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1. Introduction

The Plateau’s problem investigates those surfaces of least area spanning a given contour.
It is one of the most classical problems in the calculus of variations, it lies at the crossroad
of several branches of mathematics and it has generated a large amount of mathematical
theory in the last one hundred years. The problem itself and its various generalizations
have found fundamental applications in several mathematical and scientific branches. Since
it is a prototype of a vast family of questions with geometric and physical significance, the
techniques developed to analyze it have proved to be very useful in a variety of other
situations.

The original formulation is attributed to the Belgian physicist Plateau, although it was
considered earlier by Lagrange, and it regards 2-dimensional surfaces spanning a given one-
dimensional contour γ in the 3-dimensional space: among these surfaces one is interested
in those which minimize the area (and, more in general, on the critical points of the
area, although in this survey we will restrict our attention to “absolute” minimizers).
Plateau considered such “minimal surfaces” to model soap films. However it is very natural
to generalize the question and look for surfaces of dimension m which minimize the m-
dimensional volume among those spanning a given contour of dimensionm−1 in Rm+n, or in
more general ambient spaces. Such generalizations have not only an intrinsic mathematical
beauty, but they have proved to be very fruitful. In this note we will restrict ourselves
to ambient spaces which are complete oriented Riemannian manifolds Σ and since all the
considerations will be of a local nature we will often assume that Σ itself is isometrically
embedded in some euclidean space (of dimensionm+n). In this way the competitor surfaces
(classical or generalized) spanning the contour γ will always be (suitable generalizations of)
subsets of the standard euclidean space, constrained to be subsets of Σ. Although this is
not very elegant from a geometric point of view, it allows us to avoid a lot of technicalities.

The very formulation of the Plateau’s problem has proved to be a quite challenging math-
ematical question. In particular, how general are the surfaces that one should consider?
What is the correct concept of “spanning” and the correct concept of “m-dimensional vol-
ume” that one should use? The author believes that there are no final answers to these
two questions: many different significant ones have been given in the history of our subject
and, depending upon the context, the features of one formulation might be considered
more important than those of the others.
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The several different formulations of the Plateau’s problem could be subdivided in three
large classes.

• The parametric formulations: the competitor surfaces are supposed to be images of
maps defined on a given domain (or on a class of domains) and the volume can then
be computed through the parametrization using the standard “area formula”. The
notion of “spanning” reduces to imposing that the trace of the maps on the chosen
domain is a parametrization of the contour γ. This was the first successful attempt
at giving a suitable existence theory for 2-dimensional area minimizing surfaces,
pioneered by Douglas and Rado in the thirties ([42], [58]; see the monograph [41]
for a modern introduction to the subject).
• The set-theoretical formulations: the competitor surfaces are supposed to be just

(closed) sets and the notion of m-dimensional volume is then given by the Haus-
dorff measure (or some other measure-theoretic generalization of the m-dimensional
volume of a submanifold). The first to pioneer and implement successfully such
formulations was Reifenberg in [59]. The notion of spanning is usually much more
involved in this context; among the most recent proposals let us mention the ele-
gant one of Harrison (cf. [54]) and the ones of David (cf. [18]). For a rather general
compactness principle which could be useful in several set-theoretic frameworks we
refer to the recent papers [26] and [38].
• The functional-analytic formulations: the surfaces are mostly viewed as objects

acting on a given (linear) space of smooth test functions, usually via integration. In
this note we address the most popular functional analytic formulations, De Giorgi’s
theory of sets of finite perimeter ([19, 20]; we refer to [23] for a recent English
translation) and Federer and Fleming’s theory of integral currents ([47]), and we
will discuss extensively the corresponding existence and regularity theories.

In all these approaches there are two first fundamental issues that a satisfactory varia-
tional theory needs to address: existence and regularity. Of course these are by no means
the only important aspects of Plateau’s problem: however almost all the other necessarily
build on these two important pieces of information, namely that

(a) there is a minimizer for a large class of boundaries;
(b) the minimizer is sufficiently regular, so that one can compute interesting geometric

quantities and infer additional conclusions.

The success of the Federer and Fleming’s theory is due to the vast applicability of its exis-
tence part in all dimensions and codimensions. Thanks to the efforts of several outstanding
mathematicians a rather far-reaching (and satisfactory) regularity theory was achieved in
the seventies in codimension 1 (see for instance [53]). This theory has been digested by
the subsequent generations of scholars working in differential geometry and PDEs, leading
ultimately to many breakthroughs in different problems in geometry, PDEs and mathe-
matical physics. On the contrary the most important conclusion in the higher codimension
case can be attributed to the monumental work of a single person, F. J. Almgren Jr. ([5]).
Unlike the codimension one case, only a relatively small portion of the monstrous proof
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of Almgren has been truly understood. In a recent series of papers Emanuele Spadaro
and the author have given a new, much shorter, account of Almgren’s regularity program,
relying on the several advances in geometric measure theory of the last two decades and
on some new ideas. The aim of this note is to give a rather detailed picture of the several
issues that this program must face and of how they are resolved.

We will start by reviewing the basic definitions and the most important results of the
theory of Federer and Fleming, showing how it gives a natural and very elegant existence
theory for the Plateau’s problem in any dimension and codimension (see Section 2). As
part of our exposition we will isolate the features of the codimension 1 case, where in fact
the Federer-Fleming theory is equivalent to De Giorgi’s theory of sets of finite perimeter.
In Section 3 we will review the first considerations in the regularity theory and summarize
the state of the art in the subject. We will then review the regularity theory for minimizers
in codimension 1, focusing on its most important steps, cf. Section 4. In Section 5 we will
discuss what are the obstructions to a direct generalization of the codimension 1 regularity
theory to higher codimension. In the (several!) remaining sections we will discuss the
details of the proofs of Almgren’s theorem as presented in the papers [29, 30, 33, 31, 32].

This survey has been conceived to be accessible also to those scholars who do not have
any knowledge of the theory of currents: I will only assume that the reader is familiar with
some basic concepts of functional analysis, measure theory and differential geometry. The
reader who is already familiar with geometric measure theory (and more precisely with
the theory of currents) is instead encouraged to read the survey [25] or the recent lecture
notes [72]. In particular the next three sections can be thought as a gentle introduction
to some of the classical works of the fifties, sixties and seventies regarding what we have
called the “functional analytic” approach to the Plateau’s problem. Obviously the under-
standing of many issues will become increasingly difficult for the novice as we go deeper in
the description of Almgren’s program: nonetheless I tried to make all the exposition self
contained providing, when necessary, a brief account of the main technical tools used in
the statements.

It is the belief of the author that there is a general misconception of geometric measure
theory, namely that it is a highly technical and obscure subject. Although I certainly
agree that the proofs are long and difficult, the main concepts are in fact rather elegant
and in most cases they can be introduced without invoking too much theory. The main
reason behind the misconception is the lack of introductory textbooks in the area. The
books available are conceived for experts and they aim at developing a far-reaching and
self-contained theory from the very beginning: motivated by this necessity they introduce
a lot of terminology and notation to deal with all possible technicalities in the very first
chapters, sacrificing the readability and the intuitive picture at a very early stage. On the
other hand many “gentle” introductions to geometric measure theory are “invitations” for
very young students and they have the opposite tendency of neglecting any discussion of
the most complicated parts. In this survey I have tried to avoid as much as possible the
introduction of a lot of notation and of many concepts, keeping such things to the absolute
minimum needed to understand the main points of the arguments. On the other hand I
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will deal with the most complicated parts of the proofs, trying to single out the key ideas
that overcome the main difficulties.

2. The Federer-Fleming theory of integral currents

2.1. Currents, boundaries and mass. The idea of treating (oriented) surfaces as linear
functionals on a suitable space of smooth objects dates back at least to De Rham, cf.
[40]. More precisely, consider a smooth m-dimensional oriented surface Γ (with or without
boundary) in Rm+n and denote by Dm the space of smooth, compactly supported m-forms.
Γ defines naturally a linear map

Dm 3 ω 7→
∫

Γ

ω . (1)

This motivates the following

Definition 2.1 (Current, De Rham, cf. [68, Definition 26.1]). An m-dimensional current T
is a continuous linear map T : Dm → R. Here the continuity condition must be understood
in the following sense: T (ωk)→ T (ω) whenever {ωk} ⊂ Dm is a sequence such that

(a) there is an open set Ω ⊂⊂ Rm+n with spt(ωk) ⊂ Ω for every k;
(b) ωk → ω in Cj(Ω) for every j.

If we regard smooth functions as 0-forms, then 0-dimensional currents are simply the
usual distributions. The reader familiar with them (or in general with certain type of
functional analysis) will recognize that the definition above follows a rather standard path
and will not be surprised if we introduce a corresponding “dual topology” on the space of
currents: more precisely we will say that a sequence of currents T k (of the same dimension
m) converges to T if T k(ω)→ T (ω) for every ω ∈ Dm (cf. [68, eq. 26.12]).

Very naturally the concept of boundary is defined “enforcing” Stokes’ Theorem, pretty
much as the derivative of a distribution is defined “enforcing” integration by parts formulae.

Definition 2.2 (Boundary, De Rham, cf. [68, eq. 26.3]). We say that an (m − 1)-
dimensional current S is the boundary of an m-dimensional current T if

T (dω) = S(ω) for every ω ∈ Dm−1. (2)

S will then be denoted by ∂T .

The class of smooth oriented submanifolds Γ ⊂ Rm+n with smooth boundaries can
then naturally be viewed as a subset of the space of m-dimensional currents. In order
to distinguish between any such Γ and its “action” as linear functional via integration of
forms, we will use the notation JΓK for the current, namely JΓK (ω) :=

∫
Γ
ω (cf. [68, eq.

26.2]). If we consider points P ∈ Rm+n as 0-dimensional submanifolds, consistently with
our convention we will denote by JP K the usual Dirac delta at P , although a more common
symbol would be δP .

Observe also that the definitions above generalize to any Riemannian ambient manifold
Σ in place of Rm+n. However, if Σ is embedded in Rm+n another way to introduce currents
T in Σ is to consider them as currents T in the euclidean space Rm+n whose support spt(T )
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is contained in Σ. As usual the support spt(T ) is the complement of the maximal open set
U for which T (ω) = 0 whenever spt(ω) ⊂ U (cf. [45, Section 4.1]).

We next need to introduce a suitable concept of m-dimensional volume. When Γ is
a smooth surface, its volume Volm(Γ), as defined in the usual textbooks on integration
of forms, can be computed with the area formula and coincides with its Hausdorff m-
dimensional measure (cf. [68, Section 2.8]). There is however a definition of volume which
exploits the natural duality between forms and submanifolds. Recall that a simple m-
vector is an element of Λm(Rm+n) of the form v1 ∧ . . . ∧ vm. Moreover there is a natural
definition of length of a simple m-vector: |v1 ∧ . . . ∧ vm| is the m-dimensional Hausdorff
measure of the parallelogram spanned by the vectors v1, . . . , vm.

Definition 2.3 (Comass, cf. [45, Section 1.8]). Let ω ∈ Dm. Then the comass of ω is the
norm

‖ω‖c := max
{
〈ω(p), v1 ∧ . . . ∧ vm〉 : |v1 ∧ . . . ∧ vm| = 1, p ∈ Rm+n

}
.

Now, it can be easily checked that, when Σ is a smooth submanifold of Rm+n, then

Volm(Σ) = sup

{∫
Σ

ω : ω ∈ Dm and ‖ω‖c ≤ 1

}
. (3)

This motivates the

Definition 2.4 (Mass, cf. [45, Section 4.1.7]). Given an m-dimensional current T we
denote by M(T ) its mass, namely the quantity

M(T ) = sup {T (ω) : ‖ω‖c ≤ 1} . (4)

An important feature of this definition is that the mass can be localized. More precisely
for any open set Ω we can define

‖T‖(Ω) = sup {T (ω) : spt(ω) ⊂ Ω and ‖ω‖c ≤ 1} . (5)

When T is a current of finite mass, namely M(T ) < ∞, ‖T‖ turns out to be a Radon
measure and obviously M(T ) = ‖T‖(Rm+n) (cf. [45, Sections 4.1.5 and 4.1.7]).

It is now a simple exercise in functional analysis to prove the following

Theorem 2.5. Let Z be an (m−1)-dimensional current for which there is T̄ with ∂T̄ = Z
and M(T̄ ) <∞. Then there is a T0 such that ∂T0 = Z and

M(T0) = min{M(T ) : ∂T = Z} .

If spt(T̄ ) ⊂ K for some closed set K we also have the existence of a T0 such that
∂T0 = Z, spt(T0) ⊂ K and

M(T0) = min{M(T ) : ∂T = Z and spt(T ) ⊂ K} .

Theorem 2.5 is however not very satisfactory from the “classical” point of view, as it
rather often gives many minimizers which are not classical surfaces.
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Example 2.6. Consider for instance the south and north poles S and N in the standard
sphere S2 ⊂ R3 and let Z be the 0-dimensional current JNK − JSK. For any meridian γ
joining S to N the corresponding current JγK is a minimizer of the mass among all currents
T with ∂T = Z and spt(T ) ⊂ S2. However the same holds for any convex combination
λ JγK + (1− λ) JηK where η is any other meridian and λ ∈ [0, 1]. In fact one can push this
idea even further. Let us parametrize the meridians as {γt}t∈S1 , where t is the intersection
of γt with the equator {x3 = 0} ∩ S2. If µ is a probability measure on S1, then the current

T0(ω) :=

∫
S1

JγtK (ω) dµ(t)

is also a minimizer of the mass (among those currents T with spt(T ) ⊂ S2 and ∂T = Z).

This does not seem a serious issue as there are anyway “classical minimizers” in the
example above. However, we have the following remarkable theorem (for a very short and
elegant proof we refer to [78]).

Theorem 2.7 (Lavrentiev gap, Young [82]). For every smooth closed embedded curve γ
in R4 define

M(γ) := inf
{

Vol2(Σ) : Σ is immersed, oriented and ∂Σ = γ
}

(6)

m(γ) := min {M(T ) : ∂T = JγK} . (7)

Then there are γ’s for which M(γ) > m(γ).

Before going on with our discussions we stop a moment to introduce some simple concepts
and notations which will be very useful later on. First of all we observe that, if F is a
smooth proper map between two Euclidean spaces RN and Rk, the pullback F ]ω of an
element ω ∈ Dm(Rk) is an element of Dm(RN). By duality this gives naturally a notion of
pushforward of currents, namely F]T (ω) = T (F ]ω) (cf. [68, eq. 26.20]). The assumption
that F is proper is needed to guarantee that F ]ω has compact support if ω has compact
support. This is however not needed when spt(T ) is compact: since this will be mostly the
case, in several occasions we will push currents forward via maps which are just smooth.

Next, if Ω ⊂ RN is an open set and we denote by Dm(Ω) the space of smooth m-
forms with compact support in Ω, we can naturally define a concept of current in Ω (with
corresponding “local” notions of boundary and mass), cf. [45, Section 4.1.7]). Moreover,
when Ω ⊂ Ω′ are open and T is a current on Ω′ we can easily restrict its action to forms
supported in Ω: for such restriction we use the notation T Ω. Observe that, whenever T
has finite mass, T Ω has also finite mass and we have the relation ‖T‖(Ω) = M(T Ω)
(cf. [68, eq. 26.9]). It is also the case that, when T has finite mass, T Ω can be given
a meaning as a current in the original domain Ω′: of course this might “add” some extra
boundary “located” in ∂Ω. Since we will always consider currents of (at least locally) finite
mass, we will not insist too much on their domain of definition and always assume they
are defined in duality with forms ω ∈ Dm(Rm+n).

In the future, to make our discussion simple, we will say that two currents T and S
agree on an open subset Ω if T Ω = S Ω. We use a similar notation on Borel measures
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µ (which we always assume to be defined on some subset K of the Euclidean space): given
a µ-measurable E ⊂ K, we use the symbol µ E for the measure µ E(A) := µ(A ∩ E).

Another operation which is well defined on currents is the product (cf. [68, Definition
26.16]). In turn this allows, for any given current S in Rm+n and any given point P ∈ Rm+n,
to define the current T which is the cone with base S and vertex P (cf. [68, eq. 26.26]).
The common notation for such T will be P××S. The construction is not complicated but
requires a certain amount of notation and terminology: we will instead give an intuitive
definition in the special case of integer rectifiable currents later.

2.2. The Federer-Fleming theory. If we want to rule out minimizers as in Example
2.6 it seems desirable to introduce a restricted class of currents which, roughly speaking,
“allows only integer multiplicities”.

Definition 2.8 (Integral currents, Federer-Fleming, cf. [45, Definition 27.1]). A current T
is integer rectifiable if there are a sequence of oriented C1 surfaces Σi ⊂ Rm+n, a sequence
of pairwise disjoint closed subsets Ki ⊂ Σi and a sequence of positive integers ki such that∑

i

kiVolm(Ki) <∞ (8)

T (ω) =
∑
i

ki

∫
Ki

ω ∀ω ∈ Dm . (9)

T is integral if both T and ∂T are integer rectifiable.

Remark 2.9. It is not very hard to see that under the assumptions above M(T ) =∑
i kiVolm(Ki) and thus it is implicit in the definition that integer rectifiable currents have

finite mass. This is however not always a desirable feature: for instance an entire smooth
graph would not be an integer rectifiable current according to the definition above. For
this reason, it is customary to consider integer rectifiable those currents T for which a
representation as above can be found for the restriction T Ω to any bounded open set
Ω ⊂ Rm+n. In the rest of the note we will then use the term integer rectifiable (and
integral) for this larger class.

Observe that the space of integer rectifiable currents is not any more a linear space
and there is no simple functional-analytic principle which provides a good compactness
property. A fundamental result in the theory of Federer and Fleming is that, nonetheless,
the space of integral currents is compact in a suitable sense.

Theorem 2.10 (Compactness of integral currents, Federer-Fleming, cf. [68, Theorem
32.2]). If {T k} is a sequence of integral m-dimensional currents such that

sup
k

(M(T k) + M(∂T k)) <∞ ,

then there is a subsequence, not relabeled, and an integral m-dimensional current T such
that Tk → T .

As a corollary we achieve
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Corollary 2.11. Let Z be an (m − 1)-dimensional integer rectifiable current and T̄ an
m-dimensional integral current with ∂T̄ = Z and M(T̄ ) < ∞. Then there is an integer
rectifiable current T0 such that ∂T0 = Z and

M(T0) = min{M(T ) : T is int. rect. and ∂T = Z} .
If spt(T̄ ) ⊂ K for some closed set K we also have the existence of an integer rectifiable

current T0 such that ∂T0 = Z, spt(T0) ⊂ K and

M(T0) = min{M(T ) : T is int. rect., ∂T = Z and spt(T ) ⊂ K} .

Indeed both Theorem 2.10 and Corollary 2.11 can be extended to a fairly large class of
metric spaces, cf. [9].

Theorem 2.10 does not exhaust the major results of the foundational paper of Federer
and Fleming. Indeed we wish to mention three other important cornerstones. First of all,
the rectifiability of the boundary can be recovered from that of the current under the only
assumption that the boundary has finite mass.

Theorem 2.12 (Boundary rectifiability, Federer-Fleming, cf. [68, Theorem 30.3]). If T is
integer rectifiable and M(∂T ) <∞, then T is integral.

Secondly, the “Lavrentiev gap” phenomenon of Lemma 2.7 is not present: any integral
current can be suitably approximated by a sequence of “polyhedral chains” with integer
coefficients. This is the content of the so-called Deformation lemma (see [68, Theorem
29.1 and Corollary 29.3]). Its precise statement would require the introduction of some
terminology and goes beyond the scopes of this note. We record, however, a rather useful
corollary of the Deformation Lemma.

Theorem 2.13 (Isoperimetric inequality, Federer-Fleming, cf. [68, Theorem 30.1]). There
are constants C(m,n) with the following property. Assume S is an integer rectifiable m-
dimensional current in Rm+n with ∂S = 0. Then there is an integral current T with ∂T = S
and M(T ) ≤ C(M(S))(m+1)/m.

Observe the following interesting corollary of the latter inequality: if S is an integer
rectifiable cycle (namely ∂S = 0), then it is a boundary. In fact a major achievement of
the Federer-Fleming theory is that the integral homology theory which derives from the
chain complex of integral currents is equivalent to the standard homology theories with
integer coefficients in all Riemannian manifolds (cf. [45, Section 4.4.1]). As a consequence,
each integral homology class in a compact smooth Riemannian manifold can be represented
by an integral cycle with least mass. Moreover, the theory can be generalized to other
coefficient groups (cf. [45, Section 4.46]).

We finish this section by introducing a few other objects which will be very convenient
in the rest of the note. First of all looking back at the Definition 2.8 it is tempting to
introduce a “density” for an integer rectifiable current at every point x belonging to any of
the sets Ki appearing in Definition 2.8. The natural choice would be the number ki. This
can indeed be done, but it raises the quesion whether the corresponding density depends
only on the current T and not instead on the chosen decomposition. In fact it is not



REGULARITY OF MINIMAL SURFACES 9

difficult to show that this definition of density is unique in a suitable measure-theoretic
sense and we record an important characterization of it in the next lemma. Here we denote
by ωm the m-dimensional volume of the unit m-dimensional ball and by Hm the Hausdorff
m-dimensional measure.

Lemma 2.14. If T is an integer rectifiable current, then the number

Θ(T, p) := lim
r↓0

‖T‖(Br(p))

ωmrm
(10)

exists and it is a positive integer for ‖T‖-a.e. p. Moreover, if the sets Ki and the integers
ki are as in Definition 2.8, then ‖T‖ =

∑
i kiHm Ki and Θ(T, p) = ki for Hm-a.e. p ∈ Ki.

Next it is tempting to attach a tangent plane to T at the points p ∈ Ki: a natural
candidate would be the tangent plane to the oriented C1 submanifold Σi. Again this raises
the question whether such definition is truly intrinsic. As for the density we can answer
this question through a characterization which follows a “blow-up procedure”. In order to
give the corresponding statement we introduce two conventions:

• First of all, we will consider all m-dimensional planes π as oriented. Thus, for each
π we have a unique integral current JπK.
• Given a current T we will denote by Tp,r the result of translating it so that p

becomes the origin and enlarging it of a factor r−1. Formally, if ιp,r denotes the
map x 7→ (x−p)/r, then Tp,r := (ιp,r)]T . Note that when T = JΓK for some smooth
surface Γ then Tp,r = Jιp,r(Γ)K.

The procedure of “zooming in a particular point” and taking limits of (subsequences of)
the corresponding rescalings is called “blowing-up” the current T and it is a device which
is employed recurrently in the regularity theory.

Lemma 2.15. If T is an integer rectifiable current, then for ‖T‖-a.e. p there is a unique
plane π(p) such that

Tp,r → Θ(T, p) Jπ(p)K as r ↓ 0. (11)

π(p) will then be called the tangent plane to T at p. Moreover, if the sets Ki and the
submanifolds Σi are as in Definition 2.8, π(p) = TpΣi (the classical oriented tangent to Σi

at p) for Hm-a.e. p ∈ Ki.

If π(p) is as above and e1, . . . , em is a positively oriented orthonormal base for it, it is
customary to introduce the simple m-vector

~T (p) := e1 ∧ . . . ∧ em :

this defines a Borel map from Rm+n into Λm(Rm+n), the m-th exterior product of the

standard euclidean space. We will use ~T extensively for such map and observe that we
have the simple identity

T (ω) =

∫
〈ω(p), ~T (p)〉 d‖T‖(p) =

∫
〈ω(p), ~T (p)〉Θ(T, p) dHm(p) ,
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where 〈, 〉 denotes the usual duality pairing between m-vectors and m-covectors. This
measure theoretic representation allows us to restrict integer rectifiable currents to subsets
E ⊂ Rm+n which are just Borel measurable (rather than open). Namely we define

T E(ω) :=

∫
E

〈ω(p), ~T (p)〉 d‖T‖(p) .

