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A B S T R A C T

This thesis is dedicated to the study of a dichotomy concerning isometric embeddings
of Riemannian manifolds into Euclidean space.

The classical question about the existence of such embeddings was answered af-
firmatively by J. Nash in the famous Nash–Kuiper theorem, revolutionary not only
because of the mathematics invented for its proof but also due to its countertintuitive
nature. It demonstrates a type of flexibility of the space of solutions to a formally
overdetermined system of nonlinear partial differential equations. In particular, iso-
metric embeddings are highly non-unique, even in low co-dimension. Contrasting
this flexibility is the rigidity of closed convex surfaces. Classical results in differential
geometry show that sufficiently regular isometric embeddings of positively curved
surfaces are often uniquely determined. A particularly striking illustration of these
dramatically different behaviours is the case of the standard 2-dimensional sphere S2:
by a result due to Cohn-Vossen in 1927, the only isometric embbedding of S2 into R3 is
(upto a translation and rotation) the standard inclusion. Yet, as a consequence of the
Nash–Kuiper theorem, there exist isometric embeddings of S2 into arbitrarily small
balls.

This apparent paradox is explained by a closer look at the regularity properties of
the embeddings constructed in the Nash–Kuiper theorem. They are only C1, whereas
the surfaces considered in Cohn-Vossen’s rigidity theorem are assumed to be at least
C2. Naturally, this leads to the question of whether there is a regularity threshold in
between C1 and C2 which distinguishes these behaviours.

The first results in this direction were obtained by Yu. F. Borisov, who in the late
fifties proved a rigidity theorem for C1,2/3+ε isometric embeddings. He also announced
a version of the Nash–Kuiper theorem in C1,α for α < 1/(1 + n(n + 1)) which was then
rigorously proved fifty years later by S. Conti, C. De Lellis and L. Székelyhidi Jr. In
a recent note, M. Gromov conjectures C1,1/2 to be a possible threshold distinguishing
flexible isometric embeddings from rigid ones. It is the aim of this thesis to make
progress on this question, which we will refer to as the Borisov–Gromov problem.

In Chapter 3 we present an improvement of Borisov’s flexibility exponent in the
special case of 2-dimensional disks. We show that in this case it can be raised from 1/7 to
1/5. We then turn to rigidity and describe how a short proof of Borisov’s rigidity result
given by Conti, De Lellis and Székelyhidi leads to questions about the integrability
properties and the sign of the Brouwer degree, which we adress in Chapters 4 and 5

respectively. Inspired by a striking formal analogy to the famous Onsager conjecture in
fluid dynamics, we then propose a relaxed version of the problem, and show in Chapter
6 that the Hölder space C1,1/2 is critical in a suitable sense. We prove in particular
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that for α > 1
2 , the Levi-Civita connection of any isometric embedding is induced

by the Euclidean connection. On the other hand, for any α < 1/2, we construct C1,α

isometric embeddings of portions of the standard 2-dimensional sphere for which this
property fails. Lastly, in the final Chapter 7 we introduce the notion of extrinsic parallel
translation, and show that it coincides with the usual intrinsic parallel translation
whenever α > 1

2 (
√

5− 1).
Except for the contents of Chapter 7, all results in this thesis are either published or

submitted for publication.

Z U S A M M E N FA S S U N G

In der vorliegenden Dissertation untersuchen wir eine Dichotomie, welche isometrische
Einbettungen von Riemannschen Mannigfaltigkeiten in den Euklidschen Raum betrifft.

Die klassische Frage nach der Existenz solcher Einbettungen wurde im wohlbekann-
ten Nash–Kuiper Theorem von J. Nash bejahend beantwortet. Dieses Theorem war
nicht nur aufgrund der mathematischen Methoden revolutionär, welche für den Beweis
entwickelt wurden, sondern ebenso wegen seiner kontraintuitiven Natur: Es garantiert
eine Art Flexibilität des Lösungsraumes eines formell überdeterminierten Systems von
nichtlinearen partiellen Differentialgleichungen. Insbesondere sind isometrische Ein-
bettungen nicht eindeutig bestimmt, sogar in niedriger Kodimension. Im Kontrast zu
dieser Flexibilität steht die Starrheit von geschlossenen konvexen Flächen. Klassische
Resultate aus der Differentialgeometrie zeigen, dass genügend reguläre isometrische
Einbettungen von positiv gekrümmten Flächen oftmals eindeutig bestimmt sind. Eine
besonders bemerkenswerte Illustration dieses Verhaltens liefert die 2-dimensionale
Einheitssphäre S2: Ein Resultat von Cohn-Vossen aus 1927 impliziert, dass die Inklu-
sion bis auf eine Translation oder Rotation die einzige isometrische Einbettung von
S2 in R3 ist. Andererseits folgt aus dem Nash–Kuiper Theorem, dass es isometrische
Einbettungen von S2 in beliebig kleine Kugeln des Euklischen Raums gibt.

Dieses scheinbare Paradoxon löst sich auf, wenn man die Regularitätseigenschaften
betrachtet. Die Einbettungen, welche im Nash–Kuiper Theorem konstruiert werden,
sind bloss einmal stetig differenzierbar (also C1), wohingegen der Starrheitssatz von
Cohn-Vossen die zweifach stetige Differenzierbarkeit (d.h. C2) der Flächen voraussetzt.
Dies wirft die Frage auf, ob es eine Regularitätsgrenze zwischen C1 und C2 gibt, welche
diese verschiedenen Verhaltensweisen trennt.

Die ersten Ergebnisse in diese Richtung gehen auf Yu. F. Borisov zurück, welcher in
den späten Fünfzigerjahren einen Starrheitssatz für C1,2/3+ε isometrische Einbettungen
bewies und eine Version des Nash–Kuiper Theorems in C1,α für α < 1/(1 + n(n +

1)) ankündigte. Fünfzig Jahre später wurde diese von S. Conti, C. De Lellis und
L. Székelyhidi Jr. rigoros bewiesen. In einem kürzlich erschienen Artikel vermutet
M. Gromov, dass C1,1/2 eine mögliche Regularitätsgrenze im Problem darstellt. Ziel
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der vorliegenden Arbeit ist es, bezüglich dieser Fragestellung Fortschritte zu machen,
welche wir als Borisov-Gromov Problem bezeichnen werden.

Kapitel 3 beinhaltet eine Verbesserung von Borisovs Flexibilitätsexponenten: Wir
zeigen, dass man den Exponenten im Spezialfall der 2-dimensionalen Kreisscheibe auf
1/5 erhöhen kann. Danach wenden wir uns der Starrheit zu und beschreiben, wie ein
kurzer Beweis von Borisovs Starrheitssatz von Conti, De Lellis und Székelyhidi Jr. zu
Fragen über die Integrabilitätseigenschaften und das Vorzeichen des Brouwerschen
Abbildungsgrades führt, welche wir dann in den Kapiteln 4 respektive 5 behandeln.
Von einer bemerkenswerten formellen Analogie des Problems zur wohlbekannten
Onsager Vermutung in der Fluiddynamik inspiriert, schlagen wir eine abgeschwächte
Problemstellung vor und zeigen in Kapitel 6, dass der Hölderraum C1,1/2 in folgendem
Sinne kritisch ist: Wir beweisen insbesondere, dass der Levi-Civita Zusammenhang
einer isometrischen Einbettung u ∈ C1,α für α > 1

2 vom Euklidschen Zusammenhang
induziert wird, wohingegen wir für alle α < 1

2 isometrische C1,α Einbettungen von
Teilen der 2-dimensionalen Einheitssphäre konstruieren, welche dieser Eigenschaft
nicht genügen. Schlussendlich führen wir im letzten Kapitel 7 einen extrinsischen par-
allelen Transport ein, und zeigen, dass er mit dem klassischen (intrinsischen) parallelen
Transport übereinstimmt, sofern α > 1

2 (
√

5− 1).
Alle Resultate dieser Dissertation sind, mit Ausnahme des Kapitels 7, entweder

bereits publiziert, oder für eine Veröffentlichung eingereicht.
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1
I N T R O D U C T I O N

In his habilitation lecture, Über die Hypothesen, welche der Geometrie zu Grunde liegen,
in 1854, B. Riemann introduced the concept of a Riemannian manifold, an abstract
manifold with an intrinsic metric structure. This contrasted the extrinsic approach of the
Gaussian theory of surfaces, which studied curves and surfaces in 3-dimensional space
or submanifolds of Euclidean space of higher dimension with their metrics induced
from the ambient space, and led to a question of great conceptual importance: are
Riemannian manifolds and submanifolds of Euclidean space the same? In other words,
can every Riemannian manifold (M, g) be realized as a submanifold of some Euclidean
space Rm of appropriate dimension m?

To answer this question affirmatively one has to find an isometric embedding of
(M, g) into Rm, i.e., a diffeomorphism u : M→ u(M) ⊂ Rm satisfying

g = u]e , (1.1)

where u]e denotes the pullback of the Euclidean metric e on Rm through u. From (1.1),
one obtains, introducing local coordinates, the system

gij =
m

∑
k=1

∂uk

∂xi

∂uk

∂xj
=: ∂iu · ∂ju (1.2)

of n(n + 1)/2 partial differential equations in the unknowns u = (u1, . . . , um). Here, gij
are the components of the (symmetric) metric tensor g in local coordinates.

Already in 1873, L. Schläfli conjectured the existence of local isometric embeddings
(and hence the local solvability of the system (1.2)) if m = n(n + 1)/2. The conjec-
ture was proved in the analytic setting by Janet [40], Cartan [14] and Burstin [12].1

Remarkably, in the smooth setting (i.e., C∞) it is still open2, even for n = 2.

The global problem seems even more difficult, and historically the first to tackle it
was H. Weyl, who in 1916 stated what has become known as the Weyl problem.

Weyl’s problem [57]: Every metric on the unit sphere with positive Gaussian curvature
can be uniquely (modulo rigid motions) realized as a convex3 surface in R3.

1 Janet only outlined a proof, which was then rigorously carried out by Burstin. Cartan, on the other hand,
gave a completely different, independent proof.

2 Gromov and Rohklin [33] and (independently) Greene [30] proved the local solvability in the smooth
category if m = n(n + 1)/2 + n. In the special case n = 2, there are partial results (see [34] for a good
survey), but the general case is still open.

3 A 2-dimensional submanifold of R3 is called convex if it lies on one side of each of its tangent planes.

1



2 introduction

In a more modern language, he wanted to show the existence and uniqueness of
sufficiently smooth global solutions to the system (1.2) in the special case of (M, g)
being an "ovaloid".4

Weyl proposed a strategy to tackle the problem and realized it in the case where the
metric is close enough to the standard metric on the sphere. Finally, the following two
theorems gave a complete solution to the problem.5

Theorem 1.1 (Weyl’s Problem: Existence). For any metric g ∈ C2 on the sphere S2 with
positive Gaussian curvature, there exists an isometric embedding u such that u(S2) is a convex
surface in R3.

Theorem 1.2 (Weyl’s Problem: Rigidity). Assume g ∈ C2 is a metric on the sphere with positive
Gaussian curvature and u ∈ C2 is an isometric embedding. Then u is uniquely determined up
to a rigid motion.

Theorem 1.1 provides a solution of the system (1.2) in the formally determined case
m = 3 = n(n + 1)/2. In the general case, in particular if the system is overdetermined,
i.e., m < n(n + 1)/2, there is seemingly little hope to solve the system. Yet, surprisingly,
in 1954, J. Nash showed that plenty of global solutions exist, and that obstructions to
the existence are of purely topological nature. To state his theorem we recall that a short
embedding u : M→ Rm is an embedding such that

gij − ∂iu · ∂ju ≥ 0 (1.3)

in the sense of quadratic forms. The famous Nash–Kuiper theorem is then the following.

Theorem 1.3 (Nash [45], Kuiper [42]6). Let (M, g) be a compact7 n-dimensional Riemannian
manifold with continuous metric g and let m ≥ n + 1. Then any short embedding u : M→ Rm

can be uniformly approximated by isometric embeddings of class C1.

4 Weyl’s interest in this special case stemmed from the uniqueness part of the problem: by an (already then)
classical result of A. L. Cauchy from 1813, isometric closed convex polyhedra in R3 are congruent, but at
the time, little was known for more general surfaces.

5 Theorem 1.1 was proved for analytic metrics by Lewy [43] and a few years later for g ∈ Ck for k ≥ 4 by
Nirenberg [47] and for k = 3, 2 by Heinz [35] (the resulting maps u are Ck−1,α for any α < 1). The proofs
followed Weyl’s original approach. On the other hand, Alexandrov [1] investigated so-called arbitrary
convex surfaces and showed that any metric on the sphere with positive Gaussian curvature can be realized
by such a convex surface, although it was unclear if the resulting surface had the right regularity to be
a solution of the problem. This was remedied by Pogorelov, who in [50] proved a suitable regularity
theorem, thus giving an alternative proof of Theorem 1.1. A version of Pogorelov’s regularity theorem in
Hölder spaces was obtained by Sabitov [52]. From it one can conclude Theorem 1.1 with the mapping
properties g ∈ Ck,α ⇒ u ∈ Ck,α for k ≥ 2, 0 < α < 1.
Theorem 1.2 is due to Herglotz [36], although an analytic version was already proved by Cohn-Vossen
[15]. Moreover, it can also be deduced from a more general result by Porgorelov [51] stating that isometric
closed convex surfaces are congruent.

6 Nash proved Theorem 1.3 for m ≥ n + 2, and indicated that, with "[...] a less easily controlled perturbation
process", one could also show the case m = n + 1. This was then carried out by Kuiper.

7 Nash’s theorem is not limited to compact manifolds, but we will restrict our attention to this case.



1.1 the borisov–gromov problem 3

By Whitney’s embedding theorem, an n-dimensional manifold M can always be
embedded in R2n, and if M is compact one can simply "shrink" this embedding by
multiplying it with a small number to find a short embedding. Thus, Theorem 1.3 is
not only an existence theorem; it also shows that the set of solutions is huge.

Strikingly, for n ≥ 3 and m = n + 1 the system (1.2) is formally heavily overdeter-
mined, and hence the flexibility of the solutions is very counter-intuitive. In fact, it took
several years until it was realized that this behaviour is caused by the low regularity of
the solutions constructed: building upon the new ideas introduced by Nash in the proof
of Theorem 1.3, M. Gromov in [31] formulated the framework of convex integration and
the so-called h-principle, linking the flexibility of isometric embeddings obtained above
to a number of other counter-intuitive phenomena in geometry (cf. also Section 1.2).

In the case of isometric embeddings, the flexibility becomes ever so striking when
directly contrasted with the aforementioned rigidity of the Weyl problem, leading to a
dichotomy which lies at the heart of this thesis.

1.1 the borisov–gromov problem

To illustrate this dichotomy, consider the unit sphere S2 of R3 with the standard metric
induced by the inclusion ι : S2 ↪→ R3. Since S2 is compact, any small enough multiple
of ι is a short map. Therefore, by the Nash–Kuiper theorem, there exist C1 isometric
embeddings of (S2, ι]e) into arbitrarily small balls Bε ⊂ R3. Yet, by the rigidity theorem
of the Weyl problem, in the C2 category there is (modulo rigid motions) just one
isometric embedding: the standard inclusion. Naturally, one is interested to know8 if
there is a regularity threshold, for example in the Hölder scale, dividing these two
drastically different types of behaviours. More precisely,

(B–G): Does there exist α0 ∈ ]0, 1[ such that

(i) if α > α0 and u ∈ C1,α is an isometric embedding of a 2-dimensional closed
Riemannian manifold with positive Gaussian curvature into R3, then u is uniquely
determined up to a rigid motion;

(ii) if α < α0, then the Nash–Kuiper theorem holds with C1 replaced by C1,α ?

It is the aim of this thesis to make progress on this question, which we will refer to as
the Borisov–Gromov problem.

The first to investigate isometric embeddings of class C1,α was Yu. F. Borisov, and
in the late fifties, building upon works of Pogorelov, he proved in the series of short
geometric articles [2]–[5] that the assumption u ∈ C2 in the rigidity Theorem 1.2 can
be replaced by u ∈ C1,α for α > 2

3 . Moreover, in [6] he claimed the validity of the
Nash–Kuiper theorem for analytic metrics in C1,α for α < 1/(1 + n(n + 1)), yet a proof

8 See, for example, question 27 in [58].



4 introduction

only appeared in [7] for the case of 2-dimensional disks and α < 1
13 . In [17], S. Conti,

C. De Lellis and L. Székelyhidi Jr. gave a proof of Borisov’s claims for C2 metrics.
They showed in particular9 that if g ∈ C2 is a metric on a compact n-dimensional
manifold M and u : M → Rn+1 is a short embedding, then it can be uniformly
approximated by isometric embeddings of class C1,α, where α < 1/(1 + n(n + 1)) in
case the manifold is diffeomorphic to an n-ball and α < 1/(1+ n(n+ 1)2) in the general
case (this decrepancy has been removed recently in a forthcoming work by W. Cao and
Székelyhidi Jr.). In addition, they give a very short proof of Borisov’s rigidity result,
which we will briefly comment on in Chapter 5. Hence, if it exists, 1/7 ≤ α0 ≤ 2/3.10

An improvement of Boriosov’s exponent was found in the author’s master’s thesis:
in the case where M is a 2-dimensional disk, we were able to raise the exponent from
1/7 to 1/5.

1.2 onsager’s conjecture : connection to the theory of turbulent

fluids

Recently, De Lellis and Székelyhidi Jr. discovered a surprising connection of the Borisov–
Gromov problem to the theory of turbulent fluids. Consider the incompressible Euler
equations, which describe the motion of a perfect incompressible fluid,{

∂tv + (v · ∇)v +∇p = 0

div v = 0,
(1.4)

where v = v(x, t) is the velocity and p = p(x, t) is the pressure. We will take the spatial
domain to be the flat 3-dimensional torus T3 = R3/(2πZ)3.

For classical periodic solutions (i.e., if v ∈ C1(T3 × I)) the total kinetic energy,

E(t) :=
1
2

∫
T3
|v(x, t)|2 dx ,

is conserved by the flow induced by (1.4), so that E(t) = E(0). However, for weak
solutions this may not be true. Indeed, one of the cornerstones of 3-dimensional
turbulence is so-called anomalous dissipation: it is an experimentally observed fact
that the rate of energy dissipation in the vanishing viscosity limit (more precisely the
infinite Reynolds number limit) stays above a certain non-zero constant.

Assuming that a turbulent fluid is represented by a solution of the incompressible
Navier–Stokes equations, in the vanishing viscosity limit one obtains the system (1.4).
Since classical solutions conserve the energy, in this (vaguely defined) limiting process
one expects to find weak solutions of the Euler equations. It was L. Onsager in 1949

[49] who first formulated the corresponding mathematical problem: is there a threshold

9 The results are in fact more general, and include the case of rough metrics g ∈ C0,β.
10 In [32], Gromov conjectures α0 = 1

2 .



1.3 the relaxed problem 5

between C0 and C1 regularity for energy conservation? Based on calculations in Fourier
space, he stated the following conjecture.

Conjecture 1.4. Consider periodic 3-dimensional weak solutions of the incompressible Euler
equations, where the velocity v satisfies the uniform Hölder condition

|v(x, t)− v(x′, t)| ≤ C|x− x′|θ , (1.5)

for constants C and θ independent of x, x′ and t.

(a) If θ > 1
3 , then the total kinetic energy of v is constant;

(b) For any θ < 1
3 there are v for which it is not constant.

Part (a) of the conjecture was fully resolved in [16] (see also the work [27]). On the
other hand, part (b) was settled only very recently in the work [39] by P. Isett. The latter
work concluded a series of partial results (cf. [8–11, 25, 38]), all started off by the work
[24]. In that work De Lellis and Székelyhidi Jr., inspired by the methods pioneered by
Nash in [45] in the isometric embedding problem, were able to introduce a new set of
techniques to produce irregular continuous solutions of the Euler equations.

1.3 the relaxed problem

Both from the rigidity and from the flexibility side, the current state of the art is still
far from reaching the conjectured threshold α0 = 1

2 in the Borisov–Gromov problem,
and despite the formal analogy between the two problems (and the similarities of
the respective techniques involved), the current approaches which led to the solution
of the Onsager conjecture do not seem to give new insight. That said, the Borisov–
Gromov problem is a bit more stringent than its counter-part in fluid dynamics: the
Euler equations come with an additional conservation law (the energy identity) which
is valid for all solutions above a certain regularity threshold and involves only as
many derivatives as there are in the equation. The rigidity of isometric embeddings,
however, is a stronger property in the sense that a closer analogue in the case of weak
solutions to the Euler equations would be their uniqueness. Moreover, it uses the Gauss
identity, where second derivatives of u are involved (whereas in the equation only first
derivatives appear).

It therefore seems sensible to consider a relaxed version of the Borisov–Gromov
problem aimed at finding suitable geometric identities (analogous to the energy identity)
which relate the intrinsic and extrinsic geometry of submanifolds, and showing that
they are satisfied by isometric embeddings above a certain regularity threshold while
producing convex integration solutions which violate them.

A geometric object well suited for this endeavor is the Levi-Civita connection. In-
trinsically defined, it can be related to the extrinsic world via the Gauss formula: for



6 introduction

(smooth) submanifolds of Euclidean space it coincides with the tangential connection
(i.e., the one induced by the Euclidean connection). The equality of these two objects
can be thought of as a weaker form of rigidity, and it can be made sense of in C1,α for
α > 1

2 , thus making a good candidate for defining the relaxed problem.
Closely connected with the Levi-Civita connection is the notion of parallel translation,

which provides another tool of measuring the intrinsic predictability of isometric
embeddings. It is possible to define an extrinsic notion of parallel translation by taking
a suitable limit of a discrete process consisting of a combination of parallel translation
with respect to the ambient connection and projections onto the tangent bundle. For
smooth embeddings these two notions agree, and, again, one hopes that this property
remains true for isometric embeddings in C1,α for α > α0.

1.4 results and outline of the thesis

The first part of this thesis is dedicated to the Borisov–Gromov problem. In Chapter 3

we include a slightly improved version of the author’s master’s thesis, namely the joint
work [22], where we prove the following thereom.

Theorem 1.5. Let g ∈ C2 be a metric on the closed unit disk D1 ⊂ R2 and δ > 0 arbirarily
small. Then any short embedding u : D1 → R3 can be uniformly approximated by isometric
embeddings of class C1,1/5−δ.

Hence, in the case of 2-dimensional disks, we are able to raise Borisov’s exponent
from 1/7 to 1/5.

We then turn to the rigidity part of the problem. The proof of Borisov’s rigidity result
given in [17] yields a different, much simpler approach to the problem and reveals an
interesting connection with the Brouwer degree, an object whose meaning for maps
in various regularity classes has been extensively studied. The key observation used
in this approach is that the C1,2/3+δ regularity is enough for the following change of
variables formula to hold:∫

V
f (N(x))κg(x) dArea(x) =

∫
S2

f (y)deg(N, V, y) dy . (1.6)

Here, N is the normal map of the embedding, deg(N, V, ·) is its Brouwer degree with
respect the compactly contained open set V ⊂⊂ M, f ∈ C∞

c (S2 \ N(∂V)) is a test
function and κg and dArea are the respective Gaussian curvature and volume element
of the manifold (M, g). Observe that (1.6) relates the Gaussian curvature of the manifold
and the normal map of the embedding. Therefore, it can be thought of as a surrogate,
or weak version, of Gauss’ theorem. As it turns out, this weak version is enough to
guarantee the rigidity of the embedding.

In particular, if one could show the validity of (1.6) for embeddings of class C1,1/2+δ,
then one would resolve the rigidity part of the Borisov–Gromov problem with the
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conjectured exponent α0 = 1
2 . This leads us to study the integrability properties of

the Brouwer degree of Hölder continuous functions. Based on the work [48], we show
in [20] that if α is big enough, the Brouwer degree of a function N ∈ C0,α has some
fractional Sobolev regularity. We present this result in Chapter 4. We do not know
whether this higher integrability property can be used as an advantage in the Borisov–
Gromov problem. However, as a first step towards the fractional Sobolev regularity
we give a short, elementary proof of the fact that for large enough α, the degree of
N ∈ C0,α is an L1 function (see Theorem 4.5).

The latter result is needed on the way towards a rigidity theorem in C1,1/2+δ. Indeed,
as a consequence of Theorem 4.5, if the embedding is in C1,1/2+δ, both sides of (1.6)
make sense also for the constant function f ≡ 1, and it is not difficult to show that the
equality remains true if V is a Lipschitz set. Ideally one would like to show that this
(weaker) change of variables formula is enough to conclude the rigidity, which leads to
the following conjecture about the sign of the Brouwer degree.

Conjecture 1.6. Let Ω ⊂ R2 be a smooth, bounded open set and let N : Ω→ R2 be C0,α with
α > 1

2 and have the property that for all Lipschitz open sets A ⊂ Ω,∫
R2

deg(N, A, y) dy ≥ 0 .

Then deg(N, A, y) ≥ 0 for all such A and all y ∈ R2 \ N(∂A).

If this conjecture were true, one could use the arguments of [17] to conclude a rigidity
theorem in C1,1/2+δ. In Chapter 5 we show that the conclusion of Conjecture 1.6 is
correct when α > 2

3 .

In the second part of this thesis we consider the relaxed problem. Chapter 6 represents
the work [21], where we show that the Hölder exponent α0 = 1

2 is indeed critical in
the weak sense explained above: if α > 1

2 , the equality between the Levi-Civita and the
tangential connection remains true for isometric embeddings u ∈ C1,α, whereas for any
α < 1

2 we construct isometric embeddings u ∈ C1,α of portions of the 2-sphere which
violate it (see Theorem 6.2).

Lastly, in Chapter 7 we define an extrinsic parallel translation and show that it
preserves the lengths of vectors for α > 1

2 and, moreover, that it coincides with the
usual (intrinsic) parallel translation whenever u ∈ C1,α for α > 1

2 (
√

5− 1).





2
P R E L I M I N A R I E S

In this chapter, we fix the most important notation and gather some preliminary results
which are needed across all chapters.

2.1 notation

We will denote the Euclidean norm on Rn by | · | and the Euclidean scalarproduct
between two vectors X, Y ∈ Rn by 〈X, Y〉 or X · Y. For a set A ⊂ Rn we write Å, A,
∂A for its topological interior, closure and boundary respectively, except for Chapter 5,
where we will use int(A) instead of Å due to notational convenience. The open ball of
radius r > 0 and center x0 ∈ Rn is denoted by Br(x0) and the corresponding sphere
by Sn−1

r (x0) = ∂Br(x0). If the center x0 corresponds to the origin we will often simply
write Br and Sn−1

r , and in the case of the sphere we will omit the radius r if r = 1. The
space of symmetric n× n matrices with real entries will be denoted by Symn and the
subset of positive definite, symmetric matrices by Sym+

n . We write Aᵀ for the transpose
of a matrix A, and it will be convenient to use the notation sym(A) = 1

2 (A + Aᵀ).
For an open set Ω ⊂ Rn, C0(Ω, Rm) stands for the space of continuous functions

u : Ω → Rm, and for m = 1, we simply write C0(Ω). We use C0(Ω, Rm) to denote
the subset of functions u ∈ C0(Ω, Rm) which are uniformly continuous. For a positive
integer k, we introduce the usual spaces

Ck(Ω, Rm) = {u : Ω→ R : u is k-times continuously differentiable} ,

Ck(Ω, Rm) = {u ∈ Ck(Ω, Rm) : Dβu is uniformly continuous for every |β| ≤ k} ,

where β = (β1, . . . , βn) is a multi-index and |β| = ∑i βi, and where, again, we omit the
target space from the notation in case m = 1.

2.2 hölder spaces and interpolation inequalities

In the following k ∈N, α ∈]0, 1][, and β is a multi-index. The maps f can be real-valued,
vector-valued, matrix-valued or generally tensor-valued. In all these cases we endow
the targets with the standard Euclidean norms | · |. We introduce the usual Hölder

9
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norms as follows. First of all, the supremum norm is denoted by ‖ f ‖0 := sup | f |. We
define the Hölder seminorms as

[ f ]k = max
|β|=k
‖Dβ f ‖0 ,

[ f ]k+α = max
|β|=k

sup
x 6=y

|Dβ f (x)− Dβ f (y)|
|x− y|α .

The Hölder norms are then given by

‖ f ‖k =
k

∑
j=0

[ f ]j ,

‖ f ‖k+α = ‖ f ‖k + [ f ]k+α.

Sometimes we also use the notation ‖ · ‖k,α. If we want to put emphasis on the set Ω
where the norm is intended, we write ‖ · ‖k+α,Ω or also ‖ · ‖Ck,α(Ω). For an open set
Ω ⊂ Rn the usual Hölder spaces are given by

Ck,α(Ω, Rm) = {u ∈ Ck (Ω, Rm) : ‖u‖k,α < ∞} .

We then recall the standard “Leibniz rule” to estimate norms of products

[ f g]r ≤ C
(
[ f ]r‖g‖0 + ‖ f ‖0[g]r

)
for any 1 ≥ r ≥ 0 (2.1)

and the interpolation inequalities (see, for example, [29])

[ f ]s ≤ C‖ f ‖1− s
r

0 [ f ]
s
r
r for all r ≥ s ≥ 0. (2.2)

We also collect two classical estimates on the Hölder norms of compositions. These
are also standard, for instance in applications of the Nash-Moser iteration technique.

Proposition 2.1. Let 0 ≤ α < 1, Ψ : Ω → R and u : Rn ⊃ U → Ω be two Ck,α functions,
with Ω ⊂ Rm. Then there is a constant C (depending only on α, k, Ω and U) such that

[Ψ ◦ u]k+α ≤ C[u]k+α

(
[Ψ]1 + ‖u‖k−1

0 [Ψ]k
)
+ C[Ψ]k+α

(
‖u‖k−1

0 [u]k
) k+α

k , (2.3)

[Ψ ◦ u]k+α ≤ C
(
[u]k+α[Ψ]1 + [u]k+α

1 [Ψ]k+α

)
. (2.4)

Let f , g : Rn ⊃ U → R two Ck,α functions. Then there is a constant C (depending only on α,
k, n and U) such that

[ f g]k+α ≤ C(‖ f ‖0[g]k+α + ‖g‖0[ f ]k+α) . (2.5)
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Proof. The chain rule can be written as

Dk (Ψ ◦ u) =
k

∑
i=1

(
DiΨ ◦ u

)
∑

j
Ci,j (Du)j1 · · · · ·

(
Dku

)jk
, (2.6)

where Ci,j are constants and j = (j1, . . . , jk) is a multi-index with

∑ jl = i, ∑ l jl = k .

The claim then follows by the Leibniz rule (2.1) and a repeated application of the
interpolation inequalities (2.2) to (2.6). Statement (2.5) is a straightforward consequence
of the usual Leibniz rule, interpolation and the Young inequality. 2

Remark 2.2. Observe that if α = 0 we have the estimates

[Ψ ◦ u]k ≤ C[u]k
(
[Ψ]1 + ‖u‖k−1

0 [Ψ]k
)

, (2.7)

[Ψ ◦ u]k ≤ C
(
[u]k[Ψ]1 + [u]k1[Ψ]k

)
. (2.8)

2.3 mollification

In the following chapters, except otherwise stated, ϕ will represent a non-negative,
smooth function with compact support in the unit ball of Rn, which is rotationally
symmetric and has unit integral; in other words, a standard mollification kernel. We
will then often use regularizations of maps f by convolution with ϕ`(y) := `−n ϕ( y

n ).
For functions f which do not have their support compactly contained in the domain,
say Ω, we fix the convention that the mollified function f`, defined through

f`(x) := f ∗ ϕ`(x) =
∫

Rn
f (x− y)ϕ`(y) dy ,

is defined in Ω` := {x ∈ Ω : dist(x, ∂Ω) > `}. The following mollification estimates
are crucial throughout the thesis.

Lemma 2.3. For any r, s ≥ 0 and 0 < α ≤ 1 we have

[ f ∗ ϕ`]r+s ≤ C`−s[ f ]r, (2.9)

[ f − f ∗ ϕ`]r ≤ C`2[ f ]2+r, (2.10)

‖ f − f ∗ ϕ`‖r ≤ C`2−r[ f ]2, if 0 ≤ r ≤ 2 (2.11)

‖( f g) ∗ ϕ` − ( f ∗ ϕ`)(g ∗ ϕ`)‖r ≤ C`2α−r‖ f ‖α‖g‖α , (2.12)

where the constants C depend only upon s, r, α and ϕ.
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Proof. For proof of estimates (2.9), (2.10) and (2.12) see, for example, [17, Lemma 1].
The additional estimate (2.11) can be seen as follows. Recall the estimate

‖ f − f ∗ ϕ`‖0 ≤ C`[ f ]1 ,

which can be derived using the mean value theorem and an integration. In particular
also

[ f − f ∗ ϕ`]1 ≤ C`[ f ]2 .

We combine this estimate with (2.2) and (2.10) to get

[ f − f ∗ ϕ`]r ≤ C‖ f − f ∗ ϕ`‖1−r
0 [ f − f ∗ ϕ`]

r
1

≤ C
(
`2‖D2 f ‖0

)1−r (
`‖D2 f ‖0

)r ≤ C`2−r[ f ]2 ,

whenever 0 ≤ r ≤ 1. If however 1 ≤ r ≤ 2, we invoke the trivial inequality

[ f − f ∗ ϕ`]2 ≤ C[ f ]2

to deduce

[ f − f ∗ ϕ`]r ≤ C‖D f − D f ∗ ϕ`‖2−r
0 [D f − D f ∗ ϕ`]

r−1
1 ≤ C`2−r[ f ]2 ,

from which the claim follows. 2
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3
A N A S H - K U I P E R T H E O R E M F O R C 1 , 1/5− δ E M B E D D I N G S O F
S U R FA C E S I N 3 D I M E N S I O N S

In this chapter we consider isometric immersions of 2-dimensional disks in R3. With
Dr and Dr we denote, respectively, the open and closed disks in R2 with center at the
origin and radius r. If g is a C0 Riemannian metric on Dr, an isometric immersion
u : Dr → Rn is a C1 immersion such that u]e = g, where e denotes the Euclidean metric
on Rn. In other words this means that

∂iu · ∂ju = gij . (3.1)

We recall that if ∂iu · ∂ju ≤ gij in the sense of quadratic forms then u is called a short
immersion. If moreover ∂iu · ∂ju < g, then it is called stricly short. The main theorem of
this chapter is the following approximation result which, using a popular terminology,
is an “h-principle” statement, cf. [23, 31, 54].

