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Abstract. Recently the second and fourth author developed an itera-
tive scheme for obtaining rough solutions of the 3D incompressible Euler
equations in Hölder spaces. The motivation comes from Onsager’s con-
jecture. The construction involves a superposition of weakly interacting
perturbed Beltrami flows on infinitely many scales. An obstruction to
better regularity arises from the errors in the linear transport of a fast
periodic flow by a slow velocity field.

In a recent paper the third author has improved upon the meth-
ods, introducing some novel ideas on how to deal with this obstruction,
thereby reaching a better Hölder exponent – albeit below the one con-
jectured by Onsager. In this paper we give a shorter proof of this final
result, adhering more to the original scheme of the second and fourth
author and introducing some new devices. More precisely we show that
for any positive ε there exist periodic solutions of the 3D incompressible
Euler equations which dissipate the total kinetic energy and belong to
the Hölder class C

1/5−ε.

0. Introduction

In what follows T3 denotes the 3-dimensional torus, i.e. T3 = S1×S1×S1.
In this note we give a proof of the following theorem.

Theorem 0.1. Assume e : [0, 1] → R is a positive smooth function and ε

a positive number. Then there is a continuous vector field v ∈ C1/5−ε(T3 ×
[0, 1],R3) and a continuous scalar field p ∈ C2/5−2ε(T3× [0, 1],R) which solve
the incompressible Euler equations ∂tv + div (v ⊗ v) +∇p = 0

div v = 0
(1)

in the sense of distributions and such that

e(t) =

ˆ
|v|2(x, t) dx ∀t ∈ [0, 1] . (2)

Results of this type are associated with the famous conjecture of Onsager.
In a nutshell, the question is about whether or not weak solutions in a given
regularity class satisfy the law of kinetic energy conservation or not. For
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classical solutions (say, v ∈ C1) we can multiply (1) by v itself, integrate by
parts and obtain the energy balanceˆ

T3

|v(x, t)|2 dx =

ˆ
T3

|v(x, 0)|2 dx for all t > 0. (3)

On the other hand, for weak solutions (say, merely v ∈ L2) (3) might be
violated, and this possibility has been considered for a rather long time
in the context of 3 dimensional turbulence. In his famous note [21] about
statistical hydrodynamics, Onsager considered weak solutions satisfying the
Hölder condition

|v(x, t)− v(x′, t)| ≤ C|x− x′|θ, (4)

where the constant C is independent of x, x′ ∈ T3 and t. He conjectured
that

(a) Any weak solution v satisfying (4) with θ > 1
3 conserves the energy;

(b) For any θ < 1
3 there exist weak solutions v satisfying (4) which do

not conserve the energy.

This conjecture is also very closely related to Kolmogorov’s famous K41
theory [19] for homogeneous isotropic turbulence in 3 dimensions. We refer
the interested reader to [15, 22, 14]. Part (a) of the conjecture is by now fully
resolved: it has first been considered by Eyink in [13] following Onsager’s
original calculations and proved by Constantin, E and Titi in [3]. Slightly
weaker assumptions on v (in Besov spaces) were subsequently shown to be
sufficient for energy conservation in [12, 2].

In this paper we are concerned with part (b) of the conjecture. Weak
solutions violating the energy equality have been constructed for a long time,
starting with the seminal work of Scheffer [23], and Shnirelman [24]. In [7, 8]
a new point of view was introduced, relating the issue of energy conservation
to Gromov’s h-principle, see also [10]. In [11] and [9] the first constructions
of continuous and Hölder-continuous weak solutions violating the energy
equality appeared. In particular in [9] the authors proved Theorem 0.1 with
Hölder exponent 1/10− ε (replacing the exponent 1/5− ε in this paper).

The threshold exponent 1
5 has been recently reached by the third author

in [18] (although strictly speaking the result of [18] is a variant of Theorem
0.1, since it shows the existence of nontrivial solutions which are compactly
supported in time, rather than prescribing the total kinetic energy). Our
aim in this note is to give a shorter proof of this improvement in the Hölder
exponent and isolate the main new ideas of [18] compared to [11, 9]. We
observe in passing that the arguments given here can be easily modified
to produce nontrivial solutions with compact support in time, but losing
control on the exact shape of the energy. The question of producing a
solution matching an energy profile e which might vanish is subtler. A
similar issue has been recently treated in the paper [6].

0.1. Euler-Reynolds system and the convex integration scheme.
Let us now outline the principal ideas of the present scheme. The scheme
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will be based on the constructions given in [11, 9]. We will also make use of
some of the novel ideas introduced in [18].

The proof is achieved through an iteration scheme. At each step q ∈ N
we construct a triple (vq, pq, R̊q) solving the Euler-Reynolds system (see [11,
Definition 2.1]):  ∂tvq + div (vq ⊗ vq) +∇pq = div R̊q

div vq = 0 .
(5)

The 3× 3 symmetric traceless tensor R̊q is related to the so-called Reynolds
stress, a quantity which arises naturally when considering highly oscillatory
solutions of the Euler equations or, equivalently, when taking weak limits of
solutions of (1) (we refer the reader to [10] for a thorough discussion).

The size of the perturbation

wq := vq − vq−1

will be measured by two parameters: δ
1/2
q is the amplitude and λq the fre-

quency. More precisely, denoting the (spatial) Hölder norms by ‖ · ‖k (see
Section C for precise definitions),

‖wq‖0 ≤Mδ
1/2
q , (6)

‖wq‖1 ≤Mδ
1/2
q λq , (7)

and similarly,

‖pq − pq−1‖0 ≤M2δq , (8)

‖pq − pq−1‖1 ≤M2δqλq , (9)

where M is a constant depending only on the function e = e(t) in the
Theorem.

In constructing the iteration, the new perturbation wq will be chosen so as

to balance the previous Reynolds error R̊q−1 in the sense that (cf. equation

(5)) we have ‖wq ⊗ wq‖0 ∼ ‖R̊q−1‖0. To make this possible, we then claim
inductively the estimates

‖R̊q‖0 ≤ ηδq+1 , (10)

‖R̊q‖1 ≤Mδq+1λq , (11)

where η will be a small constant, again only depending on e = e(t) in the
Theorem.

Along the iteration we will have

δq → 0 and λq →∞

at a rate that is at least exponential. On the one hand (6), (8) and (10) will
imply the convergence of the sequence vq to a continuous weak solution of
the Euler equations. On the other hand the precise dependence of λq on δq
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will determine the critical Hölder regularity. Finally, the equation (2) will
be ensured by ∣∣∣∣e(t)(1− δq+1)−

ˆ
|vq|2(x, t) dx

∣∣∣∣ ≤ 1

4
δq+1e(t) . (12)

Note that, being an expression quadratic in vq, this estimate is consistent
with (10).

Estimates of type (6)-(11) appear already in the paper [9]: although the

bound claimed for ‖R̊q‖1 in the main proposition of [9] is the weaker one

‖R̊q‖1 ≤Mδ
1/2
q λq (cf. [9, Proposition 2.2]: λq here corresponds to (Dδ/δ̄2)1+ε

there), this was just done for the ease of notation and the actual bound
achieved in the proof does in fact correspond to (11) (cf. Step 4 in Section
9). Using (6)-(11) one can obtain some improvement on the exponent 1

10
from the same construction. However this improvement is of fairly limited
interest, in particular because the frequencies are still required to grow at a
much greater than exponential rate, which is a basic obstruction to higher
regularity that was only overcome in [18] using new ideas which we will
describe below.

As for the explicit form of the perturbation, it will consist essentially of
a finite sum of modulated Beltrami modes (see Section 1 below), so that

wq(x, t) =
∑
k

ak(x, t)φk(x, t)Bke
iλqk·x , (13)

where ak is the amplitude, φk is a phase function (i.e. |φk| = 1) and
Bke

iλqk· x is a complex Beltrami mode at frequency λq. In fact, a lower
order correction is needed to this Ansatz in order to ensure that wq is di-
vergence free.

Next, the Reynolds stress R̊q and the pressure pq are chosen so that (5)
holds. In particular, since (5) is linear in the Reynolds stress, this can be
achieved by solving separately the three equations

divR−∇pq = div (wq ⊗ wq + R̊q−1)−∇pq−1

divR = ∂twq + vq−1 · ∇wq
divR = wq · ∇vq−1

(although the actual decomposition used in the proof is more complicated).
The most involved part of the scheme is then to show that such equations
can be solved while maintaining the estimates (10)-(11).

