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A B S T R A C T

The aim of this thesis is to investigate certain rigidity theorems which relate equations be-
tween geometric tensors to the topology of a manifold, focusing in the case of hypersurfaces
of Rn. What inspired us are two works: The first one is [9], in which the authors prove that
a 2-dimensional surface in R3 with small traceless second fundamental form A− 1

2 trA Id
is close to a round sphere in an integral sense: namely they find a smooth parametrization
ψ : S2 −→ Σ and a constant c0 ∈ R3 that satisfy the following estimate:

‖ψ− c0 − Id‖W2,2(S2) 6 C

∥∥∥∥A−
trA
2

Id
∥∥∥∥
L2(Σ)

.

The second one is [41], in which the author investigates conditions that allow the following
oscillation inequality for a closed hypersurface Σ ⊂ Rn+1.

min
λ∈R
‖A− λ Id‖Lp(Σ) 6 C

∥∥∥∥A−
trA
n

Id
∥∥∥∥
Lp(Σ)

,

where p is a fixed exponent in (1, ∞). Motivated by such results, we dug into [9] and [41] in
order to combine them and obtain likewise-estimates.

The whole thesis is dedicated to analyse conditions that allow the followingW2,p-estimate:

‖ψ− Id‖W2,p(Σ) 6 C‖T‖Lp(Σ),

where Σ is a given closed hypersurface in Rn+1 (typically a sphere), and T a tensor on Σ
that satisfies a rigidity condition. In order to reach this type of inequality we have developed
a successful linearisation scheme, that has revealed to be particularly robust.

In the first chapter we give a first n-dimensional version of the estimate in [9], which is
valid for every 1 < p <∞, albeit under the additional hypothesis of convexity of Σ.

In the second chapter we consider how a small Ricci tensor affects a hypersurface,
and prove a version of the aforementioned estimates for closed, convex, almost Einstein
hypersurfaces.

In the third chapter we generalize the result exposed in the first one, considering the
appropriate "anisotropic curvatures". We thereby study the case of the anisotropic second
fundamental form, a tensor which has already been considered in the literature but which is
not yet fully explored, and generalize the result in the first chapter for hypersurfaces with
small Lp-norm of such tensor.

In the fourth chapter we attempt to remove the hypothesis of convexity that we have been
always assumed. Such hypothesis is proven to be not entirely artificial by a counterexample,
and we manage to give a version of the previous estimates, under alternative conditions.

In the fifth chapter we include some scattered partial results that we found throughout
our investigation.

In the appendix we report some computational lemmas that are used often throughout
the work, but might burden the reader and obscure the main ideas.





Z U S A M M E N FA S S U N G

Ziel dieser These ist es, gewisse Starrheitstheoreme zu analysieren, die Gleichungen zwischen
geometrischen Tensoren mit Topologie einer Mannigfaltigkeit verbinden. Wir fokussieren
uns auf den Fall von Hyperflächen in Rn. Unsere Inspiration bestehet insbesondere aus
zwei Arbeiten: Die Erste ist [9], wobei die Authoren beweisen, dass eine 2-dimensional
Oberfläche in R3 mit kleiner spurfreien zweiten Fundamentalform A− 1

2 trA Id nah an eine
runde Sphere ist. Tatsächlich finden sie eine glatte Parametrisierung ψ : S2 −→ Σ und einen
Vektor c0 ∈ R3, so dass die folgende Abschätzung erfüllt wird:

‖ψ− c0 − Id‖W2,2(S2) 6 C

∥∥∥∥A−
trA
2

Id
∥∥∥∥
L2(Σ)

.

Die Zweite ist [41], wobei der Author Bedingungen analysiert, die die folgende oscillation
inequality für abgeschlossene Hyperflächen erlauben:

min
λ∈R
‖A− λ Id‖Lp(Σ) 6 C

∥∥∥∥A−
trA
n

Id
∥∥∥∥
Lp(Σ)

,

wobei p eine feste Zahl in (1, ∞) ist. Diese Resultate haben uns motiviert, eine änliche
Untersuchung von [9] und [41] durchzuführen, um die Beiden zu kombinieren und änliche
Abschätzungen zu bekommen.

In der These untersuchen wir Bedingungen, die die folgende W2,p-Abschätzung erlauben:

‖ψ− Id‖W2,p(Σ) 6 C‖T‖Lp(Σ),

wobei Σ eine abgeschlossene Hyperfläche in Rn+1 (normalerweise eine Sphere) ist, und
T ein Tensor auf Σ, der eine gewisse Starrheitsbedingung erfüllt. Um diese Klasse von
Ungleichungen zu bekommen, haben wir eine Linearisierungsmethode entwickelt, die sich
als speziell robust erwiesen hat.

Im ersten Kapitel zeigen wir eine erste n-dimensionale Version der Abschätzung in [9],
die für jedes p ∈ (1, ∞) gültig ist, obwohl wir benötigen, dass Σ convex ist.

Im zweiten Kapitel betrachten wir, wie ein kleiner Ricci Tensor eine Hyperfläche beein-
flusst, und zeigen eine Version der vorigen Abschätzungen, die für abgeschlossene, konvexe,
fast Einstein Hyperfläche gilt.

Im dritten Kapitel verallgemeinen wir die, im ersten Kapitel vorgelegten, Resultate, indem
wir die geeignete anisotropische Fundamentalform betrachten. Dort untersuchen wir den
Fall der anisotropischen zweiten Fundamentalform. Dieser Tensor wurde bereits in anderen
Veröffentlichungen studiert, ist jedoch nicht komplett verstanden. Wir zeigen, dass die
Resultate im ersten Kapitel auch für Mannigfaltigkeiten gelten, deren anisotropische zweite
Fundamentalform Lp-klein ist.

Im vierten Kapitel versuchen wir, die Konvexitätshypothese, die wir immer betrachtet
haben, abzuswächen. Diese Hypothese erweist sich als nicht völlig künstlich, da wir für



nicht konvexe Hyperflächen Gegenbeispiele konstruieren können. Wir beweisen eine Version
unserer vorherigen Resultate, die unter alternativen Hypothesen gilt.

Kapitel 5 enthält partielle Resultate, die wir entdeckt haben, während wir die anderen
Beweise geprüft haben.

Im Anhang finden sich einige Berechnungen, die wir in der These benutzt haben, aber die
den Leser/die Leserin belasten könnten, und von der Hauptideen ablenken.
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P R E FA C E

introduction

In the field of Differential Geometry there is an abundance of so called ”rigidity theorems”.
These are remarkable propositions that establish a connection between the geometric proper-
ties of a manifold and its topology. To give a proper definition of what rigidity actually means
is not the scope of this thesis. We shall focus rather on a particular class of propositions
that connect tensorial relations to topological properties of a smooth manifold. By the very
nature of tensors, such equations admit a natural interpretation in the language of analysis.
In fact, they can be interpreted as zero sets of certain partial differential operators defined on
vector bundles. Rephrasing the rigidity theorems in this language, they state that manifolds
in which certain partial differential equations admit solutions are forced to satisfy certain
topological constraints. In this work we aim to prove appropriate quantitative versions. We
study the case in which the aforementioned operators are perturbed by a small error term,
and prove stability results: the smaller is the error term, the closer is the manifold to the
rigid configuration. We focus particularly on the quantitative aspects of our estimates, i.e.
on the relation occurring between the smallness of the error term and the closeness of our
manifold to satisfy the rigidity conditions.

Our research is mainly centered on the following problems.

The classical umbilical theorem

Given a smooth hypersurface Σ ⊂ R3, a point is called umbilical if its second fundamental
form evaluated at it is diagonal. The umbilical theorem or Nabelpunktsatz says that a smooth,
complete, connected surface of R3 whose points are all umbilical is either the plane or the
sphere (see [14, Chap. 3.2, Prop. 4] or [14, 3.5(2)]). This result is one of the first rigidity results
in Differential Geometry, with its first proofs dating back to 1776 or even before (we refer to
the splendid historical note in [41, Sec. 1.6] for a clarification of the paternity of the theorem).
While there have been innumerable and successful generalisations in the direction of rigidity,
with extensions of the Nabelpunktsatz in the cases of higher dimension ([49, Lemma 1, p.8]),
higher codimension ([49, Thm.26, p.75]), spaces of constant curvature ([49, Thm. 27, 29,
p.75-77], lesser smoothness ([40]), there are still open questions about the stability of the
problem. In this context, stability means understanding how much the closeness of the
second fundamental form to be diagonal affects the closeness of the hypersurface to a sphere,
where the concept of ”closeness” will be clarified later.

The first studies in this direction were made by the Russian school in the 60’s, where
authors like A. V. Pogorelov (see [23] or [44]) considered the case of convex surfaces, and
proved how the ratio between eigenvalues of the second fundamental form controls the ratio
between the radius of the smallest outer sphere containing the surface and the radius of the
largest inner sphere contained in the surface. We refer again to [41, 1.2] for a better insight in
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this direction. In the new millennium, works on foliations of asymptotically flat 3-manifolds
like [32], [33] or [37] raised new questions about the stability of the umbilical theorem, more
precisely:

How much do integral norms of the tensor Å := A− 1
n trA Id control the ratio between

the two aforementioned radii?
Motivated by this question, posed by G. Huisken in 2003, C. De Lellis and S. Müller studied

the problem in the case of closed surfaces of R3. Using the 2-dimensional structure they
performed an extremely fine analysis of the considered quantities and found in a substantial
way the following remarkable oscillation estimate, valid for all embedded surfaces in R3:

min
λ∈R
‖A− λ Id‖L2(Σ) 6 C

∥∥Å∥∥
L2(Σ)

. (DLM1)

They discovered moreover that, when the right hand side of (DLM1) is sufficiently small,
then the surface is homeomorphic to a sphere, and found a conformal parametrization
ψ : S2 −→ Σ that satisfies the following estimate:

‖ψ− Id‖W2,2(S2) 6 C
∥∥Å∥∥

L2(Σ)
. (DLM2)

Such inequality was complemented with a C0-one on the distance between the metric of
Σ and the round metric of the sphere in [10]. Although such work represents a massive
improvement in the understanding of quantitative stability properties of nearly umbilical
surfaces, the methods do not seem to generalize to higher dimensions. In subsequent years
this problem was approached by D. Perez, former student of C. De Lellis. In his PhD thesis
[41] he focused on generalizing the inequality (DLM1) to closed hypersurfaces in Rn for
3 6 n and general exponents p ∈ (1, ∞). The approach followed by Perez is more direct and
reduces the problem to a fine study of an elliptic differential equation on the unit ball in
order to find a local version of (DLM1), and then via gluing charts globalizes the estimate.
This approach allows Perez to find sufficient conditions to generalize (DLM1) and gives a
comprehensive answer in the case of closed, convex hypersurfaces.

Einstein hypersurfaces

The study of rigidity and consequently stability properties for abstract manifolds presents
more difficulties than the previous one, for a variety of reasons.

Firstly, the absence of an ambient space makes it more difficult to give a proper definition
of ”closeness”. Ideas about the distance between manifolds already appeared in [7], but
developments in the theory did not progress for two decades, until the groundbreaking
work of M. Gromov in [22]. There the author introduced the concept of Gromov-Hausdorff
distance, a way to measure the distance between abstract Riemannian manifolds. The
Gromov-Hausdorff distance is however an abstract definition.

Secondly, the intrinsic quantities usually considered in Riemannian Geometry, i.e. scalar or
sectional curvature, Ricci tensor. . . are invariant under diffeomorphism (see [2, Thm. 4.1] for
instance). The differential equations underlying identities which involve them are naturally
non-elliptic: indeed, for every single solution one can let the group of diffeomorphisms act
and find an infinite dimensional space of solutions, contradicting the typical compactness
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properties of elliptic differential operators (see [2, Sec. 5.1, 5.2] or [25, Sec. 4] for a deeper
insight in the subject).

A celebrated result in Differential Geometry characterizes all the complete manifolds with
constant sectional curvature (see [19, Thm. 3.82]), and prove them to be, up to isometries,
round spheres, Euclidean spaces or hyperbolic spaces. The collection [42] tries to solve
the first problem we have exposed. The author gives in [42] and later in the book [43,
Chap. 10] a more practical definition of distance between manifolds that represents the
analogous of the Hölder distance for functions. This allows stronger compactness theorems
to hold. Using these new propositions the author succeeds in proving stability results for the
aforementioned rigidity theorem. These results require however a large number of restrictive
assumptions.

We bypass such difficulties by considering the case of hypersurfaces in Rn+1. Albeit
being strongly restrictive, this gauge presents several advantages. Indeed, it fixes a clear
ambient space in which we can measure distances, and at the same time it eliminates the
problem of the diffeomorphism invariance we discussed before. In this case the classification
theorem admits a strong relaxation. As observed by many authors (see [16], [46] or [52] for
example) the rigidity assumption on the sectional curvature can be substituted by a rigidity
one on the Ricci tensor: the only closed, connected hypersurfaces in Rn+1 whose Ricci
tensor is diagonal are round spheres. Manifolds satisfying such condition on the Ricci tensor
are called Einstein manifolds. In this language, we can say that the only closed Einstein
hypersurfaces in the Euclidean space are round spheres. The stability properties of such
theorem, i.e. the properties of nearly Einstein hypersurfaces, are almost unknown, and only
in recent years some authors have studied them. (See [45] or [53] for instance).

The anisotropic umbilicality

Spheres admit many characterizations. As shown in the seminal paper [4], round spheres
S2 ⊂ R3 can be characterized as as the unique minimizers of the perimeter functional among
the (smooth) boundaries of set with fixed volume. This characterization leads to a clear
generalization: instead of considering the perimeter functional, one can also consider a
positive function F : S2 −→ (0, ∞) and study the associated variational problem, called often
anisotropic surface energy:

Minimize Σ 7−→
ˆ
Σ

F(νΣ)dV

among the surfaces which are boundaries of sets with fixed volume. Here νΣ denotes the
outer normal of Σ. The generalization of the variational problem in higher dimension is
straightforward. This problem is not an artificial generalization. It was formulated by J. E.
Taylor and G. Wulff in [51] and [54], respectively, in the context of studying equilibrium
configurations of solid crystals with sufficiently small grains, and it has been used later
as a model for phase transitions in [24]. As conjectured in [54] under certain regularity
assumptions it can be proven that the minimizer exists and is unique up to translation. Such
minimizer is called Wulff shape and we will denote it by W. Notice that when F = 1 the
problem reduces to the isotropic one and the Wulff shape coincides with the round sphere.
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There has been recently a lot of interest in anisotropic problems, and many properties
enjoyed by the round spheres have been generalized to the Wulff shape, cf. [17], [18], [38]
and the bibliographies therein. A rather new quantity arising in this field is the anisotropic
second fundamental form. This tensor has proven to share the same rigidity properties of its
anisotropic counterpart, with an anisotropic umbilical theorem which ensures that surfaces
with a diagonal anisotropic second fundamental form are Wulff shapes.

personal contributions

The main scheme

In this work we focus mainly our attention on generalizing estimate (DLM2). Following a
suggestion of C. De Lellis we have developed a simple but robust solution scheme to achieve
the result. The scheme is rather flexible, and it is divided into 3 steps.

1) In the first step we establish a first preliminary qualitative C1-estimate. This is normally
achieved through a compactness argument. We consider sequences of hypersurfaces
where some relevant quantities converge to 0, and prove the existence of a limit
hypersurface. In this phase the rigidity statements play a crucial role, since they have
to ensure the uniqueness of the limit.

2) Here we use the newly obtained C1-estimate to give a proper parametrization of our
hypersurfaces. We see then the main geometric quantities as differential operators in the
derivatives of the chosen parametrization. Then we perform a first order approximation,
linearising such operators and deriving estimates via classical PDE methods.

3) Normally the estimates that we have found insofar are not optimal. As a last step we
optimize them. This step arises naturally, since the linearised operators we have derived
typically have a kernel, which is defined by the invariance group of transformations
that act on the problem. Such are for instance the translations, since our problems
are translation-invariant. In this context the optimized estimate comes after as an
appropriate centering of our hypersurface.

Summary of the thesis

The thesis is divided into six chapters and an appendix. Each of the chapters from 1 to 4

contains a different application of the method explained above. The results exhibited in
Chapters 2 and 3 have already been published in [21], [12] respectively.

chapter 0 We begin the work with an introductory chapter, which introduces some
useful notation and collects important preliminary results, especially from reference [41].

chapter 1 Here we establish the equivalent of (DLM2) in arbitrary dimension n and
Sobolev exponent p, under the assumption of convexity of the considered hypersurface. This
result should not be considered as a generalization of [41], but rather as a completion of it.
Indeed, the techniques we use are natural consequences of the ones introduced in [41].

x



chapter 2 Here we apply our scheme to the case of closed, convex, almost Einstein
hypersurfaces. This case presents more difficulties than the previous one. The moral reason
behind them lies in the fact that the linearisation of the Ricci tensor is not an elliptic equation.
This has forced us to find a new way to tackle the problem and reduce it to the previous
case, under some additional auxiliary hypothesis.

chapter 3 Here we generalize the result of Chapter 1 in the case of anisotropic hypersur-
faces. Many ideas in this chapter are not new and follow rather the previous ones. However,
since this field is unexplored, we had to derive first analogous results to those in [41] and
then conclude as in Chapter 1. The chapter includes an elegant characterization of the kernel
of the stability operator associated to the Wulff shape, that uses some techniques related to
the stability of the anisotropic isoperimetric inequality (cf. [18, Thm 1.1]).

chapter 4 All the results of previous chapter are derived under the hypothesis of
convexity of the considered hypersurface. In this last chapter we attempt to remove this
hypothesis. As an easy counterexample shows, the convexity is not artificial and it is
necessary to avoid bubbling phenomena. Still, we can remove it in the supercritical case,
i.e. when n < p and substitute it with a Lp-integral bound of the second fundamental form.
Under such hypothesis we are able to recover most results, although a rather surprising lack
of linearity in the non convex nearly Einstein estimate appears.

chapter 5 The last chapter is a miscellanea of partial results obtained during the prepa-
ration of the other theorems.

appendix Here we collect some computational and technical lemmas used throughout
the work.
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0
N O TAT I O N S

0.1 conventions

We write below a list of symbols we are going to use in the rest of the thesis. Some quantities
that appear only sporadically or locally in a certain chapter will be defined when they will
be useful.

Voln n-dimensional Hausdorff measure.

δ flat metric on Rk (or Kronecker delta, see below).

Sn n-dimensional sphere in Rn+1.

σ metric associated to the standard sphere.

g restriction of the Rn+1-flat metric to Σ.

W Wulff shape.

ω metric associated to the Wulff shape.

trg trace w.r.t. the metric g.

A second fundamental form of Σ.

H mean curvature of Σ, e.g. trgA.

AF anisotropic second fundamental form of Σ.

HF anisotropic mean curvature of Σ, e.g. trgAF.

Å traceless second fundamental form of Σ.

ÅF traceless anisotropic second fundamental form of Σ.

Bσr (q) geodesic ball in Sn centered in q, of radius r.

Bkr (x) k-dimensional ball in Rk, centered in q, of radius r.

∇ Levi-Civita connection (see below).

∂ flat partial derivatives in Rk.

∆ Laplace-Beltrami operator.

div divergence operator.

Γkij Christoffel symbols.

osc(f, A) oscillation of f, i.e. supA f− infA f.

id identity function from a set to itself.

Id the identity (1, 1)-tensor from a bundle in itself.

Riem Riemann tensor associated to a manifold.

1



2 notations

Ric Ricci tensor associated to a manifold.

Scal scalar curvature associated to a manifold.

R̊ic traceless RIcci tensor.

? Nomizu operator between two (2, 0)-tensors.

We will always work keeping Rn+1 as ambient space. In this framework, Σ will always
denote a smooth, closed, connected n-dimensional submanifold in Rn+1. For such a hy-
persurface, ”convex” means that Σ is the boundary of a convex set. We will often need to
parametrize Σ, or a portion of it. When doing this, we will identify geometric quantities of Σ
with their respective pull-backs, whenever this does not lead to confusion.

We will also adopt the Einstein notation in order to omit the (possibly many) summation
symbols. In this flavour it is crucial to point out an abuse of notation we will make throughout
all the work. As said, we will make frequent use of parametrisations of Σ over spheres, balls
or other manifolds and often we will need the explicit expression of geometric quantities in
those parametrisations. In the formulae we will raise or lower the index in the left hand sides
w.r.t. the metric of Σ, while the indices on the right hand side will be lowered or raised w.r.t.
the natural metric associated to the parametrization (which will be the metric of the sphere,
if we will parametrize the manifold over a sphere, and so on). When such convention cannot
be followed, we will write the quantities with a subscript denoting the relevant metric (e.g.
writing gΓkij instead of Γkij to denote the Christoffel symbols of (Σ, g)).

We will need to work with many types of derivative and will obey the following derivative
conventions. The symbol ∇ shall be used for every possible Levi-Civita connection consid-
ered. When more than one such connection is involved, we will write it with a subscript
that will express the relevant metric, e.g. we write g∇ for the Levi-Civita connection w.r.t.
the metric g. The same rule will apply to all differential operators considered, like the
Laplace-Beltrami operator ∆. An exception is provided by the case of flat derivatives, for
which we will always use the symbol ∂, and for 1-dimensional derivatives, for which we
will use the typical d/dt or other classical notations.

Let now M be a smooth manifold. Given a function f : M −→ R, we will use the notation
∇f to denote both the differential of f (which is a 1-form) and the gradient of f (which is a
vector field), unless this abuse of notation leads to confusion. We also recall that at the first
order all the notions of derivative coincide, so we will use sometimes the notation ∇ and
sometimes ∂ depending on the context.

We shall use the letter δ to denote the flat metric of Rn+1 and at the same time the
Kronecker delta symbol. For every possible type of scalar product we shall use the symbol
〈 ·, · 〉. We will also denote by { ei }

k
i=1 the standard basis of Rk. With the definition outlined

above, we have

〈 ei, ej 〉 = δij.

Normally the metric that induces the scalar product is clear and we omit it. In all the other
cases we will write the metric inducing it as subscript, e.g. 〈 ·, · 〉g. The same notation will be
used for the norm ‖x‖ :=

√
〈 x, x 〉.



0.1 conventions 3

We will use the following sign conventions for curvature tensors. If X, Y and Z are vector
fields on Σ, we write:

R(X, Y)Z := ∇Y∇XZ−∇X∇YZ−∇∇YX−∇XYZ,

and define the Riemann tensor of Σ as

Riem(X, Y, Z, W) := 〈R(X, Y)Z, W 〉.

Given a (local) orthonormal frame {Ei }
n
i=1, we define the Ricci tensor as the contraction of

the Riemann tensor of the second and fourth index, i.e.

Ric(X, Y) :=
n∑
i=1

Riem(X, Ei, Y, Ei),

and set the scalar curvature as its trace, i.e. Scal := trg Ric. For the second fundamental form
given two vector fields, we set

A(X, Y) := 〈X, ∂Yν 〉,

where ν denotes the outer normal of the hypersurface, and ∂Yν denotes the derivative of
ν along the direction Y. Again, we will omit whenever possible the hypersurface whose ν
is the normal, being that normally obvious. In the cases in which there may be confusion,
e.g. when linearising quantities, we will specify the relevant surface in a subscript, writing
for instance νΣ for the normal of Σ and so on. Such notations are chosen so that the round
sphere Sn ⊂ Rn+1 satisfies the following equalities:

H = n, Scal = n(n− 1).

When having a (2, 0)-tensor T and a vector field X, we will use the notation T(X) to denote
the vector field

T(X)i := g
ikTijXk = T jiXj.

Thanks to Einstein notation, the meaning will be the same also when we deal with (1, 1)-
tensors, vector fields and differential forms respectively. In the same flavour, we will write

T(X, Y) := gipgjqTijXpYq = TpqXpYq.

Since we usually work with symmetric (2, 0)-tensors, the notation will not lead to abuse
of notation.

For every Lebesgue-measurable set A ⊂ Rn, we denote by |A| its Lebesgue measure. The
same notation shall be used to denote the volume measure |A| := Volg(A) for subsets A ⊂ Σ
when there is no confusion between the two. Given two sets A,B ⊂ Rn+1, the set

A∆B := (A \B)∪ (B \A)

is called symmetric difference of A and B.



4 notations

A measurable set E ⊂ Rn+1 is said to be a set of finite perimeter if the distributional
gradient ∂χE of the characteristic function of E is an (n+ 1)-valued Borel measure on Rn+1

with total variation |∂χE|(R
n+1) <∞.

Let F : Sn −→ (0, ∞) be a smooth function defined on the n-sphere that we shall
call anisotropic integrand. For every closed smooth hypersurface Σ in Rn+1, we define
its anisotropic surface energy as

F(Σ) :=

ˆ
Σ

F(ν)dV,

where ν is the outer normal vector field associated to Σ. Notice that when F = 1, than the
anisotropic surface energy F becomes the classical area of a hypersurface F(Σ) = Voln(Σ).

For every anisotropic function F and every m > 0, it is natural to study the following
problem

inf { F(Σ) : Σ = ∂U, | U| = m } , (0.1)

which attains a minimum. Its solution is a dilation of a closed, convex hypersurface W called
Wulff shape, see [51, Theorem 1.1]. In the context of differential geometry, the Wulff shape
shares lots of similarities with the round sphere. For instance (see [51, Sec. 1]), it can be seen
as the “sphere” for an anisotropic norm on Rn+1, namely

W = { F∗ = 1 } , (0.2)

where F∗ is the gauge function F∗ : Rn+1 −→ [0,+∞) defined by

F∗(x) := sup
ν∈Rn+1

{
〈x, ν〉 : |ν|F

(
ν

|ν|

)
6 1

}
.

A useful property of the differential of the gauge function, that we will use later, is the
following:

dF∗|z [c] = 〈ν(z), c〉, ∀z ∈W, (0.3)

where we denoted with ν the outer normal vector field associated to W.
Denoting by σ∇2F

∣∣
x

the intrinsic Hessian of F on Sn at the point x, we define the following
map SF : x ∈ Sn 7→ SF|x taking values in the space of symmetric matrices:

SF|x [z] := σ∇2F
∣∣
x
[z] + F(x)z for every x ∈ Sn, z ∈ TxSn. (0.4)

We say that F is an elliptic integrand if SF|x is positive definite at every x ∈ Sn. For any smooth
closed hypersurface Σ, we can define the anisotropic second fundamental form AF as

AF|x : TxΣ −→ TxΣ, AF|x := SF|ν(x) ◦ dν|x , (0.5)

where ν denotes the outer normal vector field associated to Σ.
For integrable functions f : Σ −→ R we will set

f :=

 
Σ

f dVg,
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with dVg being the measure induced by g. The same notation will be used for all the
considered Riemannian manifolds, where the mean is always taken w.r.t. the associated
measure.

For a function u : A −→ R where A ⊂ Rn, we define its graph in the following way

Graph(u, A) :=

{
y ∈ Rn+1

∣∣∣∣∣ y =

(
x

u(x)

)
, x ∈ A

}
⊂ Rn+1.