Theorem 3.1. Let g be a C2 metric on D2 and ū ∈ C1(D2, R3) a short immersion. For
every δ > 0 and ε > 0 there is a C1,1/5−δ isometric immersion u of (D1, g) in R3 such that
‖ū− u‖C0 < ε. If in addition ū is an embedding, then u can be chosen to be an embedding.

Theorem 3.1 could be improved in several directions. In particular, with little addi-
tional technicalities, which we believe to be of secondary importance, we will also show
the following

Theorem 3.2. Let g be a C2 metric on D1 and ū ∈ C1(D1, R3) a short immersion. For
every δ > 0 and ε > 0 there is a C1,1/5−δ isometric immersion u of (D1, g) in R3 such that
‖ū− u‖C0 < ε. If in addition ū is an embedding, then u can be chosen to be an embedding.

Note that here, in contrast to Theorem 3.1, the domain of the isometric embedding
u is the same as the domain of the original short embedding ū. As mentioned in the
introduction, in the case of 2-dimensional disks, this theorem improves the exponent
claimed by Borisov for analytic metrics (and subsequently verified for C2 metrics in
[17]) from 1/7 to 1/5.

3.1 main iteration

Theorem 3.1 is achieved via an iteration, which depends upon several parameters. We
start introducing the main ones. The first parameter α > 0 is an exponent, which is
assumed to be rather small, in fact smaller than a geometric constant:

0 < α < ᾱ . (3.2)

15
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Two further exponents will be called c and b, both assumed to be larger than 1, and a
basis a, assumed to be very large. We then define the parameters

δq := a−bq
λq := acbq+1

, (3.3)

where q is an arbitrary natural number. b can in fact be chosen rather close to 1: how
much it is allowed to be close to 1 depends on how close is α to 0. c will be larger but
rather close to 5/2, depending on how close are b− 1 and α to 0. More precisely, we
summarize the conditions which b and c need to satisfy in the following two inequalities

3
2
> b >

2
(2− α)(1− 2α)

(3.4)

c >
2(2− α)b2 − (3− 2α)b− 1

b((2− α)(1− 2α)b− 2)
=

((4− 2α)b + 1)(b− 1)
b((2− 5α + 2α2)b− 2)

. (3.5)

Observe that when α ↓ 0, the right hand sides approach 1 respectively 5/2 from above.
It is convenient to introduce the notation

gq := g− δq+1e , (3.6)

which simplifies several formulas.

Proposition 3.3. Fix a metric g as in Theorem 3.1. There is a positive constant ᾱ such that
for every α as in (3.2) we can choose positive numbers σ0(α) < 1 and C0 with the following
property. Assume b and c satisfy (3.4) and (3.5), fix any C̄ ≥ C0 and assume that λq and δq are
defined as in (3.3), where a is sufficiently large depending on α, b, c, g, C̄, namely

a > a0(α, b, c, g, C̄) . (3.7)

If q ∈N and uq : D1+2−q−1 → R3 is an immersion such that

‖gq − u]
qe‖α ≤ σ0δq+1 (3.8)

‖D2uq‖0 ≤ C̄δ
1/2
q λq , (3.9)

then there is an immersion uq+1 : D1+2−q−2 → R3 such that

‖gq+1 − u]
q+1e‖0 ≤

σ0

3
δq+2λ−α

q+1 (3.10)

‖D(gq+1 − u]
q+1e)‖0 ≤

σ0

3
δq+2λ1−α

q+1 (3.11)

‖uq − uq+1‖0 ≤ δ
1/2
q+1λ

−γ
q+1 (3.12)

‖D(uq − uq+1)‖0 ≤ C0δ
1/2
q+1 (3.13)

‖D2uq+1‖0 ≤ C̄δ
1/2
q+1λq+1 , (3.14)

where γ = γ(α, b, c) > 0.
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As already mentioned, Proposition 3.3 will be used in an iteration scheme to show
Theorem 3.1. The reader will notice that the conclusions (3.10)-(3.11) do not exactly
match the starting assumption (3.8). On the other hand, a simple interpolation shows
that (3.10) and (3.11) together imply the estimate

‖gq+1 − u]
q+1e‖α ≤ σ0δq+2 ,

which corresponds to (3.8) at the next step of the iteration. In particular, the conclusions
are stronger and so they still allow to iterate the proposition. It is possible to state a
version of Proposition 3.3 where the assumptions and conclusions look more homo-
geneous, but there would be no real simplification neither in the statement nor in the
proof.

Observe that, by our condition upon the parameters, uq is obviously a strictly short
map, because we have

u]
qe ≤ gq + σ0δq+1e = g− (1− σ0)δq+1e < g ,

where all the inequalities are understood in the sense of quadratic forms. Thus, as a
simple corollary we know that

‖Duq‖C0 ≤ C (3.15)

for some constant C which only depends upon g.

As in the classical Nash-Kuiper theorem, the map uq+1 is obtained from the map
uq by adding a certain number of perturbations, each consisting of highly oscillatory
functions. As it is clear from the arguments in [17], the threshold Hölder exponent that
can be reached by a Nash–Kuiper type iteration is 1

1+2n?
, where n? is the number of such

perturbations. Each perturbation adds, modulo small error terms, a smooth symmetric
rank-1 tensor, called “primitive metric”, to u]

qe. n? is then the smallest number of
summands needed to write the metric error g− u]

qe as a (positive) linear combination
of such “primitive metrics”.

We know by the inductive assumption that (g− u]
qe)/‖g− u]

qe‖0 is close to e, which
implies that n? can be chosen to be the dimension of the space of symmetric matrices.
Thus, if n is the dimension of the manifold, n? = n(n+1)

2 : this explains the threshold
1

1+2n?
= 1

1+n+n2 reached in [17] and claimed originally by Borisov. In particular in
dimension 2 the number n? equals 3 and Borisov’s threshold is 1

7 .

The starting point of this chapter is the simple observation that in 2 dimensions we
can use a conformal change of coordinates to diagonalize g− u]e and hence reduce the
number n? from 3 to 2: this justifies the new threshold 1

5 . However, the regularity of the
change of coordinates needed to implement this idea deteriorates with q and thus it is
not at all clear that the method really improves the regularity of the final map. In fact
at first it is not even clear that the new iteration scheme yields any C1,α regularity at all.
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In order to overcome this difficulty we obviously need to estimate quite carefully
several norms of the conformal change of coordinates, at each step: for this reason we
need to keep track of some Hölder norm of g− u]

qe. However, to ensure convergence
of the scheme, it does not seem enough to just combine the computations of [17]
with the classical estimates on conformal mappings. In particular in order to close
the argument we impose a much faster rate of convergence for g− u]

qe: in [17] it was
sufficient to choose exponentially decaying δq (and exponentially growing λq), whereas
in this chapter we take advantage of a double exponential Ansatz. This idea is in fact
borrowed from [25], where a scheme with a double exponential decay was used to
produce Hölder solutions to the Euler equations.

The rest of this chapter is organized as follows.
Section 3.2 collects the technical preliminary lemmas and propositions which will be

used in the proofs of Proposition 3.3 and Theorem 3.1.
The proof of Proposition 3.3 is split into the Sections 3.3, 3.4, 3.5 and 3.6. Section 3.3

describes how to reach uq+1 from uq and in particular it gives the precise formulas for
the two oscillatory perturbations which we need to add. We will then collect in Section
3.4 the estimates concerning the first perturbation and in Section 3.5 the ones concerning
the second perturbation. Section 3.6 will finally conclude the proof of Proposition 3.3.

Section 3.7 will prove Theorem 3.1 using Proposition 3.3. In fact the proof is not
completely straightforward since we have to show the existence of a map u0 which is
C0 close to the map ū of Theorem 3.1 and at the same time satisfies the requirements of
Proposition 3.3 (with q = 0), in order to be able to start the iterative procedure. Finally,
in Section 3.8 we give briefly the necessary technical modifications to prove Theorem
3.2.

3.2 preliminaries

3.2.1 Conformal coordinates

The following proposition is a key technical point in the proof. It addresses rather
well-known regularity properties of conformal changes of coordinates. However, it is
crucial for us to have an explicit (linear) dependence of certain Hölder norms of the
change of coordinates in terms of corresponding norms of the metric. Since we have
not been able to find a precise reference in the literature, we include a proof in the
appendix (see Appendix A.1).

Proposition 3.4. For any N, α, β with N ∈N, N ≥ 1, 0 < β ≤ α < 1 there exist constants
C(N, α, β), σ1(N, α, β) > 0 and C̄(α) such that the following holds. If 1 ≤ r ≤ 2 and g is a
CN,α metric on Dr with

‖g− e‖α ≤ σ1 (3.16)
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then there exists a CN+1,β coordinate change Φ : Dr → R2 and a CN,β function ρ : Dr → R+

satisfying

g = ρ2 (∇Φ1 ⊗∇Φ1 +∇Φ2 ⊗∇Φ2) (3.17)

and the following estimates:

‖ρ− 1‖α + ‖DΦ− Id‖α ≤ C̄‖g− e‖α (3.18)

‖Dkρ‖β + ‖Dk+1Φ‖β ≤ C‖g− e‖k+β ∀1 ≤ k ≤ N . (3.19)

3.2.2 Oscillatory functions

The construction of uq+1 is based on adding to the map uq suitable “wrinkles”, namely
suitable perturbations. The basic model for this perturbation takes advantage of a pair
of real-valued functions with very specific properties, which we will detail here.

Proposition 3.5. There exists δ? > 0 and a function Γ = (Γt, Γn) ∈ C∞([0, δ?]×R, R2) with
the following properties

(a) Γ(s, ξ) = Γ(s, ξ + 2π) for every s, ξ;

(b) (1 + ∂ξΓt)2 + (∂ξΓn)2 = 1 + s2;

(c) The following estimates hold:

‖∂k
ξΓn(s, ·)‖0 ≤C(k)s (3.20)

‖∂k
ξΓt(s, ·)‖0 ≤C(k)s2 (3.21)

‖∂s∂
k
ξΓt(s, ·)‖0 ≤C(k)s . (3.22)

Proof. Except for (3.21) the remaining claims are contained in [17, Lemma 2]. The idea
is to let Γ have the form

Γ(s, ξ) :=
ξ∫

0

(√
1 + s2 (cos( f (s) sin(τ)), sin( f (s) sin(τ)))− (1, 0)

)
dτ ,

for an appropriately chosen function f such that (a), (3.20) and (3.22) are fulfilled. (b)
is satisfied by construction. The additional statement (3.21) follows from integrating
(3.22) in s. 2
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3.3 proof of proposition 3 .3 , part i

3.3.1 Hierarchy of parameters

A first ingredient in the construction of uq+1 is to smooth uq suitably via a standard
mollification. For this we introduce the mollification parameter `, which is rather small:
indeed it is defined by the relation

`2−α :=
1
C̃

δq+1

δqλ2
q

, (3.23)

where C̃ is a constant larger than 1 which depends only upon α, g, σ0 and C̄ and which
will be specified in Section 3.3.3 below.

The map uq+1 will be obtained from (a suitable regularization of) the map uq in two
steps. First we will add an oscillatory perturbation whose frequency is

µ := Ĉ
δq+1λα

q+1

δq+2`
, (3.24)

where the constant Ĉ, larger than 1, depends only upon α, g, and σ0 (we specify its
choice in Section 3.6). We will then choose a second perturbation whose frequency is
λq+1.

We next record a few inequalities among the parameters which will be rather useful
in simplifying some of our estimates in the remaining sections. Except for the very
first inequality in (3.26), which requires a choice of a sufficiently large compared to the
constant Ĉ, all the others are immediate from the restrictions imposed so far on all the
various parameters.

δqλ2
q ≥ 1 , (3.25)

λq+1 ≥ µ ≥ `−1 ≥ λq , (3.26)

δ
1/2
q λq ≤ δ

1/2
q λq`

−α/2 ≤ δ
1/2
q+1`

−1 ≤ δ
1/2
q+1µ ≤ δ

1/2
q+1λq+1 , (3.27)

The first inequality (3.25) follows from δqλ2
q = ac2b2q+2−bq ≥ ab2−1 (where we have used

c, b > 1). Observe that this easily implies ` ≤ 1 (recall that δq+2 and C̃−1 are both
smaller than 1), which in turn gives the first inequality in (3.27). Note also that the last
inequality in (3.26) is weaker than the second inequality in (3.27):

`−1 ≥ `−1+α/2 ≥
δ

1/2
q

δ
1/2
q+1

λq ≥ λq .

Coming to the second inequality in (3.27), observe that, by the definition of `, this is just
the requirement that C̃ ≥ 1. As for the last two inequalities in (3.27), they are equivalent
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to the first two in (3.26), which will be shown below. Moreover, since Ĉ > 1, λq+1 > 1
and δq+1 ≥ δq+2, the second inequality in (3.26) is obvious.

We are therefore left with showing the first inequality in (3.26) which, as already
mentioned, needs a sufficiently large a. As it can be readily checked from the definition
of µ, such inequality is in fact equivalent to δq+2λ1−α

q+1 ≥ Ĉδq+1`
−1. But we record in

fact a much stronger inequality, which turns out to be the key relation to conclude the
estimates in Proposition 3.3, as it will become apparent in Section 3.6. More precisely,
given any constant C which depends upon α, g, σ0 and C̄, the following inequality holds
provided a is chosen large enough:

δ2
q+2λ1−2α

q+1 ≥ Cδ2
q+1`

−1 . (3.28)

In fact such inequality is equivalent to

δ2
q+2λ1−2α

q+1 ≥ CC̃1/(2−α)δ
2−1/(2−α)
q+1 δ

1/(2−α)
q λ

2/(2−α)
q .

Taking the logarithm in base a this is equivalent to

(c(1− 2α)− 2)bq+2 ≥
(

1 + 2c
2− α

− 2
)

bq+1 − 1
2− α

bq + loga C +
1

2− α
loga C̃ .

The latter follows for a sufficiently large a (depending upon b, c, C̃ and C) provided

(
c(1− 2α)− 2

)
b2 >

(
1 + 2c
2− α

− 2
)

b− 1
2− α

,

which is equivalent to

cb((2− α)(1− 2α)b− 2) > 2(2− α)b2 + (1− 2(2− α))b− 1 .

The latter inequality is however obviously implied by (3.4) and (3.5).

3.3.2 Constants

In the rest of the chapter we will deal with several estimates where we bound norms
of various functions using the parameters introduced so far, namely δq, λq, `, µ and
λq+1. In front of the expressions involving such parameters there will always be some
constants, independent of a, b and c. However it is important to distinguish between
two types of such constants: the ones which depend only upon α, g and σ0 will be
denoted by C, whereas the ones which depend also upon the C̄ of Proposition 3.3 will
be denoted by C?. Note also that the parameter σ0 will in fact be chosen as a function
of α in Section 3.3.4. Therefore the constants denoted by C will depend only upon α

and g, whereas those denoted by C? will depend, additionally, also upon C̄. Moreover,
the values of C and C? may change from line to line.
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3.3.3 Regularization

Having fixed a standard mollifier ϕ, we then define

hq :=
g ∗ ϕ` − (uq ∗ ϕ`)

]e
δq+1

−
δq+2

δq+1
e . (3.29)

Observe that

(uq ∗ ϕ`)
]e + δq+1hq = g ∗ ϕ` − δq+2e = gq+1 + (g ∗ ϕ` − g) .

So the strategy of the proof will be to perturb uq ∗ ϕ` to a map uq+1 such that

u]
q+1e = (uq ∗ ϕ`)

]e + δq+1hq + E = gq+1 + E + (g ∗ ϕ` − g) ,

(cf. (3.48)) where the error term E is suitably small. Before coming to the construction
of the map uq+1 we deal in this section with the smallness conditions to be imposed on
`.

First of all, by choosing C̃ larger than a geometric constant and a sufficiently large
(depending upon b and c), we can assume that ` ≤ 2−q−2, so that hq is in fact defined
on D1+2−q−2 . Next, using Lemma 2.3 we can estimate

‖hq − e‖α ≤
δq+2

δq+1
+

1
δq+1
‖g ∗ ϕ` − (uq ∗ ϕ`)

]e− δq+1e‖α

≤ a−(b−1) +
1

δq+1

(
‖(u]

qe) ∗ ϕ` − (uq ∗ ϕ`)
]e‖α + ‖(gq − u]

qe) ∗ ϕ`‖α

+ ‖g− g ∗ ϕ`‖α

)
≤σ0 + C?

`2−αδqλ2
q

δq+1
+ σ0 +

C
δq+1
‖D2g‖0`

2−α

(3.25)
≤ 2σ0 + C?

`2−αδqλ2
q

δq+1
≤ 3σ0 ,

where the latter inequality specifies the condition needed on C̃ in (3.23).
Similarly, for 1 ≤ k ≤ 4, we can bound

‖Dkhq‖0 ≤
1

δq+1

(
‖Dk(g− u]

qe) ∗ ϕ`‖0

+ ‖Dk((u]e) ∗ ϕ` − (uq ∗ ϕ`)
]e)‖0

)
≤ C`α−kσ0 + C?

δqλ2
q

δq+1
`2−k ≤ C`α−k , (3.30)
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where we have used (3.23) and Lemma 2.3. Interpolating, for any 0 ≤ k ≤ 3 we then
get

‖hq − e‖k+α ≤ C`−k . (3.31)

We summarize the conclusions of the previous paragraphs in the following lemma.

Lemma 3.6. If we choose C̃ sufficiently large, depending upon α, g and C̄, we then have

‖hq − e‖α ≤ 3σ0 (3.32)

‖hq − e‖k+α ≤ C`−k for 1 ≤ k ≤ 3, (3.33)

where the constant C depends only upon α and g.

3.3.4 Conformal diffeomorphism

We now wish to apply Proposition 3.4 with β = α > 0 and N = 3. This requires to
choose σ0 such that 3σ0 ≤ σ1, where σ1 is the constant appearing in (3.16). We thus find
maps Φ and ρ such that

hq = ρ2 (∇Φ1 ⊗∇Φ1 +∇Φ2 ⊗∇Φ2) .

Furthermore, if σ0(α) is small enough we can assume in addition

1
2
≤ ρ ≤ 2 ‖DΦ− Id‖0 ≤

1
2

, (3.34)

thanks to (3.18) and the estimate (3.32). This exhausts the condition on σ0: note that it
depends only upon α, since N and β in Proposition 3.4 are fixed to be 3 and α.

Moreover, for any 1 ≤ k ≤ 3 we apply (3.19) and (3.33) to estimate

‖Dkρ‖α + ‖Dk+1Φ‖α ≤ C`−k . (3.35)

3.3.5 Adding the first primitive metric

We next set w := uq ∗ ϕ` and we define the following two three-dimensional vectors:

τ1 := Dw(DwTDw)−1∇Φ1 (3.36)

and

ν1 :=
∂x1 w× ∂x2 w
|∂x1 w× ∂x2 w| . (3.37)

Observe that ν1 is in the kernel of DwT (or, in other words, ν1(x) is a unit normal to
the tangent plane Tw(x)(Im (w))). Hence it follows easily that τ1 and ν1 are orthogonal.
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We next normalize these vectors suitably, defining

t1 :=
τ1

|τ1|2
, (3.38)

n1 :=
ν1

|τ1|
. (3.39)

Finally, we define the first perturbation of w, namely the map v given by the formula

v = w +
1
µ

Γt
(

δ
1/2
q+1|τ1|ρ, µΦ1

)
t1 +

1
µ

Γn
(

δ
1/2
q+1|τ1|ρ, µΦ1

)
n1 , (3.40)

whereas we define

E1 := v]e− (w]e + δq+1ρ2∇Φ1 ⊗∇Φ1) . (3.41)

3.3.6 Adding the second primitive metric

The map uq+1 is then obtained by adding a similar second perturbation to the map v.
More precisely we define this time

τ2 := Dv(DvTDv)−1∇Φ2 , (3.42)

ν2 :=
∂x1 v× ∂x2 v
|∂x1 v× ∂x2 v| , (3.43)

t2 :=
τ2

|τ2|2
, (3.44)

n2 :=
ν2

|τ2|
. (3.45)

The map uq+1 is then given by the following formula (analogous to (3.40)):

uq+1 = v +
1

λq+1
Γt
(

δ
1/2
q+1|τ2|ρ, λq+1Φ2

)
t2 +

1
λq+1

Γn
(

δ
1/2
q+1|τ2|ρ, λq+1Φ2

)
n2 . (3.46)

Similarly we define

E2 := u]
q+1e− (v]e + δq+1ρ2∇Φ2 ⊗∇Φ2) . (3.47)

Observe that we have the following identity:

E :=E1 + E2 = u]
q+1e− (w]e + δq+1ρ2(∇Φ1 ⊗∇Φ1 +∇Φ2 ⊗∇Φ2))

= u]
q+1e− w]e− δq+1hq = u]

q+1e + δq+2e− g ∗ ϕ`

= u]
q+1e− gq+1 + (g− g ∗ ϕ`) . (3.48)
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Hence

‖gq+1 − u]
q+1e‖0 ≤ ‖E‖0 + ‖g− g ∗ ϕ`‖0 , (3.49)

‖D(gq+1 − u]
q+1e)‖0 ≤ ‖DE‖0 + ‖D(g− g ∗ ϕ`)‖0 . (3.50)

For α sufficiently small and a sufficiently big one can achieve

‖g− g ∗ ϕ`‖0 ≤ C‖D2g‖0`
2 ≤ σ0

6
δq+2λ−α

q+1 , (3.51)

‖D(g− g ∗ ϕ`)‖0 ≤ C‖D2g‖0` ≤
σ0

6
δq+2λ1−α

q+1 . (3.52)

To see this, note that (3.51) is implied by the condition

C? δq+1

δqλ2
q
≤ δq+2λ−α

q+1 ,

which for a(C̄) big enough is guaranteed if

b2 − b + 1 < (2− αb)cb ,

or equivalently

c >
b2 − b + 1
b(2− αb)

. (3.53)

Similarly (3.52) follows if

C?
δ

1/2
q+1

δ
1/2
q λq

≤ δq+2λ1−α
q+1 ,

which (for a(C̄) big enough) is satisfied whenever

c >
2b2 − b + 1

2b(1 + (1− α)b)
. (3.54)

Now for any α > 0, b > 1 which satisfy the bounds of Proposition 3.3 we have

b2 − b + 1
b(2− αb)

>
2b2 − b + 1

2b(1 + (1− α)b)
.

Indeed, since b < 3
2 and α < ᾱ, provided ᾱ is small enough both denominators in the

fractions above are positive. Hence the inequality is equivalent to

2b2 + (α− 4)b + (2− α) = (b− 1)(α + 2b− 2) > 0 ,

which for b > 1 and α > 0 is always true. Hence (3.53) implies (3.54).
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Next, observe that the left hand side of (3.5) is larger than gα(b) = (4−2α)b+1
2b , so

(3.5) implies c > gα(b). The bound (3.53) is instead c > hα(b) = b2−b+1
b(2−αb) . On the other

hand on the interval [1, 3
2 ], gα and hα converge uniformly, as α ↓ 0, to the functions

g0(b) = 2 + 1
2b and h0(b) = b2−b+1

2b . Since on [1, 3
2 ] g0 is strictly larger than h0, we infer

that for α small (3.5) guarantees (3.53). In particular we conclude that for a big enough
(3.5) guarantees (3.51) and (3.52).
Thus, the goal of most of the remaining sections is to prove that the desired bounds
hold for ‖E‖0, ‖DE‖0, ‖uq+1 − uq‖0, ‖D(uq+1 − uq)‖0 and ‖D2uq+1‖0.

3.4 estimates on v and E1

Our goal in this subsection is to estimate the C0 norms of v− uq, Dkv, E1 and DE1. To
this aim we introduce the functions

At
1 := ∂ξΓt

(
δ

1/2
q+1|τ1|ρ, µΦ1

)
, (3.55)

An
1 := ∂ξΓn

(
δ

1/2
q+1|τ1|ρ, µΦ1

)
, (3.56)

Bt
1 := ∂sΓt

(
δ

1/2
q+1|τ1|ρ, µΦ1

)
, (3.57)

Bn
1 := ∂sΓn

(
δ

1/2
q+1|τ1|ρ, µΦ1

)
, (3.58)

Ct
1 := Γt

(
δ

1/2
q+1|τ1|ρ, µΦ1

)
, (3.59)

Cn
1 := Γn

(
δ

1/2
q+1|τ1|ρ, µΦ1

)
, (3.60)

and we decompose the derivative of v as

Dv = Dw + At
1 t1 ⊗∇Φ1 + An

1 n1 ⊗∇Φ1︸ ︷︷ ︸
=:A1

+
δ

1/2
q+1

µ
(Bt

1 t1 + Bn
1 n1)⊗ (ρ∇|τ1|+ |τ1|∇ρ)︸ ︷︷ ︸

=:B1

+
1
µ

(
Ct

1 Dt1 + Cn
1 Dn1

)
︸ ︷︷ ︸

=:C1

. (3.61)

3.4.1 First technical lemma

In the next lemma we collect the estimates of the C0 norm of the derivatives of the
various quantities introduced above.

Lemma 3.7. Let C̃ be fixed so that Lemma 3.6 holds and Ĉ ≥ 1. If a ≥ a0(α, g, b, c, C̄) for
some a0 sufficiently large, then there are constants C (depending upon α and g but not on C̄)
such that

C−1 ≤ |τ1| ≤ C (3.62)
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and

‖w− uq‖0 ≤ Cδ
1/2
q+1` , (3.63)

‖D(w− uq)‖0 ≤ Cδ
1/2
q+1 , (3.64)

‖Dw‖0 ≤ C , (3.65)

‖Dkw‖0 ≤ Cδ
1/2
q+1`

1−k for 2 ≤ k ≤ 4, (3.66)

‖Dkν1‖0 ≤ Cδ
1/2
q+1`

−k for 1 ≤ k ≤ 3, (3.67)

‖Dkt1‖0 + ‖Dkτ1‖0 + ‖Dkn1‖0 ≤ C`−k for 0 ≤ k ≤ 3, (3.68)

‖Dk At
1‖0 + ‖DkCt

1‖0 ≤ Cδq+1µk for 0 ≤ k ≤ 3, (3.69)

‖Dk An
1‖0 + ‖DkBt

1‖0 + ‖DkCn
1‖0 ≤ Cδ

1/2
q+1µk for 0 ≤ k ≤ 3, (3.70)

‖DkBn
1‖0 ≤ Cµk for 0 ≤ k ≤ 3. (3.71)

Proof. Estimates on |τ1|. Since ‖DΦ− Id‖0 ≤ 1
2 , we obviously have 1

2 ≤ |∇Φ1| ≤ 2. On
the other hand the estimate (3.32) on hq of the previous section implies

g + 5δq+1e ≥ w]e ≥ g− 5δq+1e .

If we assume a sufficiently large (depending only upon g, b and c), we conclude
2g ≥ w]e ≥ 1

2 g. Since w]e = DwTDw, this implies that

C|∇Φ1| ≥ |τ1| ≥ C−1|∇Φ1|

for a constant C which depends only upon g, hence (3.62) follows.

Estimates on w. Observe that

‖w− uq‖0 ≤ C`2‖D2uq‖0 ≤ C?`2δ
1/2
q λq (3.72)

‖D(w− uq)‖0 ≤ C`‖D2uq‖0 ≤ C?`δ
1/2
q λq. (3.73)

If we choose a ≥ a0(α, b, c, C̄) big enough such that C̄ ≤ `−α/2, then (3.63) and (3.64)
follow with the help of (3.27). Moreover, (3.64) implies (3.65) by (3.15). Finally, (3.66) is
a consequence of (2.9), i.e. ‖Dkw‖0 ≤ C`2−k‖D2uq‖0, and C̄ ≤ `−α/2.
Next, observe that C ≥ |∂x1 w× ∂x2 w| ≥ C−1 (again due to 2g ≥ DwTDw ≥ 1

2 g). Hence
(2.7) implies, for k ≥ 1,

‖Dkν1‖0 ≤ C[Dw]k‖Dw‖0 ≤ C[Dw]k ≤ Cδ
1/2
q+1`

−k .

Estimates on τ1, t1 and n1. The C0 estimates in (3.68) are a trivial consequence of
(3.62). Again by Proposition 2.1 we get

‖Dkτ1‖0 ≤C‖Dw‖0‖Dk+1Φ‖0 + C‖DΦ‖0
(
‖Dk+1w‖0 + ‖D2w‖k

0
)

≤C`−k + Cδ
1/2
q+1`

−k ≤ C`−k .
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A second application of Proposition 2.1 (combined with (3.62)) gives the estimates

‖Dk|τ1|‖0 + ‖Dk|τ1|−1‖0 ≤ C`−k . (3.74)

Combining (3.74) and (3.67), from (2.5) we infer

‖Dkn1‖0 ≤ Cδ
1/2
q+1`

−k + C`−k ≤ C`−k .

We argue similarly to conclude ‖Dkt1‖0 ≤ C`−k.

Remaining estimates. The cases k = 0 of (3.69), (3.70) and (3.71) are all simple
consequences of Proposition 3.5 and ‖|τ1||ρ|‖0 ≤ C. For the higher derivatives we
consider first Ct

1. We introduce the function

Ψ(s, ξ) := δ−1
q+1Γt(δ

1/2
q+1s, ξ)

and observe that ‖DiΨ‖0 ≤ C(i) by the estimates in Proposition 3.5(c). If we introduce
the map U = (|τ1|ρ, µΦ1) we can then write

‖DkCt
1‖0 = δq+1‖Dk(Ψ ◦U)‖0 .

On the other hand observe that

‖DkU‖0 ≤ C`−k + Cµ`1−k
(3.26)
≤ Cµ`1−k .

Hence, using (2.8) we infer

‖DkCt
1‖0 ≤ Cδq+1(µ`

1−k + µk) ≤ Cδq+1µk .

In case of At
1, A1

n, Bt
1, Cn

1 and Bn
1 we apply the same argument, keeping the map U as

defined above, but changing Ψ respectively to

Ψ(s, ξ) :=δ−1
q+1∂ξΓt(δ

1/2
q+1s, ξ)

Ψ(s, ξ) :=δ−
1/2

q+1 ∂ξΓn(δ
1/2
q+1s, ξ)

Ψ(s, ξ) :=δ−
1/2

q+1 ∂sΓt(δ
1/2
q+1s, ξ)

Ψ(s, ξ) :=δ−
1/2

q+1 Γn(δ
1/2
q+1s, ξ)

Ψ(s, ξ) :=∂sΓn(δ
1/2
q+1s, ξ) . 2

3.4.2 Estimates on ‖v− uq‖0, ‖D(v− uq)‖0 and ‖Dkv‖0.

Taking into account Proposition 3.5 we obviously have

‖v− w‖0 ≤ Cδ
1/2
q+1µ−1 ,
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whereas by (3.63)

‖uq − w‖0 ≤ Cδ
1/2
q+1` ≤ Cδ

1/2
q+1`

1−α/2 ≤ C
δq+1

δ
1/2
q λq

.

We therefore conclude

‖uq − v‖0 ≤ Cδ
1/2
q+1µ−1 + C

δq+1

δ
1/2
q λq

. (3.75)

By Lemma 3.7 we easily see that

‖D(uq − v)‖0 ≤ Cδ
1/2
q+1 (3.76)

and

‖Dkv‖0 ≤ Cδ
1/2
q+1µk−1 for k ∈ {2, 3} . (3.77)

Observe also that, by (3.15),

‖Dv‖0 ≤ C . (3.78)

3.4.3 Estimates on ‖E1‖0 and ‖DE1‖0.

Observe first that due to Proposition 3.5 (b) we have

(Dw + A1)
T(Dw + A1) = w]e + δq+1ρ2∇Φ1 ⊗∇Φ1 ,

where we recall that A (and also B and C) are defined in (3.61). Using the notation
sym P for the matrix 1

2 (P + PT) we can then write

E1 = 2sym (DwT(B1 + C1)) + 2sym (AT
1 (B1 + C1)) + (B1 + C1)

T(B1 + C1) .

We notice that, from Lemma 3.7 and the estimates (3.34) and (3.35) on ρ and Φ, we
conclude

‖A1‖0 + µ−1‖DA1‖0 ≤ Cδ
1/2
q+1 , (3.79)

‖B1‖0 + ‖C1‖0 + µ−1(‖DB1‖0 + ‖DC1‖0
)
≤ C

δ
1/2
q+1

`µ
. (3.80)

It is therefore obvious that, since `µ ≥ 1,

‖E1‖0 ≤ ‖DwTB1‖+ ‖DwTC1‖0 + C
δq+1

`µ
, (3.81)

‖DE1‖0 ≤ ‖D(DwTB1)‖0 + ‖D(DwTC1)‖0 + Cδq+1`
−1 . (3.82)
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We next compute

DwTB1 =
δ

1/2
q+1

µ
Bt

1(DwT t1)⊗ (ρ∇|τ1|+ |τ1|∇ρ) .

Therefore we conclude from Lemma 3.7 that

‖DwTB1‖0 ≤C
δq+1

`µ
, (3.83)

‖D(DwTB1)‖0 ≤Cδq+1`
−1 . (3.84)

Recalling moreover (3.39) we have

Dn1 =
Dν1

|τ1|
− n1 ⊗

∇|τ1|
|τ1|

and we also conclude that

DwTC1 =
Ct

1
µ

DwTDt1 +
Cn

1
µ

DwT Dν1

|τ1|
.