Having a perturbation of the form (13) ensures that the “oscillation part
of the error”

div (wq ⊗ wq + R̊q−1) (14)

can be absorbed into the pressure, see [11] (in [18] this term is called “high-
high interference term”).
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The main analytical part of the argument goes in to choosing ak and φk
correctly in order to deal with the so-called transport part of the error

∂twq + vq−1 · ∇wq .
In [11, 9] a second large parameter µ(= µq) was introduced to deal with this
term. In some sense the role of µ is to interpolate between errors of order 1
in the transport term and errors of order λ−1

q in the oscillation term.
The approach of [18] begins in parallel with an ansatz for the correction

that allows for nonlinear phase functions ξI(t, x)

wq(x, t) =
∑
I

eiλqξI(t,x)vI(x, t),

where here vI plays a similar role to the vector fields akBk given in (13)1.
Substituting this ansatz into the equation leads to a transport equation for
the phase functions ξI(t, x) in a way similar to the appearance of Hamilton-
Jacobi equations in geometric optics. However, in order to control the high-
frequency terms which occur in (14), it is necessary to introduce sharp time
cutoffs which restrict the lifespan of the oscillatory waves to time intervals
where the phase functions ξI remain linear and the correction remains close
to the form of (13) (the application of time cutoffs is comparable to the
use of CFL conditions (cf. [5]) employed in numerical analysis to study
evolutionary equations, see Remark 2.)

The construction in [18] can therefore be viewed as well in terms of the
Ansatz (13), but with two more ingredients compared to [11, 9], which adhere
more closely to the transport structure of the equation. First, the phase
functions φk are defined using the flow map of the vector field vq, whereas in
[11, 9] they were functions of vq itself. With the latter choice, the threshold
1/5 seems beyond reach. Secondly, a new set of estimates, complementing,
(6)-(12), are introduced. Their purpose is to control the advective derivative
of the Reynolds error:

‖∂tR̊q + vq · ∇R̊q‖0 ≤ δq+1δ
1/2
q λq . (15)

This bound implies that the advective derivative of R̊q must satisfy a better
estimate compared to the bounds which hold for either pure spatial or pure
temporal derivatives. Maintaining this additional control becomes more in-
volved, as it is important to construct the amplitudes ak in a way which is
compatible with the transport structure, and also to take advantage of the
bounds for the pressure and transport estimates from the Euler-Reynolds
system to close the argument. These ingredients play a key role also in the
proof of Theorem 0.1 given here; however, compared to [18], we improve
upon the simplicity of their implementation. For instance, since the pertur-
bations in [18] use a nonlinear phase rather than the simple stationary flows
used here, a “microlocal” version of the Beltrami flows is needed. This also

1Note however that unlike the vector field akBk, the direction of vI is allowed to vary
in spacetime
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leads to the necessity of appealing to nonlinear stationary phase lemmas –
whereas in the present work linear stationary phase lemmas suffice.

Our purpose here is to show that, although the other ideas exploited in
[18] are of independent interest and might also, in principle, lead to better
bounds in the future, with the additional control in (15), a scheme much
more similar to the one introduced in [11] provides a substantially shorter
proof of Theorem 0.1. To this end, we introduce some new devices which
greatly simplify the relevant estimates:

(a) We regularize the maps vq and R̊q in space only and then solve locally

in time the free-transport equation in order to approximate R̊q.
(b) Our maps ak are then elementary algebraic functions of the approx-

imation of R̊q.
(c) The estimates for the Reynolds stress are still carried on based on

simple stationary “linear” phase arguments.
(d) The proof of (15) is simplified by one commutator estimate which, in

spite of having a classical flavor, deals efficiently with one important
error term.

Analogously to the scheme presented in [18], we also employ time cutoffs
in order to restrict the lifespan of the oscillatory waves. For comparison,
it is worth noting that there is a rough correspondence between the family
of parameters (λq, δq, δq+1, λq+1, µ) and the parameters (Ξ, ev, eR, NΞ, τ−1)
employed in [18]. As we go along, we will also make further references and
comparisons to parallel aspects of the proof in [18].

0.2. The main iteration proposition and the proof of Theorem 0.1.
Having outlined the general idea above, we proceed with the iteration, start-
ing with the trivial solution (v0, p0, R̊0) = (0, 0, 0). We will construct new

triples (vq, pq, R̊q) inductively, assuming the estimates (6)-(15).

Proposition 0.2. There are positive constants M and η depending only on
e such that the following holds. For every c > 5

2 and b > 1, if a is suf-

ficiently large, then there is a sequence of triples (vq, pq, R̊q) starting with

(v0, p0, R̊0) = (0, 0, 0), solving (5) and satisfying the estimates (6)-(15),

where δq := a−b
q
, λq ∈ [acb

q+1
, 2acb

q+1
] for q = 0, 1, 2, . . . . In addition

we claim the estimates

‖∂t(vq − vq−1)‖0 ≤ Cδ
1/2
q λq and ‖∂t(pq − pq−1)‖0 ≤ Cδqλq (16)

Proof of Theorem 0.1. Choose any c > 5
2 and b > 1 and let (vq, pq, R̊q) be a

sequence as in Proposition 0.2. It follows then easily that {(vq, pq)} converge
uniformly to a pair of continuous functions (v, p) such that (1) and (2) hold.
We introduce the notation ‖ ·‖Cϑ for Hölder norms in space and time. From
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(6)-(9), (16) and interpolation we conclude

‖vq+1 − vq‖Cϑ ≤Mδ
1/2
q+1λ

ϑ
q+1 ≤ Cab

q+1(2cbϑ−1)/2 (17)

‖pq+1 − pq‖C2ϑ ≤M2δq+1λ
2ϑ
q+1 ≤ Cab

q+1(2cbϑ−1) . (18)

Thus, for every ϑ < 1
2bc , vq converges in Cϑ and pq in C2ϑ. �

0.3. Plan of the paper. In the rest of the paper we will use ∂t for dif-
ferentiation in the time variable. For the spatial gradient of scalars we will
use the notation ∇, whereas for the full spatial derivative of vectors and
tensors we will instead use D. The notation ∇ will also be employed for di-
rectional derivatives of the form v · ∇ =

∑3
i=1 vi

∂
∂xi

, for scalars, vectors and

tensor fields alike. Finally, by considering maps from T3 to T3 as periodic
R3-valued maps, we will use the notation just described for their derivatives.

After recalling in Section 1 some preliminary notation from the paper [11],

in Section 2 we give the precise definition of the maps (vq+1, pq+1, R̊q+1) as-

suming the triple (vq, pq, R̊q) to be known. The Sections 3, 4 and 5 will focus

on estimating, respectively, wq+1 = vq+1 − vq,
´
|vq+1|2(x, t) dx and R̊q+1.

These estimates are then collected in Section 6 where Proposition 0.2 will be
finally proved. In the last section we discuss a recent result [1] which adapts
the present work in order to prove a weak version of Onsager’s conjecture.
The appendix collects several technical (and, for the most part, well-known)
estimates on the different classical PDEs involved in our construction, i.e.
the transport equation, the Poisson equation and the biLaplace equation.

0.4. Acknowledgements. T.B. and L.Sz. acknowledge the support of the
ERC Grant Agreement No. 277993, C.dL. acknowledges the support of the
SNF Grant 129812 and P. I. acknoweledges the support of the NSF Graduate
Research Fellowship Grant DGE-1128900.

1. Preliminaries

1.1. Geometric preliminaries. In this paper we denote by Rn×n, as usual,
the space of n×n matrices, whereas Sn×n and Sn×n0 denote, respectively, the
corresponding subspaces of symmetric matrices and of trace-free symmetric
matrices. The 3× 3 identity matrix will be denoted with Id. For definitive-
ness we will use the matrix operator norm |R| := max|v|=1 |Rv|. Since we will
deal with symmetric matrices, we have the identity |R| = max|v|=1 |Rv · v|.