Remark 2.16. Since Λm(Rm+n) can be endowed with a natural scalar product (namely
through 〈e1 ∧ . . .∧ em, f1 ∧ . . .∧ fm〉 = det〈ei, fj〉: here we use 〈, 〉 for the Euclidean scalar
product!), T can be seen as a measure taking values in Λm(Rm+n): ‖T‖ is then the total

variation measure of T and ~T‖T‖ its “polar (or Radon-Nikodým) decomposition” (cf. [68,
eq. 26.7 and Definition 27.1]). However, this will not play any crucial role in our discussion
and the reader who is not familiar with Radon-Nikodým decompositions can safely ignore
this remark.

The extra structure given by Definition 2.8 to integer rectifiable currents allows to gener-
alize readily several computations which are valid for C1 submanifolds. The simple recipe
is just to use the decomposition of Definition 2.8 to chop an integer rectifiable current in
pieces Ki of C1 submanifolds: the corresponding computations can then be carried on each
Ki and patched suitably. The reader who is not familiar with such a procedure does not
have to worry whether the corresponding result depends or not on the chosen decomposi-
tion: in essentially all important cases it does not, although the corresponding proof might
be delicate.

An instructive example is the cone with basis T and vertex p, which from now on will
be denoted by p××T . As already mentioned, there is an intrinsic definition for this object
whatever the current T is (see [45, Section 4.1.1]). In the case of integer rectifiable currents,
however, we can use the idea above to reduce the definition of p××T to the standard one for
immersed C1 surfaces. First of all, if F : Ω → Rm+n is a C1 map with Ω ⊂ Rm compact,
we can define the m-dimensional current

T (Ω) := F] JΩK (ω) :=

∫
Ω

F ]ω .

If p ∈ Rm+n is a point, then we can define the map G : Ω× [0, 1] by

(x, t) 7→ (1− t)p+ tF (x)

and the (m+ 1)-dimensional current G] J[0, 1]× ΩK: this current coincides obviously with
our intuitive picture of the cone p×× (F] JΩK). Now, given an integer rectifiable current T ,
we can decompose it into compact subsets of C1 embedded surfaces as in Definition 2.8,
define the corresponding cone with vertex p for each such piece and then sum them all:
the result is p××T .

2.3. The codimension 1 case: sets of finite perimeter. Integral currents of codimen-
sion 1 have a special feature: they can be seen, locally, as boundaries of integral currents
of “top dimension”. By definition, integer rectifiable currents T of dimension m + n are
represented by

∑
ki JEiK, where the Ei’s are pairwise disjoint closed subsets of Rm+n: the
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action of JEiK on a “top form” fdx1 ∧ . . .∧ dxm+n is then given by the standard Lebesgue
integral

JEiK (fdx1 ∧ . . . ∧ dxm+n) =

∫
Ei

f(x) dx .

The current ∂T can then be thought as
∑

i ki∂ JEiK, i.e. as an integral combination of
“boundaries of sets”. In this form the Federer-Fleming theory for codimension 1 currents
existed already since few years before the appearing of the foundational paper [47]: the
corresponding objects, introduced by De Giorgi in [19] and [23] following some pioneering
ideas of Caccioppoli (see [12]), are called sets of finite perimeter or Caccioppoli sets. The
relevant definition is

Definition 2.17 (Caccioppoli sets, De Giorgi, cf. [8, Definition 3.35]). A measurable set
E ⊂ Rm+1 with finite Lebesgue measure is a set of finite perimeter if its indicator function
1E is a function of bounded variation, namely if

P(E) := sup

{∫
E

divX : X ∈ C∞c (Rm+1,Rm+1) and ‖X‖C0 ≤ 1

}
<∞ .

P(E) is called the perimeter of E.

Like the mass, the perimeter can be localized to define a Radon measure. In fact such
measure coincides with the total variation of the distributional derivative D1E, which is
usually denoted by ‖D1E‖ (cf. [8, Theorem 3.3.6]). If E is a smooth set and Ω is an
open set, then ‖D1E‖(Ω) is the m-dimensional volume of that portion of ∂E which lies in
Ω. For this reason it is customary to use the notation P(E,Ω) for the relative perimeter
‖D1E‖(Ω) when Ω is an open set and E is a Caccioppoli set (again cf. [8, Definition 3.3.5]).

The fundamental link between the two theories is then given by the following

Proposition 2.18 (cf. [68, Theorem 27.6 and Corollary 27.8]). Let E be a measurable
subset of Rm+1 with finite Lebesgue measure. JEK is then an integral current if and only if
E is a Caccioppoli set. Moreover, in this case M(∂ JEK) = P(E).

Consider next an m-dimensional integer rectifiable current T with finite mass and let
Bρ(x) ⊂ Rm+1 be such that spt(∂T ) ∩ Bρ(x) = 0. Then there are countably many sets of
finite perimeter Ei and positive integer ki such that

(i) ‖T‖(Bρ(x)) =
∑

i kiP(Ei,Bρ(x));
(ii) T =

∑
ki∂ JEiK on Bρ(x).

Theorem 2.10, Corollary 2.11, Theorem 2.12 and Theorem 2.13 are all generalizations
of theorems proved by De Giorgi for sets of finite perimeter (see [8, Sections 3.3 and 3.5]).

3. First considerations in the regularity theory

Going back to the Plateau’s problem, a current T as in the second statement of Corollary
2.11 must have the following local minimality property:

(AM) If S is an integral current of dimension m+ 1 supported in K, then M(T + ∂S) ≥
M(T ).
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Such currents will be called area minimizing in K (cf. [68, Definition 33.1]) and in the rest
of the paper K will always be some (sufficiently smooth) embedded Riemannian manifold
of dimension m + n̄, denoted by Σ. The number n̄ will be considered the codimension of
the area minimizing current T .

The rest of this note will be dedicated to the question: what kind of regularity is implied
by (AM)? Since we will always argue at the local level and the problem is scaling invariant,
we can assume all sorts of nice properties upon Σ (for instance that it is a global graph of
a smooth function with good bounds on its Ck norms): it is therefore natural to expect
that the answer will not depend upon the nature of Σ, but rather upon the codimension n̄.
We next state the best theorems proved so far concerning the regularity of area minimizing
currents, but before coming to them we summarize the relevant definitions in the following

Definition 3.1. Let Ω ⊂ Rm+n be open and Σ ⊂ Rm+n be a smooth complete submanifold
without boundary of dimension m + n̄. We say that an m-dimensional integer rectifiable
current T is area minimizing in Σ ∩ Ω if

• spt(T ) ⊂ Σ;
• M(T + ∂S) ≥M(T ) for every (m+ 1)-dim. integral S with spt(S) ⊂ Σ ∩ Ω.

Definition 3.2. We say that p ∈ spt(T ) \ spt(∂T ) is an interior regular point if there is a
positive radius r > 0, a smooth embedded submanifold Γ of Σ and a positive integer Q such
that T Br(p) = Q JΓK. The set of interior regular points, which of course is relatively open
in spt(T ) \ spt(∂T ), is denoted by Reg(T ). Its complement spt(T ) \ (spt(∂T ) ∪ Reg(T )),
the interior singular set of T , is denoted by Sing(T ).

The first theorem summarizes the achievements of several outstanding mathematicians
from the end of the sixties till the nineties: De Giorgi, Almgren, Fleming, Simons, Federer,
Bombieri, Giusti and Simon. It is fair to say that, with the notable exception of Simon’s
rectifiability result, the various aspects of the following theorem have been well digested in
the mathematical communities of elliptic PDEs and geometric analysis.

Theorem 3.3 (Regularity in codimension 1). Assume that Ω, Σ and T are as in Definition
3.1 and that n̄ = 1. Then

(i) For m ≤ 6 Sing(T ) ∩ Ω is empty (Fleming & De Giorgi (m=2), Almgren (m=3),
Simons (4 ≤ m ≤ 6), see [21, 48, 22, 3, 71] and also [60, 75]);

(ii) For m = 7 Sing(T ) ∩ Ω consists of isolated points (Federer, see [46]);
(iii) For m ≥ 8 Sing(T )∩Ω has Hausdorff dimension at most m− 7 (Federer, [46]) and

it is countably (m−7)-rectifiable, namely, up to a set of Hm−7-measure zero, it can
be covered by countably many C1 surfaces of dimension m− 7 (Simon, [69]);

(iv) The above results are optimal, namely for every m ≥ 7 there are area minimizing
integral currents T in the euclidean space Rm+1 for which Sing(T ) has positive Hm−7

measure (Bombieri-De Giorgi-Giusti, [11]).

As already mentioned, after discussing the features of the codimension 1 case, the rest
of the note will be devoted to the understanding of the higher codimension, i.e. n̄ ≥ 2.
For this case the best results are the following.
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Theorem 3.4 (Regularity in codimension n̄ ≥ 2). Assume that Ω, Σ and T are as in
Definition 3.1 and that n̄ ≥ 2. Then

(i) For m = 1 Sing(T ) ∩ Ω is empty;
(ii) For m ≥ 2 Sing(T ) ∩ Ω has Hasudorff dimension at most m− 2 (Almgren, [5]);

(iii) The above result is optimal, namely for every m ≥ 2 there are area minimizing
integral currents T in Rm+2 for which Sing(T ) has positive Hm−2 measure (Federer,
[44]).

Almgren’s result was subsequently sharpened by Chang (cf. [13]) for 2-dimensional area
minimizing currents.

Theorem 3.5 (m = 2, n̄ ≥ 2). Assume that Ω, Σ and T are as in Definition 3.1, that
n̄ ≥ 2 and m = 2. Then Sing(T ) ∩ Ω consists of isolated points.

In Section 5 we will discuss extensively the difficulties that any argument for (ii) must
face. Almgren’s original typewritten proof was more than 1700 pages long and was pub-
lished posthumously thanks to the efforts of his students Scheffer and Taylor in a book
of almost 1000 pages. In this note we will describe the main steps of Almgren’s program
following the papers [29, 30, 33, 31, 32] by Emanuele Spadaro and the author.

Chang’s result builds heavily on Almgren’s book. Moreover Chang’s paper [13] does not
provide the proof of one major step of the argument, the existence of a “branched center
manifold”: the construction of such object requires the understanding of 4/5 of Almgren’s
monograph and a suitable modification of its most obscure and involved part, which gives
the construction of the “non-branched center manifold” (cf. Sections 11 and 12 below).
Building upon [29, 30, 33, 31, 32], in joint papers with Emanuele Spadaro and Luca Spolaor
we will give the first proof of the existence of a “branched center manifold” and extend
Chang’s theorem to a large class of objects which are almost minimizing in a suitable sense,
cf. [37, 34, 36, 35]. That proof (and Chang’s theorem) will however not be discussed in
this survey.

In the rest of this section we will delve into the preliminaries of the regularity theory,
namely the monotonicity formula and its consequences, which are common to both the
codimension 1 and the higher codimension cases.

Often, we will discuss generalizations of the regularity theorems to stationary and some-
times to stable objects. We give thus their formal definition here. Recall that we can push-
forward currents through maps. In what follows, given a smooth compactly supported
vector field X on Rm+n we will consider the one parameter family Φt of diffeomorphisms
generated by X, in other words the flux of X:

d
dt

Φt(x) = X(Φt(x))

Φ0(x) = x .
(12)

If the vector field X is tangent to a given submanifold Σ, then obviously Φt maps Σ into
itself. For a current T supported in Σ, an admissible one parameter family of deformations
is then given by Tt = (Φt)]T where the generator X is assumed to be tangent to Σ and to
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vanish on spt(∂T ). Notice in particular that, for an area minimizing current T in Σ, we
would have

d

dt
M(Tt) = 0 (13)

and
d2

dt2
M(Tt) ≥ 0 . (14)

Definition 3.6. An integer rectifiable current T with spt(T ) ⊂ Σ is called

• stationary if (13) holds for any admissible deformation described above;
• stable if both (13) and (14) hold for any admissible deformation described above.

3.1. Compactness. A first basic fact about area minimizing currents is that, under the
same assumptions of the compactness theorem of Federer and Fleming, they are also a
compact class. It is not difficult to form an intuition about this: assume that a sequence
of integral currents Tk has a uniform bound on the mass in a certain open set Ω, namely
supk ‖Tk‖(Ω) < ∞ and that ∂Tk vanishes in Ω. By the compactness theorem of Federer
and Fleming (in fact a suitable localized version of Theorem 2.10), we can assume that Tk
converges to an integer rectifiable current T in Ω, which has no boundary in Ω. The mass
is lower semicontinuous and thus

M(T ) ≤ lim inf
k
‖Tk‖(Ω) . (15)

Next assume that each Tk is area minimizing in Rm+n. If we had a strict inequality, we
could imagine to use T as a competitor for Tk, after “gluing Tk and T” close to ∂Ω: the
gain in mass from T to Tk is a certain positive number, whereas the “gluing” costs less and
less as k →∞ because the currents Tk come “closer” to T . The result would contradict the
minimizing property of Tk for k large enough and we conclude therefore that the lim inf in
the right hand side of (15) is a limit and that equality holds.

The discussion above is correct, but a rigorous proof requires all the power of the Federer-
Fleming theory, in particular of the Deformation lemma. It is also clear that for the same
reason it should not be possible to lower the mass of T by perturbing it in a compact
subset of Ω, i.e. T is area minimizing in Ω. A similar conclusion holds also in case the
Tk’s are area minimizing in a given smooth submanifold Σ. Actually we could allow the
ambient manifold to vary with k: if we denote it with Σk and we assume that it converges
smoothly (C2 suffices) to a smooth Σ, then the limiting current will be area minimizing in
Σ. We summarize our discussion in the following

Theorem 3.7 (Compactness of area minimizing currents, cf. [68, Theorem 34.5]). Let Σk

be a sequence of C2 submanifolds of Rm+n of dimension m+ n̄ which converge in C2 to Σ
and let Tk be a sequence of integer rectifiable area minimizing currents in Σk of dimension
m with supk M(Tk) <∞. Assume that ∂Tk = 0 on some open set Ω and that Tk Ω→ T .
Then

• T is area minimizing in Ω ∩ Σ;
• ‖Tk‖ Ω

∗
⇀ ‖T‖ in the sense of Radon measures.
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3.2. The monotonicity formula and its consequences. A pivotal role in the regularity
theory for area minimizing currents and, more in general, for all known generalizations of
the concept of critical point for the area functional, is the so-called monotonicity formula.
We start with the following simple observation: assume a certain area minimizing current
T in Rm+n is in fact a smooth surface Γ (namely T = JΓK) and fix a point p ∈ Γ \ ∂Γ and
a radius r < dist(x, ∂Γ). Assume moreover that ∂Br(p) intersects Γ transversally. If we
replace Γ in the ball Br(p) with the cone having vertex p and boundary Γ ∩ ∂Br(p) we
must increase the volume of Γ. Namely

Volm(Γ ∩Br(p)) ≤
r

m
Volm−1(Γ ∩ ∂Br(p)) . (16)

On the other hand the coarea formula implies that

Volm−1(∂Br(p) ∩ Γ) ≤ d

dt

∣∣∣∣
t=r

Volm(Bt(p) ∩ Γ) (17)

and we reach easily the conclusion that

d

dr

Volm(Γ ∩Br(p))

rm
≥ 0 . (18)

In fact this is a very crude argument: a more careful computation using the stationarity
of Γ, i.e. the vanishing of the first variation of the area functional, gives the much more
precise formula

Volm(Γ ∩Br(p))

rm
− Volm(Γ ∩Bs(p))

sm
=

∫
Γ∩(Br(p)\Bs(p))

|(x− p)⊥|2

|x− p|m+2
dVolm(x) , (19)

where (x − p)⊥ denotes the component of the vector x − p which is orthogonal to the
tangent space TxΓ. A similar formula, which includes a further correction due to the second
fundamental form of Σ, is valid for minimal surfaces in smooth submanifolds Σ ⊂ Rm+n.

The formula (19), in the framework above an a-priori estimate, is indeed valid for area
minimizing currents as well (and in general for a very powerful generalization of the concept
of “stationary surface”, called stationary varifold, see [1]; cf. also [68, Section 4.3]). Observe
indeed that for an integer-rectifiable current T it is rather easy to make sense of the right
hand side of (19): since at ‖T‖-a.e. x we have a well defined tangent plane, we can define
(x− p)⊥ for ‖T‖-a.e. x.

A first obvious consequence of the monotonicity formula is that the density of an area
minimizing current is in fact defined at every point: thus from now on we will use Θ(T, p)
(cf. (10)) as a well defined quantity for every p 6∈ spt(∂T ). Indeed it is a simple exercise
to show that Θ is an upper semicontinuous function (and this because, modulo some small
technicalities, the map p→ ‖T‖(Br(p)) is continuous at each fixed r).

We next describe another crucial consequence of the monotonicity formula. Let T be
an area minimizing current (in the euclidean space, to simplify our discussion) and p ∈
spt(T ) \ spt(∂T ). Recall the homothetic rescalings Tp,r. It is obvious that each Tp,r is an
area minimizing current. Observe also that:
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• For each bounded open set Ω, we clearly have spt(∂Tp,r) ∩ Ω = ∅, provided r is
small enough;
• For each R > 0 we have a uniform bound for ‖Tp,r‖(BR(0)): the latter is indeed

the number r−m‖T‖(BRr(p)), which is bounded independently of r thanks to the
monotonicity formula.

Thus, by Theorem 3.7, for every fixed bounded open Ω we can extract a subsequence
{Tp,rk}rk↓0 which converges in Ω to an area minimizing current T0. Actually, by a standard
diagonal argument we can find a “global” limit current T0 which is an integral current
on each bounded open subset of Rm+n, which has no boundary and whose restriction to
any bounded open set Ω is area minimizing. Although strictly speaking T0 violates our
definition of area minimizing current (because it does not have finite mass on the entire
euclidean space), we will still use the term area minimizing by a slight abuse of notation.

The monotonicity formula and Theorem 3.7 imply that ‖T0‖(Br(p)) = Θ(T, p)rm for
every r > 0. If T0 were regular, namely a classical surface Γ (with multiplicity), we would
conclude that the right hand side of (19) vanishes when p = 0: note that this is only
possible if for every x ∈ Γ the segment joining x with the origin is contained in Γ, namely
if Γ is a cone with vertex at the origin. The same conclusion can be drawn without knowing
any a-priori regularity for T0. It is customary to use the term area minimizing cone for
such objects and to call them tangent cones to T at p if there is a sequence rk ↓ 0 such
that Tp,rk → T0. This motivates the following

Definition 3.8. An area minimizing cone of dimension m is an integer rectifiable current
S of dimension m with the following properties

• ∂S = 0 and S0,r = S for every positive r;
• S Ω is area minimizing for any bounded open set Ω.

Next, if T and S are two currents such that, for some p ∈ spt(T ) and some rk ↓ 0, Tp,rk
converges to S, we then say that S is tangent to T at p.

Rather than giving the precise formulation of the monotonicity formula for area min-
imizing currents in a submanifold Σ (i.e. with the exact remainder), we record in the
following proposition all the most important consequences.

Theorem 3.9 (Tangent cones, cf. [68, Section 7.3]). Let T be an area minimizing integral
current of dimension m in a C2 submanifold Σ. Then

(i) r 7→ eCrr−m‖T‖(Br(p)) is a monotone function for each p 6∈ spt(∂T ), provided
r ∈]0, dist(p, spt(∂T )[ and C is a suitable constant, which only depends on the size
of the second fundamental form of Σ;

(ii) The density Θ(T, p) is well defined at every p 6∈ spt(∂T ), it is at least 1 at each
point p ∈ spt(T ) \ spt(∂T ) and it is upper semicontinuous;

(iii) For every p 6∈ spt(∂T ) and every sequence rk ↓ 0 there is a subsequence, not rela-
beled, and an area minimizing cone T0 such that Tp,rk → T0; T0 6= 0 if and only if
p ∈ spt(T ).
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Note that Lemma 2.15 already guarantees that at ‖T‖-a.e. p ∈ spt(T ) \ spt(∂T ) there
is a unique tangent cone, which is an integer multiple (such multiple being Θ(T, p)) of an
m-dimensional plane π(p). In order to make our discussion shorter, from now on a tangent
cone will be called flat if it is a multiple of an m-dimensional plane (note that the multiple
will necessarily turn out to be a nonzero integer). It is obvious that at every p ∈ Reg(T )
there is a unique tangent cone and it is flat. On the other hand if there is even a single
tangent cone at p which is not flat, then necessarily p ∈ Sing(T )! At first glance a pretty
plausible conjecture is that regular points coincide indeed with those points where at least
one tangent cone is flat. We will see that this is true in codimension 1 (the first deep
regularity theorem, due to De Giorgi [21]), but not necessarily in higher codimension. In
codimension 1 the theorem of De Giorgi gives right away that Hm(Sing(T )) = 0, thanks
to the following elementary, but powerful, corollary of Theorem 3.9.

Corollary 3.10 (cf. [68, Sections 4.3 and 7.3]). Let T be an area minimizing current of
dimension m. Then at Hm-a.e. p ∈ spt(T ) \ spt(∂T ) Θ(T, p) ∈ N \ {0} and there is a
unique flat tangent cone to T at p.

Moreover, the convergence of area minimizing currents can be improved in the following
sense: If Tk, Σk and Ω are as in Theorem 3.7, then spt(Tk) converges to spt(T ) locally
(i.e. on every compact subset of Ω) in the sense of Hausdorff.

Before coming to the next section, let us look at what is perhaps the most intriguing
open problem in the regularity theory of minimal surfaces. Observe that Theorem 3.9
does not imply the uniqueness of the tangent cone at a given point, namely it leaves the
possibility that, for two different sequences rk ↓ 0 and sk ↓ 0, the limits of Tp,rk and Tp,sk
do not coincide. This seems waistful from the point of view of area, but proving it turns
out to be the most challenging open problem in the field. More precisely the following
conjecture is widely open

Conjecture 3.11. The tangent cone to an area minimizing current T is unique at every
point p ∈ spt(T ) \ spt(∂T ).

The conjecture has been proved for 2-dimensional currents T in any codimension by
White in his remarkable paper [77] and it has been shown by Simon in codimension 1 at any
isolated singularity in the fundamental work [67]. The latter result is indeed a consequence
of a remarkably general approach, which applies to other variational problems (such as
the uniqueness of tangent maps to energy minimizing maps) but also to the study of the
asymptotic behaviour of solutions to parabolic equations, see [67].

4. The regularity theory in codimension 1

The first breakthrough in the regularity theory is due to De Giorgi: he realized in
his fundamental work [21] that the existence of one flat tangent plane at p is enough to
conclude that p is a regular point in codimension 1. His theorem was then extended to
any codimension by Almgren in [2] (see also [65]) under an important assumption on the
density which we will discuss extensively in a moment (indeed, it is possible to extend the
validity even to general Hilbert spaces, cf. [7]). In fact Almgren’s statement covers many
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more geometric functionals, which satisfy an appropriate ellipticity assumption. In the
framework of minimal surfaces the most important generalization of De Giorgi’s ε-regularity
theorem is due to Allard in [1] (cf. also [68, Chapter 4] and [24]): his theorem, valid for a far
reaching generalization of classical stationary surfaces (namely integer rectifiable varifolds
with sufficiently summable generalized mean curavature) is the starting point of a variety
of applications of the minimal surface theory to geometric and topological problems.