Let M be a smooth manifold. We define the Sobolev space Wk,p
g (M) as the completion of

the space f : C∞(M) −→ R

∣∣∣∣∣∣
ˆ
M

|f|p dVg +

k∑
j=1

ˆ
M

|∇jf|p dVg


w.r.t. the obvious norm

‖f− h‖p
W
k,p
g (M)

:=

ˆ
M

|f− h|p dVg +

k∑
j=1

ˆ
M

|∇jf−∇jh|p dVg.

The subscript in the definition is justified by the fact that this definition depends on the
chosen metric g, which determines the Levi-Civita connection associated to the tensors ∇jf
and the volume measure. We will omit the index whenever it is clear which metric we are
considering.

When making estimates, we will usually write inside brackets the main quantities upon
which a constant C depends, i.e. we will write C = C(x, y) to denote a constant depending
on the quantities x and y. Plus, in the computational parts of the thesis we will adopt
the convention, typical in the field of partial differential equations, of not relabelling the
bounding constants at every computation line unless needed.

The core geometric quantities that we studied in the thesis can be better understood in
the beautiful books [19], [35], [43] . For a better insight in the field of geometric analysis
other books, as [3], [27], or even articles like [36] are recommended. Finally, for concepts as
measures, perimeters and volumes we refer to the splendid books [1], [15], [31] or [48] for
further studies.

0.2 preliminary knowledge

The main inspiration of this work is the thesis [41] of D. Perez, and we refer mainly to the
first two chapters. A portion of our thesis can be understood as a completion of this work,
taking the main ideas from it and introducing new ones in order to reach the results in [9]
and [10].

In [41, Ch. 1, 2], the author deals with the generalization of estimate (DLM1), namely
he proves the following estimate for hypersurfaces in Rn+1, albeit under some suitable
assumptions:

min
λ∈R
‖A− λ Id‖Lp(Σ) 6 C‖Å‖Lp(Σ). (0.6)
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As stated in the introduction, in [9] the authors deal with the 2-dimensional case, where
they take advantage of some special structural properties which are not available in higher
dimensions. In [41] Perez found a way to tackle this problem, by applying the following
scheme. Firstly he studied the inequality when the manifold Σ is a graph, and obtained local
estimates. Then he made them global. This second step requires however some assumptions
on the manifold, since one has to find an atlas of coordinate charts with some good controls.
More precisely, the author obtains the following theorem:

Theorem 0.1 ( [41], Thm 1.1 + Thm. 2.1). Let 2 6 n, 1 < p < +∞ be given, and let Σ be a
smooth, closed hypersurface in Rn+1. Assume Σ satisfies one of these two conditions:

a) n < p, ‖A‖Lp(Σ) 6 c0 and Voln(Σ) = Voln(Sn).

b) Σ is convex.

Then estimate (0.6) holds, and the bounding constant C depends on n, p, c0 in case a), just on n
and p in case b).

Observe that the assumption Voln(Σ) = Voln(Sn) can be omitted if the assumption on
‖A‖Lp is replaced with a suitable scaling-invariant one.

In case b), the author proves that one can reduce himself to condition

b ′) Σ is convex, Voln(Σ) = Voln(Sn) and ‖A‖Lp(Σ) 6 c0.

A useful consequence of conditions a) and b ′) is the following lemma, already proved in
[41].

Lemma 0.2 ([41], Ch.1 + Ch.2). Let 2 6 n be given, and let Σ be a closed hypersurface in Rn+1

satisfying condition a) or b ′). Then there exist two numbers 0 < L, R depending only on n, p and
c0 with the following property. For every q ∈ Σ there exists a parametrisation

ϕq : BnR −→ Σ, ϕq(x) = Gq(x, uq(x)) (0.7)

where u is a Lipschitz function satisfying

Lip(f) 6 L, uq(0) = 0, ∂uq(0) = 0,

and Gq : Rn+1 −→ Rn+1, Gq := q +Φq is an affine transformation obtained composing a
translation τq(x) = x+ q and a rotation Φq so that ϕq(0) = q and dϕq|0 [R

n] = TqΣ.

The parametrisation ϕq satisfies an additional property. Indeed, it parametrises Σ locally
as a graph, and the radius R associated to the parametrisation satisfies the maximality
property:

R = sup

{
0 < r

∣∣∣∣∣ sup
e∈∂Bn1

|∂u(re)|√
1+ |∂u(re)|2

6
1

2

}
.

In [41, Section 2.1] it is proved that 0 < R <∞, and we can assume w.l.o.g. that R depends
only on n and p. All our graph parametrisations will tacitly satisfy this property that
uniquely characterizes them.

Lemma 0.2 gives the needed control over the hypersurface. Indeed, from it the author
infers the following covering lemma.
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Lemma 0.3 ([41], Lemma 1.7). Let 2 6 n be given. Let Σ be a closed hypersurface in Rn+1.
Assume there exist 0 < L, R with the property described in Lemma 0.2. Then, for every 0 < ρ 6 R,
the geodesic ball B

g
ρ(q) satisfies the inclusion

ϕq

(
Bn1
1+Lρ

)
⊂ Bgρ(q) ⊂ ϕq

(
Bnρ
)

. (0.8)

In particular, for every q ∈ Σ the geodesic ball B
g
R(q) is contained in the image of ϕq, and Σ can be

covered with N such geodesic balls, where N is a natural number depending on n, L, R.

The combination of these two triggers an elementary covering argument that allows local
estimates to become global in a quite standardized procedure. Throughout the thesis we
shall make frequent use of this it.

We conclude the section by reporting the following useful proposition, that is the corner-
stone of Chapter 2 in [41] and will be used later in our work, too.

Proposition 0.4 ([41], Prop. 2.4 + Prop. 2.7). Let 2 6 n, 1 < p <∞ be given, and let Σ = ∂U be
a closed, convex hypersurface in Rn+1. Assume that Σ satisfies the following condition:

Voln(Σ) = Voln(Sn),

‖A‖Lp(Σ) 6 c0 or ‖Å‖Lp(Σ) 6 c0.

Then there exist a vector x ∈ Rn+1, two radii 0 < r < R depending on n, p, c0 such that

Br(x) ⊂ U ⊂ BR(x).





1
T H E C A S E F O R A L M O S T U M B I L I C A L H Y P E R S U R FA C E S

The whole chapter is dedicated to the following theorem.

Theorem 1.1. Let 2 6 n and 1 < p < ∞ be given, and let Σ be a smooth, closed and convex
hypersurface in Rn+1. There exists 0 < δ0 = δ0(n, p) with the following property. If Σ satisfies

Voln(Σ) = Voln(Sn), (1.1)

‖Å‖Lp(Σ) 6 δ0, (1.2)

then there exist a vector c = c(Σ) ∈ Rn+1 and a smooth parametrization ψ : Sn −→ Σ− c such
that the following estimate holds:

‖ψ− id‖W2,p(Sn) 6 C(n, p)‖Å‖Lp(Σ). (1.3)

It is immediate to see the correlation between our Theorem 1.1 and Theorem DLM2. There
are differences in the formulation, though. The corresponding map ψ : S2 −→ Σ found by
the authors in [9] in the proof of Theorem DLM2 is indeed conformal. As stated in the
introduction, our strategy will be completely different. We define here the parametrization
with which we will work. Let U be the open, bounded set of which Σ is the boundary, and
assume 0 ∈ U. Then we can write Σ as graph over the sphere and define

ψ : Sn −→ Σ, ψ(x) = ef(x) x. (1.4)

The map ψ is clearly a smooth parametrization of Σ, and shall be called radial parametrization
of Σ. We shall sometimes refer to such hypersurfaces as radially parametrized hypersurfaces
and to the function f as logarithmic radius associated to ψ. What we will actually prove is the
following theorem:

Theorem 1.2. Let 2 6 n and 1 < p <∞ be given, and let Σ = ∂U be a smooth, closed and convex
hypersurface in Rn+1. There exists 0 < δ0 = δ0(n, p) with the following property.

If Σ satisfies conditions (1.1) and (1.2), then there exists a vector c = c(Σ) ∈ Rn+1 such that
0 ∈ U− c and the radial parametrization ψ : Sn −→ Σ− c of (1.4) satisfies:

‖f‖W2,p(Sn) 6 C(n, p)‖Å‖Lp(Σ). (1.5)

It is clear that Theorem 1.2 implies 1.1. An interesting consequence we draw from 1.2 is
the following corollary, which resembles the main result of [10]:

Corollary 1.3. Under the assumptions of Theorem 1.1 the following estimate holds:

‖ψ∗g− σ‖W1,p(Sn) 6 C(n, p)‖Å‖Lp(Σ). (1.6)

This case is the simplest case in which we apply our scheme. Indeed, the proof of Theorem
1.2 can be subdivided into the three following propositions.

9
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Proposition 1.4. Let 2 6 n, 1 < p < ∞ be given, and let Σ be a convex, closed hypersurface in
Rn+1. For every 0 < ε < 1 there exists a 0 < δ0 = δ0(n, p, ε) with the following property.

If Σ satisfies (1.1) and (1.2), then there exists a vector c = c(Σ) such that its radial parametrization
ψ : Sn −→ Σ− c satisfies

‖f‖C1(Sn) 6 ε. (1.7)

Proposition 1.5. Let 2 6 n, 1 < p <∞ be given, and let Σ be a closed hypersurface in Rn+1. Let
0 < ε < 1, 0 < δ0 and c = c(Σ) be chosen such that f satisfies estimate (1.7). Then the following
estimate holds:

‖f− 〈 vf, · 〉‖W2,p(Sn) 6 C(n, p)
(
‖Å‖Lp(Σ) + ε‖f‖W2,p(Sn)

)
, (1.8)

where we have set

vf := (n+ 1)

 
Sn
z f(z)dVσ(z).

Proposition 1.6. Under the same hypothesis of Proposition 1.4 and the same notations of Proposition
1.5, we can find a vector c̃ ∈ Rn+1 such that 0 ∈ U− c̃, and the associated radial parametrization
ψ : Sn −→ Σ− c̃ satisfies the conditions

‖f‖C1(Sn) 6 C(n, p)ε, (1.9)

|vf| 6 C(n, p)ε‖f‖W2,p(Sn). (1.10)

Remark 1.7. The proof of Proposition 1.4 gives actually a more precise result. Namely, for
every 0 < ε < 1 there exists 0 < δ0 = δ0(n, p, ε) such that the following estimates hold:

‖f‖C0(Sn) 6 ε, ‖∇f‖C0(Sn) 6 2
√
ε.

In any case we do not need such level of precision at this stage, because the compactness
strategy used in Proposition 1.4 cannot be further improved. In order not to burden the
notation, we shall omit the square root in this and in the future qualitative estimates: this
can be easily avoided by considering for every 0 < ε < 1 the threshold δ0 associated to ε2

and to use the simple inequality ε2 < ε in the C0-estimate.
Remark 1.8. Theorem 1.2 follows immediately from these results. Indeed, up to choosing
a smaller ε, we can consider the radial parametrization granted by (1.4). Condition (1.9)
still triggers Proposition 1.5, granting us estimates (1.8) and (1.10), with a (possibly worsen)
constant C which still depends only on n and p. Hence we obtain the conclusion:

‖f‖W2,p(Sn) 6 C
(
‖Å‖Lp(Σ) + ε‖f‖W2,p(Sn) + ‖〈 vf, · 〉‖W2,p(Sn)

)
6 C

(
‖Å‖Lp(Σ) + ε‖f‖W2,p(Sn) + |vf|

)
6 C

(
‖Å‖Lp(Σ) + ε‖f‖W2,p(Sn)

)
.

Again, we notice that the bounding constant C depends only on n and p. If we choose
ε = min { 1/2C, 1/2 }, then the δ0 that triggers the propositions depends only on n and p
and estimate (1.8) becomes

‖f‖W2,p(Sn) 6 C‖Å‖Lp(Σ) +
1

2
‖f‖W2,p(Sn).

This clearly completes the proof.
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We see now how to prove the three theorems. Before starting the proofs we need to report
a computational lemma which gives suitable formulas for the main geometric quantities of
Σ in the radial parametrization ψ. Again, we stress the fact that the indices in the left hand
side are lowered or raised with respect to the metric ψ∗g, while the indexes in the left hand
side are lowered or raised with respect to the metric σ. Moreover, the pull-back notation ψ∗

will not be used, since there is no confusion.

Lemma 1.9. Let ψ be as in (1.4). Then we have the following expressions:

gij = e
2f
(
σij +∇if∇jf

)
. (1.11)

gij = e−2f
(
σij −

∇if∇jf
1+ |∇f|2

)
. (1.12)

ν(x) =
1√

1+ |∇f|2
(x−∇f(x)). (1.13)

Aij =
ef√

1+ |∇f|2
(
σij +∇if∇jf−∇2ijf

)
. (1.14)

Aij =
e−f√
1+ |∇f|2

(
δij −∇i∇jf+

1

1+ |∇f|2
∇if∇2f[∇f]j

)
. (1.15)

dVg = enf
√
1+ |∇f|2 dVσ. (1.16)

gΓ
k
ij = Γ

k
ij +

1

1+ |∇f|2
∇2ijf∇kf+

(
∇if δki +∇jf δki −g∇kf gij

)
. (1.17)

The proof of the lemma is postponed in Appendix A.1.

1.1 proof of proposition 1.4

In the scheme described above Proposition 1.4 represents the first step, that is, the qualitative
C1-result. This follows from a typical compactness argument, which we take from [41, Chap.
2]. We state here Corollary 2.5 from [41] for the reader’s convenience.

Corollary 1.10. Let 2 6 n, 1 < p < ∞ be given, and let Σ ⊂ Rn+1 be a smooth, closed, convex
hypersurface in Rn+1, satisfying condition (1.1).

For every 0 < ε there exist 0 < δ(n, p, ε) and c(Σ) ∈ Rn+1, such that

‖Å‖Lp(Σ) 6 δ⇒ dHD(Σ− c, Sn) 6 ε, (1.18)

where dHD denotes the Hausdorff distance between two sets, i.e.

dHD(A, B) := max { sup
x∈A

d(x, B), sup
y∈B

d(y,A) } .

Our formulation of 1.10 is slightly more general than the ones given in [41]. The original
version is stated with a different volume scaling and under the assumptions of 1 < p 6 n.
Anyway, since in a finite measure space the Lp-norm controls the Lq-norm for q < p the
corollary can be easily generalized to every exponent 1 < p. At this point we just need to
show how the convexity implies the C1-estimate. This is granted by the following lemma.
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Lemma 1.11. Let Σ be a convex, closed radially parametrized hypersurface in Rn+1. The following
inequality holds:

‖∇f‖2C0(Sn) 6 2 osc(f, Sn)
(
1+ ‖∇f‖2C0(Sn)

)
.

In particular if osc(f, Sn) < 1
2 we find the estimate:

‖∇f‖C0(Sn) 6

√
osc(f, Sn)

1− 2 osc(f, Sn)
. (1.19)

Proof. It is known (e.g. [41, Prop. 3.2]) that a closed, connected hypersurface is the boundary
of a convex, open set iff its second fundamental form satisfies the inequality 0 6 A . By
Lemma 1.9 we obtain that Σ is convex iff f satisfies the inequality

∇2f 6 σ+∇f⊗∇f, (1.20)

in the sense of quadratic forms. Consider a point x0 ∈ Sn, and a unit vector ξ in TxSn which
satisfies 〈∇f(x0), ξ 〉 = −‖∇f‖C0 . Setting xτ = expx0(τξ) the lemma follows by the simple
equality

f(xτ) − f(x0) = 〈∇f(x0), τξ 〉+
ˆ 1

0

t

ˆ 1

0

∇2f(γ(st))[γ̇(st), γ̇(st)]dsdt,

where γ : [0, 1] −→ Sn is the geodesic which connects x0 and xτ. Applying (1.20) we find

f(xτ) − f(x0) 6 (∇f(x0), τξ) +
τ2

2

(
1+ ‖∇f‖2C0

)
= −τ‖∇f‖C0 +

τ2

2

(
1+ ‖∇f‖2C0

)
.

Finally we obtain the inequality

‖∇f‖C0 6
osc(f, Sn)

τ
+
τ

2

(
1+ ‖∇f‖2C0

)
for every 0 < τ.

Choosing τ =
√
2 osc(f, Sn) (1+ ‖∇f‖C0) we obtain the result.

From this result we easily infer Proposition 1.4.

1.2 proof of proposition 1.5

In this section we prove Proposition 1.5. The result requires the following, preliminary
proposition.

Proposition 1.12. Let 2 6 n, and 1 < p <∞ be given, and let Σ be a convex, closed hypersurface
in Rn+1. Assume that Σ satisfies (1.1) and (1.2), with δ chosen such that estimate (1.7) holds with
0 < ε < 1. There exists a constant C = C(n, p) such that

‖H−H‖Lp(Σ) 6 C‖Å‖Lp(Σ). (1.21)
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Proposition 1.12 is a slight generalization of Theorem 2.3 in [41]. The latter one presents
the same result, but assuming 1 < p 6 n. However, as the author points out in [41, Remark
2.6], an avid reader of his thesis could recover exactly our proposition 1.12 by generalizing
some of his arguments. We will prove it, following a similar approach. Proposition 1.12

follows trivially by the following two lemmas.

Lemma 1.13. Let Σ be a radially parametrized hypersurface. Consider the second fundamental form
as a (1, 1)-tensor Aij = gikAjk, and let H be its mean curvature H =

∑
iA
i
i. Then we have the

equality

∇H =
1

n− 1
divσ Å+

n

n− 1
Å[∇f] (1.22)

Lemma 1.14. Let 2 6 n and p ∈ (1, ∞) be given. Let also u ∈ C∞(Sn), f ∈ Γ(T∗Sn ⊗ TSn),
h ∈ Γ(TSn) be given so that the following equation holds:

∇u = div f + f[h] (1.23)

There exists λ0 ∈ R such that the following estimate holds:

‖u − λ0‖Lp(Sn) 6 C(n, p)
(
1+ ‖h‖C0(Sn)

)
‖f‖Lp(Sn). (1.24)

Both lemmas have interest in their own, and will be used also in later passages of the
thesis. Their proofs consist mainly in technicalities and computations, and will therefore be
postponed in the appendix (see A.2).

From Lemmas 1.13 and 1.14 Proposition 1.12 follows immediately. Indeed, we find a
constant 0 < C = C(n, p) and a number λ0 ∈ R such that

‖H− λ0‖Lp(Sn) 6 C(1+ ‖∇f‖C0)‖Å‖Lp(Sn) 6 C‖Å‖Lp(Sn),

where we have eliminated the dependence on ‖∇f‖0 simply by applying Proposition 1.4
and choosing 0 < ε < 1. In this case we have to stress again how the considered quantities of
H, and A are meant to be the pull-backs in the sphere Sn. This justifies the use of the space
Lp(Sn) rather than Lp(Σ). Indeed, we are taking the integrals in the estimate above w.r.t. the
measure dVσ of the sphere, and not w.r.t. the measure dVg associated to Σ. This is however
not a problem, since condition (1.7) and formula (1.16) show us how to get a control: since

dVg = enf
√
1+ |∇f|2 dVσ

we obtain

e−n dVσ 6 dVg 6
√
2en dVσ.

This shows that the measures are equivalent and with equivalence constants depending only
on n. Thus we can substitute the measures without problem and obtain

‖H− λ0‖Lp(Σ) 6 C‖Å‖Lp(Σ),
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Substituting λ0 with H is straightforward. Indeed,

‖H−H‖Lp(Σ) = ‖H− λ0 + λ0 −H‖Lp(Σ) 6 ‖H− λ0‖Lp(Σ) + Vol(Σ)
1
p
∣∣H− λ0

∣∣
6 ‖H− λ0‖Lp(Σ) + Vol(Σ)

1
p

∣∣∣∣ 
Σ

H− λ0 dVg

∣∣∣∣
6 ‖H− λ0‖Lp(Σ) + Vol(Σ)−1+

1
p

ˆ
Σ

|H− λ0|dVg

6 2‖H− λ0‖Lp(Σ) 6 C‖Å‖Lp(Σ).

Now we have all the ingredients to perform our linearisation. Let us prove the following
proposition.

Proposition 1.15. Let Σ be a smooth, closed hypersurface in Rn+1. Assume that Σ satisfies inequality
(1.21) and admits a radial parametrization ψ : Sn −→ Σ as in (1.4), with the logarithmic radius f
satisfying estimate (1.7) for some 0 < ε < 1. Then the following estimate is true:

‖∆f+nf‖Lp(Sn) 6 C(n, p)
(
‖Å‖Lp + ε‖f‖W2,p

)
. (1.25)

Proof. We start by writing the explicit formula of the mean curvature. By formula (1.15) we
obtain

H = −divσ

(
∇f√

1+ |∇f|2

)
e−f +

ne−f√
1+ |∇f|2

=
e−f√
1+ |∇f|2

(
n−∆f+

∇2f[∇f, ∇f]
1+ |∇f|2

)
.

(1.26)

Now we notice two simple estimates: first, we write

1√
1+ |∇f|2

− 1 =

ˆ 1

0

d

dt

1√
1+ t2|∇f|2

dt = |∇f|2
ˆ 1

0

t√
(1+ t2|∇f|2)3

This gives us the pointwise inequality:∣∣∣∣∣ 1√
1+ |∇f|2

− 1

∣∣∣∣∣ 6 2ε |∇f| (1.27)

We use the same idea for simplifying the exponential: by standard calculus, we find

ef = 1+

ˆ 1

0

d

dt
etf dt = 1+ f

ˆ 1

0

etf dt

and for 0 < ε < 1 we obtain∣∣ef − 1− f∣∣ 6 2ε |f|. (1.28)

We use inequalities (1.27) and (1.28) to obtain the following estimate for the mean curvature:

‖H+∆f+nf‖Lp(Sn) 6 C(n, p)ε ‖f‖W2,p(Sn). (1.29)
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We show now how to linearise the quantity H. More precisely, we show∣∣H−n
∣∣ 6 C(n, p)ε ‖f‖W2,p(Sn). (1.30)

In order to achieve (1.30), we notice that the density of the measure dVg w.r.t. the measure
dVσ satisfies the estimate:∣∣∣∣enf√1+ |∇f|2 − 1−nf

∣∣∣∣ 6 C(n)ε (|f|+ |∇f|).

We patch this latter estimate and (1.29) together and obtain∣∣∣∣H−n+n(n− 1)

 
Sn
f dVσ

∣∣∣∣ 6 C(n, p)ε ‖f‖W2,p(Sn). (1.31)

We conclude by showing that the average of f is actually negligible, i.e. satisfies∣∣f∣∣ 6 C(n, p)ε ‖f‖W2,p(Sn).

Indeed, since Σ satisfies (1.1), then by the volume formula 1.16 we obtain the equality
 

Sn
enf
√
1+ |∇f|2 dVσ = 1.

With the previous approximations, we find∣∣∣∣∣∣∣∣
 

Sn
enf
√
1+ |∇f|2 dVσ − 1︸ ︷︷ ︸

=0

−n

 
Sn
fdVσ

∣∣∣∣∣∣∣∣ 6 C(n, p) ε ‖f‖W2,p(Sn).

This means∣∣∣∣ 
Sn
fdVσ

∣∣∣∣ 6 C(n, p)ε ‖f‖W1,p(Sn) 6 C(n, p)ε ‖f‖W2,p(Sn).

All these estimates together give us the inequality

‖∆f+nf‖Lp(Sn) 6 C(n, p)
(
‖H−H‖Lp(Σ) + ε‖f‖W2,p(Sn)

)
,

and we conclude thanks to Proposition 1.12.

In order to conclude the proof of Proposition 1.5, we just have to prove the estimate

‖f− 〈 vf, · 〉‖W2,p(Sn) 6 C(n, p)‖∆f+nf‖Lp(Σ).

This follows quite easily by the following characterization of the kernel of ∆+n (see [50,
Chap.4] for a proof).

ker∆+n := {ϕ : Sn −→ R | ϕv(x) := 〈 v, x 〉 } . (1.32)
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From this characterization and the concept of quotient norm (see [6, Prop. 11.8]), we obtain

inf
v∈Rn+1

‖f− 〈 v, · 〉‖W2,p(Sn) 6 C(n, p)‖∆f+nf‖Lp(Σ). (1.33)

Now we can conclude. We write ϕv(·) := 〈 v, · 〉, and notice the integral equality:
 

Sn
x2i =

1

n+ 1
, for every i = 1, . . . n+ 1.

From this we deduce that the set{
ϕi : Sn −→ R |ϕi := 〈 ẽi, x 〉

}n+1
i=1

, ẽi :=
ei√

(n+ 1)Voln(Sn)
,

is a L2-orthonormal frame for the vector space ker∆+ n ⊂ L2(Sn) (here { ei }
n+1
i=1 is the

standard frame from Rn+1). Now we write

ϕv =

n+1∑
i=1

viϕi =

n+1∑
i=1

〈 v, ϕi 〉L2(Sn)ϕi, and ϕvf =
n+1∑
i=1

〈 f, ϕi 〉L2(Sn)ϕi.

Then we find, for every c ∈ Rn+1:

‖f−ϕvf‖W2,p(Sn) 6 ‖f−ϕc‖W2,p(Sn) + ‖ϕc −ϕvf‖W2,p(Sn)

6 ‖f−ϕc‖W2,p(Sn) +

n+1∑
i=1

∥∥∥〈f−ϕc, ϕi〉L2(Sn)ϕi

∥∥∥
W2,p(Sn)

6 ‖f−ϕc‖W2,p(Sn) + ‖f−ϕc‖L2(Sn)

n+1∑
i=1

‖ϕi‖L2(Sn)‖ϕi‖W2,p(Sn)

6 ‖f−ϕc‖W2,p(Sn) +C(n, p)‖f−ϕc‖L2(Sn)

6 C(n, p)‖f−ϕc‖W2,p(Sn).

By taking the inf over c and applying (1.33) we conclude the proof of Proposition 1.5.

1.3 proof of proposition 1.6

Insofar we have proved that for every 0 < ε < 1 there exist a 0 < δ0(n, p, ε) with the
following property. If Σ is a closed, convex hypersurface in Rn+1 satisfying (1.1) and (1.2)
with δ 6 δ0, then there exists a vector c = c(Σ) such that the anisotropic radius associated to
the radial parametrization ψ : Sn −→ Σ− c satisfies estimates (1.9) and (1.10), namely

‖f‖C1(Sn) 6 ε,

‖f− 〈 vf, · 〉‖W2,p(Sn) 6 C(n, p)
(
‖Å‖Lp(Σ) + ε‖f‖W2,p(Sn)

)
.
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We end the first chapter by finding the optimal vector. First of all, we assume c = 0, so the
radial parametrization satisfying the estimates above is exactly ψ : Sn −→ Σ. Now we define
the barycenter of Σ: we set

b(Σ) :=

 
Σ

z dVg(z). (1.34)

The convexity of Σ grants that b(Σ) belongs to the bounded, convex, open set U of which Σ
is boundary. We firstly consider the equality:

b(Σ) =

 
Σ

z e(n+1)f(z)
√
1+ |∇f(z)|2 dVσ(z).