Proposition 1.1 (Beltrami flows). Let λ̄ ≥ 1 and let Ak ∈ R3 be such that

Ak · k = 0, |Ak| = 1√
2
, A−k = Ak

for k ∈ Z3 with |k| = λ̄. Furthermore, let

Bk = Ak + i
k

|k|
×Ak ∈ C3.
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For any choice of ak ∈ C with ak = a−k the vector field

W (ξ) =
∑
|k|=λ̄

akBke
ik·ξ (19)

is real-valued, divergence-free and satisfies

div (W ⊗W ) = ∇|W |
2

2
. (20)

Furthermore

〈W ⊗W 〉 =

 
T3

W ⊗W dξ =
1

2

∑
|k|=λ̄

|ak|2
(

Id− k

|k|
⊗ k

|k|

)
. (21)

The proof of (20), which is quite elementary and is included in Appendix
A (see also [11]), is based on the following algebraic identity, which we state
separately for future reference:

Lemma 1.2. Let k, k′ ∈ Z3 with |k| = |k′| = λ̄ and let Bk, Bk′ ∈ C3 be the
associated vectors from Proposition 1.1. Then we have

(Bk ⊗Bk′ +Bk′ ⊗Bk)(k + k′) = (Bk ·Bk′)(k + k′). (22)

Proof. The proof is a straight-forward calculation. Indeed, since Bk · k =
Bk′ · k′ = 0, we have

(Bk ⊗Bk′+Bk′ ⊗Bk)(k + k′) = (Bk′ · k)Bk + (Bk · k′)Bk′
= −Bk × (k′ ×Bk′)−Bk′ × (k ×Bk) + (Bk ·Bk′)(k + k′)

= iλ̄(Bk ×Bk′ +Bk′ ×Bk) + (Bk ·Bk′)(k + k′),

where the last equality follows from

k ×Bk = −iλ̄Bk and k′ ×Bk′ = −iλ̄Bk′ .
�

Another important ingredient is the following geometric lemma, also taken
from [11]. For the reader’s convenience we give here a different proof in the
Appendix B, following [18].

Lemma 1.3 (Geometric Lemma). For every N ∈ N we can choose r0 > 0
and λ̄ > 1 with the following property. There exist pairwise disjoint subsets

Λj ⊂ {k ∈ Z3 : |k| = λ̄} j ∈ {1, . . . , N}
and smooth positive functions

γ
(j)
k ∈ C

∞ (Br0(Id)) j ∈ {1, . . . , N}, k ∈ Λj

such that

(a) k ∈ Λj implies −k ∈ Λj and γ
(j)
k = γ

(j)
−k;

(b) For each R ∈ Br0(Id) we have the identity

R =
1

2

∑
k∈Λj

(
γ

(j)
k (R)

)2
(

Id− k

|k|
⊗ k

|k|

)
∀R ∈ Br0(Id) . (23)
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1.2. The operator R. Following [11], we introduce the following operator
in order to deal with the Reynolds stresses.

Definition 1.4. Let v ∈ C∞(T3,R3) be a smooth vector field. We then
define Rv to be the matrix-valued periodic function

Rv :=
1

4

(
DPu+ (DPu)T

)
+

3

4

(
Du+ (Du)T

)
− 1

2
(div u)Id,

where u ∈ C∞(T3,R3) is the solution of

∆u = v −
 
T3

v in T3

with
ffl
T3 u = 0 and P is the Leray projection onto divergence-free fields with

zero average.

Lemma 1.5 (R = div−1). For any v ∈ C∞(T3,R3) we have

(a) Rv(x) is a symmetric trace-free matrix for each x ∈ T3;
(b) divRv = v −

ffl
T3 v.

The proof is elementary and we include it for the reader’s convenience.

Proof. It is obvious by inspection that Rv is symmetric. Since divPv = 0,
we obtain for the trace

tr(Rv) =
3

4
(2div u)− 3

2
div u = 0.

Similarly, we have

div (Rv) =
1

4
∆(Pu) +

3

4
(∇div u+ ∆u)− 1

2
∇div u. (24)

On the other hand recall that Pu = u −∇φ −
ffl
u = u −∇φ, where ∆φ =

div u. Therefore ∆(Pu) = ∆u−∇div u. Plugging this identity into (24), we
obtain

div (Rv) = ∆u

and since u solves ∆u = v −
ffl
v, (b) follows readily. �

2. The inductive step

In this section we specify the inductive procedure which allows to con-
struct (vq+1, pq+1, R̊q+1) from (vq, pq, R̊q). Note that the choice of the se-
quences {δq}q∈N and {λq}q∈N specified in Proposition 0.2 implies that, for a
sufficiently large a > 1, depending only on b > 1 and c > 5/2, we have:∑
j≤q

δjλj ≤ 2δqλq , 1 ≤
∑
j≤q

δ
1/2
j λj ≤ 2δ

1/2
q λq ,

∑
j

δj ≤
∑
j

δ
1/2
j ≤ 2 . (25)

Since we are concerned with a single step in the iteration, with a slight
abuse of notation we will write (v, p, R̊) for (vq, pq, R̊q) and (v1, p1, R̊1) for
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(vq+1, pq+1, R̊q+1). Our inductive hypothesis implies then the following set
of estimates:

‖v‖0 ≤ 2M, ‖v‖1 ≤ 2Mδ
1/2
q λq , (26)

‖R̊‖0 ≤ ηδq+1, ‖R̊‖1 ≤Mδq+1λq , (27)

‖p‖0 ≤ 2M2, ‖p‖1 ≤ 2M2δqλq , (28)

and

‖(∂t + v · ∇)R̊‖0 ≤Mδq+1δ
1/2
q λq . (29)

The new velocity v1 will be defined as a sum

v1 := v + wo + wc,

where wo is the principal perturbation and wc is a corrector. The “principal
part” of the perturbation w will be a sum of Beltrami flows

wo(t, x) :=
∑
|k|=λ0

ak(t, x)φk(t, x)Bke
iλq+1k·x ,

where Bke
iλq+1k·x is a single Beltrami mode at frequency λq+1, with phase

shift φk = φk(t, x) (i.e. |φk| = 1) and amplitude ak = ak(t, x). In the
following subsections we will define ak and φk.

2.1. Space regularization of v and R. We fix a symmetric non-negative
convolution kernel ψ ∈ C∞c (R3) and a small parameter ` (whose choice

will be specified later). Define v` := v ∗ ψ` and R̊` := R̊ ∗ ψ`, where the
convolution is in the x variable only. Standard estimates on regularizations
by convolution lead to the following:

‖v − v`‖0 ≤ CM δ
1/2
q λq`, (30)

‖R̊− R̊`‖0 ≤ CM δq+1λq`, (31)

and for any N ≥ 1 there exists a constant C = C(N) so that

‖v`‖N ≤ CM δ
1/2
q λq`

1−N , (32)

‖R̊`‖N ≤ CM δq+1λq`
1−N . (33)

2.2. Time discretization and transport for the Reynolds stress.
Next, we fix a smooth cut-off function χ ∈ C∞c ((−3

4 ,
3
4)) such that∑

l∈Z
χ2(x− l) = 1,

and a large parameter µ ∈ N \ {0}, whose choice will be specified later.
For any l ∈ [0, µ] we define

ρl :=
1

3(2π)3

(
e(lµ−1) (1− δq+2)−

ˆ
T3

|v|2(x, lµ−1) dx

)
.
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Note that (12) implies

1

3(2π)3
e(lµ−1)(3

4δq+1 − δq+2) ≤ ρl ≤
1

3(2π)3
e(lµ−1)(5

4δq+1 − δq+2).

Recalling that b and c are fixed, whereas a is chosen large, since δq = a−b
q

we will assume δq+2 ≤ 1
2δq+1 so that we obtain

C−1
0 (min e)δq+1 ≤ ρl ≤ C0(max e)δq+1, (34)

where C0 is an absolute constant.
Finally, define R`,l to be the unique solution to the transport equation{

∂tR̊`,l + v` · ∇R̊`,l = 0

R̊`,l(x,
l
µ) = R̊`(x,

l
µ) .

(35)

and set
R`,l(x, t) := ρlId− R̊`,l(x, t). (36)

2.3. The maps v1, w, wo and wc. We next consider v` as a 2π-periodic
function on R3 × [0, 1] and, for every l ∈ [0, µ], we let Φl : R3 × [0, 1] → R3

be the solution of  ∂tΦl + v` · ∇Φl = 0

Φl(x, lµ
−1) = x .

(37)

Observe that Φl(·, t) is the inverse of the flow of the periodic vector-field v`,
starting at time t = lµ−1 as the identity. Thus, if y ∈ (2πZ)3, then Φl(x, t)−
Φl(x+y, t) ∈ (2πZ)3: Φl(·, t) can hence be thought as a diffeomorphism of T3

onto itself and, for every k ∈ Z3, the map T3× [0, 1] 3 (x, t)→ eiλq+1k·Φl(x,t)

is well-defined.
We next apply Lemma 1.3 with N = 2, denoting by Λe and Λo the

corresponding families of frequencies in Z3, and set Λ := Λo + Λe. For each
k ∈ Λ and each l ∈ Z ∩ [0, µ] we then set

χl(t) := χ
(
µ(t− l)

)
, (38)

akl(x, t) :=
√
ρlγk

(
R`,l(x, t)

ρl

)
, (39)

wkl(x, t) := akl(x, t)Bke
iλq+1k·Φl(x,t). (40)

The “principal part” of the perturbation w consists of the map

wo(x, t) :=
∑

l odd,k∈Λo

χl(t)wkl(x, t) +
∑

l even,k∈Λe

χl(t)wkl(x, t) . (41)

From now on, in order to make our notation simpler, we agree that the pairs
of indices (k, l) ∈ Λ × [0, µ] which enter in our summations satisfy always
the following condition: k ∈ Λe when l is even and k ∈ Λo when l is odd.