We will state here the De Giorgi-Almgren ε-regularity theorem in all dimensions and
codimensions and we will later emphasize why its consequences are much stronger in codi-
mension 1. As already mentioned, we are dealing with an ε-regularity theorem: under the
assumption that a certain particular quantity is sufficiently small at a given scale, we will
conclude the regularity of the current at a smaller scale. The quantity which plays such a
pivotal role is the excess of the current T , which we now define:

Definition 4.1. Let T be an integer rectifiable m-dimensional current and π be an m-
dimensional plane, oriented by the unit simple m-vector ~π. The excess of T in the ball
Bρ(p) with respect to π is the quantity

E(T,Bρ(p), π) :=
1

ωmρm

∫
Bρ(p)

|~T (x)− ~π|2 d‖T‖(x) . (20)

The excess in Bρ(p) is

E(T,Bρ(p)) := min{E(T,Bρ(p), π) : π is an oriented m-plane} . (21)

The excess is then an integral measure of the oscillation of the tangent plane to the
current. We use the notation AΣ for the second fundamental form of Σ and the standard
[ · ]0,α for the Hölder seminorms (cf. [52]). Finally, we will often deal with m-dimensional
balls in m-dimensional planes π and we introduce therefore the notation Br(p, π) for the
set Br(p) ∩ (p+ π).

Theorem 4.2. Let T be an m-dimensional integer-rectifiable area minimizing current in a
C2 submanifold Σ of dimension m+ n̄. There are constants α > 0, ε > 0 and C, depending
only upon m and n̄, such that the following holds. Assume that for some ρ > 0 and some
m-dimensional plane π we have

(a) ∂T B2ρ(p) = 0;
(b) Θ(T, p) = Q and Θ = Q ‖T‖-a.e. on B2ρ(p), for some positive integer Q;
(c) ‖T‖(B2ρ(p)) ≤ (Qωm + ε)(2ρ)m;
(d) E := E(T,B2ρ(p), π) < ε and ρA := ρmaxΣ∩B2ρ(p) |AΣ| < ε.

Then T Bρ(p) = Q JΓK for a surface Γ which is the graph of a suitable C1,α function
u : Br(p, π)→ π⊥. Moreover [Du]0,α ≤ C(E1/2 + ρA)ρ−α.

Since in the future we will deal very often with oriented graphs of functions and the
corresponding currents, we will use the following notation: Gr(u) will denote the set-
theoretic graph of the function u and Gu will denote the induced current (for the latter to
be well defined we need some regularity for u, which will be discussed in detail later).
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4.1. De Giorgi’s idea. The crucial point of the proof of Theorem 4.2 is that, under the
above assumptions, the current T is close to the graph of an harmonic function. The
implementation of this idea is not at all trivial, since it is not at all obvious how we should
approximate T with a graph in the first place. Secondly, the various assumptions play a
key role and we will see that, in codimension higher than 1, none of them can be dropped:
in particular, in higher codimension assumption (b) is crucial to be able to find a (single
valued) graph which is sufficiently close to T , cf. Example 5.3.

However, leaving these points aside, assume for the moment that T is the graph Gu of
a Lipschitz function u : p + π → π⊥. For every Ω ⊂ π we can compute the mass of T in
the cylinder C := Ω× π⊥ using the area formula:

M(T C) =

∫
Ω

√
1 + |Du|2 +

∑
k≥2

∑
[det(Mk(Du))]2

where with Mk(Du) we denote an arbitrary k × k minor of Du.
The assumption that the excess E(T,Bρ(p), π) is small is similar to the requirement

that the derivative Du is small (and certainly it does imply that |Du| is small on most of
Br(p, π)). The Taylor expansion of the integrand then gives

M(T C) = |Ω|+ 1

2

∫
Ω

|Du|2 +O(|Du|4) .

In addition it is not difficult to see that M(T C)−|Ω| = 1
2

∫
C
|~T −~π|2 d‖T‖. Thus we can

assume that u is rather close to a minimizer of the Dirichlet energy, i.e. that it is close to
an harmonic function.

Following similar computations we can compare E(T,B2ρ, π) to the average integral

−
∫
B2ρ(p,π)

|Du|2 .

and E(T,Bρ(p)) to a similar “optimized” quantity

min
A
−
∫
Bρ(p,π)

|Du− A|2 = −
∫
Bρ(p,π)

∣∣∣Du−−∫
Bρ(p,π)

Du
∣∣∣2 .

For harmonic functions v we have the following decay estimate, which could be proved using
the expansion of the trace v|∂Bρ(p,π) in spherical harmonics (see [74, Chapter 5, Section 2])

−
∫
Bρ(p,π)

∣∣∣Dv −−∫
Bρ(p,π)

Dv
∣∣∣2 ≤ 1

4
−
∫
B2ρ(p,π)

|Dv|2 . (22)

We could then hope to transfer such decay to the current in the form

E(T,Bρ(p)) ≤ 2−2+2δE(T,B2ρ(p), π) , (23)

where the constant δ > 0 takes into account (quite a few) error terms.
Note however that we could optimize on the plane in the right hand of (23) to achieve

E(T,Bρ(p)) ≤ 2−2+2δE(T,B2ρ(p)) . (24)
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In turn this latter estimate would imply that the assumption (d) of Theorem 4.2 holds
also in the ball Bρ(p). Since all other assumptions are automatically satisfied at any scale
smaller than 2ρ (the monotonicity formula plays a crucial role here), we could then iterate
the argument to obtain the decay

E(T,Br(p)) ≤ Cr2−2δ .

Given our intuition that E(T,Br(p)) is essentially a mean square oscillation of the tangent
plane, the latter decay is a Morrey-type estimate which suggests C1,1−δ regularity of the
current.

Remark 4.3. The above analysis leads to guess that the exponent α in Theorem 4.2 can
be taken arbitrarily close to 1, at the price of making the threshold ε suitably small and
the constant C fairly large. This is indeed the case and the interested reader can check
[28, Corollary 2.4 and Appendix A] for a proof which follows closely the argument outlined
above.

The subsequent generalizations of Almgren [2, 4], Allard [1] and other authors (cf. for
instance [10] and [65]) of De Giorgi’s ε-regularity statement have lost the feature of implying
directly (24) and seem to need a more careful argument to reach the conclusion that α
is arbitrarily close to 1: a sacrifice to flexibility, since the latter results can be applied to
much more general objects and situations. Moreover, any C1,α graph which is stationary
for the area functional enjoys higher regularity as a simple consequence of the Schauder
estimate. Thus a loss of sharpness in the exponent α would anyway play no important role
in the classical results.

We will see however that in codimension higher than 1 De Giorgi’s original (variational)
idea and its important byproduct that the decay of the excess can be assumed to be “almost
quadratic” play both a crucial role in the proof of Theorem 3.4.

4.2. First consequences of the ε-regularity theorem. It is rather simple to see that
the conditions (a), (c) and (d) will be met at a sufficiently small radius ρ as soon as
p ∈ spt(T )\ spt(∂T ) and there is at least one flat tangent cone at p. However condition (b)
discriminates severely between the codimension 1 case (n̄ = 1) and the higher codimensions.
Indeed, Proposition 2.18 shows that in codimension 1 a current without boundary can be
described as a “superposition” of boundaries of finitely many Caccioppoli sets Ei (in the
case of currents in Riemannian manifolds, a similar statement holds as well).

In fact from Proposition 2.18(i) it is not difficult to conclude that, when T is area
minimizing, each current ∂ JEiK in the decomposition is as well area minimizing. Intuitively
one does not expect integer multiplicities higher than 2 for boundaries of sets, at least not
at most points: for instance it is not difficult to prove that the density Θ(∂ JEK , p) equals
1 at ‖∂ JEK ‖-a.e. p when E is a set of finite perimeter. Ultimately it is then possible to
prove the following corollary (cf. [68, Section 7.37]).

Corollary 4.4. If T is an area minimizing current of dimension m in a C2 submanifold
Σ of dimension m + 1, then any point p at which there is a flat tangent cone is a regular
point.
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In particular we conclude immediately that ‖T‖(Sing(T )) = 0 and, by Corollary 3.10,
that Hm(Sing(T )) = 0. In higher codimension the arguments above do not apply and we
will see that indeed Corollary 4.4 fails. It is nonetheless possible to conclude a weaker
statement because, by the upper semicontinuity of the density and an elementary topo-
logical argument, Assumption (b) of Theorem 4.2 can still be verified in a rather large
set.

Corollary 4.5 (cf. [68, Theorem 36.2]). If T is an area minimizing current of dimension
m in a C2 submanifold Σ of dimension larger than m+1, then Reg(T ) is dense in spt(T )\
spt(∂T ).

Indeed this statement has been recently extended to any Hilbert space, cf. [7].
Remarkably, Corollary 4.5 was the best regularity result available before the appearance

of Almgren’s manuscript [5] with its proof of Theorem 3.4. In fact this is the current
situation for stationary integer rectifiable m-dimensional varifolds: Allard’s theorem gives
the regularity up to a meager closed set, even in codimension 1, and this is up to now
the best regularity result available in the literature for stationary objects. In particular
it is not known that the singular set is Hm-negligible, not even in the simplest setting
of stationary 2-dimensional varifolds in 3 dimensions. For stable hypersurfaces a rather
satisfactory theory is instead available thanks to the pioneering works of Schoen - Simon
- Yau [66] and Schoen - Simon [64] and to the recent ones of Wickramasekera [80].

4.3. Full regularity for m ≤ 6 and n̄ = 1: Simons’ theorem. Let us now focus on the
case of codimension n̄ = 1. Corollary 4.4 naturally leads to discuss the existence of area
minimizing (hyper-)cones which are not flat. On the one hand, their nonexistence would
imply via Corollary 4.4 that Sing(T ) is empty. On the other hand, it is rather easy to see
that non-flat area minimizing cones must be necessarily singular at the origin.

The investigations upon these questions were started by De Giorgi and Fleming who
could show full regularity for m = 2, cf. [48] and [22]. Moreover, De Giorgi showed that
the problem of deciding whether every codimension 1 area minimizing cone in Rm+1 is
flat is equivalent to decide whether any entire minimal (hyper-) graph in Rm+2 is affine,
the so-called Bernstein problem. The result of De Giorgi and Fleming was subsequently
improved by Almgren ([3], m = 3) and finally by Simons in [71] to show full regularity for
m ≤ 6.

It must be noticed the following: if one shows that in dimension m ≤ m0 there is no
singular area minimizing hypercone, then any area minimizing hypercone of dimension
m + 1 is necessarily regular except possibly at the origin: thus the cross-section is a
minimal (i.e. stationary) embedded hypersurface of the standard m+1-dimensional sphere
(this fact will be discussed in a couple of sections as the starting point of the so-called
Federer’s reduction argument). On the other hand, any cone whose cross section is a
minimal hypersurface of the standard m+ 1-dimensional sphere is stationary for the area
functional in Rm+2. However if such a cone is area minimizing, then it must also be stable,
in the sense of Definition 3.6. The famous theorem of Simons is the following statement.
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Theorem 4.6 (Simons). Let 2 ≤ m ≤ 6. Any stable minimal hypersurface of Rm+1 which
is a cone over a minimal submanifold of ∂B1(0) is necessarily an m-dimensional plane.

4.4. Simons’ cone and the Theorem of Bombieri-De Giorgi-Giusti. In his cele-
brated paper [71] Simons provided also an example which showed the optimality of his
theorem. More precisely he showed that the cone over S3 × S3 ⊂ S7, namely

S := {x ∈ R8 : x2
1 + x2

2 + x2
3 + x2

4 = x2
5 + x2

6 + x2
7 + x2

8} (25)

is stationary and stable. The surface is usually called Simons’ cone in the literature which
followed [71]. Later Bombieri, De Giorgi and Giusti in [11] showed that S is indeed an area
minimizing cone and were thus able to settle the Bernstein problem in all dimensions.

Theorem 4.7 (Bombieri-De Giorgi-Giusti). S in (25) is an area minimizing current in
R8 and therefore for any n ≥ 8 there are functions u : Rn → R which satisfy the minimal
surface equation and are not affine.

We refer the reader to the recent paper [39] for an elegant and simple proof of Theorem
4.7

4.5. m ≥ 7 and Federer’s reduction argument. We have already mentioned that any
area minimizing cone of dimension 7 in R8 is necessarily smooth outside the origin because
the only area minimizing cones in R7 are (multiple of) hyperplanes. We wish to illustrate
this statement as an introduction to a powerful idea of Federer, which has been applied to
several problems in geometric analysis.

Consider an m-dimensional current T without boundary in Rm+n̄ and assume it is in-
variant under translation in a given direction v, which for simplicity we set to be the first
vector e1 of the standard orthonormal basis: we then say that S “splits off a line”. It is not
difficult to see that, in this case, the current T is the product of a current S of dimension
m − 1 in Rm−1+n and a line, namely the 1-dimensional current on R which is given by
integration of the top 1-form and we denote by JRK: JRK (fdx1) =

∫
f(x1) dx1. It is rather

intuitive that JRK× S is locally area minimizing (i.e. its restriction to bounded open sets
is area minimizing) if and only S is.

Consider now an area mininimizing cone T in R8 and let p ∈ spt(T )\{0}. Then it is not
difficult to see that any tangent cone to T at p splits off a line, because it will be invariant
under translations in the direction p. We summarize our discussion in the following key

Lemma 4.8 (cf. [68, Lemma 35.5 and proof of Theorem 35.3]). If S0 is a tangent cone
to an area minimizing m-dimensional cone S in Rm+n̄ at a point p 6= 0, then S0 splits off
a line, namely S0 = JRK × Z for some (m − 1)-dimensional area minimizing cone Z in
Rm−1+n̄.

Fix now an area minimizing hypercone S of dimension 7 (i.e. m = 7 and n̄ = 1). Fix S0

as in the lemma above and observe that Z is an area minimizing hypercone of dimension
6: as such we conclude from Simons’ theorem that S0 must then be a plane. Thus we can
apply Corollary 4.4 and conclude that either S is regular or it has an isolated singularity
at the origin.
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This in turn shows that the singular set Sing(T ) of an area minimizing 7-dimensional
current T in R8 is discrete (cf. [45, Section 5.4.17]). Indeed, let p ∈ Sing(T ) and consider
any tangent cone S at p. Let r > 0 and Tp,r be a rescaling of S which is sufficiently close
to S. By the regularity of S, there is a radius ρ > 0 such that the the excess of S in
B2ρ(q) is smaller than ε/2 at any point q with |q| = 1. If Tp,r is sufficiently close to S, the
excess of Tp,r in B2ρ(q) will be smaller than ε and we can apply the ε-regularity theorem
to conclude that Tp,r is regular in Bρ(q). In fact the rigorous argument must treat also the
conditions (b) and (c) of Theorem 4.2 on the multiplicity: these can be settled thanks to
the codimension 1 assumption. Our discussion leads naturally to the following statement,
which requires just an appropriate compactness argument on the set of tangent cones at
p: there are positive constants r, ρ > 0 such that, if 0 < |p − q| < r, then T is regular in
Bρ|p−q|(q).

We in fact highlight a general important principle behind the above discussion, a very
well-known and widely used effect of ε-regularity statements:

Proposition 4.9. Let T , Σ, Tk and Σk be as in Theorem 3.7 and assume that the codi-
mension n̄ is 1. If T is regular in Ω, then for any open set Γ ⊂⊂ Ω, Tk is regular in Γ for
k large enough.

For the sake of our future discussions we will rephrase the proposition above in the
following equivalent way, underlying that “singularities persist in the limit”: we will stress
later on that this persistence can be seen as the major difference between the codimension
1 and the higher codimension.

Proposition 4.10 (Persistence of singularities in codimension 1). Let Ω, T , Σ, Tk and
Σk, be as in Theorem 3.7 and assume that the codimension n̄ is 1. If pk ∈ Sing(Tk) and
pk → p ∈ Ω, then p ∈ Sing(T ).

The basic ideas that singularities must persist in the limit and that repeated “blow-
ups” reduce the dimension have been used by Federer to give a first rough description of
Sing(T ) when n̄ = 1 and m > 7. He used the resulting “scheme”, called Federer’s reduction
argument (cf. [46] and [68, Appendix A]), to prove the following

Theorem 4.11 (Federer). Let m, n̄, T and Σ be as in Theorem 3.3. If m = 7 then Sing(T )
is discrete. If m ≥ 8, then Hm−7+α(Sing(T )) = 0 for every α > 0, namely Sing(T ) has
Hausdorff dimension at most m− 7.

The following is a rough sketch of Federer’s argument. Assume the existence of an
area minimizing current T of dimension m ≥ 8 in Rm+1 such that, for some positive α,
Hm−7+α(Sing(T )) > 0. An elementary measure theoretic argument shows the existence of
many points p for which

lim sup
r↓0

Hm−7+α(Sing(T ) ∩Br(p))

rm−7+α
> 0

(in fact the above property holds for Hm−7+α-a.e. p ∈ Sing(T ), cf. [68, Theorem 3.2]).
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We can thus assume the existence of an area minimizing cone T0 and of a subsequence
of rescalings Tp,rk converging to it for which

Hm−7+α(Sing(Tp,rk) ∩ B̄1) ≥ η

for some positive η. After taking a further subsequence, not relabeled, we can assume that
Sing(Tp,rk)∩B̄1 converges to some compact set F in the Hausdorff distance: Proposition 4.9
implies then that F ⊂ Sing(T0). We would like to infer that Hm−7+α(Sing(T0)) ≥ η > 0.
However the Hausdorff measures are not upper semicontinuous under convergence in the
Hausdorff distance. This is resolved by using a suitable variant, the Hm−7+α

∞ measure: the
latter turns out to be upper semicontinuous while it has the same null-sets as the Hm−7+α

measure (and the same “density property” used above; cf. [68, Appendix A]).

Summarizing, from the existence of an area minimizing current T of dimension m with
a singular set of positive Hm−7+α measure we have concluded the existence of an m-
dimensional area minimizing cone T0 with the same property. We can now repeat this
argument again with T0 in place of T , blowing up at some point q distinct from the origin.
We conclude that, for some appropriate tangent cone S to T0 at q, Hm−7+α(Sing(S)) > 0.
On the other hand S splits off a line and it is easy to see that this implies the existence of
an area minimizing current Z of dimension m− 1 in Rm such that Hm−8+α(Sing(Z)) > 0.

The process can be iterated until we end up with a 7-dimensional area minimizing current
T̄ in R8 which has a singular set of positive Hα measure. Since α > 0, this contradicts what
we have already proved, namely that in this case T̄ has (at most) isolated singularities.

4.6. Simon’s rectifiability result. We complete our survey of the regularity results in
codimension 1 by mentioning Simon’s spectacular achievement: combining his fundamen-
tal theorem about the uniqueness of tangent cones at isolated singularities with several
additional innovative ideas, he was able to show that, when n̄ = 1, Sing(T ) can be covered,
up to a set of Hm−7-measure zero, by a countable collection of C1 (m − 7)-dimensional
submanifolds, cf. [69]. A new proof of Simon’s theorem, which avoids the discussion of
the uniqueness of tangent cones at isolated singularities, has been very recently found by
Naber and Valtorta, see [57]. This is till now the best description available for the behavior
of the singular set in codimension 1.

5. Federer’s theorem and the failure of ε-regularity in codimension n̄ ≥ 2

5.1. Holomorphic subvarieties as area minimizing currents. We start by recalling
that holomorphic subvarieties of Ck+j, namely zeros of holomorphic maps u : Ck+j → Cj

(k and j being, respectively, the complex dimension and codimension of the variety) can
be given a natural orientation. In what follows we identify Ck+j with R2k+2j in the
usual way: if z1, . . . , zk+j are complex coordinates and xj = Re zj, yj = Im zj, we let
x1, y1, . . . , xk+j, yk+j be the standard coordinates of R2k+2j. Recall then that an holo-
morphic subvariety Γ of Ck+j of complex dimension k is a (real analytic) submanifold of
R2k+2j \ Sing(Γ) of (real) dimension m = 2k, where Sing(Γ) is an holomorphic subvariety
of complex dimension k − 1.
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Furthermore, at each point p ∈ Γ \ Sing(Γ), the (real) tangent 2k-dim. plane TpΓ can
be identified with a complex k-dimensional plane of Cn. If v1, . . . , vk is a complex basis of
TpΓ, we can then define a canonical orientation for TpΓ using the simple 2k-vector

Re v1 ∧ Im v1 ∧ . . . ∧ Re vk ∧ Im vk .

This allows us to define the current JΓK by integrating forms over the oriented submanifold
Γ \ Sing(Γ). It is also easy to check that ∂ JΓK = 0, the reason being that the “singular
set” Sing(Γ) is a set of (locally) finite H2k−2 measure.

The discussion can be “localized” to holomorphic subvarieties in open subsets Ω of Ck+j

(and more generally in complex hermitian manifolds). Note also that, if Ω′ is a bounded
open subset of the domain Ω where Γ is defined, then JΓK has finite mass in Ω′ and it is thus
an integer rectifiable current. The following fundamental observation is due to Federer and
is based on a classical computation of Wirtinger ([81]).

Theorem 5.1 (Federer, cf. [45, Section 5.4.19]). Let Γ1, . . .ΓN be holomorphic subvarities
of complex dimension k in Ω ⊂ Ck+j and let k1, . . . , kN be positive integers. Then the
current T := k1 JΓ1K + . . . + kN JΓNK is area minimizing in the sense that M(T Ω′) ≤
M(T Ω′+ ∂S) for any open Ω′ ⊂⊂ Ω and any 2k+ 1-dimensional integral current S with
spt(S) ⊂ Ω′.

Indeed the above theorem holds in general Kähler manifolds, cf. [45, 5.4.19].

5.2. Branching phenomena. Before giving an idea of why Theorem 5.1 holds we want
to illustrate the deep consequences that it has in the regularity theory for area minimizing
currents in codimension higher than 1. Holomorphic subvarieties give easy counterexamples
to Corollary 4.4 when n̄ > 1: assumption (b) in Theorem 4.2 is absolutely crucial in this
case. As a byproduct even Proposition 4.10 fails and singularities might disappear in the
limit when we deal with sequences of area minimizing currents: in the rest of this note we
will see that the core difficulty in the proof of Theorem 3.4 is precisely this phenomenon of
“disappearance of singularities”. We illustrate these points with three explicit examples.

Example 5.2. Let δ > 0 be a small number and consider the holomorphic curve

Γδ := {(z, w) ∈ C2 : z2 = δw}

and the plane

π := {(z, w) ∈ C2 : z = 0} . (26)

There is no neighborhood of 0 where Γδ is the graph of a function z = f(w), in spite of the
fact that E(JΓδK ,B1(0), π) converges to 0 as δ ↓ 0. In fact the conclusion of Theorem 4.2
does not apply: although each Γδ is smooth and it is graphical in Bρ(0) for any ρ, there is
no uniform control of the C1,α norm of the graph in terms of the excess. Observe that the
currents Γδ do not satisfy the condition (c) in Theorem 4.2, although they satisfy (a), (b)
and (d).
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Example 5.3. Consider the holomorphic curve

Γ := {(z, w) ∈ C2 : z2 = w3} .
The origin belongs to Sing(JΓK). On the other hand:

• The unique tangent cone at 0 is given by 2 JπK for π as in (26).
• The density of JΓK equals 2 at 0;
•

lim
r↓0

E(JΓK ,Br(0), π) = 0 .

Therefore:

• Corollary 4.5 is false for 2-dimensional area minimizing currents in R4: Γ is singular
at the origin in spite of the existence of a flat tangent cone there.
• Again Theorem 4.2 does not apply in any ball B2ρ(0). Note however that the only

missing assumption is (b): the density Θ(JΓK , p) equals 1 at every point p ∈ Γ\{0}
and equals 2 at p = 0.
• Proposition 4.10 fails for 2-dimensional area minimizing currents in R4. Indeed 0 is

a singular point for JΓK0,r for every positive r > 0. On the other hand JΓK0,r → 2 JπK
and thus 0 is not a singular point of the limit: the singularity “has disappeared”.