The symmetries of the sphere easily imply b(Sn) = 0. This fact, combined with the expression
of b(Σ) and estimates (1.27), (1.28) gives us the estimate:∣∣∣∣b(Σ) − b(Sn) − (n+ 1)

 
Sn
z f(z)dVσ(z)

∣∣∣∣ 6 C(n)ε‖f‖W1,1(Sn) 6 C(n, p)ε‖f‖W2,p(Sn). (1.35)

Estimate (1.35) clearly implies

|b(Σ)| 6 C(n, p)ε. (1.36)

Therefore, the radial parametrization ψ : Sn −→ Σ − b(Σ) satisfies all the hypothesis of
Proposition 1.6. Indeed, inequality (1.36) still ensures that the logarithmic radius associated
to ψ is C0-close to 0 with a possibly worsen ε. Then we obtain Lemma 1.11, and via domino
effect also Propositions 1.4, and 1.5. For the parametrization ψ : Sn −→ Σ− b(Σ) we easily
have from (1.35):∣∣∣∣ 

Sn
z f(z)dVσ(z)

∣∣∣∣ 6 C(n, p)ε‖f‖W2,p(Sn),

which is exactly (1.10), and therefore we complete the proof of Proposition 1.6.
Theorem 1.2 follows now as in Remark 1.8.





2
T H E C A S E F O R A L M O S T E I N S T E I N H Y P E R S U R FA C E S

In this chapter we prove the following two theorems.

Theorem 2.1. Let 3 6 n, 1 < p < ∞ and 0 < Λ be given. There exists a 0 < δ0 = δ0(n, p, Λ)

with the following property. If Σ = ∂U is a closed, convex hypersurface in Rn+1 satisfying

Voln(Σ) = Voln(Sn), (2.1)

0 6 A 6 Λg, (2.2)

‖R̊ic‖Lp(Σ) 6 δ0, (2.3)

then there exists a vector c = c(Σ) ∈ Rn+1 such that 0 ∈ U− c and the radial parametrization
ψ : Sn −→ Σ− c defined in (1.4) satisfies

‖f‖W2,p(Sn) 6 C(n, p, Λ)‖R̊ic‖Lp(Σ). (2.4)

Theorem 2.2. Let 3 6 n, 1 < p < ∞ and 0 < Λ be given. There exists a 0 < δ1 = δ1(n, p, Λ)

with the following property. If Σ = ∂U is a closed, convex hypersurface in Rn+1 satisfying condition
(2.1) and

Λg 6 A, (2.5)

‖R̊ic‖Lp(Σ) 6 δ1, (2.6)

then there exists a vector c = c(Σ) ∈ Rn+1 such that 0 ∈ U− c and the radial parametrization
ψ : Sn −→ Σ− c defined in (1.4) satisfies

‖f‖W2,p(Sn) 6 C(n, p, Λ)‖R̊ic‖Lp(Σ). (2.7)

Here we notice immediately differences with Theorem 1.1. First of all, we have a new
constraint. The reason why conditions (2.2) and (2.5) appear is related to the intrinsic non-
ellipticity of the Ricci tensor. As we shall see throughout the computations, the equation
concerning the approximated Ricci operator is fully non-linear. This has forced us to find
ways to bypass the problem and reduce ourselves to an application of Theorem 1.1. It is not
clear how much conditions (2.2) and (2.5) are artificial. In order to prepare the road for the
non-convex case in Chapter 4 and to let the reader understand that, we shall stress where
and when these conditions are assumed.

Another important difference concerns the dimension in which the theorems hold. The
results of this chapter are true only when the dimension of the hypersurface is strictly greater
than 2. This condition does not appear just as result of our strategy: it is rather related to
intrinsic geometric properties that are satisfied by the Ricci tensor. Indeed, in dimension 2
the tensor is a 1× 1 matrix, i.e. a scalar quantity (which coincides with the scalar curvature),
and therefore all surfaces satisfy R̊ic = Scal− Scal = 0.

We also like to remark the following corollary.

19
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Corollary 2.3. Under the assumptions of Theorem 2.1 or 2.2 the following estimate holds:

‖ψ∗g− σ‖W1,p(Sn) 6 C(n, p, Λ)‖R̊ic‖Lp(Σ). (2.8)

Corollary 2.3 is particularly interesting. Indeed, in the theory of convergence for Rieman-
nian manifolds there are many results about the Wk,p-closeness of a metric g to a constant
curvature one (cf.[8], [42], [43, Ch. 10]) . However, these results are all of qualitative nature.
Corollary 2.3 provides instead a quantitative estimate, and to our knowledge it is the first
result of this type.

The theorems are the quantitative version of the following rigidity theorem.

Theorem 2.4 ([16], [46], [52]). Let Σ be a closed, connected hypersurface in Rn+1 such that

R̊ic = 0

at every point. Then Σ is a round sphere.

Again, we use our scheme to prove Theorem 2.1 and divide it into four main steps.

Proposition 2.5. Let 2 6 n be given, ad let Σ be a closed hypersurface in Rn+1 satisfying (2.1).
Assume Σ satisfies one of two following hypothesis.

a) Σ is convex, and ‖A‖Lp(Σ) 6 c0 for some 1 < p <∞.

b) ‖A‖Lp(Σ) 6 c0 for some n < p <∞ and 0 < Scal.

Then the following inequality holds.∥∥∥∥∥Riem−
Scal

2n(n− 1)
g? g

∥∥∥∥∥
Lp(Σ)

6 C(n, p, c0)‖R̊ic‖Lp(Σ). (2.9)

Proposition 2.6. Let 3 6 n, 1 < p < ∞, 0 < Λ be given, and let Σ = ∂U be a closed, convex
hypersurface in Rn+1. For every 0 < ε < 1 there exists a 0 < δ0 = δ0(n, p, Λ, ε) with the
following property.

If Σ satisfies condition (2.1), (2.2) and (2.6) then there exists a vector c = c(Σ) ∈ U such that the
radial parametrization ψ : Sn −→ Σ− c satisfies

‖f‖C1(Sn) 6 ε, ‖f‖C2(Sn) 6 c(n, Λ). (2.10)

Proposition 2.7. Let 3 6 n, 1 < p <∞ be given, and let Σ be a closed hypersurface in Rn+1. Let
0 < ε < 1, 0 < δ0 and c = c(Σ) be chosen such that the logarithmic radius f satisfies estimate (2.10)
given by Proposition 2.6. Then the following estimate holds:

‖f− 〈 vf, · 〉‖W2,p(Sn) 6 C(n, p)
(
‖R̊ic‖Lp(Σ) + ε‖f‖W2,p(Sn)

)
(2.11)

where we have set

vf := (n+ 1)

 
Sn
z f(z)dVσ(z)
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Proposition 2.8. Under the same hypothesis of Proposition 2.6 and the same notations of Proposition
2.7, we can find a vector c̃ ∈ Rn+1 such that the associated radial parametrization ψ : Sn −→ Σ− c̃

satisfies the conditions

‖f‖C1(Sn) 6 C(n, p, Λ)ε, (2.12)

|vf| 6 C(n, p, Λ)ε‖f‖W1,p(Sn). (2.13)

Remark 2.9. Differently from Chapter 1 we have split the proof into four, rather than three
sections. This happens because in the context of Chapter 1 the proof of the ”Step 0” of our
scheme had been proved by Perez in [41]. In the present case we have to prove a different
version of it. Proposition 2.8 is identical to Proposition 1.6, with just the constant being
worsened by Λ, and thus we do not report it. In the last section we give instead a proof of
theorem 2.2, which shows how condition (2.5) allows us to reduce ourselves to Theorem 1.2.

Remark 2.10. Again, the combination of Propositions 2.6, 2.7 and 2.8 triggers Theorem 2.1.
The proof is analogous as the one done in Remark 1.8 for Theorem 1.2, and we do not report
it.

2.1 proof of proposition 2.5

The proof of this Proposition 2.5 relies on a well known consequence of the second Bianchi
identity (see [19, Cor. 3.135]).

Lemma 2.11. Let M be a n-dimensional manifold, with 3 6 n. Then the following equation holds.

∇R =
1

2
div Ric . (2.14)

From this equation one can derive the following oscillation lemma, whose L2-version has
been proved under weaker assumptions in [11].

Lemma 2.12. Let Σ be a closed, convex hypersurface in Rn+1. Assume Σ satisfies condition a) or
condition b) as in Proposition (2.5). In the latter one, the positivity assumption of Scal is not required.
Then the following inequality holds.∥∥∥Scal−Scal

∥∥∥
Lp(Σ)

6 C(n, p, c0)‖R̊ic‖Lp(Σ). (2.15)

We show the proof of Lemma 2.12 in Appendix A.2. From Lemma 2.12 we derive Proposi-
tion 2.5. In order to achieve such result, we recall the Gauss equation for hypersurfaces in a
Euclidean space (see [19, Thm 5.5]): Let Σ be a hypersurface in Rn+1. Then the following
equation holds:

Riemijkl =
1

2
(A?A)ijkl = AikAjl −AilAjk. (2.16)

Contracting the indices in (2.16) we obtain

Ricij = HAij −AkiAkj. (2.17)
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Since the second fundamental form is a symmetric tensor, we know by the spectral theorem
that it is diagonalizable. Let λ1, . . . λn be its eigenvalues. Our idea to use equation (2.16) in
order to interpret (2.9) as a polynomial inequality involving the eigenvalues of A. Let us
define indeed the polynomials

p(λ) =
1

4
|A(λ)?A(λ) − κδ? δ|2 =

∑
i 6=j

(
λiλj − κ

)2
, (2.18)

q(λ) =
∣∣H(λ)A(λ) −A(λ)2 − (n− 1)κδ

∣∣2 =∑
i

λi
∑
i 6=j

λj

− (n− 1)κ

2. (2.19)

Here κ ∈ R, and in general we choose it so that n(n− 1)κ = Scal. Using this notation we
can let Proposition 2.5 easily follow from the following lemma.

Lemma 2.13. Let 0 < κ be given. Then there exist constants c1, c2, depending on n such that

c1 6
p(λ)

q(λ)
6 c2, for any λ ∈ R. (2.20)

From the lemma we easily conclude by integrating the inequality for the eigenvalues of A.
Indeed, if the mean of the scalar curvature Scal is positive, then from Lemmas 2.12 and 2.13

we obtain:∥∥∥∥∥Riem−
Scal

2n(n− 1)
g? g

∥∥∥∥∥
p

=
∥∥∥Riem−

κ

2
g? g

∥∥∥
p
6 C(n, p)‖Ric−(n− 1)κg‖p

6 C(n, p, c0)‖R̊ic‖p.

The positivity of the quantity Scal is easily recovered: it is indeed, straightforward to
prove that closed, convex and smooth manifolds have positive mean of the scalar curvature.
This quantity is trivially non-negative since we have the formula

Scal =
∑
i 6=j

λiλj,

and all the λi are non-negative by convexity. Let us show that the quantity Scal is actually
positive. We consider the function

h : p ∈ Σ 7−→ |p|2.

Let p0 be a maximum for h, and ϕ0 : BnR −→ Σ be a graph parametrisation around p0, i.e.
ϕ0(0) = p0. Since p0 is the maximum of h, we notice that ϕ0 satisfies

|ϕ(0)|2 = |p0|
2 = max

z∈Bnρ0

|ϕ(z)|2.

Deriving twice, we obtain the following equalities holding in 0:

〈∂iϕ0, ϕ0(0) 〉 = 0︸ ︷︷ ︸
⇒〈p0 〉⊥=Tp0Σ

, ∂2ϕ(0) 6 0⇒ 〈∂2ijϕ0, ϕ0(0) 〉︸ ︷︷ ︸
=−|p0|−1Aij

+ 〈∂iϕ0, ∂jϕ0 〉︸ ︷︷ ︸
=gij

6 0,



2.1 proof of proposition 2.5 23

from which we obtain the equality

A|p0 >
1

|p0|
g.

Thus the function Scal =
∑
i 6=j λiλj is non-negative and positive in a neighbourhood of p0,

hence Scal > 0.
Let us prove the lemma and conclude.

Proof of Lemma 2.13. We first show need to show that the polynomials p and q defined by
(2.18) and (2.19) have the same zeros. Let Z(p) := { p = 0 } and Z(q) := { q = 0 } be the zero
sets of p, q, respectively. We claim that:

Z(p) = Z(q) =
{√

κe, −
√
κe
}
, where e :=

n∑
i=1

ei. (2.21)

We split the proof of Lemma 2.13 into four main parts. In the first two parts we prove Claim
(2.21) for p and q respectively. In the third part we study the behaviour of the ratio p/q as
|λ| approaches∞. In the fourth part we study the behaviour of p/r as λ→ ±

√
κe. From this

analysis the lemma will easily follow.

Zeros of p Let λ = (λ1, . . . λn) be given so that p(λ) = 0. Since p is a sum of squares, we
get:

λiλj = κ, for every i 6= j. (2.22)

Since 0 < κ we also know that λi 6= 0 for every i. Then, for every i 6= j 6= k we immediately
find:

λiλj = λjλk ⇒ λj = λk =: t,

from which we deduce λ = te for some t 6= 0. From (2.22) we immediately deduce t2 = κ

and the thesis.

Zeros of q Let λ = (λ1, . . . λn) be given so that q(λ) = 0. Since q is a sum of squares, we
infer the following system:

Hλi − λ
2
i = (n− 1)κ, for every i, (2.23)

where we have set

H :=

n∑
i=1

λi = 〈 λ, e 〉.

Notice that from (2.23) we have that λi 6= 0 ∀i. Again, we claim that λi = λj for every i, j. If
the claim is true, system (2.23) for λ = te is reduced to

(n− 1)t2 = (n− 1)κ,
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and this proves our claim. Let us assume by contradiction that there exist two indices i, j
such that λi 6= λj. From (2.23) we infer

Hλi − λ
2
i = Hλj − λ

2
j ⇒ H

(
λi − λj

)
= λ2i − λ

2
j ⇒ H = λi + λj. (2.24)

Substituting (2.24) in (2.23), we obtain

λiλj = (n− 1)κ, (2.25)

(λi + λj)λh − λ2h = (n− 1)κ, for every h 6= i, j. (2.26)

Assume there exists λh 6= λi. From equalities (2.25) and (2.26) we obtain:

λiλj = (λi + λj)λh − λ2h ⇒ λj(λi − λh) = λh(λi − λh),

from which we easily infer λh = λj. Therefore the coefficients λ1, . . . λn of the point λ can
take at most two different values. Call them a and b, and assume a appears k times and b
appears n− k times in the coordinates of λ. From equality (2.24) we have

(k− 1)a+ (n− k− 1)b = 0.

If both k− 1 and n− k− 1 are positive, then a and b must have different sign, and equation
(2.25) is violated. If one of them is 0, say k− 1 = 0, then we must have b = 0, but again
equation (2.25) would be violated. Hence all the values are equal, and we easily find the
thesis. Notice how the estimate fails when n = 2. In this case, equality (2.24) is not useful,
and the polynomials p and q degenerate to

p(λ) = q(λ) = (λ1λ2 − κ)
2,

and therefore Z(p) = Z(q) =
{
(x, y) ∈ R2

∣∣ xy = κ
}

.

Boundedness at infinity Now we show that the ratio p(λ)/q(λ) is bounded from above
and below when |λ| attains large values. A simple computation shows:

lim inf
|λ|→∞

p(λ)

q(λ)
= inf
λ∈Sn

∑
i 6=j λ

2
iλ
2
j∑

i λ
2
i

(∑
i 6=j λj

)2 , lim sup
|λ|→∞

p(λ)

q(λ)
= sup
λ∈Sn

∑
i 6=j λ

2
iλ
2
j∑

i λ
2
i

(∑
i 6=j λj

)2 .

Note that this case represents the study of the ratio p(λ)/q(λ) in the case κ = 0. Let us do
the computation. Firstly, we claim that in this case the zero sets in the sphere of p and q are
finite and satisfy

Z(p) = Z(q) = {±e1, · · · ± en } .

The claim is straightforward for p. For q, let us consider a point λ ∈ Sn so that q(λ) = 0.
Keeping the notation used above, we have the equality:

λ2i (H− λi)
2 = 0, for every i. (2.27)

Since λ ∈ Sn, then there must exist an index i such that λi 6= 0. Therefore H = λi must hold.
If λj = 0 for all indices j 6= i, then necessarily λ = λiei and λi = ±1, as claimed. If λj 6= 0 for
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some j, then the equality H = λj must hold and hence λj = λi. We immediately deduce that
the set { λ1, . . . λn } can take only the values 0 and t for some t 6= 0, and not all λi can be
0 because λ ∈ Sn. Let us assume w.l.o.g. that λ1 = · · · = λk = t and λk+1 = · · · = λn = 0.
From this we can write the equation (2.27) as

k(k− 1)t4 = 0,

from which we infer k = 1, and thus the claim.
We show now how the ratio p/q is bounded near the zeros of p and q. By symmetry, it is

enough to consider the limit for λ→ e1. Now we write µ := λ− e1, so that we can study the
limit as µ→ 0. Denoting p̃(µ) := p(e1 + µ), q̃(µ) := q(e1 + µ), we easily obtain

p̃(µ) = 2

n∑
j=2

µ2j +O(|µ|
3), q̃(µ) =

n∑
j=2

µ2j +

 n∑
j=2

µj

2 +O(|µ|3),
where O(|µ|k) is a quantity which satisfies |O(|µ|k)| 6 C(n, k)|µ|k. Therefore we can rewrite
the ratio as

p̃(µ)

q̃(µ)
=

2+O(|µ|)

1+R(µ) +O(|µ|)
,

where R satisfies

0 6 R(µ) =

(∑n
j=2 µj

)2
∑n
j=2 µ

2
j

6 C(n),

from which we easily deduce the upper and lower bounds.

Boundedness near the zeros We study now the behaviour of the ratio p(λ)/q(λ) when λ
approaches the values ±

√
κe. Again, by symmetry it is enough to study the limit at

√
κe. We

write µ := λ−
√
κe, and define again p̃(µ) := p(

√
κe1 + µ), q̃(µ) := q(

√
κe1 + µ). A straight

computation for p̃ shows:

p̃(µ) =
∑
i 6=j

((
µi +

√
κ
)(
µj +

√
κ
)
− κ
)2

=
∑
i 6=j

(√
κ(µi + µj) + µiµj

)2
= κ
∑
i 6=j

(µi + µj)
2 +O(|µ|3) = κ

n∑
i=1

n∑
j=1
j6=i

µ2i + 2µiµj + µ
2
j +O(|µ|

3)

= 2κ(n− 2)|µ|2 +O(|µ|3).

For q̃ we have a similar expression:

q̃(µ) =

n∑
i=1

(µi +√κ)∑
j6=i

(
µj +

√
κ
)
− (n− 1)κ

2
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=

n∑
i=1

√κ
(n− 1)µi +

∑
j6=i

µj

+O(|µ|2)

2

=

n∑
i=1

(√
κ((n− 2)µi +H(µ)) +O(|µ|

2)
)2

= κ

n∑
i=1

((n− 2)µi +H)
2 +O(|µ|2)

= (n− 2)2κ|µ|2 + (3n− 4)κH(µ)2 +O(|µ|3),

where again H(µ) =
∑
i µ. From these computations we can easily deduce the lemma.

Indeed,

p̃(µ)

q̃(µ)
=

2+O(|µ|)

n− 2+R(µ) +O(|µ|)
,

where

0 6 R(µ) =
(3n− 4)H(µ)2

(n− 2)|µ|2
6 C(n),

and the lemma is proved.

Remark 2.14. Notice how from Lemma 2.13 we can infer our own proof of Theorem 2.4.
Indeed, let Σ ⊂ Rn+1 be a closed hypersurface satisfying R̊ic = 0. By the Bianchi identity
(2.14) we immediately deduce

∇ Scal =
2n

n− 2
div R̊ic = 0. (2.28)

Therefore every hypersurface with traceless Ricci tensor being null has constant scalar
curvature. Writing Scal = n(n− 1)κ for some κ ∈ R, we know that Ric = (n− 1)κg. Again,
we need to show how κ > 0. The strategy is the same we used in that we have used in the
proof of Proposition 2.5 : we define the distance function

q ∈ Σ 7−→ |q|2,

and consider the point p0 of maximum. As shown in the proof of Proposition 2.5, in this
point p0 the second fundamental form must be positive definite, hence κ > 0. This proves
by the way that Σ is convex and satisfies Ric = (n− 1)κg for some positive κ. Then, from
Lemma 2.13, the eigenvalues of A satisfy system 2.19, and therefore we obtain that either
λ1 = . . . λn =

√
κ at every point or λ1 = · · · = λn = −

√
κ at every point. Since A|p0 is

positive definite, the first one must hold, and from the Nabelpunktsatz, the hypersurface must
be a sphere.

2.2 proof of proposition 2.6

Here we prove Theorem 2.6. We remark that the C0-bound of the second fundamental form,
namely (2.2), can be weakened, but this does not help us to improve the main results. This
stronger version will be given in the appendix.
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Proof of Proposition 2.6. Let us consider a sequence
(
Σh
)
h∈N

of closed hypersurfaces satisfy-
ing the following assumptions:

(i) Σh = ∂Uh, where Uh is an open, bounded, convex set.

(ii) Voln(Σh) = Voln(Sn).

(iii) 0 6 Ah 6 Λgh, where Ah is the second fundamental form associated to Σh.

(iv) b(Σh) = 0, where b(Σh) denotes the barycenter of Σh, defined as in (1.34).

(v) limk‖R̊ic
h‖Lp = 0, where R̊ic

h
denotes the traceless Ricci tensor associated to Σh.

We are firstly going to show that necessarily we must have

lim
h
dHD

(
Σh, Sn

)
= 0.

Firstly, we notice how from assumptions (i) − (iv) the hypersurfaces are all contained in a
ball Bn+1R0

for R0 sufficiently large. Indeed Proposition 0.4 we obtain two radii 0 < r < R and
a vector x ∈ Rn+1 such that (3.20) holds, namely:

Bn+1r (x) ⊂ Uh ⊂ Bn+1R (x).

Since Σh = ∂Uh we infer that diamΣh 6 D(r, R) <∞, and from condition (iv) we get our
desired claim. Now we show that the Σh must converge to a sphere. We apply the Blaschke’s
selection theorem (see [47, Thm. 1.8.6]) and consider a (not relabeled) subsequence Uk → V

in the Hausdorff distance dHD. From the inclusions in (3.20) we infer that the volumes |Uh|

do not converge to 0, hence V has positive measure and non-empty inner part. Necessarily it
has the form V = U for some bounded, open and convex set U. We claim that Σ = ∂V must
be the round sphere Sn

The proof of the claim follows from the following lemma.

Lemma 2.15. Let κ > 0, and let q = q(λ) defined as in (2.19). Define r = r(λ) as

r(λ) := |D(λ) −
√
κδ|2 |D(λ) +

√
κδ|2 =

(∑
i

(
λi −

√
κ
)2)(∑

i

(
λi +

√
κ
)2) (2.29)

Then, there exists two constants c0(n, Λ) and c1(n, Λ) such that

c0 6
q

r
6 c1 in the ball BnΛ.

Assuming Lemma 2.15, we show how it leads to the conclusion. We shall prove it at the
end of the of the section. From Lemma 2.12 we easily find a sequence

(
κh
)
h∈N

of constants
κh ∈ R such that

‖Rich−(n− 1)κhgh‖Lp 6 C(n, p, Λ)‖R̊ic
h‖Lp ,

and thus

lim
h
‖Rich−(n− 1)κhgh‖Lp = 0.
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Thanks to the analysis made in Section 2.1, we know that 0 < κh 6 Λ for every h ∈N, and
we can assume κh → κ ∈ [0, Λ].

Firstly, we notice that the limit κ cannot be 0. Indeed, if κ = 0, then we would obtain a
sequence

(
Σh
)
h∈N

of closed hypersurfaces satisfying assumptions (i) − (iii), (v) and

lim
h
‖Rich‖Lp(Σh) = 0 for some p ∈ (1, ∞). (2.30)

Since assumption (iii) holds, we also know that 0 6 Rich 6 n(n− 1)Λgh, and therefore
from (2.30) we infer

lim
h
‖Rich‖Lp(Σh) = 0 for every p ∈ (1, ∞).

In particular, ‖Rich‖Ln/2 → 0. This however is not possible, since in [53, Th.3] it is proved
that for 3 6 n any compact, connected manifold Mn admitting an isometric immersion into
Rn+1 satisfies the lower bound1

ˆ
M

|Ric|
n
2 > a(n).

Therefore, we must have that any limit κ satisfies κ > c(n) > 0. We show now how to prove
the proposition. Lemma 2.15 applied to the eigenvalues of the second fundamental forms
Ah yields

lim
h
‖|Ah −

√
κhgh| |Ah +

√
κhgh|‖Lp(Σh) = 0.

From condition (iii) we also know that
√
κhgh 6 Ah +

√
κhgh 6 (Λ+

√
κh)gh ⇒ |Ah +

√
κhgh| 6 c(n, Λ),

from which we infer

lim
h
‖Ah − κhgh‖Lp(Σh) = 0. (2.31)

Equation 2.31 is the key of the proof, and allows us to conclude by applying techniques used
in the previous chapter. Indeed, from [41, Cor. 2.5] we are able to find a vector x ∈ Rn+1

such that

lim
h∈N

dHD
(
Σh,
√
κSn + x

)
= 0.

We show that κ = 1, x = 0 necessarily. Let us define Σ̃h =
(
Σh − x

)
/
√
κ. Then, by construction

we have

lim
h∈N

dHD
(
Σ̃h, Sn

)
= 0,

and can consider the radial parametrisations

ψ̃h : Sn −→ Σh, ψ̃(x) = ef̃
h(x) x

1 The result is actually much finer than the one we expressed here. The precise statement involves however
concepts taken from algebraic topology we do not need to introduce.
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associated to every Σh as in (1.4). Since the hypersurfaces converge to the sphere in the
Hausdorff distance, we get that necessarily

lim
h
‖f̃h‖C0(Sn) = 0.

Therefore, we can apply Lemma 1.11 and obtain that

‖∇f̃h‖C0(Sn) 6

√
osc(f̃h, Sn)

1− 2 osc(f̃h, Sn)
→ 0,

and get that f̃h → 0 in C1. We can finally conclude: since the convergence is now C1, we
obtain

−xb(Σ̃h) =

 
Sn
xe(n+1)f̃

h(x)
√
1+ |f̃h(x)|2 dVσ −→ 0 = b(Sn),

κ−
n
2 Voln(Sn) =

ˆ
Sn
enf̃

h(x)
√
1+ |f̃h(x)|2 dVσ −→ Voln(Sn).

Therefore x = 0, κ = 1, Σ̃h = Σh and our claim is proved.
We are now left to prove the C2-bound. This will follow from assumption (iii) and

expression (1.15) for the second fundamental form in the radial parametrisation. Let Σ be a
closed, convex hypersurface such that 0 6 A 6 Λg and the logarithmic radius f given as in
(1.4) satisfies ‖f‖C1 6 ε for 0 < ε < 1. Let us recall (1.15):

Aij =
e−f√
1+ |∇f|2

(
δij −∇i∇jf+

1

1+ |∇f|2
∇if∇2f[∇f]j

)
.