In particular

‖DwTC1‖0 ≤
Cδq+1

µ`
+ C

δ
1/2
q+1

µ
δ

1/2
q+1`

−1 ≤ C
δq+1

µ`
.

Similarly we conclude

‖D(DwTC1)‖0 ≤ Cδq+1`
−1 .

Thus we infer

‖E1‖0 ≤C
δq+1

`µ
, (3.85)

‖DE1‖0 ≤Cδq+1`
−1 . (3.86)
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3.5 estimates on uq+1 and E2

Our goal in this section is to estimate the C0 norms of uq+1 − v, Duq+1, D2uq+1, E2 and
DE2. We proceed in the same way as in the previous section and begin by defining the
functions

At
2 := ∂ξΓt

(
δ

1/2
q+1|τ2|ρ, λq+1Φ2

)
, (3.87)

An
2 := ∂ξΓn

(
δ

1/2
q+1|τ2|ρ, λq+1Φ2

)
, (3.88)

Bt
2 := ∂sΓt

(
δ

1/2
q+1|τ2|ρ, λq+1Φ2

)
, (3.89)

Bn
2 := ∂sΓn

(
δ

1/2
q+1|τ2|ρ, λq+1Φ2

)
, (3.90)

Ct
2 := Γt

(
δ

1/2
q+1|τ2|ρ, λq+1Φ2

)
, (3.91)

Cn
2 := Γn

(
δ

1/2
q+1|τ2|ρ, λq+1Φ2

)
(3.92)

and decomposing the derivative of uq+1 as

Duq+1 = Dv + At
2 t2 ⊗∇Φ2 + An

2 n2 ⊗∇Φ2︸ ︷︷ ︸
=:A2

+
δ

1/2
q+1

λq+1
(Bt

2 t2 + Bn
2 n2)⊗ (ρ∇|τ2|+ |τ2|∇ρ)︸ ︷︷ ︸

=:B2

+
1

λq+1

(
Ct

2 Dt2 + Cn
2 Dn2

)
︸ ︷︷ ︸

=:C2

. (3.93)

3.5.1 Second technical lemma

As before we collect the estimates of the C0 norm of the derivatives of the various
quantities introduced above.

Lemma 3.8. Assume C̃ is fixed so that Lemma 3.6 holds and Ĉ > 1. If a ≥ a0(α, g, b, c, C̄, Ĉ)
for a sufficiently large a0, then there are constants C (depending on α and g but not on C̄) such
that

C−1 ≤ |τ2| ≤ C (3.94)

‖Dkν2‖0 ≤ Cδ
1/2
q+1µk for k ∈ {1, 2} (3.95)

and, for k ∈ {0, 1, 2},

‖Dkt2‖0 + ‖Dkτ2‖0 + ‖Dkn2‖0 ≤ C`−k + Cδ
1/2
q+1µk (3.96)

‖Dk At
2‖0 + ‖DkCt

2‖0 ≤ Cδq+1λk
q+1 (3.97)

‖Dk An
2‖0 + ‖DkBt

2‖0 + ‖DkCn
2‖0 ≤ Cδ

1/2
q+1λk

q+1 (3.98)

‖DkBn
2‖0 ≤ Cλk

q+1 . (3.99)
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Proof. The arguments are entirely similar to the ones of Lemma 3.7, where we only
need to use the estimates (3.76) and (3.77) on Dkv proved in the previous section and
the fact that λq+1 ≥ µ. 2

3.5.2 Estimates on ‖uq+1 − v‖0, ‖D(uq+1 − v)‖0 and ‖D2uq+1‖0.

The following estimates are straightforward consequences of Lemma 3.8:

‖uq+1 − v‖0 ≤Cδ
1/2
q+1λ−1

q+1 , (3.100)

‖Duq+1 − Dv‖0 ≤Cδ
1/2
q+1 , (3.101)

‖D2uq+1‖0 ≤Cδ
1/2
q+1λq+1 . (3.102)

3.5.3 Estimates on ‖E2‖0 and ‖DE2‖0.

Arguing as in Section 3.4.3 we easily see that

‖E2‖0 ≤Cδq+1
µ

λq+1
, (3.103)

‖DE2‖0 ≤Cδq+1µ . (3.104)

3.6 proof of proposition 3 .3 , conclusion

Recall that

µ := Ĉ
δq+1λα

q+1

δq+2`
(3.105)

for an appropriately large constant Ĉ, depending upon α and g (in particular not on a).
It then follows that

‖E1‖0 + λ−1
q+1‖DE1‖0 ≤

σ0

12
δq+2λ−α

q+1 .

Hence, (recall (3.51) and (3.52)) to achieve the estimates (3.10) and (3.11) we need to
verify

Cδq+1
µ

λq+1
≤ σ0

12
δq+2λ−α

q+1 ,

which however is implied by (3.28), which is valid provided a is chosen sufficiently
large. The three remaining inequalities (3.12), (3.13) and (3.14) are implied by (3.75)–
(3.78) and (3.100)–(3.102).
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3.7 proof of theorem 3 .1

3.7.1 Step 1

By using the compactness of the domain D we may assume without loss of generality
that ū is uniformly strictly short, that is, g− ū]e ≥ 2δ̄ in D for some δ̄ > 0. In a first step
we will apply the classical Nash–Kuiper argument to obtain a good first approximation.

To this end recall (for a short proof see for example Proposition 2.3.1. in [19]) that
there exist a finite number1 of unit vectors ei ∈ R2 and corresponding amplitudes
φi ∈ C∞(D), i = 1, . . . , N such that

g− ū]e− δ̄e =
N

∑
i=1

φ2
i ei ⊗ ei in D.

Define iteratively the smooth mappings ū0 := ū, ū1, . . . , ūN =: ũ by setting, for i =
1, . . . , N,

τi := Dūi−1(DūT
i−1Dūi−1)

−1ei , νi :=
∂x1 ūi−1 × ∂x2 ūi−1

|∂x1 ūi−1 × ∂x2 ūi−1|
,

ti :=
τi

|τi|2
, ni :=

νi

|τi|
.

and

ūi(x) := ūi−1(x) +
1
µi

Γt(ϕi|τi|, µiei · x
)
ti +

1
µi

Γn(ϕi|τi|, µiei · x
)
ni . (3.106)

Here the frequencies 1 ≤ µ1 ≤ µ2 ≤ · · · ≤ µN will be inductively defined as follows.
Let

Ei = ū]
i e− ū]

i−1e− φ2
i ei ⊗ ei

so that ū]
Ne = g− δ̄e + ∑N

i=1 Ei. As in Section 3.4 we can estimate E1 as

‖E1‖0 ≤
C(ū)

µ1
, ‖E1‖1 ≤ C(ū),

where C(ū) is a constant depending on ū. By interpolation we also have

‖E1‖α ≤
C(ū)
µ1−α

1

,

and moreover ‖ū− ū1‖0 ≤ Cµ−1
1 . Therefore we can choose µ1 so that

‖E1‖α ≤
σ1

2N
δ̄, ‖ū− ū1‖0 ≤

ε

2N
.

1 Although the number N in this decomposition depends on δ̄ > 0, there is a geometric constant N∗ such
that for any x ∈ D at most N∗ of the functions φi are non-zero. Nevertheless, this information is not
required for our purposes.
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Continuing, analogously we obtain

‖E2‖0 ≤
C(ū, µ1)

µ2
, ‖E2‖1 ≤ C(ū, µ1),

and hence choose µ2 so that

‖E2‖α ≤
σ1

2N
δ̄, ‖ū2 − ū1‖0 ≤

ε

2N
.

In a similar manner we can inductively choose µi, i = 3, . . . , N so that eventually we
obtain

‖g− δ̄e− ũ]e‖α ≤
N

∑
i=1
‖Ei‖α ≤

σ1

2
δ̄

and
‖ū− ũ‖0 ≤

ε

2
.

Remark 3.9. The construction above can be easily adapted to the case when ū is an
embedding, and in this case also ũ will be an embedding. This is of course well-known
and has been proved by Nash and Kuiper. In order to this thesis self-contained, we
nevertheless include here a short proof.

Since the construction of ũ from ū involves finite number of steps, it suffices to ensure
that at each step ūi remains an embedding, i.e. no self-intersections are introduced. To
show this, we proceed by induction and assume that ūi−1 is an embedding. By using
Proposition 3.5 and the choice of vectors ti, ni we can write (3.106) as

ūi(x) := ūi−1(x) +
1
µi

wi(x, µix),

where wi = wi(x, ξ) satisfies[
Dūi−1(x)+∂ξwi(x, µiz)

]T[Dūi−1(x) + ∂ξwi(x, µiz)
]
=

= Dūi−1(x)TDūi−1(x) + φ2
i (x)ei ⊗ ei.

for any x, z. In particular, since ūi−1 is an immersion, there exists ω1 > 0 so that∣∣(Dūi−1(x) + ∂ξwi(x, µiz)
)
e| ≥

∣∣Dūi−1(x)e
∣∣ ≥ ω1|e| (3.107)

for any vector e.
Next, let x, y ∈ D. By Taylor’s theorem and the mean value theorem there exists z on

the line segment [x, y] such that

ūi(x)− ūi(y) = Dūi−1(x)(x− y) + ∂ξwi(x, µiz)(x− y) + Ẽ,

where

|Ẽ| ≤ C
(
|x− y|2 + 1

µi
|x− y|

)
,
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and C is a constant depending on the functions ūi−1(x) and wi(x, ξ) but not on µi. Let
ρ = ω1

4C and choose µi > ρ−1. From (3.107) we deduce that if |x− y| ≤ ρ, then

|ūi(x)− ūi(y)| ≥
ω1

2
|x− y|.

On the other hand, since ūi−1 is assumed to be globally injective and D is compact,
there exists ω2 > 0 such that

|ūi−1(x)− ūi−1(y)| ≥ ω2|x− y| for all |x− y| ≥ ρ.

Since obviously ‖ūi − ūi−1‖0 ≤ Cµ−1
i , it follows that for sufficiently large µi we will

also have
|ūi(x)− ūi(y)| ≥ ω2|x− y| for all |x− y| ≥ ρ.

In summary, we have shown that, by choosing µi sufficiently large, we can ensure that
ūi is also an embedding.

3.7.2 Step 2

In Step 1 we obtained a good approximation ũ in the sense that (3.8) from Proposition
3.3 is satisfied. However, although ũ is smooth, we have no information on the size of
the second derivatives D2ũ. Therefore in this step we obtain a further approximation u0,
where in addition second derivatives are controlled so that this second approximation
can then be used as the starting point of an iteration with Proposition 3.3.

In this step we assume in addition2

c >
2

1− 2α
+

1
2b

. (3.108)

We show that, no matter how large a is chosen, there is a map u0 satisfying the
assumptions (3.8) and (3.9) of Proposition 3.3, where the constant C̄ in the latter
estimate is however independent of a (because it depends only on g and ũ). We proceed
as in Section 3.3, except no regularization step is necessary this time. We set

h :=
g− ũ]e

δ̄
− δ1

δ̄
e

and apply Proposition 3.4 to find (C3) Φ1, Φ2 and ρ so that

h := ρ2(∇Φ1 ⊗∇Φ1 +∇Φ2 ⊗∇Φ2) .

We then define

τ1 := Dũ(DũTDũ)−1∇Φ1 ,

2 Indeed it could be checked directly that (3.5) implies (3.108) and hence (3.108) is superfluous: however,
proceeding as we do we can spare the reader a slightly tedious computation.
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ν1 :=
∂x1 ũ× ∂x2 ũ
|∂x1 ũ× ∂x2 ũ| ,

and

t1 :=
τ1

|τ1|2
, n1 :=

ν1

|τ1|
.

Hence we set

v = ũ +
1
µ

Γt
(

δ̄
1/2|τ1|ρ, µΦ1

)
t1 +

1
µ

Γn
(

δ̄
1/2|τ1|ρ, µΦ1

)
n1 . (3.109)

Then we define

τ2 := Dv(DvTDv)−1∇Φ2 ,

ν2 :=
∂x1 v× ∂x2 v
|∂x1 v× ∂x2 v| ,

and

t2 :=
τ2

|τ2|2
, n2 :=

ν2

|τ2|
.

The map u0 is finally given by

u0 = v +
1
λ

Γt
(

δ̄
1/2|τ2|ρ, λΦ2

)
t2 +

1
λ

Γn
(

δ̄
1/2|τ2|ρ, λΦ2

)
n2 . (3.110)

Again we assume λ ≥ µ ≥ 1. Analogous computations to the ones in Sections 3.4 and
3.5 lead to the estimates

‖g− (u]
0e + δ1e)‖α ≤ Cδ̄

1/2µ2α−1 + Cδ̄µλα−1

‖D2u0‖0 ≤ Cδ̄
1/2λ ,

where the constant C depends only on ũ and g. We thus set

µ := C1δ
−1/(1−2α)
1 and λ := C2µ1/(1−α)δ

−1/(1−α)
1 .

For a sufficiently large choice of C2 and C1 we then achieve (3.8) (recall that δ̄ < 1).
Clearly

‖D2u0‖0 ≤ C3δ
−2/(1−2α)
1 ,

for a constant C3 which depends only upon ũ, g and α. In order to show that (3.9) is
satisfied with a constant C̄ independent of a, it suffices to show that

δ
−2/(1−2α)
1 ≤ δ

1/2
0 λ0 .

Taking the logarithms in base a the latter inequality is implied by

cb ≥ 1
2
+

2
1− 2α

b .
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3.7.3 Step 3

Finally we are ready for the iteration based on Proposition 3.3. Fix any α, b and c which
satisfies (3.4), (3.5) and (3.108). Then, for any sufficiently large a, we can construct a
map u0 as in the previous step which satisfies ‖ū− u0‖0 < ε

2 and the assumptions
of Proposition 3.3, with a constant C̄ which does not depend on a. We can apply
Proposition 3.3 to generate u1. Observe the following explicit interpolation inequality,
which follows easily from the definitions

‖ f ‖α ≤ ‖ f ‖0 + 2‖ f ‖1−α
0 [ f ]α1 .

With this we conclude

‖g1 − u]
1e‖α ≤‖g1 − u]

1e‖0 + 2‖g1 − u]
1e‖1−α

0 ‖D(g1 − u]
1e)‖α

0

≤σ0δ2 . (3.111)

Hence u1 satisfies again the assumptions of Proposition 3.3. More generally, the proposi-
tion can be applied inductively to generate a sequence (uq)q≥0. Observe that (3.12)-(3.14)
imply that

• (uq)q≥0 converges uniformly to a map u which (assuming a sufficiently large)
satisfies ‖u0 − u‖0 < ε

2 . By assumption on u0 we therefore have ‖ū− u‖0 < ε.

• Interpolating ‖D(uq+1 − uq)‖ ≤ Cδ
1/2
q+1 and

‖D2(uq+1 − uq)‖0 ≤‖D2uq+1‖0 + ‖D2uq‖0 ≤ C̄δ
1/2
q+1λq+1 + C̄δ

1/2
q λq

≤2C̄δ
1/2
q+1λq+1

shows

‖D(uq+1 − uq)‖β ≤ C?δ
1/2
q+1λ

β
q+1 ,

for a constant C? which depends on α, g and C̄. Hence using the definitions (3.3)
of δq and λq we can see that if β < 1

2bc then (uq)q≥0 is a Cauchy sequence on C1,β.

We next show that, if α is chosen arbitrarily small, bc can be chosen arbitrarily close to
5
2 , which in turn implies that β can be made arbitrarily close to 1

5 . Indeed if we let α ↓ 0,
the conditions (3.4), (3.5) and (3.108) become, respectively

b >1 (3.112)

c >
4b2 − 3b− 1

2b(b− 1)
= 2 +

1
2b

(3.113)

c >2 +
1
2b

. (3.114)

This completes the proof in the case of immersions. We give the argument for the case
of embeddings explicitly in the next section.
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3.8 proof of theorem 3 .2

First of all we notice that, by classical extension theorems, the first statement can be
reduced to Theorem 3.1: it suffices to extend both g and ū smoothly from D̄1 to D̄2. The
extended map is not necessarily short for the extended metric, but we can ensure this if
we add to the extension of g a tensor of the form ϕ(|x|)e, where ϕ is a rapidly growing
C∞ function which vanishes identically on [0, 1].

Next, observe that the arguments of the Steps 2 and 3 in Section 3.7, combined with
the extension trick outlined above give in fact the following corollary.

Corollary 3.10. Let g be a C2 metric on D1. Then there are positive constants C0, c̄ and η̄ with
the following properties. Assume that

(i) u : D1 → R3 is C∞,

(ii) ‖g− (u]e + 2ηe)‖0 ≤ c̄η for some η ∈]0, η̄[.

Then for any ε > 0 and δ > 0 there is an isometric map u ∈ C1,1/5−δ(D1) such that
‖Du− Du‖0 ≤ C0η1/2 and ‖u− u‖0 ≤ ε.

With this corollary at hand we can prove Theorem 3.2 in two easy steps. In the proof
we will restrict to the case of embeddings, the case of immersions can be obtained by
easy modifications.

Proof of Theorem 3.2 and Theorem 3.1 for embeddings.
Let g be a C2 metric on D1 and ū ∈ C1(D1, R3) a short embedding. By a simple

rescaling and mollification we may assume without loss of generality that ū is smooth
and strictly short. Next, fix ω > 0 such that g ≥ 16ω2e and choose η > 0 such that
η ≤ min{ω2, η̄} and C0η1/2 ≤ ω.

As in Step 1 of the proof of Theorem 3.1 (including Remark 3.9) we first construct a
smooth embedding u with

‖u− u‖0 <
ε

2
and such that

‖g− (u]e + 2ηe)‖0 ≤ c̄η.

Then the assumptions of Corollary 3.10 are satisfied and we obtain u ∈ C1,1/5−δ(D1)

with u]e = g and such that ‖Du− Du‖0 ≤ C0η1/2 and ‖u− u‖0 ≤ ε/2.
To complete the proof, it remains to show that the map u is an embedding. We again

remark that this argument is well-known and is contained in the works of Nash and
Kuiper. First of all, since u is C1, there exists ρ > 0 such that |Du(z)− Du(y)| ≤ ω if
|z− y| ≤ ρ. On the other hand, since u is an embedding, then there is ζ > 0 such that
|u(z)− u(y)| ≥ 3ζ if |z− y| ≥ ρ.

To show global injectivity, we now observe that

|u(z)− u(y)| ≥ |u(z)− u(y)| − 2ε ≥ 3ζ − 2ζ = ζ when |z− y| ≥ ρ.
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On the other hand, if |z− y| ≤ ρ we know that

|Du(z)− Du(y)| ≤ |Du(z)− Du(y)|+ 2ω ≤ 3ω ,

and hence, using Taylor’s formula

|u(z)− u(y)− Du(z)(z− y)| ≤ 3ω|z− y| .

We therefore can estimate

|u(z)− u(y)| ≥ |Du(z)(z− y)| − 3ω|z− y|

But u]e = g ≥ 16ω2e implies |Du(z)(z − y)|2 ≥ 16ω2|z − y|2, which in turn shows
|u(z)− u(y)| ≥ ω|z− y| > 0.

This completes the proof of Theorem 3.2 and Theorem 3.1.
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In this chapter we want to investigate regularity and summability properties of the
Brouwer degree of a Hölder continuous function v ∈ C0,α (Ω, Rn) defined on an open,
bounded set Ω ⊂ Rn with

n− 1 ≤ d := dimb(∂Ω) < n , (4.1)

where dimb denotes the upper box-counting dimension. We recall that it is defined by

dimb(∂Ω) = lim sup
r→0

log Nr

− log r
(4.2)

where Nr can be chosen to be the number of closed cubes of a mesh of Rn of width r > 0
which intersect ∂Ω. In the recent note [48], H. Olbermann showed that the Brouwer
degree is an Lp function for every 1 ≤ p < nα

d . A different proof of the L1 summability
when Ω has a Lipschitz boundary has been given independently by R. Züst in [59],
and although it does not yield the range of summability exponents of Olbermann’s
proof, it allows to conclude the L1 estimate when each component vi has (possibly)
different Hölder regularity C0,αi with 1

n−1 ∑i αi > 1. Theorem 4.5 gives an extension
of the latter L1 summability to domains with fractal boundary. Finally, a more recent
work by Züst unifies the previous results: in [60] it is shown that the degree of a map
v ∈ C0,α1 × . . .× C0,αn is in Lp for 1 ≤ p < 1

d ∑i αi.

In this chapter we show that Olbermann’s idea can be improved to show higher
(fractional) Sobolev regularity. In particular the following is our main theorem. As
usual [·]C0,α denotes the Hölder and [·]Wβ,p the Gagliardo seminorm when β > 0 and
the Lp norm for β = 0.

Theorem 4.1. Let Ω ⊂ Rn be open and bounded, d be as in (4.1) and v ∈ C0,α (Ω, Rn), where
α ∈] d

n , 1]. Then the Brouwer degree deg(v, Ω, ·) satisfies the estimate

[deg (v, Ω, ·)]Wβ,p ≤ C(Ω, n, α, β, p)[v]
n
p−β

C0,α (4.3)

for any pair (β, p) with p ≥ 1 and 0 ≤ β <
n
p
− d

α
. (4.4)

41
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p

β

σ

1 nα
d

n− d
α

Figure 1: Range of exponents in (4.4)

Observe that the endpoints of (4.4) form the segment σ = {β = n
p −

d
α} (see Figure

1) and if we let (β1, p1) = (n− d
α , 1) be the left extremum of the segment, then Wβ1,p1

embeds in Wβ,p for every (β, p) ∈ σ. In particular our theorem has the following
obvious corollary.

Corollary 4.2. Let Ω ⊂ Rn be open and bounded, d be as in (4.1) and {vk} ⊂ C0,α (Ω, Rn) a
bounded sequence converging uniformly to v, where α ∈] d

n , 1]. Then, for every pair (β, p) as in
(4.4), the sequence deg (vk, Ω, ·) converges to deg (v, Ω, ·) strongly in Wβ,p.

As already mentioned above, our proof is built upon the ideas of Olbermann in
[48]. However we report also a self-contained and more elementary argument for his
result: the key simplification can be found in the direct elementary proof of Theorem
4.5 below. A part of this theorem is shown in [48] using tools from interpolation
theory. We instead derive it directly and use our approach to extend Züst’s L1 result
[59] in the sense mentioned above. For the reader’s convenience we then show how
to recover Olbermann’s higher integrability in few lines, although the argument is
already contained in [48]. From Theorem 4.5 we then derive Theorem 4.1 using heavier
machinery from harmonic analysis.

It has already been shown in [48] that, when β = 0 and d > n − 1, the range of
exponents in Theorem 4.1 cannot be extended beyond the endpoints: more precisely, [48,
Theorem 1.2] proves that, if p > nα

d , then there is a fixed open set Ω with dimb(∂Ω) = d
and a bounded sequence {vk} ⊂ C0,α(Ω) for which ‖deg(vk, Ω, ·)‖Lp ↑ ∞. Note however
that the proof in [48] does not yield a v ∈ C0,α(Ω) for which deg(v, Ω, ·) 6∈ Lp, because
the sequence produced by the argument converges to 0, cf. [48, Section 4.2]. In this note
we discuss the optimality of the range in the case d = n− 1: our main conclusion is the
following theorem, which, by Sobolev embedding, has the immediate Corollary 4.4.

Theorem 4.3. For any n ≥ 2, p ≥ 1 and α < p(n−1)
n there is v ∈ C0,α (B1, Rn) such that

deg (v, B1, ·) /∈ Lp, where B1 ⊂ Rn is the unit ball.

Corollary 4.4. For any n ≥ 2, p ≥ 1, α ≥ 0 and β > n
p −

n−1
α there is v ∈ C0,α (B1, Rn)

with deg(v, B1, ·) /∈Wβ,p.
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The case of the endpoints is certainly more subtle. Indeed, if v ∈ C0,1 and Ω is a
bounded Lipschitz domain, then the area formula and elementary considerations in
degree theory imply that deg v ∈ BV (the space of functions of bounded variation).
In fact, with a little help from the theory of BV functions and Caccioppoli sets, the
latter statement can be shown even under the more technical assumption that the
(n− 1)-dimensional Hausdorff measure of ∂Ω is finite. Therefore:

• deg(v, Ω, ·) ∈ Ln/(n−1), by the Sobolev embedding of BV(Rn), which shows that
the endpoint (β, p) = (0, n

n−1 ) could be included if we assume that ∂Ω has finite
(n− 1)-dimensional measure;

• since the degree takes integer values and vanishes on Rn \ v(Ω), it belongs to W1,1

only if it vanishes identically: hence, even assuming that ∂Ω has finite (n− 1)-
dimensional measure, the endpoint (β, p) = (1, 1) can be included only if we
replace W1,1 with BV.

4.1 first estimate and change of variables

The starting point of Olbermann’s proof is the classical change of variable formula∫
Rn

ϕ(y)deg(v, Ω, y) dy =
∫

Ω
ϕ(v(x))detDv(x) dx , (4.5)

which is valid if v is regular enough (compare e.g. [28]). By representing the integrand
ϕ(v(x))detDv(x) as a sum of weakly defined Jacobian determinants, using Stokes
theorem and tools from interpolation theory Olbermann manages to bound the right
hand side of (4.5) by a (suitable power of the) C0,α norm of v and the Lp′ norm of
ϕ, where α is as above and p′ is conjugate to p. In fact, implicit in his proof is the
estimate (4.7) below, which will play a crucial role for us as well. On the other hand
our elementary argument yields immediately, as a byproduct, that the degree is an L1

function and thus we do not have to resort to any weak notion of Jacobian determinant.
Moreover, we also get a simple proof of Züst’s L1 result, together with the generalization
to domains with fractal boundary.

Theorem 4.5. Let Ω ⊂ Rn, n and d be as in Theorem 4.1. Assume that v = (v1, . . . , vn) is a
continuous map v : Ω→ Rn for which vi ∈ C0,αi . If ∑i αi > d, then deg (v, Ω, ·) ∈ L1 and

‖deg (v, Ω, ·)‖L1 ≤ C(Ω, n, α1, . . . , αn)
n

∏
i=1

[vi]C0,αi . (4.6)

If in addition α = mini αi >
d
n , then for any ψ ∈ C1 (Rn, Rn) we have∣∣∣∣∫

Rn
deg (v, Ω, y)div ψ(y) dy

∣∣∣∣ ≤ C(Ω, n, α, γ)[v]n−1+γ
C0,α(Ω)

[ψ]C0,γ(BR) , (4.7)

where γ ∈ (0, 1) is such that (n− 1 + γ)α > d and R > 0 such that v (Ω) ⊂ BR(0).
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4.1.1 Two technical lemmas

We record here two simple facts related to the dimension of ∂Ω.

Lemma 4.6. Let Ω ⊂ Rn be a bounded open set with d := dimb (∂Ω) < n. Then for any
ε > 0 the function dist (x, ∂Ω)d+ε−n is integrable.

Proof. Fix 0 < ε < n − d and let W be the Whitney decomposition of Ω and let
Wk := {Q ∈W : Q cube of sidelength 2−k}. Then

1. dist(Q, ∂Ω) ≥ 2−k√n for any Q ∈Wk and

2. there exists C ≡ C(ε) > 0 such that #Wk ≤ C2k(d+ε/2) for any k ∈N (cf. Theorem
3.12 in [44]).

Since Q̊ ∩ Q̊′ = ∅ for any Q 6= Q′ we have∫
Ω

dist(x, ∂Ω)d+ε−n dx = ∑
k≥1

∑
Q∈Wk

∫
Q

dist(x, ∂Ω)d+ε−n dx

≤ C(n) ∑
k≥1

∑
Q∈Wk

Ln (Q) 2−k(d+ε−n)

≤ C(n, ε) ∑
k≥1

2k(d+ε/2)2−k(d+ε) ≤ C(n, ε) < +∞ . 2

Lemma 4.7. If v and Ω are as in Theorem 4.5 then v(∂Ω) is a Lebesgue-null set.

Proof. Fix a positive δ ≤ ∑n
i=1 αi − d. For any ε > 0 there is a covering of ∂Ω with

balls Bri(xi) such that ∑i rd+δ
i ≤ (Hd+δ(∂Ω)) + ε = ε and ri ≤ 1, where Hω denotes

the ω-dimensional Hausdorff measure. Observe that v(Bri(xi)) is contained in a box
Qi = Ii

1 × . . .× Ii
n, where each interval Ii

j has length at most (2ri)
αj [vj]

C0,αj . Thus

|v(∂Ω)| ≤∑
i
|Qi| ≤ C

n

∏
j=1

[vj]
C0,αj ∑

i
rα1+...+αn

i ≤ C(v)ε sup
i

rα1+...+αn−d−δ
i ≤ Cε .

Letting ε→ 0 we conclude the proof. 2

4.1.2 Proof of Theorem 4.5

First of all recall that the degree depends only upon the values of v at the boundary.
We wish therefore to find a suitable extension ṽ of v which is smooth in the interior
and satisfies suitable estimates on the derivatives. For k = 0, 1, . . . set

Ak := {x ∈ Ω : dist(x, ∂Ω) > 2−k} (4.8)
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and define D0 := A1, Dk := Ak+1 \ Āk−1 for k = 1, 2, . . .. Fix a partition of unity {χk}k≥1
subordinate to the cover {Dk}k≥0, i.e.

0 ≤ χk ≤ 1, suppχk ⊂ Dk,
+∞

∑
k=0

χk = 1 on Ω .

Observe that each point x ∈ Ω has an open neighbourhood U ⊂ Ω on which at most
three χk are non zero. Next fix a standard symmetric mollifier ϕ with support contained
in the ball of radius 1 and define the functions vk : Dk → Rn by the convolution
vk(x) := ϕ2−(k+1) ∗ v(x). Finally, set

ṽ :=
+∞

∑
k=0

χkvk .

We have ṽ ∈ C∞ (Ω, Rn) and we claim that for every x ∈ Ω

|∇ṽi(x)| ≤ Cdist(x, ∂Ω)αi−1[vi]C0,αi (Ω) for all i . (4.9)

By standard estimates

|∇vi
k(y)| ≤ C

(
2−(k+1)

)αi−1
[vi]C0,αi , whenever y ∈ Dk .

Moreover, since ∑∇χk = 0 and |∇χk| ≤ C2k we get

|∇ṽi(x)| ≤
k3

∑
k=k1

|∇χk||vi
k(x)− vi(x)|+ C

(
2−(k3+1)

)αi−1
[vi]C0,αi

≤ C
(

2−(k3+1)
)αi−1

[vi]C0,αi .

Next, notice that |deg (v, Ω, y)| = |deg(ṽ, Ω, y)| is bounded by the number of preimages
N(y) in Ω through ṽ whenever y /∈ v(∂Ω). Since v(∂Ω) is a null set, by the area formula,
(4.9) and Lemma 4.6 we have∫

Rn
N(y)dy =

∫
Ω
|detDṽ(x)| dx ≤ C

n

∏
i=1

[vi]C0,αi

∫
Ω

dist(x, ∂Ω)∑i αi−n dx ≤ C
n

∏
i=1

[vi]C0,αi .

This estimate will be needed later on in Chapter 5 (compare (5.7)). Next, fix a C1 test
field ψ as in the second part of the statement and let α = mini αi. Define the maps
Ṽj = (ṽ1, . . . , ṽj−1, ψj ◦ ṽ, ṽj+1, . . . , ṽn) and the corresponding Vj = (v1, . . . , vj−1, ψj ◦
v, vj+1, . . . , vn) for j = 1, . . . , n. In particular it follows ∑n

j=1 det DṼj = (div ψ) ◦ ṽ det Dṽ.
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Let Ωk be smooth domains compactly contained in Ω so that1 Ωk ↑ Ω. By the
smoothness of ṽ and ψ, we can apply the area formula and conclude∫

Rn
deg (ṽ, Ωk, y)div ψ(y) dy =

∫
Ωk

div ψ(ṽ(x))det Dṽ(x) dx

=
n

∑
j=1

∫
Ωk

det DṼj(x) dx =
n

∑
j=1

∫
Rn

deg (Ṽj, Ωk, y) dy .

Next, observe that the number N(y) bounds |deg (ṽ, Ωk, y)| for every y and k and thus,
by the dominated convergence theorem,

lim
k→∞

∫
Rn

deg (ṽ, Ωk, y)div ψ(y) dy =
∫

Rn
deg (ṽ, Ω, y)div ψ(y) dy .

The same argument can be applied to Ṽj, since |det DṼj| ≤ |Dψ||Dṽ|n also belongs to
L1(Ω). Hence, passing into the limit in k and using the fact that ṽ agrees with v on ∂Ω
we can conclude∫

Rn
deg (v, Ω, y)div ψ(y) dy = ∑

j

∫
deg (Vj, Ω, y) dy .

On the other hand for each Vj we have [Vi
j ]C0,α ≤ [v]C0,α when i 6= j and [V j

j ]C0,αγ ≤
[ψ]C0,γ [v]γC0,α . Since by our choice of γ we have (n− 1 + γ)α > d, we can apply (4.6) to
conclude

‖deg (Vj, Ω, ·)‖L1 ≤ C(n, Ω, α, γ, d)[v]n−1+γ
C0,α [ψ]C0,γ .

4.2 proofs of theorem 4 .1 and of corollary 4 .2

4.2.1 Direct proof of Theorem 4.1 for β = 0

This section follows essentially Olbermann’s argument and is only added for the
reader’s convenience in order to show that the harmonic analysis of the next section is
only needed for β > 0. The key is the following proposition.