Example 5.4. Consider finally the holomorphic curve

Ξ := {(z, w) ∈ C2 : (z − w2)2 = w2015} .
All the considerations valid for the holomorphic curve Γ of Example 5.3 are also valid for Ξ.
Ξ does not add much for the moment to our discussion, but it will play a crucial role later:
observe that 0 is a singular point in spite of the fact that Ξ is an almost imperceptible
perturbation of the smooth current 2 J{z = w2}K.

We close this section by remarking that Theorem 5.1 gives also a great abundance of
singular area minimizing cones in higher codimension: the zero set of any homogeneous
polynomial P (z1, . . . , zk+1) in k + 1 complex variables is an area minimizing cone of di-
mension 2k in R2k+2. More generaly, for any projective subvariety of PkC with complex
dimension j we can construct a corresponding area-minimizing cone in R2k+2 of dimension
2j + 2. These cones are singular except when the corresponding algebraic subvarieties are
affine. The easiest example of a singular area minimizing cone is thus the union of an ar-
bitrary number of complex lines in C2. Such cones might however be considered “mildly”
singular: in C3 the generic cone associated to a projective curve of P2C has a singular set
which behaves in rather complicated way.

5.3. Calibrations and the proof of Theorem 5.1. We illustrate here the simple, yet
deep, principle lying behind Theorem 5.1. Recall first the notion of comass of a form, given
in Definition 2.3.

Definition 5.5 (Calibrations, cf. [55]). A calibration ω is a closed m-form such that
‖ω‖c ≤ 1. An integer rectifiable current T is said to be calibrated by a calibration ω if

〈ωp, ~T (p)〉 = 1 for ‖T‖-a.e. p.
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Observe in particular that M(T ) ≥ T (ω) whenever ω is a calibration and that the
equality sign holds if and only if T is calibrated by ω. The following is then a trivial fact.

Lemma 5.6. If T is calibrated by a calibration ω, then T is an area minimizing current.

Proof. Let S be an (m+ 1)-dimensional integral current. Then

M(T ) =T (ω) = T (ω) + S(dω) = (T + ∂S)(ω) ≤M(T + ∂S) . �

Holomorphic subvarieties are the primary example of calibrated currents and this obser-
vation dates back essentially to Wirtinger. More precisely, if z` = x` + iy` are the standard
coordinates in Ck+j, consider the Kähler form

ω := dx1 ∧ dy1 + . . .+ dxk+j ∧ dyk+j .

Wirtinger’s theorem can then be stated in the following form

Theorem 5.7 (Wirtinger, cf. [81]). If ω is the Kähler form and

ωk =
1

k!
ω ∧ . . . ∧ ω︸ ︷︷ ︸
k times

then ωk is a calibration. Moreover, 〈ωk, v1 ∧ . . . ∧ v2k〉 = |v1 ∧ . . . ∧ v2k| if and only if
v1, . . . , v2k is a positively oriented (R-)base of a complex plane.

Calibrations and calibrated submanifolds are a rich source of interesting geometries: we
refer the reader to [55] for several important examples.

6. Almgren’s stratification

From now on we will mostly have in mind the case of codimension n̄ strictly larger than
1 and we proceed with the investigations leading to Theorem 3.4. One first simple step in
the analysis of the singular set of the area minimizing currents is an elegant generalization
of Federer’s reduction argument.

We start by taking a second look at Federer’s argument, roughly sketched in Section
4.5. Given an area minimizing m-dimensional cone S we define its spine as the vector
space V of maximal dimension for which S can be written as S ′× JV K, where S ′ is an area
minimizing cone of dimension m−dim (V ). Equivalently, V is the subset of those vectors v
such that S is invariant under translations in direction v and it is a simple exercise (using
the monotonicity formula) to show that V can be characterized as the subset of those
points p ∈ spt(S) such that Θ(S, p) = Θ(S, 0) or also as the subset of those points q such
that Sq,1 is a cone with vertex 0 (cf. [68, Proof of Lemma 35.5]).

At the intuitive level it is clear that S must have a certain “asymmetry” in the directions
which are transversal to V . The dimension of the spine of S is called the building dimension
of the cone S (cf. [79]). Note that such bulding dimension equals m if and only if S is an
integer multiple of an m-dimensional plane, namely if and only if S is flat.

Consider now the situation where p and q are two points in the support of an area
minimizing current T such that at a scale r comparable to |p−q|, Tp,r is close to some cone
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S and Tq,r is close to a certain other cone S ′. Then p − q is “almost in the spine of T”,
because (Tq,r)p−q,1 = Tp,r is “almost a cone”. If the building dimension of S is a certain
number m̄ and V is the corresponding spine of S, we therefore conclude that (p−q)/|p−q|
must be very close to V . Summarizing:

• If at a given point p the current T is sufficiently close to a cone at scale r, then all
the points q surrounding p (i.e. at distance at most r) and at which the current is
close to some cone at scale r must be contained in a neighborhood of size εr of the
spine V of T .

This suggests to introduce the following stratification of points in the support of T :

Definition 6.1. A point p ∈ spt(T ) belongs to the stratum Sk(T ) if every tangent cone
to T at p has building dimension at most k and if there is at least one tangent cone to T
at p with building dimension k.

Moreover, after “discretizing” all possible scales, we can subdivide further the stratum
Sk(T ) in a countable number of subsets according to the scale at which the current T starts
looking sufficiently close to a cone. The consideration above implies that each such subset
is contained, at all scales smaller than a given one, in a small neighborhood of some k-
dimensional plane. It is therefore not difficult to imagine that we can bound the Hausdorff
dimension of Sk(T ) with k.

The discussion above is essentially the content of Almgren’s generalization of Federer’s
argument, which we state in the following theorem.

Theorem 6.2 (Almgren’s stratification, cf. [79]). For any given area minimizing current
T the stratum Sk(T ) has Hausdorff dimension at most k and S0(T ) is a discrete set.

Observe that the discussion of Section 4.5 proves that:

(F) Given any area minimizing cone S of codimension n̄ = 1, either such cone is a
multiple of an m-dimensional plane, or its building dimension is at most m− 7.

As a corollary we conclude that for n̄ = 1 the strata

Sm−1(T ),Sm−2(T ), . . . ,Sm−6(T )

are all empty. Next, at any point p in the top stratum Sm(T ) there is a flat tangent cone
and thus, by Corollary 4.4, we actually know that Sm(T ) = Reg(T ) (we stress again that
this holds only under the assumption that n̄ = 1: Example 5.3 gives a counterexample as
soon as n̄ = 2 and m = 2). We therefore conclude that Sing(T ) = S0(T ) ∪ . . . ∪ Sm−7(T )
and thus Theorem 3.3(ii)&(iii) is a corollary of Theorem 6.2.

Unfortunately from Section 5 we know that the identity Reg(T ) = Sm(T ) does not hold
anymore when the codimension n̄ > 1. On the other hand we surely have Reg(T ) ⊂ Sm(T ).
We could call “branch points” for T those points p ∈ Sm(T ) \Reg(T ). The major concern
in the rest of the note will be to estimate the Hausdorff dimension of Sm(T ) \ Reg(T ). A
simple consequence of Theorem 6.2 is that, in order to prove Theorem 3.4(ii), the “only”
concern is truly to bound the Hausdorff dimension of the set of branch points by m − 2,
because of the following lemma.
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Lemma 6.3 (cf. [68, Theorem 35.3]). The stratum Sm−1(T ) is empty in any codimension
n̄.

Proof. It suffices to show that the building dimension of an area minimizing cone of di-
mension m cannot be m − 1. On the other hand if there were an m-dimensional area
minimizing cone with bulding dimension m− 1, then there would be a 1-dimensional cone
S ′ which is not flat. Now, it is rather easy to show that any 1-dimensional cone S ′ can be
written as

S ′ =

Q∑
i=1

J`iK−
2Q∑

j=Q+1

J`jK ,

where each `k is a half-line starting at the origin oriented so that ∂ J`kK = J0K. Observe
moreover that Q = Θ(S, 0). If we choose one i between 1 and Q and one j between Q+ 1
and 2Q, we can write S ′ = Z + S ′′ where S ′′ = J`iK − J`jK: since ∂S ′′ = ∂Z = 0 and
‖S ′′‖(B1) + ‖Z‖(B1) = ‖S ′‖(B1), S ′′ must be itself area minimizing. On the other hand
it is very simple to show that S ′′ is area minimizing if and only if `i and `j form, together,
a single straight line ` passing through the origin. But then S ′ = Q J`K, contradicting the
assumption that S ′ is singular at 0. �

The proof of Theorem 6.2 is rather elementary and “soft”. In spite of this the idea is
powerful and can be applied to several different problems in geometric analysis; for instance,
we refer the reader to Simon’s work on the singularities of harmonic maps, [70], to White’s
far-reaching generalization of Theorem 6.2 and its applications to the mean-curvature flow,
[79], and to recent results about Riemannian manifolds with one-sided curvature bounds,
see for instance [15]. Recently, in a series of works (cf. [16, 14, 17]), the method of Almgren
has been extended to deal with the Minkowski content, see also [49] for an abstract general
version of this.

We finally mention that the cones with building dimension m−2 can be actually further
characterized: it is not difficult to see that such cones are necessarily unions of multiples of
m-dimensional planes. The spines of such cones are (m − 2)-dimensional subspaces. Due
to the remarkable work of White, [77], when m = 2 there is one such unique tangent cone
at every point p ∈ S0(T ). However, for m ≥ 3 the same uniqueness result is not yet proved
and in fact it is not even known whether at points p ∈ Sm(T ) \ Reg(T ) the flat tangent
cone is the unique one!

7. Multiple valued functions minimizing the Dirichlet energy

As already noticed, in codimension 1 the regularity in a neighborhood of a point with
integer multiplicity Q where at least one tangent cone is flat can be reduced to the case
of multiplicity Q = 1, whereas the discussions of Section 5 show that this reduction is
impossible in codimension larger than 1. Indeed, in the Examples 5.3 and 5.4 even the
starting point of De Giorgi’s strategy as described in Section 4.1 fails dramatically: no
matter how small is the neighborhood U of the origin that we choose, it is simply not
possible to approximate efficiently the corresponding current T in U with the graph of a
(single valued) function. However, in each of these examples the current turns out to be a
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“multivalued” graph, where the number of values is in fact determined by the multiplicity
Q = Θ(T, 0). This discussion motivates the starting idea of Almgren’s monograph: in
order to go beyond an Allard’s type statement (namely regularity in a dense relatively
open subset of spt(T ) \ spt(∂T )) we need to develop an efficient theory for “multiple
valued functions” minimizing a suitable generalization of the Dirichlet energy, where we
can (and we will) consider the multiplicity to be a constant preassigned positive integer Q.

7.1. The metric space of unordered Q-tuples. The obvious model case to keep in
mind is the following. Given two integers k,Q with MCD(k,Q) = 1, look at the set valued
map which assigns to each point z ∈ C the set M(z) := {wk : wQ = z} ⊂ C. Obviously for
each z we can choose some arbitrary ordering {u1(z), . . . , uQ(z)} of the elements of the set
M(z). However, it is not possible to do it in such a way that the resulting “selection maps”
z 7→ ui(z) are continuous: even at the local level, this is impossible in every neighborhood
of the origin.

Our example motivates the following definition. Given an integer Q we define a Q-valued
map from a set E ⊂ Rm into Rn as a function which to each point x ∈ E associates an
unordered Q-tuple of vectors in Rn. Following Almgren, we consider the group PQ of
permutations of Q elements and we let AQ(Rn) be the set (Rn)Q modulo the equivalence
relation

(v1, . . . , vQ) ≡ (vπ(1), . . . , vπ(Q)) ∀π ∈P .

Hence a multiple valued map is simply a map taking values in AQ(Rn). There is a fairly
efficient formulation of this definition which will play a pivotal role in our discussion,
because the set AQ(Rn) can be naturally identified with a subset of the set of measures
(cf. [5] and [29, Definition 0.1]).

Definition 7.1 (Unordered Q-tuples). Denote by JPiK the Dirac mass in Pi ∈ Rn. Then,

AQ(Rn) :=

{
Q∑
i=1

JPiK : Pi ∈ Rn for every i = 1, . . . , Q

}
.

Observe that with this definition each element of AQ(Rn) is in fact a 0-dimensional
integral current. This set has also a natural metric structure; cf. [5] and [29, Definition
0.2] (the experts will recognize the well-known Wasserstein 2-distance, cf. [76]).

Definition 7.2. For every T1, T2 ∈ AQ(Rn), with T1 =
∑

i JPiK and T2 =
∑

i JSiK, we set

G(T1, T2) := min
σ∈PQ

√∑
i

∣∣Pi − Sσ(i)

∣∣2 . (27)

Remark 7.3. Since we will often need to compute G(T,Q J0K) we introduce the special
notation |T | for the latter quantity. Observe, however, that AQ(Rn) is not a linear space
except for the special case Q = 1: the map T → |T | is not a norm.
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7.2. The generalized Dirichlet energy. Using the metric structure on AQ(Rn) one de-
fines obviously measurable, Lipschitz and Hölder maps from subsets of Rm into AQ(Rn).
However, if we want to approximate area minimizing currents with multiple valued func-
tions and “linearize” the area functional in the spirit of De Giorgi, we need to define a
suitable concept of Dirichlet energy. We will now show how this can be done naturally.
However, the approach outlined below is not the one of Almgren.

Consider again the model case of Q = 2 and assume u : Ω → A2(Rn) is a Lipschitz
map. If, at some point x, u(x) = JP1K + JP2K is “genuinely 2-valued”, i.e. P1 6= P2, then
there exist obviously a ball Br(x) ⊂ Ω and two Lipschitz functions u1, u2 : Br(x) → Rn

such that u(y) = Ju1(y)K + Ju2(y)K for every y ∈ Br(x) (in this and similar situations, we
will then say that there is a regular selection for u in Br(x), cf. [29, Definition 1.1]). For
each separate function ui, the classical Theorem of Rademacher ensures the differentiability
almost everywhere.

Recall that our ultimate goal is to define the Dirichlet energy so that it is a suitable
approximation of the area of the graph of u. The “graph of u over Br(x)” is simply the
union of the graphs of the two functions ui. When the derivatives Dui are close to 0, the
area of each graph is close to ∫

Br(x)

(
1 +

1

2
|Dui|2

)
.

Thus, the only suitable definition of Dirichlet energy of u on the domain Br(x) is given by∫
Br(x)

|Du|2 :=

∫
Br(x)

(|Du1|2 + |Du2|2) .

By an obvious localization procedure, this definition can be extended to the (open!) set
Ω2 ⊂ Ω where u is “genuinely” 2-valued.

For each element z in the complement set Ω1 := Ω \ Ω2, u(z) is a single point counted
with multiplicity 2. Then there is a Lipschitz map v : Ω1 → Rn such that u(z) = 2 Jv(z)K
for every z ∈ Ω1. Again in view of our goal, the only suitable definition of the Dirichlet
energy of u over Ω1 is twice the Dirichlet energy of v. We thus are left with only one
possibility for the Dirichlet energy on the global set Ω:

Dir(u,Ω) :=

∫
Ω2

(|Du1|2 + |Du2|2) + 2

∫
Ω1

|Dv|2 .

This analysis can be obviously generalized to any positive integer Q, leading to a general
definition of Dirichlet energy for Lipschitz multiple valued functions. The graphs of Lip-
schitz multiple valued functions carry naturally a structure of integer rectifiable currents
(see [30] and cf. [72, Section 3.2] for a brief explanation). It is not difficult to see that,
when the Lipschitz constant is small, the Dirichlet energy defined in this section is the
second order approximation of the area of the corresponding graph, cf. [30, Corollary 3.3].

Having established the correct notion of Dirichlet energy for Lipschitz functions, one
could define the Sobolev space W 1,2(Ω,AQ(Rn)) through a “completion strategy”: a mea-
surable map v : Ω → AQ(Rn) is in W 1,2 if and only if there is a sequence of Lipschitz
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maps uk converging to v a.e. and enjoying a uniform bound Dir(Ω, uk) ≤ C. The Dirichlet
energy of v is then defined via a “relaxation procedure”: Dir(Ω, v) is the infimum of all
constants C for which there is a sequence with the properties above.

7.3. The intrinsic approach to W 1,2 Q-valued maps. Although the definition above
is certainly very natural and gives a good geometric intuition for the Dirichlet energy, it
turns out that it is rather complicated to work with it, in particular if one wants to recover
the usual statements of the Sobolev space theory for classical functions.

Instead, a rather efficient way to achieve such statements is to rely on a more abstract
definition of Dirichlet energy and Sobolev functions, as proposed in [29]. A very general
theory has been developed in the literature for Sobolev maps taking values in abstract
metric spaces, following the pioneering works of Ambrosio [6] and Reshetnyak [62, 61].
The careful reader will notice, however, that there is a crucial difference between the
definition of Dirichlet energy in [62] and the one given below.

Definition 7.4 (Sobolev Q-valued functions, cf. [29, Definition 0.5]). A measurable f :
Ω→ AQ is in the Sobolev class W 1,p (1 ≤ p ≤ ∞) if there exist m functions ϕj ∈ Lp(Ω;R+)
such that

(i) x 7→ G(f(x), T ) ∈ W 1,p(Ω) for all T ∈ AQ;
(ii) |∂j G(f, T )| ≤ ϕj a.e. in Ω for all T ∈ AQ and for all j ∈ {1, . . . ,m}.

It is not difficult to show the existence of minimal functions ϕ̃j fulfilling (ii), i.e. such
that, for any other ϕj satisfying (ii), ϕ̃j ≤ ϕj a.e. (cf. [29, Proposition 4.2]). Such “minimal
bounds” will be denoted by |∂jf | and we note that they are characterized by the following
property (see again [29, Proposition 4.2]): for every countable dense subset {Ti}i∈N of AQ
and for every j = 1, . . . ,m,

|∂jf | = sup
i∈N
|∂j G(f, Ti)| almost everywhere in Ω. (28)

We are now ready to define the Dirichlet energy.

Definition 7.5 (cf, [29, Definition 0.6]). The function |Df |2 is defined to be the sum of
|∂jf |2. The Dirichlet energy of f ∈ W 1,2(U ;AQ) is then defined by Dir(f, U) :=

∫
U
|Df |2.

As already mentioned, this definition is equivalent to the one proposed in the previous
section (cf. [29, Proposition 4.4]). The main feature is that, however, essentially all the
conclusions of the usual Sobolev space theory for single valued functions can be proved to
be valid by routine modifications of the arguments: among them we mention Sobolev and
Morrey embeddings, compact embeddings, Poincaré inequalities, semicontinuity results,
trace properties (cf. [29, Chapter 4]).

One tool which instead is not available in the multivalued setting is the usual regular-
ization by convolution. However in several instances this can be replaced by ”gradient
truncations” to produce regularizations that are Lipschitz (cf. [29, Section 4.2]). This
will be discussed in details in later sections, because it will play an important role. From
now on, we will use often standard tools available in the Sobolev space theory: unless we
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explicitly mention that there is some extra work to do, the reader can safely assume that
the corresponding statements can be proved to be valid via “abstract nonsense”.

One important point to be made is about the existence of “selections”. A selection
for a Q-valued function u is given by Q classical single valued functions u1, . . . , uQ such

that u(x) =
∑Q

i=1 Jui(x)K, cf. [29, Definition 1.1]. If the ui are measurable, continuous,
Lipschitz, etc. the selection will be called measurable, continuous, Lipschitz, etc. It is
rather easy to show that a measurable selection exists for any measurable u, cf. [29,
Proposition 0.4]. Incidentally, this will be used repeatedly as we write∑

i

JuiK

for any given measurableQ-valued map u, tacitly assuming to have chosen some measurable
selection.

However continuous maps (resp. Sobolev, Lipschitz) do not possess in general selections
which are continuous (resp. Sobolev, Lipschitz). The primary examples are the maps
stemming from holomorphic subvarieties already discussed at length. Only maps defined on
1-dimensional intervals are a notable exception: in this case continuous, Hölder, Lipschitz
and Sobolev multivalued maps have always correspondingly regular selections: indeed there
is a linear bound relating the regularity of the selection to that of the initial map in all
these cases. For the case of Sobolev and Lipschitz maps the proof is very elementary, cf.
[29, Proposition 1.2]. For continuous and Hölder maps the proof turns out to be much
harder, cf. [5, Proposition 1.10] and the simpler (and more general) approach of [27]. In
the proof of Theorem 3.4 only the existence of Sobolev and Lipschitz selections play a role.

In many instances, although we are not able to find a regular selection of the Q-valued
map u, we might be able to split it into two regular Qi-valued maps, namely

u(x) = u1(x) + u2(x)

where u1 and u2 are as regular as u and Qi-valued for some positive integers with Q1+Q2 =
Q. In this case we say that u “splits”or “decomposes” into simpler maps, cf. [29, Definition
1.1].

7.4. The cornerstones of the theory of Dir-minimizers. We are now ready to state
the main results in the theory of Dir-minimizing maps. In what follows, Ω is always
assumed to be a bounded open set with a sufficiently regular boundary (in fact, in order to
give a complete account, we should have defined the trace at ∂Ω of W 1,2 multiple valued
functions; we have avoided to enter in the details to keep our presentation short: the
interested reader can consult, for instance, [29, Definition 0.7]).

Theorem 7.6 (Existence for the Dirichlet Problem, cf. [29, Theorem 0.8]). Let g ∈
W 1,2(Ω;AQ). Then there exists a Dir-minimizing f ∈ W 1,2(Ω;AQ) such that f |∂Ω = g|∂Ω.

Theorem 7.7 (Hölder regularity, cf. [29, Theorem 0.9]). There is a positive constant
α = α(m,Q) with the following property. If f ∈ W 1,2(Ω;AQ) is Dir-minimizing, then



34 CAMILLO DE LELLIS

f ∈ C0,α(Ω′) for every Ω′ ⊂⊂ Ω ⊂ Rm. For two-dimensional domains, we have the explicit
constant α(2, Q) = 1/Q.

For the second regularity theorem we need the definition of the singular set of f .

Definition 7.8 (Regular and singular points, cf. [29, Definition 0.10]). A Dir-minimizing
f is regular at a point x ∈ Ω if there exists a neighborhood B of x and Q analytic functions
fi : B → Rn such that

f(y) =
∑
i

Jfi(y)K for every y ∈ B (29)

and either fi(y) 6= fj(y) for every y ∈ B, or fi ≡ fj. The singular set Sing(f) is the
complement of the set of regular points.

Theorem 7.9 (Estimate of the singular set, cf. [29, Theorem 0.11]). Let f be Dir-
minimizing. Then, the singular set Sing(f) is relatively closed in Ω. Moreover, if m = 2,
then Sing(f) is at most countable, and if m ≥ 3, then the Hausdorff dimension of Sing(f)
is at most m− 2.

Note in particular the striking similarity between the estimate of the size of the singular
set in the case of multiple valued Dir-minimizers and in that of area minimizing currents. It
will be discussed later that, even in the case of Dir-minimizers, there are singular solutions
(which are no better than Hölder continuous).

Complete and self-contained proofs of these theorems can be found in [29]. The key
tool for the estimate of the singular set is the celebrated frequency function (cf. with [29,
Section 3.4]), which has been indeed used in a variety of different contexts in the theory
of unique continuation of elliptic partial differential equations (see for instance the papers
[50], [51]). This is the central tool of our proofs as well. However, our arguments manage
much more efficiently the technical intricacies of the problem and some aspects of the
theory are developed in further details. For instance, we present in [29, Section 3.1] the
Euler-Lagrange conditions derived from first variations in a rather general form. This is
to our knowledge the first time that these conditions appear somewhere in this generality.

Largely following ideas of [13] and of White, we improved the second regularity theorem
to the following optimal statement for planar maps.

Theorem 7.10 (Improved 2-dimensional estimate, cf. [29, Theorem 0.12]). Let f be Dir-
minimizing and m = 2. Then Sing(f) is discrete.

This result was announced in [13]. However, to our knowledge the proof has never
appeared before [29].