Since 0 6 A 6 Λg, we get

−c(λ)δij 6 ∇i∇jf+
1

1+ |∇f|2
∇if∇2f[∇f]j 6 C(Λ)δij,

hence

‖∇2f‖C0(Sn) 6 C(Λ) + ε‖∇
2f‖C0(Sn), (2.32)

and we find our desired conclusion. Notice that the smallness of the gradient ∇f is actually
not required: if we have ‖∇f‖0 6 c0 for some positive constant c0, we can perform the
estimate made in (2.32) as

‖∇2f‖C0(Sn) 6 C(Λ) +
c0√
1+ c20

‖∇2f‖C0(Sn),

and thus conclude, since c0/
√
1+ c20 is always smaller than 1.

We prove Lemma 2.15 and conclude.
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Proof of Lemma 2.15. From Lemma 2.13 we know that the zero set Z(q) of the polynomial
q contains only the vectors ±κe, with e :=

∑
i ei. We study first the behaviour of the ratio

q/r near those points. Again, thanks to symmetry it is enough to consider just the case
of κe. As done in the proof of Lemma 2.13, we consider q̃(µ) := q(

√
κe+ µ), and define

r̃(µ) := r(
√
κe+ µ). Trivially,

lim inf
λ→e

q(λ)

r(λ)
= lim inf

µ→0

q̃(µ)

r̃(µ)
, lim sup

λ→e

q(λ)

r(λ)
= lim sup

µ→0

q̃(µ)

r̃(µ)
.

From the computations made in Lemma 2.13, we obtain:

q̃(µ) = (n− 2)2κ|µ|2 + (3n− 4)κH2 +O(|µ|3),

where H =
∑
i ei as usual. The computation of r̃ is straightforward:

r̃(µ) = |µ|2

(∑
i

(
2
√
κ+ µi

)2)
= 4nκ|µ|2 +O(|µ|3).

Therefore, we obtain:

q̃(µ)

r̃(µ)
=

(n− 2)2|µ|2 + (3n− 4)H2 +O(|µ|3)

4n|µ|2 +O(|µ|3)
,

and we find easily two constants c(n), C(n), such that

c(n) 6 lim inf
µ→0

q̃(µ)

r̃(µ)
< lim sup

µ→0

q̃(µ)

r̃(µ)
6 C(n).

Thus, we are able to find a radius 0 < r such that

c(n)

2
6
q

r
6 2C(n) in Bnr (

√
κe)∪Bnr (−

√
κe),

and since q/r is continuous in BnΛ \Bnr (
√
κe)∪Bnr (−

√
κe), we also obtain constants c(n, Λ),

C(n, Λ) such that

c(n, Λ) 6
q

r
6 C(n, Λ) in BnΛ \ Bnr (

√
κe)∪Bnr (−

√
κe).

The lemma is therefore proved.

2.3 proof of proposition 2.7

Since we have to linearise the same quantities of Chapter 1, a big part of the proof can be
taken from Proposition 2.6. The main difference with it consists in the fact that we cannot
proceed exactly as in the previous chapter, since the Ricci operator is non-linear. A rough
computation can show

Scal = H2 − |A|2 ≈ (∆f)2 −
∣∣∇2f∣∣2 − 2(n− 1)(∆f+nf)).
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The problem here is that we are able to obtain C1,α-closeness of f to 0, but in order to obtain
a proper linearisation, we would need a C2-one. This is not possible, not even with our
C0-control on the second fundamental form. Thus we need an alternative to proceed, and
here it is where condition (2.2) is used. In the same spirit of Proposition 2.5, we consider
again the problem in terms of the eigenvalues of A, and search for a better expression of the
quantities we are considering. In order to obtain it, however, the upper bound (2.2) will be
used crucially.

Proof of Proposition 2.7 . The starting point of our analysis is estimate (2.9):∥∥∥∥∥Riem−
Scal

n(n− 1)
g? g

∥∥∥∥∥
Lp(Σ)

6 C(n, p, Λ)‖R̊ic‖Lpg(Σ).

We let Proposition 2.6 follow from two lemmas:

Lemma 2.16. Under the hypothesis of Proposition 2.6, the mean of the scalar curvature can be
approximated as follows:

Scal = n(n− 1) +R, where |R| 6 C(n, p, Λ)ε‖f‖W2,p(Sn). (2.33)

Lemma 2.17. Let p = p(λ) be defined as in (2.18) with κ = 1. We set r = r(λ) as in (2.29). There
exist c2 = c2(n, Λ) and c3 = c3(n, Λ) such that

c2 6
p(λ)

r(λ)
6 c3 in the ball BnΛ.

The proof of Lemma 2.17 follows easily by combining Lemma 2.13 and Lemma 2.15 with
κ = 1. The proof of Lemma 2.16 is postponed at the end of the section.

Via (2.33) and we obtain the following estimate:∥∥∥∥Riem−
1

2
g? g

∥∥∥∥
Lp(Σ)

6 C(n, p, Λ)‖R̊ic‖Lpg(Σ) + ε‖f‖W2,p(Sn).

Now from (2.16) we find:

‖(A− g)? (A+ g)‖Lp(Σ) 6 C
(
‖R̊ic‖Lp(Σ) + ε‖f‖W2,p(Sn)

)
. (2.34)

Applying Lemma 2.13 to the polynomials associate to the eigenvalues of A, we find:

|A− g||A+ g| 6 c|(A− g)? (A+ g)|.

This allows us to improve (2.34) as follows:

‖|A− g| |A+ g|‖Lp(Σ) 6 C
(
‖R̊ic‖Lp(Σ) + ε‖f‖W2,p(Sn)

)
.

Now we get rid of the term A+ g as we did in the proof of Proposition 2.6 and obtain

‖A− g‖Lp(Σ) 6 C
(
‖R̊ic‖Lp(Σ) + ε‖f‖W2,p(Sn)

)
.



32 the case for almost einstein hypersurfaces

We end with the Cauchy-Schwartz inequality: indeed,

|H−n| = |〈g, A− g 〉| 6 n|A− g|,

and integrating

‖H−n‖Lp(Σ) 6 C
(
‖R̊ic‖Lp(Σ) + ε‖f‖W2,p(Sn)

)
.

Now we can proceed applying a proper version of Proposition 1.15 and we obtain the desired
estimate.

We finish the section by proving Lemma 2.16.

Proof of Lemma 2.16. Firstly, we have to find a suitable expression for the scalar curvature
Scal. Again, we trace equation (2.16) twice and obtain

Scal = H2 − |A|2.

Therefore we need to find an approximate expression for H2 and |A|2. Firstly, we need to
deduce the following approximation:

H2 = n2 − 2n∆f+ (∆f)2 − 2n2f+R1, (2.35)

|A|2 = n− 2∆f+ |∇2f|2 + 2nf+R2, (2.36)

where both R1 and R2 satisfy

|R1,2| 6 C(n, Λ)ε (|f|+ |∇f|+ |∇2f|) (2.37)

The two expressions follows linearising expression (1.15) from Lemma 1.9 with the help
of Proposition 2.6. From 2.6 we know

‖f‖C0 , ‖∇f‖C0 6 ε, ‖∇
2f‖C0 6 Λ,

and we can linearise (1.15) as follows:

Aij = −(1− f)∇i∇jf+ (1− f) δij +Rij, where |R| 6 C(n)ε
(
|f|+ |∇f|+ |∇2f|

)
. (2.38)

From (2.38), we obtain:

H2 = (−(1− f)∆f+n(1− f) +R1)
2 = n2 − 2n∆f+ (∆f)2 − 2n2f+R1

|A|2 = (1− f)2|∇2f|2 +n(1− f)2 − 2(1− f)∆f+R2

= n− 2∆f+ |∇2f|2 − 2nf+R2,

which are exactly expressions (2.35) and (2.36). Now we are able to find the following
expression for the curvature.

Scal = n(n− 1) − 2(n− 1)(∆σf+nf) + (∆f)2 − |∇2f|2 +R, (2.39)
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where R satisfies inequality (2.37). Now we integrate Scal. Since f is C1-close to the identity,
we can perform the same volume estimate we did in the proof of Proposition 1.15, and easily
notice

|enf
√
1+ |∇f|2 − 1−nf| 6 C(n)ε (|f|+ |∇f|). (2.40)

Estimate (2.40) and the C0-bound on ∇2f allow us to perform the following computation:

Scal =
 
Σ

Scal dVg =

 
Sn

Scal enf
√
1+ |∇f|2 dVσ

=

 
Sn

Scal dVσ +n2(n− 1)

 
Sn
f dVσ +n

 
Sn
f(Scal−n(n− 1))dVσ +R,

where R satisfies (2.37). From (2.39) we infer:∣∣∣∣ 
Sn
f(Scal−n(n− 1))dVσ

∣∣∣∣ 6  
Sn
|f|
∣∣∣2(n− 1)(∆σf+nf) − (∆f)2 + |∇2f|2

∣∣∣
6 Cε

 
Sn
|f|+ |∇f|+ |∇2f|dVσ 6 C(n, p, Λ)‖f‖W2,p(Sn).

Therefore, we can write

Scal =
 

Sn
Scal dVσ +R, where |R| 6 C(n, p, Λ)‖f‖W2,p(Sn). (2.41)

From (2.41) we obtain
 
Σ

Scal dVσ = n(n− 1) +

 
Sn
(∆f)2 − |∇2f|2 dVσ + 2n(n− 1)

 
Sn
f dVσ +R. (2.42)

We simplify the second-order terms with the following Bochner formula. Indeed, by defini-
tion of Riemann tensor we know the commutation formula

∇j∇iαk −∇i∇jαk = Riemlijk αl

Using this formula and integrating by parts we achieve our goal.
ˆ

(∆f)2 dV =

ˆ
∇i∇if · ∇j∇jf dV = −

ˆ
∇if · ∇i∇j∇jf dV

= −

ˆ
∇if · ∇j∇i∇jf dV +

ˆ
Ric(∇f, ∇f)dV

=

ˆ
∇j∇if · ∇i∇jf dV +

ˆ
Ric(∇f, ∇f)dV

=

ˆ
|∇2f|2 dV +

ˆ
Ric(∇f, ∇f)dV

In the case of the sphere, this computation gives us the equality

6
ˆ

Sn
(∆σf)

2 dVσ −

ˆ
Sn
|∇2f|2 dVσ = (n− 1)

ˆ
Sn
|∇f|2dVσ 6 Cε‖∇f‖Lp ,
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and we can improve (2.42) and obtain

Scal = n(n− 1) + 2n(n− 1)

 
Sn
f dVσ +R.

With the same consideration made in the proof of Proposition 1.15 we notice that the mean
of f is negligible, i.e.∣∣∣∣ 

Sn
f dVσ

∣∣∣∣ 6 Cε ‖f‖W1,p(Sn)

and this proves the lemma.

Again, the proof of Theorem 2.1 follows as outlined in Remarks 1.8 and 2.10.

Remark 2.18. Looking carefully at the proofs, one can notice how Theorem 2.1 can be
simplified: it is indeed possible to obtain Proposition 2.7 without Proposition 2.5. One just
has to use Lemmas 2.12, 2.16 and improve Proposition 2.6 to obtain 2.7. The polynomial
study we made would be strongly simplified since we just need to study the zeros of the
polynomial q(λ) given by (2.19) and the behaviour of the ratio q/r given by Lemma 2.15.
We have nevertheless chosen to proceed through this longer path because it highlights the
importance of the Ricci tensor for closed hypersurfaces, by showing how under certain
hypothesis it can control the Riemann tensor, and because Proposition 2.5 will be a necessary
step in Chapter 4 for the proof of Theorem 4.2.

2.4 proof of theorem 2.2

We conclude the chapter proving Theorem 2.2. This will follow directly by the proof of
Theorem 1.1 in Chapter 1. Indeed, in this case the strictly convexity is translated into an
inequality between the traceless Ricci and the traceless second fundamental form, that we
would not normally have.

Proof of Theorem 2.2. Again, we consider the equation:

Ricij = HA
i
j −A

i
kA
k
j .

Let then λ1 6 · · · 6 λn be the eigenvalues of A. Then the Ricci tensor has eigenvalues
Λ1, . . . Λn which satisfy the following equality:

Λj = λj
∑
j6=k

λk, ∀j = 1, . . . , n. (2.43)

By assumption (2.5), we know that λj > Λ for every j = 1, . . . , n, and this allows us to
perform the following estimate:

|R̊ic|2 =
∑
i 6=j

|Λi −Λj|
2 =
∑
i 6=j

∑
k6=i, j

λk

2 ∣∣λi − λj∣∣2
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> (n− 2)2Λ2
∑
i 6=j

∣∣λi − λj∣∣2 = (n− 2)2Λ2|Å|2,

from which we deduce

‖Å‖Lp(Σ) 6 C(n, p, Λ)‖R̊ic‖Lp(Σ). (2.44)

This shows how in the strictly convex case, having small Lp-norm of the traceless Ricci
tensor implies having small Lp-norm of the traceless second fundamental form.

We choose δ1 sufficiently small so that the hypothesis of 1.1 holds, and thus we find a
vector c = c(Σ) such that the associated radial parametrization ψ : Sn −→ Σ− c satisfies

‖ψ− Id‖W2,p(Sn) 6 C‖Å‖Lp 6 C‖R̊ic‖Lp(Σ),

as desired.





3
T H E A N I S O T R O P I C C A S E

In this chapter we obtain the anisotropic counterpart of Chapter 1. Let us state the main
theorem.

Theorem 3.1. Let 2 6 n, 1 < p < ∞ be given, and let F be an elliptic integrand. There exists
0 < δ0 = δ0(n, p, F) with the following property.

If Σ is a closed, convex hypersurface in Rn+1 satisfying the conditions

Voln(Σ) = Voln(W), (3.1)

‖ÅF‖Lp(Σ) 6 δ0, (3.2)

then there exist a vector c = c(Σ) ∈ Rn+1 and a smooth parametrization ψ : W −→ Σ− c satisfying
the following estimate:

‖ψ− id‖W2,p(W) 6 C(n, p, F)‖ÅF‖Lp(Σ), (3.3)

where id : W −→W denotes the identity map of the Wulff shape into itself, and ÅF is the tensor

ÅF := AF −
1

n
HF Id.

What allows Theorem 3.1 to be true is the following anisotropic version of the umbilical
theorem, which states that W can be characterized as the only hypersurface with the
anisotropic second fundamental form that is a constant multiple of the identity (see [26,
Thm. 1.2]).

Theorem 3.2. Let 2 6 n be given, and let Σ be a closed, oriented hypersurface. If AF|x is equal to a
constant multiple of the identity at every point x ∈ Σ, then Σ is the Wulff shape.

For the anisotropic case we introduce some change of notation, that will appear throughout
this and the next chapter. The classic radial parametrization we used before is not suitable
any more, and we shall need a version that reflects the fact that we are working in a non-
symmetric environment. Let Bε(W) be the tubular neighbourhood associated to W, that is
the set

Bε(W) := { z ∈ Rn+1 | z = x+ ρν(x), ∀x ∈W, 0 6 ρ < ε } . (3.4)

All the details needed on the tubular neighbourhood can be found in [28, Ch. 5]. We
recall that for ε sufficiently small, Br(W) is an open, bounded set with smooth boundary
diffeomorphic to W, for every r < ε. Let Σ be a closed, convex hypersurface in Rn+1

satisfying the closeness condition

Σ ⊂ Bε(W).

37
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Then, up to translation, we can give the following parametrization for Σ:

ψ : W −→ Σ, ψ(x) = x+ u(x)ν(x), for some u ∈ C∞(W). (3.5)

Clearly ψ is a smooth diffeomorphism. We call ψ anisotropic radial parametrization of Σ and u
anisotropic radius associated to ψ. By the very definition, if Σ is ε-close to W in the Hausdorff
distance, then it is contained in the tubular neighbourhood Bε(W). We are therefore going
to prove the following theorem.

Theorem 3.3. Let 2 6 n and 1 < p <∞ be given, and let Σ = ∂U be a smooth, closed and convex
hypersurface in Rn+1. There exists 0 < δ0 = δ0(n, p, F) with the following property.

If Σ satisfies conditions (3.1) and (3.2), then there exists a vector c = c(Σ) ∈ Rn+1 such that
0 ∈ U− c and the anisotropic radial parametrization ψ : Sn −→ Σ− c as in (3.5) satisfies:

‖u‖W2,p(W) 6 C(n, p)‖ÅF‖Lp(Σ). (3.6)

In order to avoid confusion when making the computations, we adopt the following
notations throughout this chapter, and more in general when we are dealing with anisotropic
quantities:

AF Anisotropic second fundamental form.

ÅF Anisotropic traceless second fundamental form.

HF Anisotropic mean curvature, i.e. trAF.

D Levi-Civita derivative on the sphere.

SF Anisotropy tensor, i.e. SF := D2F+ Id.

A ”Classical” second fundamental form, i.e. AF with F = 1.

As before, we apply our scheme and divide the proof into the following steps.

Proposition 3.4. Let 2 6 n, 1 < p <∞ and 0 < δ0 be given. Let F be an elliptic integrand. There
exists a constant 0 < C = C(n, p, δ0, F) such that the following holds.

If Σ is a closed and convex hypersurface in Rn+1 which satisfies (3.1) and (3.2) with a threshold
δ 6 δ0, then there exists c ∈ Rn+1 such that

dHD(Σ− c, W) 6 ε. (3.7)

In particular, this implies that the anisotropic radius u given by (3.5) is C1-close to the identity,
namely

‖u‖C1(W) 6 ε. (3.8)

Proposition 3.5. Let Σ be a closed, anisotropically radially parametrized hypersurface so that u
satisfies (3.8). The following inequality holds:

‖L[u]‖Lp(W) 6 C(n, p, F)‖HF −HF‖Lp(Σ) + ε‖u‖W2,p(W), (3.9)

where L is defined as

L[u] := div(SF∇u) +Hu. (3.10)



3.1 proof of proposition 3.4 39

Proposition 3.6. Let L be as in (3.10). Then:

kerL :=
{
ϕc : y ∈W 7−→ 〈c, ν(y)〉 ∈ R, ∀c ∈ Rn+1

}
. (3.11)

Proposition 3.7. Let Σ be a closed, anisotropically radially parametrized hypersurface so that the
anisotropic radius u satisfies (3.8), and consequentially (3.9). Then there exists a vector c(Σ) ∈ Rn+1,
so that the anisotropic radius associated to the radial parametrization ψ : Σ −→W− c still satisfies
condition (3.8) with a possibly worsened bounding constant, and

〈u, ϕ 〉L2 = 0 for every ϕ ∈ kerL. (3.12)

Remark 3.8. Via these propositions we are able to conclude as in Chapters 1 and 2. We notice
that in this case an additional step appears, i.e. we have to characterize the kernel of the
anisotropic stability operator L.

Again, before starting the proof, we give the anisotropic version of Lemma 1.9, and prove
the following expressions for the main geometric quantities in our new definition of radial
parametrization.

Lemma 3.9. Let ψ be as in (3.5), and let us denote by AΣ the second fundamental form of Σ, and by
A the second fundamental form in W Then we have the following expressions.

gij = ωij + 2uAij +∇iu∇ju+ u2AkiAkj, (3.13)

νΣ =
ν− (ω+ uA)−1[∇u]
|ν− (ω+ uA)−1[∇u]|

, (3.14)

AΣij =
Aij −∇2iju+ uA2ij − u〈∇i(∇u), ∇jν〉+A[∇u]i∇ju+ 〈∇iR, ∇jψ〉√

1+ |(Id+uA)−1[∇u]|2
, (3.15)

where R is a combination of product of u and∇u. In particular, if Σ is convex and ‖u‖C0(Σ) 6 ε(W),
then we also have the following inequality:

∇2u 6 C(W)(A+∇u⊗∇u). (3.16)

The proof of Lemma 3.9 is postponed in Appendix A.1

3.1 proof of proposition 3.4

In this section we prove Proposition 3.4 and show a first qualitative, closeness result. As in
its isotropic counterpart, we need an oscillation estimate in order to let the scheme work.
This is given by the following proposition.

Proposition 3.10. Let 2 6 n, 1 < p <∞ and 0 < δ0 be given, and let Σ be a closed hypersurface
in Rn+1 with fixed volume V . Let F be an elliptic integrand. Assume Σ satisfies one of two following
hypothesis.

a) Σ is convex, and ‖ÅF‖Lp(Σ) 6 δ0 for some 1 < p <∞.

b) ‖A‖Lp(Σ) 6 δ0 for some n < p <∞.
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Then the following estimate is satisfied:

min
λ∈R
‖AF − λ Id‖Lp(Σ) 6 C(n, p, δ0)‖ÅF‖Lp(Σ). (3.17)

In the proof of Proposition 3.4 we shall also need the following proposition.

Proposition 3.11. Let 2 6 n, 1 < p 6 n be given, let F be an elliptic integrand and let Σ be a convex,
closed hypersurface in Rn+1, satisfying Voln(Σ) = 1. Then, there exist two positive constants c1
and c2, depending only on n, p and F, such that

‖A‖Lp(Σ) 6 c1‖AF‖Lp(Σ) 6 c2
(
1+ ‖ÅF‖Lp(Σ)

)
. (3.18)

The first inequality requires neither the upper bound p < n nor the assumption of convexity.

Both the results are proved in the Appendix, see A.2 for 3.10 and A.3 for 3.11. Now we
can prove Proposition 3.4. We show firstly the following proposition that, although being
suboptimal, is the key point for our further study.

Proposition 3.12. Let 2 6 n, 1 < p < ∞ be given, and let F be an elliptic integrand. For every
0 < ε < 1 there exists 0 < δ = δ(n, p, F) < 1 with the following property.

If Σ is a closed, convex hypersurface satisfying (3.1) and (3.2), then there exists c ∈ Rn+1 such
that

dHD(Σ, W+ c) 6 ε (3.19)

Proof. We argue by contradiction and assume there exist ε0 > 0 and a sequence of closed,
convex hypersurfaces {Σk }k∈N satisfying

(i) ′ Voln(Σk) = Voln(W),

(ii) ′ lim
k
‖ÅkF‖Lp(Σk) = 0,

(iii) ′ dHD
(
Σk, W+ c

)
> ε0 for every c ∈ Rn+1 and k ∈N.

We notice that conditions (i) ′, (ii) ′, combined with Proposition 3.11 allow us to use Proposi-
tion 0.4. Thus, we are able to find two radii 0 < r < R, depending only on n, p and F, such
that, up to translating, the following inclusion holds:

Br ⊂ Uk ⊂ BR, (3.20)

where Uk is the convex bounded set enclosed by Σk. As done in the proof of Proposition 2.6,
we apply the Blaschke’s selection theorem (see [47, Thm. 1.8.6])and consider a (not relabeled)
subsequence Uk → V in the Hausdorff distance dHD. From the inclusions in (3.20) we infer
that the volumes |Uk| do not converge to 0, hence V has positive measure and non-empty
inner part. Necessarily it has the form V = U for some bounded, open and convex set U.

Let Σ be the boundary of U. From the discussion above, we easily notice that Σk con-
verges to Σ in the Hausdorff distance. Plugging this information in (iii) ′, we deduce that
dHD(Σ, W+ c) > ε0 for every c ∈ Rn+1. If we show that Σ is a Wulff shape, we obtain the
desired contradiction.
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By Proposition 3.10, there exists a sequence (λk)k∈N ⊂ R such that

‖HkF − λk‖Lp(Σk) 6 C‖ÅkF‖Lp(Σk) → 0. (3.21)

Moreover, by Proposition 3.11 we know that for k large enough

‖HF‖Lp(Σk) 6 c2
(
1+ ‖ÅF‖Lp(Σ)

)
6 2c2.

It follows that

|λk| =
‖λk‖Lp(Σk)
Voln(Σk)

1
p

6 C
(
‖HkF‖Lp(Σk) + ‖HkF − λk‖Lp(Σk)

)
6 C.

We conclude that there exists λ ∈ R such that, up to subsequences, λk → λ. Therefore, we
can assume we are given a sequence {Σk} satisfying the following properties:

(i) ′′ Σk = ∂Uk, with Uk being a convex, open, bounded set satisfying Bn+1r ⊂ Uk ⊂ Bn+1R ,

(ii) ′′ there exists Σ = ∂U, with U convex, open, bounded such that dHD
(
Σk, Σ

)
→ 0,

(iii) ′′ ‖AkF − λ Id‖Lp(Σk) → 0 for some p ∈ (1, ∞).

We show how these three conditions imply that Σ is the Wulff shape. Firstly, condition (i) ′′

allows us to give the ”classic” radial parametrization ψk : Sn −→ Σk for every k, i.e. as in
(1.4). Clearly, ψk is a smooth parametrization for every k. By condition (i) ′′ and convexity, it
is easy to see that every fk satisfies

log(r) 6 fk 6 log(R), Lip(fk) 6 L = L(r, R). (3.22)

Moreover, by condition (ii) ′′, we find that fk converges in C0 to a function f satisfying (3.22)
and such that the map

ψ : Sn −→ Σ given by ψ(x) = ef(x) x,

is a Lipschitz parametrisation of Σ. We can improve the regularity of f. Indeed, by condition
(iii) ′′, we can write

AkF = λ Id+Rk, where ‖Rk‖Lp(Σk) → 0. (3.23)

We know that AkF = SF|νk ◦ dνk, where SF is the smooth 2-covariant tensor defined on the
sphere as in (0.4) and recalled in the introduction in Chapter 3. Since 0 < SF, we multiply
equality (3.23) by (SF)

−1 and taking the Lp-norm, we obtain the estimate

‖Ak‖Lp(Σk) 6 ‖(SF)
−1‖C0

(
λ+ ‖Rk‖Lp(Σk)

)
. (3.24)

We exploit the fact that we have ψk as a global parametrisation. Indeed, by Lemma 1.9 and
the C1-control as in (3.22) we get

sup
k

∥∥∥∥∥divσ

(
Dfk√

1+ |Dfk|2

)∥∥∥∥∥
Lp(Sn)

<∞. (3.25)
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Since fk satisfies (3.22), standard elliptic regularity theory (see [20]) gives

sup
k

‖fk‖W2,p(Sn) < +∞. (3.26)

So the limit f must be in W2,p(Sn) for some p ∈ (1, ∞) and hence the limit Σ is a rough
hypersurface with W2,p-regularity. We have to prove that f is smooth. Using the expression
(1.15) for the second fundamental form A of Σ and taking the trace, we obtain that every fk

satisfies (3.22) and the differential equation

divσ

(
Dfk√

1+ |Dfk|2

)
= λ tr(SF|νk)

−1 +
ne−f

k√
1+ |Dfk|2

+Rk =: h(fk, Dfk) +Rk, (3.27)

where h is a smooth function. Equation (3.27) means that the limit f satisfies the equation

divσ

(
Df√

1+ |Df|2

)
= h(f, Df).

From elliptic regularity (see [20]), we obtain that f is smooth, and therefore the limit
hypersurface Σ is smooth. Moreover, from the bounds (3.22) and (3.26) we know that the
sequence

(
fk
)
k∈N

converges to f weakly in W2,p(Sn) and easily infer that the sequence(
∇fk

)
k∈N

converges to ∇f strongly in Lq for every 1 < q <∞. Since F is smooth, we obtain
the following convergences:

νk =
x−∇fk√
1+ |∇fk|2

→ ν =
x−∇f√
1+ |∇f|2

in Lq, ∀q ∈ (1, ∞),

dνk ⇀ dνk in Lp,

SF|νk → SF|ν in Lq, ∀q ∈ (1, ∞).

