤ N⋆, an absolute constant c ≤ 20, and constants Cp,F and C∗,F . Assume

furthermore that there exists k such that q + 1 < k ≤ q + n̄ and

supp (ŵq′ , λ
−1
q′ Γq′) ∩ supp (F l) = ∅ ∀q + 1 ≤ q′ < k . (A.216)

Finally, assume that

λFΓ
imax+2
q+n̄ δ

1
2
q+n̄r

− 1
3

q ≤ T−1
q+n̄ . (A.217)

Then F obeys the following estimate with an upgraded material derivative for allM+N ≤ N⋆;

∥∥ψi,k−1D
NDM

t,k−1F
∥∥
p
≲ (Cp,F + C∗,F )max(λF ,Λk−1)

NM
(
M,Nind,t,Γ

i
k−1τ

−1
k−1,Γ

−1
k−1T

−1
k−1

)
.

(A.218)

451



In particular, the nonlocal part F ∗ obeys better estimate

∥∥DNDM
t,k−1F

∗∥∥
∞ ≲ C∗,F max(λF , λk−1Γk−1)

NM
(
M,Nind,t, τ

−1
k−1,T

−1
k−1Γ

−1
k−1

)
(A.219)

for N +M ≤ N⋆.

Similarly, if instead of (A.215a), F l satisfies

∣∣ψi,qDNDM
t,qF

l
∣∣ ≲ πFλ

N
FM

(
M,Nind,t,Γ

i+c
q τ−1

q ,Γ−1
q T−1

q

)
(A.220)

for all M +N ≤ N⋆, an absolute constant c ≤ 24, and a positive function πF with πF ≥ C∗,F ,

we have

∣∣ψi,k−1D
NDM

t,k−1F
∣∣ ≲ πF max(λF ,Λk−1)

NM
(
M,Nind,t,Γ

i
k−1τ

−1
k−1,Γ

−1
k−1T

−1
k−1

)
(A.221)

for all M +N ≤ N⋆, provided that (A.217) holds.

Proof. We first handle the local portion F l by upgrading ψi,q in (A.215a) to the one with

ψi,k−1, and then upgrading Dt,q to Dt,k−1. Since ψ6
i′,q forms a partition of unity from (5.8)

and we have τ−1
q Γi

′+24
q ≤ τ−1

k−1Γ
i
k−1 when ψi′,qψi,k−1 ̸= 0 by (5.14), we obtain that

∥∥ψi,k−1D
NDM

t,qF
l
∥∥
p
=

∥∥∥∥∥ψi,k−1

imax∑
i′=0

ψ6
i′,qD

NDM
t,qF

l

∥∥∥∥∥
p

≲
∑

i′:ψi′,qψi,k−1 ̸=0

∥∥ψi′,qDNDM
t,qF

l
∥∥
p

≲ Cp,FλNFM
(
M,Nind,t, τ

−1
k−1Γ

i
k−1,Γ

−1
k−1T

−1
k−1

)
. (A.222)

Here we used the maximal cardinality of i′ is imax. Then, using (A.216), we have DM
t,k−1F

l =

DM
t,qF

l and the desired inequality (A.218) for F l follows. In a similar way, we can also get

(A.221) for F l.

On the other hand, we handle the nonlocal portion F ∗ by claiming that for each q ≤ k′ ≤
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k − 1, we have

∥∥DNDM
t,k′F

∗∥∥
∞ ≲ C∗,FT

Nind,t

q+n̄ max(λF , λk′Γk′)
N(T−1

k−1Γ
−1
k−1)

M , (A.223)

for all N +M ≤ N⋆. In particular, this implies that

∥∥DNDM
t,k−1F

∗∥∥
∞ ≲ C∗,F max(λF , λk−1Γk−1)

NM
(
M,Nind,t, τ

−1
k−1,T

−1
k−1Γ

−1
k−1

)
for N +M ≤ N⋆, which yields (A.218) and (A.221). The proof of the claim is then given by

an inductive argument on k′. When k′ = q, it easily follows from (A.215b). Next, suppose

that (A.223) holds for some k′ < k − 1, and we apply Remark A.2.6 to v = ûk′ , w = ŵk′+1,

f = F , Ω = T3, N∗ = N⋆, Nt = Nind,t. Then (A.223) holds for k′ + 1, using (5.32), (5.34),

the inductive assumption (A.223) for k′, and (A.217).