A new addition to the regularity theory, which will have a lot of importance in the
subsequent discussions, is the following higher integrability result.

Theorem 7.11 (Higher integrability of Dir-minimizers, cf. [33, Theorem 5.1]). Let Ω′ ⊂⊂
Ω ⊂⊂ Rm be open domains. Then, there exist p > 2 and C > 0 such that

‖Du‖Lp(Ω′) ≤ C ‖Du‖L2(Ω) ∀Dir-minim. u ∈ W 1,2(Ω,AQ(Rn)). (30)
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We believe that several intricate arguments and complicated constructions in the third
chapter of Almgren’s monograph can be reinterpreted as rather particular cases of this key
observation (see for instance [5, Section 3.20]). Surprisingly, this higher integrability can
be proved in a very simple way by deriving a suitable reverse Hölder inequality and using
a (nowadays) very standard version of the classical Gehring’s Lemma.

Theorem 7.11 has been stated and proved for the first time in [33]. The relevant reverse
Hölder inequality has been derived using a comparison argument and hence relying heavily
on the minimality of the Dir-minimizers. A second proof, exploiting the Euler-Lagrange
conditions to give a Caccioppoli-type inequality, has been given in [73]. This last proof still
uses the regularity theory for Dir-minimizers. However, this occurs only at one step: one
could hope to remove this restriction and generalize the higher integrability to “critical”
points of the Dirichlet energy.

In [73] a yet different proof for the planar case is proposed, yielding the optimal range of
exponents p for which (30) holds. The optimality of this result, as well as the optimality of
Theorems 7.7 and 7.10, is shown by another remarkable observation of Almgren. Besides
giving area minimizing currents, holomorphic varieties are locally graphs of Dir minimizing
Q-valued functions. In [5, Section 2.20] Almgren proves this statement appealing to his
powerful approximation results for area minimizing currents. However this is unnecessary
and a rather elementary proof can be found in [73].

7.5. Hölder continuity of Dir-minimizers. The entire Section 8 will be dedicated to
the proof of Theorem 7.9, since it contains, in a simplified setting, several of the themes of
the proof of Theorem 3.4.

In this paragraph we will instead discuss briefly the ideas behind the proof of Theorem
7.7. We first assume that u is a classical (single valued) function and, for simplicity,
that m ≥ 3 (the case m = 2 is somewhat special and can be handled in a simpler way).
Assume that u : B1(x) → Rn is harmonic and compare its energy to the energy of the 0-
homogeneous extension v of its trace on ∂B1(x): we achieve the following crude inequality∫

B1(x)

|Du|2 ≤
∫
B1(x)

|Dv|2 ≤ 1

m− 2

∫
∂B1(x)

|Du|2 . (31)

A scaling-invariant version of the above inequality can be combined with Fubini’s theorem
to give the following differential inequality:∫

Br(x)

|Du|2 ≤ r

m− 2

d

dr

∫
Br(x)

|Du|2 , (32)

which in turn gives the bound Dir(u,Br(x)) ≤ Crm−2. If we could improve the constant
in (32) to 1

m−2+2ε
, the same reasoning would give the estimate Dir(u,Br(x)) ≤ Crm−2+2ε,

which by a standard Morrey-Campanto argument implies the ε-Hölder continuity of u.
Now, for a single valued function u the first inequality in (31) is certainly strict, since
v does not satisfy the Euler-Lagrange conditions of a minimizer. It is not difficult to
see that the very same conclusion can be drawn in the multivalued setting, where the
0-homogeneous extension is also well defined. The problem is to gain, in the factor of the
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right hand side of (31), a constant ε > 0 which is independent of the function (and, more
importantly, of the central point x).

We can therefore focus on improving the constant in the right hand side of (31) and
without loss of generality we can assume x = 0. It is easy to see that we can assume, again
without loss of generality, that the Dirichlet energy in B1(0) is normalized to 1. When u is
single valued we can also assume that u has average 0 after subtracting a second suitable
constant: the “uniform gain” from 1

m−2
to 1

m−2+2ε
in (32) is then a simple consequence of

the standard compactness of Sobolev maps (via Poincaré inequality). However, although
there is a Poincaré inequality for multivalued maps, we cannot “subtract” constant values
in general. The only well defined operation is the subtraction of the same value p from all
Q sheets, namely given u =

∑
i JuiK we can set

v(x) =

Q∑
i=1

Jui(x)− pK .

In particular we cannot expect compactness when we only control the Dirichlet energy:
for a general Sobolev map some sheets might be very far apart on a large subset and be
very close on another, very small, subset. However, it can be shown that if the average
separation between some sheets of a Dir-minimizer v is too large compared to its Dirichlet
energy on a given domain, then v must split into simpler functions in a smaller domain.
This allows to prove that there is a uniform gain in the constant of the right hand side
of the inequality of (31). The gain will depend upon Q, but this is not an artifact of the
proof: it can be shown that the Hölder exponent in Theorem 7.7 does deteriorate to 0 as
Q→∞.

7.6. Almgren’s extrinsic maps. The metric G on AQ(Rn) is “locally euclidean” at most
of the points. Consider for instance the model case Q = 2 and a point P = JP1K + JP2K
with P1 6= P2. Then, obviously, in a sufficiently small neighborhood of P , the metric space
A2(Rn) is isometric to (an open subset of) the Euclidean space R2n. This fails instead in
any neighborhood of a point of type P = 2 JP1K. On the other hand, if we restrict our
attention to the closed subset {2 JXK : X ∈ Rn}, we obtain a close subset isometric to Rn.

A remarkable observation of Almgren is that AQ(Rn) is biLipschitz equivalent to a
deformation retract of the Euclidean space (cf. [5, Section 1.3]). For a simple presentation
of this fact we refer the reader to [29, Section 2.1].

Theorem 7.12. There exists N = N(Q, n) and an injective ξ : AQ(Rn)→ RN such that:

(i) Lip(ξ) ≤ 1;
(ii) if Q = ξ(AQ), then Lip(ξ−1|Q) ≤ C(n,Q).

Moreover there exists a Lipschitz map ρ : RN → Q which is the identity on Q.

In fact much more can be said: the set Q is a cone and a polytope. On each separate
face of the polytope the metric structure induced by G is euclidean, essentially for the
reasons outlined a few paragraphs above (cf. again [5, Section 1.3] or [33, Section 6.1]). A
simple, yet important, observation of White is that the map ξ can be easily constructed
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so that the Dirichlet energy of ξ ◦ u (as clssical Euclidean map) coincides with that of u
(as multivalued map) for any u ∈ W 1,2.

Later on a more complicated version of the map ρ will play a rather important role. As
already mentioned, for Q > 1 the space AQ(Rn) is not linear and we cannot regularize Q-
valued maps by convolution. Nonetheless we will need a way to smooth W 1,2 maps suitably
with a procedure which retains some of the basic estimates available for convolutions with
a standard mollifier (in particular when computing the energy of the regularizations). A
possible approach is to smooth the euclidean map ξ ◦ u and then “project” it back onto Q
using ρ. However, projecting back might be rather costly in terms of the energy since the
Lipschitz constant of ρ is indeed rather far from 1.

To bypass this problem, we follow Almgren and prove the existence of “almost” pro-
jections, denoted by ρ?δ , which are (1 + µ)-Lipschitz in the δ-neighborhood of ξ(AQ(Rn)).
These maps cannot be the identity on Q, but they are at a uniform distance η from it.
Almgren’s original proof is rather complicated. In [33, Proposition 6.2] we have proposed
a different proof which uses heavily Kirszbraun’s extension theorem and seems to yield
a better estimate of µ and η in terms of δ (in particular in the version of [33] these are
suitable positive powers of δ).

8. The frequency function

In this section we review the ideas behind the proof of Theorem 7.9. As already men-
tioned the argument will serve as a prototype for the argument of Theorem 3.4 and for
this reason we will be quite detailed.

8.1. First variations. There are two natural types of variations that can be used to
perturb Dir-minimizing Q-valued functions. The first ones, which we call inner variations,
are generated by right compositions with diffeomorphisms of the domain. The second,
which we call outer variations, correspond to “left compositions”. More precisely, let f be
a Dir-minimizing Q-valued map.

(IV) Given ϕ ∈ C∞c (Ω,Rm), for ε sufficiently small, x 7→ Φε(x) = x + εϕ(x) is a diffeo-
morphism of Ω which leaves ∂Ω fixed. Therefore,

0 =
d

dε

∣∣∣∣
ε=0

∫
Ω

|D(f ◦ Φε)|2. (33)

(OV) Given ψ ∈ C∞(Ω× Rn,Rn) such that spt(ψ) ⊂ Ω′ × Rn for some Ω′ ⊂⊂ Ω, we set
Ψε(x) =

∑
i Jfi(x) + εψ(x, fi(x))K and derive

0 =
d

dε

∣∣∣∣
ε=0

∫
Ω

|DΨε|2. (34)

The identities (33) and (34) lead to interesting first variation conditions in integral form.
In order to state them we need anyway a suitable notation to handle the “differential” of
a multivalued map f =

∑
i JfiK. Following the discussion in Section 7.2 it is possible, for a

Lipschitz multivalued map, to introduce a suitable notion of multivalued differential, which
will be denoted by Df . This will be a multiple valued map taking values in AQ(Rm×n),
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which roughly speaking gives at each point the unordered Q-tuple of the differentials of the
different branches. There is a coherent way of finding a measurable selection for both f
and Df : the coherence has, as a consequence, that when the map splits locally into single
valued maps, the i-selection gi of Df =

∑
i JgiK corresponds to the differential Dfi of the

i-selection fi. However, this is just one consequence: the coherence can be stated generally
even when differential selections do not exist and we refer the reader to [29, Remark 1.11]
for the precise definition. This representation allows to derive chain rules for multivalued
maps which are just the analog of the corresponding chain rules for classical maps, cf. [29,
Section 1.3.1].

Proposition 8.1 (First variations, cf. [29, Proposition 3.1]). Let f : Ω → AQ(Rn) be a
Dir-minimizer. For every ϕ ∈ C∞c (Ω,Rm), we have

2

∫ ∑
i

〈
Dfi : Dfi ·Dϕ

〉
−
∫
|Df |2 divϕ = 0. (35)

For every ψ ∈ C∞(Ωx × Rn
u,Rn) such that

spt(ψ) ⊂ Ω′ × Rn for some Ω′ ⊂⊂ Ω,

and

|Duψ| ≤ C <∞ and |ψ|+ |Dxψ| ≤ C (1 + |u|) , (36)

we have∫ ∑
i

〈
Dfi(x) : Dxψ(x, fi(x))

〉
dx+

∫ ∑
i

〈
Dfi(x) : Duψ(x, fi(x)) ·Dfi(x)〉 dx = 0.

(37)

8.2. The monotonicity of the frequency function. (35) and (36) give particularly
interesting identities when tested with functions which depend on |x|. In what follows, ν
will always denote the outer unit normal on the boundary ∂B of a given ball. The following
proposition gives the relevant identities when we test with the singular functions ϕ(y) =
1Br(x)(y)y and ψ(x, u) = u1Br(x)(y) (the proof follows from a standard regularization of
these ϕ and ψ).

Proposition 8.2 (cf. [29, Proposition 3.1]). Let x ∈ Ω and f : Ω → AQ(Rn) be Dir-
minimizing. Then, for a.e. 0 < r < dist(x, ∂Ω), we have

(m− 2)

∫
Br(x)

|Df |2 = r

∫
∂Br(x)

|Df |2 − 2 r

∫
∂Br(x)

∑
i

|∂νfi|2, (38)

∫
Br(x)

|Df |2 =

∫
∂Br(x)

∑
i

〈∂νfi, fi〉. (39)

We next introduce Almgren’s frequency function and state his celebrated monotonicity
estimate, which is a straightforward consequence of the identities (38) and (39). Recall the
notation |f | for the function G(f,Q J0K).
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Definition 8.3 (The frequency function, cf. [29, Definition 3.13]). Let f be a Dir-
minimizing function, x ∈ Ω and 0 < r < dist(x, ∂Ω). We define the functions

Dx,f (r) =

∫
Br(x)

|Df |2, Hx,f (r) =

∫
∂Br

|f |2 and Ix,f (r) =
rDx,f (r)

Hx,f (r)
. (40)

Ix,f is called the frequency function.

When x and f are clear from the context, we will often use the shorthand notation D(r),
H(r) and I(r).

Theorem 8.4 (Monotonicity of the frequency function, cf. [29, Theorem 3.15]). Let f be
Dir-minimizing and x ∈ Ω. Either there exists % > 0 such that f |B%(x) ≡ 0 or Ix,f (r) is
an absolutely continuous nondecreasing positive function on ]0, dist(x, ∂Ω)[. This function
takes a constant value α if and only if f(y) is α-homogeneous in y − x.

This monotonicity is the main ingredient in the proof of both Theorems 3.4 and 7.9.
An important observation, which was first made in [32], is that the frequency function
can be thought as a “singular limit” of smoother objects, i.e. of regularized frequency
functions, which are also monotone. This simple remark (which is not present in Almgren’s
monograph) gives an important advantage: the regularized frequency functions enjoy better
continuity properties in terms of f .

Definition 8.5 (Regularized requency functions). Assume φ is a Lipschitz nonnegative
nonincreasing compactly supported function on [0, 1[ which is constant and positive in a
neighborhood of 0 and define

D0,f (r) :=

∫
φ

(
|x|
r

)
|Df |2(x) dx

H0,f (r) :=−
∫
φ′
(
|x|
r

)
|f |2(x)

|x|
dx

I0,f (r) :=
rD0,f (r)

H0,f (r)
.

Theorem 8.6. Let f be Dir-minimizing and 0 ∈ Ω. Either there exists % > 0 such
that f |B%(0) ≡ 0 or I0,f (r) is an absolutely continuous nondecreasing positive function on
]0, dist(x, ∂Ω)[. This function takes a constant value α if and only if f(x) is α-homogeneous
in x.

We do not have a reference for the latter theorem, which follows from a straightforward
adaption of the arguments used in the proof of Theorem 8.4. A special case of Theorem 8.6,
namely for a special choice of the cut-off φ, is hidden in the computations of [32, Theorem
3.2] (cf. in particular [32, Eq. (3.13)]).

8.3. The two fundamental consequences of the monotonicity formula. Theorem
8.4 has two crucial consequences, when “blowing-up” a given Dir-minimizing function.
More precisely, consider a Dir-minimizing f taking Q > 1 values and a point p in its
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domain. Without loss of generality we can assume that p = 0. If the support of f(0)
contains two different points, then, by continuity, in a neighborhood U of 0 f splits into
two separate functions u1 and u2 which are both W 1,2 and continuous. It is simple to see
that both must be minimizers of the Dirichlet energy in U . 0 is then a good point, where
we have reduced the complexity of the problem. For instance, if Q were 2 we would know
that u1 and u2 are two classical (single valued) harmonic functions. The “problematic
points” are then those p where f(p) = Q JqK.

We can therefore assume that f(0) = Q JqK for some q ∈ Rn. Now, according to our
definition of the singular set Sing(f), we have two possibilities:

(a) f equals Q copies of a classical harmonic function in a neighborhood of 0;
(b) 0 is a singular point for f .

In general, an interesting object to look at is the average of the sheets of f =
∑

i JfiK,
namely 1

Q

∑
i fi. For this average we fix the notation η ◦ f . It is not difficult to see that

η ◦ f is a classical harmonic function. Indeed, if we define

f̄ :=
∑
i

Jfi − η ◦ fK ,

it is immediate to see that Dir(f) = Dir(f̄) + QDir(η ◦ f). In particular it is not difficult
to conclude that f̄ is also a Dir-minimizer, cf. [29, Lemma 3.23]. Looking at the latter
function we can thus restate the alternative as: either f̄ ≡ Q J0K in a neighborhood of the
origin, or 0 is a singular point for f̄ (and thus a singular point of f !).

The discussion above leads to the consideration that, without loss of generality, we can
assume η ◦ f ≡ 0. Assume further that the (more interesting!) alternative (b) above
holds. Then f does not vanish identically and therefore both D0,f (r) and H0,f (r) are
positive for some r. Using Theorem 7.7 it is not difficult to see that, under the assumption
f(0) = Q J0K, we have a uniform bound of the form

H0,f (r) ≤ CrD0,f (r) ∀r ∈
]
0, dist(0,∂Ω)

2

[
, (41)

where the constant C is independent of f . The obvious consequence of Theorem 8.4 is that
there is also a reverse control

rD0,f (r) ≤ C̄H0,f (r) (42)

although the latter constant C̄ depends upon the point (0 in this case) and the function
f . Indeed such constant approaches, for r ↓ 0, the limit I0(f) := limρ↓0 I0,ρ(f), which by
(41) is bounded away from 0 and by Theorem 8.4 is finite: on the other hand we have no
explicit (neither universal!) upper bound, we insist that I0(f) depends upon f and the
particular point (0 in this case) where we are “blowing-up”.

Consider now the rescaled functions f0,r(x) := f(rx) and their renormalized versions

u0,r(x) :=
f0,r

Dir(f0,r, B1)1/2
.
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In particular the energy of u0,r is 1 in B1(0). However the L2 norm of |u0,r| is also under
control because of (41). We then have compactness for the family {u0,r}r. Fix a map
ū which is the limit of any subsequence u0,rk with rk ↓ 0. It is not difficult to see that
a sequence of minimizers with such uniform controls converge strongly in W 1,2 in any
compact subset: namely the Dirichlet energy of the limiting function is the limit of the
Dirichlet energy of the corresponding functions on any subdomain Ω which is compactly
contained in B1(0), cf. [29, Proposition 3.20]. However the minimizing property alone does
not guarantee strong convergence on the whole domain B1(0).

To understand the latter statement, consider for instance the planar (single valued!)
harmonic functions

fk(x1, x2) = Re (x1 + ix2)k

and their normalizations
uk := fk/Dir(fk, B1(0)) .

It is very elementary to see that uk converges to 0 in B1(0): in fact most of the Dirichlet
energy of uk lies in a thin layer around the boundary ∂B1(0). For k large the layer becomes
thinner and thinner and all the energy is “pushed” towards the boundary ∂B1(0). On the
other hand it is easy to see that the ratio

D0,uk(1)

H0,uk(1)
=

1

H0,uk(1)

explodes, namely that the L2 norm of uk on ∂B1(0) converges to 0.

This highlights the first important consequence of the frequency function: the “reverse
Poincaré” inequality (42) excludes that the energy of u0,r concentrates towards the bound-
ary. Any limit ū of a sequence u0,rk must therefore have energy equal to 1. Since Theo-
rem 7.7 guarantees uniform convergence, we also conclude that ū(0) = Q J0K. Moreover,
η ◦ ū ≡ 0 because η ◦ u0,r ≡ 0.

Thus 0 must be a singular point of ū as well: the only way ū could be regular around 0
would be to take the value Q J0K identically in a neighborhood of 0. However notice that
I0,ū(r) = I0,f (0) =: α for every r. But then Theorem 8.4 implies that ū is α-homogeneous,
and if ū would vanish in a neighborhood of 0, then it would vanish on the entire ball B1(0),
contradicting the fact that the Dirichlet energy of ū is indeed 1.

The conclusion is that the singularity has persisted in the limit. Recalling that our main
concern in proving Theorem 3.4 was the disappearance of singular points along sequences
of converging currents, the reader will understand why the monotonicity of the frequency
function is such an exciting discovery. It must also be noticed that the monotonicity of
the frequency function was unknown even for classical single valued harmonic functions
before [5]: the shear observation that Almgren was able to discover a new fundamental
fact for classical harmonic functions around 1970 gives in my opinion the true measure of
his genius.

The second fundamental consequence of the monotonicity of the frequency function is
that I0,ū(r) is indeed constant in r and equals α := I0,f (0), which, as already noticed, gives
that ū is α-homogeneous. In particular when the domain is 2-dimensional, it is not difficult
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to classify all α-homogeneous Dir-minimizers and to show that their only singularity is at
the origin, cf. [29, Proposition 5.1].

The careful reader will recognize the formal analogy with the two ingredients of Federer’s
reduction argument illustrated in Section 4.5: pretty much the same reasoning gives the
proof of Theorem 7.9. There is however one important difference: for a Q-valued minimizer
f on a 2-dimensional connected domain we do not conclude the discreteness of Sing(f),
but rather the weaker statement that

• either “multiplicity Q points” of f are isolated;
• or f collapses to Q Jη ◦ fK.

Only in the case Q = 2 the statement above is equivalent to discreteness of the singular set
of f . When, for instance, Q = 3, we have not ruled out that singular points with “2-sheeted
branching” could converge towards a singular point with a “3-sheeted” branching.

Thus, the argument sketched above gives, in the 2-dimensional case, that Sing(f) is
countable, but it does not imply its discreteness. The proof of Theorem 7.10 needs much
more work and in particular it passes through the important additional conclusion that
the tangent functions ū analyzed above are unique, namely the renormalized blown-up
functions u0,r have a unique limit as r ↓ 0, cf. [29, Theorem 5.3]. At present this uniqueness
is an open problem when the dimension of the domain is higher than 2.

9. Approximation with multiple valued graphs

Following the intuition that a “sufficiently flat” area minimizing current is close to the
graph of a Dir-minimizing multivalued function, we wish therefore to find a first approxi-
mation of the current with a Lipschitz multivalued graph.

9.1. Multivalued graphs as currents, projections and slices. One first technical
detail that we have to tackle is the integer rectifiable current induced by multivalued maps.
Assume therefore to have fixed a measurable map u : Rm ⊃ Ω → AQ(Rn), u =

∑
i JuiK.

The “set-theoretic” graph of u is clearly

Gr(u) :=
{

(x, y) ∈ Rm × Rn : y = ui(x) for some i ∈ {1, . . . , Q}
}
,

or equivalently Gr(u) = {(x, y) : y ∈ spt(u(x))} (recall that u(x) is a 0-dimensional
current).

When u is sufficiently regular, we want to give to Gr(u) a structure as integer rectifiable
current. Following the discussion of Section 7.2 it is not difficult to see that, when u is Lip-
schitz, Gr(u) can be decomposed in a countable union of graphs of single valued Lipschitz
functions, defined over domains which might be very irregular (Borel sets, in general). In
turn, a classical theorem of Whitney (cf. [45, Theorem 3.1.14]) allows to decompose any
Lipschitz graph in a countable union of C1 graphs modulo sets of (Hausdorff) measure
zero. We thus can give very naturally a structure of integer rectifiable current (which we
will denote by Gu) to Gr(u), adjusting the multiplicity in a coherent fashion: in particular,
if u = Q JvK for some classical Lipschitz function v, then Gu = QGv (cf. [25] and [72,
Section 3.2]).
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In a similar fashion we can define the graph of a Lipschitz multivalued function which
is defined over a submanifold Σ of Rm. Now, if Ω is a smooth open set, u is a Lipschitz
multiple valued function and v denotes the restriction to the boundary ∂Ω, we expect
∂Gu = Gv. In the single valued case this is a rather simple fact, since we can use Stokes’
theorem when u is smooth and then conclude for general Lipschitz u via regularization. In
the multivalued setting this road cannot be followed because there is no regularization of u,
but an elementary proof can be found in [30] (cf. the more general Theorem 2.1 therein).

Next we want to find under which conditions an integral current without boundary in a
given cylinder can be efficiently approximated by a Lipschitz graph. To be more precise,
we will denote by Cr(p) the cylinder Br(x) × Rn when p = (x, y) ∈ Rm × Rn. In fact
in the future we wish to consider cylinders with bases parallel to different m-dimensional
planes: having fixed an m-dimensional plane π, we set Br(p, π) := Br(p) ∩ (p + π) and
Cr(p, π) = Br(p, π) + π⊥. The notation π0 will be reserved for the “horizontal plane”
Rm × {0} and we will use pπ and p⊥π for the orthogonal projections onto π and π⊥.