Summing the three convergences, it follows that Af|νk ⇀ AF|ν. By condition (iii) ′′, we
obtain:

AF = λ Id . (3.28)

Hence, by Proposition 3.2 and the perimeter condition Σ must be the Wulff shape.

Now the proof of Proposition 3.12 follows trivially

Proof of Proposition 3.12. Insofar we have obtained the C0-closeness of u to the Wulff shape.
Now we choose ε very small and consider inequality (3.16). Following the same argument
of Lemma 1.11 we can improve the C0-closeness to a C1-one.

3.2 proof of proposition 3.5

As in Chapter 1, the proof of Proposition 3.5 follows by linearising the main geometric
quantities that are given by Lemma 3.9.
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Proof of Proposition 3.5 . The proof follows by linearising equalities (3.13), (3.14), (3.15). Again,
here ν and A denote the outer normal and second fundamental form associated to the Wulff
shape W respectively, while νΣ AΣ denote the outer normal and the second fundamental
form associated to Σ respectively. For the metric, we have:

|gij −ωij − 2uAij| 6 Cε(|u|+ |∇u|). (3.29)

As an easy consequence of (3.29) we find the linearisation of the inverse:

|gij −ωij + 2uAij| 6 Cε(|u|+ |∇u|), (3.30)

and its determinant

|detg− detω− 2Hu| 6 Cε(|u|+ |∇u|). (3.31)

The linearisation of νΣ follows easily:

νΣ =
ν− (ω+ uA)−1[∇u]
|ν− (ω+ uA)−1[∇u]|

= ν−∇u+R

where R is given by linear combinations of products of u and components of ∇u. We obtain

|νΣ − ν+∇u| 6 Cε(|u|+ |∇u|). (3.32)

Now we linearise AΣ. We write

νΣ = ν−∇u+R

where R is again given linear combinations of products of u and components of ∇u. Thus,
we deduce

AΣij = 〈∇iψ, ∇jνΣ〉 = 〈zi +∇iuν+ u∇i, ∇j(ν+∇u+R)〉

and we obtain

|AΣ −A+∇2u−A2u| 6 Cε
(
|u|+ |∇u|+ |∇2u|

)
. (3.33)

We linearise now the quantity AΣF . We use again the shorthand notation R for a quantity that
can be estimated by as

|R| 6 C
(
|u|+ |∇u|+ |∇2u|

)
.

We obtain

AΣF = SF|νΣ A
Σ = (SF|ν − DSF|ν [∇u])

(
A−∇2u−A2u

)
+R

= SF|νA︸ ︷︷ ︸
=AW

F =Id

− DSF|ν [∇u] − SF∇
2u︸ ︷︷ ︸

∇(SF∇u)

− SF|ν − SF|νA
2u︸ ︷︷ ︸

=Au

+R

and we obtain:∣∣AΣF − Id+L̃[u]
∣∣ 6 C(n, F)ε(|u|+ |∇u|+ |∇2u|

)
, (3.34)
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where L̃ is defined as

L̃[u] := ∇(SF∇u) +Au. (3.35)

Now we take the trace in (3.34) and find the estimate for the mean curvature:

|HF(Σ) −n+ L[u]| 6 C
(
|u|+ |∇u|+ |∇2u|

)
, (3.36)

where L is defined as in (3.10). We complete the proof of Proposition 3.5 showing that we
can substitute n with HF(Σ) in (3.36). Namely, we prove:

|HF(Σ) −n| 6 Cε‖u‖W2,p(Sn). (3.37)

Let us prove (3.37). Integrating (3.36), we easily obtain∣∣∣∣HF(Σ) −n+

 
W

HudV

∣∣∣∣ 6 Cε‖u‖W2,p(W). (3.38)

We just have to prove that the integral quantity
´
Hu is negligible. This is again granted by

condition (3.1). Indeed, using (3.31) we obtain

Voln(Σ) = Voln(W) +

ˆ
W

HudV +R, (3.39)

where R is again a quantity which can easily be approximated by ε‖u‖W1,1(W). Since the
volumes of Σ and W are equal, we obtain∣∣∣∣ 

W

HudV

∣∣∣∣ 6 C(n, p, F)ε‖u‖W1,1(W) 6 C(n, p, F)ε‖u‖W2,p(W),

and this concludes the proof.

3.3 proof of proposition 3.6

In this section we prove Proposition 3.6. Our proof uses the quantitative anisotropic perimeter
inequality. Another proof of 3.6 has been done in [38, Prop. 1.9].

Proof of proposition 3.6. Firstly we show that every u ∈ kerL has mean u equal to 0. Assume
by contradiction we are given a smooth function u satisfyingL[u] = 0

u 6= 0
. (3.40)

Let ν be the outer normal associated to W, and h ∈ C∞(W) be a positive function with
´
h =

1. Using a construction shown in [4], we are able to find a smooth function s : [0, ε) −→ R

such that the deformation

ψt : W −→ Rn+1, ψt(x) = x+ (t(u(x) − u) + s(t)h(x))ν(x)
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is volume preserving for 0 6 t < ε. By the computations made in [30, Prop. 2.1], for every
deformation ψt with infinitesimal vector field

X :=
d

dt
ψt

∣∣∣∣
t=0

= wν,

the following equalities hold:

d

dt
F(Wt)

∣∣∣∣
t=0

= n

ˆ
W

wdV, (3.41)

d2

dt2
F(Wt)

∣∣∣∣
t=0

= −

ˆ
W

L[w]wdV, (3.42)

where L is as in (3.10). We apply (3.41) and (3.42) to our deformation and obtain via Taylor
approximation

F(ψt(W)) = F(W) −
t2

2

ˆ
W

L[u− u](u− u)dV +O(t3). (3.43)

However it easy to notice that
ˆ
W

L[u− u](u− u) = u2
ˆ
W

HdV =: c0 > 0.

We plug this equality into (3.43) and obtain

F(ψt(W)) = F(W) −
c0
2
t2 +O(t3), (3.44)

which is a contradiction, since W is the absolute minimizer among the closed hypersurfaces
with constrained volume.

Therefore we can assume that every solution u has null mean. Again, we consider a
positive function h ∈ C∞(W) with

´
h = 1 and use the construction shown in [4] to find a

function s : [0, ε) −→ R such that the deformation

ψt : W −→ Rn+1, ψt(x) = x+ (tu(x) + s(t)h(x))ν(x)

is volume preserving for every t. Moreover, the construction satisfies also s(0) = ṡ(0) = 0.
For every c ∈ Rn+1, we define the translation

ψct : W −→ Rn+1, ψct(x) = x+ tc := x+ tϕc(x)ν(x) + tξc(x),

where we have set ξc := c−ϕc ν.
By the very definition of the L1-norm, we find

‖ψct −ψt‖L1 = |UWt
∆UW+tc|, (3.45)

where UWt
and UW+tc denote the open sets enclosed respectively by Wt := ψt(W) and

W+ tc. Moreover, we can also write

‖ψct −ψt‖L1 = ‖t(ϕc − u)ν− s(t)hν+ tξc‖L1 (3.46)
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From (3.45) and (3.46) we obtain the inequality

t‖(ϕc − u)ν+ ξc‖L1 6 s(t) + |UWt
∆UW+tc|. (3.47)

However, since ν and ξc are pointwise orthogonal, we find

‖u−ϕc‖L1 6 ‖(ϕc − u)ν+ ξc‖L1 .

Hence we obtain

t‖u−ϕc‖L1 6 s(t) + |UWt
∆UW+tc|. (3.48)

We take the infimum in c in (3.48) and obtain the expression

t inf
c∈Rn+1

‖u−ϕc‖L1 6 s(t) + inf
c∈Rn+1

|UWt
∆UW+c|. (3.49)

We need to estimate the right hand side in (3.49). For this purpose we introduce a new
concept.

Let E be a set of finite perimeter in Rn+1. We define the anisotropic asymmetry index as

A(E) := min
x∈Rn+1

{
|UW∆ (x+ rE)|

|E|
: |rUW| = |E|

}
,

where UW is the open set enclosed by W, and the anisotropic isoperimetric deficit as

δ(E) :=
F(∂E)

(n+ 1)|UW|
1
n+1 |E|

n
n+1

− 1.

The relation among A(E) and δ(E) is well studied in the framework of isoperimetric problems.
In particular, the following anisotropic deficit estimate proved in [18, Thm 1.1] holds:

Theorem 3.13. Every set E of finite perimeter in Rn+1 satisfies the following inequality:

A(E) 6 C(n)
√
δ(E). (3.50)

If |E| = |UW|, then the inequality 3.50 can be written as

A(E) 6 C(n)
√
F(∂E) −F(W). (3.51)

Since UWt
and UW+c share the same volume, we can apply Theorem 3.13 to deduce that

t inf
c∈Rn+1

‖u−ϕc‖L1 6 s(t) +C(n)
√
F(Wt) −F(W). (3.52)

We plug (3.41) and (3.42) in (3.52) to get

t inf
c∈Rn+1

‖u−ϕc‖L1 6 s(t) +O
(
t
3
2

)
. (3.53)

Dividing by t and letting t→ 0, we obtain

inf
c∈Rn+1

‖u−ϕc‖L1 = 0

and since the infimum is attained, the thesis is proven.
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3.4 proof of proposition 3.7

In this section we conclude the proof of Proposition 3.7. To this aim we give the following
definition:

Definition 3.14. Let u ∈ C∞(W) be given. We define

h(u) :=

n+1∑
i=1

〈u, ϕi〉L2wi, (3.54)

where {wi }
n+1
i=1 ⊂ Rn+1 are chosen such that the associated functions ϕi := ϕwi (defined as

in (3.11)) are an orthonormal frame in L2 for the vector space {ϕc }c∈Rn+1 = kerL. We will
denote ϕu := ϕh(u).

We will need the following proposition, whose proof is postponed in Appendix, see A.3:

Proposition 3.15. There exists C = C(n, p, F) > 0 such that, for every u ∈ C∞(W), the following
holds:

‖u−ϕu‖W2,p(W) 6 C inf
c∈Rn+1

‖u−ϕc‖W2,p(W). (3.55)

Proof of Proposition 3.7. Let ε > 0 to be fixed small enough at the end of the argument. Let
δ0 be so small, that Propositions 3.4, 3.5 apply, and assume, up to translations, that the
parametrisation ψ : W −→ Σ defined as in (3.5) satisfies the estimates (3.8) and (3.9).

We notice that, for sufficiently small c ∈ U, we can define

ψc : W −→ Σ− c, ψc(x) := x+ uc(x)ν(x). (3.56)

For such c the mapping ψc is an alternative radial parametrization for Σ, and it is a well
defined diffeomorphism. We also define:

Φ : U −→ Rn+1, Φ(c) :=

n+1∑
i=1

〈uc, ϕi〉L2wi,

where {wi }
n+1
i=1 are as in Definition 3.14. Our idea is to prove the existence of c0 ∈ U

such that Φ(c0) = 0. This is enough to conclude the proof, because Φ(c0) = 0 implies that
ϕuc0 = 〈Φ(c0), ν〉 = 0, which, together with Proposition 3.15, implies

‖uc0‖W2,p(W) 6 C
(
‖ÅF‖Lp(Σ) + ε ‖uc0‖W2,p(W)

)
. (3.57)

Therefore, if we set ε0 = min
{
1
2C ,

1
2

}
, then the second term in the right hand side of (3.57)

can be absorbed in the left hand side, obtaining

‖ψc0 − id‖W2,p(W) = ‖uc0‖W2,p(W) 6 C‖ÅF‖Lp(Σ). (3.58)

In this case, with c = c0 we would easily conclude.
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We are just left to find c0 ∈ U such that Φ(c0) = 0. First of all, it is easy to notice that there
exist ε̃ and r̃ depending only on n and W, such that, for every 0 < ε < ε̃, if Σ = ∂U satisfies

dHD(U, UW) < ε,

then the ball Br̃ is contained in U. Hence we consider 0 < ε < ε̃ so small that the ball Bã ε is
contained in U for some ã, depending only on n and W, that we will choose later. We study
Φ inside Bã ε. We will show that Φ admits the following linearisation:

|Φ(c) −Φ(0) + c| 6 C(n, W)ε2 for every c ∈ Bn+1ãε . (3.59)

First of all, for every c such that |c| < ã ε we find

dHD(Σ− c, W) 6 dHD(Σ− c, Σ) + dHD(Σ, W) 6 (ã+ 1)ε.

Therefore, it is easy to see that also the function uc satisfies the estimates

‖uc‖C1(W) 6 C(n, F)ε, (3.60)

We start the linearisation with the following simple consideration: for every z ∈W and
c ∈ Rn+1 such that |c| 6 ãε there exists xc = xc(z) ∈W so that

ψc(z) = ψ(xc(z)) − c.

We expand this equality and find

z+ uc(z)ν(z) = xc(z) + u(xc(z))ν(xc(z)) − c. (3.61)

Using the C0-smallness of u and uc, we can easily see that xc(z) satisfies the relation

|xc(z) − z| 6 C(n, W)ε. (3.62)

This approximation, combined with (3.60), gives an estimate of u close to z:

|u(xc(z)) − u(z)| 6 C(n, W)ε2. (3.63)

Now we recall that W = { F∗ = 1 }, with F∗ defined in (0.2) as

F∗(x) := sup
ν∈Rn+1

{
〈x, ν〉 : |ν|F

(
ν

|ν|

)
6 1

}
.

We recall property (0.3) the differential dF∗ enjoys, i.e.

dF∗|z [c] = 〈ν(z), c〉, ∀z ∈W,

Using (0.2), we evaluate F∗ in the point in (3.61) and find:

F∗(z+ uc(z)ν(z))︸ ︷︷ ︸
=1+uc(z)dF∗|z[ν(z)]+R

= F∗(xc + u(xc)ν(xc) − c)︸ ︷︷ ︸
=1+u(xc)dF∗|xc [ν(xc)]−dF

∗|xc [c]+R

,
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where R satisfies

|R| 6 C(n, W)ε2.

Plugging (0.3) and (3.63) in the previous equality, we obtain

|uc(z) − u(z) + 〈c, ν(z)〉︸ ︷︷ ︸
=ϕc(z)

| 6 C(n, W)ε2. (3.64)

Integrating over W and using (3.64), we finally obtain (3.59). In order to obtain the thesis,
we prove the following claim:

Claim Let G be a continuous map G : Bn+11 −→ Rn+1 which satisfies the estimate

|G(x) − a− x| 6 ε with |a| <
1

10
. (3.65)

Then G must have 0 in its image if ε is sufficiently small.

This claim gives us the thesis since we can always reduce to this case by choosing an ã big
enough (depending only on n and W) and via a proper rescaling. Indeed, we define

ϕ : Bn+11 −→ Rn+1, ϕ(c) := −
Φ(ãεc)

ãε
.

The rescaled map satisfies∣∣∣∣ϕ(c) + Φ(0)

ãε
− c

∣∣∣∣ = 1

ãε
|Φ(ãεc) −Φ(0) + ãεc| 6

C(n, W)ε

ã
.

Moreover,

|Φ(0)|

ãε
ε 6

C(n, W)

ã
6
1

10

if we choose the proper ã(n, W). Therefore, by the claim, we can find c̃ ∈ Bn+11 such that
ϕ(c̃) = 0, i.e. Φ(ãεc̃) = 0, and we have finished. Let us prove the claim.

We argue by contradiction, and assume that 0 is not in the image of G. Therefore, the
rescaled map

g :=
G

|G|
: Bn+11 −→ Sn

is well defined. Now, we know that G satisfies (3.65). Thus, we obtain:

|G(x)|2 = |a+ x|2 + |G(x) − a− x|2 + 2〈a+ x, G(x) − a− x 〉
= 1+ |a|2 + 2〈a, x 〉+R, (3.66)

where |R| 6 C(n, W)ε. From (3.66) we have:

79

100
−C(n, W)ε 6 |G(x)|2 6

121

100
+C(n, W)ε. (3.67)



50 the anisotropic case

We use inequalities (3.65) (3.66) and (3.67) to infer the following estimate:

|g(x) − x| =

∣∣∣∣ G(x)|G(x)|
− x

∣∣∣∣ = 1

|G(x)|
|G(x) − |G(x)|x|

=
1

|G(x)|
|G(x) − a− x+ a+ x(1− |G(x)|)| 6

1

|G(x)|
(|a|+Cε+ |1− |G(x)||)

6
10√

79−Cε

(
1

10
+

√
21

10
+C
√
ε

)
6

1+
√
21√

79−Cε

(
1+C

√
ε
)
6

√
2

2
+C
√
ε

where the constant C depends only on n and W. Therefore, for every 0 < ε < 1 sufficiently
small, we obtain

|g(x) − x| < 2 for every x ∈ Sn. (3.68)

Therefore the map g := g|Sn defined as the restriction of g to the sphere is well defined. The
thesis follows by a simple application of topological degree theory, which can be found in
[28, Ch.5]: since g is the restriction of a map on the sphere, it must have degree equal to
0, but (3.68) easily implies that g is homotopic to the identity, and therefore it must have
degree equal to 1, giving the desired contradiction.
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T H E G E N E R A L I S AT I O N I N T H E N O N C O N V E X C A S E

In this section we remove the convexity hypothesis used in the previous chapters. As stated
in the introduction and as a counterexample in Chapter 5 shows, this hypothesis is not
artificial, so we shall find conditions that substitute it. The theorems we are presenting are
the following.

Theorem 4.1. Let 2 6 n < p be given, and let Σ be a closed hypersurface in Rn+1. We assume that
Σ satisfies the conditions

Voln(Σ) = Voln(Sn), (4.1)

‖A‖Lp(Σ) 6 c0. (4.2)

There exists positive constants δ0, C depending on n, p, c0 such that, if

‖Å‖Lp(Σ) 6 δ0, (4.3)

then there exist a vector c = c(Σ) such that the radial parametrization ψ : W −→ Σ− c as in (1.4) is
well defined and satisfies

‖f‖W2,p(Sn) 6 C‖Å‖Lp(Σ). (4.4)

Theorem 4.2. Let 3 6 n < p be given, Σ be a closed hypersurface in Rn+1 We assume that Σ
satisfies the conditions (4.1) and (4.2). Then for every q ∈ (n, p) there exists δ0, C > 0 depending
only on n, p, q, c0 with the following property: if

‖R̊ic‖Lp(Σ) 6 δ0, (4.5)

then there exists a c = c(Σ) such that the radial parametrization ψ : Sn −→ Σ− c as in (1.4) is well
defined and satisfies

‖f‖W2,q(Sn) 6 C0‖R̊ic‖αLp(Σ), (4.6)

where α is given by:

α(p, q) :=

1, if n < q 6 p/2,

p/q− 1, if p/2 6 q < p.

Theorem 4.3. Let 2 6 n < p be given, and let Σ be a closed hypersurface in Rn+1. Let also
F : Sn −→ (0, ∞) be an elliptic integrand, and W be the associated Wulff shape as in Chapter 3. We
assume that Σ satisfies the conditions:

Voln(Σ) = Voln(W), (4.7)

51
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‖AF‖Lp(Σ) 6 c0. (4.8)

There exist positive constants δ0, C depending on n, p, c0 and W such that, if

‖ÅF‖Lp(Σ) 6 δ0, (4.9)

then there exists a vector c = c(Σ) such that the anisotropic parametrization ψ : W −→ Σ− c as in
(3.5) is well defined and satisfies

‖u‖W2,p(W) 6 C‖ÅF‖Lp(Σ). (4.10)

Remark 4.4. In all the three theorems the convexity hypothesis is substituted by a Lp-control
on the second fundamental form. We remark how in Theorems 4.1 and 4.3 the final estimate
is the same as in their convex counterparts 1.2 and 3.1, while Theorem 4.2 provides instead
a weaker conclusion compared to Theorem 2.1

It has to be noted that Theorem 4.3 implies 4.1, which is just the version with trivial
anisotropy F = 1; nevertheless, we have decided to keep them separate because the proof of
the latter can be simplified using the natural symmetries of the problem. Theorem 4.2 is also
heavily based on 4.1.

4.1 proof of theorem 4.1

The main ingredient for Theorem 4.1 is the following proposition.

Proposition 4.5. For every 0 < ε there exists 0 < δ0 = δ0(n, p, c0, ε) with the following property.
Let Σ be a closed hypersurface in Rn+1 satisfying (4.1) and (4.2). If

‖Å‖Lp(Σ) 6 δ0,

then up to translation the radial parametrization ψ : Sn −→ Σ as in (1.4) is well defined, and the
logarithmic radius f satisfy

‖f‖C1(Sn) 6 ε. (4.11)

Proposition 4.5 is the cornerstone of the section, because it builds the radial parametrization
and gives a qualitative estimate of it. The rest of the proof will indeed follow by an adaptation
of Propositions 1.5 and 1.6 in the non-convex case.

Proof of Proposition 4.5

We split the proposition in two parts. In the first part we achieve a C0-closeness in a
certain sense, in the second part we show how to use this preliminary result to build the
parametrization. Before proving the first results, we state the main tool of this chapter, i.e.
the graph parametrisations.

Let Σ be a closed hypersurface in Rn+1, and q ∈ Σ a given point. We say that ϕq is a
graph parametrisation around q with width R if ϕq has the following form:

ϕq : BnR −→ Σ, ϕq(z) = q+Φq

(
z

uq(z)

)
, (4.12)
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where Φq : Rn+1 −→ Rn+1 is a matrix in the orthogonal group O(n+ 1) chosen so that
Φq[R

n × { 0 }] = TqΣ, Φq[en+1] = νΣ(q). Graph parametrisations have great importance in
the non-convex case. Indeed, since Σ satisfies (4.1) and (4.2), by Lemma 0.2 we have the
existence of two numbers 0 < R0 and 0 < L0 6 1√

3
depending on n, p and c0 with the

following, useful property: for every q there exists a graph parametrisation ϕq has width
R > R0, and every function uq is L0-Lipschitz. Throughout all the chapter, we shall use
only the parametrisations provided by Lemma 0.2 and will denote them by ϕq. We will use
the ϕq to obtain local estimates and Lemma 0.3 to make them global. Since we will now
work with graph parametrisations, we need an equivalent of Lemma 1.9. This exists and it is
stated in [41, Lemma 1.3].

Lemma 4.6. Let ϕq be a graph parametrisation. Then the following formulas hold:

gij = δij + ∂iuq∂juq, (4.13)

gij = δij −
∂iuq∂

juq

1+ |∂uq|2
, (4.14)

ν =
1√

1+ |∂uq|2
Φq

(
∂uq

−1

)
(4.15)

Aij = ∂i

(
∂juq√
1+ |∂uq|2

)
(4.16)

The proof of Lemma 4.6 is actually made in [41] with the ”standard” graph parametrisation
ϕ(x) = (x, u(x)), i.e. with q = 0, Φq = Id . However, it can be noted that the action of the
isometries does not change the obtained expressions, because the translations disappear
with derivatives and the rotations satisfy 〈Φ[v], Φ[w] 〉 = 〈 v, w 〉.

Graph parametrisations are strongly used in [41], and the author explores much of their
properties. Our proofs with them are basically slight improvements of the strategy developed
there.

Lemma 4.7. For every 0 < ε there exists 0 < δ0 = δ0(n, p, c0, ε) with the following property.
Let Σ be a closed hypersurface in Rn+1 satisfying (4.1) and (4.2). If ‖A− λ0g‖Lp 6 δ0 for some

λ0 6= 0, then for every q ∈ Σ, for every graph parametrisation ϕq around q, we have the following
estimate:∥∥∥∥uq − λ−10 (√1− λ20|x|2 − 1)∥∥∥∥

C1
6 ε. (4.17)

Remark 4.8. Notice how in Lemma 4.7 we do not claim that λ0 has to be equal to 1. The
problem of finding the ”right” λ0 will be solved in the second part, when we will build the
parametrization. The requirement of being not 0 is instead necessary, but as shown in [41,
Remark 1.9] a closed hypersurface Σ must satisfy the lower bound

‖A‖Lp(Σ) > C(n, p, Voln(Σ)). (4.18)

Since in our case Voln(Σ) = Voln(Sn), we avoid such degenerate cases.
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Proof. By contradiction, let
(
Σk
)
k∈N

be a sequence of closed hypersurfaces satisfying (4.1),
(4.2), limk‖A− λ0g

k‖Lpk = 0, and let
(
qk
)
k∈N

be a sequence of points qk ∈ Σk such that the
associated graph parametrisations satisfy∥∥∥∥uk − λ−10 (√1− λ20| · |2 − 1)∥∥∥∥

C1
> ε0 > 0.

We show how this is not possible, using an idea of [41, Cor. 1.2]. Firstly, we can assume
w.l.o.g. that every qk is equal to λ−10 en+1 and Φqk = Id. Thus, since every Σk satisfies (4.1)
and (4.2), we consider the graph parametrisations ϕk associated to qk. The properties ϕk

satisfies combined with (4.2) grant us:

sup
k

‖uk‖W2,p(BnR)
6 c(n, p, c0) < +∞.

Let us set vk := ∂uk√
1+|∂uk|2

. Then, from (4.16) and the contradiction hypothesis, we obtain

lim
k
‖∂vk − λ0 Id‖Lpk(BR)

= lim
k
‖∂
(
vk − λ0x

)
‖Lpk(BR)

= 0.

Setting ck =
ffl
vk, we get from Sobolev inequalities

lim
k
‖vk − ck − λ0x‖W1,p(BnR)

= 0.

Now, since ck is clearly bounded and vk(0) = 0, ∀ k and n < p, we also obtain the conver-
gence

lim
k
‖vk − λ0x‖W1,p(BnR)

= 0.

Let us define the function

h : Bn1 −→ Rn, h(x) :=
x√

1− |x|2
.

The function h is smooth and has bounded derivatives in the ball Bnρ with ρ 6 1
2 . Moreover

it satisfies the equality

h(vk) =
1√

1+ |∂uk|2

∂uk√
1− |∂uk|2/(1+ |∂uk|2)

= ∂uk.

We obtain:

lim
k
‖h(vk) − h(λ0x)‖W1,p(BnR)

=

∥∥∥∥∥∥∂uk − λ0x√
1− λ20|x|

2

∥∥∥∥∥∥
W1,p(BnR)

= lim
k

∥∥∥∥∂(uk − λ−10 √1− λ20|x|2)∥∥∥∥
W1,p(BnR)

= 0.

With the same argument as before, we observe that uk is converging inW2,p to λ−10
√
1− λ20|x|

2,
and this is the desired contradiction.
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Next we show how Lemma 4.7 leads to a C0-closeness to the sphere.

Corollary 4.9. Under the hypothesis of Lemma 4.7, for every 0 < ε there exists 0 < δ0 =

δ0(n, p, c0, ε) such that

dHD

(
Σ, Sn|λ0|−1

)
.