A.6 Mollification estimates

In this subsection, we require two algebraic identities originally stated in [7, (5.17a)–(5.17b)],

which we now recall. Let v be a sufficiently smooth divergence-free vector field and let

Dt = ∂t + v · ∇ be the material derivative operator associated to v. For any sufficiently

smooth function F = F (x, t) and any n,m ≥ 0, the Leibniz rule implies that

DnDm
t F = Dn(∂t + v · ∇x)

mF =
∑
m′≤m

n′+m′≤n+m

dn,m,n′,m′(v)(x, t)Dn′
∂m

′

t F , (A.224a)

dn,m,n′,m′(v) =
m−m′∑
k=0

∑
{γ∈Nk : |γ|=n−n′+k,
β∈Nk : |β|=m−m′−k}

c(m,n, k, γ, β)
k∏
ℓ=1

(
Dγℓ∂βℓt v(x, t)

)
, (A.224b)

where c(m,n, k, γ, β) denotes an explicitly computable combinatorial coefficient which de-

pends only on the factors inside the parentheses. Identities (A.224a)–(A.224b) hold because

D and ∂t commute; the proof is based on induction on n and m and is left to the reader.
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Proposition A.6.1 (Mollification with spatial and material derivatives). Let p ∈

[1,∞], Ng, Nc, Mt, N∗, and Nγ be positive integers, v be a divergence-free vector field, and

Dt = ∂t+ v ·∇. Fix parameters λ, Λ, τ , T, Γ ≥ 1, i, Cf,p ≤ C̃f , Cv, and c ∈ [0, 30] such that

Ng ≤ Nc ≤ N∗/4 , Mt ≤ N∗ ≤ Nγ , λΓ ≤ Λ , τ−1Γi+c ≤ T−1 , Cvλ ≤ T−1 , (A.225a)

(T−1Γ)Mt C̃fΓ−Nc/2 ≤ Γ−NgCf,pτ−Mt . (A.225b)

Let (a, b)+T be a time domain and Ω ⊂ (a, b)+T×Td be a subset in the space-time domain.

Assume that v satisfies

∥∥DN∂Mt v(x, t)
∥∥
L∞((a,b)+T×T3)

≲ CvλNT−M (A.226)

for all N +M ≤ Nγ. Assume that f : (a, b) + T× Td → R satisfies the estimates15

∥∥DNDM
t f
∥∥
Lp(Ω)

≲ Cf,pλNM
(
M,Mt, τ

−1Γi+c,T−1
)

(A.227a)∥∥DN∂Mt f
∥∥
L∞((a,b)+T×Td)

≲ C̃fλNT−M (A.227b)

for N +M ≤ N∗. Let γx be a compactly supported mollifier in space at scale (λ−1Λ−1)1/2, γt

be a compactly supported mollifier in time at scale TΓ−1/2, and assume that the kernels for

both mollifiers have vanishing moments up to Nc and are CNγ differentiable.

Set fγ = γt ∗ γx ∗ f . Then for N +M ≤ Nγ, we have that

∥∥DNDM
t fγ

∥∥
Lp(Ω∩(a,b)×Td)

≲ Cf,pΛNM
(
M,Mt, τ

−1Γi+c+1,T−1Γ
)
, (A.228)

while for N +M ≤ N∗, we have that

∥∥DNDM
t (f − fγ)

∥∥
Lp(Ω∩(a,b)×Td)

≲ Γ−NgCf,pΛNM
(
M,Mt, τ

−1,T−1Γ
)
. (A.229)

15By Lp(Ω), we mean Lp for each fixed timeslice Ω ∩ {t = t0}, continuously in time which is non-empty.
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Proof. We split the proof into steps. We first set up the Taylor expansion which allows

us to take advantage of the vanishing moments. Next, we prove (A.228) and (A.229) for

N,M ≤ N∗/4. Finally, we prove (A.228) and (A.229) in the remaining cases where either

N > N∗/4 or M > N∗/4. Note that since γt has a compact support in time at scale TΓ−1/2, fγ

is well-defined in the domain (a, b)× Td.

Step 1: Let us denote by Kt the kernel for γt and Kx the kernel for γx so that K := KtKx

is the space-time kernel for γt ∗ γx. We denote space-time points (t, x) ∈ (a, b) × Td and

(s, y) ∈ (a, b) + T× Td by

(t, x) = θ, (s, y) = κ . (A.230)

Using this notation we may write out fγ explicitly as

fγ(θ) =

ˆ
Td×R

f(θ − κ)K(κ) dκ . (A.231)

Expanding f in a Taylor series in space and time around θ yields the formula

f(θ − κ) = f(θ) +
Nc−1∑

|α|+m=1

1

α!m!
Dα∂mt f(θ)(−κ)(α,m) +RNc(θ, κ) (A.232)

where

RNc(θ, κ) =
∑

|α|+m=Nc

Nc

α!m!
(−κ)(α,m)

ˆ 1

0

(1− η)Nc−1Dα∂mt f(θ − ηκ) dη . (A.233)

Step 2: Assume that N,M ≤ N∗/4. Here we note that because of the vanishing moments of
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K,

fγ(θ)− f(θ) =
∑

|α|+m′′=Nc

Nc

α!m′′!