Proposition 4.8. Let Ω ⊂ Rn, n, d, α and v be as in Theorem 4.1 with ‖v‖C0 ≤ 1 and fix
1 < p < nα

d . Then, if we denote by p′ the dual exponent of p, we have the estimate∣∣∣∣∫ deg (v, Ω, y) ϕ(y) dy
∣∣∣∣ ≤ C(Ω, n, d, α, p.β)[v]

n
p

C0,α‖ϕ‖Lp′ ∀ϕ ∈ C∞
c (Rn) . (4.10)

1 Let Ak be the sets in (4.8) and 1Ak their indicator functions, consider the mollifications ηk := 1Ak ∗ ϕ2−k−1

and set Ωk = {ηk > tk} for a suitably chosen 0 < tk < 1. The regularity of ∂Ωk follows from Sard’s
Lemma.
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The case β = 0 of Theorem 4.1 then follows easily when ‖v‖C0 ≤ 1: just take the
supremum over ϕ ∈ C∞

c ∩ {‖ϕ‖Lp′ ≤ 1} in (4.10) and use the density of C∞
c in Lp′

together with the usual duality (Lp)∗ = Lp′ . To remove the assumption that ‖v‖C0 ≤ 1
it suffices, for a general nonzero v, to consider the normalization v/‖v‖C0 and compare
its degree to that of v with an obvious scaling argument (cf. Section 4.2.2 below where
this argument is repeated with more details). The extension to p = 1 follows because
deg(v, Ω, ·) is supported in the bounded set v(Ω), whose diameter can be estimated
using the Hölder norm of the function v. We are thus left to show (4.10). Fix ϕ and
consider the potential theoretic solution ζ of

−∆ζ = ϕ .

By classical Calderon-Zygmund estimates we have ‖ζ‖W2,p′ (B2)
≤ C‖ϕ‖Lp′ . So, if we

set ψ = −∇ζ, we conclude div ψ = ϕ on B2 and, from the Sobolev embedding,
[ψ]C0,γ(B2) ≤ C‖ϕ‖Lp′ , where γ = 1− n

p′ = 1− n + n
p > 1− n + d

α . Since deg(v, Ω, ·) is
supported in B2, we can apply Theorem 4.5 to conclude (4.10).

4.2.2 Bessel potential spaces when β > 0

Rather than showing estimate (4.3) we will show, for the exponents in the ranges
1 < p < nα

d and 0 ≤ β < n
p −

d
α , the slightly different estimate

‖deg(v, Ω, ·)‖Hβ,p ≤ C‖v‖
n
p−β

C0,α when ‖v‖C0 ≤ 1, (4.11)

where Hβ,p (Rn) is the Bessel potential space (see below for the relevant definition).
Recall (see e.g. the classical textbook of Triebel [55]) that the spaces Wβ,p and Hβ,p

correspond, respectively, to the Triebel-Lizorkin spaces Fp,p
β and Fp,2

β . Since we have the

continuous embedding Fp,q
β ⊂ Fp,q′

β−ε for every q, q′ and every ε > 0, we get as a corollary
of (4.11) the estimate

‖deg(v, Ω, ·)‖Wβ,p ≤ C‖v‖
n
p−β

C0,α when ‖v‖0 ≤ 1. (4.12)

From (4.12) it follows by scaling that for any nonzero v as in Theorem 4.1 we have

[deg(v, Ω, ·)]Wβ,p = ‖v‖
n
p−β

C0

[
deg

(
v
‖v‖C0

, Ω, ·
)]

Wβ,p
≤ C‖v‖

n
p−β

C0,α . (4.13)

Apply the latter estimate to ṽ := v − v(x0) for some x0 ∈ Ω. Since deg (ṽ, Ω, y) =

deg (v, Ω, y + v(x0)) and ‖ṽ‖C0 ≤ C(Ω, α)[v]C0,α we recover (4.3).
Recall that the Bessel potential of degree β > 0 is the L1 function Jβ such that

Ĵβ(ξ) =
(
1 + 4π2|ξ|2

)−β/2 (where ĥ denotes the Fourier transform of h). The convolu-
tion with Jβ defines a continuous linear map Jβ : Lp → Lp and can be regarded as the
pseudodifferential operator (Id− ∆)−β/2. In particular

(Id− ∆)J2ϕ = ϕ ∀ϕ ∈ C∞
c (Rn) . (4.14)
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Concerning the Bessel potential space Hβ,p we will need the following facts (cf. again
[55]):

(F1) f ∈ Hβ,p if and only if there is g ∈ Lp with f = Jβ(g); such g is unique and
‖ f ‖Hβ,p = ‖g‖Lp ;

(F2) (Hβ,p, ‖ · ‖Hβ,p) is a separable reflexive Banach space for any p ∈]1, ∞[ and C∞
c (Rn)

is dense in it;

(F3) if βp > n and p ≥ 2 we have the continuous inclusion Hβ,p ⊂Wβ,p and hence, by
Morrey’s embedding, Hβ,p ⊂ C0,γ with γ = (βp− n)/p.

The idea of the proof of Theorem 4.1 is to show that deg(v, Ω, ·) is an element of the
dual of (Hβ,p)∗ and to use the reflexivity property in (F2). As usual, (Hβ,p)∗ denotes
the Banach space of bounded linear functionals L : Hβ,p → R endowed with the dual
norm ‖ · ‖(Hβ,p)∗ . Moreover, since C∞

c (Rn) is dense in Hβ,p, we clearly have

‖L‖(Hβ,p)∗ := sup {L(u) : u ∈ C∞
c (Rn) and ‖u‖Hβ,p ≤ 1} . (4.15)

Of course
(
Hβ,p)∗ is a subspace of the space of tempered distributions and we can

consider C∞
c as a subset of

(
Hβ,p)∗ via the identification of any element ϕ ∈ C∞

c with
the linear functional u 7→

∫
ϕu. We then have the following standard consequence of

distribution theory

Lemma 4.9. C∞
c is strongly dense in (Hβ,p)∗ if p ∈]1, ∞[.

Proof. Let H be the closure of C∞
c in the norm ‖ · ‖(Hβ,p)

∗ . If H were a strict subset

of
(
Hβ,p)∗, then by Hahn-Banach there would be a nontrivial linear functional L′ :

(Hβ,p)∗ → R wich vanishes on H. By reflexivity L′ is given by an element u ∈ Hβ,p,
which must therefore be nonzero. Since however L′ vanishes on H, we conclude∫

uϕ = 0 ∀ϕ ∈ C∞
c .

Since u ∈ Lp, the latter implies that u ≡ 0, which is a contradiction. 2

(4.11) is then a consequence of the following natural generalization of Proposition
4.8.

Proposition 4.10. Let Ω ⊂ Rn, n, d, α and v be as in Theorem 4.1 with the additional
assumption ‖v‖0 ≤ 1 and fix 1 < p < nα

d and 0 < β < n
p −

d
α . Then, for all ϕ ∈ C∞

c (Rn) we
have the estimate∣∣∣∣∫

Rn
deg (v, Ω, y) ϕ(y) dy

∣∣∣∣ ≤ C(Ω, n, d, α, p.β)[v]
n
p−β

C0,α ‖ϕ‖(Hβ,p)∗ . (4.16)
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We will prove Proposition 4.10 in the next section. Assuming it, we now show (4.11).
Consider the linear functional L′′ : C∞

c → R given by

L′′(ϕ) :=
∫

Rn
deg(v, Ω, y) ϕ(y) dy .

By Lemma 4.9 and (4.16), L′′ extends to a unique bounded linear functional L :
(Hβ,p)∗ → R and moreover

‖L‖(Hβ,p)∗∗ ≤ C‖v‖
n
p−β

C0,α .

By reflexivity L is represented by an element u ∈ Hβ,p such that ‖u‖Hβ,p = ‖L‖(Hβ,p)∗∗ .
This means∫

Rn
u(y)ϕ(y) dy = L′′(ϕ) =

∫
Rn

deg(v, Ω, y) ϕ(y) dy

for every ϕ ∈ C∞
c . Since however both deg(v, Ω, ·) and u are Lp functions, they must

coincide. Hence

‖deg(v, Ω, ·)‖Hβ,p = ‖u‖Hβ,p = ‖L‖(Hβ,p)∗∗ ≤ C‖v‖
n
p−β

C0,α .

4.2.3 Proof of Proposition 4.10

In order to prove the estimate (4.16), we will invoke property (4.7) after representing
ϕ as the divergence of a suitable vector field, which is the purpose of the following
lemma.

Lemma 4.11. Let ϕ ∈ C∞
c (Rn) and assume 1 < p < n

n−1 and β ∈]0, 1[ with (1− β)p′ > n
(where p′ is the dual exponent of p). Then there exists ψ ∈ C∞ (Rn, Rn) such that

div ψ = ϕ on B2

and, setting γ = 1− β− n/p′,

‖ψ‖C0,γ(B2) ≤ C(n, γ, β, p)‖ϕ‖(Hβ,p)∗ .

Proof. First of all observe that the condition 1 < p < n
n−1 implies p′ > n so that the

condition on β makes sense. Set ζ = J2ϕ. Then ζ ∈ C∞ (Rn) satisfies

−∆ζ + ζ = ϕ on Rn (4.17)

and we claim that

‖ζ‖C1,γ(Rn) ≤ C‖ϕ‖(Hβ,p)∗ . (4.18)
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Indeed, set f = Jβ ϕ ∈ Lp′ (Rn) with ‖ f ‖Lp′ ≤ C‖ϕ‖Lp′ < +∞, and J2−β f = J2ϕ = ζ.
Observe that for any g ∈ C∞

c (Rn) with ‖g‖Lp ≤ 1 we have∫
Rn

f g dx =
∫

Rn
ϕJβg dx ≤ ‖ϕ‖(Hβ,p)∗‖Jβg‖Hβ,p ≤ ‖ϕ‖(Hβ,p)∗ .

Taking the supremum over such functions g yields ‖ζ‖H2−β,p′ ≤ ‖ϕ‖(Hβ,p)∗ . Claim (4.18)
then follows by the continuous embedding (F3).

Now fix a cutoff function η ∈ C∞
c (Rn) with η ≡ 1 on B2 and spt η ⊂ B3 and denote

by ζ̄ the classical potential theoretic solution of −∆ζ̄ = ζη. By classical estimates (cf.
[29, Chapter 4]) we get

‖∇ζ̄‖C0,γ(B2) ≤ C‖ζη‖C0,γ(B4) ≤ C‖ζ‖C1,γ(Rn) ≤ C‖ϕ‖(Hβ,p)∗ . (4.19)

Finally we set ψ := −∇(ζ̄ + ζ). Then by (4.17)

div ψ = ζ − ∆ζ = ϕ on B2 ,

and by (4.18) and (4.19)

‖ψ‖C0,γ(B2) ≤ C‖ϕ‖(Hβ,p)∗ . 2

The proof of (4.16) is now an immediate corollary of Theorem 4.5 and Lemma 4.11.

4.2.4 Proof of Corollary 4.2

Note that:

• deg (vk, Ω, ·) converges pointwise to deg (v, Ω, ·) on Rn \ v(∂Ω);

• v(∂Ω) is a Lebesgue null set;

• For any pair (β′, p) as in (4.4) with β′ > β we have a uniform bound on
‖deg (vk, Ω, ·)‖Wβ′ ,p ;

• There is R > 0 such that ‖v‖C0 , supk ‖vk‖C0 < R and thus the functions deg (vk, Ω, ·)
and deg (v, Ω, ·) all vanish outside BR(0).

Thus the strong convergence claimed in Corollary 4.2 follows from the compact embed-
ding of Wβ′,p(BR(0)) into Wβ,p(BR(0)).

4.3 proof of theorem 4 .3

To prove Theorem 4.3 we construct, for p ∈ [1, n
n−1 [ and α < p(n−1)

n , a map v ∈
C0,α (B1, Rn) with deg(v, B1, ·) /∈ Lp (Rn) by explicitly defining it on the boundary ∂B1.
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Since the support of the degree is bounded, clearly our map cannot belong to Lp∗ for
any p∗ larger than such p. Any C0,α extension of v to the whole B1 then does the job,
since the degree only depends on the values on the boundary of the domain. The image
v(∂B1) will be the union of countably many spheres Sk with decreasing radii rk. Each
sphere Sk will be circled a certain ck times in each direction. The goal is to choose the
radii rk and the number of circlings ck in such a way that v is Hölder continuous with
exponent α < p(n−1)

n , but deg(v, B1, ·) /∈ Lp (Rn).
Given p ∈ [1, n

n−1 [ we define a partition {Ik}k≥1 of the interval [−π, π[ as follows.
For k ≥ 1 define the numbers

|Ik| = c(n, p)k−
(

n−1
n + 1

p(n−1)

)
, (4.20)

where the constant c(n, p) is determined by the condition ∑
k≥1
|Ik| = 2π. The sets Ik are

then defined by

I1 =

[
−|I1|

2
,
|I1|
2

[
, and (4.21)

Ik =

[
−∑k

i=1 |Ii|
2

,
−∑k−1

i=1 |Ii|
2

[
∪
[

∑k−1
i=1 |Ii|

2
, ∑k

i=1 |Ii|
2

[
, for k ≥ 2 . (4.22)

Note that in this way the length of the set Ik coincides with the number |Ik|.
For brevity (and clarity) we introduce the following map Φ : [−π, π[×[0, π]n−2 → Rn

which is the usual (almost) parametrization of the sphere:

Φ(θ1, . . . , θn−1) = (cos θ1, sin θ1 cos θ2, . . . , sinθ1 · . . . · sin θn−2 cos θn−1,

sin θ1 · . . . · sin θn−2 sin θn−1)

The sets Ik naturally give a decomposition of the sphere ∂B1 into

Jk := Φ(Ik × [0, π]n−2) .

In the rest of the proof by a slight abuse of notation we identify Jk with Ik× [0, π]n−2 and
define v over the latter domains: the map Φ is a parametrization on [−π, π[×]0, π[n−2,
however v will be constant on the set [−π, π[×∂([0, π]n−2) and hence it will induce a
well-defined map over the sphere.

For a given α < p(n−1)
n we then choose a number

q >
αp(n− 1)2

n(p(n− 1)− αn)
(4.23)

and define the radii

rk = k−q for k ≥ 1 . (4.24)
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We then set the number of circlings to be

ck = k
qn−1

p(n−1) , (4.25)

which with an appropriate choice of q in (4.23) is a natural number for all k. For
notational convenience we introduce the reparametrization

Θ(θ) =

 2π
|I1|θ + π when θ ∈ I1

4π(ck+
1
2 )

|Ik |
θ + φk(θ) when θ ∈ Ik, k ≥ 2 ,

where φk are phases defined by

φk(θ) = π + π(2ck + 1)

(
1− sgn(θ)∑k

i=1 |Ii|
|Ik|

)
, (4.26)

which will ensure the continuity of the map.
We then introduce the centerpoints of the spheres

xk =

(r1, 0, . . . , 0) for k = 1 ,(
rk + 2 ∑k−1

i=1 ri, 0, . . . , 0
)

for k ≥ 2 .

Finally we define

v(θ1, . . . , θn−1) = xk + rkΦ (Θ(θ1), ckθ2, . . . , ckθn−1) when θ1 ∈ Ik . (4.27)

The image v(∂B1) decomposes into the union of countably many spheres Sk = v(Jk)

of radius rk and centers xk. The intersection of any Sk with Sk+1 only contains the
northpole of Sk (respectively the southpole of Sk+1), see Figure 2.

Figure 2: The map v for n = 2: it goes around S1 once and traverses every Sk 2ck + 1 times
(ck + 1/2 times on each component of Ik)
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We claim that v ∈ C0,α (∂B1, Rn). First observe that the choice of q in (4.23) implies

rk ≤
(
|Ik|
ck

)α

. (4.28)

Indeed, this equation is equivalent to

k−q ≤ k−α
(

n−1
n + qn

p(n−1)

)
,

which is satisfied whenever

q
(

1− αn
p(n− 1)

)
>

α(n− 1)
n

,

i.e.

q >
αp(n− 1)2

n(p(n− 1)− αn)
.

But inequality (4.28) guarantees the desired Hölder regularity. To see this, we first fix
the angles θ2, . . . , θn−1 and consider variations only in the first variable. To this end we
let

u(θ) = v(θ, θ2, . . . , θn−1) for θ ∈ [−π, π[ ,

fix θ, θ̃ ∈ [−π, π[ and consider the following cases.

1. θ, θ̃ ∈ Ik for some k ≥ 1. If |θ − θ̃| ≥ |Ik |
2(ck+1/2) =

|Ik |
2ck+1 , then

|u(θ)− u(θ̃)|
|θ − θ̃|α

≤ 2rk

(
|Ik|

2ck + 1

)−α

≤ C ,

by (4.28). If however |θ − θ̃| < |Ik |
2ck+1 , then

|u(θ)−u(θ̃)| ≤
4πrk(ck +

1
2 )

|Ik|
|θ− θ̃| ≤

4πrk(ck +
1
2 )

|Ik|

(
|Ik|

2ck + 1

)1−α

|θ− θ̃|α ≤ C|θ− θ̃|α .

2. θ ∈ Ik+1, θ̃ ∈ Ik for some k ≥ 1. If |θ − θ̃| ≥ |Ik|, then

|u(θ)− u(θ̃)|
|θ − θ̃|α

≤ 4rk

|Ik|α
≤ C .

If however |θ − θ̃| < |Ik| then they lie in adjacent intervals and we can compare

with the endpoint θ∗ =
sgn(θ)∑k

i=1 |Ii |
2 to get

|u(θ)− u(θ̃)|
|θ − θ̃|α

≤ |u(θ)− u(θ∗)|
|θ − θ∗|α

+
|u(θ̃)− u(θ∗)|
|θ̃ − θ∗|α

≤ C .
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3. θ ∈ Ik+j, θ̃ ∈ Ik for some k ≥ 1 and j ≥ 2. Clearly |θ − θ̃| ≥ 1
2 ∑

j−1
i=1 |Ik+i| so

|u(θ)− u(θ̃)|
|θ − θ̃|α

≤ 2α ∑
k+j
i=k 2ri(

∑
j−1
i=1 |Ik+i|

)α ≤ 21+α

(
rk + rk+j

|Ik+1|α
+

j−1

∑
i=1

ri

|Ik+i|α

)

≤ C

(
rk

|Ik|α
+

∞

∑
i=1

c−α
i

)
≤ C(p, α) ,

if q is chosen large enough.

The proof of the Hölder regularity is now complete in the case n = 2. In the more
general case some extra care is needed: a similar computation yields the Hölder
regularity in the variable θi for every i = 2, . . . , n− 1 but one must take into account
that the map Φ is not really a parametrization of the sphere. We leave the details to the
reader.

To compute the degree we introduce the natural extension ṽ : [0, 1]× [−π, π[×[0, π]n−2

→ Rn with

ṽ(r, θ1, . . . , θn−1) = xk + r · rkΦ (Θ(θ1), ckθ2, . . . , ckθn−1) when θ1 ∈ Ik , (4.29)

Then ṽ ([0, 1]× Jk) is a ball Bk with boundary ∂Bk = Sk. Fix a y ∈ Im(ṽ) \ ṽ(∂B1). Then
there exists a unique k ∈N such that y ∈ Bk. We can therefore parametrize y by

y = xk + r · rkΦ(φ1, . . . , φn−1),

for some r ∈ [0, 1], φi ∈ [0, π] for i = 1, . . . , n− 2 and φn−1 ∈ [0, 2π[. By definition the
degree is then given by

deg(ṽ, B1, y) = ∑
x∈ṽ−1(y)

sgn detDṽ(x) .

By the chain rule and the usual expression for the spherical volume element we get for
a point x = (r̃, θ1, . . . , θn−1) with ṽ(x) = y

detDṽ(x) = rn
k (r · ck)

n−1 4π(ck +
1
2 )

|Ik|
sinn−2(Θ1(θ1)) sinn−3 (ckθ2) · . . . · sin (ckθn−2) ,

hence we have to investigate the sign of the sines. To this end we observe that
ṽ(r̃, θ1, . . . , θn−1) = y if and only if

r̃ = r

Θ(θ1) = φ1 + 2πm1 for m1 ∈N∩ [ 1
2 −

φ1
2π , 2ck +

3
2 −

φ1
2π ]

ckθ2 = φ2 + 2πm2 for m2 = 1, . . . , ck
...

...

ckθn−1 = φn−1 + 2πmn−1 for mn−1 = 1, . . . , ck .

(4.30)
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Since for i = 1, . . . , n− 2 the angles φi satisfy 0 ≤ φi ≤ π this implies that sgn detDv(x) =
1 for any x ∈ ṽ−1(y). Consequently, with the help of (4.30) we conclude

deg(ṽ, B1, y) = #v−1(y) ≥ 2cn−1
k .

From this in turn we deduce∫
Rn
|deg(ṽ, B1, y)|p dy ≥ C ∑

k≥1
rn

k cp(n−1)
k = C ∑

k≥1
k−1 = +∞ ,

by the choice of rk and ck in (4.24) and (4.25) respectively. To conclude the proof
we extend v by keeping its C0,α norm to the whole B1, and are left with a map
v ∈ C0,α (B1, Rn) such that deg(v, B1, ·) = deg(ṽ, B1, ·) /∈ Lp (Rn).





5
T O WA R D S A R I G I D I T Y T H E O R E M I N C 1 , 1/2+ δ

As mentioned in the introduction, Borisov managed to prove the validity of the rigidity
theorem of the Weyl problem (Theorem 1.2) for C1,2/3+δ isometric embeddings. The key
point of his proof is in fact the following statement.

Theorem 5.1. Let (M2, g) be a surface with C2 metric with positive Gaussian curvature and
let u ∈ C1,α(M, R3) be an isometric embedding with α > 2

3 . Then u(M) is a surface with
bounded extrinsic curvature in the sense of Pogorelov.

Recall that, if u is regular enough, the Gaussian curvature of u(M) can be defined as
the area distortion of the Gauss map N. In a weak sense, this is a well-defined object
even if the immersion is merely a C1 map, because in this case N is continuous. The
surface u(M) is then said to have bounded extrinsic curvature in the sense of Pogorelov
if this weak area distortion is bounded. More precisely (see p.590 in [50]):

Definition 5.2. Let Ω ⊂ R2 be open and u ∈ C1(Ω, R3) an immersion. The surface
u(Ω) has bounded extrinsic curvature in the sense of Pogorelov if there exists a constant
C > 0 such that

M

∑
i=1
|N(Ei)| ≤ C

for every finite collection {Ei}M
i=1 of pairwise disjoint closed subsets of Ω.

Using geometric arguments, in the series of papers [2–5] Borisov proved Theorem
5.1, which thanks to the works of Pogorelov and Sabitov (see [50], [52]) leads to the
aforementioned extension of the rigidity theorem.

Note that if u ∈ C3 is an isometric immersion of a 2-dimensional surface in R3 one
can compute the area distortion of the Gauss map from the Riemann-curvature tensor,
which in turn depends only on the metric. Even if the metric g is smooth, this identity
is in general false if the isometry is not regular enough, as shown precisely by the
Nash-Kuiper theorem. As described in the introduction, in [17] the authors show that,
for C1,2/3+δ isometric embeddings, the Gauss theorem can be expressed in the integral
formula (1.6), which we recall here

∫
V

f (N(x))κg(x) dArea(x) =
∫

S2
f (y)deg(N, V, y) dy .

From this change of variables formula, Theorem 5.1 follows easily.

57
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As mentioned in Chapter 4, Olbermann and Züst have recently (and independently)
proved in [48] and [59] that the degree of a planar C1/2+δ map (on a sufficiently regular
domain) is in fact an L1 function, which for the moment only allows a weaker version
of (1.6), namely a version where V is assumed to be sufficiently regular and the test
function f is identically 1:∫

V
κ(x) dA(x) =

∫
S2

deg(N, V, y) dσ(y) ∀ Lipschitz open V ⊂ M. (5.1)

From here, to extend the validity of Theorem 5.1 to C1,1/2+δ isometric embeddings, one
is faced with the problem considered in Conjecture 1.6:

Let Ω ⊂ R2 be a smooth, bounded open set and let N ∈ C0,α (Ω, R2) be a Hölder
continuous function such that∫

R2
deg(N, A, y) dy ≥ 0 for every open A ⊂ Ω with H1 (∂A) < ∞ . (5.2)

Show that, if α is big enough, property (5.2) implies that deg(N, A, y) ≥ 0 for all open
A ⊂ Ω and all y ∈ R2 \N(∂A). Here,H1 denotes the 1-dimensional Hausdorff measure.
In this chapter, we show that the previous statement is true for α > 2

3 , i.e. we prove the
following theorem.

Theorem 5.3. Let α ∈] 2
3 , 1[ and suppose N ∈ C0,α(Ω, R2) satisfies (5.2). Then deg(N, A, y) ≥

0 for all open A ⊂ Ω and all y ∈ R2 \ N(∂A).

We note here that in the setting where N is the Gauss map of an isometric embedding,
Theorem 5.3 is a direct consequence of [17]. However, the proof heavily exploits
this additional structure through the formula (1.6). Theorem 5.3 thus shows that the
additional structure is not necessary.

5.1 proof of theorem 5 .3

The proof of Theorem 5.3 is based on the observation that for α > 2
3 we can find a

change of variables formula analoguous to (1.6). Assume for a moment that N ∈ C1

and consider the 1-form µ = N1dN2. The classical change of variables formula then
gives ∫

U
ψ(N) dµ =

∫
U

ψ(N(x))detdN(x) dx =
∫

R2
ψ(y)deg(N, U, y) dy . (5.3)

In the following proposition we show that for α > 1
2 there exists a Radon measure µ

which (distributionally) acts in the same way as N1dN2 (cf. also Lemma 5.14).

Proposition 5.4. If α > 1
2 and if N ∈ C0,α(Ω, R2) satisfies (5.2) then there exists a unique

Radon measure µ : B (Ω)→ [0,+∞[ such that

µ(A) =
∫

R2
deg(N, int(A), y) dy (5.4)
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whenever A ∈ B(Ω) satisfies dimb(∂A) ≤ 1.

Here int(A) is the topological interior of the set A and we recall that the upper
box-counting dimension is defined as

dimb(∂A) = lim
r→0

log Nr

− log r
, (5.5)

where Nr can be chosen to be the number of closed cubes of a mesh of R2 of width
r > 0 which intersect ∂A. Moreover, we understand deg( f , ∅, ·) ≡ 0.

The next proposition then shows that for α > 2
3 the change of variables formula (1.6)

holds with respect to the measure µ.

Proposition 5.5. Let α > 2
3 and U ⊂ Ω open. Then, for any ψ ∈ C∞

c
(
R2 \ N(∂U)

)
, we have

∫
U

ψ(N) dµ =
∫

R2
ψ(y)deg(N, U, y) dy . (5.6)

Theorem 5.3 now follows easily: assume, by contradiction, that there exists U ⊂ Ω
open and y0 ∈ N(U) \ N(∂U) with deg(N, U, y0) < 0. Let D be a disk centered at y0

such that D̄ ∩ N(∂U) = ∅, and let ψ ∈ C∞
c
(
R2) be a bump function with ψ ≡ 0 on

R2 \ D. Since the degree is constant on connected components of R2 \ N(∂U) we have
deg(N, U, y) < 0 for all y ∈ D. However, since ψ ∈ C∞

c
(
R2 \ N(∂U)

)
we can apply

Proposition 5.5 to get the contradiction

0 ≤
∫

U
ψ(N) dµ =

∫
R2

ψ(y)deg(N, U, y) dy < 0 ,

finishing the proof of Theorem 5.3. The rest of this chapter is therefore dedicated to
proving Propositions 5.4 and 5.5.

5.2 preliminary results

In this section we gather some preliminary results needed in the proofs of Proposition
5.4 and 5.5.

For a continuous function v : Ω→ R2 and a subset V ⊂ Ω the function deg(v, V, ·) :
R2 \ v(∂V) → Z denotes the Brouwer degree of v|V . We recall that it is constant on
connected components of R2 \ v(∂V) and invariant under homotopy; as a consequence
deg(vk, V, ·) converges pointwise to deg(v, V, ·) whenever vk → v uniformly. We recall
the following estimates of the L1 norm of the degree, which follow from the proof of
Theorem 4.5 and are needed in the proofs of both propositions.

Theorem 5.6. Let V ⊂ R2 be a bounded, open set and v ∈ C0,α′ (V, R2). Then∫
R2\v(∂V)

|deg(v, V, y)| dy ≤ C(α′)[v]2C0,α′ (V,R2)

∫
V

dist(x, ∂V)2α′−2 dx . (5.7)
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In particular, if dimb(∂V) < 2α′ then deg(v, V, ·) ∈ L1 (R2) with

‖deg(v, V, ·)‖L1(R2) ≤ C(α′, V)[v]2C0,α′ (V,R2)
. (5.8)

The following proposition is needed to make sense of integrals of functions against
the measure µ = N1dN2. Its proof is postponed to the appendix (see Section A.2).

Proposition 5.7. Let α ∈]0, 1[ and let U ⊂ R2 be an open, bounded set with d := dimb(∂U) <

2− α. Then the bilinear operator BU : C0,1 (Ū)× C0,α (Ū)→ R defined by

BU( f , g) =
∫

U

∂ f
∂xi

g dx

satisfies the estimate

|BU( f , g)| ≤ C(α, β, d)[ f ]C0,β(Ū)‖g‖C0,α(Ū) , (5.9)

for any β ∈ ]1− α, 1]. Hence, for any such β, it has a unique continuous extension to a bilinear
operator B̄U : C0,β(Ū)× C0,α(Ū)→ R. If, in addition, U is a Lipschitz domain then also∣∣∣∣∫

∂U
g d f

∣∣∣∣ ≤ C(α, β, U)[ f ]C0,β(∂U)‖g‖C0,α(∂U) . (5.10)

Lastly, we need the following technical estimate, which exploits the quadratic struc-
ture of the problem.

Lemma 5.8. Let U ⊂ R2 be open and bounded, α > 1
2 , ε > 0 and M ≥ 1. Let f , g ∈ C0,α (Ū)

and assume ψ ∈ C∞
c (U) is such that

[ψ]C1,γ(Ū) ≤ Mεα−γ−1

for every γ ∈ [0, α[. Then, for any 1
2 < β < α,∣∣∣∣∫U

dψ ∗ ϕε ∧ gd f −
∫

U
dψ ∧ g ∗ ϕεd f ∗ ϕε

∣∣∣∣ ≤ C(α, β)Mε3α−2β−1‖ f ‖C0,α(Ū)‖g‖C0,α(Ū) ,

(5.11)

where the first integral is understood in the sense of Proposition 5.7.

Also this lemma is proved in the appendix (see Section A.3). We are now ready for
the proof of Proposition 5.4.
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5.3 proof of proposition 5 .4

Consider the family of subsets

R = {A ⊂ Ω : dimb(∂A) ≤ 1} .

Since R is closed with respect to set differences and finite unions it is a ring. We now
define the set-function µ : R → [0,+∞] by

µ(A) =
∫

R2
deg(N, int(A), y) dy . (5.12)

Observe that, since dimH(B) ≤ dimb(B) for all sets B for which the inequality makes
sense, property (5.2) implies that µ ≥ 0. We need the following result (a proof of which
is given in Lemma 4.7).

Lemma 5.9. If A ⊂ Ω has dimb(∂A) < 2α then N(∂A) has Lebesgue measure zero.

With this result at hand we can prove the following

Lemma 5.10. For every A, B ∈ R we have

µ(A) = µ(A ∩ B) + µ(A \ B) . (5.13)

In particular, µ is monotone, finitely sub-additive and finitely additive on disjoint sets.

Proof. For any A, B ∈ R, the sets int(A ∩ B), int(A \ B) are open, disjoint subsets of
int(A). Since

Ā \ (int (A ∩ B) ∪ int (A \ B)) = ∂A ∪ A ∩ ∂B ⊂ ∂A ∪ ∂B

it follows from Lemma 5.9 that

|N (Ā \ (int (A ∩ B) ∪ int (A \ B))) | = 0 .

Therefore, by the excision property of the degree,

deg(N, int(A), y) = deg(N, int (A ∩ B) , y) + deg (N, int (A \ B) , y) ,

almost everywhere, which gives (5.13). 2

Proposition 5.4 readily follows from the following lemma and Carathéodory’s exten-
sion theorem (see for example Theorem 3 in Chapter 5 of [18]).

Lemma 5.11. If Ai ∈ R for i ∈ N are pairwise disjoint and such that A :=
⋃∞

i=1 Ai ∈ R,
then

µ(A) =
∞

∑
i=1

µ(Ai) .
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To prove the latter statement we need the following

Lemma 5.12. For every A ∈ R and every ε > 0 we can find an open set O ∈ R and a compact
set C ∈ R such that C ⊂ A ⊂ O and

µ(A \ C) + µ(O \ A) < ε . (5.14)

We give a proof of this lemma in the next subsection. With it we can now prove
Lemma 5.11.

Proof of Lemma 5.11. For i ∈ N, fix pairwise disjoint sets Ai ∈ R such that A :=⋃∞
i=1 Ai ∈ R. By monotonicity and finite additivity it follows

µ(A) ≥
M

∑
i=1

µ(Ai)

for every M ∈N and hence also in the limit. We are therefore left to show the reverse
inequality. Fix ε > 0. Since A ∈ R we can find a compact set C ∈ R, contained in A,
with µ(A \ C) < ε. Moreover, for every i ∈ N, we can choose an open set Oi ∈ R,
containing Ai and satisfying µ (Oi \ Ai) < ε2−i. Consequently, {Oi}i∈N is an open cover
of the compact set C and therefore has a finite subcover O1, . . . , OM. Using the finite
subadditivity and the monotonicity of µ we can conclude

µ(A) ≤ µ(C) + ε ≤
M

∑
i=1

µ(Oi) + ε ≤ 3ε +
∞

∑
i=1

µ(Ai) .

Letting ε→ 0 finishes the proof. 2

5.3.1 Proof of Lemma 5.12

We need the following observation.

Lemma 5.13. If Qr ⊂ Ω is a cube of sidelength r > 0 then

µ(Qr) ≤ C(Ω, α, N)r2α .