Proof. Let Σ, 0 < ε and 0 < δ0 be given as in Lemma 4.7. We choose a point q0 ∈ Σ, then
rotate and translate Σ so that q0 = −λ−10 en+1, Tq0Σ = Rn × { 0 }. Hence the parametrisation
has the simpler form ϕ0(x) = −λ−10 en+1 + (x, u0(x)) and parametrize a portion of the
sphere Sn

|λ0|−1
. Now take q1 ∈ ϕ0(BnR). Writing q1 = ϕ(z1), then the following inequalities

easily hold:∣∣∣∣q1 −(z1, λ−10 √1− λ20|z1|2)∣∣∣∣ 6 ε,
∣∣∣∣∣Tq1Σ−

〈(
z, λ−10

√
1− λ20|z|

2

)〉⊥∣∣∣∣∣ 6 ε
Now we apply Lemma 0.3: For every parametrisation ϕq we can find a geodesic ball B

g
ρ(q)

with ρ = ρ(n, p, c0) and satisfying condition (0.8), namely

ϕq

(
Bn1
1+Lρ

)
⊂ Bgρ(q) ⊂ ϕq

(
Bnρ
)
.

Via this lemma we can easily obtain a covering of N geodesic balls Bg(q1), . . .B
g(qN),

where N 6 N0(n, p, c0) such that Lemma 4.7 holds for ϕq1 , . . . ϕqN . Iterating the process,
by a simple induction we easily find a constant c(n, p, c0) such that∣∣∣∣q− |λ0|

−1 q

|q|

∣∣∣∣ 6 cε, ∣∣∣TqΣ− 〈q 〉⊥
∣∣∣ 6 cε. (4.19)

This proves the C0-closeness.

We finish the proof by proving that Σ can be parametrized as a sphere parametrisation
given by (1.4) and that λ0 = 1. Indeed, the proof of Corollary 4.9 does not only show a
qualitative C0-closeness, but also a C1. Thus, we define the projection

p : Σ −→ Sn|λ0|−1
, p(q) := |λ0|

−1 q

|q|
.

We start by proving that p is a local diffeomorphism. The map is clearly differentiable, and a
straight computation proves that the differential of p at q ∈ Σ is given by

dp|q : TxΣ −→ Tp(q)S
n, dp|q [v] =

|λ0|
−1

|q|

(
v−

〈
v,
q

|q|

〉
q

|q|

)
(4.20)

It is easy to see that ker dp|q = { tq | t ∈ R }. We want to prove that the differential dp|q has
maximal rank at every q, and this will prove that p is a local diffeomorphism. In order to
achieve this goal, we just need to show that for every q ∈ Σ, q does not belong to TqΣ, and
this is exactly what (4.19) implies. Hence p is a local diffeomorphism. Let us show that it is
a global one. Indeed, we consider the multiplicity function

η : Sn −→N, η(x) :=
∑

p(q)=x

1.
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The function η is well-defined, and since p is a local diffeomorphism, it is continuous, thus
necessarily constant, say η ≡ Q. Then it is a Q-covering, but since Sn is simply connected, we
must have Q = 1, and hence p is a diffeomorphism. Let us define ψ := p−1. By construction,
we find that ψ(x) = ef(x)x as in (1.4), and (4.19) tells us that f has small C1-norm. This
concludes the construction.

Finally we can conclude the proof of the proposition. Let us argue by compactness and
consider a sequence of closed hypersurfaces

(
Σk
)
k∈N

satisfying (4.1), (4.2), and limk‖Å‖Lpk =

0. By Theorem 0.1 we get the existence of a sequence
(
λk
)
k∈N

so that

‖A− λkgk‖Lpk 6 C(n, p, c0)‖Å‖Lpk ↓ 0.

The sequence
(
λk
)
k∈N

is clearly bounded. Up to extraction of a subsequence we can assume
λk → λ0 which has to be non-zero because of (4.18). We show the equality |λ0| = 1. This is
then given by the area formula. Indeed, patching Lemma 4.7 and Corollary 4.9 we obtain
that, up to translating, the hypersurfaces Σk are radially parametrized by a map

ψk : Sn|λ0|−1
−→ Σ, ψ(x) = ef

k(x)x, ‖f‖C1 6 ε.

Then, we have:

1 =
Voln(Σ)

Voln(Sn)
= |λ0|

−1

 
Sn
|λ0|

−1

enf
k
√
1+ |∇fk|2 dVσ = |λ0|

−1
(
1+O

(
‖fk‖C1

))
.

For k→∞ we obtain that |λ0| = 1. The conclusion of the proposition follows by showing
that λ0 = 1, thus implying that every subsequence of

(
λk
)
k∈N

converges to 1 and hence the
whole sequence. Firstly, we notice that every nλk must be very close to the average of the
mean curvature Hk. Indeed,

|Hk −nλk| 6
 
Σk

∣∣Hk −nλk∣∣ =  
Σk

∣∣〈Ak − λkgk, gk 〉∣∣ 6 C(n, p, c0)‖Å‖Lpk ↓ 0.
Now we show that Hk must be close to n and conclude. This follows by a simple estimate.

Hk =

 
Sn
ne(n−1)f

k

−

 
Sn

div

(
∇fk√

1+ |∇fk|2

)
e(n−1)f

k

√
1+ |∇fk|2

= n

 
Sn
ne(n−1)f

k

+

 
Sn
e(n−1)f

k

(
(n− 1)|∇fk|2√
1+ |∇fk|2

+
∇2fk[∇fk, ∇fk]
1+ |∇fk|2

)

Since every Σk satisfies (4.2), we easily obtain that the sequence
(
fk
)
k∈N

is uniformly
W2,p-bounded, and thus∣∣∣Hk −n∣∣∣ 6 C(n, p, c0)‖fk‖C1 ↓ 0.
This shows that λ0 must be equal to 1, and all the computations we have made do not
actually depend on the chosen subsequence.
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Conclusion

Insofar we have found a qualitative convergence. We will next make it quantitative. This
part is rather simple, because it follows from the arguments in Chapter 1. Indeed, although
most propositions are stated under the convexity assumptions, one can easily notice that
the computational proposition do not actually require convexity: what is needed are the
C1-closeness of f to 0 and the oscillation proposition stated in 0.1. From the latter one we
can infer inequality (1.21) and apply Proposition 1.15 which was on purpose proved without
convexity assumption, and obtain estimate (1.25). Then, the same arguments made below
give us the linearised estimate

‖f−ϕvf‖W2,p(Sn) 6 C
(
‖Å‖Lp(Σ) + ε‖f‖W2,p(Sn)

)
,

with the constant C depending this time on n, p and c0. What is left is to prove that ϕvf is
actually negligible, and this can be done by proving that we can center the hypersurface so
that b(Σ) = 0.

Since Σ is not convex this time, it can be a priori impossible to translate it and keep a
radial parametrization. However, this is not a problem, and it is done by looking carefully at
the proof of Corollary 4.9, where we build the parametrization. In the proof of it, we chose
a random point qk ∈ Σk and fix it to be −λ0en+1, then we perform our analysis. In order
to center Σ better, we just improve to proof in 4.9 by choosing qk more cleverly. Indeed, let
again (Σk)k∈N be a sequence of hypersurfaces satisfying (4.1), (4.2) and limk‖Å‖Lpk = 0. We
apply a translation so that (b(Σk))k∈N = 0 for every k, and choose qk so that

|qk|
2 = max

q∈Σ
|q|2.

It is easy to see that for such choice we have the equality TqkΣk = 〈qk 〉⊥. The study we
made above also grants us the limit:

lim
k
‖A− Id‖Lpk = 0.

We follow again the same argument of Lemma 4.7, choosing this time qk as first point for
the covering argument, and obtain that the sequence (Σk)k∈N is converging to a sphere
Sn(c) with center c. Since the barycenter condition b(Σk) = 0 passes to the limit, we also
obtain that this sphere must satisfy b(Sn(c)) = 0, therefore implying c = 0. Now we repeat
the same argument, and obtain the following proposition:

Proposition 4.10. For every 0 < ε there exists 0 < δ0 = δ0(n, p, c0, ε) with the following
property.

If Σ is a closed hypersurface satisfying (4.1), (4.2) and ‖Å‖Lp(Σ) 6 δ0, then there exists a vector
c ∈ Rn+1 such that b(Σ− c) = 0 and the radial parametrization

ψ : Sn −→ Σ− c, ψ(x) = ef(x)x

is well defined. Moreover, ‖f‖C1(Σ) 6 ε.

Via this proposition and the previous discussion, we can obtain Theorem 4.1.
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4.2 proof of theorem 4.2

Theorem 4.2 requires a preliminary study. The strategy we would like to use is basically the
same as the one used for the previous theorem, that is:

Let us consider a sequence of hypersurfaces (Σk)k∈N satisfying (4.1), (4.2), and

lim
k
‖R̊ic‖Lpk = 0.

Firstly, we estimate the diameter of Σk and consider a (not relabeled) subsequence Σk that
converges in the Hausdorff distance to a subset Σ0 ⊂ Rn+1. If Σ0 were a smooth manifold,
and if the the decay of the traceless Ricci tensor passed to the limit, than Σ would be a
smooth, closed Einstein manifold in Rn+1, which is necessarily the round sphere. Then,
performing a fine analysis of the ϕq, we would obtain than every graph parametrisation of
Σk must converge to the graph parametrisation of the sphere, and thus we could build the
same proof made for 4.1.

The problem here are the two ifs, which have to be motivated. First of all, the set Σ0 we
will find is a priori only a compact subset in Rn+1; moreover, as we pointed out many
times, the Ricci operator is not elliptic when viewed as a differential operator acting on
the function which describes Σ as a graph parametrisation. Also if we consider the Gauss
equation Riem = A?A and consider the associated polynomial equation for the eigenvalues
{ x1, . . . xn } of A, then the equality

Ric(x) = (n− 1)λ

implies A = λ Id only when λ > 0, as shown in Chapter 2. Thus, we also need to prove the
positivity of λ in order to achieve our result. Lastly, even if we are able to fix these problems,
the lack of a C0-bound on the second fundamental form does not allow us to apply the
strategies we have seen in Chapter 2. Thus, we must follow an alternative strategy. We split
the proof of the qualitative closeness into two main propositions.

Proposition 4.11. Let ϕk : BnR −→ Rn+1 be a sequence of graph parametrizations, and let then
Graph(uk, BnR) be their image. Assume that every uk satisfies the following:

• uk(0) = 0, ∂uk(0) = 0.

• ‖uk‖W2,p 6 c0.

• uk ⇀ u0 weakly in W2,p.

• The sequence
(
Graph(uk, BnR)

)
k∈N

, seen as sequence of hypersurfaces, satisfies

lim
k
‖Ric−(n− 1)λ0gk‖Lpk = 0.

Then there exists a radius 0 < ρ0 = ρ0(n, p, c0) such that the function u0 is smooth (actually
analytic) in Bnρ0 , and the hypersurface Graph(u0, Bnρ0) is Einstein.
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Proposition 4.12. For every 0 < ε there exists 0 < δ = δ(n, p, c0, ε) with the following property.
Let Σ be a closed hypersurface in Rn+1 satisfying (4.1) and (4.2). If ‖Ric−(n− 1)λ0g‖Lp 6 δ,

then λ0 > 0, and for every q ∈ Σ, the graph parametrisation ϕq satisfies:∥∥∥∥uq − µ−10 (√1− µ20| · |2 − 1)∥∥∥∥
C1

6 ε, (4.21)

where µ0 =
√
λ0.

Combining these two propositions, we obtain the C1-closeness, and then we show how to
conclude.

4.2.1 Proof of the C1-closeness

We start by proving the first proposition.

Proof of Proposition 4.11. The proof uses the concept of harmonic coordinates. We recall the
definition: given a manifold (M, g) and an open set U ⊂M a mapping y : U −→ Rn+1 is
said to be a harmonic chart if it is a diffeomorphism and if it satisfies the equation

∆gy = 0.

The functions y1, . . . yn are called harmonic coordinates. A detailed study on the topic can be
found in [29, Sec. 8.10, p.523] or [43, Ch. 10, Sec. 2.3]. Harmonic coordinates have several
properties which make them very suitable for our problem. Indeed, the following expression
holds:

−
1

2
∆ggij +Qij(g, ∂g) = Ricgij for every indices i, j, (4.22)

where gij := g
(
∂
∂yi
, ∂
∂yj

)
, Qij is a universal polynomial depending on g and its first

derivatives ∂g. The computations can be found in [43, Ch. 10, Sec. 2.3].
In the aforementioned references however, the authors work under stronger regularity

assumptions on the metric. In our case we ought to perform a finer study. We prove the
following result.

Lemma 4.13. Let u : BnR −→ R be given so that u(0) = 0, ∂u(0) = 0, ‖u‖W2,p(BnR)
6 c0. Set

Gρ := Graph(u, Bnρ ) for 0 < ρ 6 R. Then there exist 0 < ρ0 = ρ0(n, p, c0) and a diffeomorphism
η : Gρ0 −→ Rn such that

∆gη = 0, ‖η‖W2,p(Gρ0)
6 c0,

with ∆g being the Laplace-Beltrami operator associate to the manifold Gρ0 .

Proof. By pull-back we work on the sequence
(
BnR , gk

)
k∈N

, with gk = δ+∂uk⊗∂uk. We are
going to show the existence of a 0 < ρ0 = (n, p, c0) < R such that the map η : Bnρ0 −→ Rn

defined by∆gη = 0 in Bnρ0 ,

η|∂Bnρ0
= x
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is a diffeomorphism and satisfies ‖η‖2,p 6 c0. In order to simplify the proof, we will
consider a rescaled version the problem. Firstly, let us recall the expression in chart of the
Laplace-Beltrami operator:

∆g =
1√

detg
∂i

(√
detggij∂j

)
. (4.23)

Let η : Bnρ −→ Rn be a map satisfying ∆gη = 0. We say that the map

ηρ : Bn1 −→ Rn, ηρ(z) :=
η(ρz)

ρ

satisfies ∆gpηp = 0, where ∆gρ is the Laplace-Beltrami operator associated to the metric
gρ(z) := g(ρz), defined on the ball Bn1 . Indeed, if we set aij :=

√
detggij and a

ij
ρ :=√

detgρg
ij
ρ , then

∂i
(
aijρ ∂jηρ

)
(z) = ∂ia

ij
ρ (z)∂jηρ(z) + a

ij
ρ (z)∂

2
ijηρ(z)

= ρ
(
∂ia

ij(ρz)∂jη(ρz) + a
ij(ρz)∂2ijη(ρz)

)
= ρ∂i

(
aij∂jη

)
(ρz) = 0.

Moreover, since g = δ+ ∂u⊗ ∂u and u satisfies u(0) = |∂u(0)| = 0 and ‖u‖2,p 6 c0, then
we also have

lim
ρ→0
‖gρ − δ‖W1,p(Bn1 )

= 0.

We have reduced the problem to the following formulation:

There exists 0 < ε0 = ε0(n, p) with the following property. If g is a metric on Bn1 such
that ‖g− δ‖W1,p 6 ε0, then there exists a diffeomorphism η : Bn1 −→ Rn such that

∆gη = 0, ‖η− id‖W2,p 6 ε0.

As stated before, we prove that the only solution η of the problem∆gη = 0,

η|∂B1
= x

is a diffeomorphism, provided that ε0 is sufficiently small. The solution η exists and it is
smooth, since the coefficients are smooth. We prove that η satisfies the aforementioned a
priori W2,p-estimate and is a diffeomorphism in B1. From (4.23) we get that our equation is
of the divergence form:

∂i
(
aij∂jη

)
= 0, where ‖aij − δij‖W1,p 6 ε0.

Since n < p, we have that the Sobolev closeness is also a C0,α-one, thus we obtain that for
ε0 sufficiently small the matrix a = aij satisfies the bound

1

2
δ 6 a 6 2δ
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in the sense of quadratic forms. This bound will be useful when we will deal with sequences
of metrics converging weakly, because it passes to the limit and triggers the classical elliptic
theory for weak solutions (see [20]). Now we conclude:

‖η− x‖W2,p(Bn1 )
6 C(n, p)‖∆g(η− x)‖Lp(Bn1 )

= C‖∆gx‖Lp(Bn1 )
,

and therefore

∆gx
k =

1√
detg

∂i

(√
detggij∂jxk

)
=

1√
detg

∂i

(√
detggik

)
= ∂ig

ik + tr(gpq∂igpq)gik.

From this computation we obtain

‖η− x‖W2,p(Bn1 )
6 C(n, p)‖g− δ‖W1,p(Bn1 )

6 Cε0,

and for ε0 sufficiently small we obtain the thesis.

We use the lemma to prove 4.11. Indeed, let ϕk, uk and Graph(uk, BnR) be as in the
hypothesis of 4.11. Using the pull-back, we work in

(
BnR , gk

)
. Since uk ⇀ u0 weakly in

W1,p and n < p by hypothesis, we know that uk → u0 strongly in C1,α, then ∂uk ⊗ ∂uk →
∂u0 ⊗ ∂u0 strongly in C1,α, and

∂2uk ⊗ ∂uk + ∂uk ⊗ ∂2uk︸ ︷︷ ︸
∂(∂uk⊗∂uk)

⇀ ∂2u0 ⊗ ∂u0 + ∂u0 ⊗ ∂2u0︸ ︷︷ ︸
∂(∂u0⊗∂u0)

in Lp. (4.24)

From (4.24) we deduce gk ⇀ g0 = δ+ ∂u0 ⊗ ∂u0 in W1,p. We consider then harmonic
coordinates ηk : Bnρ0 −→ Rn built as in Lemma 4.13. From the discussion made above, one
can easily infer that ηk converges weakly in W2,p to the vector valued function η0 which is
of class W2,p and weakly solves the system∆g0η0 = 0,η0|∂Bnρ0

= x,

Let us now call

gkij := gk

(
∂

∂ηik
,
∂

∂η
j
k

)
, where

∂

∂ηi
:= dη

[
∂

∂xi

]
.

Then every gkij solves system (4.22), namely

−
1

2
∆gkg

k
ij +Qij(g

k, ∂gk) = Rickij,

with Rickij := Rick
(
∂
∂ηik

, ∂

∂η
j
k

)
. Then, this equation passes to the limit in g0ij = g0

(
∂
∂ηi0

, ∂

∂η
j
0

)
,

which solves the distributional equation

−
1

2
∆g0g

0
ij +Qij(g

0, ∂g0) = λ0g
0
ij. (4.25)
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Following the computations leading to equation (4.22) as made in [43, Sec. 2.3], we can
easily notice that the polynomial Qij(g0, ∂g0) is of class Lp/2. Therefore we can apply the
bootstrap technique to deduce regularity. Indeed, every g0ij is a W1,p-weak solution of the
equation

L[v] = f,

where f is a Lp/2-function. By the Morrey estimates, we know that every g0ij is actually in
W2,p/2, and in particular

∂g0 ∈ L(p/2)
∗
, where (p/2)∗ =

n(p/2)

n− (p/2)
=

np

2n− p
.

A straight computation shows

(p/2)∗ > p⇔ np

2n− p
> p⇔ p > n,

and therefore every Qij(g0, ∂g0) ∈ Lp1/2 for some p1 = (p/2) > p. We proceed inductively
until we find Qij(g0, ∂g0) ∈ LpN/2 for some pN > 2n. In this case, we obtain that every
g0ij ∈ C1,α. At this point, we notice that Qij(g0, ∂g0) ∈ C0,α. From the Schauder estimates
we infer that every g0ij ∈ C2,α, thus rendering aij, Qij ∈ C1,α. Inductively we obtain that
g0 is in Ck,α, therefore it is smooth. It can be also proved, that in this context, the metric
is actually analytic, and hence we obtain our desired regularity. We refer to [20] for an
overall synthesis on all the aforementioned estimates and elliptic regularity results. Since
g0 is regular and satisfies (4.25), then the hypersurface Graph(u0, Bnρ0) is Einstein and
Ric0 = λ0g0.

Now we deal with Proposition 4.12

Proof of Proposition 4.12. Again we need a useful lemma.

Lemma 4.14. If Σ satisfies (4.1) and (4.2), then there exists 0 < D0 = D0(n, p, c0) such that

diamg Σ 6 D0.

Proof. As often argued throughout the work, a smooth, closed hypersurface satisfying (4.1)
and (4.2) with n < p allows us to apply Lemmas 0.2 and 0.3. Now we consider two points p0,
q ∈ Σ, such that dg(p0, q) = diamg(Σ). Such points clearly exist by compactness. By virtue
of Lemma 0.3 we are able to find Q geodesic balls B

g
1 , . . .B

g
Q, with the following properties:

p0 ∈ B
g
1 , q ∈ B

g
Q, B

g
i ∩B

g
i+1 6= ∅ and Q 6 N, where N = N(n, c0, p) is the natural number

given by 0.3. Then, for every i = 1, . . . ,Q− 1 we choose a point pi ∈ B
g
i ∩B

g
i+1, and set

pQ := q. Naturally, since pi, pi+1 ∈ Bgi , the following inequality holds:

dg(pi, qi) 6 2R.

Then by triangle inequality, we find our desired bound.

diamg(Σ) = dg(p0, q) = dg(p0, pQ) 6
Q−1∑
i=0

dg(pi, pi+1) 6 2QR = D(n, p, c0).
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We now come to the proof of Proposition 4.12. Let us argue by compactness, and let
(Σk)k∈N be a sequence of closed hypersurfaces satisfying (4.1), (4.2) and satisfying

lim
k
‖Ricgk −(n− 1)λ0gk‖Lpk = 0.

Up to translations, we can assume b(Σk) = 0 for every k ∈N, where

b(Σ) =

 
Σ

xdVg(x)

denotes again the barycentre of Σ. Then the sequence (Σk)k∈N is a sequence of compact sets,
all enclosed in a ball, and thus we can use the classical compactness theorem of Hausdorff
to extract a subsequence converging in the Hausdorff distance to a compact set Σ0 ⊂ Rn+1.
Let q0 ∈ Σ0 be a point that attains the maximum distance from 0, i.e.

|q0|
2 = max

q∈Σ0
|q|2.

Let then (qk)k∈N be a sequence of points qk ∈ Σk converging to q0, and ϕk be the associated
graph parametrisations with center qk and width R. Then, up to subsequences, ϕk converges
weakly in W2,p to a function ϕ0 : BnR −→ Rn+1. Since

ϕk(z) = qk +Φk

(
z

uk(z)

)
,

it is obvious that Φk → Φ0 and uk ⇀ u0 weakly in W2,p. Hence ϕ0 is a graph parametrisa-
tion, and ϕ0(0) = q0, ϕ0(BnR) ⊂ Σ0. Moreover, since the isometries Φk clearly alter neither
the final result nor the proof, we are therefore in the hypothesis of Proposition 4.11, and
obtain that u0 is actually smooth and ϕ0(Bnρ0) = Graph(u0, Bnρ ) ⊂ Σ0 is a smooth, Einstein
manifold. The map ϕ0 has another remarkable property: it satisfies

|ϕ(0)|2 = |q0|
2 = max

z∈Bnρ0

|ϕ(z)|2.

Deriving twice, we obtain the following equalities holding in 0:

〈∂iϕ0, ϕ0(0) 〉 = 0︸ ︷︷ ︸
⇒〈q0 〉⊥=Tq0Σ

, ∂2ϕ(0) 6 0⇒ 〈∂2ijϕ0, ϕ0(0) 〉︸ ︷︷ ︸
=−|q0|−1Aij

+ 〈∂iϕ0, ∂jϕ0 〉︸ ︷︷ ︸
=gij

6 0,

from which we obtain the equality

A|q0 >
1

|q0|
g|q0 . (4.26)

Equality (4.26) holds just in one point, but it is enough: indeed, ϕ0(Bnρ0) is smooth and
Einstein, thus at q0 we also have the estimate:

(n− 1)λ0g = Ric >
(n− 1)

|q0|2
g >

(n− 1)

D20
g⇒ λ >

1

D20
,
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and hence λ0 > 0. Since ϕ0 parametrizes an Einstein hypersurface, the equality holds in
the whole ball Bnρ0 . Thanks to Theorem 2.4 we obtain that A = µ0g, where µ0 =

√
λ0.

This tells us that ϕ0 parametrizes a portion of a round sphere with radius µ−10 . Since ϕk
converges weakly to ϕ0 in W2,p, we obtain that also the associated function uk converge to

µ−10

(√
1− µ20|x|

2 − 1
)

weakly in W2,p. Since n < p the convergence is also strong in C1,α.
The study we made insofar works not only for ϕ0 but for every possible parametrization:
let us go back to our sequence (Σk)k∈N of closed hypersurface. Now we know that λ0 > 0,
and thus for every sequence qk ∈ Σk, for every ϕk graph parametrisation with center qk
and width ρ0, we obtain that every weak limit must parametrize a portion of a sphere with

radius Sn
µ−1
0

with u0(x) = µ−10
(√

1− µ20|x|
2 − 1

)
as parametrization, and the convergence is

strong in C1. This proves the proposition.

Now we repeat the very same passages made in the proof of Theorem 4.1, and we easily
obtain the corollary:

Corollary 4.15. For every 0 < ε there exists 0 < δ = δ(n, p, c0, ε) with the following property.
Let Σ be a closed hypersurface in Rn+1 satisfying (4.1) and (4.2). If ‖R̊ic‖Lp(Σ) = 0, then there

exists a vector c ∈ Rn+1 such that b(Σ− c) = 0, and the radial parametrization

ψ : Sn −→ Σ, ψ(x) = ef(x)x

is well defined. Moreover ‖f‖C1 6 ε.

This concludes the study of the qualitative C1-closeness.

4.2.2 Conclusion

As in Chapter 2, Corollary 4.15 is not enough to conclude the estimate, because the Ricci
operator seen as differential operator on f is not elliptic. We shall conclude the proof of
Theorem 4.2 with an idea, that reduces it to an application of Theorem 4.1. First of all, let us
show an easy corollary of 4.15.

Corollary 4.16. Under the hypothesis of 4.15, we have the inequality:

|Scal −n(n− 1)| 6 C(n, p, c0)ε.

Proof. The proof has basically already been given in Chapter 2, see Lemma 2.16. Indeed,
from the C1-closeness we are still able to obtain expression (2.39)

Scal = n(n− 1) − 2(n− 1)(∆σf+ f) + (∆f)2 − |∇2f|2 +R, (4.27)

where R satisfies

|R| 6 Cε
(
|f|+ |∇f|+ |∇2f|

)
.

Since ∣∣∣∣ˆ
Sn

R

∣∣∣∣ 6 C(n, p, c0)ε,
we integrate (4.27) and obtain the corollary.
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Now we can complete the proof of Theorem 4.2. Let us write Scal = n(n− 1)κ, and assume

|κ− 1| 6
1

2
.