If T is an integral current without boundary in Cr(0), a Lipschitz u : Br(0)→ AQ(Rn)
is an efficient approximation if M(T − Gu) is small (compared to rm). Since Gu is, in
a “loose” sense, a Q-fold cover of Br(0), we obviously expect that a well-approximated
current T is also a Q-fold cover. There is a very efficient way to express this concept in
the theory of currents: assuming spt(T ) is bounded, we can define the current (pπ0)]T ,
which is the push-forward of T on the horizontal plane π0. It is rather obvious that this
should be an m-dimensional integral current, with no boundary in Cr(0) and thus should
be an integer multiple of JBr(0, π0)K (incidentally, an integral m-dimensional current with
no boundary and supported in a smooth, connected m-dimensional submanifold Γ must be
an integer multiple of JΓK: this is called the Constancy theorem in the literature, cf. [45,
Sections 4.1.4 and 4.1.7]). The condition that T covers Q times the base of the cylinder
Cr(0) can then be expressed by

(pπ0)]T Cr(0) = Q JBr(0, π0)K . (43)

When T is given by a smooth submanifold Γ, the number Q can be computed using the
classical degree theory in the following way: given a generic point y ∈ Br(0) we consider the
finitely many points p1, . . . , pN in which Γ intersects the fiber {y}×Rn (transversally) and
assign ε(pi) = 1 if TpiΓ× π⊥0 has the same orientation as Rm+n and ε(pi) = −1 otherwise.
Then Q =

∑
pi
ε(pi).

There is a way to formalize this concept for a generic current:
∑

i ε(pi) JpiK is the “slice”
of the current JΓK. The latter object can be defined for general (integer rectifiable) currents
T and it is usually denoted by 〈T,pπ0 , y〉: roughly speaking it is the intersection of the
current T with p−1

π0
({y}), cf. [68, Section 6.28]. pπ0 might be replaced by a generic

(Lipschitz) map whose target is k-dimensional for some k ≤ m: the resulting slices will
then by (m−k)-dimensional currents. The graph of a Lipschitz function u always intersects
p−1
π0

({y}) = {y} × Rn “positively”, since the tangents to Gu do not tilt much compared
to the horizontal plane (this is obvious for a single valued function but rather elementary
even for a multivalued function). Our discussion motivates then the introduction of the
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cylindrical excess. For reasons which will be clear later, we also introduce the height of a
current in any given set.

Definition 9.1 (Cylindrical excess). Given an integer rectifiable m-dimensional current T
in Rm+n with finite mass and compact support and m-planes π, π′, we define the excess of
T in the cylinder Cr(x, π) compared to π′ as

E(T,Cr(x, π), π′) := (2ωm r
m)−1

∫
Cr(x,π)

|~T − ~π′|2 d‖T‖ . (44)

If π = π′, then we write E(T,Cr(x, π)).
The height function in a set A ⊂ Rm+m with respect to an m-dimensional plane π is

h(T,A, π) := sup
x,y ∈ spt(T )∩A

|pπ⊥(x)− pπ⊥(y)| .

9.2. The main approximation theorem. We are now ready to state the main approx-
imation theorem needed to carry on our program. To simplify our notation pπ0 and p⊥π0
will be denoted by p and p⊥.

Assumption 9.2. Σ ⊂ Rm+n is a C2 submanifold of dimension m+ n̄ = m+n− l, which
is the graph of an entire function Ψ : Rm+n̄ → Rl and satisfies the bounds

‖DΨ‖0 ≤ c0 and A := ‖AΣ‖0 ≤ c0, (45)

where c0 is a positive (small) dimensional constant. T is an integral current of dimension
m with bounded support contained in Σ and which, for some open cylinder C4r(x) (with
r ≤ 1) and some positive integer Q, satisfies

p]T C4r(x) = Q JB4r(x)K and ∂T C4r(x) = 0 . (46)

Theorem 9.3 (Strong approximation, cf. [33, Theorem 1.4]). There exist constants
C, γ1, ε1 > 0 (depending on m,n, n̄, Q) with the following property. Assume that T is
area minimizing, satisfies Assumption 9.2 in C4r(x) and E = E(T,C4 r(x)) < ε1. Then,
there is a map f : Br(x) → AQ(Rn), with Gr(f) ⊂ Σ, and a closed set K ⊂ Br(x) such
that

Lip(f) ≤ CEγ1 + CAr, (47)

Gf (K × Rn) = T (K × Rn) and |Br(x) \K| ≤ C Eγ1
(
E + r2 A2

)
rm, (48)∣∣∣∣‖T‖(Cσ r(x))−Qωm (σ r)m − 1

2

∫
Bσ r(x)

|Df |2
∣∣∣∣ ≤ C Eγ1

(
E + r2 A2

)
rm ∀ 0 < σ ≤ 1.

(49)

If in addition h(T,C4r(x), π0) ≤ r, then

osc (f) ≤ Ch(T,C4r(x), π0) + C(E
1/2 + rA) r , (50)

where osc (f) := sup{|p− q| : p ∈ spt(f(x)), q ∈ spt(f(y)), x, y ∈ Br(x)}.
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We note that the theorem is scaling invariant and thus it suffices to prove it in the case
r = 1. Moreover, for simplicity we will mostly ignore Σ and often assume that T is area
minimizing in the whole euclidean space: this will be of great help in illustrating the main
ideas behind the proof, avoiding some technicalities.

An elementary computation shows that, under Assumption 9.2,

E(T,Cr(x)) =
‖T‖(Cr(x))

ωmrm
−Q .

It is then natural to introduce the following “excess measure”:

Definition 9.4 (Excess measure, cf. [33, Definition 1.2]). For a current T as in Assumption
9.2 we define the excess measure eT and its density dT :

eT (A) := ‖T‖(A× Rn)−Q |A| for every Borel A ⊂ Br(x),

dT (y) := lim sup
s→0

eT (Bs(y))

ωm sm
= lim sup

s→0
E(T,Cs(y)) .

9.3. BV estimate for slices and first approximation. It is rather clear that the small-
ness of the cylindrical excess prevents the tangent plane to T at p to have negative intersec-
tion with {p(p)}×Rn at most points p in spt(T ). In fact this is a simple measure-theoretic
fact: even without assuming that T is area minimizing, it remains true that, under As-
sumption 9.2, most slices 〈T,p, y〉 will be elements of AQ(Rn). The exceptions y to this
property will form a set of small measure.

It is instructive to see what happens if Q = 1 and T is assumed to be a-priori the graph
of a classical map v, assuming a Lipschitz bound like Lip(v) ≤ 1. The cylindrical excess
E is then comparable, up to constants, to the L2 norm of Dv. It is a classical statement
for a (single valued) Sobolev map that a Lipschitz control holds on the restriction of the
map on a fairly large closed set, cf. for instance [43, Section 6.6.3]. Indeed a way to
identify a good set on which such Lipschitz bound holds is to look at those points where
the Hardy-Littlewood maximal function of |Dv| is suitably small. Under our idealized
situation, |Dv|2 is indeed comparable to the excess density dT introduced above. This
motivates the introduction of a maximal function in our setting

Definition 9.5 (Maximal function of the excess measure, cf. [33, Definition 2.1]). Given a
current T as in Assumption 9.2 we introduce the “non-centered” maximal function of eT :

meT (y) := sup
y∈Bs(w)⊂B4r(x)

eT (Bs(w))

ωm sm
= sup

y∈Bs(w)⊂B4r(x)

E(T,Cs(w)).

Going on with our Sobolev space analogy, if we denote by E the square of the L2 norm
of |Dv| (normalized by rm) and we let K be the set where the maximal function of |Dv|2
lies below the threshold E2γ1 , then the restriction of v to K will have Lipschitz constant
Eγ1 and the size of the complement of K can be estimated with rmE1−2γ1 . Of course we
can then extend v|K outside K to a Lipschitz function with essentially the same Lipschitz
bound. Neglecting the effect of Ψ, it is then clear that, relying solely on Assumption 9.2,
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we can hope for estimate (47) if we replace the superlinear E1+γ1 in (48) and (49) with,
respectively, E1−2γ1 and E.

This heuristic discussion can be in fact made rigorous in a very direct way relying on
some recent developments in geometric measure theory. Regarding the slicing map 〈T,p, ·〉
as a map taking values into the space of 0-dimensional currents (endowed with a suitable
metric) and using the formalism introduced by Ambrosio in [6] for BV maps with metric
targets, Jerrard and Soner have given in [56] a rather elementary way to prove that such
map is a function of bounded variation, with norm which can be controlled with the mass
of T and the mass of its boundary. Ambrosio and Kirchheim used then this idea in [9] to
develop part of their general theory of metric currents and give a rather efficient and general
approach to the Federer-Fleming compactness theorem. The resulting computations must
be suitably adjusted to our setting. However the theory allows a quite direct proof of the
following

Proposition 9.6 (Lipschitz approximation, cf. [33, Proposition 2.2]). There exists a
constant C > 0 with the following property. Let T and Ψ be as in Assumption 9.2 in the
cylinder C4s(x). Set E = E(T,C4s(x)), let 0 < δ11 < 1 be such that 16mE < δ11, and
define

K :=
{
meT < δ11

}
∩B3s(x) .

Then, there is u ∈ Lip(B3s(x),AQ(Rn)) such that Gr(u) ⊂ Σ for every y ∈ B3s(x) and

Lip(u) ≤ C
(
δ
1/2
11 + ‖DΨ‖0

)
, osc (u) ≤ Ch(T,C4s(x), π0) + Cs‖DΨ‖0 ,

Gu (K × Rn) = T (K × Rn),

|Br(x) \K| ≤ 10m

δ11

eT

(
{meT > 2−mδ11} ∩Br+r0s(x)

)
∀ r ≤ 3 s, (51)

where r0 = 16 m
√
E/δ11 < 1.

From Proposition 9.6 one derives immediately a version of Theorem 9.3 where the bound
(47) is correct, whereas in the bound (48) the factor E1+γ1 must be replaced by E1−2γ1 and
in the bound (49) E1+γ1 must be replaced by E. In the rest of this section we will discuss
why the area minimizing assumption, which so far we have not yet used, allows to improve
the bounds to achieve Theorem 9.3.

9.4. Superlinear gain. Going back to our heuristic idea, in which T is replaced by the
graph of a single valued function v and the excess by the square of the L2 norm, the “max-
imal function truncation” described in the previous paragraph would deliver the desired
superlinear estimates if we knew that the L2+β norm of Dv were controlled by E1/2, namely
by the L2 norm of Dv, for some β > 0. This amounts to a reverse Hölder inequality of the
form

‖Dv‖Lp ≤ C‖Dv‖L2 for some p > 2 . (52)

In our setting one possible translation would be: the excess measure eT is absolutely
continuous and its density dT enjoys the estimate

‖dT‖L1+ε(B2r(x)) ≤ CeT (B4r(x)) ≤ CrmE . (53)
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This is certainly not correct under the only Assumption 9.2: it is clear that in order to
hope for such a bound we need to use the hypothesis that T is area minimizing. We do not
know whether (53) is correct under the additional assumption that T be area minimizing:
even if it is, we expect that its proof is rather difficult, see the discussion below. However,
the cornerstone of our approach to Theorem 9.3 is that the following slightly weaker form
of (53) is correct and can be achieved with a moderate effort.

Theorem 9.7 (Gradient Lp estimate, cf. [33, Theorem 1.3]). There exist constants p1 > 1
and C, ε10 > 0 (depending on m,n, n̄, Q) with the following property. Let T be as in
Assumption 9.2 in the cylinder C4. If T is area minimizing and E = E(T,C4) < ε10, then∫

{d≤1}∩B2

dp1T ≤ C Ep1−1
(
E + A2

)
. (54)

From Theorem 9.7 and Proposition 9.6 we cannot conclude directly Theorem 9.3 because
we lack control on the set where dT is rather high (and on the singular part of the measure
eT !). We would rather need an estimate which controls the regions where the tangent to
T has high slope (compared to π0). Theorem 9.7 can be indeed used to prove something
of that kind:

Theorem 9.8 (Almgren’s strong excess estimate, cf. [33, Theorem 6.1]). There are con-
stants ε11, γ11, C > 0 (depending on m,n, n̄, Q) with the following property. Assume T
satisfies Assumption 9.2 in C4 and is area minimizing. If E = E(T,C4) < ε11, then

eT (A) ≤ C
(
Eγ11 + |A|γ11

) (
E + A2

)
for every Borel A ⊂ B 9

8
. (55)

Actually, in the case of a classical single valued map Theorem 9.8 could be concluded
directly by comparing the mass of the current T with that of a suitable convolution of the
approximating Lipschitz map. The effect of the convolution is to smear high gradients and
show that they are energetically not favorable. As already discussed in Section 7.6 there is
a surrogate of convolution for multivalued maps u, but it is not as energetically favorable
as the classical convolution. In particular, to keep under control how much the convolution
of ξ ◦ u falls off the set Q (cf. Section 7.6) a crucial role is played by Theorem 9.7.

9.5. Higher integrability and harmonicity. Going back to our analogy, we know that
if T were the graph of a function, the minimality assumption and the smallness of the
excess should imply that v is close to an harmonic function. Of course for single valued
harmonic functions the reverse Hölder inequality (52) is true for any exponent p > 2.
On the other hand we already discussed that, for a suitable choice of p, the same reverse
Hölder inequality does hold in the multivalued setting as well, cf. Theorem 7.11. This
suggests that in order to prove Theorem 9.7 we could first show that the Lipschitz map
of Proposition 9.6 is almost Dir-minimizing. Looking at Theorem 9.3 it is rather intuitive
that the “almost Dir-minimality” of f should correspond to have a o(E) in place of E1+γ1

in (49), where o(E) is any function of E which vanishes faster than E at 0. Now, using an
energetic comparison, such a gain would correspond to show that∫

Br(x)\K
|Df |2 = rmo(E) .
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If this were not true we could run a contradiction argument over a sequence of currents Tk
with vanishing excess Ek and look at the normalized approximations uk := fk/E

1/2
k . We

could also rescale the corresponding balls to have radius 1 and center 0. The m-dimensional
volume of the corresponding bad sets B1 \Kk is converging to 0 and in spite of that

lim inf
k

∫
B1\Kk

|Duk|2 ≥ η

for some positive η. If we assume that uk is converging in L2 to some u, the Dirichlet
energy of u would then satisfy

lim inf
k

∫
B1

|Duk|2 ≥
∫
B1

|Du|2 + η .

But then the graph of E
1/2
k u must have less mass than Tk and we could hope to modify it

and gain a comparison current which would contradict the minimality of Tk, at least for k
sufficiently large.

Recalling Section 7.5 there is a delicate point to address, namely that for multiple valued
functions a uniform control on the Dirichlet energy of a sequence does not imply compact-
ness, since the separation between sheets could explode along the sequence. Nonetheless
a careful analysis shows that this program can be carried on. Incidentally it also shows
that the approximation of Theorem 9.3 is close to a Dir-minimizer, which we record in the
following theorem (for the notation (u,Ψ(x, u)), whose meaning should be intuitively clear
to the reader, we refer to [29, 33]).

Theorem 9.9 (Harmonic approximation). Let γ1 be the constant of Theorem 9.3. Then,
for every η̄, δ̄ > 0, there is a positive constant ε̄1 with the following property. Assume that
T is as in Theorem 9.3, E := E(T,C4 r(x)) < ε̄1 and rA ≤ E1/4+δ̄. If f is the map in
Theorem 9.3 and we fix suitable coordinates, then there exists a Dir-minimizing function
u : Br(x)→ AQ(Rn̄) such that w := (u,Ψ(y, u)) satisfies

r−2

∫
Br(x)

G(f, w)2 +

∫
Br(x)

(|Df | − |Dw|)2 +

∫
Br(x)

|D(η ◦ f)−D(η ◦w)|2 ≤ η̄ E rm . (56)

10. A first attempt to prove Theorem 3.4

In this section we summarize what we have achieved so far and propose a first strategy
to show Theorem 3.4. After resolving the first important issues, we will have to face a
major obstacle: more than half of Almgren’s monograph is in fact dedicated to overcome
this point and even in the proof given by [29, 30, 33, 31, 32] the same phenomenon is
responsible for roughly one quarter of the combined length, namely paper [31].

The strategy to prove Theorem 3.4 starts similarly to Federer’s reduction argument.
Assume that there is an area minimizing current T of dimension m ≥ 2, in a sufficiently
smooth Riemannian manifold Σ, which has a large singular set Sing(T ): more precisely we
assume that, for some α > 0, Hm−2+α(Sing(T )) > 0.
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From Theorem 6.2 and Lemma 6.3 we conclude immediately that at Hm−2+α-a.e. p ∈
Sing(T ) there is one flat tangent plane and the multiplicity is integral. Let us introduce
the notation DQ(T ) for those points in spt(T ) \ spt(∂T ) where the density of T is the
positive integer Q. Similarly, we set SingQ(T ) := DQ(T ) ∩ Sing(T ). We then know that
Sing1(T ) is empty. Indeed the assumptions (a), (b) and (c) in Theorem 4.2 follow from the
monotonicity formula when ρ is sufficiently small. The second assumption in (d) is also
fulfilled: since we can assume that the second fundamental form of Σ is bounded, for ρ
sufficiently small we obviously have ρA < ε. It would remain to prove that the excess with
respect to some plane is suitably small at a sufficiently small scale. This is however not
difficult since all tangent cones at a point p with Θ(T, p) = 1 must be necessarily flat: it
can be shown that the only area minimizing m-dimensional cones S with ‖S‖(B1(0)) = ωm
are m-dimensional planes counted with multiplicity 1.

We stop for a moment to observe the following interesting consequence of the above
discussion. Let p be a point in spt(T ) where the multiplicity is Q and assume that the
surrounding points in spt(T ) have the same multiplicity at a sufficiently small scale, say
in Bρ(p). Then S := T/Q is a well defined integer-rectifiable area minimizing current in
Bρ(p) and moreover p ∈ D1(S). Thus S is regular in a neighborhood of p. We summarize
the outcome of the latter discussion in the following

Corollary 10.1. If S is an area minimizing cone with Θ(S, 0) = 1, then S is a flat plane
with multiplicity 1.

Let T be an area minimizing current in a C2 Riemannian manifold Σ. If p ∈ DQ(T )
and there is a neighborhood U of p where the density is Q at ‖T‖-a.e. point, then p is a
regular point.

We next recover our discussion and look at the current T which should contradict The-
orem 3.4. We infer from Corollary 10.1 that there must be an integer Q > 1 such that
SingQ(T ) has positiveHm−2+α-measure. Now, recalling the approach of Federer’s reduction
argument, we know that for Hm−2+α

∞ -a.e. p ∈ SingQ(T ) we have

lim inf
r↓0

Hm−2+α
∞ (Sing(T ) ∩Br(p))

rm−2+α
> 0 . (57)

Moreover, by Theorem 6.2 we can assume that at least one tangent cone at p is flat. We
thus have a sequence of rescalings Tp,sk which are converging to a flat plane and a sequence
of rescalings Tp,rk for which (by (57))

lim
k↑∞
Hm−2+α
∞ (Sing(Tp,rk) ∩B1(0)) = η > 0 . (58)

Of course the sequence {sk} does not necessarily coincide (or is comparable to) {rk}.
However, it can be shown that, w.l.o.g., the two sequences can be assumed to coincide (cf.
[32] and [72, Section 4]). More precisely

Proposition 10.2 (cf. [32, Proposition 1.3]). If Theorem 3.4 were false then there would be
an area minimizing current T in a smooth Riemannian manifold Σ, a point p ∈ SingQ(T )
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and a sequence of rescalings Tp,rk converging to a flat plane of multiplicity Q and such that
(58) holds.

We will see in a moment the simple idea behind Proposition 10.2. Taking it for granted,
one could at this point hope to carry the following program:

(A) We apply Theorem 9.3 to construct a sequence of Lipschitz maps fk whose graphs
approximate efficiently Tp,rk ;

(B) After normalizing suitably fk, we apply Theorem 9.9 and, up to extraction of a
further subsequence, assume that it converges to a Dir-minimizing multivalued
map f∞;

(C) We finally use (58) to show that f∞ has a singular set of positive Hm−2+α measure:
this would contradict Theorem 7.9.

(C) is again a “persistence of singularity” statement. Unfortunately it is not difficult to
see that it is false in this form and thus the rough strategy outlined above must be suitably
adjusted. After dealing with Proposition 10.2 we will discuss in detail why (C) fails and
propose therefore a new strategy to prove Theorem 3.4.

10.1. The existence of a good sequence. The proof of Proposition 10.2 is still a suitable
modification of Federer’s reduction argument. By the discussion above, we first choose a
point p ∈ SingQ(T ) and a sequence rk ↓ 0 where (58) holds. Assume without loss of
generality that p = 0. If T0,rk converges to a flat plane of multiplicity Q we are done.
Otherwise we can assume that it converges to some tangent cone S, which is singular and
such that Θ(S, 0) = Q. We now wish to show that Hm−2+α

∞ (SingQ(S)) > 0.
First of all, by the monotonicity formula, Hm−2+α

∞ (DQ(S)) > 0. Now, if

Hm−2+α
∞ (SingQ(S)) = 0 (59)

then many of the points in DQ(S) should be regular: let us denote by RegQ(S) the set
of such points. Note that RegQ(S) is relatively open. If S (RegQ(S)) has nonemtpy
boundary, then such boundary consists of elements in SingQ(S) and we can expect that
it has positive Hm−1 measure. The latter statement can in fact be made rigorous and
(provided α < 1), (59) would imply that S ′ = S (RegQ(S)) has no boundary. Hence S ′ is
an area minimizing cone with multiplicity Q at every p ∈ spt(S ′)\{0} and with multiplicity
no larger than Q at the tip 0 (because ‖S ′‖ ≤ ‖S‖). But the upper semicontinuity of the
density implies that Θ(S ′, 0) ≥ Q: thus ‖S‖(B1(0)) = Qωm = ‖S ′‖(B1(0)). This is possible
if and only if S and S ′ coincide. We thus conclude that Corollary 10.1 is applicable to S,
which must be flat, contrary to our assumption.

Having found that S is another area minimizing current with large SingQ(S), we can
apply the discussion above to some point p ∈ spt(S) \ {0}. We thus find a sequence Sp,rk
such that limkHm−2+α

∞ (SingQ(Sp,rk)) > 0. As above, Sp,rk can be assumed to be converging
to some tangent cone Z: if it is flat, we then have achieved the conclusion of Proposition
10.2. Otherwise Hm−2+α(SingQ(Z)) > 0 and we can restart with Z in place of S ′: this
time, however, Z splits off a line. Iterating this procedure we keep “splitting off” lines,
until eventually we must reach a sequence as in the statement of Proposition 10.2.
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10.2. Persistence of multiplicity Q points. Having proved Proposition 10.2, we are
now in the position to attempt the strategy outlined few paragraphs above. Point (A) is
obvious and we have to face point (B). Let us fix a sequence as in Proposition 10.2 that it
is converging to Q Jπ0K where π0 = Rm×{0}. Thus, for a sufficiently large k, Theorem 9.3
applies to T0,rk in the cylinder C4(0). Let fk be the corresponding approximating maps
fk : B1(0, π0)→ AQ(Rn). It is not obvious, apriori, that we can apply Theorem 9.9, since
the excess Ek := E(T0,rk ,C4(0)) might converge to zero too fast compared to rkA. Let us

leave this technical problem aside: we then could assume that uk := fk/E
1/2
k is converging

to a Dir-minimizing map u∞.

Next, we can intuitively expect that u∞ has many points of multiplicity Q, in particular
all the ones which are limits of sequences lying in pπ0(DQ(T0,rk)). Namely, we expect that
points in pπ0(DQ(T0,rk)) cluster towards points where u∞ = Q Jη ◦ u∞K. This intuition is
correct. In fact we can first prove the following

Theorem 10.3 (Persistence of Q-points, cf. [33, Theorem 1.7]). For every δ̂, C? > 0, there

is s̄ ∈]0, 1
2
[ such that, for every s < s̄, there exists ε̂(s, C∗, δ̂) > 0 with the following property.