Proof. This follows, by scaling, from estimate (5.8). Indeed, since Ω is open, we can find
a largest cube Q ⊂ Ω. Let R > 0 and x0 ∈ Ω be the sidelength and the center of Q
respectively. Let Qr be any other cube in Ω and let x1 be its center. We define the map
Ñ : Q̄→ R2 by

Ñ(x) = N
(

r
x− x0

R
+ x1

)
.

It then follows that

‖deg(N, int(Qr), ·)‖L1(R2) = ‖deg(Ñ, int(Q), ·)‖L1(R2) ≤ C(Q, α)[Ñ]2C0,α(Q)

= C(Q, α, R)r2α[N]2C0,α(Qr)
≤ C(Ω, α, N)r2α . 2
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We are now ready to prove Lemma 5.12. Fix any A ∈ R. The case when int(A) = ∅ is
trivial, so assume int(A) 6= ∅. Since Ω is open and A ⊂ Ω we have dist (A ∩ ∂A, ∂Ω) =

δ > 0. Fix any r < 1√
2
δ and consider a mesh of R2 composed of closed cubes of

sidelength r. Let Q1, . . . , QMr be the cubes intersecting A ∩ ∂A. By the choice of r we
have Qi ⊂ Ω for all i = 1, . . . , Mr. Moreover, since dimb(∂A) = 1 it follows that Mr ≤ 1

r .
Now set

Or = int

(
A ∪

Mr⋃
i=1

Qi

)
.

The set Or is clearly open and belongs to R. Moreover, it contains A. Indeed, every
x ∈ A ∩ ∂A is by construction contained in at least one of the cubes Qi. If x ∈ ∂Qi for
some i then x ∈ ∂Qj for either one or three other cubes Qj. In each case x is contained
in the interior of the union of these cubes, hence A ⊂ Or.

Now, since Or \ A ⊂ int
(⋃Mr

i=1 Qi

)
, we get, with repeated use of (5.13),

µ(Or \ A) ≤ µ

(
Mr⋃
i=1

Qi

)
=

Mr

∑
i=1

µ(Qi) .

Lemma 5.13 then gives

µ(Or \ A) ≤ C(Ω, α, N)Mrr2α ≤ Cr2α−1 .

Since α > 1
2 , O := Or for r suitably small satisfies the required properties.

The set compact set C is constructed entirely similar:

Cr = A \
Mr⋃
i=1

Qi ,

where now, however, Q1, . . . , QMr are the closed cubes of an r−width mesh of R2

intersecting all of ∂A. Cr is clearly compact, contained in A and, arguing as before, for
a given ε > 0 we find µ(A \ Cr) < ε for r small enough. Setting C := Cr finishes the
proof.

5.4 proof of proposition 5 .5

Now that the existence of the measure µ is proved we want to show that it behaves
distributionally in the same way as N1dN2.

Lemma 5.14. Assume U is an open subset of Ω and f ∈ C∞
c (Ω \ ∂U). Then, if α > 1

2 ,∫
U

f dµ = −
∫

U
d f ∧ N1dN2 . (5.15)
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Proof. We first prove (5.15) for a standard, radially symmetric mollifier ϕ ∈ C∞
c (U). Let

Nk ∈ C∞(Ω) be a sequence converging to N in C0,β for some 1
2 < β < α.

By Proposition 5.7 (observe that we don’t need any restriction on dimb(∂U) since
supp(ϕ) ⊂ U) it holds∫

U
dϕ ∧ N1dN2 = lim

k→∞

∫
U

dϕ ∧ Nk
1 dNk

2 .

Rewriting the latter integral and using the co-area formula (more specifically Theorem
3.11 in [26]) gives∫

U
dϕ∧Nk

1 dNk
2 =

∫
U

Nk
1〈∇Nk

2 ,∇⊥ϕ〉 dx =
∫ max ϕ

0

(∫
{ϕ=s}

Nk
1

〈
∇Nk

2 ,
∇⊥ϕ

|∇ϕ|

〉
dH1

)
ds ,

where H1 denotes the one-dimensional Hausdorff measure and ∇⊥ϕ =
(
− ∂ϕ

∂x2 , ∂ϕ
∂x1

)
is

the rotated gradient of ϕ. Considering the set {ϕ = s} as the boundary of {ϕ > s} we

can see that ν = ∇ϕ
|∇ϕ| is the interior unit normal to {ϕ = s}. Consequently, T = −∇

⊥ϕ
|∇ϕ|

is the tangent field to {ϕ = s} respecting orientation induced by {ϕ > s}. Therefore∫
U

dϕ ∧ Nk
1 dNk

2 =
∫ max ϕ

0

(∫
{ϕ=s}

Nk
1

〈
∇Nk

2 ,
∇⊥ϕ

|∇ϕ|

〉
dH1

)
ds

= −
∫ max ϕ

0

(∫
{ϕ=s}

Nk
1 dNk

2

)
ds .

Next observe that if V ⊂ Ω is an open Lipschitz subset then, by Stokes’ theorem and
because of the L1-convergence of the degree granted by Theorem 4.5,

lim
k→∞

∫
∂V

Nk
1 dNk

2 = lim
k→∞

∫
V

dNk
1 ∧ dNk

2 = lim
k→∞

∫
R2

deg(Nk, V, y) dy

=
∫

R2
deg(N, V, y) dy = µ(V) .

Since {ϕ > s} are open Lipschitz sets (they are in fact open disks of some radius rs),
we would therefore like to use the dominated convergence theorem to conclude∫

U
dϕ ∧ N1dN2 = − lim

k→∞

∫ max ϕ

0

(∫
{ϕ=s}

Nk
1 dNk

2

)
ds = −

∫ max ϕ

0
µ({ϕ > s}) ds

= −
∫

U
ϕ dµ .

To do this we apply estimate (5.7) to V = {ϕ > s} for s ∈]0, max ϕ[, v = Nk and α′ = β

to find

‖deg(Nk, {ϕ > s}, ·)‖L1(R2) ≤ C[Nk]2C0,β(B̄rs )

∫
Brs

dist(x, ∂Brs)
2(β−1) dx

≤ C[N]2C0,α(Ω̄)r
2β
s

(
1

2β− 1
− 1

2β

)
≤ C(α, β, Ω)[N]2C0,α(Ω̄) .
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This uniform bound in s and k allows us to use dominated convergence to infer (5.15)
for radially symmetric mollifiers ϕ which are compactly supported in U.
Now let ϕε ∈ C∞

c (Bε) be the standard radially symmetric mollifier and consider
f ∈ C∞

c (Ω \ ∂U). If ε is small enough then also f ∗ ϕε ∈ C∞
c (Ω \ ∂U). Using Fubini we

find ∫
U

f ∗ ϕε dµ =
∫

U

(∫
Bε

f (x− z)ϕε(z) dz
)

dµ(x)

=
∫

U

(∫
U

f (y)ϕε(x− y) dy
)

dµ(x)

=
∫

U
f (y)

(∫
U

ϕε(x− y) dµ(x)
)

dy .

If ε is small enough then for every y ∈ supp( f ) ∩U we have ϕε(· − y) ∈ C∞
c (U), and

hence (5.15) holds. Therefore∫
U

f ∗ ϕε dµ = −
∫

U
f (y)

(∫
U

dϕε(· − y) ∧ N1 dN2

)
dy .

Let again Nk ∈ C∞(Ω) be a sequence converging to N in C0,β for some 1
2 < β < α and

define, for y ∈ supp( f ) ∩U,

gk(y) =
∫

U
dϕε(· − y) ∧ Nk

1 dNk
2 .

Observe that we can replace the integration domain by a smooth, open set Ũ with
supp( f ) ∩U ⊂ Ũ ⊂ U. Proposition 5.7 then implies

|gk(y)| ≤ C(α, β)‖dϕε(· − y)Nk
1‖C0,β(Ū)[N

k
2 ]C0,β(Ū) ≤ C

(
α, β, ε, ‖N‖C0,α(Ω̄)

)
.

Consequently, we can apply the dominated convergence theorem and find∫
U

f ∗ ϕε dµ = −
∫

U
lim
k→∞

f (y)gk(y) dy = − lim
k→∞

∫
U

f (y)
(∫

U
dϕε(· − y) ∧ Nk

1 dNk
2

)
dy .

Applying Fubini once again yields∫
U

f (y)
(∫

U
dϕε(· − y) ∧ Nk

1 dNk
2

)
dy =

∫
U

d
(∫

U
f (y)ϕε(· − y) dy

)
∧ Nk

1 dNk
2

=
∫

U
d ( f ∗ ϕε) ∧ Nk

1 dNk
2 ,

so that∫
U

f ∗ ϕε dµ = −
∫

U
d ( f ∗ ϕε) ∧ N1 dN2 .

Finally, thanks to Proposition 5.7, taking the limit ε→ 0 shows (5.15). 2
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With the integration by parts formula (5.15) we can now prove Proposition 5.5. Let
U ⊂ R2 open, ψ ∈ C∞

c
(
R2 \ N(∂U)

)
and set Nε = N ∗ ϕε. If ε > 0 is small enough

then dist (supp (ψ(Nε) ∗ ϕε) , ∂U) > 0 so that ψ (Nε) ∗ ϕε ∈ C∞
c (Ω \ ∂U) is a valid test

function in Lemma 5.14. Moreover, for every γ ∈ [0, α[, we can compute

[ψ (Nε)]C1,γ(Ū) ≤ Mεα−γ−1

for some constant M ≥ 1 depending on α, ‖ψ‖C2(R2) and ‖N‖C0,α(Ū,R2). Because α > 2
3

we can find 1
2 < β < α such that 3α− 2β− 1 > 0. Therefore, invoking also Lemma 5.8,

we have∫
U

ψ (N) dµ = lim
ε→0

∫
U

ψ (Nε) ∗ ϕε dµ
(5.15)
= − lim

ε→0

∫
U

d (ψ (Nε)) ∗ ϕε ∧ N1 dN2

(5.11)
= − lim

ε→0

∫
U

d (ψ (Nε)) ∧ N1 ∗ ϕε dN2 ∗ ϕε

= lim
ε→0

∫
U

ψ (Nε) dNε
1 ∧ dNε

2 .

Finally, the change of variables formula (cf Theorem 3.9. in [26]) and the local uniform
convergence of the degree imply∫

U
ψ (N) dµ = lim

ε→0

∫
R2

ψ(y)deg(Nε, U, y) dy =
∫

R2
ψ(y)deg(N, U, y) dy .
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C 1 , α I S O M E T R I C E M B E D D I N G S O F P O L A R C A P S

In this chapter we investigate a relaxed version of the Borisov–Gromov problem based
on the classical equality of the Levi-Civita connection of a smooth submanifold of Rm

and its tangential connection (i.e. the connection induced by the ambient Euclidean
space). The outcome of our investigations is that, when we consider C1,α isometric
embeddings, the Hölder exponent α0 = 1

2 is a threshold in the following sense. When
α > 1

2 and v is a C1,α isometric immersion of a C2 Riemannian manifold (Σ, g), the
Levi-Civita connection of (Σ, g) agrees with the tangential connection. Instead, for any
α < 1

2 we can produce isometric immersions for which the tangential connection differs
from the Levi-Civita connection. While we prove the first statement in full generality,
cf. Proposition 6.5, concerning the second statement we focus instead on a particular
case which, in our opinion, provides the cleanest illustration of the criticality of the
exponent α = 1

2 in Theorem 6.2 below.
Consider the standard 2-dimensional sphere as the subset S2 := {x : |x|2 = 1} ⊂ R3

and for a ∈]− 1, 1[ denote by (Σa, σ) the Riemannian manifold (with boundary) given
by

Σa = S2 ∩ {x3 ≥ a} = {x ∈ R3 : x2
1 + x2

2 + x3
3 = 1 and x3 ≥ a} , (6.1)

equipped with the standard metric σ as submanifold of R3.

Definition 6.1. We denote by I α
k (Σa) the space of isometric immersions v : Σa → R2+k

of class C1,α with the property that v(x1, x2, a) = (x1, x2, 0, . . . , 0) for all (x1, x2, a) ∈ ∂Σa.
Moreover we denote by γa the circle v(∂Σa).

We recall that 〈x, y〉 denotes the scalar product of vectors x, y ∈ Rm.

Theorem 6.2. Let X be the interior unit normal to ∂Σa in Σa and Z : γa → R2+k the unit
vector field Z(x1, x2, 0, . . . , 0) = −(1− a2)−1/2(x1, x2, 0, . . . , 0). For any element v ∈ I α

k (Σa)

let Y : γa → R2+k be the vector field v∗X. Then the following holds

(a) If α > 1
2 , −1 < a < 1, k ≥ 1 and v ∈ I α

k (Σa), then 〈Y, Z〉 = a.

(b) For any α < 1
2 , 0 < a < 1 and k ≥ 12 there is v ∈ I α

k (Σa) such that 〈Y, Z〉 > a.

The proof of part (b) follows a suitable modification of the Nash–Kuiper construction,
and hence (a) is an obstruction to the implementation of such methods, at least in
our context where a boundary condition is imposed. Note indeed that without such
restriction Källen in [41] is able to reach the threshold C1,1: our theorem implies thus

69
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that the Nash–Kuiper construction and Källen’s iteration differ in a rather nontrivial
way.

We do not expect the codimension 12 for part (b) in Theorem 6.2 to have any
geometric meaning, but we conjecture that the same holds in any codimension:

Conjecture 6.3. For any α < 1
2 and any 0 < a < 1 there is v ∈ I α

1 (Σa) such that 〈Y, Z〉 > a.

It is possible to use the same ideas of this chapter to show that indeed conclusion
(b) of Theorem 6.2 holds for every α < α0(k), where α0(k) is an explicitely computable
number. For k = 1 such threshold is 1

5 and this can be shown quickly using some of the
results of Chapter 3. We also mention here that while we were completing our work we
learned that the authors in [13] were dealing with Nash–Kuiper constructions of C1,α

isometric embeddings of Riemannian manifolds which are prescribed at the boundary,
although with a different purpose. The C1 case was first settled in [37] and it was a
source of inspiration for this work.

Concerning part (a) of Theorem 6.2, recall that in the codimension one case a much
stronger conclusion holds if α > 2

3 : in that case any v ∈ I α
1 (Σa) must be the standard

isometric embedding, namely v(Σa) = Σa, up to translations and rotations. This follows
from Borisov’s rigidity theorem (Theorem 5.1) and Pogorelov’s work (in particular
Theorem 8 on p. 650 of [50]).

6.1 rigidity : proof of theorem 6 .2 (a)

6.1.1 Preliminaries

We start by recalling some well known facts in the theory of distributions. Given a
closed interval [a, b] we will denote by C1,α

0 ([a, b]) the Banach space which is the closure
of C1,α

c (]a, b[) in C1,α([a, b]). Thus C1,α
0 ([a, b]) is the subspace of C1,α functions ϕ for

which ϕ(a) = ϕ′(a) = ϕ(b) = ϕ′(b) = 0. If h is a continuous function, we then regard
h as an element of the dual space (C1,α

0 ([a, b]))∗ after identifying it with the linear map

ϕ 7→
∫

hϕ .

Lemma 6.4. Let α > 1
2 and [a, b] ⊂ R a closed interval. Then the bilinear map

B : Cα([a, b])× C1([a, b]) 3 ( f , g) 7→ f g′ ∈ C([a, b])

extends to a unique continuous bilinear map B : Cα([a, b])× Cα([a, b])→ (C1,α
0 ([a, b]))∗.

Proof. First of all, by translating and dilating we can assume that [a, b] = [0, π]. Secondly,
every Cα function on [0, π] can be extended to a Cα periodic function on [−π, π] by
reflection, whereas every C1,α

0 function on [0, π] can be extended to a C1,α periodic
function on [−π, π] by setting it equal to 0 on [−π, 0]. The first extension maps C1
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functions into Lipschitz maps. If f ∈ L∞(S1) and g ∈ Lip(S1), then f g′ is a well defined
L∞ function on [−π, π] by Rademacher’s theorem, which in turn we can identify with
an element of (C1,α(S1))∗ by integration. On the other hand for maps ϕ ∈ C1,α(S1)

which vanish on [−π, 0] the integral
∫

f g′ϕ takes place only on [0, π]. We have thus
reduced to prove that the bilinear map

Cα(S1)× Lip(S1) 3 ( f , g) 7→ f g′ ∈ (C1,α(S1))∗

extends to a unique continuous bilinear operator B : Cα(S1)× Cα(S1) →
(
C1,α(S1)

)∗.
The uniqueness part is a consequence of the fact that for every ψ ∈ Cα(S1) we can find
a sequence of Lipschitz maps {ψk} which converge to ψ in Cβ for every β < α and such
that ‖ψk‖Cα ≤ ‖ψ‖Cα . We thus just need to show the existence of a constant C such that
the estimate∣∣∣∣∫ f g′ϕ

∣∣∣∣ ≤ C‖ f ‖Cα‖g‖Cα‖ϕ‖C1,α (6.2)

holds for every triple f ∈ Cα, g ∈ Lip and ϕ ∈ C1,α(S1). Taking the supremum over
ϕ ∈ C1,α with ‖ϕ‖C1,α ≤ 1 the latter estimate gives indeed the bound

‖B( f , g)‖(C1,α)∗ ≤ C‖ f ‖Cα‖g‖Cα ∀( f , g) ∈ Lip× Cα . (6.3)

In turn this implies the local uniform continuity of the bilinear map B, since we can
simply use the bilinearity and the triangle inequality to estimate

‖B( f , g)−B(h, k)‖(C1,α)∗ ≤ ‖ f ‖Cα‖g− k‖Cα + ‖ f − h‖Cα‖k‖Cα .

The existence and uniqueness of the continuous extension B is then an obvious fact.

We next observe that, by a standard approximation procedure, it suffices to prove the
estimate (6.2) for a triple of smooth periodic functions. Indeed we remind the reader
that, although C∞ is not dense in the strong topology of Cα (nor in that of Lip), given a
triple ( f , g, ϕ) ∈ Cα × Lip× C1,α we can find a sequence ( fk, gk, ϕk) ∈ C∞ × C∞ × C∞

such that:

• limk ‖ fk − f ‖C0 = 0 and ‖ fk‖Cα ≤ ‖ f ‖Cα ;

• g′k ⇀
∗ g′ in L∞ and ‖gk‖Cα ≤ ‖g‖Cα ;

• limk ‖ϕk − ϕ‖C0 = 0 and ‖ϕk‖C1,α ≤ ‖ϕ‖C1,α .

The conditions above are enough to infer

lim
k→∞

∫
fkg′k ϕk =

∫
f g′ϕ

and thus it suffices to show that∣∣∣∣∫ fkg′k ϕk

∣∣∣∣ ≤ ‖ fk‖Cα‖gk‖Cα‖ϕk‖C1,α .
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Fix therefore a triple f , g, ϕ ∈ C∞(S1) and let

f (x) = ∑
k∈Z

f̂keik·x (6.4)

g(x) = ∑
k∈Z

ĝkeik·x (6.5)

ϕ(x) = ∑
k∈Z

ϕ̂keik·x (6.6)

be their Fourier expansions.
We then know that the Fourier coefficients are necessarily real and that∫

f g′ϕ = ∑
(k,`)∈Z2

i(k− `) f̂` ĝk−` ϕ̂k . (6.7)

Recall next that, by Bernstein’s inequality, Cα ⊂ Hβ for every β < α, where Hβ denotes
the fractional Sobolev space Wβ,2. Thus

∑
k
(1 + |k|2β)| f̂k|2 ≤ C(α, β)‖ f ‖2

Cα ∀β < α (6.8)

∑
k
(1 + |k|2β)|ĝk|2 ≤ C(α, β)‖g‖2

Cα ∀β < α . (6.9)

We finally need the simple estimate

|ϕ̂k| ≤ C‖ϕ‖C1,α(1 + |k|)−1−α (6.10)

We are now ready to conclude and we start observing∣∣∣∣∣∑
`

i(k− `) f̂` ĝk−`

∣∣∣∣∣ ≤ |2k|1−β ∑
−k≤`≤k

|k− `|β|ĝk−`|| f̂`|

+
√

2 ∑
`≤−k,`≥k

√
|k− `|

√
|`||ĝk−`|| f̂`|

≤ |2k|1−β

(
∑

j
|j|2β|ĝj|2

)1/2(
∑

j
| f̂ j|2

)1/2

+
√

2

(
∑

j
|j||ĝj|2

)1/2(
∑

j
|j|| f̂ j|2

)1/2

≤ C(1 + |k|)1−β‖ f ‖Cα‖g‖Cα . (6.11)

Combining (6.7), (6.10) and (6.11) we then conclude∣∣∣∣∫ f g′ϕ
∣∣∣∣ ≤ C‖ f ‖Cα‖g‖Cα‖ϕ‖C1,α ∑

k
(1 + |k|)−α−β

≤ C‖ f ‖Cα‖g‖Cα‖ϕ‖C1,α , (6.12)

where we have used that, since we are free to choose any β < α and α > 1
2 , we can

impose α + β > 1, which ensures the convergence of the series ∑k(1 + |k|)−α−β. 2
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6.1.2 Connection

Consider now a C2 Riemannian manifold (Σ, g) with C2 boundary, a C2 curve γ :
[a, b]→ Σ and a C1 vector field W along γ. In local coordinates we can write

W(t) = ∑
i

W i(t)
∂

∂xi
, (6.13)

γ̇(t) = ∑
i

γ̇i(t)
∂

∂xi
. (6.14)

We then know that ∇γ̇W is given by the formula

dW i

dt
∂

∂xi
+ ∑

j,k
Γi

jk(γ) γ̇j Wk ∂

∂xi
, (6.15)

where the C1 functions Γi
jk are the Christoffel symbols of the metric g.

Let u : Σ→ Rm be a C1,α isometric immersion. The vector field u∗W = ∑ W i ∂u
∂xi

can
thus be seen as a Cα map u∗W : [a, b]→ Rm. In particular, if α > 1

2 we can use Lemma
6.4 to make sense of the scalar product〈

d
dt

u∗W,
∂u
∂x`

〉
. (6.16)

For smooth isometric immersions (6.16) and (6.15) are then related by the identity〈
d
dt
(u∗W(γ)),

∂u
∂x`

(γ)

〉
= ∑

i

(
d
dt
(W i(γ)) + ∑

j,k
Γi

jk(γ) γ̇j Wk(γ)

)
gi`(γ) . (6.17)

The latter is just the classical relation between the Levi-Civita connection and the
tangential connection. Lemma 6.4 allows not only to make sense of the left hand side
of the identity for C1,α immersions when α > 1

2 , but it also implies that, under the same
regularity assumption, the identity (6.17) remains valid.

Proposition 6.5. Let (Σ, g) be a C2 Riemannian manifold with C2 boundary, let γ : [a, b]→ Σ
be a C2 curve, let W be a C1 vector field along γ and let u : Σ→ Rm be an isometric immersion
of class C1,α for some α > 1

2 . Then (6.17) holds.

The proof of the proposition is postponed to the end of the section. We now show
how Theorem 6.2(a) follows from it.

Proof of Theorem 6.2(a). The proposition implies part (a) of Theorem 6.2 right away.
Indeed, fix a point p ∈ ∂Σa and choose local coordinates in a neighborhood U of p
so that X = ∂

∂x2
on U and ∂

∂x1
is tangent to Σa. Choose then W tangent to Σa and
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parametrize the curve γ = Σa so that d
dt v∗W = Z. If we first use (6.17) for the standard

embedding, we easily see that

∑
i

(
d
dt
(W i(γ)) + ∑

j,k
Γi

jk(γ) γ̇j Wk

)
gi2(γ) = a .

If we then use it for u = v we conclude

〈Y, Z〉 =
〈

∂v
∂x2

(γ),
d
dt
(v∗W(γ))

〉
= a . 2

In order to prove the above proposition we recall the quadratic estimate in [17,
Proposition 1.6], which follows from estimate (2.12):

Lemma 6.6 (Quadratic estimate). Let Ω ⊂ Rn be an open set, v ∈ C1,α(Ω, Rm) with
v]e ∈ C2 and ϕ ∈ C∞(Rn) a standard symmetric convolution kernel. Then, for every compact
set K ⊂ Ω

‖(v ∗ ϕε)
∗e− v∗e‖C1(K) = O(ε2α−1) .

Proof of Proposition 6.5. First observe that without loss of generality we can assume that
W is defined on the whole manifold. Secondly, observe that it suffices to prove the
identity for curves γ which lie in the interior. Consider indeed a C2 curve γ which
touches the boundary of the manifold and approximate it in C2 with a sequence of
curves γj which are contained in the interior. Then the maps W(γj) converge in C1 to
W(γ). As such, the maps u∗W(γj) are uniformly bounded in Cα and converge in Cᾱ

to u∗W(γ) for every ᾱ < α. Since we can choose ᾱ > 1
2 , Lemma 6.4 implies that the

distributions〈
d
dt
(u∗W(γj)),

∂u
∂x`

(γj)

〉
converge to the distribution〈

d
dt
(u∗W(γ)),

∂u
∂x`

(γ)

〉
. (6.18)

Moreover, obviously

d
dt
(W i(γj)) + ∑

k,`
Γi

k`(γj)γ̇
k
j W`(γj)

converge uniformly to

d
dt
(W i(γ)) + ∑

k,`
Γi

k`(γ)γ̇
kW`(γ) (6.19)
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Fix now a curve γ in the interior and a coordinate patch U compactly contained in
another coordinate patch V, both not intersecting the boundary of the manifold. We
can smooth u by convolution with a standard kernel by u ∗ ϕε. For ε small enough the
convolution is well defined on the coordinate patch U. Clearly the maps (u ∗ ϕε)∗W
and (u ∗ ϕε)∗

∂
∂xi

are uniformly bounded in Cα and converge, as ε ↓ 0, to u∗W and u∗ ∂
∂xi

in Cβ for every β < α. Choosing a β > 1
2 we apply Lemma 6.4 to conclude that the

distributions〈
d
dt
(((u ∗ ϕε)∗W)(γ)),

∂(u ∗ ϕε)

∂xi
(γ)

〉
(6.20)

converge (weakly in the sense of distributions) to (6.18). On the other hand, from
Lemma 6.6, if Γi

ε,k,` denote the Christoffel symbols of the metric (u ∗ ϕε)∗e, then we
conclude that they converge uniformly to Γi

k,`. Thus

d
dt
(W i(γ)) + ∑

k,`
Γi

ε,k,`(γ)γ̇
kW`(γ) (6.21)

converge uniformly to (6.18) and [(u ∗ ϕε)∗e]ij converges uniformly to gij. In particular,

∑
i

(
d
dt
(W i(γ)) + ∑

k,`
Γi

ε,k,`(γ)γ̇
kW`(γ)

)
[(u ∗ ϕε)

∗e]i`(γ) (6.22)

converge uniformly to the right hand side of (6.17). However, since uε is smooth, (6.20)
and (6.22) are equal by classical differential geometry. Letting ε ↓ 0 we then conclude
(6.17). 2

6.2 flexibility : proof of theorem 6 .2 (b)

The maps v violating the rigidity are produced by convex integration. Their construction
relies on the following more general theorem, the proof of which is the content of most
of the remaining sections. Recall that an immersion u is called strictly short if g− u]e is
positive definite.

Theorem 6.7. Fix two integers n ≥ 2, m ≥ n(n + 2) and a metric g ∈ C2 on B̄1 ⊂ Rn. There
exists σ̄0 > 0 such that if u ∈ C∞(B̄1, Rm) and h ∈ C∞(B̄1) are such that

h ≡ h(|x|) > 0 on B1, h(1) = 0 and h′(1) 6= 0 (6.23)

u is strictly short in B1 and (6.24)

(1− σ̄0)he ≤ g− u]e ≤ (1 + σ̄0)he in a neighborhood of ∂B1 , (6.25)
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then for every α < 1
2 , every constant x0 ∈ Rn(n+1) and every ε > 0 there exists a map

v ∈ C1,α(B̄1, Rm+n(n+1)) such that

‖v− (u, x0)‖C0(B̄1,Rm+n(n+1)) < ε ,

v = (u, x0) and ∇v = (∇u 0)ᵀ on ∂B1

g = v]e .

In addition, if u is injective then v can be chosen to be injective as well.

If we manage to construct h and u satisfying (6.23)–(6.25) and, in addition, violating
the rigidity at the boundary then we are done since the derivatives of v and u agree at
the boundary.
Fix R > 1 and consider the scaled spherical cap Σ̄R ⊂ R3 given as the image of

Φ : B̄1 → R3, where Φ(x1, x2) = (x1, x2,
√

R2 − x2
1 − x2

2 −
√

R2 − 1). We use polar

coordinates to define the map u : B̄1 → R8 by

u(r, θ) = (ϕ(r) cos θ, ϕ(r) sin θ, 0, . . . , 0) , (6.26)

where ϕ ∈ C∞([0, 1]) is a suitable reparametrization such that ϕ(0) = 0, ϕ(1) =

1, ϕ′(1) = R√
R2−1

, and, for every r ∈]0, 1[,

R2

R2 − r2 − ϕ′(r)2 > 0 , (6.27)

r2 − ϕ(r)2 > 0 . (6.28)

Observe that, once we produce such a ϕ, the map u is strictly short in B̊1 (except maybe
in the origin, where the polar coordinates are not suited to the problem) and isometric
on the boundary. Indeed, the metric induced by u is given in polar coordinates by

u]e = ϕ′2dr2 + ϕ2dθ2 ,

whereas the metric on ΣR which is induced by the inclusion into R3 reads

g =
R2

R2 − r2 dr2 + r2dθ2 .

Hence, the shortness away from the origin is given by (6.27) and (6.28) whereas the
isometry on the boundary is apparent from the values ϕ(1) and ϕ′(1). In the following,
we construct a piecewise smooth function ϕ̃ satisfying the above assumptions; smooth-
ing out the corners will then provide ϕ. We abbreviate γ := R√

R2−1
. Because R > 1 we

can fix a positive η ∈]2− γ, 1[. Since η + γ > 2 we can then find ε > 0 small enough
such that

0 < 1− ε(η + γ) +
ε2

2
(1− 1

γ
+ γ3R−2) ≤ (1− 2ε)

(
1−

(
εR−1

)2
)−1/2

, (6.29)
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as one can see by expanding (1 + x2)−1/2 around x = 0. Set

β :=
1− ε(η + γ) + ε2

2 (1− γ−1 + γ3R−2)

1− 2ε
,

and define the piecewise continous

φ(r) =


η , for r ∈ [0, ε[

β , for r ∈ [ε, 1− ε[

γ− (1− γ−1 + γ3R−2)(1− r) , for r ∈ [1− ε, 1] .

The definition of β ensures that∫ 1

0
φ(r)dr = ηε + β(1− 2ε) + ε(γ− (1− γ−1 + γ3R−2))

+
1
2
(1− γ−1 + γ3R−2)ε(2− ε)

= ε(η + γ) + (1− 2ε)β− 1
2
(1− γ−1 + γ3R−2)ε2 = 1 .

Consequently, setting ϕ̃(r) =
∫ r

0 φ(s)ds yields a continuous, piecewise smooth function
with ϕ̃(1) = 1 and ϕ̃′(1) = γ = R√

R2−1
. We claim that ϕ̃ satisfies (6.27) and (6.28).

Indeed, on ]0, ε[ this is provided by the fact that η < 1. Moreover, if ε is small enough
then β < 1 which, together with (6.29), shows the inequalites on [ε, 1− ε[. If ε is small
enough, (6.27) holds on ]1− ε, 1] since

d
dr

∣∣∣∣
r=1

(
R2

R2 − r2 − ϕ̃′(r)2
)
=

2R2

(R2 − 1)2 − 2φ(1)φ′(1)

= 2(γ4R−2 − γ(1− γ−1 + γ3R−2)) < 0 ,

and
R2

R2 − 1
− ϕ̃′(1)2 = 0 .

Finally, on [1− ε, 1] we have

ϕ̃′ ≥ γ− ε(1− γ−1 + γ3R−2) .

In particular, for ε small enough we have ϕ̃′ > 1 on [1− ε, 1]. Since ϕ̃(1) = 1, the latter
implies that ϕ̃(r) < r on [1− ε, 1[, thus concluding the proof of (6.28).

Consequently, if u is defined by (6.26) then it is isometric on ∂B1 and strictly short
in B1 \ {0}. To show that it is also strictly short in the origin we switch to euclidean
coordinates and observe that u(x1, x2) = (ηx1, ηx2, 0) if |x| < ε. Hence

g− u]e =
(

1− η2 +
x2

1
R2 − |x|2

)
dx2

1 +

(
1− η2 +

x2
2

R2 − |x|2

)
dx2

2

+ 2
x1x2

R2 − |x|2 dx1dx2 .



78 C1,α
isometric embeddings of polar caps

The shortness around the origin then again follows from η < 1. Lastly, we define

h(r) = 2(γ− 1)(1− r) .

Obviously, (6.23) is satisfied and we claim that, sufficiently close to ∂B1, also (6.25)
holds. For this we again consider the terms in polar coordinates. Expanding around
r = 1 gives

1−
( ϕ

r

)2
= 2(γ− 1)(1− r) + o(|1− r|) ,

and

R2

R2 − r2 − ϕ′2 = γ2 + 2γ4R−2(r− 1)− γ2 − 2γ(1− γ−1 + γ3R−2)(r− 1)

+ o(|r− 1|)
= 2γ(r− 1)(γ3R−2 − (1− γ−1 + γ3R−2)) + o(|r− 1|)
= 2(γ− 1)(1− r) + o(|r− 1|) .

This shows that

g− u]e− he =
(

R2

R2 − r2 − ϕ′2 − h
)

dr2 + r2
(

1−
( ϕ

r

)2
− h
)

dθ2

= o(|r− 1|)e ,

hence (6.25) is satisfied. Now fix α < 1
2 . Then Theorem 6.7 can be applied to find an

isometric immersion v = (v, w) ∈ C1,α (B̄1, R8+6) such that on ∂B1 we have ∇v = ∇u,
w = 0 and ∇w = 0.