ˆ
Td×R

K(κ)(−κ)(α,m′′)

ˆ 1

0

(1− η)Nc−1Dα∂m
′′

t f(θ − ηκ) dη dκ .

(A.234)

Now we appeal to the identity (A.224a) with F = fγ − f to obtain

∥DnDm
t (fγ − f)∥L∞((a,b)×Td) ≲

∑
m′≤m

n′+m′≤n+m

∥dn,m,n′,m′(v)∥L∞

∥∥∥Dn′
∂m

′

t (fγ − f)
∥∥∥
L∞((a,b)×Td)

.

(A.235)

From assumptions (A.225) and (A.226) and the formula (A.224b), we have that

∥dn,m,n′,m′(v)∥L∞ ≲
m−m′∑
k=0

Ckvλn−n
′+k(T−1)m−m′−k ≲ λn−n

′
(T−1)m−m′

. (A.236)

Combining this estimate with the bound (A.227b), we deduce that

∥∥DNDM
t (fγ − f)

∥∥
L∞((a,b)×Td)

≲
∑
m′≤M

n′+m′≤N+M

λN−n′
(T−1)M−m′

∥∥∥Dn′
∂m

′

t (fγ − f)
∥∥∥
L∞((a,b)×Td)

≲
∑
m′≤M

n′+m′≤N+M

∑
|α|+m′′=Nc

λN−n′
(T−1)M−m′ × C̃fλn

′+|α|(T−1)m
′+m′′

ˆ
T3×R

∣∣∣κ(α,m′′)
∣∣∣ |K(κ)|dκ

≲ C̃f
∑

|α|+m′′=Nc

λN+|α|(T−1)M+m′′
(Λλ)−

|α|/2(TΓ−1/2)m
′′

≲ C̃fλNT−MΓ−Nc/2 ≲ Γ−NgCf,pΛNM
(
M,Mt, τ

−1,T−1Γ
)
, (A.237)

where the last inequality follows from (A.225) and holds for N,M ≤ N∗/4. This establishes

(A.229) in this range of N,M , and by the triangle inequality for fγ = fγ − f + f establishes

(A.228) in the same range of N,M .
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Step 3: We now consider (A.228) in the case that either M ≥ N∗/4 or N ≥ N∗/4, and

N+M ≤ Nγ. We first note that when N∗ ≤ N+M ≤ Nγ, applying the differential operator

to the kernels for the mollifiers, we get

∥∥DN∂Mt fγ
∥∥
L∞((a,b)×Td)

≲ C̃f min
n+m=N∗
n≤N,m≤M

λnT−m(λΛ)
1
2
(N−n)(T−1Γ

1/2)M−m (A.238)

This implies that when either N or M exceeds N∗/4 but N +M ≤ Nγ, we have

∥∥DNDM
t fγ

∥∥
L∞((a,b)×Td)

≲
∑
m≤M

n+m≤N+M

∥dN,M,n,m(v)∥L∞ ∥Dn∂mt fγ∥L∞

≲ C̃fΓ−N∗
8 ΛN(T−1Γ)M ≲ C̃fΓ−Nc

2 ΛN(T−1Γ)M (A.239)

≲ Γ−NgCf,pΛNM
(
M,Mt, τ

−1,T−1Γ
)

where we have used (A.236), (A.227b), (A.238), (A.225), and (A.225b) . In the second

inequality, the factor Γ−N∗
8 gain has been obtained by paying lossy derivative costs. This

completes the proof of (A.228) when either N or M exceeds N∗/4 and N +M ≤ Nγ.

Finally, in order to prove (A.229) when either N or M exceeds N∗/4 and N +M ≤ N∗, we

use the triangle inequality as in the previous step, the estimate just shown, and the estimate

∥∥DNDM
t f
∥∥
Lp(Ω∩(a,b)×Td)

≲ Cf,pΓ−(M+N)ΛNM
(
M,Mt, τ

−1Γi+c+1,T−1Γ
)

≲ Γ−NgCf,pΛNM
(
M,Mt, τ

−1,T−1Γ
)
,

which follows from (A.227a) and (A.225).
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[12] S. Daneri and L. Székelyhidi, Jr. Non-uniqueness and h-principle for Hölder-continuous
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[14] C. De Lellis and L. Székelyhidi, Jr. Dissipative continuous Euler flows. Invent. Math.,

193(2):377–407, 2013.
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[33] S. Modena and L. Székelyhidi, Jr. Non-uniqueness for the transport equation with

Sobolev vector fields. Ann. PDE, 4(2), No. 18, 38, 2018.