Again, we denote with λ1 6 · · · 6 λn the eigenvalues of A and again we consider
κ := 1

n(n−1)Scal. As proved in Corollary 4.16, we can choose δ 6 δ0 so that κ is between 1/2
and 2. Then, given Proposition 2.5, we rewrite inequality (2.9) in terms of the eigenvalues of
A and obtain∥∥λiλj − κ∥∥Lp 6 C‖R̊ic‖Lp , ∀ i 6= j. (4.28)

From (4.28), we easily infer for every k = 1, . . . , n∥∥λk(λi − λj)∥∥Lp 6 C‖R̊ic‖Lp . (4.29)

Now, for every 0 < Λ2 < κ, we define

EΛ := {q ∈ Σ : | λn(q)| > Λ } . (4.30)

We use the set EΛ and its complement in order to perform an estimate on the difference∣∣λi − λj∣∣. Indeed, since λ1 6 · · · 6 λn 6 Λ for every q ∈ EcΛ, we get the bounds

|κ−Λ2| |EcΛ|
1
p 6

∥∥λiλj − κ∥∥Lp(EcΛ) 6 C‖R̊ic‖Lp ,

which hold for every i 6= j and 0 < Λ2 < κ. Thus we have found

|EcΛ|
1
p 6

C

|κ−Λ2|
‖R̊ic‖Lp . (4.31)

On the other hand, for any i, j = 1, . . . n− 1, i 6= j we find:

∥∥λi − λj∥∥Lp(EΛ) 6 1

Λ

∥∥λn(λi − λj)∥∥Lp(EΛ) (4.29)
6

C

Λ
‖R̊ic‖Lp ,

which gives us∥∥λi − λj∥∥Lp(EΛ) 6 C

Λ
‖R̊ic‖Lp . (4.32)

Combining (4.31) and (4.32) we obtain

∥∥λi − λj∥∥Lp 6 C

(
1

Λ
+

1

|κ−Λ2|

)
‖R̊ic‖Lp . (4.33)

This estimate holds for every i 6= j, i, j = 1, . . . n− 1 and for every 0 < Λ2 < κ. Equation
(4.33) is not sufficient to conclude, because it does not give an estimate on the quantity∣∣λn − λj

∣∣. This is the only quantity that prevents this proof to give a linear estimate in (4.6),
forcing us to introduce the exponent α. Indeed, to deal with

∣∣λn − λj
∣∣, we define

ẼΛ := {q ∈ Σ | |λn−1(q)| > Λ } .
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With the very same considerations used to deduce (4.31), we obtain

∣∣ẼcΛ∣∣ 1p 6
C

κ−Λ2
‖R̊ic‖Lp . (4.34)

Now we fix q ∈ (n, p). Then, via Hölder inequality we get∥∥λn − λj
∥∥
Lq(ẼcΛ)

6 C(n, p, c0)‖R̊ic‖αLp , (4.35)

where α is defined as in Theorem 4.2. Combining (4.34) with (4.35), we obtain

∥∥λn − λj
∥∥
Lq

6 C

(
1

|κ−Λ2|
+ 1

)
‖R̊ic‖αLp . (4.36)

Choosing Λ =
√
κ
2 and plugging together (4.33) and (4.36), we deduce

‖Å‖Lq 6
C√
κ
‖R̊ic‖αLp 6

√
2C‖R̊ic‖αLp .

We are thus under the assumptions of Theorem 1.2, which provide a radial parametrization
ψ : Sn −→ Σ, ψ = ef Id, and a vector c = c(Σ) such that 4.6 holds.

4.3 proof of theorem 4.3

We finish the chapter proving the anisotropic generalization of Theorem 4.1. As stated before,
in the latter case we have to adopt a different strategy, since we lack the symmetry property
of the sphere. The cornerstone of the proof is following proposition:

Proposition 4.17. Let n ∈N, n < p, 0 < A, V, R positive constants. Let F be the set of all couples
(M, f) with the following properties:

• M is an n-dimensional, compact manifold (without boundary).

• f ∈W2,p(M, Rn) is an immersion with

‖A(f)‖Lp(M) 6 A,

Voln(M) 6 V,

f(M) ⊂ BnR .

Then for every sequence fi : Mi −→ Rn in F there exist a subsequence fj , a mapping f : M −→ Rn

in F, and a sequence of diffeomorphisms ϕ : M −→ Mj, such that fj ◦ϕj converges weakly in
W2,p(M, Rn) to f.

The proposition is part of a series of compactness theorems on immersions, started in [34]
where the author proves the result for immersed surfaces in R3 and then continued in [13]
for immersed hypersurfaces, and in [5] for the general case. The proposition we want to
prove is the following:
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Proposition 4.18. Let Σ be a closed hypersurface in Rn+1 satisfying (4.7) and (4.8). For every
0 < ε sufficiently small there exists a 0 < δ = δ(ε, n, p, c0, W) with the following property. If Σ
satisfies (4.9), then it admits an anisotropic radial parametrization as in (3.5). Moreover the radius u
satisfies the estimate

‖u‖C1 6 ε. (4.37)

As usual, we will see in the conclusion how the qualitative C1-closeness will bring the
desired quantitative one.

Proof of Proposition 4.18

The proof of Proposition 4.18 uses strongly the compactness result of Proposition 4.17. Firstly,
we prove the following two lemmas.

Lemma 4.19. Let ϕk : M −→ Rn+1 be a sequence of immersions of a closed manifold. Assume ϕk
satisfies (4.7) and (4.8), and ϕk converges to an immersion ϕ0, weakly in W2,p . Then we have the
inequality

‖AF(ϕ0)‖Lp(M) 6 lim inf
k
‖AF(ϕk)‖Lp(M). (4.38)

Lemma 4.20. Let Σk be a sequence of hypersurfaces satisfying (4.7), (4.8), and such that we
have also limk‖ÅF‖Lp(Σk) = 0. Then there exist a subsequence (Σh)h∈M and parametrizations
ηh : W −→ Σh such that ηh converges weakly in W2,p to the identity map id : W −→W

Let us prove the lemmas and then show how they bring the result.

Proof of Lemma 4.19. We introduce the map

Ψ : Sn −→ Rn+1, Ψ(x) := gradσ F(x) + F(x)x. (4.39)

From [39] we know that the map Ψ parametrizes the Wulff shape. It is immediate to show
the inequality

AF := SF ◦ dν = d(Ψ ◦ ν). (4.40)

Indeed, the differential of Ψ has the following form:

dΨ

[
∂

∂ϑi

]
=

∂

∂ϑi

(
gradσ F

)
+ ∂iF Id︸ ︷︷ ︸

=Di(DF)

+F
∂

∂ϑi
= (SF)

j
i

∂

∂ϑj
,

where we have denoted by D the Levi-Civita connection compatible with the canonical
metric on the round sphere. Taking the composition we obtain (4.40). Let now (νk)k∈N be
the sequence of outer normals associated to ϕk, i.e. the sequence of mappings νk : M −→ Sn

such that

〈νk(q), dϕk|q [v] 〉 = 0, ∀ v ∈ TqM,



68 the generalisation in the non convex case

and with orientation fixed so every νk is the outer normal for ϕk(M) = Σk. We claim that
the sequence (νk)k∈N is bounded in W1,p(M, Rn+1). Firstly, since AF = SF ◦A, we obtain

‖A‖Lp(Σ) =
∥∥∥(SF)−1AF∥∥∥

Lp(Σ)
6 c(F) c0 = C(F, c0), (4.41)

and thus (4.8) implies inequality (4.2). Now we show how the Lp-boundedness of the second
fundamental forms gives us the Lp-boundedness of the differential of the normals. The key
is the following proposition, proved in [13, Thm. 6.3].

Proposition 4.21. Let 2 6 p, and ψ : BnR −→ Rn+1, ψ(x) = (x, h(x)) be a graph parametrisation,
with h smooth function. Then the following estimate holds:

‖∂2h‖Lp(BnR)
6 (1+ ‖∂h‖0)

3p−1
p ‖A‖Lp . (4.42)

Estimate (4.42) allows us to conclude. Since our hypersurfaces satisfy the volume condition
(4.7) and the Lp-bound (4.8), then they also satisfy the assumptions of Lemma 0.2. Plugging
(4.42) we can easily find a radius R depending on n, p, c0 such that the estimate

‖dν‖Lp(B
g
R(q))

6 C(n, p, c0)‖A‖Lp 6 C(n, p, c0, F)‖AF‖Lp

holds for every point q. Then we make this estimate global via Lemma 0.3, and obtain:

‖dν‖Lp 6 C(n, p, c0, W)‖AF‖Lp .

Therefore our sequence (νk)k∈N is bounded in W1,p. Since n < p, every weak W1,p-limit
point ν0 is also a strong C0,α-limit point, and satisfies

|ν0(q)| = 1 ∀q, 〈ν(q), dϕ0|q [v] 〉 = 0.

This shows that ν0 is the outer normal associated to the immersion ϕ0, and moreover
dνk ⇀ dν0. In order to complete the proof, we simply consider equality (4.40): since the
map Ψ is smooth, we obtain that Ψ ◦ νk converges to Ψ ◦ ν0 weakly in W1,p, and the result
follows from classical Sobolev theory.

With the help of Lemma 4.19 we prove 4.20.

Proof of Lemma 4.20. Let us argue by contradiction, and assume there exists a sequence of
closed hypersurfaces (Σk)k∈N satisfying (4.7), (4.8), limk‖ÅF‖Lp = 0, all enclosed in a ball
Bn+1R , and such that the conclusion of the proposition does not hold.

We apply Proposition 4.17, and find a subsequence Σh, a closed manifold M, parametriza-
tions ϕh : M −→ Σh converging weakly in W2,p to an immersion ϕ0. From Proposition 3.10

we find the existence of a bounded sequence (λh)h∈N such that

‖AF − λh Id‖Lph 6 C‖ÅF‖Lph ↓ 0.

As usual, up to subsequences we assume λh = λ0 for every h. As in the isotropic case, λ0
must be different from 0 because of the estimate

‖AF‖Lp > C(n, p, F)‖A‖Lp > C(n, p, F, Voln(Σ)) = C(n, p, F).
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Since AF = d(Ψ ◦ νh), we apply Lemma 4.19 to the sequence Ψ ◦ νh − λ0x, and obtain that
the limit immersion ϕ0 satisfies the equality

AF = λ0 Id

weakly. From it we easily infer

A(ϕ0) = λ0(SF)
−1. (4.43)

Now we take the trace in (4.43), and obtain that in every graph parametrisation around
every point q, the function uq that parametrizes the immersion is Lipschitz and satisfies an
equality of the following type:

div

(
∂uq√

1+ |∂uq|2

)
= f(uq, ∂uq),

for a certain smooth function f. This tells us that the function uq is smooth. Since then
(4.43) holds classically, uq is also convex, and we obtain that ϕ0 is a smooth immersion
and Σ0 := ϕ0(M) is a smooth, convex hypersurface of Rn+1. Since Σ0 is diffeomorphic
to a round sphere, the same argument used to build the parametrization in the proof of
4.5 tells us that ϕ0 is actually an embedding. From [39] and the volume condition (4.7) we
conclude that λ0 = 1 and ϕ0(M) must be a Wulff shape W+ c for some vector c ∈ Rn+1.
Up to translation, we assume c = 0. Now we easily define ηh : W −→ Σh, ηh = ϕh ◦ϕ−1

0

and obtain that ηh converges to the identity map id : W −→W weakly in W2,p.

The results obtained give us a priori only a qualitative C0-closeness. We show how to
build the radial parametrization and conclude.

Insofar we have proved the following result.

Corollary 4.22. Let Σ ⊂ Rn+1 be a closed hypersurface satisfying conditions (4.7) and (4.8), namely

Voln(Σ) = Voln(W), ‖AF‖Lp(Σ) 6 c0.

Then for every 0 < ε there exist 0 < δ0(n, p, W, c0) with the following property. If Σ satisfies (4.9)
with δ 6 δ0, then there exists a map η : W −→ Σ such that

‖η− id‖C1,α(W) 6 ε. (4.44)

We show how (4.44) yields the desired graph parametrisation. Let Σ be a closed hypersur-
face that satisfies the assumptions of Corollary 4.22. Let Bε(W) be the tubular neighbourhood
associated to W. We denote by P the natural projection over the Wulff shape, that is

P : Bε(W) −→W, P : q = x+ ρνW(x) −→ x.

The map P is Lipschitz and smooth. Moreover, it can be proved that for every q ∈ BεW, the
differential dP|q : Rn+1 −→ TP(q)W is surjective and satisfies the property

dP|q [z] = 0 ⇔ z = λνW(P(q)), λ ∈ R. (4.45)
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See [28, Ch. 5] for the details. Since Σ satisfies Corollary 4.22 and hence estimate (4.44), then
Σ ⊂ Bε(W) and we can set p := P|Σ. Therefore, p is a smooth, Lipschitz map from Σ to W

and satisfies

sup
q∈Σ

|q− p(q)| 6 ε. (4.46)

We claim that p also satisfies:

sup
q∈Σ

|νΣ(q) − νW(p(q))| 6 C(n, W)ε. (4.47)

If the claim is true, then p is a local diffeomorphism: indeed, since νW(p(q)) /∈ TqΣ for
every q ∈ Σ, by (4.45) dp|q has maximal rank at every point q ∈ Σ. Hence p is a local
diffeomorphism, and since the Wulff shape is diffeomorphic to the sphere, the same ar-
gument made in the isotropic case proves it is a global diffeomorphism. Then the inverse
ψ(x) = x+ u(x)νW(x) is the desired radial parametrization and from inequalities (4.46) and
(4.47) we obtain that u is small in the C1-norm.

Now we prove the claim. Let q ∈ Σ be fixed, and let z ∈W be given so that q = η(z). From
(4.46) we know that

|q− p(q)| 6 ε,

and from (4.44) we know that

|q− z|, |νΣ(q) − νW(z)| 6 ε. (4.48)

Patching the inequalities together, we get

|p(q) − z| 6 2ε.

Since the Wulff shape is convex, necessarily z must belong to a graph parametrisation
ϕp(q) : BnR −→ W centered in p(q), provided that 0 < ε is sufficiently small. By convexity,
we easily notice that

|νW(p(q)) − νW(z)| 6 c(n, W)ε.

Patching this inequality with (4.48) we obtain the claim, and therefore the thesis.

Conclusion

Since also in this case the computations do not depend on the convexity property of the
hypersurface Σ (see Section 3.2), we also reach:

Proposition 4.23. Under the hypothesis of Proposition 4.18, we have the additional estimate:

‖u−ϕu‖W2,p(W) 6 C
(
‖ÅF(Σ)‖Lp(Σ) + ε‖|u‖W2,p(W)

)
. (4.49)

where C = C(n, p, W) and ϕu is defined as in Definition 3.14.
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We end the section by getting rid of the function ϕu in estimate (4.49), that is, proving the
following:

Proposition 4.24. Let Σ be a closed hypersurface in Rn+1 satisfying (4.1), (4.8) and (4.9), so that
the estimates of Propositions 4.18 and 4.23 hold for a radial anisotropic parametrization ψ. There
exist ε0 > 0, C0 > 0 depending only on W with the following property. If (4.37) holds with ε 6 ε0,
then there exists c = c(Σ) ∈ Rn+1 such that Σ− c still admits a radial parametrization

ψc : W −→ Σ− c, ψc(x) := x+ uc(x)νW(x),

and uc satisfies:‖uc‖C1 6 C0ε,〈uc, ϕw〉L2 = 0 for every ϕw defined as in (3.11).

Proof. The proof of 4.24 is similar to the one made for proposition 3.7 in the convex case,
with some correction to remove the convexity assumption. We divide the proof into three
main steps.

step 1 For any positive constant C1 there exist positive numbers ε, C2 depending only on W, C1
with the following property. For every c ∈ BC1ε, the hypersurface Σc := Σ− c is still a graph over
W, and its radius uc satisfies

‖uc‖C1(W) 6 C2ε.

We consider ε so small that Σc is still in the 2ε-tubular neighborhood of W. Again, we argue
by proving that the projection map

pc : Σc −→W, pc : q = x+ ucνW(x) 7−→ x

is a diffeomorphism. Following the same strategy of the proof of proposition 4.18, we just
need to show that νW(pc(q)) /∈ TqΣc for every q ∈ Σc. Let then q ∈ Σc be given. By the
very definition of Σc, we have that q̃ := q− c ∈ Σ. Moreover, since Σ is a graph over W with
radius u, there exists x ∈W such that q̃ = x+ u(x)νW(x). By the computation made in [12,
App. B], we deduce

|νΣ(q̃) − νW(x)| 6 C(W)ε. (4.50)

Since Σc = Σ+ c, we know that νΣ(q̃) = νΣc(q̃+ c) = νΣc(q). On the other hand,

|νW(pc(q)) − νW(x)| 6 ε. (4.51)

Combining (4.50) with (4.51), we deduce that

|νΣc(q) − νW(pc(q))| = |νΣ(q̃) − νW(pc(q))|

6 |νΣ(q̃) − νW(x)|+ |νW(x) − νW(pc(q))|
(4.50),(4.51)

6 Cε.

This shows that for ε sufficiently small, νW(pc(q)) /∈ TqΣc, and thus we can conclude as
in the proof of Theorem 4.18.
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step 2 We consider the map

Φ : BC1ε −→ Rn+1, Φ(c) :=

n∑
i=1

〈uc, ϕi〉L2wi (4.52)

where ϕi, wi are defined as in (3.11). Then there exists a constant C3 depending on C1 such that the
following estimate holds:

|Φ(c) −Φ(0) − c| 6 C3ε
2. (4.53)

Indeed, for every c such that |c| < C1 ε we find

dHD(Σ− c, W) 6 dHD(Σ− c, Σ) + dHD(Σ, W) 6 (C1 + 1)ε.

Arguing as in the Step 1 it is easy to see that also the function uc satisfies the estimates

‖uc‖C1 6 C(n, W)ε, (4.54)

We start the linearisation with the following simple consideration: for every z ∈ W there
exists xc = xc(z) ∈W so that

ψc(z) = ψ(xc(z)) − c.

We expand this equality and find

z+ uc(z)νW(z) = xc(z) + u(xc(z))νW(xc(z)) − c. (4.55)

Using the C0-smallness of u and uc, we can easily see that xc = xc(z) satisfies the relation

|xc(z) − z| 6 C(n, W)ε. (4.56)

This approximation, combined with (4.54), gives an estimate of u close to z:

|u(xc(z)) − u(z)| 6 C(n, W)ε2. (4.57)

We evaluate F∗ in the point in (4.55):

F∗(z+ uc(z)νW(z))︸ ︷︷ ︸
=1+uc(z)dF∗|z[νW(z)]+R

= F∗(xc(z) + u(xc(z))νW(xc(z)) − c)︸ ︷︷ ︸
=1+u(xc(z))dF∗|xc(z)[νW(xc(z))]−dF∗|xc(z)[c]+R

,

where

|R| 6 C(n, W)ε2.

Plugging in the previous equality the gauge property (0.3), we obtain

|uc(z)〈νW(z), νW(z)〉− u(xc(z))〈νW(xc), νW(xc)〉+ 〈c, νW(xc)〉| 6 C(n, W)ε2,

which by (4.57) reads

|uc(z) − u(z) + 〈c, νW(z)〉︸ ︷︷ ︸
=ϕc(z)

| 6 C(n, W)ε2. (4.58)

Integrating over W and using (4.58), we conclude the proof of Step 2.
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step 3 Conclusion. We argue by contradiction, and choose C1 so that the map

Φ̃ : B1 −→ Rn+1, Φ̃(c) :=
Φ(C1εc)

C1ε

satisfies∣∣Φ̃(0)
∣∣ 6 1

10
,
∣∣Φ̃(c) − Φ̃(0) − c

∣∣ 6 ε.
Since inequality (4.53) holds, such C1 exists thanks to the very same computations given in
Proposition 3.7. If 0 does not belong to the image of Φ, then we are allowed to define the
map ϕ := Φ̃

|Φ̃|
. Then, with the very same computations done in the proof of Proposition 3.7

we restrict ϕ to Sn = ∂Bn+1 and find a map with the following property:

ϕ : Sn −→ Sn, |ϕ(x) − x| < 2. (4.59)

The thesis follows as in 3.7.





5
M I S C E L L A N E A

In this chapter we include here some result obtained throughout the development of other
theorems. We think that there may still be some interest about, and report them.

5.1 the non convex case for sphere parametrisations

One of the main problems for the non-convex generalisation of theorem 1.1 concern the
existence of a radial parametrisations. In order to find it, we had to assume a control on
the the Lp-norm of the second fundamental form, and perform a fine analysis. One may
ask whether assuming that the hypersurface is already radially parametrized can relax the
hypothesis. This is actually the case, and we see it in the following proposition.

Proposition 5.1. Let 2 6 n, 1 < p <∞ be given, and let Σ = ψ(Sn) be a closed hypersurface in
Rn+1, where ψ is defined as in (1.4). Assume that Σ satisfies the following conditions:

Voln(Σ) = Voln(Sn), (5.1)

‖ν− id‖C0(Sn) 6 Λ, where 0 < Λ <
√
2, (5.2)

where ν denotes the outer normal of Σ. Then there is a number 0 < δ0(n, p, Λ) with the following
property. If

‖Å‖Lp(Σ) 6 δ0, (5.3)

then there exists a vector c = c(Σ) ∈ Rn+1 such that Σ− c still admits a radial parametrisation
ψc = e

fc id and

‖fc‖W2,p(Sn) 6 C(n, p, Λ)‖Å‖Lp(Σ). (5.4)

Proof. Most of the work has already been made in Chapters 1 and 4. We show how the
proposition follows from the following lemma, that we shall prove at the end.

Lemma 5.2. Let Σ = ψ(Sn) satisfy (5.1) and (5.2). Then there exists a constant C = C(n, p, Λ)

such that

‖f‖C1(Sn) 6 C. (5.5)

Let us show how Lemma 5.2 allows us to conclude. Firstly, it grants us the oscillation
proposition 1.12. Indeed, as clarified in Lemma 1.14 we can easily refine Proposition 1.12

and obtain a constant C(n, p, Λ) such that

‖H−H‖Lp 6 C‖Å‖Lp . (5.6)

75
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Then, expanding (5.6) with Lemma 1.9 we obtain that f satisfies the following equation:

H(f) := −divσ

(
∇f√

1+ |∇f|2

)
e−f +

ne−f√
1+ |∇f|2

= H+R, (5.7)

where R is a quantity whose Lp-norm is controlled by ‖Å‖Lp . See Proposition 1.15 and
Appendix A.1 for the relevant computations. Integrating (5.7) w.r.t. the measure dVσ and
using the divergence theorem we obtain

|H| 6 C(n, p, Λ) + ‖Å‖Lp 6 C(n, p, Λ). (5.8)

Now we prove the C1-closeness, and this will conclude the proof. Indeed, the computations
leading to inequality (1.8) do not require convexity, and the non convex version of the
centering proposition has been given in Chapter 4.

The C1-closeness follows by a compactness argument: as previously used, let (Σk)k∈N be
a sequence of closed hypersurfaces Σk = ψk(S

n) satisfying (5.1), (5.3) and the decay

lim
k
‖Å‖Lp = 0.

Then from the (5.6), (5.7) and (5.8) we obtain the functions fk satisfy

‖fk‖W2,p(Sn) 6 C(n, p, Λ) ∀k, lim
k
‖H(f) −Hk‖ = 0. (5.9)

Plus, we can assume that Hk converges to a number λ. Thus, we can choose a (not relabelled)
subsequence ψk(x) = efk(x)x such that fk ⇀ f in W2,p(Sn) and strongly in C0 for the
Ascoli-Arzelà theorem (see [6] for a precise formulation). The limit hypersurface Σ = ψ(Sn),
with ψ(x) = ef(x)x, is a W2,p, Lipschitz hypersurface. Since the radii fk satisfy (5.9), then
the limit f that gives the parametrisation satisfies

H(f) := −divσ

(
∇f√

1+ |∇f|2

)
e−f +

e−f√
1+ |∇f|2

= λ. (5.10)

From (5.10) and classical elliptic regularity theory (see [20]) we can easily infer that f is
smooth, thus Σ is a smooth hypersurface with constant mean curvature and diagonal second
fundamental form. This shows that Σ is the round sphere and f = 0, and since the chosen
subsequence is arbitrary, all the sequence (fk)k∈N converges to 0. One can also notice with
a bit of work that this convergence is actually strong in W2,p, but we do not need this
additional convergence for the subsequent arguments.

Now that we have obtained the C1-closeness of f to 0, we proceed as in Chapter 4 and
obtain the main result.

It remains to prove Lemma 5.5 and conclude. The lemma follows from combining inequal-
ity (5.2) with formula (1.13). Indeed,

|ν(x) − x|2 6

∣∣∣∣∣ x−∇f√
1+ |∇f|2

− x

∣∣∣∣∣
2
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=

(
1−

1√
1+ |∇f|2

)
+

|∇f|2

1+ |∇f|2
= 2

(
1−

1√
1+ |∇f|2

)
6 Λ2.

This latter estimate easily implies

|∇f| 6
√
4−Λ2

Λ

2−Λ
=: L(Λ). (5.11)

We show how (5.11), combined with the volume control leads to the conclusion. Indeed, (5.1)
united with formula (1.16) for the volume dVg gives us 

Sn
enf
√
1+ |∇f|2 dVσ = 1⇒ c(n, Λ) 6

ˆ
Sn
enf dVσ 6 C(n, Λ).

This latter estimate allows us to conclude. Indeed, assume there exists a sequence of
hypersurfaces Σk = ψk(S

n) satisfying (5.1), (5.11) and such that lk := fk(xk) ↑∞. Since the
round sphere is a complete measure space one easily obtains

f(y) = f(xk) + (f(y) − f(xk) > f(xk) − πL(Λ).

Thus, 
Sn
enf(y) dVσ(y) > e

−nπL(Λ)+lk ↑ +∞.

As shown above, this integral is however bounded, thus there cannot be convergence of the
maximum to∞. The same idea holds with the minimum.

5.2 a weaker convergence proposition

In Chapter 2 we proved the qualitative closeness under the strong assumption of a C0-
control of the second fundamental form. As already remarked, this hypothesis is somewhat
innatural, because morally speaking we are assuming a W2,∞-control in order to achieve a
W2,p-quantitative closeness proposition. Here we try to levy the hypothesis.

Proposition 5.3. Let 3 6 n, 2 6 p < ∞ be given, (Σk)k∈N be a sequence of closed, convex
hypersurfaces satisfying (5.1) and the following the conditions:

‖A‖Lp(Σ) 6 c0, (5.12)

lim
k
‖R̊ic‖Lp = 0. (5.13)

Then up to translating Σk = ψk(S
n) for ψk = efk radial parametrisation as usual, and the functions

fk converge to 0 weakly in W2,p and strongly in C1.

This proposition is still far from being optimal because it requires a W2,p-control in order
to achieve a weak W2,p-decay, but it may still be useful. After having reached the qualitative
result, we cannot however proceed to make it quantitative because without the C0- control
on A we would have to linearise the equation Ric−λg, and obtain

|∇2f|2 − (∆f)2 − 2(n− 1)
(
∆f+n

(
f− f

))
= R, where‖R‖Lp 6 C‖R̊ic‖Lp .

Insofar we do not know any useful estimate that can be conclusive in this case.
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Proof. The proposition follows by applying the same technique of Chapter 4. We consider a
sequence of closed, convex hypersurfaces (Σk)k∈N satisfying (5.12) and (5.13). The integral
control of the second fundamental form and the convexity grant us as usual the oscillation
proposition

‖Ric−(n− 1)κkg‖Lp(Σk) 6 C(n, p, c0)‖R̊ic‖Lp(Σk),

where as usual n(n− 1)κk = Scal. Now we notice that (κk)k∈N is bounded. Indeed,

n(n− 1)|κ| = |Scal| 6
 
Σ

|Scal|dVg 6
 
Σ

∣∣H2 − |A|2
∣∣dVg 6 C(n, p, c0).