We now consider the appropriate rescaling of the map v by R, namely v
R , which

induces an isometric embedding of Σa for a =
√

1− R−2. Since the map is an isometry,
the vector Y = v∗X has the same length as the vector X, namely |X| = 1. Observe,
moreover, that by construction such vector field is in fact parallel to the vector field Z
and it has positive scalar product with it. In particular we conclude that 〈Y, Z〉 = 1.

6.3 towards a proof of theorem 6 .7 : main iteration

The proof of Theorem 6.7 is based on the iteration scheme developed by J. Nash in [45]
to prove his counterintuitive result about the existence of C1 isometric embeddings of
n-dimensional manifolds into Euclidean space with suprisingly low codimension n + 1
(Theorem 1.3). We need to adapt the scheme in two ways. First of all, in its original
state it only produces maps which are C1. As mentioned above, the first improvement
is due to the work [17] (with which one is able to construct C1,1/1 + n(n + 1)−δ isometric
embeddings), while in Chapter 3 we showed how to improve the threshold further
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in the case of two dimensional disks. As realised by A. Källén in [41], more regular
isometric embeddings can be produced at the expense of increasing the codimension.

Secondly, the iteration process needs to keep the boundary values fixed. This can be
achieved, as done in [37], by multiplying the perturbations by cutoff functions which
are suited to the iteration scheme (see Lemma 6.11). The following proposition is the
main building block of the iteration.

Proposition 6.8. Let n ≥ 2, m ≥ n(n + 2), λ > 0 and fix an embedding ũ ∈ C∞(B̄1, Rm).
There exist constants σ0 ∈ ]0, 1

2 [, R(λ) ≥ 1, Λ(R) ≥ 1 and C0(ũ, Λ) ≥ 1 such that the
following holds. Fix c > b > 1 and

a > a0(b, c, σ0, ũ, λ, R, Λ, C0) ,

and define

δq = a−bq
, λq = acbq+1

.

Assume g̃ ∈ C2 is a metric on B̄1 with

[g̃]k ≤ C0(1 + δ1−k
1 ) for k = 0, 1, 2 , (6.30)

and suppose vq ∈ C∞(B̄1, Rm) and hq ∈ C∞(B̄1) are such that

vq = ũ on B̄1 \ B1−Rδq+1 , ‖vq − ũ‖1 < C0

q

∑
k=1

δ
1/2

k , [vq]2 ≤ C0δ
1/2
q λq , (6.31)

hq is linear on B̄1 \ B1−Rδq+1 with hq(1) = 0, h′q(1) = −λ

and Λ−1δq+1 ≤ hq ≤ Λδq+1 on B̄1−Rδq+1 , (6.32)

[hq]k ≤ C0δ1−k
q+1 for k = 0, 1, 2, 3 , and (6.33)

(1− σ0(1 + ηq))hqe ≤ g̃− v]qe ≤ (1 + σ0(1 + ηq))hqe on B̄1 , (6.34)

where ηq ∈ C∞
c (B̄1) is a radially symmetric cutoff function with ηq ≡ 0 on B̄1 \ B1−Rδq+1 ,

ηq ≡ 1 on B̄1−(R+1)δq+1
and taking values between 0 and 1 (cf. Lemma 6.11 for the definition of

the cutoffs). We can then find vq+1, hq+1, ηq+1 satisfying (6.31)–(6.34) with q replaced by q + 1
and, in addition, the following estimates hold:

‖vq+1 − vq‖0 ≤ C0
δ

1/2
q+1

λq+1
, (6.35)

[vq+1 − vq]1 ≤ C0δ
1/2
q+1 . (6.36)

6.4 proof of proposition 6 .8 : preliminaries

6.4.1 Existence of normals

The following proposition claims the existence of an orthonormal family of normal
vectorfields to the embedded surface together with the appropriate estimates (6.39). It
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is already contained in [41], but our condition on the co-dimension is less restrictive
(d ≥ 1 as opposed to d ≥ n + 1). The reason for this is that in the proof we use Lemma
A.11 in the appendix instead of Lemma 2.5 of [41]. The rest of the proof is essentially
unchanged. For the reader’s convenience we provide the details in Section A.4.1 of the
appendix.

Proposition 6.9. Let n ≥ 2, d ≥ 1, B a set diffeomorphic to the closed unit ball of Rn

and u ∈ C∞ (B, Rn+d) an immersion. There exists ρ0 ≡ ρ0(d, n, u) > 0 and constants Ck
depending only on u such that the following holds. If v ∈ C∞ (B, Rn+d) is such that

‖v− u‖C1 < ρ0 ,

then there exist ζ1(v), . . . , ζd(v) ∈ C∞ (B, Rn+d) such that for all 1 ≤ i, j ≤ d we have

〈ζi(v), ζ j(v)〉 = δij on B (6.37)

∇v · ζi(v) = 0 on B (6.38)

and

[ζi(v)]k ≤ Ck(1 + ‖v‖k+1) . (6.39)

6.4.2 Decomposition of the metric error

We use the following decomposition of the metric error, in the spirit of Lemma 2.3 in
[41]. The proof is a simple application of the implicit function theorem and is provided
in the appendix. Recall that n∗ = n(n + 1)/2.

Proposition 6.10. There exists r0 > 0 and ν1, . . . , νn∗ ∈ Sn−1 with the following property. If
τ : B̄1 → Sym+

n and {Mi}i=1,...,n∗ , {Gij}i,j=1,...,n∗ ⊂ C∞(B̄1, Symn) are such that

‖τ − Id‖0 +
n∗

∑
i=1
‖Mi‖0 +

n∗

∑
i,j=1
‖Gij‖0 < r0 ,

then there exist smooth functions c1, . . . , cn∗ : B̄1 → R with

τ(x) =
n∗

∑
i=1

c2
i (x)νi ⊗ νi +

n∗

∑
i=1

ci(x)Mi(x) +
n∗

∑
i,j=1

ci(x)cj(x)Gij(x) (6.40)

and ci(x) > r0 on B̄1, and for any Ω ⊂ B̄1

‖ci‖k,Ω ≤ Ck

(
1 + ‖τ‖k,Ω +

n∗

∑
i=1
‖Mi‖k,Ω +

n∗

∑
i,j=1
‖Gij‖k,Ω

)
. (6.41)
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6.4.3 Cutoff functions

In order to keep the boundary values the same along the iteration we will multiply the
perturbations with a suitable cutoff function. The following lemma clarifies the type of
cutoff we will use and its most important properties.

Lemma 6.11. There exist universal constants ε > 0, C ≥ 1 and a sequence of radially
symmetric cutoff functions

(
ηq
)

q∈N
⊂ C∞

c (B̄1) such that for any q ∈N we have

ηq ≡ 1 on B̄1−(R+1)δq+1
and ηq ≡ 0 on B̄1 \ B1−Rδq+1 , (6.42)

[ηq]k ≤ Cδ−k
q+1 for k ≥ 0 , (6.43)

ηq ≤ ε⇒ |∇ηᵀ
q∇ηq| ≤ Cδ−2

q+1ηq . (6.44)

Proof. Define f ∈ C0(R) by f ≡ 0 on ]−∞, 1
4 ], f ≡ 1 on [ 3

4 ,+∞[ and linear in between.
Smoothing out the corners by mollifying f with a standard mollifying kernel ϕ` with
parameter ` < 1

4 we find a function h = f ∗ ϕ` ∈ C∞(R) satisfying h ≡ 0 on ]−∞, 0]
and h ≡ 1 on [1,+∞[. Also, since h′′(r)→ 0 as r → 0, we can find ε > 0 such that

h ≤ ε⇒ (h′)2 ≤ h .

The sequence ηq is then easily constructed by setting, for x ∈ B̄1,

ηq(x) := h
(

δ−1
q+1

(
1− Rδq+1 − |x|

))
. 2

6.4.4 Parameters

To counteract the loss of derivatives appearing along the iteration we mollify the map
by convolution with a standard kernel so that we can control higher derivatives with
the mollification parameter `. However, we have to make sure that this parameter is
chosen small enough to keep the metric error (6.34) of the same size. It turns out that
the right choice is

` :=
1
C̃

δ
1/2
q+1

δ
1/2
q λq

, (6.45)

where C̃ ≥ 1 is a universal constant, depending additionally on ũ, g̃, R, Λ and C0, which
will be chosen in Lemma 6.12. In the course of the proof we will need the following
hierarchy of the parameters

δ−1
q+1 ≤ δ−1

q+2 ≤ `−1 ≤ λq+1 . (6.46)
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The first inequality is true by definition, while the second follows from

loga(δq+2`
−1) = loga

(
C̃δqδ−

1/2
q+1 δq+2λq

)
> −1

2
bq +

(
c +

1
2

)
bq+1 − bq+2

= bq
(

1
2
(b− 1) + b(c− b)

)
> 0 .

In particular, we also have

δ−
1/2

q+1 ≤ δ
1/2
q λq . (6.47)

The last inequality in (6.46) is a consequence of the following stronger estimate, which
will be needed in Section 6.7. Fix any constant Ĉ(b, c, σ0, ũ, g, λ, R, Λ, C0). Then, if
a ≥ a0(Ĉ) is chosen large enough, we have

Ĉ
δq+1

`2λ2
q+1
≤ δq+2 . (6.48)

Indeed, inserting the definition of ` we see that the inequality is satisfied if

Ĉ−1C̃−2δ−1
q λ−2

q δq+2λ2
q+1 ≥ 1 .

Taking the logarithms gives

bq (b2(2c− 1)− 2bc + 1
)
− loga

(
ĈC̃2) ≥ 0 .

Rewriting the first term, we find

bq(b− 1) (b(2c− 1)− 1)− loga
(
ĈC̃2) ≥ 0 .

This inequality is satisfied if a is chosen large enough, so that (6.48) holds.

6.5 proof of proposition 6 .8 : setup

6.5.1 Mollification

Fix a standard, symmetric mollifier, i.e. a radially symmetric, nonnegative function
ϕ ∈ C∞

c (B1) on Rn with unit integral and set ϕ`(x) = `−n ϕ(x/`). We define the
mollification parameter ` by (6.45) and set

v̄q := (vq − ũ) ∗ ϕ` + ũ , (6.49)

which mollifies the map vq while keeping the boundary value: since δ
1/2
q λq > δ−

1/2
q+1 we

have ` < 1
2 Rδq+1 if C̃ is chosen large enough, so that, thanks to (6.31), we have

v̄q = ũ on B̄1 \ B1− 1
2 Rδq+1

.
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Lastly, we set

τ :=
g̃− v̄]qe

hq
−

δq+2

hq
e . (6.50)

Observe that τ is well defined and smooth on every open Ω which is compactly
contained in B1. We gather a few important estimates on v̄q and τ in the next

Lemma 6.12. If C̃(ũ, Λ, C0), a0(C0, Λ) and R(λ) are chosen large enough and if σ0 > 0 is
chosen small enough, then, for k = 0, 1, 2, we have

[v̄q]k+1 ≤ C(1 + δ
1/2
q+1`

−k) , (6.51)

[v̄]qe− v]qe ∗ ϕ`]k ≤ C`2−k[vq]
2
2 , (6.52)

|τ − e| ≤ r0

2
on B̄1−Rδq+2 , (6.53)

|Dkτ| ≤ C`−k on B̄1−Rδq+2 , (6.54)

for some constant C depending on ũ and Λ.

Proof. First observe that if a0(C0) is large enough we get ‖vq‖1 ≤ C(ũ). Therefore, using
again (6.31) and the mollification estimates from Lemma 2.3,

[∇v̄q]k = [∇vq ∗ ϕ`]k + [∇(ũ− ũ ∗ ϕ`)]k ≤ C(ũ)(1 + `1−k[vq]2) + C`1−k[ũ]2

≤ C(ũ)(1 + δ
1/2
q+1`

−k) ,

if C̃(C0) is large enough. For the second estimate we compute

∇v̄ᵀq∇v̄q = ∇(vq ∗ ϕ`)
ᵀ∇(vq ∗ ϕ`) +∇(ũ− ũ ∗ ϕ`)

ᵀ∇(ũ− ũ ∗ ϕ`)

+ 2sym
(
∇(vq ∗ ϕ`)

ᵀ∇(ũ− ũ ∗ ϕ`)
)

,

where we recall the notation sym(A) = 1
2 (A + Aᵀ). This gives

[v̄]qe− v]qe ∗ ϕ`]k ≤ C(ũ)
(
[(vq ∗ ϕ`)

]e− v]qe ∗ ϕ`]k + [ũ− ũ ∗ ϕ`]k+1

+
(
[ũ− ũ ∗ ϕ`]k+1 + [vq ∗ ϕ`]k+1

)
[ũ− ũ ∗ ϕ`]1

)
≤ C(ũ)

(
`2−k[vq]

2
2 + `2−k[ũ]3 + (1 + `1−k[vq]2)`

2[ũ]3
)

≤ C(ũ)`2−k[vq]
2
2 .

We will prove the estimates (6.53) and (6.54) separately on B̄1−Rδq+2 \ B1− 1
2 Rδq+1

and on
B̄1− 1

2 Rδq+1
. Since on the former we have v̄q = ũ = vq, and consequently

τ − e =
g̃− v]qe− hqe

hq
−

δq+2

hq
e ,
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it follows with (6.34) and hq ≥ λRδq+2 that

|τ − e| ≤ Cσ0 + C
1

λR
≤ r0

2

if σ0 is small and R(λ) large enough. By (6.34) we have the pointwise estimate

|g̃− v]qe| ≤ C|hq| ,

so that with the help of (6.30) and (6.33)

|∇τ| ≤ C

(
|∇(g̃− v]qe)|

hq
+
|∇hq|

hq

)
≤ C(ũ)C0δ−1

q+2 ,

and similarly

|D2τ| ≤ C

 |D2hq|
hq

+
|∇hq|

(
|∇hq|+ |∇(g̃− v]qe)|

)
h2

q
+
|D2(g̃− v]qe)|

hq


≤ C(ũ)C0

(
δ−1

q+1δ−1
q+2 + δ−2

q+2 + δ−1
q+1δ−1

q+2

)
≤ C(ũ)C0δ−2

q+2 .

Observe that, if C̃ ≥ C0 then C0δ−k
q+2 ≤ `−k for k = 1, 2, thanks to (6.46). This shows

(6.54) on B̄1−Rδq+2 \ B1− 1
2 Rδq+1

. To show the estimates on B̄1− 1
2 Rδq+1

we write

|τ − e| ≤ C
δq+2

Λ−1δq+1
+

1
hq

∣∣(g̃− v]qe− hqe) ∗ ϕ` + (v]qe ∗ ϕ` − v̄]qe)

+ (hq ∗ ϕ` − hq)e + (g̃− g̃ ∗ ϕ`)
∣∣

≤ r0

8
+

C
hq

(
σ0|hq ∗ ϕ`|+ `2([vq]

2
2 + [hq]2 + [g̃]2)

)
≤ r0

8
+ Cσ0 +

C`2

hq

(
C2

0δqλ2
q + C0δ−1

q+1 + C0(2 + σ0)δ
−1
q+1

)
.

Hence we have

|τ − e| ≤ r0

4
+ C

C2
0

C̃2Λ−1
≤ r0

2

if σ0 is chosen small and C̃(Λ, C0) as well as a(Λ) are large enough. This fixes the choice
of C̃. For (6.54) we estimate

[g̃− v̄]qe]k ≤ [(g̃− v]qe) ∗ ϕ`]k + [g̃− g̃ ∗ ϕ`]k + [v]qe ∗ ϕ` − v̄]qe]k

≤ C(ũ)
(
`−k‖g̃− v]qe‖0 + `2−k([g̃]2 + [vq]

2
2)
)
≤ C(ũ, Λ)δq+1`

−k .



6.5 proof of proposition 6 .8 : setup 85

Hence, with the help of (2.7) we get the following estimate on B̄1− 1
2 Rδq+1

|Dkτ| ≤ C
(

Λδ−1
q+1[g̃− v̄]qe]k

+ [hq]k
(

Λ2δ−2
q+1 + (Λδq+1)

k−1(Λ−1δq+1)
−k−1

) (
‖g̃− v̄]qe‖0 + δq+2

) )
≤ C(ũ, Λ)

(
`−k + C0δ−k

q+1

)
≤ C(ũ, Λ)`−k . 2

6.5.2 Decomposition

Our goal in constructing vq+1 is to add the (rescaled) metric error τ by an ansatz of the
form

vq+1 = v̄q +
n∗

∑
k=1

ak

λq+1

(
sin(λq+1νk · x)ζ1

k + cos(λq+1νk · x)ζ2
k

)
, (6.55)

where νk ∈ Sn−1, ak are smooth coefficients and where ζ1
k , ζ2

k are smooth, mutually
orthogonal unit vector fields which are normal to v̄q. We compute

∇vq+1 = ∇v̄q +
n∗

∑
k=1

ak

(
cos(λq+1νk · x)ζ1

k ⊗ νk − sin(λq+1νk · x)ζ2
k ⊗ νk

)
︸ ︷︷ ︸

=:Ak

+
n∗

∑
k=1

ak

λq+1

(
sin(λq+1νk · x)∇ζ1

k + cos(λq+1νk · x)∇ζ2
k

)
︸ ︷︷ ︸

=:Bk

+
n∗

∑
k=1

1
λq+1

(
sin(λq+1νk · x)ζ1

k + cos(λq+1νk · x)ζ2
k

)
︸ ︷︷ ︸

=:Ck

∇ak , (6.56)

so that (in coordinates) the induced metric is

∇vᵀq+1∇vq+1 = ∇v̄ᵀq∇v̄q +
n∗

∑
k=1

a2
kνk ⊗ νk + 2

n∗

∑
k=1

ak

λq+1
sym(∇v̄ᵀq Bk)

+ 2
n∗

∑
i,j=1

aiaj

λq+1
sym(Aᵀ

i Bj) + 2
n∗

∑
i,j=1

aiaj

λ2
q+1

sym
(

Bᵀ
i Bj
)

+ 2
n∗

∑
i,j=1

ai

λ2
q+1

sym(Bᵀ
i Cj∇aj) +

n∗

∑
k=1

1
λ2

q+1
∇aᵀk∇ak . (6.57)

The usual practice is to decompose the metric error g̃− v̄]qe into a sum of the form
∑n∗

k=1 a2
kνk ⊗ νk and hence the ansatz (6.55) allows the addition of the metric error up to

remainders which are (if λq+1 is chosen large) very small. However, as realized in [41],
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a better convergence rate is achieved if only the last three terms of (6.57) are treated
as error terms. Consequently, one needs a slightly subtler decomposition, which is
provided by Proposition 6.10 once we know that the boxed terms are small enough.
This is the content of Lemma 6.13 once we have found suitable normal vectors ζ1

k , ζ2
k .

But this is an easy task thanks to Proposition 6.9, once we require a(ũ, C0) to be so large
that C0 ∑

q
k=1 δ

1/2
q < ρ0(ũ), where ρ0 is given by Proposition 6.9. Then, since

‖v̄q − ũ‖1 = ‖(vq − ũ) ∗ ϕ`‖1 ≤ ‖vq − ũ‖1 < ρ0(ũ) ,

Proposition 6.9 provides an orthonormal family {ξi(v̄q)}m−n
i=1 ⊂ C∞(B̄1, Rm) of vector

fields which are normal to v̄q and enjoy the estimates

|Dkξi| ≤ C(ũ) on B̄1−Rδq+2 \ B1− 1
2 Rδq+1

(6.58)

|Dkξi| ≤ C(ũ)(1 + δ
1/2
q+1`

−k) on B̄1− 1
2 Rδq+1

, (6.59)

for k = 0, 1, 2, thanks to (6.51). We next define

ζ1
i := ξi , ζ2

i := ξn∗+i , for i = 1, . . . , n∗ , (6.60)

which is possible in view of m− n ≥ n(n + 2)− n = 2n∗.
Finally, we let ν1, . . . , νn∗ be the vectors given by Proposition 6.10, define Ak, Bk and

Ck as in (6.56), let η := ηq+1 be one of the cutoff functions constructed in Lemma 6.11

and set

Mi :=
2

h1/2
q λq+1

sym
(
∇v̄ᵀq Bi

)
(6.61)

Gij :=
2

λq+1
sym

(
Aᵀ

i Bj
)
+

2
λ2

q+1
sym

(
Bᵀ

i (Bj + Cj∇η)
)

+
2

h1/2
q λ2

q+1

sym
(

Bᵀ
i Cj∇h1/2

q

)
+

δij

λ2
q+1
∇ηᵀ∇η +

2δij

h1/2
q λ2

q+1

sym
(
∇ηᵀ∇h1/2

q

)
+

δij

hqλ2
q+1
∇(h1/2

q )ᵀ∇h1/2
q . (6.62)

We are now ready to estimate the various terms.

Lemma 6.13. For a(b, c, ũ, λ, R, C0) large enough there exists a constant C > 0 (depending
only on ũ and Λ) such that for k = 0, 1, 2

|Dk Ai|+ |DkCi| ≤ Cλk
q+1 on B̄1−Rδq+2 , (6.63)

|DkBi| ≤ Cδ
1/2
q+1`

−1λk
q+1 on B̄1− 1

2 Rδq+1
and

|DkBi| ≤ Cλk
q+1 on B̄1−Rδq+2 \ B1− 1

2 Rδq+1
, (6.64)

|Dk Mi|+ |DkGij| ≤ C`−1λk−1
q+1 on B̄1−Rδq+2 . (6.65)
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Proof. Since the vectors νk are constant, the estimate for Ai and Ci is (up to a constant)
the same:

|DkCi| ≤ C
(

λk
q+1 + [ζ

j
i ]k
)
≤ C

(
λk

q+1 + C(ũ)δ1/2
q+1`

−k
)
≤ Cλk

q+1 ,

where we have used λq+1 ≥ `−1 and a(ũ) large enough. The estimate for Bi follows
from

|DkBi| ≤ C(λk
q+1[ζ

j
i ]1 + [ζ

j
i ]k+1)

using (6.58) and (6.59) respectively. Since hq ≥ Rλδq+2 ≥ δq+2 on B̄1−Rδq+2 and hq ≥
Λ−1δq+1 on B̄1− 1

2 Rδq+1
we get, using (2.7),

|Dk+1h1/2
q | ≤ C(Λ)C0δ−k

q+1

(
δ−

1/2
q+1 + δk

q+1δ−
1/2−k

q+1

)
≤ C(Λ)C0δ−

1/2−k
q+1

on B̄1− 1
2 Rδq+1

, and

|Dk+1h1/2
q | ≤ C(λ, R)C0δ−k

q+1

(
δ−

1/2
q+2 + δk

q+1δ−
1/2−k

q+2

)
≤ C(λ, R)C0δ−

1/2−k
q+2

on B̄1−Rδq+2 \ B1− 1
2 Rδq+1

. Now, combining (6.64) and the previous two estimates,

|Dk Mi| ≤
C

λq+1

(
[h−1/2

q ]k‖Bi‖0 + |h−1/2
q |

(
[v̄q]k+1‖Bi‖0 + |DkBi|

))
≤ C(ũ, Λ)

λq+1

(
C0δ−

1/2−k
q+1 δ

1/2
q+1`

−1 + `−1(1 + δ
1/2
q+1`

−k) + `−1λk
q+1

)
≤ C(ũ, Λ)

λq+1`

(
C0δ−k

q+1 + δ
1/2
q+1`

−k + λk
q+1

)
≤ C(ũ, Λ)`−1λk−1

q+1

on B̄1− 1
2 Rδq+1

, where we used that C0δ−k
q+1 ≤ λk

q+1 for a(b, c, C0) big enough. On the other
hand, on B̄1−Rδq+2 \ B1− 1

2 Rδq+1
we have

|Dk Mi| ≤
C(ũ, g)

λq+1

(
C(λ, R)C0δ−

1/2−k
q+2 + δ−

1/2
q+2 λk

q+1

)
≤ C(ũ, g)δ−1/2

q+2 λk−1
q+1 ,
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where again, a(b, c, λ, R, C0) is chosen so large that C(λ, R)C0δ−k
q+2 ≤ λk

q+1. Similarly, on
B̄1− 1

2 Rδq+1
, we find

|DkGij| ≤ Cδ
1/2
q+1`

−1λk−1
q+1 + Cδq+1`

−2λk−2
q+1

+
C(ũ, Λ, C0)

λ2
q+1

(
δ−

1/2−k
q+1 δ

1/2
q+1`

−1 + `−1
(

λk
q+1δ−

1/2
q+1 + δ−

1/2−k
q+1

))
+

C(ũ, Λ, C0)

λ2
q+1

(
δ−1−k

q+1 δ−1
q+1 + δ−1

q+1δ−1−k
q+1

)
≤ Cδ

1/2
q+1`

−1λk−1
q+1 +

C(ũ, Λ, C0)

λ2
q+1

(
δ−k

q+1`
−1 + δ−

1/2
q+1 `

−1λk
q+1 + δ−2−k

q+1

)
≤ C(ũ, Λ)δ

1/2
q+1`

−1λk−1
q+1 ,

where we used that ∇η = 0 in this region and that C(C0)δ
−1
q+1 ≤ C(C0)`−1 ≤ λq+1 for

a(b, c, C0) large enough. Lastly, we check the region B̄1−Rδq+2 \ B1− 1
2 Rδq+1

:

|DkGij| ≤ C(ũ)λk−1
q+1 +

C(ũ)
λ2

q+1

(
λk

q+1δ−1
q+2 + δ−k−1

q+2

)
+

C(λ, R, C0)

λ2
q+1

(
δ−1−k

q+2 + δ−
1/2

q+2

(
δ−

1/2
q+2 λk

q+1 + δ−
1/2−k

q+2

))
+ Cδ−k−2

q+2 λ−2
q+1 +

C(λ, R, C0)

λ2
q+1

(
δ−

1/2−k
q+2 δ−

3/2
q+2 + δ−

1/2
q+2 δ−k−3/2

q+2

)
+

C(λ, R, C0)

λ2
q+1

(
δ−k−1

q+2 δ−1
q+2 + δ−1

q+2δ−1−k
q+2

)
≤ C(ũ)λk−1

q+1 + C(λ, R, C0)δ
−2−k
q+2 λ−2

q+2 ≤ C(ũ)`−1λk−1
q+1 ,

where we used C(λ, R, C0)δ
−1
q+2 ≤ C(λ, R, C0)`−1 ≤ λq+1. 2

Hence, if a is chosen large enough, we have

‖τ − e‖0 + ∑
i
‖Mi‖0 + ∑

i,j
‖Gij‖0 < r0 ,

where the norms are intended on B̄1−Rδq+2 . Proposition 6.10 thus yields smooth functions
c1, . . . , cn∗ : B̄1−Rδq+2 → R, such that

τ = ∑
i

c2
i νi ⊗ νi + ∑

i
ci Mi + ∑

i,j
cicjGij , (6.66)

ci > r0 on B̄1−Rδq+2 and for k = 0, 1, 2

‖ci‖k ≤ C(ũ, Λ)
(

1 + `−k + `−1λk−1
q+1

)
≤ C(ũ, Λ)

(
1 + `−1λk−1

q+1

)
. (6.67)
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6.6 proof of proposition 6 .8 : perturbation

Finally, we pick η := ηq+1 from Lemma 6.11, set ak := ηh1/2
q ck where the ck’s are the

functions found in the previous step, and define vq+1 as in (6.55). Observe that, although
ck is only defined in B̄1−Rδq+2 , ak can be continued smoothly to B̄1 by setting it equal to
zero. Also, vq+1 = v̄q = ũ on B̄1 \ B1−Rδq+2 . Then, by (6.57) we find

∇vᵀq+1∇vq+1 = ∇v̄ᵀq∇v̄q + η2hq

n∗

∑
k=1

c2
kνk ⊗ νk + 2ηhq

n∗

∑
k=1

ck

h1/2
q λq+1

sym
(
∇v̄ᵀq Bk

)
+ 2η2hq

n∗

∑
i,j=1

cicj

λq+1

(
sym

(
Aᵀ

i Bj
)
+

1
λq+1

sym
(

Bᵀ
i Bj
))

+ 2ηhq

n∗

∑
i,j=1

cicj

λ2
q+1

sym
(

Bᵀ
i Cj∇η

)
+ hq

n∗

∑
k=1

c2
k

λ2
q+1
∇ηᵀ∇η

+ 2η2hq

n∗

∑
i,j=1

cicj

h1/2
q λq+1

sym
(

Bᵀ
i Cj∇h1/2

q

)
+ η2hq

n∗

∑
k=1

c2
k

hqλ2
q+1

(
∇h1/2

q

)ᵀ
∇h1/2

q

+ 2ηhq

n∗

∑
k=1

c2
k

h1/2
q λ2

q+1

sym
(
∇ηᵀ∇h1/2

q

)
+ E1 ,

where we have set

E1 := 2η2hq

n∗

∑
i,j=1

ci

λ2
q+1

sym
(

Bᵀ
i Cj∇cj

)
+ 2ηh1/2

q

n∗

∑
k=1

ci

λ2
q+1

sym
(
∇
(

ηh1/2
q

)ᵀ
∇ci

)
+ η2hq

n∗

∑
k=1

1
λ2

q+1
∇cᵀk∇ck .

Hence we can write

∇vᵀq+1∇vq+1 = ∇v̄ᵀq∇v̄q + η2hq

(
n∗

∑
k=1

ckνk ⊗ νk +
n∗

∑
k=1

ck Mk +
n∗

∑
i,j=1

cicjGij

)
+ E1 + E2 ,

with

E2 := η(1− η)hq

 n∗

∑
k=1

ck Mk + 2
n∗

∑
k=1

c2
k

h1/2
q λ2

q+1

sym
(
∇ηᵀ∇h1/2

q

)
+ 2η(1− η)hq

n∗

∑
i,j=1

cicj

λ2
q+1

sym
(

Bᵀ
i Cj∇η

)
+ (1− η2)hq

n∗

∑
k=1

c2
k

λ2
q+1
∇ηᵀ∇η .
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Recalling (6.66) and the definition of τ in (6.50), we can see that

v]q+1e = v̄]qe + η2
(

g̃− v̄]qe− δq+2e
)
+ E1 + E2 ,

and consequently

g̃− v]q+1e = g̃− v̄]qe− η2(g̃− v̄]qe− δq+2e)− E1 − E2

= (1− η2)(g̃− v]qe) + η2δq+2e− E1 − E2 ,

where we used that v̄q = vq whenever 1− η2 > 0. We now define

hq+1 :=
1− σ2

0 (1 + η)

1− σ2
0 (1 + η)2

(1− η2)hq +
η2

1− σ2
0 (1 + η)2

δq+2 . (6.68)

We have hq+1 = hq on B̄1 \ B1−Rδq+2 granting linearity and |h′q+1(1)| = λ. Since σ0 < 1
2

we find that on B̄1−Rδq+2 \ B1−(R+1)δq+2
we have

hq+1 ≥
1
2
(1− η2)hq + η2δq+2 ≥

1
2

λRδq+2(1− η2) + η2δq+2

=
1
2

λRδq+2 + η2δq+2(1−
1
2

λR) =: f (|x|) .

The function f is monotonically increasing since λR > 2. Hence hq+1 ≥ f ≥ f (0) = δq+2.
This bound holds obviously also on B̄1−(R+1)δq+2

. Moreover, a rough estimate gives

hq+1 ≤ (1− η2)hq +
1

1− 4σ2
0

δq+2 ≤ (R + 1)λδq+2 + 2δq+2 ≤ 2(R + 1)λδq+2

≤ Λδq+2

provided σ0 is small enough and Λ(R) big enough, which settles (6.32). To show (6.33)
we define

Φ(x) =
1− σ2

0 (1 + x)
1− σ2

0 (1 + x)2
(1− x2) , Ψ(x) =

x2

1− σ2
0 (1 + x)2

,

and write

hq+1 = Φ(η)hq + Ψ(η)δq+2 .

Since σ0 < 1
2 one finds constants Ck such that

[Φ]k + [Ψ]k ≤ Ck , k ∈N .

Then (6.33) is a consequence of Proposition 2.1 and estimates (6.43).
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6.7 proof of proposition 6 .8 : conclusion

6.7.1 Error estimation

Lastly, we need to check if, once a is chosen large enough, (6.34) is satisfied with q
replaced by q + 1. First of all, we show that the upper bound is true by using (6.34) to
write

g̃− v]q+1e ≤ (1− η2)(1 + σ0)hqe + η2δq+2e− E1 − E2

= (1 + σ0(1 + η))hq+1e

+ (1− η2)(1 + σ0)hqe + η2δq+2e− E1 − E2 − (1 + σ0(1 + η))hq+1e︸ ︷︷ ︸
=:E

.

Hence, the task is to show that E ≤ 0. First of all, on B̄1 \ B1−Rδq+2 we have η ≡ 0 and
hq+1 = hq resulting in E = 0. On B̄1−Rδq+2 we compute

E = (1− η2)(1 + σ0)hqe + η2δq+2e− E1 − E2

−
(

1− σ2
0 (1 + η)

1− σ0(1 + η)
(1− η2)hqe +

η2

1− σ0(1 + η)
δq+2e

)
=

(
1 + σ0 −

1− σ2
0 (1 + η)

1− σ0(1 + η)

)
(1− η2)hqe +

(
1− 1

1− σ0(1 + η)

)
η2δq+2e

− E1 − E2

=
−σ0η

1− σ0(1 + η)
(1− η2)hqe− σ0(1 + η)η2

1− σ0(1 + η)
δq+2e− E1 − E2 .

Since hq ≥ λRδq+2 whenever 1− η2 > 0 we can conclude that

−σ0(1− η2)

2(1− σ0(1 + η))
hqe− σ0(1 + η)η

1− σ0(1 + η)
δq+2e ≤ −C(σ0, λ, R)δq+2e ,

for some C(σ0, λ, R) > 0. Using the estimates of Lemma 6.13 and (6.67) we find the
pointwise estimate

|E1| ≤ C(λ, Λ, R)
δq+1

λ2
q+1`

2
η .