[34] J. Nash. C1 isometric embeddings i, ii. Ann. Math., 60:383–396, 1954.

[35] M. Novack and V. Vicol. An Intermittent Onsager Theorem. Inventiones Mathematicae,

in press, 2023.

[36] L. Onsager. Statistical hydrodynamics. Nuovo Cimento, 6 (Suppl 2), 279–287, 1949.

[37] A.M. Polyakov. Conformal turbulence. arXiv:hep-th/9209046, 1992.

[38] A.M. Polyakov. The theory of turbulence in two dimensions. Nucl. Phys. B, 396,

367–385, 1993.

461


	Introduction
	Anomalous dissipation in the vanishing viscosity limit
	The strong Onsager conjecture
	Relation to weak-strong uniqueness

	Fully-developed turbulence
	A local K41 theory
	Anomalous dissipation as a conservation law anomaly
	Intermittency

	An lttttt-based strong Onsager conjecture

	The Main theorem
	Idea of Proof
	Heuristic computations
	Difficulties in a homogeneous scheme
	Heuristics for an intermittent scheme

	The continuous scheme
	Necessity of a continuous scheme
	An obstruction

	The intermittent pressure

	Parameters
	Definitions and inequalities
	A few more inequalities

	Inductive assumptions
	Relaxed equations
	Inductive assumptions for velocity cutoff functions
	Inductive bounds on the intermittent pressure 
	tpdfs1, tpdfs2, and pointwise bounds for tpdfs3
	Lower and upper bounds for tpdfs4
	Pointwise bounds for errors, velocities, and velocity cutoffs

	Dodging principle ingredients
	Inductive velocity bounds
	Velocities and velocity increments
	Velocity increment potentials

	Inductive proposition and the proof of the main theorem

	Mollification and upgrading material derivatives
	Intermittent Mikado bundles and synthetic Littlewood-Paley decompositions
	Definition of intermittent Mikado flows and basic properties
	Pipe dodging and intermittent Mikado bundles
	Synthetic Littlewood-Paley decomposition

	Non-inductive cutoffs
	Time cutoffs
	Estimates on flow maps
	Intermittent pressure cutoffs
	Definition of the intermittent pressure cutoffs
	Estimates for intermittent pressure cutoffs

	Mildly and strongly anisotropic checkerboard cutoffs
	Definition of the cumulative cutoff function
	Cutoff aggregation lemmas

	The velocity increment
	Definition of the corrector
	Definition of the current corrector
	Definition of the Euler-Reynolds corrector
	Definition of the complete corrector

	Dodging for new velocity increment
	Estimates for wqn
	Velocity increment potential
	Estimates for new velocity increments and their potentials

	Convex integration in the Euler-Reynolds system
	Defining new error terms
	Error estimates
	Oscillation stress error essoh
	Transport and Nash stress errors esstee
	Divergence corrector error essee
	Mollification error essemm

	Upgrading material derivatives and Dodging Hypothesis 5.4.4

	Error estimates for the relaxed local energy inequality
	Defining new current error terms
	Error estimates
	Oscillation current error
	Transport and Nash current errors
	Linear current error
	Stress current error
	Divergence correctors
	Mollification current error

	Upgrading material derivatives

	Inductive cutoffs
	New mollified velocity increment and definition of the velocity cutoff functions
	Partitions of unity, dodging, and simple bounds on velocity increments
	Pure spatial derivatives
	Maximal index appearing in the cutoff
	Mixed derivative estimates
	Material derivatives
	Lr size of the velocity cutoffs
	Verifying Eqn. (5.14)

	Pressure increment
	New pressure increment and new anticipated pressure
	Inductive assumptions on the new pressure
	The Euler-Reynolds system and the relaxed LEI adapted to new pressure
	Pressure current error
	Pressure current error I
	Pressure current error II

	Inductive estimates on the new errors

	Appendix and toolkit
	Decoupling lemmas and consequences of the Faà di Bruno formula
	Sums and iterates of operators and commutators with material derivatives
	Inversion of the divergence
	Sample lemma
	Upgrading material derivatives
	Mollification estimates

	Bibliography