It will be useful to introduce the “phase”

φkl(x, t) = eiλq+1k·[Φl(x,t)−x], (42)
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with which we obviously have

φkl · eiλq+1k·x = eiλq+1k·Φl .

Since R`,l and Φl are defined as solutions of the transport equations (35)
and (37), we have

(∂t + v` · ∇)akl = 0 and (∂t + v` · ∇)eiλq+1k·Φl(x,t) = 0, (43)

hence also

(∂t + v` · ∇)wkl = 0. (44)

The corrector wc is then defined in such a way that w := wo+wc is divergence
free:

wc :=
∑
kl

χl
λq+1

curl

(
iaklφkl

k ×Bk
|k|2

)
eiλq+1k·x

=
∑
kl

χl

( i

λq+1
∇akl − akl(DΦl − Id)k

)
× k ×Bk
|k|2

eiλq+1k·Φl (45)

Remark 1. To see that w = wo+wc is divergence-free, just note that, since
k ·Bk = 0, we have k × (k ×Bk) = −|k|2Bk and hence w can be written as

w =
1

λq+1

∑
(k,l)

χl curl

(
iakl φkl

k ×Bk
|k|2

eiλq+1k·x
)
. (46)

For future reference it is useful to introduce the notation

Lkl := aklBk +
( i

λq+1
∇akl − akl(DΦl − Id)k

)
× k ×Bk
|k|2

, (47)

so that the perturbation w can be written as

w =
∑
kl

χl Lkl e
iλq+1k·Φl . (48)

Moreover, we will frequently deal with the transport derivative with respect
to the regularized flow v` of various expressions, and will henceforth use the
notation

Dt := ∂t + v` · ∇. (49)

2.4. Determination of the constants η and M . In order to determine
η, first of all recall from Lemma 1.3 that the functions akl are well-defined
provided ∣∣∣∣R`,lρl − Id

∣∣∣∣ ≤ r0 ,

where r0 is the constant of Lemma 1.3. Recalling the definition of R`,l
we easily deduce from the maximum principle for transport equations (cf.

(132) in Proposition D.1) that ‖R̊`,l‖0 ≤ ‖R̊‖0. Hence, from (10) and (34)
we obtain ∣∣∣∣R`,lρl − Id

∣∣∣∣ ≤ C0
η

min e
,
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and thus we will require that

C0
η

min e
≤ r0

4
.

The constant M in turn is determined by comparing the estimate (6) for
q + 1 with the definition of the principal perturbation wo in (41). Indeed,

using (38)-(41) and (34) we have ‖wo‖0 ≤ C0|Λ|(max e)δ
1/2
q+1. We therefore

set

M = 2C0|Λ|(max e),

so that

‖wo‖0 ≤
M

2
δ
1/2
q+1 . (50)

2.5. The pressure p1 and the Reynolds stress R̊1. We set

R̊1 = R0 +R1 +R2 +R3 +R4 +R5,

where

R0 = R (∂tw + v` · ∇w + w · ∇v`) (51)

R1 = Rdiv
(
wo ⊗ wo −

∑
l

χ2
lR`,l −

|wo|2
2 Id

)
(52)

R2 = wo ⊗ wc + wc ⊗ wo + wc ⊗ wc − |wc|
2+2〈wo,wc〉

3 Id (53)

R3 = w ⊗ (v − v`) + (v − v`)⊗ w − 2〈(v−v`),w〉
3 Id (54)

R4 = R̊− R̊` (55)

R5 =
∑
l

χ2
l (R̊` − R̊l,`) . (56)

Observe that R̊1 is indeed a traceless symmetric tensor. The corresponding
form of the new pressure will then be

p1 = p− |wo|
2

2
− 1

3
|wc|2 −

2

3
〈wo, wc〉 −

2

3
〈v − v`, w〉 . (57)

Recalling (36) we see that
∑

l χ
2
l trR`,l is a function of time only. Since

also
∑

l χ
2
l = 1, it is then straightforward to check that

div R̊1 −∇p1 = ∂tw + div (v ⊗ w + w ⊗ v + w ⊗ w) + div R̊−∇p
= ∂tw + div (v ⊗ w + w ⊗ v + w ⊗ w) + ∂tv + div (v ⊗ v)

= ∂tv1 + div (v1 ⊗ v1) .

The following lemma will play a key role.

Lemma 2.1. The following identity holds:

wo ⊗ wo =
∑
l

χ2
lR`,l +

∑
(k,l),(k′,l′),k 6=−k′

χlχl′wkl ⊗ wk′l′ . (58)
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Proof. Recall that the pairs (k, l), (k′, l′) are chosen so that k 6= −k′ if l is
even and l′ is odd. Moreover χlχl′ = 0 if l and l′ are distinct and have the
same parity. Hence the claim follows immediately from our choice of akl in
(39) and Proposition 1.1 and Lemma 1.3 (cf. [11, Proposition 6.1(ii)]). �

2.6. Conditions on the parameters - hierarchy of length-scales. In
the next couple of sections we will need to estimate various expressions
involving v` and w. To simplify the formulas that we arrive at, we will from
now on assume the following conditions on µ, λq+1 ≥ 1 and ` ≤ 1:

δ
1/2
q λq`

δ
1/2
q+1

≤ 1,
δ
1/2
q λq
µ

+
1

`λq+1
≤ λ−βq+1 and

1

λq+1
≤
δ
1/2
q+1

µ
. (59)

These conditions imply the following orderings of length scales, which will
be used to simplify the estimates in Section 3:

1

δ
1/2
q+1λq+1

≤ 1

µ
≤ 1

δ
1/2
q λq

and
1

λq+1
≤ ` ≤ 1

λq
. (60)

One can think of these chains of inequalities as an ordering of various length
scales involved in the definition of v1.

Remark 2. The most relevant and restrictive condition is δ
1/2
q λq ≤ µ. In-

deed, this condition can be thought of as a kind of CFL condition (cf. [5]), re-
stricting the coarse-grained flow to times of the order of ‖∇v‖−1

0 , cf. Lemma
3.1 and in particular (62) below. Assuming only this condition on the param-
eters, essentially all the arguments for estimating the various terms would
still follow through. The remaining inequalities are only used to simplify the
many estimates needed in the rest of the paper, which otherwise would have
a much more complicated dependence upon the various parameters.

3. Estimates on the perturbation

Lemma 3.1. Assume (59) holds. For t in the range |µt− l| < 1 we have

‖DΦl‖0 ≤ C , (61)

‖DΦl − Id‖0 ≤ C
δ
1/2
q λq
µ

, (62)

‖DΦl‖N ≤ C
δ
1/2
q λq
µ`N

, N ≥ 1 . (63)
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Moreover,

‖akl‖0 + ‖Lkl‖0 ≤ Cδ
1/2
q+1 , (64)

‖akl‖N ≤ Cδ
1/2
q+1λq`

1−N , N ≥ 1 (65)

‖Lkl‖N ≤ Cδ
1/2
q+1`

−N , N ≥ 1 (66)

‖φkl‖N ≤ Cλq+1
δ
1/2
q λq
µ`N−1

+ C

(
δ
1/2
q λqλq+1

µ

)N
≤ CλN(1−β)

q+1 N ≥ 1. (67)

Consequently, for any N ≥ 0

‖wc‖N ≤ Cδ
1/2
q+1

δ
1/2
q λq
µ

λNq+1, (68)

‖wo‖1 ≤
M

2
δ
1/2
q+1λq+1 + Cδ

1/2
q+1λ

1−β
q+1 , (69)

‖wo‖N ≤ Cδ
1/2
q+1λ

N
q+1, N ≥ 2 (70)

where the constants in (61)-(62) depend only on M , the constant in (63)
depends on M and N , the constants in (64) and (69) depend on M and e
and the remaining constants depend on M , e and N .