For a large enough it therefore follows from (6.48) that

E ≤ η

(
C(λ, Λ, R)

δq+1

λ2
q+1`

2
e− C(σ0, λ, R)δq+2e

)
− σ0η(1− η2)

2(1− σ0(1 + η))
hqe− E2

≤ − σ0η(1− η2)

2(1− σ0(1 + η))
hqe− E2 .
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To estimate this final term we recall from (6.44) that there exists ε > 0 such that
|∇ηᵀ∇η| ≤ Cδ−2

q+2η whenever η ≤ ε. Consequently, when η ≤ ε we can estimate

|E2| ≤ C(λ, R)η(1− η)hq

(
`−1λ−1

q+1 + δ−2
q+2λ−2

q+1

)
≤ C(λ, R)η(1− η)

hq

`2λ2
q+1

,

so that

E ≤ η(1− η)hq

(
C(λ, R)
`2λ2

q+1
e− σ0

2
e

)
≤ 0 ,

if a(σ0, λ, R) is large enough. On the other hand, when η ≥ ε, then

E ≤ η(1− η)hq

(
C(λ, R)
`2λ2

q+1
e− σ0

4
e

)

+ (1− η2)hq

(
n∗

∑
k=1

c2
k

λ2
q+1
|∇ηᵀ∇η|e− σ0η

4(1− σ0(1 + η))
e

)
≤ C(1− η2)hq

(
δ−2

q+2λ−2
q+1e− σ0ε

4
e
)
≤ 0 ,

if a(σ0, ε) is large enough. Recall in particular that ε does not depend on q, hence we
can choose a depending on ε. This proves the upper bound in (6.34). The lower bound
is proven analoguously.

6.7.2 Estimates on vq+1

First of all, on B̄1 \ B1−Rδq+2 we have vq+1 = ũ = vq. On the other hand, on B̄1−Rδq+2 we
can estimate, for k = 0, 1, 2,

[v̄q − vq]k ≤ C`2−k[vq]2 + C`2−k[ũ]2 ≤ δ
1/2
q+1`

1−k ,

if C̃ in the definition (6.45) of ` is large enough. Moreover, combining the estimates of
Lemma 6.13 with estimates (6.43), (6.59) and (6.67) we can estimate

[vq+1 − v̄q]k ≤
C

λq+1

(
[ηh1/2

q ci]k + C(ũ, Λ)δ
1/2
q+1λk

q+1

)
≤

C(ũ, Λ)δ
1/2
q+1

λq+1

(
δ−k

q+2 + C0δ−k
q+2 + `−1λk−1

q+1 + λk
q+1

)
≤ C(ũ, Λ)δ

1/2
q+1λk−1

q+1 ≤ C0δ
1/2
q+1λk−1

q+1 .

This concludes the proof of the proposition.
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6.8 proof of theorem 6 .7

6.8.1 First approximation

Let σ0 > 0 from Proposition 6.8 be given and assume that σ̄0 < 1
2 σ0. Suppose that

g, u satisfy (6.23) and (6.25) and fix an α < 1
2 and a constant x0 ∈ Rn(n+1). We choose

c > b > 1 such that α < 1
2bc . For any a big enough we now want to construct

maps v0, h0 satisfying the assumptions (6.31)-(6.34) for the metric g̃ = g− w]e, where
w ∈ C∞

(
B̄1, Rn(n+1)

)
is a suitable map constructed below in (6.74). Then Proposition

6.8 can be applied iteratively to generate a sequence vq ∈ C∞ (B̄1, Rm) converging in
C1,α to a map v inducing the metric g̃. Setting v = (v, w) will then yield the wanted
isometric map. First of all, we need to do a first approximation to get into the range of
assumption (6.34).

Lemma 6.14. Let m ≥ n + 2, σ̃0 ∈]0, 1
4 [ and assume u ∈ C∞(B̄1, Rm) and h ∈ C∞(B̄1)

satisfy (6.23)–(6.25) with σ̄0 replaced by σ̃0. There exist δ̄ > 0 and Λ̄ > 1 (depending only on
σ̃0 and h) such that for any positive δ < δ̄ there exist ũ ∈ C∞(B̄1, Rm), h̃ ∈ C∞(B̄1) with

(1−σ̃0(2 + η))h̃e ≤ g− ũ]e ≤ (1 + σ̃0(2 + η))h̃e , (6.69)

ũ = u on B̄1 \ B1−δ , (6.70)

h̃(1) = 0 and h̃ is linear on B̄1 \ B1−δ , (6.71)

Λ̄−1δ ≤ h̃ ≤ Λ̄δ on B̄1−δ , (6.72)

‖Dk h̃‖C0(B̄1)
≤ Cδ1−k for k = 0, 1, 2, 3 , (6.73)

where η is a suitable, radially symmetric, smooth cutoff function with η ≡ 1 on B̄1−2δ and
η ≡ 0 on B̄1 \ B1−δ and the constant C in (6.73) depends only on |h′(1)|. In addition, ũ can be
chosen to be arbitrarily close to u in C0.

We postpone the proof of this lemma until the end of this section and now show
how to conclude the Theorem 6.7 from it. Firstly, choose σ̃0 = σ̄0 and fix some δ < δ̄ to
find first approximations ũ, h̃ satisfying (6.69)–(6.73). We then set λ := |h̃′(1)|, choose
some a > a0(b, c, ũ, σ0, λ, R, Λ, δ) big enough to satisfy (R + 1)δ1 < δ, where we recall
δq = a−bq

. To start the iterative process we now would like to find maps v0, h0 satisfying
(6.31)–(6.34). In particular, v0 will have to satisfy ‖v0 − ũ‖1 < ρ0(ũ) in order to find
the normal vectorfields with the help of Proposition 6.9. A perturbation like the one
used in the proof of Proposition 6.8 would produce a map v0 satisfying most of the
needed conditions, however we could only control ‖v0 − ũ‖1 ≤ Cδ1/2. Since Cδ1/2

might be bigger than ρ0(ũ) such a perturbation is not sufficient. The solution, which
unfortunately comes at the expense of increasing the codimension, is to perturb the
metric instead: we set v0 = ũ and find a metric g̃ of the form g̃ = g− w]e such that
g̃− ũ]e is very small. It is then not difficult to find h0 such that v0, h0 and g̃ satisfy
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(6.30)–(6.34). Note that this idea is used in Nash’s second work [46] on isometric
embeddings.

To construct the map w we define

τ =
g− ũ]e

h̃
− δ1

h̃
e .

If R is big and σ̃0 is small enough we can decompose τ on B̄1−Rδ1 , since

|τ − e| ≤ Cσ̃0 +
C

Rλ
< r0 .

Here, we assumed that a(Λ̄) is taken large enough to guarantee Λ̄−1δ ≥ λRδ1. We can
then also compute

|Dkτ| ≤ C(g, ũ)δ−k
1 ,

for k = 1, 2, 3. Hence, by Proposition 6.10 we find ν1, . . . , νn∗ ∈ Sn−1 and c1, . . . , cn∗ ∈
C∞ (B̄1−Rδ1) with

τ = ∑ c2
i νi ⊗ νi ,

and, for k = 0, 1, 2, 3,

|Dkci| ≤ C|Dkτ| ≤ C(g, ũ)δ−k
1

as well as the improved estimates, for k = 1, 2, 3,

|h̃1/2Dkci| ≤ C(g, ũ)δ1/2−k
1 .

6.8.2 Perturbation

Fix a cutoff η0 given by Lemma 6.11, pick a constant x0 ∈ Rn(n+1) and define

w = x0 +
n∗

∑
k=1

η0h̃1/2ck

µ
(sin(µx · νk)ek + cos(µx · νk)en∗+k) , (6.74)

where ei ∈ Rn(n+1) is the i−th standard basis vector and µ > 1 will be chosen later. We
compute

∇w =
n∗

∑
k=1

η0h̃1/2ck (cos(µx · νk)ek ⊗ νk − sin(µx · νk)en∗+k ⊗ νk)

+
1
µ

n∗

∑
k=1
∇
(

η0h̃1/2ck

)
(sin(µx · νk)ek + cos(µx · νk)en∗+k) ,
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so that

∇wᵀ∇w = η2
0 h̃

n∗

∑
k=1

c2
kνk ⊗ νk +

1
µ2

n∗

∑
k=1
∇
(

η0h̃1/2ck

)ᵀ
∇
(

η0h̃1/2ck

)
.

Now we define g̃ = g− w]e,

h0 =
1− σ2

0 (2 + η0)

1− σ2
0 (2 + η0)2

(1− η2
0)h̃ +

η2
0

1− σ2
0 (2 + η0)2

δ1 ,

and we claim that g̃, v0 and h0 satisfy the assumptions of Proposition 6.8.

6.8.3 Final estimates to start the iteration

First of all, since v0 = ũ the assumptions (6.31) are trivially satisfied once a(ũ, C0) is
large enough. Now since |g− ũ]e| ≤ Cδ1 whenever ∇η0 6= 0 (thanks to (6.69)), we can
estimate for k = 1, 2, 3

|Dk
(

η0h̃1/2ck

)
| ≤ C(g, ũ, Λ)δ

1/2−k
1 ,

so that for k = 1, 2

|Dk
(

w]e
)
| ≤ C(g, ũ)δ1−k

1 +
C(g, ũ, Λ)

µ2 δ−k−1
1 ≤ C(g, ũ, Λ)δ1−k

1 ,

if µ ≥ δ−1
1 . Consequently, (6.30) is satisfied. With the same reasoning as in the proof of

Proposition 6.8 we can conclude (6.32) and (6.33) and also (6.34) if

µ = Ĉδ−1
1

for a large enough constant Ĉ depending on g, ũ, ε and σ0. Moreover, we can achieve

‖w− x0‖0 <
ε

2
,

if Ĉ is large enough.

6.8.4 Conclusion

We can now apply Proposition 6.8 iteratively to generate the sequence vq. Because of
the estimate (6.36) the sequence converges in C1 to a map v which satisfies, since we
can pass to the limit in (6.34), v]e = g̃. Lastly, we can estimate

‖vq+1 − vq‖1,α ≤ C‖vq+1 − vq‖1−α
1 [vq+1 − vq]

α
2 ≤ Cδ

1/2
q+1λα

q+1 = Ca−1/2bq(1−2αbc) .

Since α < 1
2bc the sequence converges in C1,α and consequently v ∈ C1,α. Setting

v = (v, w) then concludes the proof of the main theorem. We are therefore left to
proving Lemma 6.14.
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6.8.5 Proof of Lemma 6.14

Let r > 0 be such that

(1− 2σ̃0)h′(1)(|x| − 1)e ≤ (g− u]e)x ≤ (1 + 2σ̃0)h′(1)(|x| − 1)e (6.75)

for all x ∈ B̄1 \ B1−r. Since u is strictly short and B̄1−r is compact we can find ρ̄ > 0
such that

g− u]e > ρ̄e on B̄1−r .

Fix ρ such that

2ρ max{1, ((2σ̃0 − 1)h′(1))−1} < min{r, ρ̄} .

With this choice we have

g− u]e ≥ ρe on B̄1−δ ,

where we set δ = ρ max{1, ((2σ̃0 − 1)h′(1))−1}. Since (g− u]e− ρ
2 e)(B̄1−δ) is compact

there exist M nonnegative smooth functions a1, . . . , aM ∈ C∞(B̄1−δ) and unit vectors
ν1, . . . , νM ∈ Sn−1 such that

g− u]e− ρ

2
e =

M

∑
i=1

a2
i νi ⊗ νi , (6.76)

on B̄1−δ (see for example Lemma 1 in [54]). Fix a radially symmetric cutoff η ∈ C∞(B̄1)

such that

η ≡ 1 on B̄1−2δ , (6.77)

η ≡ 0 on B̄1 \ B1−δ , (6.78)

‖η(k)‖0 ≤ Ckδ−k for k ≥ 0 , (6.79)

(η′)2 = o(η) as η → 0 , (6.80)

Such a function can be constructed in the same way as in Lemma 6.11. We now use a
Nash twist to construct ũ, i.e. for k = 0, . . . , M we define iteratively u0 := u and

uk = uk−1 +
ηak

λk
(sin(λkx · νk)ζ

1
k + cos(λkx · νk)ζ

2
k) ,

where λk > 1 are large frequencies to be chosen and ζ1
k , ζ2

k ∈ C∞(B̄1, Rm) are orthogonal
unit vector fields which are normal to uk−1 and are provided by Lemma A.11. Finally
we set ũ := uM. ũ is smooth and because of the properties of η we certainly have ũ = u
on B̄1 \ B1−δ. To compute the induced metric we note that

∇uk = ∇uk−1 + ηak(cos(λkx · νk)ζ
1
k ⊗ νk − sin(λkx · νk)ζ

2
k ⊗ νk)

+ O
(

λ−1
k

)
(η +∇η) (6.81)
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Consequently

∇uᵀ
k∇uk = ∇uᵀ

k−1∇uk−1 + η2a2
kνk ⊗ νk + O

(
λ−1

k

)
(η +∇ηᵀ∇η) . (6.82)

Remembering (6.76), we therefore find

g− ũ]e = g− u]e +
M

∑
k=1

(
u]

k−1e− u]
ke
)
= (1− η2)(g− u]e) + η2 ρ

2
e

− (η +∇ηᵀ∇η)
M

∑
k=1

O
(

λ−1
k

)
︸ ︷︷ ︸

=:E

.

We now set

h̃(x) =
1− 2σ̃2

0 (2 + η)

1− σ̃2
0 (2 + η)2

(1− η2)h′(1)(|x| − 1) +
η2

1− σ̃2
0 (2 + η)2

ρ

2
.

Then h̃ ∈ C∞(B̄1) and (6.71) follows directly. Moreover , one can write

h̃(x) = Φ(η)h′(1)(|x| − 1) + Ψ(η)ρ ,

for the two rational functions

Φ(x) =
1− 2σ̃2

0 (2 + x)
1− σ̃2

0 (2 + x)2
(1− x2) , Ψ(x) =

x2

2− 2σ̃2
0 (2 + x)2

.

Since σ̃0 ∈]0, 1
4 [, one easily finds a constant C ≥ 1 such that

[Φ]Ck([0,1]) + [Ψ]Ck([0,1]) ≤ C , k = 0, 1, 2, 3 . (6.83)

Hence,

h̃ ≤ C(|h′(1)|δ + ρ) ≤ Λ̄δ ,

everywhere and

h̃ ≥ (1− η2)h′(1)(|x| − 1) + η2 ρ

2
≥ |h′(1)|δ + η2(

ρ

2
− |h′(1)|δ) ≥ ρ

2
≥ Λ̄−1δ

on B̄1−δ for a suitably chosen Λ̄ depending only on h and σ̃0. Hence (6.72) is satisfied
as well, while (6.73) follows with the help of Proposition 2.1 in view of (6.79) and (6.83).
It therefore remains to show (6.69). On B̄1 \ B1−δ it is implied by (6.75). If we choose λk
so big that ‖E‖0 < σ̃0ρ, then on B̄1−2δ one finds

g− ũ]e− h̃e =
9σ̃2

0 ρ

2(1− 9σ̃2
0 )

e− E ≤ 2− 9σ̃2
0

2(1− 9σ̃2
0 )

σ̃0ρe ≤ 2σ̃0h̃e ,
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and similarly

g− ũ]e− h̃e ≥ −2σ̃0h̃e .

We are left with the set B̄1−δ \ B1−2δ. Observe that

(1− σ̃0(2 + η))h̃−(1− 2σ̃0)(1− η2)h′(1)(|x| − 1)

=

(
1− 2σ̃2

0 (2 + η)

1 + σ̃0(2 + η)
− (1− 2σ̃0)

)
(1− η2)h′(1)(|x| − 1)

+
η2

1 + σ̃0(2 + η)

ρ

2

=
−σ̃0η

1 + σ̃0(2 + η)
(1− η2)h′(1)(|x| − 1) +

η2

1 + σ̃0(2 + η)

ρ

2
,

and similarly

(1 + σ̃0(2 + η))h̃−(1 + 2σ̃0)(1− η2)h′(1)(|x| − 1)

=
σ̃0η

1− σ̃0(2 + η)
(1− η2)h′(1)(|x| − 1) +

η2

1− σ̃0(2 + η)

ρ

2
,

Remembering (6.75) we find

g− ũ]e ≤ (1 + σ̃0(2 + η))h̃e− (1 + σ̃0(2 + η))h̃e

+ (1 + 2σ̃0)(1− η2)h′(1)(|x| − 1)e + η2 ρ

2
e + C(η + |η′|2)|E|e

= (1 + σ̃0(2 + η))h̃e + C(η + |η′|2)|E|e

− η

(
σ̃0(1− η2)

1− σ̃0(2 + η)
h′(1)(|x| − 1)e +

σ̃0(2 + η)

1− σ̃0(2 + η)
η

ρ

2
e
)

and also

g− ũ]e ≥ (1− σ̃0(2 + η))h̃e− C(η + |η′|2)|E|e

+ η

(
σ̃0(1− η2)

1 + σ̃0(2 + η)
h′(1)(|x| − 1)e +

σ̃0(2 + η)

1 + σ̃0(2 + η)
η

ρ

2
e
)

.

Now, because of (6.80) we can find ε such that

|η′|2 ≤ η for η ≤ ε .

Then, on the region where η > ε, we have

η

(
σ̃0(1− η2)

1− σ̃0(2 + η)
h′(1)(|x| − 1)e +

σ̃0(2 + η)

1− σ̃0(2 + η)
η

ρ

2
e
)
≥ C(ε)e ,
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and consequently, choosing λk big enough, we find

(1− σ̃0(2 + η))h̃e ≤ g− ũ]e ≤ (1 + σ̃0(2 + η))h̃e .

On the other hand, when η ≤ ε, it holds

g− ũ]e ≤ (1 + σ̃0(2 + η))h̃e− η
( σ̃0(1− η2)

1− σ̃0(2 + η)
h′(1)(|x| − 1)e

+
σ̃0(2 + η)

1− σ̃0(2 + η)
η

ρ

2
e− C|E|e

)
≤ (1 + σ̃0(2 + η))h̃e− η (C(ε)e− C|E|e) ≤ (1 + σ̃0(2 + η))h̃e

if the λk’s are chosen large enough. The lower bound follows in the same way, conclud-
ing the proof of the lemma.





7
I N T R I N S I C V S . E X T R I N S I C PA R A L L E L T R A N S L AT I O N

In this short chapter we investigate another notion which could be helpful for a relaxed
version of the Borisov–Gromov problem: parallel translation. We define an extrinsic
version of parallel translation on n-dimensional submanifolds of Rm (where m ≥ n + 1)
and show that, if the submanifold is smooth enough, it coincides with the usual
(intrinsic) notion. In [2], Borisov introduces similar notions of parallel translation and
shows that, under certain geometric conditions, such process preserves the lengths of
vectors. In our case, it turns out that this is true whenever the submanifold is the image
of an embedding v ∈ C1,α with α > 1

2 , see (7.1).
To simplify the presentation we work in coordinates. Hence, let Ω ⊂ Rn be an

open, bounded set equipped with a smooth Riemannian metric g. Assume that v ∈
C1,α(Ω, Rm) is an isometric embedding and let γ : [0, T] → Ω be a smooth curve. Fix
a vector X̄0 ∈ Tγ(0)Ω and call X : [0, T] → TΩ the parallel translate of X̄0 along γ, i.e.
X(0) = X̄0, X(t) ∈ Tγ(t)Ω and DtX = 0, where Dt is the covariant derivative along the
curve γ, i.e. DtX(t) = ∇γ̇(t)X̃ whenever X̃ is an extension of X and ∇ is the Levi-Civita
connection induced by g. We now define a notion of parallel translation on the image
v(Ω) by discretisation. Fix k ∈N and a partition Pk = (0 = t0 < t1 < . . . < tk = T) of
[0, T]. For any point p ∈ Ω we call πp : Rm → Tv(p)v(Ω) the orthogonal (with respect
to the euclidean metric on Rm) projection.

Definition 7.1. The discrete parallel translate with respect to the partition Pk of the vector
X̄0 along γ is the vectorfield PkX̄0 : [0, T]→ Tv(Ω) defined for t ∈]ti, ti+1] by

PkX̄0(t) := πγ(t)Xi ,

where Xi is iteratively given by Xi = πγ(ti)Xi−1, X0 = dv(X̄0).

The main theorem of this chapter is then the following.

Theorem 7.2. Let α > 1
2 and suppose Pk = (0 = t0 < . . . < tk = T) is a partition such that

∆(Pk) = maxi |ti − ti−1| → 0 as k→ ∞. Then, for any t ∈ [0, T], we have

|dv(X̄0)| = lim
k→∞
|PkX̄0(t)| . (7.1)

If in addition α > 1
2 (
√

5− 1) and Pk = (0, 1
k T, . . . , k−1

k T, T), then

‖PkX̄0 − dv(X)‖C0([0,T]) → 0 as k→ ∞ . (7.2)

101
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We will give a short proof of the first assertion in the next subsection; the rest of
the chapter is then devoted to proving the second claim. The difficulty in getting a
good estimate for (7.2) is that, since v is only C1,α, the normal to the surface v(Ω) is in
general not differentiable, which prevents us from differentiating the expression and
using the equation for the parallel translate X. Instead, we mollify the embedding v by
convolution with a standard kernel ϕ` and derive the theorem on the approximated
surface v ∗ ϕ`(Ω). Then we show that when the mollification parameter ` goes to zero,
the discrete parallel translate on the mollified surface (denoted by P`

k X̄0) converges
to the corresponding PkX̄0, and moreover, the parallel translates with respect to the
metrics g` := (v ∗ ϕ`)

]e converge to X.

7.0.1 Invariance of lengths: Proof of (7.1)

In this subsection we show (7.1). Fix therefore α > 1
2 and a partition Pk with ∆(Pk)→ 0,

let X̄0 ∈ Tγ(0)Ω and fix a t ∈]0, T]. We first observe that, for any Y ∈ Rm the projection
πpY is given by

πpY = Y−
m−n

∑
j=1
〈Y, ζ j|p〉ζ j|p , (7.3)

where ζ j = ζ j(v) : Ω̄ → Rm are the normal vectorfields provided by Proposition 6.9.
We recall that they constitute an orthonormal family which is normal to v, and satisfy

[ζ j]α ≤ C(1 + [v]1,α) . (7.4)

Hence, for any i = 1, . . . , k we can write

Xi = πγ(ti)Xi−1 = Xi−1 −
m−n

∑
j=1
〈Xi−1, ζ j|γ(ti)〉ζ j|γ(ti)

and thus, as a consequence of the orthonormality,

|Xi|2 = |Xi−1|2−
m−n

∑
j=1

∣∣∣〈Xi−1, ζ j|γ(ti)〉
∣∣∣2 = |Xi−1|2−

m−n

∑
j=1

∣∣∣〈Xi−1, ζ j|γ(ti) − ζ j|γ(ti−1)〉
∣∣∣2 .

By the properties of the projection we clearly have |Xi| ≤ |X0| for any i, and with the
help of (7.4) we can estimate∣∣|Xi|2 − |Xi−1|2

∣∣ ≤ C(v) |X0| |ti − ti−1|2α .

Similarly, if we fix i such that t ∈]ti, ti+1] then∣∣|PkX̄0(t)|2 − |Xi|2
∣∣ ≤ C(v)|X0||t− ti|2α .
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From this we can infer

∣∣|PkX̄0(t)|2 − |X0|2
∣∣ ≤ C(v)|X0|

i

∑
j=0
|tj+1 − tj|2α ≤ C(v)|X0|T∆(Pk)

2α−1 ,

which shows (7.1).

7.1 discrete parallel translate

Fix a radially symmetric, nonnegative function ϕ ∈ C∞
c (B1) with unit integral and define

ϕ`(x) := `−n ϕ( x
` ). We extend the function v to v̄ ∈ C1,α(Rn, Rm) with ‖v̄‖C1,α(Rn) ≤

C‖v‖C1,α(Ω) and set v` : Rn → Rm to be v` = v̄ ∗ ϕ`. Since Ω̄ is compact we have g > δe

for some δ > 0 and we can choose ` so small that v]`e >
δ
2 e on Ω̄.

Analogously to Definition 7.1, given any partition Pk = (0 = t0 < . . . < tk = T) and
t ∈]ti, ti+1] we

P`
k X̄0(t) = π`

γ(t)X
`
i ,

where now π`
p : Rm → Tv`(p)v`(Ω) is the orthogonal projection, and X`

i are iteratively
given by X`

i = π`
γ(ti)

X`
i−1, X`

0 = dv`(X̄0). Moreover, we let X` : [0, T] → TΩ be the

parallel translate of the vector X̄0 ∈ Tγ(0)Ω along the curve γ with respect to the
connection induced by the metric g` := v]`e|Ω̄. Set M := ‖v‖C1,α(Ω̄). We then get the
following.

Lemma 7.3. For any α > 0 and any subdivision Pk we have

‖P`
k X̄0 − dv`

(
X`
)
‖C0([0,T]) ≤ C(γ, g, M)|X̄0|`α−1∆(Pk)

α ,

where, as above, ∆(Pk) = maxi |ti − ti−1|.

Proof. Let ` > 0. We fix global coordinates (x1, . . . , xn) on Ω and write the parallel trans-
late X` in these coordinates as X`(t) = Xi

`(t)
∂

∂xi |γ(t) (using the summation convention).
The coefficients Xi

` are the solutions of the system of ODE’s

Ẏl(t) = −Yi(t)γ̇j(t)Γl,`
ij (γ(t))

with initial condition Xi
`(0) = X̄i

0. Here, Γl,`
ij are the Christoffel symbols of the connection

induced by the metric g` = v]`e|Ω̄.
We now fix m− n normal vectorfields to the surface v`(Ω), provided by Proposition

6.9, namely ζi = ζi(v`). Recall once again that they satisfy the estimates

[ζi]k ≤ Ck(1 + ‖v`‖k+1) . (7.5)
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In order to improve readibility, in the rest of this proof we identify the vectors X`(t)
with their images dv`

(
X`(t)

)
. Using an analogous decomposition as in (7.3) we can

write, fixing t̄ ∈ [0, T],

d
dt

π`
γ(t)X

`(t̄) = −
m−n

∑
i=1
〈X`(t̄),

d
dt

ζi|γ(t)〉ζi|γ(t) −
m−n

∑
i=1
〈X`(t̄), ζi|γ(t)〉

d
dt

ζi|γ(t) .

We use the fact that X` is parallel along γ and that X`(t) is orthogonal to any ζi|γ(t) to
write

d
dt

(
X`(t)− π`

γ(t)X
`(t̄)

)
= π`

γ(t)
d
dt

X`(t) +
m−n

∑
i=1
〈 d

dt
X`(t), ζi|γ(t)〉ζi|γ(t)

− d
dt

π`
γ(t)X

`(t̄)

=
m−n

∑
i=1
〈X`(t̄)− X`(t),

d
dt

ζi|γ(t)〉ζi|γ(t)

+
m−n

∑
i=1
〈X`(t̄)− X`(t), ζi|γ(t)〉

d
dt

ζi|γ(t) .

This implies the estimate∣∣∣X`(t)− π`
γ(t)X

`(t̄)
∣∣∣ ≤ 2

m−n

∑
i=1

∫ t

t̄

∣∣∣X`(t̄)− X`(s)
∣∣∣ ∣∣∣∣ d

dt

∣∣∣
t=s

ζi|γ(t)
∣∣∣∣ ds .

Now

|X`(t̄)− X`(s)|2 =
m

∑
j=1
|Xi

`(t̄)
∂vj

`

∂xi (γ(t̄))− Xi
`(s)

∂vj
`

∂xi (γ(s))|
2 .

This yields the estimate∣∣∣X`(t̄)− X`(s)
∣∣∣ ≤ C(g, γ, M)|X̄0||t̄− s|α ,

where we used the fact that the length of X` is invariant and that γ is C1. With the help
of (7.5) and the mollification estimate (2.9) we also find∣∣∣∣ d

dt

∣∣∣
t=s

ζi|γ(t)
∣∣∣∣ ≤ C(γ)[∇v]α`α−1 .

Consequently∣∣∣X`(t)− π`
γ(t)X

`(t̄)
∣∣∣ ≤ C(γ, g, M)|X̄0||t− t̄|1+α`α−1 .
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Finally, fix a t ∈]ti, ti+1]. Then∣∣∣X`(t)− P`
k X̄0(t)

∣∣∣ = ∣∣∣X`(t)− π`
γ(t)X

`
i

∣∣∣ ≤ ∣∣∣X`(t)− π`
γ(t)X

`(ti)
∣∣∣

+
∣∣∣π`

γ(t)X
`(ti)− π`

γ(t)X
`
i

∣∣∣
≤ C|X̄0||t− ti|1+α`α−1 +

∣∣∣X`(ti)− π`
γ(ti)

X`
i−1

∣∣∣
≤ C|X̄0|`α−1

(
|t− ti|1+α +

i

∑
j=1
|ti − ti−1|1+α

)
≤ C|X̄0|`α−1∆(Pk)

α(t− t0) ,

proving the lemma. 2

Now we show that the discrete parallel translate on the approximate surface con-
verges to the one on the original surface.

Lemma 7.4. It holds

‖P`
k X̄0 − PkX̄0‖C0([0,T]) ≤ C(γ, g, M)|X̄0|k`α .

Proof. Fix ` > 0, k ∈ N, a partition Pk = (0 = t0 < . . . < tk = T) and a vector Y ∈ Rm.
We claim the estimate

|π`
γ(t)Y− πγ(t)Y| ≤ C(γ, g, M)|Y|`α .

To see this, consider once again the normal vectorfields ζi(v`) from the proof of the
last lemma and abbreviate ζ`i := ζi(v`). We then also need normal vectorfields to the
original surface v(Ω), which are also provided by Proposition 6.9. We denote them by
ζi := ζi(v). Now, in addition to the estimate (7.5), the normal vectorfields satisfy∣∣∣ζ`i − ζi

∣∣∣ ≤ C‖v` − v‖1 ≤ C‖v‖1,α`
α ,

as can be seen in (A.32). Therefore, it follows∣∣∣π`
γ(t)Y− πγ(t)Y

∣∣∣ ≤ m−n

∑
i=1

∣∣∣〈Y, ζ`i 〉ζ`i − 〈Y, ζi〉ζi

∣∣∣
=

m−n

∑
i=1

∣∣∣〈Y, ζ`i − ζi〉ζ`i + 〈Y, ζi〉
(

ζ`i − ζi

)∣∣∣
≤ 2|Y|

m−n

∑
i=1

∣∣∣ζ`i − ζi

∣∣∣ ≤ C|Y|`α .
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Hence for t ∈]ti, ti+1] we get∣∣∣P`
k X̄0(t)− PkX̄0(t)

∣∣∣ ≤ |π`
γ(t)X

`
i − πγ(t)X

`
i |+ |πγ(t)(X`

i − Xi)|

≤ C|X`
i |`α + |π`

γ(ti)
X`

i−1 − πγ(ti)Xi−1|

≤ C`α(|X`
i |+ |X`

i−1|) + |πγ(t)(X`
i−1 − Xi−1)|

≤ C`α
i

∑
j=1
|X`

j |+ |X`
0 − X0| .

By construction, we have |X`
j | ≤ |X`

0| for any j. Combining with

|X`
0 − X0|2 =

m

∑
j=1
|Xi

0
∂vj

`

∂xi (γ(0))− Xi
0

∂vj

∂xi (γ(0))|
2 ≤ C[∇v]2α`

2α
n

∑
i=1
|Xi

0|2 .

one gets the wanted estimate

|P`
k X̄0(t)− PkX̄0(t)| ≤ C(γ, v)|X̄0|k`α . 2

Lastly, we observe that, if α > 1
2 , the parallel translates X` with respect to g` converge

to the parallel translate X with respect to g.

Lemma 7.5. It holds

‖X` − X‖C0([0,T]) ≤ C(γ, g, M)|X̄0|`2α−1 .

For this we recall the quadratic estimate of Lemma 6.6 in Chapter 6.

Proposition 7.6 (quadratic estimate). Let Ω ⊂ Rn be an open set, v ∈ C1,α(Ω, Rm) with
v]e ∈ C2 and ϕ ∈ C∞(Rn) a standard symmetric convolution kernel. Then, for every compact
set K ⊂ Ω

‖(v ∗ ϕ`)
]e− v]e‖C1(K) = O(`2α−1) .