If T is as in Theorem 9.3, E := E(T,C4 r(x)) < ε̂, r2A2 ≤ C?E and Θ(T, (p, q)) = Q at
some (p, q) ∈ Cr/2(x), then the approximation f of Theorem 9.3 satisfies∫

Bsr(p)

G(f,Q Jη ◦ fK)2 ≤ δ̂smr2+mE . (60)

For the proof of the latter theorem we refer to [33]: for a short explanation, the reader
might consult [72, Section 7.2.1] or [25].

Looking back at our u∞, which is the strong L2 limit of uk = fk/E
1/2
k , when p is a

point in the domain of u∞ which is the limit of (the projections onto π0 of) a sequence of
(pk, qk) ∈ spt(Tk) with Θ(Tk, (pk, qk)) = Q , we then have

lim
r→0
−
∫
Br(p)

G(u∞, Q Jη ◦ u∞K)2 = 0 .

Since u∞ is Dir-minimizing and, hence, continuous, we have u∞(p) = Q Jη ◦ u∞(p)K. Now,
we must have a set of points p with positive Hm−2+α measures where this occurs. Since
Theorem 7.9 tells us that the singular set of u∞ has dimension at most m − 2, the only
alternative left is that u∞ is a classical harmonic single valued function counted Q times.
That is, once again the singularities have failed to survive in the limit. If we could exclude
this disappearence of the singularities, we would have reached a contradiction and hence
proved Theorem 3.4.

Let us look of what happens if we apply the analysis above when the current T is
the holomorphic curve of Example 5.4 in a neighborhood of 0. It is obvious that (in
complex coordinates) the procedure above will deliver the map u∞(z) = 2 Jz2K: although
the currents T0,r are singular at the origin, u∞ is regular. If we compare our situation with
the proof of Theorem 7.9 outlined in Section 8, it is quite obvious why we failed to capture
the singularity in the limit: we have not subtracted the “average of the sheets”, namely
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the regular part of our multiple valued function. The latter has much higher energy than
the branching singularity, which is a very small perturbation: if we do not normalize our
approximations in some way, we fail to capture the singular behavior in the limit.

11. The center manifold

Summarizing the discussion of the previous section, we are confronted with the following
problem. Given a Q-valued Dir-minimizing function u =

∑
i JuiK, the average of its sheets,

namely η ◦ u := 1
Q

∑
i ui, is a classical harmonic function and after subtracting it from u

we find a new Dir-minimizing Q-valued function

ū :=
∑
i

Jui − η ◦ uK .

When ū is nontrivial, a point p where ū(p) = Q J0K is necessarily singular. Loosely speaking
we could say that ū is the “well-balanced part” of u. If an area minimizing current T
satisfies Assumption 9.2 we would like to have a replacement for the average of the sheets
η ◦ u and a replacement for the well-balanced Q-valued map ū.

One possibility would be to apply Theorem 9.3: we then gain a corresponding approxi-
mating Lipschitz map f : the average of its sheets, namely η ◦f , and its well-balanced part
f̄ , are both well defined. However, we wish to use these objects in a blow-up procedure:
obviously η ◦ f and f̄ do not serve our purposes, since f is a good approximation of the
current only at the scale of a certain given cylinder

We would rather like to localize the idea above. Clearly, this is only possible in those
regions (and those scales) where the current is sufficiently flat. On the other hand we might
not worry about those portions, or those scales, at which the current is not sufficiently flat:
in the blow-up procedure we wish to capture the limiting behavior of the current around
those points belonging to SingQ(T ) and we already saw in the previous section, namely in
the proof of Proposition 10.2, that when a lot of points DQ(T ) cluster at a certain scale,
the current is necessarily rather flat.

11.1. The construction algorithm. Localizing the basic idea above is a very delicate
issue, which involves several parameters. First of all, to fix ideas we will assume that our
center manifold will be constructed in a cylinder C of size comparable to 1 (namely the
radius will be a fixed geometric constant, certainly larger than 1), centered at the origin
and with basis parallel to π0 := Rm × {0}. We will assume that in the cylinder C the
ambient manifold Σ is very close to be flat: this “almost flatness” is measured in a suitable
norm (see [31, Assumption 1.3] for the precise definition): recalling that the excess E(T,C)
is a “quadratic” quantity, the square of the latter norm will be compared to the excess and
we will denote by m0 the maximum of these two quantitites. m0 is the first parameter we
encounter: it will be assumed to be “suitably small”, namely smaller than some ε2. The
latter is however the last constant to be chosen: it can always be (safely) assumed to be
sufficiently small, no matter what the other parameters will be required to satisfy.
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We further assume that the origin is in the support of the current and it is a point of
multiplicity Q. The classical “height bound” for area minimizing currents implies then

that the height of T in (a slightly smaller cylinder than) C is comparable to m
1/2m
0 . This is

due to Almgren himself in his first generalization of De Giorgi’s ε-regularity theorem, see
[2], and it is proved nowadays by a very elementary argument which uses the isoperimetric
inequality and the monotonicity formula. An important technical generalization of this can
be found in [31, Appendix A]: with a minor modification of the usual proof, if one drops
the assumption that there is a point of multiplicity Q, we can prove the following “layering
theorem”. To avoid lengthy technicalities we give here a rough statement, referring to [31,
Theorem A.1] for the precise one.

Theorem 11.1 (Layered height bound). Let T satisfy Assumption 9.2 in the cylinder
C4r(0, π0) and let E := E(T,C4r(0, π0). In a slightly smaller cylinder Cρ(0, π0) the current
is then supported in k ≤ Q disjoint layers of the form Bρ(0, π0)×BCρE1/2m(yi, π

⊥
0 ): in each

layer the density Θ(·, T ) does not exceed a certain integer Qi by much and
∑

iQi = Q.

The “scales” of the construction will be discretized using a suitable Whitney decom-
position. We start by subdividing the square [−1, 1]m ⊂ π0 into 2−N0m cubes L: for
each cube we let `(L) be half of the sidelength and xL ∈ Rm denote its center, so that
L = [x1

L− `(L), x1
L+ `(L)]× . . .× [xmL − `(L), xmL + `(L)]. We have just encountered the sec-

ond of the parameters of the construction, N0, which measures the fineness of our starting
grid. To each cube we associate a ball BL, whose choice is specified in the following way.
First the center of the ball BL is an arbitrarily chosen pL ∈ spt(T ) ∩ ({xL} × π⊥0 ). This
might seem rathere arbitrary but, when m0 is very small compared to N0, Theorem 11.1
guarantees that the relative distance between points of spt(T ) ∩ ({xL} × π⊥) is extremely
small compared to `(L). Since the radius is going to be 64rL := 64M0

√
m`(L), where M0

is a very large constant, the fact that the center of BL might “wiggle” slightly depending
on the chosen pL has no effect on the rest of the discussion. Note that we have encountered
a third parameter M0, whose choice has priority upon N0: if M0 is very large, N0 should
be chosen accordingly large, so to guarantee that at least our ball BL is contained in the
original cylinder C.

We next set up a refinement procedure: starting with the initial grid of dyadic cubes,
denoted by C N0 , we subdivide each of them into 2m cubes H of sidelength 2`(H) = `(L).
Now, given our starting hypothesis, we know that both the excess and the height in BL

are small compared to π0. We wish to keep refining the cubes H as long as the height and
the excess in the corresponding balls BH keep sufficiently small. However, the reference
plane might tilt as we refine the scales and we wish to keep track of this. For this reason,
we denote by πL a given plane for which E(T,BL) = E(T,BL, πL) and we define the height
of T in the ball BL as h(T,BL) := h(T,BL, πL).

We then stop the refining procedure at some dyadic cube L if

(EX) The excess has become too large in BL;
(HT) The height has become too large in BL, although the excess has remained small;
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(NN) The refinement stopped at some cube J which touches L and has double sidelength,
although in L itself both the height and the excess would be small enough to keep
refining.

The reader familiar with Whitney’s (or Calderon-Zygmund) decompositions will recognize
that the latter condition is enforced to guarantee that, after all the steps of the refinement
procedure have been carried on, all nearby cubes have comparable sides. Unfortunately
the conditions (EX) and (HT) taken alone do not guarantee this outcome (the troubles
are indeed caused by condition (EX)) and the extra (NN) is a source of a few technical
complications.

What do we expect from the decomposition above? Fix a point x ∈ [−1, 1]m. Only two
situations might occur:

(NS) x does not belong to any cube where the refinement procedure stopped;
(S) x ∈ L for some cube L where the refinement procedure stopped.

Let Γ be the set of points as in (NS). If the stopping conditions (EX) and (HT) are
sufficiently severe, we can expect that T (Γ×π⊥0 ) is a Q multiple of a portion of a (rather
smooth) single valued graph.

Consider next a point x ∈ L as in (S). Although we stopped the refinement at L, at a
slightly larger scale we still have a very small excess and a very small height: both E(T,BL)
and h(T,BL) are still rather small. We thus can hope to apply the approximation Theorem
9.3 in a suitable cylinder C32rL(pL, πL): we can then construct a good Lipschitz Q-valued
approximation fL : B8rL(pL, πL)→ AQ(π⊥L ), which will be called the πL-approximation in
BL. Finally we take its average η ◦ hL and smooth it by convolution with a kernel (which
we take to be radial, although the importance of this assumption will become clear only
in the next section). The scale of the regularization cannot be larger than rL, otherwise
all the information would be lost: we choose indeed `(L) as scale for the convolution. The
regularized map is denoted by hL and will be called the tilted interpolating function. Note
that in the procedure above one point should be clarified: the cylinder C32rL(pL, πL) is not
contained in BL. However, through a careful inductive argument, spt(T ) ∩ C32rL(pL, πL)
can be shown to be contained in BL.

We wish to patch the graphs of the various tilted interpolating functions hL in a single
submanifold (and we also hope that this submanifold will glue smoothly with the portion of
the current lying over Γ!). However, since the graphs of hL are relative to different systems
of coordinates, we need to parametrize them as graphs in a common coordinate system.
Given condition (EX), we can hope that along the refinement procedure the planes πL did
not tilt much. If this is the case the graph of each hL can be described by the graph of
some gL in the “original coordinates” π0× π⊥0 . We could then glue the various gL together
using a partition of unity.

11.2. Identification of the scales. Of course we need to give a precise quantification
for the conditions (EX) and (HT). An intuition which has guided our understanding is
the following: if we are under the assumption Q = 1, when the ε-regularity theorem is
applicable and therefore T is a Lipschitz graph, so the refinement procedure should never
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stop at any cube and Γ should in fact coincide with [−1, 1]m. We know from the discussion
in Section 4.1 that the decay can be expected to be almost quadratic. We thus set the
condition in (EX) as

E(T,BL) > Cem0`(L)2−2δ2 , (61)

where δ2 is a small number and Ce a large one.
We then expect the height to be comparable to `(L)1+1/m because of Theorem 11.1. We

set therefore the height condition as

h(T,BL) > Chm
1/2m
0 `(L)1+β2 , (62)

where β2 is a positive parameter smaller than 1
m

. It must be noticed that, if on the (EX)
condition it is vital to choose δ2 rather small and use the full power of De Giorgi’s idea, cf.
Remark 4.3, in the height condition we do not need β2 to be close to 1

m
: it suffices that β2

can be chosen sufficiently large, in particular compared to δ2.

We have now introduced all the parameters of the construction and we want to specify
their choice. The exponent β2 is the first to be chosen and it must be positive but smaller
than 1

m
. In fact in [31] the exponent is chosen even smaller, compared to the exponent

γ1 of Theorem 9.3: this is however needed only much later, specifically in the proof of
Theorem 13.2. The exponent δ2 is chosen next: it must be positive but small, compared
to β2 and (more importantly, see below) compared to γ1 in Theorem 9.3. After δ2 we can
choose M0: M0 must be chosen very large, depending on δ2. The reason is the following:
if we consider two balls BL and BH , where H is a “son” of L (namely it is contained in
L and has half sidelength), we would like to treat them as concentric, although the reason
will come only in the next section. Since the distance between the centers is comparable
to `(L), the balls will be “close to concentric” provided M0 is very large.

Next, N0 should be chosen larger depending on M0 in such a way that the balls BL are
anyway not large compared to the initial cylinder C. Finally, since the stopping conditions
are written in terms of `(L) rather than the radii of the balls BL, Ce and Ch must be
taken large so that the refining procedure goes on for at least a few steps before stopping.
However Ch will be chosen even larger compared to Ce. The reason is the following. Thanks
to Theorem 11.1, if Ch is relatively large compared to Ce, at any cube L where the refining
procedure has stopped by the (HT) condition the current will form at least two separate
“layers” of thickness smaller than `(L)1+(1−δ2)/m and parallel to πL. In turn, this “layered”
structure will be inherited by the graph of the πL approximation, which plays a crucial
role in some estimates.

We could summarize the discussion above in the following theorem (again, the statement
is very far from being precise; the reader might consult [72, Section 5.2] or [25] for a more
thorough explanbation and [31, Theorem 1.17] for all the details).

Theorem 11.2 (Center manifold). The construction outlined above yields a function ϕ :
π0 → π⊥0 which is C3,κ for some positive κ > 0 and has small ‖ · ‖C3,κ norm (indeed

‖Dϕ‖C2,κ ≤ Cm
1/2
0 ). The graph of ϕ is the center manifold relative to π0 in the cylinder

C.
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To keep our discussion simple we have avoided several subtle points. We just mention
one that plays a crucial role: for currents T which are area minimizing in some submanifold
Σ we will need that the graph of ϕ is contained in Σ.

11.3. The C3 estimate for the center manifold. Theorem 11.2 is probably the most
complicated part of the proof of Theorem 3.4. However it is important to notice that
Theorem 11.2 alone does not encode the full strength of the construction described above:
we will see in the next section that the graph of ϕ is indeed a very good substitute for
the “average of the sheets of a Q-valued graph”. For instance, the algorithm can be
applied even under the assumption that the density of T equals Q ‖T‖-almost everywhere
in C: in this case the refinement procedure never stops, Γ equals [−1, 1]m and finally
spt(T ) ∩ [−1, 1]m × π⊥0 ⊂ Gr(ϕ). Namely, by the constancy theorem T ([−1, 1]m × π⊥0 ) =
QGϕ and thus we have gained two more derivative in the conclusion of Theorem 4.2.

The latter surprising conclusion, namely that with a “purely geometric construction” it
is possible to improve the classical ε-regularity theorem by 2 derivatives, is already observed
in the introduction of Almgren’s monograph. It is however possible to find a rather fast
shortcut to this conclusion since multiple valued functions are not needed. A self-contained
“elementary” proof has in fact been given in [28]. The latter reference contains, in a highly
simplified setting, the most important estimates which hide behind Theorem 11.2. In this
paragraph we will give a rough idea of the C3 regularity of ϕ, but we will touch the aspect
only superficially. The interested reader can consult the much deeper discussion given in
the survey [25].

We start by introducing the notation W for the dyadic cubes where the refinement
procedure has stopped. Coming to Theorem 11.2, it is obvious that we need to prove a
uniform C3,κ estimate on gL for any L ∈ W . This alone will not suffice: an elementary
inspection of the partition of unity used to “glue” the gL’s together in ϕ show that, when
L and H are two neighboring cubes in W , we need the estimate ‖Dl(gL − gH)‖C0 ≤
C`(H)3−l+κ for every l ∈ {0, 1, 2, 3}. However, leaving aside the “interaction” between
nearby cubes, let us focus on ‖gL‖C3 and, to simplify the matter even further, let us in fact
look at ‖hL‖C3 . It is rather plausible that if we could prove a uniform bound on ‖hL‖C3

for the tilted interpolating functions hL, this will not be destroyed by the change to the
coordinates π0 × π⊥0 .

Let us therefore fix L ∈ W and let L = Li ⊂ Li+1 ⊂ . . . ⊂ LN0 be a chain of dyadic
cubes where Lj−1 is the father of Lj for every j. Now hLN0

is the convolution of a Lipschitz

function at a scale which is obviously comparable with 1 (since `(LN0) = 21−N0 and N0 is a
fixed “constant”, although rather large). Thus ‖DkhLN0

‖C0 is in fact bounded a-priori with
a constant depending only on k (and on all the other parameters of the construction). We
next want to study how the norm ‖DkhLj‖C0 might increase compared to ‖DkhLj−1

‖C0 : the
hope is that this can be bounded by some power of `(Lj), leading in turn to a convergent
geometric series when k ∈ {0, 1, 2, 3}. This would then give a uniform bound on ‖hL‖C3 .

Ideally we would like to compute ‖Dk(hLj − hLj−1
)‖C0 . This is however not really

possible, since the two functions are defined according to two different coordinate systems
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(namely πLj × π⊥Lj and πLj−1
× π⊥Lj−1

). Let us however assume, for the sake of argument,
that πLj = πLj−1

=: π. Moreover, to simplify the notation let us denote Lj by J and Lj−1

by H.
Under this assumption, hJ is the convolution of η ◦ fJ and hH the convolution of η ◦ fH .

We know that both fH and fJ approximate very accurately the area minimizing current T ,
at two scales which are comparable by a factor 2. Thus, for both graphs GfJ and GfH the
first variation is close to 0, which in turn, given the smallness of the excess of the current
at that scale, should imply that both η ◦ fJ and η ◦ fH are almost harmonic.

The latter discussion is correct but must be quantified. It is not difficult to see that it
can be translated into an estimate for ∆(η ◦ fJ) and ∆(η ◦ fH) in some negative Sobolev
space (more precisely we use the W−1,1 norm, cf. [31, Proposition 5.1]). To simplify the
matter even further, let us assume that both η ◦ fH and η ◦ fJ are in fact harmonic.
The regularization by convolution will then not change the two functions, because the
convolution kernel is radial. Thus we would have ‖Dk(hH−hJ)‖C0 = ‖Dk(η◦fH−η◦fJ)‖C0 .
On the other hand, again by the mean-value formula for harmonic function, we could
estimate

‖Dk(hH − hJ)‖C0 ≤ C

`(H)m+k
‖η ◦ fH − η ◦ fJ‖L1 . (63)

Let us now recall that the graph of fH coincides with the current T , except for a set of
measure C`(H)mE(T,BH)1+γ1 . In turn the excess E(T,BH) is of size `(H)2−2δ1 . Since an
analogous consideration holds for J in place of H, we conclude that the two maps fH and
fJ coincides except for a set of measure at most `(H)m+(2−2δ1)(1+γ1). On the other hand
the “heights of both maps” is of order `(H)1+β2 , i.e. the available estimate for the heights
h(T,BH) and h(T,BL). Combining these observations, we conclude that

‖η ◦ fH − η ◦ fJ‖L1 ≤ C`(H)m+3+κ .

Inserting the latter inequality in (63) we would then conclude

‖Dk(hH − hJ)‖C0 ≤ C`(H)3+κ−k .

12. The approximation on the normal bundle of the center manifold

To carry on our program for proving Theorem 3.4 by “blow-up”, we now need to ap-
proximate again our area minimizing current in a cylinder where the excess is small, taking
advantage of the center manifold. Let M = Gr(ϕ) be the center manifold constructed in
the previous section and let us make some first considerations.

First of all, by the C3,κ estimates, we know that in a sufficiently small neighborhood U of
M there is a C2,κ orthogonal projection p : U→M which to each p ∈ U assigns the unique

point q = p(p) such that p−q is normal to TqM. In fact, since ‖Dϕ‖C2,κ ≤ Cm
1/2
0 and m0

can be chosen arbitrarily small, the “thickness” of U can be assumed to be of any given

size, say 1. In turn, since the height of T in C is of order m
1/2m
0 , we can certainly assume

that spt(T C1/2(0)) ⊂ U. It is also not difficult to see that T is a Q-fold covering of M,

namely (p](T C1/2)) C1/4 = Q
q
M∩C1/4

y
(we need to restrict slightly the radius of the
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cylinder to avoid “boundary effects”). We could define a “curvilinear excess” compared to
M with the following procedure: at each point p ∈ spt(T ) we measure the distance between
~T (p) and the oriented tangent plane to M at the projection p(p). We then integrate the
square of this quantity over spt(T ) ∩C1/2. The corresponding formula is∫

C1/2

|~T (p)− ~Tp(p)M|2 d‖T‖(p) .

It is no surprise that the latter is controlled by the “straight excess” in the cylinder C,
simply because the tilt between TqM and π0 is controlled by ‖Dϕ‖C0 , for which in turn

we have the bound Cm
1/2
0 . Thus, as it happens with the “straight excess” we can expect to

be able to approximate T efficiently with a multivalued map N defined on M and taking
values in the normal bundle of M.

To be more precise, we are looking for an approximating map F :M→AQ(Rm+n) with
the properties that

• F (q) =
∑

i JFi(q)K where Fi(q) ∈ U and p(Fi(q)) = q for every q ∈M;
• for most q’s, namely for q’s belonging to a certain closed subset K ⊂ M, we have

“F (q) = spt(T )∩(q+TqM)⊥”; the latter identity is under quotation marks because
the real requirement is that the normal slice of the current T coincides with F (q),
namely F (q) = 〈T,p, q〉 (cf. Section 9.3).

The normal part of the map F is then the multivalued map N(q) :=
∑

i JFi(q)− qK: the
latter is our normal approximation. We will require that the map F be Lipschitz and to its
image (or, equivalently, to the graph of N) we can associate naturally an integer rectifiable
current, which will be denoted by TF . We wish not only to construct the map N , but
also to keep various related quantities under control: certainly its Lipschitz constant, its
height, the size of K and the difference in mass between TF and T . Moreover, we certainly
expect that these estimates will depend, locally, upon the scale at which the refining of
the Whitney decomposition described in the previous section stopped. We wish therefore
to introduce “Whitney” regions on M: they will be denoted by L and, loosely speaking,
each such L is a suitable enlargement of the portion of the graph of M lying over a cube
L ∈ W .

However, before coming to the precise statements concerning these estimates, we should
make one further important consideration. Our plan is to show that N is close to a Dir-
minimizing Q-valued map and that a large singular set for T induces a large singular set
on the latter map. The first point was, in “straight coordinates”, an effect of the Taylor
expansion of the area functional of a graph. Thus, it makes sense to compare the mass of
TF with that of Q JMK.

Theorem 12.1 (Expansion of M(TF ), cf. [30, Theorem 3.2]). If M, F and N are as
above and the Lipschitz constant of N is sufficiently small, then

M(TF ) = QHm(M)−Q
∫
M
〈H,η ◦N〉+

1

2

∫
M
|DN |2 + H.O.T., (64)
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where H is the mean curvature vector of M and H.O.T. contains higher order terms,
namely expressions that are at least trilinear in N or bilinear in N but multiplied by a
small factor.

Notice in particular that there is a nonvanishing linear term in the expansion. In order to
show thatN is quasi-harmonic, we therefore need 〈H,η◦N〉 to be much smaller than |DN |2.
We can certainly expect so, given that the center manifold should be “well-centered”.
However, this adds an additional quantity which should be kept under control in a special
way, namely the average η ◦N .

12.1. The construction of N . In order to simplify the next discussions, we will denote
by Φ the map x 7→ (x,ϕ(x)), i.e. the graphical parametrization of the center manifoldM.
A simple consequence of the refinining algorithm used to construct the center manifold is
that on Φ(Γ) the current T coincides completely withM. More precisely, 〈T,p, p〉 = Q JpK
whenever p ∈ Φ(Γ). Hence we will obviously set N(p) = Q J0K for any such p: it remains
therefore to define N on each region of the form Φ(L) when L ∈ W .