Proof. The estimates (61) and (62) are direct consequences of (135) in
Proposition D.1, together with (60), whereas (136) in Proposition D.1 com-
bined with the convolution estimate (32) implies (63).

Next, (33) together with (132),(133) and (134) in Proposition D.1 and
(60) leads to

‖R`,l‖0 ≤ Cδq+1, (71)

‖R`,l‖N ≤ Cδq+1λq`
1−N , N ≥ 1. (72)

The estimate (64) is now a consequence of (71), (62) and (34), whereas by
(129) we obtain

‖akl‖N ≤ Cδ
−1/2
q+1 ‖R`,l‖N ≤ Cδ

1/2
q+1λq`

1−N ≤ Cδ1/2q+1`
−N . (73)

Similarly we deduce (66) from

‖Lkl‖N ≤C‖akl‖N + Cλ−1
q+1‖akl‖N+1+

+ C (‖akl‖N‖DΦl − Id‖0 + ‖akl‖0‖DΦl‖N )

and once again using (60).
In order to prove (67) we apply (130) with m = N to conclude

‖φkl‖N ≤ Cλq+1‖DΦl‖N−1 + λNq+1‖DΦl − Id‖N0 ,

from which (67) follows using (62), (63) and (59).
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Using the formula (45) together with (62), (63), (64) and (66) we conclude

‖wc‖0 ≤
C

λq+1
‖akl‖1 + C‖akl‖0‖DΦl − Id‖0 ≤ C

δ
1/2
q λq
µ

and, for N ≥ 1,

‖wc‖N ≤C
∑
kl

χl

(
1

λq+1
‖akl‖N+1 + ‖akl‖0‖DΦl‖N + ‖akl‖N‖DΦl − Id‖0

)
+ C‖wc‖0

∑
l

χl
(
λNq+1‖DΦl‖N0 + λq+1‖DΦl‖N−1

)
(60)

≤ Cδ
1/2
q+1λ

N
q+1

(
λq
λq+1

+
δ
1/2
q λq
µ

)
≤ C δ

1/2
q λq
µ

λNq+1 .

This proves (68). The estimates for wo follow analogously, using in addition
the choice of M and (50). �

Lemma 3.2. Recall that Dt = ∂t+v` ·∇. Under the assumptions of Lemma
3.1 we have

‖Dtv`‖N ≤ Cδqλq`−N , (74)

‖DtLkl‖N ≤ Cδ
1/2
q+1δ

1/2
q λq`

−N , (75)

‖D2
tLkl‖N ≤ Cδ

1/2
q+1δqλq`

−N−1 , (76)

‖Dtwc‖N ≤ Cδ
1/2
q+1δ

1/2
q λqλ

N
q+1 , (77)

‖Dtwo‖N ≤ Cδ
1/2
q+1µλ

N
q+1 . (78)

Proof. Estimate on Dtv`. Note that v` satisfies the inhomogeneous
transport equation

∂tv` + v` · ∇v` = −∇p ∗ ψ` + div (R̊` − (v ⊗ v) ∗ ψ` + v` ⊗ v`) .

By hypothesis ‖∇p ∗ ψ`‖N ≤ C‖p‖1`−N ≤ Cδqλq`
−N and analogously

‖div R̊ ∗ ψ`‖ ≤ Cδq+1λq`
−N . On the other hand, by Proposition E.1:

‖div ((v ⊗ v) ∗ ψ` − v` ⊗ v`) ‖N ≤ C`1−N‖v‖21 ≤ C`1−Nδqλ2
q .

Thus (74) follows from (60).

Estimates on Lkl. Recall that Lkl is defined as

Lkl := aklBk +
( i

λq+1
∇akl − akl(DΦl − Id)k

)
× k ×Bk
|k|2

.

Using that

Dtakl = 0, DtΦl = 0,

Dt∇akl = −DvT` ∇akl, DtDΦl = −DΦlDv`,
(79)
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we obtain

DtLkl =

(
− i

λq+1
DvT` ∇akl + aklDΦlDv`k

)
× k ×Bk
|k|2

.

Consequently, for times |t− l| < µ−1 and N ≥ 0 we have

‖DtLkl‖N ≤ Cδ
1/2
q+1δ

1/2
q λq`

−N

(
λq
λq+1

+ λq`+
δ
1/2
q λq
µ

+ 1

)
≤ Cδ1/2q+1δ

1/2
q λq`

−N ,

where we have used (127), Lemma 3.1 and (60). Taking one more derivative
and using (79) again, we obtain

D2
tLkl =

(
− i

λq+1
(DtDv`)

T∇akl +
i

λq+1
DvT` Dv

T
` ∇akl+

− aklDΦlDv`Dv`k + aklDΦlDtDv`k
)
× k ×Bk
|k|2

.

Note that DtDv` = DDtv` −Dv`Dv`, so that

‖DtDv`‖N ≤ ‖Dtv`‖N+1 + ‖Dv`‖N‖Dv`‖0
≤ Cδqλq`−N−1 (1 + λq`) ≤ Cδqλq`−N−1.

It then follows from the product rule (127) and (60) that

‖D2
tLkl‖N ≤ Cδ

1/2
q+1δqλq`

−N−1

(
λq
λq+1

+
λ2
q`

λq+1
+ λq`+ (λq`)

2 +
δ
1/2
q λq
µ

+ 1

)
≤ Cδ1/2q+1δqλq`

−N−1.

Estimates on wc. Observe that wc =
∑
χl(Lkl−aklBk)eiλq+1k·Φl (see (45)

and (47)). Differentiating this identity we then conclude

Dtwc =
∑
kl

χl (DtLkl) e
iλq+1k·Φl + (∂tχl) (Lkl − aklBk) eiλq+1k·Φl

=
∑
kl

χl(DtLkl)φkle
iλq+1k·x+

+
∑
kl

(∂tχl)

(
i∇akl
λq+1

− akl (DΦl − Id) k

)
× k ×Bk
|k|2

φkle
iλq+1k·x .

Hence we obtain (77) as a consequence of Lemma 3.1 and (75).

Estimates on wo. Using (79) we have

Dtwo =
∑
k,l

χ′laklφkle
iλq+1k·x .

Therefore (78) follows immediately from Lemma 3.1. �
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4. Estimates on the energy

Lemma 4.1 (Estimate on the energy).∣∣∣∣e(t)(1− δq+2)−
ˆ
T3

|v1|2 dx
∣∣∣∣ ≤ 1

µ
+ C

δq+1δ
1/2
q λq
µ

+ C
δ
1/2
q+1δ

1/2
q λq

λq+1
. (80)

Proof. Define

ē(t) := 3(2π)3
∑
l

χ2
l (t)ρl.

Using Lemma 2.1 we then have

|wo|2 =
∑
l

χ2
l trR`,l +

∑
(k,l),(k′,l′),k 6=−k′

χlχl′wkl · wk,l′

= (2π)−3ē+
∑

(k,l),(k′,l′),k 6=−k′
χlχk′aklak′l′φklφk′l′e

iλq+1(k+k′)·x . (81)

Observe that ē is a function of t only and that, since (k+k′) 6= 0 in the sum
above, we can apply Proposition G.1(i) with m = 1. From Lemma 3.1 we
then deduce ∣∣∣∣ˆ

T3

|wo|2 dx− ē(t)
∣∣∣∣ ≤ C δq+1δ

1/2
q λq
µ

+ C
δq+1λq
λq+1

. (82)

Next we recall (46), integrate by parts and use (64) and (67) to reach∣∣∣∣ˆ
T3

v · w dx
∣∣∣∣ ≤ C δ1/2q+1δ

1/2
q λq

λq+1
. (83)

Note also that by (68) we have
ˆ
T3

|wc|2 + |wcwo| dx ≤ C
δq+1δ

1/2
q λq
µ

. (84)

Summarizing, so far we have achieved∣∣∣∣ˆ
T3

|v1|2 dx−
(
ē(t) +

ˆ
T3

|v|2 dx
)∣∣∣∣ (83)

≤
∣∣∣∣ˆ

T3

|w|2 dx− ē(t)
∣∣∣∣+ C

δ
1/2
q+1δ

1/2
q λq

λq+1

(84)

≤
∣∣∣∣ˆ

T3

|wo|2 dx− ē(t)
∣∣∣∣+ C

δ
1/2
q+1δ

1/2
q λq

λq+1
+ C

δq+1δ
1/2
q λq
µ

(82)

≤ C
δ
1/2
q+1δ

1/2
q λq

λq+1
+ C

δq+1δ
1/2
q λq
µ

. (85)

Next, recall that

ē(t) = 3(2π)3
∑
l

χ2
l ρl

= (1− δq+2)
∑
l

χ2
l e
(µ
l

)
−
∑
l

χ2
l

ˆ
T3

|v(x, lµ−1)|2 dx .
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Since
∣∣∣t− l

µ

∣∣∣ < µ−1 on the support of χl and since
∑

l χ
2
l = 1, we have

∣∣∣∣∣e(t)−∑
l

χ2
l e

(
l

µ

)∣∣∣∣∣ ≤ µ−1 .