Then κk → κ. Notice that the sets Uk bounded by Σk are uniformly bounded and contain
a ball with non decaying radius, thus Blaschke selection theorem applies: we obtain that
a (not relabelled) subsequence Uk converges to U in the Hausdorff distance, and U is a
bounded, convex open set in Rn+1. Therefore we obtain that the radii fk → f in C0, and
are equilipschitz, thus f is also a Lipschitz function. Since (5.12) holds, we obtain that the
functions (fk)k∈N are uniformly bounded in W2,p, and thus converge weakly to f. Then we
notice that the limit hypersurface Σ is of class W2,p, and its weak Ricci tensor satisfies

Ric = (n− 1)κg,

for a certain κ ∈ R. The study of harmonic coordinates already made in Section 4.2 shows
that Σ is the round sphere as in the proof of 5.1, and we conclude.

5.3 a counterexample in the non convex case

Here we show how for 3 6 n the convexity assumption on the hypersurface Σ is not an
artificial hypothesis. The counterexample is given in the isotropic case, showing how, even
for the simplest surface energy, the convexity plays a crucial role. Our counterexample is not
new. A precise construction of it has been given in [11, Prop 4.1], and other counterexamples
can be found in [41, Chapter 4]. In this short section we limit ourselves just to show the main
idea of it.

Proposition 5.4. For every 3 6 n and every 1 < p < n− 1 there exists a sequence {Σk }k∈N of
smooth hypersurfaces in Rn+1 satisfying the following conditions:

2Voln(Sn) 6 Vol(Σk) 6 2Vol(Sn) +Cn, (5.14)

lim
k

∥∥Åk∥∥Lp(Σk) = 0, (5.15)

dHD(Σk, Sn + c) > ε0 > 0 for every c ∈ Rn+1. (5.16)

Proof. Our counterexample is given by the union of two disjoint hyperspheres smoothly
connected by a j-cylinder Cyl = S

j
rk × [0, 1]n−j. We recall that in the j-cylinder the second

fundamental form Ak has the expression

Ak =

 1rk Idj 0

0 0

 , (5.17)
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therefore we easily obtain the expression for the traceless second fundamental form Åk,
which is given by

Åk =
1

rk

n− j

n
Idj 0

0 −
j

n
Idn−j

 . (5.18)

It is easy to see that we can choose Σk so that Åk is 0 in the two hyperspheres, it is given by
(5.18) in the j-cylinder and it is Lp arbitrarily small near the region where the hyperspheres
and the j-cylinder are connected. Hence, in order to prove condition (5.15) we just have
to show how Ak → 0 in Lp-norm on the j-cylinder, but this is trivial since, choosing
1 < p < j < n, then

‖Åk‖pLp(Cyl) = r
j−p
k → 0.

Conditions (5.14) and (5.16) are obviously satisfied by construction, getting the conclusion
of the proof.





A
A P P E N D I X

The appendix is devoted to proving technical and computational propositions used through-
out all the thesis.

a.1 computational lemmas

Proof of Lemma 1.9

Firstly, we compute the differential of ψ:

dψ|x : TxSn −→ Tψ(x)Σ, dψ|x [z] = e
f(x)(z+∇zf x). (A.1)

In order to compute the expression for g in Sn, we fix x in Sn and use the usual polar
coordinates { ∂

∂ϑ1
. . . ∂

∂ϑn } for the sphere. We find

g = gijdϑ
i dϑj = ψ∗ δ|Σ

(
∂

∂ϑi
,
∂

∂ϑj

)
dϑi dϑj

= e2f
(
∂

∂ϑi
+∇if x,

∂

∂ϑj
+∇jf x

)
dϑi dϑj

= e2f
(
σij +∇if∇jf

)
dϑi dϑj.

The expression for g−1 follows from a direct computation.
Now we compute the normal ν = νΣ. Fix x ∈ Sn and consider the system { ∂

∂ϑ1
. . . ∂

∂ϑn , x }

which is orthogonal in Rn+1. By the definition of ν we have the relation (ν(x), dψ|x)[z] = 0

for every z ∈< x >⊥. Now we write ν = νj ∂
∂ϑj

+ νx x and obtain∣∣∣∣ ∂∂ϑj
∣∣∣∣2νj +∇jf νx = 0 for every j.

Normalizing we have

ν(x) =
1√

1+ |∇f|2
(x−∇f(x)),

which is exactly (1.13).
The expression for A is more complex to compute. Firstly, we easily compute the differential
of ν:

dν

[
∂

∂ϑj

]
= ∇j

(
1√

1+ |∇f|2

)
(x−∇f(x)) + 1√

1+ |∇f|2

(
∂

∂ϑj
−∇j(∇f)

)
,
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and now we can make our computation

Aij : =

〈
dψ

[
∂

∂ϑi

]
, dν

[
∂

∂ϑj

]〉
=

ef√
1+ |∇f|2

〈
∂

∂ϑi
+∇if,

∂

∂ϑj
−∇j∇f

〉

=
ef√

1+ |∇f|2

σij −∇if 〈∇j∇f, x︸︷︷︸
νSn

〉−
〈
∇j∇f,

∂

∂ϑi

〉.

We compute ∇j∇f in the orthogonal system { ∂
∂ϑ1

. . . ∂
∂ϑn }.

〈∇j∇f, x 〉 = ∇j (∇f, x)︸ ︷︷ ︸
=0

−〈∇f, ∇jνSn〉 = −ASn

(
∇f, ∂

∂ϑj

)
= −∇jf

〈
∇j∇f,

∂

∂ϑi

〉
= ∇j

〈
∇f, ∂

∂ϑi

〉
︸ ︷︷ ︸

=∂if

−

〈
∇f, ∇i

∂

∂ϑj

〉
= ∂2ijf− Γ

k
ij∂kf = ∇2ijf.

We finally write

Aij =
ef√

1+ |∇f|2
(
σij +∇if∇jf−∇2ij, f

)
which is exactly (1.14), and we are done. Equality (1.15) follows from a direct computation
after writing Aij = g

liAlj and we do not report it.
Formula (1.16) follows from the area formula (see [1]):

ˆ
Σ

h(y)dVg(y) =

ˆ
Sn
h(ψ(x))Jdψ(x)dVσ for any h ∈ C(Σ),

where

Jdψ(x)
2 = det d∗ψ|x ◦ dψ|x ,

and d∗ψ is the adjoint differential, whose representative matrix is simply the transpose of
the dψ representative matrix. Taking { ∂

∂ϑ1
. . . ∂

∂ϑn , x } as frame for Rn+1 we easily find the
expression

det d∗ψ|x ◦ dψ|x = e2nf
(
1+ |∇f|2

)
,

and the result follows simply by taking the square root.
Lastly we deal with the Christoffel symbols. We recall the formula

gΓ
k
ij =

1

2
gks
(
∂igjs + ∂jgis − ∂sgij

)
,

and now we expand it:

gΓ
k
ij =

1

2

(
σks −

∇kf∇sf
1+ |∇f|2

)(
∂iσjs + ∂jσis − ∂sσij

)
+
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+
1

2

(
σks −

∇kf∇sf
1+ |∇f|2

)(
∂i(∂jf∂sf) + ∂j(∂if∂sf) − ∂s(∂if∂jf)

)
+

+
1

2
gks
(
∇if gjs +∇jf gis −∇sf gij

)
=
1

2

(
σks −

∇kf∇sf
1+ |∇f|2

)(
∂iσjs + ∂jσis − ∂sσij + 2 ∂

2
ijf ∂sf

)
+

+
1

2

(
∇if δkj +∇jf δki −g∇kf gij

)
= Γkij + ∂

2
ijf ∂

kf−
|∇f|2

1+ |∇f|2
∂2ijf ∂

kf−
1

1+ |∇f|2
∂kf ∂sf

σls

2

(
∂iσjs + ∂jσis − ∂sσij

)
+

+
1

2

(
∇if δkj +∇jf δki −g∇kf gij

)
= Γkij +

1

1+ |∇f|2
(
∂2ijf− ∂sf Γ

s
ij

)
∂kf+

1

2

(
∇if δkj +∇jf δki −g∇kf gij

)
= Γkij +

1

1+ |∇f|2
∇2ijf∇kf+

1

2

(
∇if δkj +∇jf δki −g∇kf gij

)
.

Proof of Lemma 1.13

We firstly recall the Codazzi equation for the second fundamental form (see [19, p. 250] for a
proof):

g∇kAij =g ∇jAik (A.2)

Equation (A.2) however holds for the Levi-Civita connection g∇ taken with respect to the
metric g, while we need to find a formula for the σ connection ∇. So we firstly expand g∇A:

g∇kAij = DkAij +g Γ iklAlj −g Γ lkjAil

Now we plug this expression into (A.2), and use the expression (1.17) for the Christoffel
symbols obtaining

∇kAij = ∇jAik +
∇if

1+ |∇f|2
(
∇2jlfAlk −∇2jkfAil

)
+
(
∇jf δil +∇l fδij −g∇if gjl

)
Alk+

−
(
∇kf δil +∇lf δik −g∇if gkl

)
Alj.

We now notice that ∇2jlfAlk = ∇2klfAlj. Expanding the term in fact we have

∇2jlfAlk =
e−f∇2jlf
1+ |∇f|2

(
δlk −∇l∇kf+

1

1+ |∇f|2
∇2f[∇f]j∇lf

)
=

e−f

1+ |∇f|2

(
∇2jkf−

(
∇2f∇2f

)
jk

+
∇2f[∇f]j
1+ |∇f|2

∇2f[∇f]k
)

=
e−f

1+ |∇f|2

(
∇2jkf−

(
∇2f∇2f

)
kj

+
∇2f[∇f]k
1+ |∇f|2

∇2f[∇f]j
)
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= ∇2klfAlj

This allows us to simplify the equation, obtaining

∇kAij = ∇jAik +
(
∇jf δil +∇l fδij

)
Alk −

(
∇kf δil +∇lf δik

)
Alj

We contract the indices i and j:

∇kAii = ∇iAik +
(
∇if δil +∇l fδii

)
Alk −

(
∇kf δil +∇lf δik

)
Ali

= ∇iAik +nAlk∇lf−Aii∇kf

Finally we complete the proof. Indeed we write

Aij = Å
i
j +

1

n
All δ

i
j = Å

i
j +Hδ

i
j

ith this expression we obtain

(n− 1)∇kH = ∇iÅik +nÅlk∇lf

The thesis follows dividing by n− 1.

Anisotropic computations

Proof of Lemma 3.9. Let x be in Σ, and let { z1, . . . zn } be a frame for TxW. We compute the
differential dψ in these coordinates, obtaining

∇iψ = zi +∇iuν+ u∇iν. (A.3)

We use A.3 to compute the metric g.

gij = 〈∇iψ, ∇jψ〉 = 〈zi +∇iuν+ u∇iν, zj +∇juν+ u∇jν〉
= ωij + 2uAij +∇iu∇ju+ u2 〈∇iν, ∇jν〉︸ ︷︷ ︸

=AkiAkj

.

Now we search for a vector V = ν+aizi which satisfies the condition 〈V,∇jψ〉 = 0 for every
j = 1, . . . , n and we will recover νΣ = V

|V |
. We compute

0 = 〈νΣ, ∇jψ〉 = 〈ν+ aizi, zj +∇juν+ u∇jν〉 = ∇ju+ (ω+ uA)ijai.

Normalising, we obtain the expression for νΣ, as desired.

νΣ =
ν− (ω+ uA)−1[∇u]
|ν− (ω+Ah)−1[∇u]|

.

Now we compute the approximated formula (3.15). Notice that, using the C0 smallness of u
we obtain

νΣ =
ν−∇u√

1+ |(Id+uh)−1[∇u]|2
+R, (A.4)
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where R is a combination of product of u and ∇u. We use this expression to compute AΣ.

AΣij = 〈∇iνΣ, ∇jψ〉

=
〈∇iν+∇i∇u, zj + u∇jν+∇juν〉+ 〈∇iR, ∇jψ〉√

1+ |(Id+uA)−1[∇u]|2

=
Aij −∇2iju+ uA2ij − u〈∇i(∇u), ∇jν〉+A[∇u]i∇ju+ 〈∇iR, ∇jψ〉√

1+ |(Id+uA)−1[∇u]|2
, (A.5)

where in (A.5) every element in ∇R must be either a product of ∇u and ∇u or a product of
u and ∇2u, and every element is controlled by constants depending only on W. Therefore,
since u is small in the C0-norm we can absorb the products of u and ∇2u into ∇2u. Since Σ
is convex, we know that 0 6 AΣ, we easily obtain (3.16).

a.2 oscillation propositions

Proof of Lemmas 1.14, 2.12, 3.10

We recall the equations we are going to study.

∇u = div f + f[h], (A.6)

∇ Scal =
2n

n− 2
div R̊ic, (A.7)

∇HF = divAF. (A.8)

The first equation takes place in the round sphere Sn, the other two are studied in a closed
hypersurface that satisfies condition a) or b ′) as in Proposition 0.1. These equations present
clear similarities, since they are all variations of the equation

∇u = div f

in a closed manifold. In all the three cases an immediate but naive covering argument may
show the existence of a number λ such that

‖u − λ‖Lp(M) 6 C(M)‖f‖Lp(M). (A.9)

The problem in such argument is that we do not only have to obtain an estimate, but also to
keep an eye on the constant C, which in our case has to depend only on general parameters.
We are going to show an improved estimate which is basically (A.9), but gives a better control
on the bounding constant. The technique we are going to use has been used and developed
in [41], where the author deals with the isotropic version of equation (A.8). Considered the
massive use we are making of this type of estimates and ideas throughout the thesis, we
have decided to report the proof. We split it into the following steps.

• We show by direct computation in graph parametrisation how the three equations can
be written as particular cases of a more general proposition.

• We obtain a local estimate of our desired inequality, with the bounding constant
depending on determined parameters.
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• We show how to make the local estimate global without losing the information on the
bounding constant.

Let us start the proof.

Unifying the equations.

We recall Lemma 4.6:

Lemma A.1. Let M = Graph(u, Bn) be a smooth graph. Then the following formulas hold.

gij = δij + ∂iu∂ju (A.10)

gij = δij −
∂iu∂ju

1+ |∂u|2
(A.11)

dVg =
√
1+ |∂u|2 dx (A.12)

gΓ
k
ik = vkAij, where v =

∂u√
1+ |∂u|2

. (A.13)

We compute the divergence term of equations (A.6), (A.7), (A.8) in graph parametrisation,
and notice how this does not depend on Christoffel symbols.

(A.6) Let f be a (1, 1)-tensor, fij = σ
ikfkj, where fij is a symmetric tensor. By formula (A.13)

and equality Aij = σij for the sphere we obtain

div fk = ∇ifik = ∂if
i
k − Γ

i
il f
l
k − Γ

l
ik f

i
l = ∂if

i
k − v

i σil f
l
k − v

lσikf
i
l

= ∂if
i
k − v

l(flk − fkl) = ∂if
i
k.

(A.7) We compute the divergence term in equation (A.7). Firstly we compute the divergence
of the Ricci tensor.

∇i Ricik = ∂i Ricik+Γ
i
ip Ricpk −Γ

p
ik Ricip = ∂i Ricik+v

iAip Ricpk −v
pAik Ricip

= ∂i Ricik+v
iAip

(
Hh

p
k −A

p
qA

q
k

)
− vpAik

(
Hhip −A

i
qA

q
p

)
= ∂i Ricik+H

(
viAipA

p
k − v

pAikA
i
p

)︸ ︷︷ ︸
=viAipA

p
k−v

iApkA
p
i=0

+
(
vpAikA

i
qh
q
p − v

iAipA
p
qA

q
k

)︸ ︷︷ ︸
=vp(AikAiqA

q
p−ApqA

q
i h

i
k)=0

= ∂i Ricik .

Now we write R̊ic
i
j = Ricij −

Scal
n δ

i
j, and notice that δ is a symmetric tensor. The

computation of it is identical to the previous one, and we are done.

(A.8) Firstly, we need to prove that equation (A.8) holds. This follows from the computation
below. Here we denote (AF)

i
j = A

i
j for the anisotropic second fundamental form and

A = hij for the isotropic one, with a little abuse of notation.

divgAk = ∇iAik = ∇i
(
Sip
∣∣
ν
h
p
k

)
= ∇i

(
Sip
∣∣
ν

)
h
p
k + S

i
p

∣∣
ν
∇ihpk

= DqS
i
p

∣∣
ν
h
q
i h
p
k + S

i
p

∣∣
ν
∇ihpk = DpS

i
q

∣∣
ν
h
q
i h
p
k + S

i
p

∣∣
ν
∇phik
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= ∇k
(
Sip
∣∣
ν
h
p
i

)
= ∇kHF.

Now we notice how also the last divergence term can be written as a flat divergence.
We find

divgAk = ∇iAik = ∂iA
i
k + Γ

i
ipA

p
k − Γ

p
ikA

i
p = ∂iA

i
k + v

ihipA
p
k − v

phikA
i
p

= ∂iA
i
k + v

ihipS
p
qh
q
k − v

phikS
q
ph
i
q = ∂iA

i
k + v

iSpq
(
hiphqk − hpkhqi

)
= ∂iA

i
k + v

ihiphqk(S
pq − Sqp) = ∂iS

i
k.

Lastly we write in graph chart ∇f = ∂f, since at the first order the Levi-Civita coincides with
the classical derivations. These computations show how we have reduced the three problems
to the following lemma:

Lemma : Let M ⊂ Rn+1 be a closed hypersurface. Assume Σ has fixed volume V and satisfies
the conclusions of Lemma 0.2, i.e. admits two numbers L and R such that around every
q ∈ Σ we can find a chart defined on the ball BnR , which is the graph of a smooth,
L-Lipschitz function uq. Assume there are u : M −→ R, f ∈ Γ(T∗M⊗ T∗M) that satisfy
a differential relation which in every graph parametrisation at every point admits the
following form:

∂ku = ∂if
i
k + T [f]k, in BR. (A.14)

Here T is a linear operator satisfying |T [f]| 6 C|f| and C a universal constant. Then
there exists a λ ∈ R, such that the following estimate holds.

‖u − λ‖Lp(M) 6 C(n, p, V, R, L)‖f‖Lp(M).

Notice that in all the cases the manifold M satisfies condition a) or b ′) as in Proposition 0.1,
and thus it allows Lemma 0.2 and Lemma 0.3 to hold. These will be crucial in the proof. We
now prove the lemma..

Obtaining local estimates.

We begin by working in the graph, and write u = v + w, with v and w satisfying the
conditions:∆δv = ∂k∂if

i
k

v|∂BR
= u|∂BR

,

and ∆δw = ∂kT [f]k

w|∂BR
= 0,

where ∆δ is the flat laplacian. The estimate for the first systems follows by applying the
classic Calderon-Zygmund theorem (See [41, Prop. 1.11] for a detailed proof in this particular
case). We find a number λ such that

‖v − λ‖Lp(BR/2)
6 C(n, p)‖f‖Lp(BR)
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The second system is well known. In [20] the following inequality is shown:

‖w‖Lp(BR/2)
6 C(n, p)‖T [f]‖Lp(BR) 6 C0‖f‖Lp(BR)

The last constant C0 depends on n, p and the control constant associated to the operator T .
This does not appear in equations (A.7) and (A.8), it appears only in (A.6) and depends on
n, p and ‖h‖C0 . We patch together the two estimates, and obtain

‖u − λ‖Lp(BR/2)
6 C0‖f‖Lp(BR)

. (A.15)

Estimate (A.15) is almost what we want. It is indeed a local estimate, but it concerns all
Euclidean quantities. We show how to swap Euclidean measures with manifold metrics, and
how to substitute Euclidean balls with geodesic balls.

The first follows easily from equation (A.12) and Lemma (0.2). Since Lip(u) 6 L, we obtain
indeed

dx 6
√
1+ |∂u|2 dx = dVg 6

√
1+ L2 dx.

Thus the measures are equivalent, and the control constants depend only on L. The same
constant L control the switch from the Euclidean metric δ to the metric g.

Now Lemma 0.3 allows us to pass from Euclidean to geodesic balls and grants our
privileged covering of balls. In particular, we obtain the existence of radius R such that

min
λ∈R
‖u − λ‖Lp(B

g
r (q))

6 C(n, p, V, L, R)‖f‖Lp(M),

for every 0 < r 6 R.

Making the estimate global.

Now we make the estimate global. We follow the technique used in [41, p. 6-7] and prove
the following lemma.

Lemma A.2. Let M be a closed manifold, with fixed volume Voln(M) = V . Suppose u ∈ C∞(M)

has the following property. There is a radius ρ such that for every x ∈M the following local estimate
is satisfied:

‖u − λ(x)‖Lp(Br(x))
6 β, (A.16)

where λ(x) is a real number depending on x, r 6 2ρ and β does not depend on x. Then there exists
λ ∈ R such that

‖u − λ‖Lp(M) 6 C(n, ρ, V)β.

Proof. We choose a finite covering of balls { (Bj, λj) }
N
j=1 which satisfies the following prop-

erties. Every ball Bj has radius 2ρ, estimate (A.16) holds with λj, and for every j, k there
exists a ball of radius ρ contained in Bj ∩Bk.

Therefore, given two balls Bj and Bk whose intersection is non empty, we have:

|λj − λk| =
1

Voln(Bj ∩Bk)
1
p

‖λj − λk‖Lp(Bj∩Bk)
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=
1

Voln(Bj ∩Bk)
1
p

‖λj − u+ u− λk‖Lp(Bj∩Bk)

6
1

Voln(Bj ∩Bk)
1
p

(
‖u − λk‖Lp(Bj∩Bk)

+ ‖u − λk‖Lp(Bj∩Bk)

)
6

2β

Voln(Bj ∩Bk)
1
p

.

Using the properties of the covering we obtain

|λj − λk| 6 2Voln(Bρ)
− 1
pβ.

Define λmin := min16j6n λj and λmax := max16j6n λj. Consider a path joining the ball in
the cover with λmin to the one with λmax. Since this path can cross at most N different balls,
we obtain

|λmax − λmin| 6 2NVoln(Bρ)
− 1
pβ = C(n, p, ρ)β.

For every λmin 6 λ 6 λmax we have

‖u − λ‖Lpσ(Sn) 6
N∑
j=1

‖u − λ‖Lpσ(Bj)
6

N∑
j=1

‖u − λj + λj − λ‖Lpσ(Bj)

6
N∑
j=1

‖u − λj‖Lpσ(Bj)
+ |λj − λ|Voln(Bj)

− 1
p

6
N∑
j=1

‖u − λj‖Lpσ(Bj)
+ |λmax − λmin|Voln(Bj)

− 1
p 6 C2(n, p, ρ)β

and the proof of Lemma A.2 is completed.

a.3 sparse results

Proof of Proposition 3.15. Let c ∈ Rn+1 be given. We easily obtain

‖u−ϕu‖W2,p 6 ‖u−ϕc‖W2,p + ‖ϕc −ϕu‖W2,p

6 ‖u−ϕc‖W2,p +

∥∥∥∥∥
n+1∑
i=1

〈u−ϕu, ϕi〉L2ϕi

∥∥∥∥∥
W2,p

6 ‖u−ϕc‖W2,p +

n+1∑
i=1

‖〈u−ϕc, ϕi〉L2ϕi‖W2,p

6 ‖u−ϕc‖W2,p + ‖u−ϕc‖L1
n+1∑
i=1

‖ϕi‖L1‖ϕi‖W2,p

6 C(n, p, F)‖u−ϕu‖W2,p

and since c is arbitrary, we obtain the thesis.
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Proof of Proposition 3.11. As already noticed in the proof, the first inequality in (3.18) is an
easy consequence of the fact that AF is obtained multiplying A by the positive definite matrix
SF. Then we obtain

|A| 6
∣∣∣(SF)−1∣∣∣|AF| 6 C(n, F)|AF|.

Thus, we focus on the second inequality. Firstly, we notice that a closed, convex hypersurface
has non-negative anisotropic principal curvatures. Although this result seems to be known,
we did not find its proof in the literature and we report it for the reader’s convenience.

Lemma A.3. Let Σ be a closed hypersurface, and let { κ1, . . . κn } be the spectrum of AF. If Σ is
convex, then κi > 0 for every i = 1, . . . , n.

Proof. We recall that (AF)ij = (SF)
i
kA
k
j , where SF is positive definite by hypothesis and A is

non-negative definite by convexity (see [41, Prop. 3.2]).
Let (SF)

1
2 be the square root of SF. By standard linear algebra, (SF)

1
2 exists and it is the

unique symmetric matrix M with positive eigenvalues such that M2 = SF. Then we find

SFA = (SF)
1
2

(
(SF)

1
2A(SF)

1
2

)
(SF)

− 1
2 .

By this simple decomposition, we deduce that SFA has the same eigenvalues of (SF)
1
2A(SF)

1
2 .

This completes the proof: indeed, for every vector v ∈ Rn, since A is non-negative definite,
we can compute(

(SF)
1
2A(SF)

1
2 [v], v

)
=
(
A(SF)

1
2 [v], (SF)

1
2 [v]
)
> 0,

which is the thesis.

If we look carefully at the proof of Lemma A.3, we can also notice that we have found the
existence of a constant c1 = c1(n, p, F) such that

‖A‖Lp(Σ) 6 c1‖AF‖Lp(Σ).

In order to conclude the proof of (3.11), we just have to focus on showing the remaining
inequality

‖AF‖Lp(Σ) 6 c2
(
1+ ‖ÅF‖Lp(Σ)

)
. (A.17)

This follows by generalizing the isotropic result shown in [41]. Firstly, we notice that, for
every couple of indices (i, j), we have:(ˆ

Σ

|κi − κj|
p

) 1
p

6

(ˆ
Σ

|κi −HF|
p

) 1
p

+

(ˆ
Σ

|κj −HF|
p

) 1
p

6 c(n, p)‖ÅF‖p.



A.3 sparse results 91

Consequently, we can estimate:

‖AF‖Lp(Σ) 6

ˆ
Σ

(
n∑
i=1

κ2i

)p
2

 1
p

6

(ˆ
Σ

(
n∑
i=1

κi

)p) 1
p

=

(ˆ
Σ

(
nκ1 +

n∑
i=2

(κi − κ1)

)p) 1
p

6 c(n, p)

((ˆ
Σ

κ
p
1

) 1
p

+ ‖ÅF‖p

)

6 c(n, p)

((ˆ
Σ

κn1

) 1
n

+ ‖ÅF‖p

)
6 c(n, p)

((ˆ
Σ

detAF

) 1
n

+ ‖ÅF‖p

)
.

(A.18)

We observe furthermore that the integral of the determinant of AF does not depend on Σ
but only on n, p and F. Indeed, by convexity of Σ (see [47, eq. (2.5.29), p.112]) we find

ˆ
Σ

detAF =
ˆ
Σ

detSF|ν detdν =

ˆ
Sn

detSF = c(n, p, F).

Plugging the previous equality in (A.18), we deduce (A.17) and conclude the proof.
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