Let us fix L ∈ W . Going back to the construction of the center manifold, we discover
that we already have a rather accurate graphical approximation of T in the region of our
interest, since we already defined the πL-approximation fL. If fL were a classical single
valued function, we could simply parametrize its graph on the normal bundle ofM. Indeed
the tangent planes to the graph of fL are certainly close to πL and on the other hand M
is constructed patching a suitable smoothing of the average η ◦ fL. Thus, in the cylinder
C6rL(pL, πL), the angle between a generic tangent plane to the graph of fL and a generic
tangent plane to M is rather small. In the Q-valued setting “reparametrizing” graphs is
a much more subtle issue than in the classical single valued setting . However it is not
very hard to prove a suitable theorem (see [30, Theorem 5.1]) which allows to describe the
graph of fL through a Lipschitz map NL on the normal bundle ofM. Note moreover that
NL can be defined on a domain much larger than Φ(L).

We next have to face a new difficulty: if L and H are two nearby cubes, the maps NL

and NH do not necessarily agree on the intersection of their domains. However, recall that
the graphs of fL and fH coincide with the current T except for two sets of small measure.
Thus the values of NL and NH coincide on a very large portion of the intersection of their
domains. In turn, the construction algorithm ensures that each H intersects only a finite
number of other cubes in W : such number is bounded a-priori by a geometric constant
(for instance, when m = 2 each square of W can intersect at most 12 other squares of W ).
So, after removing from each Φ(L) all those points where NL does not coincide with all
the NH related to neighboring cubes, we reach a uniquely defined map N on a rather large
subset of M\Φ(Γ).

We now wish to extend this map to a Lipschitz one defined on allM. It is not difficult to
see that N is already globally Lipschitz on its domain of definition and that it approaches
the value Q J0K on sequences of points converging to Φ(Γ): this is because the height of
fL (and thus that of NL) is controlled by C`(L)1+β2 and cubes in W close to Γ necessarily
have small sidelength. However, it does not serve our purposes to give a global Lipschitz
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extension of N which does not respect the local properties of the map. In particular we
desire an extension that on each Whitney region L has small Lipschitz constant: the smaller
the scale, the smaller should be the Lipschitz constant. To achieve this property we follow
an elementary idea, which we next describe in the special case of dimension m = 2. As
a matter of fact, since Φ is Lipschitz we can, for the sake of our discussion, assume that
Φ(L) is flat and coincides with the square L. We fix the four points A,B,C and D which
are the four vertices of the square. We first wish to extend N to four small neighborhoods
of these points; such neighborhoods will be called U(A), U(B), U(C) and U(D) and we will
fix them to be disks centered at the respective points with radius `(L)/4.

Take for instance A: the latter point is a common vertex for four squares H1, H2, H3, L
of W . We then consider the intersection of the domain of N with H1 ∪ H2 ∪ H3 ∪ L: if
we restrict the map N to this set and consider its Lipschitz constant, we can then use
the Lipschitz extension theorem for multivalued functions to extend it to a neighborhood
U(A) of A, without increasing such constant by much. We proceed and extend the map
separately to neighborhoods of A, B, C and D. However when we extend the map to
the neighborhood U(B) we disregard what we did in the neighborhood of A and we only
take into consideration the “original” N : having chosen such neighborhoods sufficiently
small the distance between two points p and q lying in different ones (say, U(A) and (B))
is larger than `(L)/2 and the height of the extension is no larger than C`(L)1+β2 , thus
providing automatically a good Lipschitz bound on U(A)∪U(B). This procedure can then
be repeated for all squares and we have a new map N ′ which is evidently defined in a
neighborhood of any vertex of any L ∈ W .

With the same principle we extend N ′ to neighborhoods U(AB), U(BC), U(CD), U(DA)
of the corresponding sides of the square L. This seems more problematic because, for
instance, U(AB) and U(BC) intersect in a neighborhood of B. However N ′ is already
defined on U(A) ∪ U(B) ∪ U(C) ∪ U(D). Thus we need to extend it to the sets V (AB) =
U(AB) \ (U(A) ∪ U(B)) and V (BC) = U(BC) \ (U(B) ∪ U(C)). The latter can be now
assumed to be disjoint and separated by a distance of the order c0`(L) for some c0 > 0: it
just suffices to choose the thickness of the neighborhoods U(AB) and U(BC) much smaller
than the thickness of the neighborhoods U(A), U(B) and U(C). We can then literally
argue as above and gain a second extension of the map, namely N ′′, which is defined on
the boundary of any square L of W . At this point the third (and final) extension is achieved
by considering each square separately.

12.2. The estimates on each Whitney region L. We are now ready to state the main
estimates on the approximating map N .

Theorem 12.2 (Local estimates for theM-normal approximation, cf. [31, Theorem 2.4]).
Let γ2 := γ1

4
, with γ1 the constant of [33, Theorem 1.4]. TheM-normal approximation can

be constructed so to satisfy the following estimates on every Whitney region L associated
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to a cube L ∈ W , with constants C = C(β2, δ2,M0, N0, Ce, Ch):

Lip(N |L) ≤ Cmγ2
0 `(L)γ2 and ‖N |L‖C0 ≤ Cm

1/2m
0 `(L)1+β2 , (65)

|L \ K|+ ‖TF − T‖(p−1(L)) ≤ Cm1+γ2
0 `(L)m+2+γ2 , (66)∫

L
|DN |2 ≤ Cm0 `(L)m+2−2δ2 . (67)

Moreover, for any a > 0 and any Borel V ⊂ L, we have (for C = C(β2, δ2,M0, N0, Ce, Ch))∫
V
|η ◦N | ≤ Cm0

(
`(L)3+β2/3 + a `(L)2+γ2/2

)
|V|+ C

a

∫
V
G
(
N,Q Jη ◦NK

)2+γ2 . (68)

The three estimates (65), (66) and (67) are indeed all simple consequences of the anal-
ogous estimate for the πL-approximation fL, taking into account that in BL we have a
specified control on the size of the excess and of the height. The estimate (68) is instead
more subtle, but its reason is also rather obvious: the center manifold M is indeed very
close to the graph of η ◦ fL by construction and thus η ◦NL must be very small.

12.3. The splitting before tilting phenomenon. The final important conclusions on
the center manifold are given by two estimates which are somewhat of a dual nature to
those of Theorem 12.2. Ignoring for the moment the special cubes L which stopped because
of the condition (NN), we must remember that all other cubes must have stopped for one
of the following two very precise reasons:

(h) either the eight in BL exceeds Chm
1/2m
0 `(L)1+β2 ;

(e) or the excess in BL exceeds Cem0`(L)2−2δ2 .

In the first occasion recall the layered height bound of Theorem 11.1. This theorem shows
that T in (a suitable subset of) BL splits in at least two currents which are contained
in two layers parallel to πL and separated by a distance comparable to the height in BL,

say 1
2
Chm

1/2m
0 `(L)1+β2 . Thus, anywhere in a region of diameter C`(L) which includes L

(where C will depend on the constant M0) we can expect |N | to be at least as large as
1
4
Chm

1/2m
0 `(L)1+β2 . Thus, on every region Ω of measure c`(L)m close to L, the size of∫

Ω
|N |2 is at least C`(L)m+2+2β2 . We refer the reader to [31, Proposition 3.1] (see also [72,

Section 5.5]) for the precise statement.

In the second case, namely when (e) above holds) we would like to say that
∫

Ω
|DN |2 is at

least C`(L)m+2−2δ2 for any region Ω which is a ball inM of radius c`(L), sufficiently close
to L. This is true but much more subtle and illustrated through a principle which, inspired
by a pioneering paper of Rivière, cf. [63], we call the splitting before tilting phenomenon.

Recall that, if H is the father of L, the excess in BH is smaller than Cem0`(H)2−2δ2 . If
the parameter M0 is chosen very large, BL and BH are almost concentric and the radius
of BL is twice the radius of BH . On the other hand we know that, in BL, the current T
can be approximated by a Dir-minimizing Q-valued map. If the latter were too close to a
multiple copy (with multiplicity Q) of a classical single valued harmonic function, then the
argument illustrated in Section 4.1 tells us that the excess in BL should be almost 1

4
of that

in BH , cf. Remark 4.3. But this is not the case because the ratio is instead at least 2−2+2δ2 :
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although small, the parameter δ2 makes here a big difference! Thus in BL T is close to
a “non-classical” Dir-minimizer f =

∑
i JfiK, more precisely we can certainly assume that

the Dirichlet energy of f̄ =
∑

i Jfi − η ◦ fiK is a non-negligible fraction of the Dirichlet
energy of f . For such maps we have the important property that their energy must be
sufficiently large on any region. Passing now to the “curvilinear coordinates” we can infer
the same conclusion for

∫
Ω
|DN |2 whenever Ω is a region of a suitable size sufficiently close

to L. For the precise statement we refer the reader to [31, Proposition 3.4] (see also [72,
Section 5.5]).

13. The frequency function again

We are now ready to discuss the proof of Theorem 3.4. We assume by contradiction that
the theorem is false and, recalling Proposition 10.2, we fix an area minimizing current T
of dimension m, a plane π0 (which without loss of generality we assume to be Rm × {0})
an integer Q > 0 and a sequence of radii rk ↓ 0 with the following properties:

• The excess E(T0,rk ,C8(π0, 0)) converges to 0 as k ↑ ∞;
• The point 0 is singular, Θ(T, 0) = Q and Hm−2+α

∞ (B1 ∩ SingQ(T0,rk)) ≥ η > 0.

13.1. A sequence of center manifolds. We wish to approximate the current with an
M-normal approximation N over a center manifold M. A first attempt could be the
following: for some r sufficiently large, the excess E(T0,r,Cr(π0, 0)) will be sufficiently
small (and, in case T is area minimizing in a Riemannian submanifold Σ, Σ0,r will be
sufficiently flat). Assuming without loss of generality that r = 1, we can then construct
a center manifold M and an M-normal approximation. However, we have no guarantee
that this approximation is accurate at very small scales around 0. This would certainly
be the case if 0 belonged to the contact set Γ described in Section 11.1, but of course it
might be the case that 0 belongs to some cube L ∈ W where the refining procedure has
stopped. If this is the case, then at a certain small scale around 0 the graph of N might
have a completely different behavior than T .

If we set t1 := 1, we can then distinguish two situations. In the first one 0 ∈ Γ and we
are thus satisfied with our center manifold and our approximating map, which we denote
by M1 and N1. In the second one at some distance s1 from the origin we encounter the
first cube of size sufficiently large compared to s1, say c̄ss1 for some specified constant c̄s
(this number turns out to be 1/(16

√
m) in our proof, cf. [32, Section 2]: its precise value

is however not important, as long as it is a fixed parameter which does not depend upon
those which enter in the construction of the center manifold). We can assume that s1 is
(much) smaller than t1: we just need to set the parameter N0 in the construction of the
center manifold accordingly large.

At the scale s1 the pair (M1, N1), i.e. the center manifold and the corresponding ap-
proximation, is not anymore serving our purposes. Now consider T0,s1 : the latter current
might or might not have sufficiently small excess to construct another center manifold. In
the first case we set t2 = s1, otherwise we let t2 be the first radius smaller than s1 at which
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the excess goes below the desired threshold. We then construct the pair (M2, N2) taking
T0,t2 as reference area minimizing current.

The procedure above delivers a sequence, or a finite number, of intervals ]si, ti[ which
we call intervals of flattening. If they are finitely many then the endpoint of one of them
is sl0 = 0. It turns out that, for k sufficiently large, each radius rk belongs to one of
such intervals, which will be denoted by Il(k). For each interval of flattening Il we have
a center manifold Ml and an Ml-normal approximation Nl. Similarly, all the relevant
objects needed in their constructions, like the family W l of cubes in the corresponding
Whitney decompositions, will be indexed with l.

13.2. The frequency function. We have now gained a sequence of center manifolds
Ml(k) and of approximations Nl(k). Let us rescale the center manifolds by a factor rk/tl(k),
so to gain a sequence of manifolds M̄k and maps N̄k at “scale 1”, which should give rather
good approximations of Tk := T0,rk . We fix for convenience a “central point” for each
center manifold Ml: it will be the point pl lying in the plane {0} × Rn. Correspondingly
p̄k := pl(k)tl(k)/rk is the central point of M̄k. The geodesic balls with center q and radius
ρ will be denoted by Bρ(q) in any of these manifolds. We next normalize further the maps
N̄k dividing them by their “L2 norm”, namely by

hk :=

(∫
B1(p̄l(k))

|N̄k|2
)1/2

, (69)

i.e. we set

N b
k :=

N̄k

hk
. (70)

Observe that hk must be positive: by the discussion in Section 12.3, it can vanish only
if W l(k) is empty. However in the latter case T0,rk would coincide with Q copies of the
(smooth) manifold M̄k, which cannot be the case because 0 is a singular point.

We wish to take a limit for (a suitable subsequence of) N b
k: since M̄k “flattens” (i.e.

converges to π0) we hope that the limit N b
∞ is a Q-valued map which has L2 norm equal

to 1, because the convergence is strong in L2. Such strong convergence will be achieved if
we could prove that the rescaled maps have bounded Dirichlet energy, namely if we had
an inequality of type ∫

B1(p̄k)

|DN b
k|2 ≤ C , (71)

for some constant C which does not depend on k. In turn this bound corresponds to a
“reverse Sobolev” inequality for the Nl(k), i.e.∫

Br(pl(k))
|DNl(k)|2 ≤ Cr−2

∫
Br(pl(k))

|Nl(k)|2 .

Recalling Section 8.3 this is precisely the type of information that the monotonicity of the
frequency function yields for the blow-ups of the Dir-minimizing Q-valued functions. In
the case at hand we know that Nl(k) must be close to a Dir-minimizing function because it
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approximates well an area minimizing current. We can therefore hope that the frequency
function of Nl(k) is almost monotone.

We thus consider the Lipschitz (piecewise linear) function φ : [0 +∞[→ [0, 1] given by

φ(r) :=


1 for r ∈ [0, 1

2
],

2− 2r for r ∈ ]1
2
, 1],

0 for r ∈ ]1,+∞[.

For every interval of flattening Ij =]sj, tj], let Nj be the normal approximation of Tj.

Definition 13.1 (Frequency functions, cf. [32, Definition 3.1]). For every r ∈]0, 3] we
define:

Dj(r) :=

∫
Mj

φ

(
dj(p)

r

)
|DNj|2(p) dp and Hj(r) := −

∫
Mj

φ′
(
dj(p)

r

)
|Nj|2(p)

dj(p)
dp ,

where dj(p) is the geodesic distance on Mj between p and pj. Finally we set

Ij(r) :=
rDj(r)

Hj(r)
.

The following is the main analytical estimate of the proof of Theorem 3.4, which allows
us to exclude infinite order of contact among the different sheets of a minimizing current.

Theorem 13.2 (Main frequency estimate, cf. [32, Theorem 3.2]). There exists a geometric
constant C0 such that, for every [a, b] ⊂ [

sj
tj
, 1] with Hj|[a,b] > 0, we have

Ij(a) ≤ C0(1 + Ij(b)). (72)

Obviously if we can find an upper bound for Ij(1) independent of j, we would gain that
the frequency function is always bounded and this would give the desired reverse Sobolev
inequality. If the intervals of flattening are finite, then there is nothing to prove. What
happens however if the intervals are not finite? Consider some “starting point” tj. It
essentially can be of two kinds:

• tj = sj−1; in this case the center manifold Mj−1 had ceased to be “good” at scale
sj−1 and we encounter a cube L ∈ W j−1 which is of size sj−1/tj−1 where the refining
procedure has stopped. It is the first scale at which we encounter a large cube close
to 0: for this very precise reason it is not difficult to show that it must necessarily be
a cube where either the excess or the height condition fails. But then the discussion
in Section 12.3 implies that the approximating map Nj−1 is well separated at this
scale: this means that the denominator of the frequency function Ij−1 is not too
small compared to the numerator. It remains to transfer this information to the
frequency function Ij: note however that at the scale which interests us there is a
large overlap between the graphs of (suitable rescalings of) Nj and Nj−1 since they
both approximate the same piece of the same current.
• tj < sj−1; in this case the excess of T0,sj is not small enough to construct a center

manifold. tj is then the first radius at which the excess goes below the desired
threshold. As such we also know that E(T,Btj) cannot be too small, i.e. the



REGULARITY OF MINIMAL SURFACES 65

current cannot be too close to a flat plain at the scale tj. But then we can expect
that the denominator Hj(1) is not too small compared to the numerator Dj(1).

This discussion can be made rigorous and we refer the reader to [32, Theorem 5.1] for the
details.

13.3. The monotonicity of the frequency function. We close this section with an
idea of how Theorem 13.2 is proved. Recalling the proofs of Theorem 8.4 and Theorem
8.6, the monotonicity of the corresponding quantity for Dir-minimizing functions rely on
two identities which correspond to “internal” and “external” variations, cf. Proposition
8.2. In turn both variations can be interpreted as suitable deformations of the graphs of
the functions. We then know that:

• The variations of the Dirichlet energy for Nj is close to the variation of the mass
of its graph;
• The variation of the mass of the graph of Nj is close to the variation of the mass

of T0,tj , which in turn is 0 because it is area minimizing (this must be suitably
adjusted if the minimizing property is inside some ambient manifold Σ).

We thus can write down identities which correspond to those of Proposition 8.2 but will
include several error terms. We wish to control these error terms, hoping to derive, for
instance, an inequality of the form

d

dr
Ij(r) ≥ −E(r)Ij(r) ,

which in turn gives the monotonicity of Ij(r)e
∫ r
0 E(τ)dτ . In fact the inequality which we

derive is somewhat weaker, but still good enough to show Theorem 13.2.
In order to control the error terms, we localize them in each Whitney region L of Mj,

since the “contact set” Γ thus not contribute to them. We then use the estimates in
Theorem 12.2 to bound such error terms with suitable powers of `(L). In turn we bound
such powers with

∫
Ω
|N2

j | or with
∫

Ω
|DNj|2, following the discussion in Section 12.3, where

Ω is a suitable domain close to L. Observe the following crucial fact: we have some freedom
in the choice of the domain Ω for each cube L, because Ω just needs to have essentially
comparable size and be at a comparable distance. This freedom is fundamental, since the
error terms must be controlled finally at the very same scale r, namely an inequality of the
form

d

dr
Ij(r) ≥ −E(r)Ij(s) for some s(r) > r ,

is completely useless for our purposes, even if s(r) is only slightly larger than r. For a
more careful description on how these difficulties are overcome we refer the reader to [72,
Sections 5.7, 6.1 and 6.2].

14. The persistence of singularities

We have now finally gained our “blown-up” map N b
∞ and we know that it is a Q-valued

map on B1(0, π0). Note that the estimate (68) (and the lower bounds discussed in Section
12.3) deliver the extra information that η ◦ N b

∞ ≡ 0. This also helps us in the Taylor
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expansion of the area functional to conclude that N b
∞ is Dir-minimizing, cf. Theorem 12.1

(we are of course ignoring the complications given by the ambient Riemannian manifold Σ).
We now wish to succeed where the strategy outlined in Section 10 failed, i.e. in showing
that the blown-up map N b

∞ must “remember” the singularities of the rescaled currents.
Note however that we just need to show that the lower bound

Hm−2+α
∞ (B1 ∩ SingQ(T0,rk)) ≥ η > 0

induces a similar lower bound on the Hausdorff measure of the set of of points p where
N b
∞(p) = Q

q
η ◦N b

∞(p)
y
. Indeed, from such a lower bound and Theorem 7.9 we would

conclude that N b
∞ is a classical single valued harmonic function counted Q times. On the

other hand η ◦N b
∞ ≡ 0 would then imply N b

∞ ≡ Q J0K. This would finally contradict what
we concluded from the previous section, namely that∫

|N b
∞|2 = 1 .

Hence, consider the closed sets DQ(T0,rk ∩ B̄1) and let Γ be their Hausdorff limit (after
extraction of a subsequence). We wish to show that most points in Γ are points of “mul-
tiplicity Q” for N b

∞, or briefly Q-points for N b
∞.

Recall that N b
∞ is continuous (because Dir-minimizing). Thus a statement analogous to

Theorem 10.3 would guarantee that all points of Γ are Q-points for N b
∞. However such a

theorem is not available at present. We rather show that the subset of points of Γ which
fail to be Q-points of N b

∞ must be a set of Hm−2+α-measure, which however is enough for
our purposes. We finish therefore this survey by sketching the argument.

Indeed we will follow a slightly different strategy. Summarizing what achieved so far,
N b
∞ is a nontrivial Dir-minimizing map which has η ◦ N b

∞ ≡ 0. Thus the set of points of
multiplicity Q for N b

∞ coincides with the closed set of p where N b
∞(p) = Q J0K. Such set

must have Hm−2+α measure zero. We can then identify a closed set Λ for which, at the
same time, we have

• For some positive ϑ∑
i

|N b
∞,i − η ◦N b

∞,i|2 ≥ 2ϑ everywhere on Λ

• Λ is the Hausdorff limit of closed subsets Λk of DQ(T0,rk) with Hm−2+α measure
larger than η

2
.

By the Hölder continuity of N b
∞ there must be a fixed constant σ̄ such that

−
∫
Bσ(q)

∑
i

|N b
∞,i − η ◦N b

∞,i|2 ≥ ϑ > 0 ∀q ∈ Λ ,∀σ < σ̄.

We now fix a positive σ < σ̄, whose choice will be specified only at the very end.

By L2 convergence, for k large we inherit the inequality

−
∫
Bσ(q)

∑
i

|N̄k,i − η ◦ N̄k|2 ≥
ϑ

2
h2
k > 0 ∀q ∈ pM̄k

(Λk) , (73)
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where pM̄k
denotes the orthogonal projection onto M̄k. Now observe that, for k large

enough, it is also true that for any q ∈ pM̄k
(Λk) there is a point p ∈ DQ(T0,tl(k)) which is

in the proximity of q, at a scale much smaller than σ.
A very favorable situation is when q belongs to the contact set where T0,rk coincides with

Q
q
M̄k

y
(which in particular implies that q itself belongs to DQ(T0,tl(k))): in this case

lim
ρ↓0
−
∫
Bρ(q)

∑
i

|N̄k,i − η ◦ N̄k,i|2 = 0

On the other hand, even if this is not the case, it is possible to argue that for some radius
ρ << σ the integral above goes below the threshold ϑ

4
h2
k, namely

−
∫
Bρ(q)

∑
i

|N̄k,i − η ◦ N̄k|2 ≤
ϑ

4
h2
k . (74)

Now, the reader familiar with Morrey spaces will realize that (73) and (74) force the
existence of some intermediate radius t(q) ∈]ρ, σ[ with

c0 ϑ

σα
h2
k ≤

1

t(q)m−2+α
,

∫
Bt(q)(q)

|DN̄k|2, (75)

where c0 is a universal constant.
For each p ∈ Λk let t(p) be t(pM̄k

(q)). Now using an elementary covering argument
we can cover Λk with balls B10t(pi)(pi) in such a way that the balls B2t(pi)(pi) are disjoint.
Being M̄k almost flat it is not difficult to see that even the balls Bt(qi)(qi) := Bt(pi)(pM̄k

(pi))
must be disjoint. Since Λk has Hm−2+α measure larger than η/2, we achieve

η

2
≤
∑
i

ωm−2+α(10t(qi))
m−2+α ≤

∑
i

Cσα

h2
k

∫
Bt(qi)(qi)

|DN̄k|2

≤Cσ
α

h2
k

∫
B1(p̄k)

|DN̄k|2 ≤ Cσα . (76)

In the last inequality we have used that h2
k, the L2 norm of N̄k, controls the Dirichlet

energy, recall (69), (70) and (71). Although the constant C in (76) depends upon the
sequence of rescalings, the current T and several other parameters, it does not depend
upon σ and η. Thus for a suitable choice of σ we reach a contradiction.
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