Moreover, using the Euler-Reynolds equation, we can compute

ˆ
T3

(
|v(x, t)|2 −

∣∣v (x, lµ−1
)∣∣2) dx =

ˆ t

l
µ

ˆ
T3

∂t|v|2

=−
ˆ t

l
µ

ˆ
T3

div
(
v
(
|v|2 + 2p

))
+ 2

ˆ t

l
µ

ˆ
T3

v · div R̊ = −2

ˆ t

l
µ

ˆ
T3

Dv : R̊ .

Thus, for
∣∣∣t− l

µ

∣∣∣ ≤ µ−1 we conclude

∣∣∣∣ˆ
T3

|v(x, t)|2 −
∣∣v(x, lµ−1)

∣∣2 dx∣∣∣∣ ≤ C δq+1δ
1/2
q λq
µ

.

Using again
∑
χ2
l = 1, we then conclude

∣∣∣∣e(t)(1− δq+2)−
(
ē(t) +

ˆ
T3

|v(x, t)|2 dx
)∣∣∣∣ ≤ 1

µ
+ C

δq+1δ
1/2
q λq
µ

. (86)

The desired conclusion (80) follows from (85) and (86). �

5. Estimates on the Reynolds stress

In this section we bound the new Reynolds Stress R̊1. The general pattern
in estimating derivatives of the Reynolds stress is that:

• the space derivative gets an extra factor of λq+1 (when the derivative
falls on the exponential factor),
• the transport derivative gets an extra factor µ (when the derivative

falls on the time cut-off).

In fact the transport derivative is slightly more subtle, because in R0 a
second transport derivative of the perturbation w appears, which leads to
an additional term (see (97)). Nevertheless, we organize the estimates in
the following proposition according to the above pattern.

Proposition 5.1. For any choice of small positive numbers ε and β, there
is a constant C (depending only upon these parameters and on e and M)
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such that, if µ, λq+1 and ` satisfy the conditions (59), then we have

‖R0‖0 +
1

λq+1
‖R0‖1 +

1

µ
‖DtR

0‖0 ≤ C
δ
1/2
q+1µ

λ1−ε
q+1

+
δ
1/2
q+1δqλq

λ1−ε
q+1µ`

, (87)

‖R1‖0 +
1

λq+1
‖R1‖1 +

1

µ
‖DtR

1‖0 ≤ C
δq+1δ

1/2
q λqλ

ε
q+1

µ
, (88)

‖R2‖0 +
1

λq+1
‖R2‖1 +

1

µ
‖DtR

2‖0 ≤ C
δq+1δ

1/2
q λq
µ

, (89)

‖R3‖0 +
1

λq+1
‖R3‖1 +

1

µ
‖DtR

3‖0 ≤ Cδ
1/2
q+1δ

1/2
q λq` , (90)

‖R4‖0 +
1

λq+1
‖R4‖1 +

1

µ
‖DtR

4‖0 ≤ C
δq+1δ

1/2
q λq
µ

+ Cδq+1λq` , (91)

‖R5‖0 +
1

λq+1
‖R5‖1 +

1

µ
‖DtR

5‖0 ≤ C
δq+1δ

1/2
q λq
µ

. (92)

Thus

‖R̊1‖0 +
1

λq+1
‖R̊1‖1 +

1

µ
‖DtR̊1‖0 ≤

≤ C

(
δ
1/2
q+1µ

λ1−ε
q+1

+
δq+1δ

1/2
q λqλ

ε
q+1

µ
+ δ

1/2
q+1δ

1/2
q λq`+

δ
1/2
q+1δqλq

λ1−ε
q+1µ`

)
,

(93)

and, moreover,

‖∂tR̊1 + v1 · ∇R̊1‖0 ≤

≤ Cδ1/2q+1λq+1

(
δ
1/2
q+1µ

λ1−ε
q+1

+
δq+1δ

1/2
q λqλ

ε
q+1

µ
+ δ

1/2
q+1δ

1/2
q λq`+

δ
1/2
q+1δqλq

λ1−ε
q+1µ`

)
. (94)

Proof. Estimates on R0. We start by calculating

∂tw + v` · ∇w + w · ∇v` =
∑
kl

(
χ′lLkl + χlDtLkl + χlLkl · ∇v`

)
eik·Φl .

Define Ωkl := (χ′lLkl + χlDtLkl + χlLkl · ∇v`)φkl and write (recalling the

identity φkle
iλq+1k·x = eiλq+1k·Φl),

∂tw + v` · ∇w + w · ∇v` =
∑
kl

Ωkle
iλq+1k·x . (95)

Using Lemmas 3.1 and 3.2 and (60)

‖Ωkl‖0 ≤ Cδ
1/2
q+1µ

(
1 +

δ
1/2
q λq
µ

)
≤ Cδ1/2q+1µ

and similarly, for N ≥ 1

‖Ωkl‖N ≤ Cδ
1/2
q+1µ

(
`−N + ‖φkl‖N

)
≤ Cδ1/2q+1µλ

N(1−β)
q+1 .
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Moreover, observe that although this estimate has been derived for N inte-
ger, by the interpolation inequality (128) it can be easily extended to any
real N ≥ 1 (besides, this fact will be used frequently in the rest of the proof).
Applying Proposition G.1(ii) we obtain

‖R0‖0 ≤
∑
kl

(
λε−1
q+1‖Ωkl‖0 + λ−N+ε

q+1 [Ωkl]N + λ−Nq+1[Ωkl]N+ε

)
≤Cδ1/2q+1µ

(
λ−1+ε
q+1 + λ−Nβ+ε

q+1

)
. (96)

It suffices to choose N so that Nβ ≥ 1 in order to achieve

‖R0‖0 ≤ Cδ
1/2
q+1µλ

ε−1
q+1.

As for ‖R0‖1, we differentiate (95). We therefore conclude

∂jR
0 = R

(∑
kl

(iλq+1kjΩkl + ∂jΩkl)e
iλq+1k·x

)
.

Applying Proposition G.1(ii) as before we conclude ‖R0‖1 ≤ Cδ
1/2
q+1µλ

ε
q+1.

Estimates on DtR
0. We start by calculating

Dt (∂tw + v` · ∇w + w · ∇v`) =
∑
kl

(
∂2
t χlLkl + 2∂tχlDtLkl + χlD

2
tLkl+

+ ∂tχlLkl ·Dv` + χlDtLkl ·Dv` + χlLkl ·DDtv` − χlLkl ·Dv` ·Dv`
)
eik·Φl

=:
∑
kl

Ω′kle
iλq+1k·x.

As before, we have

‖Ω′kl‖0 ≤ Cδ
1/2
q+1µ

(
µ+

δqλq
µ`

+ δ
1/2
q λq +

δqλ
2
q

µ

)
≤ Cδ1/2q+1µ

(
µ+

δqλq
µ`

)
(97)

and, for any N ≥ 1

‖Ω′kl‖N ≤ Cδ
1/2
q+1µ`

−N

(
µ+

δqλq
µ`

+ δ
1/2
q λq +

δqλ
2
q

µ

)
+ ‖Ω′kl‖0‖φkl‖N

≤ Cδ1/2q+1µ

(
µ+

δqλq
µ`

)(
`−N + ‖φkl‖N

)
≤ Cδ1/2q+1µ

(
µ+

δqλq
µ`

)
λ
N(1−β)
q+1 .

Next, observe that we can write

DtR
0 =

(
[Dt,R] +RDt

)
(∂tw + v` · ∇w + w · ∇v`)

=
(

[v`·,R]D +RDt

)
(∂tw + v` · ∇w + w · ∇v`) ;
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as it is customary, [A,B] denotes the commutator AB−BA of two operators
A and B; the operator [v`·,R] is applied to derivatives DΛ of tensors Λ and
it gives

[v`·,R]DΛ =
3∑
j=1

[
(v`)jR

(
∂Λ

∂xj

)
−R

(
(v`)j

∂Λ

∂xj

)]
. (98)

Using this convention we then compute

DtR
0 =

∑
kl

(
[v`·,R](DΩkle

iλq+1k·x) + iλq+1[v` · k,R](Ωkle
iλq+1k·x)

+R(Ω′kle
iλq+1k·x)

)
.