In particular, this estimate implies the uniform convergence of the Christoffel symbols
when α > 1

2 :

‖Γl,`
ij − Γl

ij‖C0(K) ≤ C`2α−1 . (7.6)

Proof of Lemma 7.5. The estimate follows from a Gronwall argument. Fix real numbers
X̄1

0 , . . ., X̄n
0 . The coefficients of X` and X are the solutions of the system of ODE’s

Ẏl = −Yiγ̇jΓl,`
ij (γ) and Ẏl = −Yiγ̇jΓl

ij(γ)

respectively, with the same initial condition Yl(0) = X̄l
0. If we define the n× n matrices

M`
ij := γ̇lΓi,`

l j (γ) and Mij := γ̇lΓi
l j(γ), then

Ẋ` = −M` · X` , Ẋ = −M · X .
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Set β(t) := |X`(t)− X(t)|2 = ∑n
i=1 |Xi

`(t)− Xi(t)|2. Then

d
dt

β(t) = 2〈X(t)− X`(t), M(t) · X(t)−M`(t) · X`(t)〉

= 2〈X(t)− X`(t), M(t) · (X(t)− X`(t))〉
+ 2〈X(t)− X`(t), (M(t)−M`(t)) · X`(t)〉

≤ 2β(t)‖M(t)‖O + C|X̄0|‖M`(t)−M(t)‖O

√
β(t)

≤ C(γ, g)β(t) + |X̄0|2‖M`(t)−M(t)‖2
O

From this we see

e−C(γ,g)tβ(t) = β(0) +
∫ t

0

(
d
dt

∣∣∣
t=s

e−C(γ,g)tβ(t)
)

ds

≤
∫ t

0
e−C(γ,g)s|X̄0|2‖M`(s)−M(s)‖2

O ds ≤ C(γ, g, M)|X̄0|2`2(2α−1)t

thanks to (7.6). From here the estimate follows since

|Xi
`(t)

∂vj
`

∂xi (γ(t))− Xi(t)
∂vj

∂xi (γ(t))| ≤ |X
i
`(t)− Xi(t)|[∇v]0 + |Xi(t)|`α[∇v]α

≤ C(γ, g, M)|X̄0|`2α−1 + C|X̄0|`α

≤ C(γ, g, M)|X̄0|`2α−1 . 2

7.2 proof of theorem 7 .2

The proof of Theorem 7.2 now follows easily. For α > 1
2 (
√

5 − 1) we can choose
1
α < β < α

1−α . Set `(k) = k−β and fix the subdivision Pk = (0, 1
k T, 2

k T, . . . , k−1
k T, T). Then

we find

‖PkX̄0 − dv(X)‖C0([0,T]) ≤ ‖PkX̄0 − P`(k)
k X̄0‖C0 + ‖P`(k)

k X̄0 − dv`(k)
(

X`(k)
)
‖C0

+ ‖dv`(k)
(

X`(k) − X
)
‖C0 + ‖dv`(k)(X)− dv(X)‖C0

≤ C(γ, g, M)
(

k1−αβ + k−β(1−α)−α + k−αβ(2α−1) + k−αβ
)

,

which converges to zero as k→ ∞ because of the choice of β.
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a.1 proof of proposition 3 .4

a.1.1 Beurling and Cauchy transforms

We will need the following two classical integral operators to construct the coordinate
transformation of Proposition 3.4. In this section we use the standard notation z =

x + iy for complex numbers. Moreover, we recall two standard differential operators
∂z =

1
2

(
∂x − i∂y

)
and ∂z̄ =

1
2

(
∂x + i∂y

)
.

Definition A.1. Suppose G ⊂ C is a bounded smooth open set and f : G → C a
function. For z0 ∈ C we define the Cauchy transform

CG[ f ](z0) := − 1
π

∫
G

f (z)
z− z0

dx dy

and the Beurling transform

SG[ f ](z0) := − 1
π

∫
G

f (z)
(z− z0)2 dx dy .

The latter integral must be understood as a Cauchy principal value, in case it exists, i.e.

SG[ f ](z0) = lim
ε→0
− 1

π

∫
G\Dε(z0)

f (z)
(z− z0)2 dx dy .

As it is easy to check, the Hölder continuity of f is enough to guarantee its existence at
every point. Note that such property uses the fact that∫

∂Dε(z0)

f (z0)

(z− z0)2 dx dy .

Remark A.2. In the literature the terms Cauchy and Beurling transforms are often used
only for the operators CC and SC.

In the book of I. N. Vekua [56] one can find the following important properties of the
operators CG and SG (cf. Theorem 1.32 in [56]).

Lemma A.3. Let N ∈N, 0 < α < 1, G ⊂ C bounded and f ∈ CN,α(G). Then we have

(i) CG[ f ] ∈ CN+1,α(G) and SG[ f ] ∈ CN,α(G);
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(ii) ∂
∂zCG[ f ](z) = f (z) and ∂

∂zCG[ f ](z) = SG[ f ](z) ∀z ∈ G;

(iii) There exists a constant CN,α such that

‖SG[ f ]‖N+α ≤ ‖CG[ f ]‖N+1+α ≤ CN,α‖ f ‖N+α .

Property (iii) will be key in order to prove Proposition 3.4. Observe that we can easily
find solutions of equations of the type fz = g by setting f = CG[g]. Moreover, we have
∂zSG[ f ] = fz, so SG links the two operators ∂z and ∂z. To prove regularity and get
good estimates we need one more thing, namely that under suitable circumstances the
transforms commute with differentiation. This will be the content of Corollary A.7, for
which we will first need the following lemma.

Lemma A.4. Let r > 0 and f ∈ C1(Dr). Then for any z0 ∈ Dr we have the identities

f (z0) =
1

2πi

∫
∂Dr

f (z)
z− z0

dz− 1
π

∫
Dr

fz(z)
z− z0

dx dy , (A.1)

1
π

∫
Dr

f (z)
(z− z0)2 dx dy =

1
π

∫
Dr

fz(z)
z− z0

dx dy +
1

2πi

∫
∂Dr

f (z)
z− z0

dz . (A.2)

Proof. Take a fixed z0 ∈ Dr and consider the differential one-form ω = dz
z−z0

. We can
see that

d(ω f ) =
fz

z− z0
dz ∧ dz = 2i

fz

z− z0
dx ∧ dy ,

hence by Stoke’s theorem we have

2i
∫

Dr\Dε

fz(z)
z− z0

dx dy =
∫

∂Dr

f (z)
z− z0

dz−
∫

∂Dε

f (z)
z− z0

dz . (A.3)

We can easily compute

lim
ε→0

∫
∂Dε

f (z)
z− z0

dz = 2πi f (z0) ,

and therefore passing to the limit ε → 0 in (A.3) yields the first statement; the same
reasoning applied to the one-form ω̃ = dz

z−z0
shows the second. 2

Remark A.5. Observe that if we define Ψ(z0) =
1

2πi

∫
∂Dr

f (z)
z−z0

dz then the statements of
the previous lemma can be rewritten as

f (z0) = Ψ(z0) + CDr [ fz](z0) ,

SDr [ f ](z0) = CDr [ fz](z0)−
1

2πi

∫
∂Dr

f (z)
z− z0

dz .
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Remark A.6. It follows from Lemma A.4 that if f ∈ C1
0(Dr), then

(i) CDr [ fz] = f ,

(ii) CDr [ fz] = SDr [ f ] .

Combining these two identities with Lemma A.3 we can derive

(CDr [ f ])z = SDr [ f ] = CDr [ fz] ,

(CDr [ f ])z = f = CDr [ fz] ,

and

(SDr [ f ])z = (CDr [ fz])z = SDr [ fz] ,

(SDr [ f ])z = (CDr [ fz])z = CDr [( fz)z] = CDr [( fz)z] = SDr [ fz] .

This shows that for (sufficiently regular) functions with compact support in Dr, the
operators CDr and SDr commute with any linear differential operator D with constant
coefficients. The regularity needed on the function is only linked to the order of the
operator D .

We summarize the latter discussion in the following

Corollary A.7. Let r > 0 and let D be a linear differential operator with constant coefficients
of order k. Then we have the following identities on Ck

c (Dr):

(i) D ◦ CDr = CDr ◦D and D ◦SDr = SDr ◦D ;

(ii) ∂z ◦ CDr = CDr ◦ ∂z = Id and ∂z ◦ CDr = CDr ◦ ∂z = SDr ;

(iii) ∂z ◦SDr = SDr ◦ ∂z = ∂z.

a.1.2 Beltrami’s equation

Using the various properties established above, we take a fundamental step to the
proof of Proposition 3.4. As usual we denote by CN,α

0 (Dr) the closure of CN,α
c (Dr) in

the Hölder space CN,α(Dr).

Lemma A.8. Let r ≥ 1, N ∈ N, N ≥ 1, 0 < β ≤ α < 1, µ, h ∈ CN,α
0 (Dr). Then there exist

constants C(N, r, α, β), c(N, r, α, β) and C̄(α) such that if ‖µ‖α ≤ c there exists a solution
Φ ∈ CN+1,α(Dr) to

Φz − µΦz = h (A.4)

with

‖Φ‖1+α ≤ C̄‖h‖α , (A.5)

‖DkΦ‖1+β ≤ C
(
‖Dkh‖β + ‖Dkµ‖β‖h‖β

)
, (A.6)

for any 1 ≤ k ≤ N.
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Proof. By a standard approximation argument, it suffices to prove the lemma under the
assumption that the supports of µ and h are compactly contained in Dr.

In order to simplify our notation we will use S and C in place of SDr and CDr . We
know (thanks to Lemma A.3) that S : C0,α(Dr)→ C0,α(Dr) as well as C : C0,α(Dr)→
C1,α(Dr) and that there exist two constants Cα, Cβ (wlog Cα, Cβ > 1) such that

‖S [ f ]‖α ≤ ‖C [ f ]‖1+α ≤ Cα‖ f ‖α ,

‖S [ f ]‖β ≤ ‖C [ f ]‖1+β ≤ Cβ‖ f ‖β .

Consider the operator

Lα : C0,α(Dr)→ C0,α(Dr), f 7→ h + µS [ f ]

We have

‖Lα( f1)−Lα( f2)‖α ≤ ‖µ‖αCα‖ f1 − f2‖α .

So, if

‖µ‖α ≤
1

2Cα

then Lα has a unique fixpoint f ∈ C0,α(Dr). This means

f = h + µS [ f ] ,

from which we deduce

‖ f ‖α ≤
‖h‖α

1− ‖µ‖αCα
≤ 2‖h‖α

and

f = (Id− µS )−1 h = ∑
n≥0

(µS )n h =: ∑
n≥0

ωn .

This shows in particular that f is compactly supported. Using Corollary A.7 one can
show by induction that for any 1 ≤ k ≤ N and any n ≥ 1

‖Dkωn‖α ≤ C̃Cα(2C̃Cα‖µ‖α)
n−1

(
‖µ‖α‖Dkh‖α + ‖Dkµ‖α‖h‖α

)
, (A.7)

where C̃ is the constant in (2.5). Therefore, if we require

‖µ‖α ≤
(

4C̃CαCβ(2r)α−β
)−1

, (A.8)

then the series

∑
n≥0

Dkωn
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converges uniformly in C0,α(Dr) to Dk f , hence f ∈ CN,α(Dr). Moreover, by the same
argument

‖Dk f ‖β ≤ C̃Cβ(‖µ‖β‖Dkh‖β + ‖Dkµ‖β‖h‖β) ∑
n≥1

(
2C̃Cβ(2r)α−β‖µ‖α

)n−1

+ ‖Dkh‖β ≤ C
(
‖Dkh‖β + ‖Dkµ‖β‖h‖β

)
, (A.9)

with the help of (A.8), where the constant C depends only on N, r, α and β. Now we
define

Φ(z) = C [ f ](z), z ∈ Dr .

By property (iii) of Lemma A.3 we have

Φz = f , Φz = S [ f ] ,

hence

Φz − µΦz = f − µS [ f ] = (Id− µS ) f = h ,

so the function Φ solves (A.4) and satisfies

‖Φ‖1+α ≤ Cα‖ f ‖α ≤ 2Cα‖h‖α .

Since DkΦ = C [Dk f ] by Corollary A.7 we get by recalling (A.9)

‖DkΦ‖1+β ≤ Cβ‖Dk f ‖β ≤ C
(
‖Dkh‖β + ‖Dkµ‖β‖h‖β

)
.

This shows the claim. 2

We immediately get the following

Corollary A.9. Let r ≥ 1, N ∈ N, N ≥ 1, 0 < β ≤ α < 1, µ ∈ CN,α
0 (Dr). Then there exist

constants C(N, r, α, β), c(N, r, α, β) and C̄(α) such that if ‖µ‖α ≤ c there exists a solution
Φ ∈ CN+1,α(Dr) to the Beltrami equation

Φz = µΦz (A.10)

with

‖Φ(z)− z‖1+α ≤ C̄‖µ‖α , (A.11)

‖Dk (Φ(z)− z) ‖1+β ≤ C‖Dkµ‖β , (A.12)

for any 1 ≤ k ≤ N.
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Proof. In the Lemma A.8 choose h = µ to recover a constant c such that, if ‖µ‖α ≤ c,
then we find φ solving

φz − µφz = µ .

Set Φ(z) = z + φ(z). Then obviously

Φz = µΦz

and using Lemma A.8 we find

‖Φ(z)− z‖1+α = ‖φ‖1+α ≤ C̄‖µ‖α ,

and

‖Dk(Φ(z)− z)‖1+β = ‖Dkφ‖1+β ≤ C‖Dkµ‖β

for any 1 ≤ k ≤ N, which is what we wanted. 2

a.1.3 Proof of Proposition 3.4

Given the estimates of the previous paragraphs, Proposition 3.4 can be proved following
the classical approach, see for instance [53, Addendum 1 to Chapter 9]. We report
however the argument for the reader’s convenience.

With a simple scaling argument we can assume r = 1. Let x, y be global coordinates
on D1. Then g takes the form

g = ξdx2 + 2ζdxdy + ωdy2 ,

for some functions ξ, ζ, ω ∈ CN,α(D1). We want to find a function Φ : D1 → R2, (x, y) 7→
(Φ1(x, y), Φ2(x, y)) =: (s, t) such that in these new coordinates we have

g = ρ2 ◦Φ−1(s, t)
(
ds2 + dt2) ,

hence

g = ρ2
((

Φ2
1x + Φ2

2x
)

dx2 + 2
(
Φ1xΦ1y + Φ2xΦ2y

)
dxdy +

(
Φ2

1y + Φ2
2y

)
dy2
)

,

or

g = ρ2 (∇Φ1 ⊗∇Φ1 +∇Φ2 ⊗∇Φ2) . (A.13)

A comparison yields

ξω− ζ2 = ρ4 (Φ1xΦ2y −Φ1yΦ2x
)2

= ρ4 JΦ2 ,
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with JΦ = det∇Φ. Consequently

ρ2 =

√
∆

JΦ
, (A.14)

where ∆ = ξζ −ω2.
It is convenient to switch to complex notation. Consider z = x + iy, Φ(z) = Φ1(x, y) +
iΦ2(x, y). A computation shows that (A.13) is equivalent to the Beltrami equation for
Φ:

Φz(z) = µ(z)Φz(z), z ∈ D1 , (A.15)

with the coefficient

µ =
ξ −ω + 2iζ

ξ + ω + 2
√

∆
. (A.16)

Now we extend g to a symmetric 2× 2 tensor to R2 so that

‖g− e‖α;R2 ≤ C̄(α)‖g− e‖α;D1
,

‖g− e‖k+β;R2 ≤ C(N, α, β)‖g− e‖k+β;D1
,

for 1 ≤ k ≤ N. In particular note that if σ1 is chosen sufficiently small, then g ≥ 1
2 e

on the whole R2. Repeated applications of (2.3) and (2.5) to the expression (A.16) then
yield

‖µ‖α;R2 ≤ C‖g− e‖α;D1 , (A.17)

‖µ‖k+β;R2 ≤ C‖g− e‖k+β;D1 , (A.18)

where the constant in (A.17) is a universal one and the constant in (A.18) depends only
on α, β and N. Hence µ ∈ CN,α (R2). Next we choose a C∞ cutoff function η such that

η(z) =

1, if z ∈ D1

0, if z ∈ C \ D 3
2

.

With this define a new function

µ̃ = ηµ .

By definition we have µ̃ ∈ CN,α
c (D2), thus by Corollary A.9 there exist constants C, c

and C such that, if ‖µ̃‖α;D2 ≤ c then there exists Φ ∈ CN+1,α(D2) with

Φz(z) = µ̃(z)Φz(z), z ∈ D2 ,
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and

‖Φ(z)− z‖1+α;D2 ≤ C‖µ̃‖α;D2 , (A.19)

‖Dk(Φ(z)− z)‖1+β;D2 ≤ C‖µ̃‖k+β;D2 ,

for any 1 ≤ k ≤ N. Observe that in particular Φ solves (A.15). Moreover,

‖µ̃‖α;D2 ≤ ‖µ‖α;D2‖η‖α;D2 ≤ C‖µ‖α;D2 ≤ C‖g− e‖α;D1 ,

and similarly

‖µ̃‖k+β;D2 ≤ C‖µ‖k+β;D2 ≤ C‖g− e‖k+β;D1 ,

by (A.17) and (A.18). This shows that if ‖g− e‖α;D1 ≤ σ1 with σ1 small enough, we
recover a coordinate change Φ solving (A.15). The estimates for Φ follow immediately.
For the estimates of ρ we use the fact that due to (A.19) we have

(1− C‖g− e‖α,D1
)2 ≤ JΦ ≤ (1 + C‖g− e‖α,D1

)2 ,

which together with the expression (A.14), the bounds on Φ, (2.3) and (2.5) imply

‖Dkρ‖β ≤ C‖g− e‖k+β;D1

for 1 ≤ k ≤ N. This proves the claim.

a.2 proof of proposition 5 .7

The following lemma will imply Proposition 5.7 for cubes. We will then infer the general
case with the help of a Whitney decomposition.

Lemma A.10. Let α ∈]0, 1[ and fix f ∈ C0,1([0, π]) and g ∈ C0,α([0, π]). Then∣∣∣∣∫ π

0
f ′(t)g(t) dt

∣∣∣∣ ≤ C(α, β)[ f ]C0,β([0,π])‖g‖C0,α([0,π]) , (A.20)

for all β ∈]1− α, 1].

Proof. Observe that it suffices to prove (A.20) under the additional assumption f (0) =
f (π) = 0. Indeed, consider

f̃ (t) = f (t)− f (0)− t
π
( f (π)− f (0))

and observe that f̃ (0) = f̃ (π) = 0 and [ f̃ ]C0,γ([0,π]) ≤ 2[ f ]C0,γ([0,π]) for all γ ∈]0, 1].
Moreover∣∣∣∣∫ π

0
f ′(t)g(t) dt

∣∣∣∣ = ∣∣∣∣∫ π

0
f̃ ′(t)g(t) dt +

f (π)− f (0)
π

∫ π

0
g(t) dt

∣∣∣∣
≤ πβ[ f ]C0,β‖g‖C0 +

∣∣∣∣∫ π

0
f̃ ′(t)g(t) dt

∣∣∣∣ .
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Therefore we assume from now on f (0) = f (π) = 0. Extend f and g to [−π, π] by
setting

f̄ (t) =

 f (t) for t ∈ [0, π]

− f (−t) for t ∈ [−π, 0]
ḡ(t) =

g(t) for t ∈ [0, π]

g(−t) for t ∈ [−π, 0] .

Because of the assumption on f , f̄ is continuous and in fact still Lipschitz (and hence
almost everywhere differentiable) with f̄ ′(t) = f̄ ′(−t) almost everywhere. Also, ob-
viously, ḡ(−t) = ḡ(t). In particular, we can understand f̄ and ḡ as functions on S1

with

[ḡ]C0,α(S1) ≤ [g]C0,α([0,π]) , [ f̄ ]C0,γ(S1) ≤ 2[ f ]C0,γ([0,π]) for every γ ∈]0, 1] .

We can expand f̄ and ḡ in Fourier series with real coeffiecients as

f̄ (t) = ∑
k∈Z

f̂keikt , ḡ(t) = ∑
k∈Z

ĝkeikt .

Fix now a β ∈]1− α, 1] and ε ∈]0, α + β − 1[. Using that ḡ and f̄ ′ are even, we can
estimate∣∣∣∣∫ π

0
f ′(t)g(t) dt

∣∣∣∣ = 1
2

∣∣∣∣∫ π

−π
f̄ ′(t)ḡ(t) dt

∣∣∣∣ = 1
2

∣∣∣∣∣∑k∈Z

ik f̂k ĝk

∣∣∣∣∣
≤ 1

2

(
∑

k∈Z

|k|2(β−ε)| f̂k|2
) 1

2
(

∑
k∈Z

|k|2(1−(β−ε))|ĝk|2
) 1

2

= C(β, ε)[ f̄ ]Hβ−ε(S1)[ḡ]H1−(β−ε)(S1) ,

where we recall that [·]Hγ(S1) is the Gagliardo-seminorm of the fractional Sobolev space
Hγ(S1) = Wγ,2(S1) and is given by

[u]2Hγ(S1) =
∫
S1

∫
S1

|u(t)− u(s)|2
|t− s|1+2γ

dt ds .

The equivalence (up to a constant) of the Gagliardo seminorm and the Fourier-type
norm follows from Plancharel’s formula. Moreover one can infer immediately that, for
any 0 < γ′ < γ < 1,

[u]Hγ′ (S1) ≤ C(γ, γ′)[u]C0,γ(S1) .

This implies∣∣∣∣∫ π

0
f ′(t)g(t) dt

∣∣∣∣ ≤ C(α, β)[ f ]C0,β([0,π])[g]C0,α([0,π]) ,

which completes the proof. 2
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By scaling it follows easily from (A.20) that∣∣∣∣∫ b

a
f ′(t)g(t) dt

∣∣∣∣ ≤ C(α, β)|b− a|β[ f ]C0,β([a,b])‖g‖C0,α([a,b])

whenever one of the sides of the inequality makes sense. Therefore, with Fubini, we get
(5.9) for cubes Q with sidelength L > 0:∣∣∣∣∫Q

∂ f
∂xi

g dx
∣∣∣∣ ≤ C(α, β)L1+β[ f ]C0,β(Q̄)‖g‖C0,α(Q̄) . (A.21)

Finally, for an open, bounded U ⊂ R2 with d := dimb(∂U) < 2− α we consider its
Whitney decomposition W. Let Wk = {Q ∈ W : Q has sidelength 2−k}. By Theorem
3.12 in [44] there exists C > 0 such that #Wk ≤ C2kd for any k ∈ N. We can then
estimate with the help of (A.21)∣∣∣∣∫U

∂ f
∂xi

gdx
∣∣∣∣ =

∣∣∣∣∣∑k∈N

∑
Q∈Wk

∫
Q

∂ f
∂xi

gdx

∣∣∣∣∣ ≤ C(α, β)[ f ]C0,β(Ū)‖g‖C0,α(Ū) ∑
k∈N

2kd(2−k)1+β

= C(α, β)[ f ]C0,β(Ū)‖g‖C0,α(Ū) ∑
k∈N

2k(d−(1+β))

= C(α, β, d)[ f ]C0,β(Ū)‖g‖C0,α(Ū) ,

where the convergence of the sum follows from d < 2− α < 1 + β. This proves the
estimate (5.9). We then immediately get

|BU( f , g)− BU( f̃ , g̃)| ≤ C(α, β, d)
(
[ f ]C0,β‖g− g̃‖C0,α + [ f − f̃ ]C0,β‖g̃‖C0,α

)
, (A.22)

which shows local uniform continuity and also the existence of the unique extension: for
β ∈]1− α, 1] we can find 1− α < β′ < β and, for any f ∈ C0,β(Ū), a smooth sequence
fk converging to f in C0,β′ . Thanks to (A.22) the sequence BU( fk, g) then converges and
the limit doesn’t depend on the approximating sequence. The estimate (5.10) follows at
once from (A.20) by writing ∂U as the finite union of Lipschitz curves. This concludes
the proof.

a.3 proof of lemma 5 .8

First observe that it suffices to prove (5.11) for smooth f , g. Indeed, in the general
case approximate f , g by sequences fk, gk ∈ C∞(U) with ‖ fk − f ‖C0,α′ (Ū) → 0 for every
α′ < α and ‖ fk‖C0,α(Ū) ≤ ‖ f ‖C0,α(Ū) (and analoguously for gk). Because of the uniform
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convergence fk, gk → f , g and the boundedness of U we get by dominated convergence
and Proposition 5.7, assuming (5.11) for smooth functions,∣∣∣∣∫U

dψ ∗ ϕε ∧ gd f −
∫

U
dψ ∧ g ∗ ϕεd f ∗ ϕε

∣∣∣∣
≤ lim sup

k→∞

( ∣∣∣∣∫U
dψ ∗ ϕε ∧ gkd fk −

∫
U

dψ ∧ gk ∗ ϕεd fk ∗ ϕε

∣∣∣∣
+

∣∣∣∣∫U
dψ ∧ (gk ∗ ϕεd fk ∗ ϕε − g ∗ ϕεd f ∗ ϕε)

∣∣∣∣ )
≤ C(α, β)Mε3α−2β−1‖ f ‖C0,α(Ū)‖g‖C0,α(Ū) .

Therefore we can assume from now on that f and g are smooth. Since ψ has compact
support in U we have∫

U
dψ ∗ ϕε ∧ gd f =

∫
U

dψ ∧ (gd f ) ∗ ϕε .

Now observe that, for any x ∈ supp(ψ), we have

(gd f ) ∗ ϕε(x)− g ∗ ϕε(x)d f ∗ ϕε(x) = ((g− g(x))(d f − d f (x)) ∗ ϕε(x)

− (g− g(x)) (d f − d f (x)) ∗ ϕε(x) ,

so that∫
U

dψ ∧ ((gd f ) ∗ ϕε − g ∗ ϕεd f ∗ ϕε) =
∫

U
dψ(x) ∧ ((g− g(x)) (d f − d f (x))) ∗ ϕε(x)

−
∫

U
dψ(x) ∧ (g− g(x)) ∗ ϕε(x) (d f − d f (x)) ∗ ϕε(x)

=: I − II .

To estimate the integral I we observe that it consists (modulo sign) of terms

Iij =
∫

U
∂iψ(x)

(
(g− g(x))

(
∂j f − ∂j f (x)

))
∗ ϕε(x) dx ,

for i 6= j. Let V = supp(ψ) and fix 1
2 < β < α. Using Fubini and Proposition 5.7 we can

estimate∣∣Iij
∣∣ ≤ sup

y∈Bε(0)

∣∣∣∣∫U
∂iψ(x) (g(x− y)− g(x))

(
∂j f (x− y)− ∂j f (x)

)
ϕε(y) dx

∣∣∣∣
≤ sup

y∈Bε(0)
‖∂iψ∆yg‖C0,β(V)[∆y f ]C0,β(V) ,

where we used the notation ∆y f for the function ∆y f (x) = f (x− y)− f (x). We use the
interpolation inequalities (2.2) to estimate

[∆y f ]C0,β(V) ≤ C(α, β)‖∆y f ‖1−β/α

C0(V)
[∆y f ]β/α

C0,α(V)
≤ C(α, β)|y|α−β[ f ]C0,α(Ū) ,
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if ε < dist(supp(ψ), ∂U). On the other hand

‖∂iψ∆yg‖C0,β(V) ≤ C
(
[ψ]C1(V)[∆yg]C0,β(V) + [ψ]C1,β(V)‖∆yg‖C0(V)

)
≤ C(α, β)M[g]C0,α(Ū)

(
εα−1|y|α−β + εα−β−1|y|α

)
.

Combining the estimates and |y| < ε leads to the wanted bound on I. The bound for II
is shown analogously.

a.4 proofs of propositions 6 .9 and 6 .10

a.4.1 Proof of Proposition 6.9

To prove Proposition 6.9 we need the following well known lemma, an elementary
proof of which is contained, for example, in [19].

Lemma A.11. Let n, d, B, u be as in the assumptions of Proposition 6.9. For every 1 ≤ k ≤ d
there exist ζ1, . . . , ζk ∈ C∞ (B, Rn+d) such that for all 1 ≤ i, j ≤ d we have

〈ζi, ζ j〉 = δij on B , (A.23)

∇u · ζi = 0 on B . (A.24)

Proof of Proposition 6.9. In the proof all the constants appearing may depend on the
embedding u. Fix 0 < ρ0 < 1 and let v ∈ C∞(B, Rn+d) be such that ‖v− u‖ < ρ0. Since
B is compact and u is an embedding there exists a constant C > 0 such that

C−1Id ≤ ∇uᵀ∇u ≤ C Id

in the sense of quadratic forms. Hence if ρ0 is small enough we have

(2C)−1Id ≤ ∇vᵀ∇v ≤ 2C Id , (A.25)

and consequently also

(2C)−n ≤ det(∇vᵀ∇v) ≤ (2C)n . (A.26)

Let ζ1, . . . , ζm ∈ C∞(B, Rn+d) be the maps from Lemma A.11 and define

νi(v) := ζi −
n

∑
j=1

rij(v)∂jv , (A.27)

where rij(v) are such that 〈νi(v), ∂kv〉 = 0 for every k. We claim that the functions
rij(v) ∈ C∞(B, Rn+d) depend smoothly on ∇v and satisfy the estimates

‖rij(v)‖k ≤ Ck‖v− u‖k+1 for k ≥ 0 . (A.28)
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To see this, denote bik(v) = 〈ζi, ∂kv〉 and observe that

0 = 〈νi(v), ∂kv〉 = bik(v)−
n

∑
j=1

rij(v)〈∂jv, ∂kv〉 ,

i.e.

R(v) · ∇vᵀ∇v = B(v) ,

where R(v) and B(v) are the m× n matrices with entries rij(v) and bij(v) respectively.
By (A.25), R(v) is uniquely determined. We write

(∇vᵀ∇v)−1
ij = (det∇vᵀ∇v)−1Pij(∇v) ,

where Pij(∇v) is a polynomial in the arguments ∂kvl . Since by assumption [v]1 ≤
[u]1 + 1, Proposition 2.1 yields

[Pij(∇v)]k ≤ Ck[v]k+1 .

Moreover, (A.26) implies

[(det∇vᵀ∇v)−1]k ≤ Ck[v]k+1 ,

so that

[(∇vᵀ∇v)−1
ij ]k ≤ Ck[v]k+1 . (A.29)

For the other factor we observe that bij(v) = 〈ζi, ∂jv− ∂ju〉, since ζi is orthogonal to
Tu(B) at any point. Whence, by the Leibnitz rule

[bij(v)]k ≤ Ck([v− u]1 + [v− u]k+1) ≤ Ck‖v− u‖k+1 . (A.30)

Combining (A.29) and (A.30) leads to the estimate (A.28).
As a consequence, we can deduce

δij −
1

2d
≤ 〈νi(v), νj(v)〉 ≤ δij +

1
2d

(A.31)

for ρ0 small enough. This implies that the family {νi(v)}i=1,...,d is linearly independent
at every point and thus (being in addition orthogonal to Tv(B)) constitutes a frame
for the normal bundle Nv(B). The wanted vectorfields ζi are then produced by a
Gram-Schmidt normalization procedure. To get the estimates (6.37) we carry out the
procedure in details.

Therefore, we set

ζ1(v) :=
ν1(v)
|ν1(v)|

.
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If ρ0 is small enough, then |νi(v)| ≥ 1
2 for every i (thanks to (A.28)), and so ζ1(v) is a

smooth function with

[ζ1(v)]k ≤ Ck[ν1(v)]k ≤ Ck(1 + ‖v− u‖k+1) ≤ Ck(1 + ‖v‖k+1) .

Moreover

|ζ1(v)− ζ1| ≤
2|ν1(v)− ζ1|
|ν1(v)|

≤ C‖v− u‖1 .

We now assume that ζ1(v), . . . , ζl−1(v) are already constructed, satisfying (6.37)-(6.39)
and in addition

‖ζi(v)− ζi‖0 ≤ C‖v− u‖1 . (A.32)

We then set

θl(v) = νl(v)−
l−1

∑
j=1
〈νl(v), ζ j(v)〉ζ j(v)

and ζl(v) =
θl(v)
|θl(v)|

. It remains to show that ζl(v) satisfies (6.37)-(6.39) and (A.32).

Observe that

〈νl(v), ζ j(v)〉 = 〈νl(v)− ζl , ζ j(v)〉+ 〈ζl , ζ j(v)− ζ j〉

so that ‖〈νl(v), ζ j(v)〉‖0 ≤ C‖v− u‖1 and

[〈νl(v), ζ j(v)〉]k ≤ Ck
(
1 + [rij(v)]k + ‖rij(v)‖0[v]k+1 + ‖v− u‖1(1 + ‖v‖k+1)

+ [ζ j(v)− ζ j]k
)

≤ Ck(1 + ‖v‖k+1) .

In particular |θl(v)| ≥ 1
4 for ρ0 small enough and

[θl(v)]k ≤ Ck(1 + ‖v‖k+1) .

Therefore ζl(v) satisfies (6.37)-(6.39). Since moreover

|ζl(v)− ζl | ≤
2|θl(v)− ζl |
|θl(v)|

≤ C(|θl(v)− νl(v)|+ |νl(v)− ζl |)

≤ C‖v− u‖1

the proposition is proved. 2
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a.4.2 Proof of Proposition 6.10

For the proof of Proposition 6.10 we need the following lemma from [17].

Lemma A.12. Let g0 ∈ Sym+
n . There exists r ≡ r(g0, n) > 0, ν1, . . . , νn∗ ∈ Sn−1, and linear

maps L1, . . . , Ln∗ : Symn → R such that

g =
n∗

∑
k=1

Lk(g)νk ⊗ νk ,

for every g ∈ Symn. Moreover, if g ∈ Symn is such that |g− g0| < r, then Lk(g) > r for every
k.

Now the proposition is an easy consequence of the classical implicit function theorem.

Proof of Proposition 6.10. Let r > 0 be the radius and ν1, . . . , νn∗ ∈ Sn−1 be the vectors
given by Lemma A.12 when g0 = Idn and define the map

Ψ : (Symn)
n2
∗ × (Symn)

n∗ ×Rn∗ ×Rn∗ → Symn(
{Gij}, {Mi}, g, {ci}

)
7→

n∗
∑

i
c2

i νi ⊗ νi +
n∗

∑
i=1

ci Mi +
n∗

∑
i,j=1

cicjGij − g .

Ψ is smooth and by Lemma A.12 there exist c̄1, . . . , c̄n∗ ∈ R with c̄j > r for every j and

Ψ(0, 0, Idn, {c̄j}) = 0 , ∂ci Ψ|(0,0,Idn,{c̄j}) = 2c̄iνi ⊗ νi .

Since the family {νi ⊗ νi} is linearly independent the differential of Ψ with respect to
the variable c = (c1, . . . , cn∗) has full rank at (0, 0, Idn, c̄). Consequently, by the implicit
function theorem, there exist neighborhoods V of (0, 0, Idn) and U of c̄ respectively and
a diffeomorphism Φ : V → U such that

{Ψ = 0} ∩ (V ×Rn∗)

= {({Gij}, {Mi}, g, Φ({Gij}, {Mi}, g)) : ({Gij}, {Mi}, g) ∈ V} .

Therefore, if r0 is small enough ck(x) := Φ({Gij(x)}, {Mi(x)}, τ(x))k will satisfy (6.40).
The estimates (6.41) are then a consequence of Proposition 2.1. 2
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