Using the estimates for Ω′kl derived above, and applying Proposition
G.1(ii), we obtain

‖R(Ω′kle
iλq+1k·x)‖0 ≤

‖Ω′kl‖0
λ1−ε
q+1

+
[Ω′kl]N

λN−εq+1

+
[Ω′kl]N+ε

λNq+1

≤ C
δ
1/2
q+1µ

λ1−ε
q+1

(
µ+

δqλq
µ`

)(
1 + λ1−Nβ

q+1

)
Furthermore, applying Proposition H.1 we obtain∥∥∥[v`·,R](DΩkle

iλq+1k·x)
∥∥∥

0
≤ C

λ2−ε
q+1

‖v`‖1‖Ωkl‖1

+
C

λN−εq+1

N−1∑
i=0

‖Ωkl‖1+i+ε‖v`‖N−i+ε ≤ C
δ
1/2
q λqδ

1/2
q+1µ

λ1−ε
q+1

(
λ−βq+1 + λ1+2ε−Nβ

q+1

)
and similarly

λq+1

∥∥∥[v` · k,R](Ωkle
iλq+1k·x)

∥∥∥
0
≤ C

δ
1/2
q λqδ

1/2
q+1µ

λ1−ε
q+1

(
1 + λ1+2ε−Nβ

q+1

)
.

By choosing N ∈ N sufficiently large so that Nβ ≥ 1 + 2ε we deduce

‖DtR
0‖0 ≤ C

δ
1/2
q+1µ

λ1−ε
q+1

(
µ+ δ

1/2
q λq +

δqλq
µ`

)
.

Taking into account that δ
1/2
q λq ≤ µ this concludes the proof of (87).

Remark 3. The estimate on DtR
0
t could be improved by keeping track, along

the iteration, of ‖pq‖2 and ‖R̊q‖2: such quantities can indeed be used to get
a better control of ‖Dtv‖1. This observation, which is used already in [18],
plays an important role in [1] (cf. Section 7 below).
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Estimates on R1. Using Lemma 2.1 we have

div

(
wo ⊗ wo −

∑
l

χ2
l R̊`,l −

|wo|2

2
Id

)
=

=
∑

(k,l),(k′,l′)

k+k′ 6=0

χlχl′div
(
wkl ⊗ wk′l′ −

wkl · wk′l′
2

Id
)

= I + II

where, setting fklk′l′ := χlχl′aklak′l′φklφk′l′ ,

I =
∑

(k,l),(k′,l′)

k+k′ 6=0

(
Bk ⊗Bk′ − 1

2(Bk ·Bk′)Id
)
∇fklk′l′eiλq+1(k+k′)·x

II =iλq+1

∑
(k,l),(k′,l′)

k+k′ 6=0

fklk′l′
(
Bk ⊗Bk′ − 1

2(Bk ·Bk′)Id
)

(k + k′)eiλq+1(k+k′)·x .

Concerning II, recall that the summation is over all l ∈ Z ∩ [0, µ] and
all k ∈ Λe if l is even and all k ∈ Λo if l is odd. Furthermore, both
Λe,Λo ⊂ λ̄S2 ∩ Z3 satisfy the conditions of Lemma 1.3. Therefore we may
symmetrize the summand in II in k and k′. On the other hand, recall from
Lemma 1.2 that

(Bk ⊗Bk′ +Bk′ ⊗Bk)(k + k′) = (Bk ·Bk′)(k + k′).

From this we deduce that II = 0.
Concerning I, we first note, using the product rule, (64) and (65), that

[fklk′l′ ]N ≤ Cδq+1

(
λq`

1−N + ‖φklφk′l′‖N
)

for N ≥ 1 .

By Lemma (67) and (59) (cf. (60)) we then conclude

[fklk′l′ ]1 ≤ Cδq+1

(
λq + λq+1

δ
1/2
q λq
µ

)
≤ Cδq+1λq+1

δ
1/2
q λq
µ

,

[fklk′l′ ]N ≤ Cδq+1λ
N(1−β)
q+1 , N ≥ 2 .

Applying Proposition G.1(ii) to I we obtain

‖R1‖0 ≤
∑

(k,l),(k′,l′)

k+k′ 6=0

(
λε−1
q+1[fklk′l′ ]1 + λ−N+ε

q+1 [fklk′l′ ]N+1 + λ−Nq+1[fklk′l′ ]N+1+ε

)

≤ Cδq+1

(
λεq+1

δ
1/2
q λq
µ

+ λ1−Nβ+ε
q+1

)
. (99)

By choosing N sufficiently large we deduce

‖R1‖0 ≤ C
δq+1δ

1/2
q λqλ

ε
q+1

µ
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as required. Moreover, differentiating we conclude ∂jR
1 = R(∂jI) where

∂jI =
∑

(k,l),(k′,l′)

k+k′ 6=0

(
Bk ⊗Bk′ − 1

2(Bk ·Bk′)Id
)
·

(iλq+1(k + k′)j∇fklk′l′ + ∂j∇fklk′l′)eiλq+1(k+k′)·x . (100)

Therefore we apply again Proposition G.1(ii) to conclude the desired esti-
mate for ‖R1‖1.

Estimates on DtR
1. As in the estimate for DtR

0, we again make use of
the identity DtR = [v`·,R]D +RDt in order to write

DtR
1 =

∑
(k,l),(k′,l′)

k+k′ 6=0

(
[v`·,R]

(
DUklk′l′e

iλq+1(k+k′)·x
)

+ iλq+1[v` · (k + k′),R]
(
Uklk′l′e

iλq+1(k+k′)·x
)

+ R
(
U ′klk′l′e

iλq+1(k+k′)·x
))

,

where we have set Uklk′l′ =
(
Bk ⊗Bk′ − 1

2(Bk ·Bk′)Id
)
∇fklk′l′ and

Dtdiv
(
wo ⊗ wo −

∑
l

χ2
l R̊`,l −

|wo|2

2
Id
)

=
∑

(k,l),(k′,l′)

k+k′ 6=0

U ′klk′l′e
iλq+1(k+k′)·x.

In order to further compute U ′klk′l′ , we write

∇fklk′l′ eiλq+1(k+k′)·x = χlχl′ (akl∇ak′l′ + ak′l′∇akl) eiλq+1(k·Φl+k′·Φl′ )+

+ iλq+1χlχl′aklak′l′
(
(DΦl − Id)k + (DΦl′ − Id)k′

)
eiλq+1(k·Φl+k′·Φl′ )

and hence, using (79),

Dt

(
∇fklk′l′ eiλq+1(k+k′)·x

)
= (χlχl′)

′ (akl∇ak′l′ + ak′l′∇akl) eiλq+1(k·Φl+k′·Φl′ )

+ iλq+1(χlχl′)
′aklak′l′

(
(DΦl − Id)k + (DΦl′ − Id)k′

)
eiλq+1(k·Φl+k′·Φl′ )

− χlχl′
(
aklDv

T
` ∇ak′l′ + ak′l′Dv

T
` ∇akl

)
eiλq+1(k·Φl+k′·Φl′ )

− iλq+1χlχl′aklak′l′
(
DΦlDv

T
` k +DΦl′Dv

T
` k
′) eiλq+1(k·Φl+k′·Φl′ )

=:
(
Σ1
klk′l′ + Σ2

klk′l′ + Σ3
klk′l′ + Σ4

klk′l′
)
eiλq+1(k·Φl+k′·Φl′ )

=: Σklk′l′e
iλq+1(k·Φl+k′·Φl′ ) .

Ignoring the subscripts we can use (127), Lemma 3.1 and Lemma 3.2 to
estimate

‖Σ‖N ≤ Cδq+1λq`
−N (µ+ λq+1δ

1/2
q + δ

1/2
q λq + λq+1δ

1/2
q )

(60)

≤ Cδq+1λq+1δ
1/2
q λq`

−N .

We thus conclude

‖U ′klk′l′‖N ≤ C‖Σklk′l′‖N + C‖Σklk′l′‖0‖φklφk′l′‖N
≤ Cδq+1λq+1δ

1/2
q λq

(
`−N + λ

N(1−β)
q+1

)
≤ Cδq+1δ

1/2
q λqλ

1+N(1−β)
q+1 .
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The estimate on ‖DtR
1‖0 now follows exactly as above for DtR

0 applying
Proposition H.1 to the commutator terms. This concludes the verification
of (88).

Estimates on R2 and DtR
2. Using Lemma 3.1 we have

‖R2‖0 ≤ C(‖wc‖20 + ‖wo‖0‖wc‖0) ≤ Cδq+1
δ
1/2
q λq
µ

,

‖R2‖1 ≤ C(‖wc‖1‖wc‖0 + ‖wo‖1‖wc‖0 + ‖wo‖0‖wc‖1) ≤ Cδq+1
δ
1/2
q λq
µ

λq+1 .

Similarly, with the Lemmas 3.1 and 3.2 we achieve∥∥DtR
2
∥∥

0
≤ C ‖Dtwc‖0 (‖wo‖0 + ‖wc‖0) + C‖Dtwo‖0‖wc‖0 ≤ Cδq+1δ

1/2
q λq .

Estimates on R3 and DtR
3. The estimates on ‖R3‖0 and ‖R3‖1 are a

direct consequence of the mollification estimates (30) and (32) as well as
Lemma 3.1. Moreover,

‖DtR
3‖0 ≤ ‖v − v`‖0‖Dtw‖0 + (‖Dtv‖0 + ‖Dtv`‖)‖w‖0

= ‖v − v`‖0 (‖Dtwc‖0 + ‖Dtwo‖) + (‖Dtv‖0 + ‖Dtv`‖)‖w‖0 .
(101)

Concerning Dtv, note that, by our inductive hypothesis

‖Dtv‖0 ≤ ‖∂tv + v · ∇v‖0 + ‖v − v`‖0‖v‖1
≤ ‖pq‖1 + ‖R̊q‖1 + Cδqλ

2
q` ≤ Cδqλq .

Thus the required estimate on DtR
3 follows from Lemma 3.2.

Estimates on R4 and DtR
4. From the mollification estimates (31) and

(33) we deduce

‖R4‖0 ≤ C‖R̊‖1` ≤ Cδq+1λq` ,

‖R4‖1 ≤ 2‖R̊‖1 ≤ Cδq+1λq .

As for DtR
4, observe first that, using our inductive hypothesis,

‖DtR̊‖0 ≤ ‖∂tR̊+ v · ∇R̊‖0 + ‖v` − v‖0‖R̊‖1 ≤ Cδq+1δ
1/2
q λq + Cδq+1δ

1/2
q λ2

q` .

Moreover,

DtR̊` = (DtR̊) ∗ ψ` + v` · ∇R̊` − (v` · ∇R̊) ∗ ψ`

=(DtR̊) ∗ ψ` + div
(
v` ⊗ R̊` − (v ⊗ R̊) ∗ ψ`

)
+[(v − v`) · ∇R̊] ∗ ψ` , (102)

where we have used that div v = 0. Using Proposition E.1 we deduce

‖v` ⊗ R̊` − (v ⊗ R̊) ∗ ψ`‖1 ≤ Cδq+1δ
1/2
q λqλq` . (103)

Gathering all the estimates we then achieve

‖DtR
4‖0 ≤ ‖DtR̊‖0 + ‖DtR̊`‖0 ≤ Cδq+1λqδ

1/2
q .

The estimate (91) follows now using (60).
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Estimates on R5. Recall that DtR̊`,l = 0. Therefore, using the arguments
from (102)

‖Dt(R̊` − R̊`,l)‖0 = ‖DtR̊`‖0 ≤ Cδq+1δ
1/2
q λq .

On the other hand, using again the identity (102) and Proposition E.1

‖Dt(R̊` − R̊`,l)‖1 = ‖DtR̊`‖1 ≤ C`−1‖DtR̊‖0 + ‖v` ⊗ R̊` − (v ⊗ R̊) ∗ ψ`‖2
+ C`−1‖v − v`‖0‖R̊‖1 ≤ Cδq+1δ

1/2
q λq`

−1 .

Since R̊`,l(x, tµ
−1) = R̊`(x, tµ

−1), the difference R̊` − R̊`,l vanishes at t =
lµ−1. From Proposition D.1 we deduce that, for times t in the support of χl
(i.e. |t− lµ−1| < µ−1),

‖R̊` − R̊`,l‖0 ≤ Cµ−1‖Dt(R̊` − R̊`,l)‖0 ≤ Cµ−1δq+1δ
1/2
q λq ,

‖R̊` − R̊`,l‖1 ≤ Cµ−1‖Dt(R̊` − R̊`,l)‖1 ≤ Cµ−1δq+1δ
1/2
q λq`

−1 .

The desired estimates on ‖R5‖0 and ‖R5‖1 follow then easily using (60).

Estimate on DtR
5. In this case we compute

DtR
5 =

∑
l

2χl∂tχl(R̊` − R̊`,l) +
∑
l

χ2
lDtR̊` .

The second summand has been estimate above and, since ‖∂tχl‖0 ≤ Cµ,

the first summand can be estimated by Cµδq+1δ
1/2
q λqµ

−1 (again appealing
to the arguments above).

Proof of (94). To achieve this last inequality, observe that

‖∂tR̊1 + v1 · ∇R̊1‖0 ≤ ‖DtR̊1‖0 + (‖v − v`‖0 + ‖w‖0) ‖R̊1‖1 .

On the other hand, by (30) and (59), ‖v−v`‖0 ≤ Cδ
1/2
q λq` ≤ δ

1/2
q+1. Moreover,

by (50), (68) and (60) ‖w‖ ≤ ‖wo‖0 + ‖wc‖0 ≤ Cδ
1/2
q+1. Thus, by (93) we

conclude

‖∂tR̊1 + v1 · ∇R̊1‖0 ≤ C
(
µ+ δ

1/2
q+1λq+1

)
(
δ
1/2
q+1µ

λ1−ε
q+1

+
δq+1δ

1/2
q λqλ

ε
q+1

µ
+ δ

1/2
q+1δ

1/2
q λq`+

δ
1/2
q+1δqλq

λ1−ε
q+1µ`

)
Since by (60) µ ≤ δ1/2q+1λq+1, (94) follows easily. �

5.1. A remark on the bounds for R5 and DtR
0. By approximating the

error with the solution to a transport equation, we have saved a lot of work
in obtaining the estimate for ‖DtR

0‖ in (87) compared to the approach of
[18]. The price we have paid here is introducing the additional error term R5,
which represents a new degree of freedom in the construction that had not
previously been exploited. The estimate (92) for R5 is among the maximal
bounds in the argument and it is thus one of the obstructions to going
beyond 1

5 . It should be noticed that it is not clear which error terms must
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be improved in order to reach the conjectural exponent 1
3 . For instance, in

the paper [1] (cf. Section 7) the error estimate (92) is not an obstruction to
get the Hölder regularity in space on the set of “good times”. On the other
hand, in the approach of [18] such an error term does not appear and it is
of interest to review it here.

The difficulty in bounding DtR
0 is that the transport term R0 by itself

involves the advective derivative of the amplitudes ak, which in turn depend
on the input stress R̊ by (39). Consequently, DtR

0 essentially involves the

second advective derivative D2
t R̊, whereas we have only assumed control

over the first advective derivative DtR̊. This difficulty is tackled in [18] by

introducing a “mollification along the flow” for the definition of R̊` which
is then used to form the amplitudes ak as in (36), (39). This procedure

consists of first averaging in space to construct R̊`x = R̊∗ψ`x and then using
the one parameter group Ξs(x, t) generated by the space-time vector field
∂t + v` · ∇ to average in time

R̊`(x, t) =

ˆ
R̊`x(Ξs(x, t))ψ`t(s) ds . (104)

That is, Ξs(x, t) = (Xt(x, t+ s), t+ s) where Xt(x, t+ s) denotes the flux of

v` starting as the identity at time t, as in Appendix D. The tensor R̊`(x, t) is

thus an average of R̊ over an `x-neighborhood of the time |s| ≤ `t trajectory
which passes through (x, t) along the flow of v`.

The mollification (104) behaves like a standard mollification in that, be-
cause Dt commutes with pullback by Ξs, the derivative Dt commutes with
the average along the flow

DtR̊`(x, t) =

ˆ
[DtR̊`x ](Ξs(x, t))ψ`t(s) ds

=

ˆ
d

ds
R̊`x(Ξs(x, t))ψ`t(s) ds . (105)

Integrating by parts in (105), each additional advective derivative incurs a

cost `−1
t , which provides the estimate on D2

t R̊` that is applied to the trans-

port term DtR
0. The error R̊ − R̊` can also be bounded in terms of `t and

`x using the control we have assumed on ‖R̊‖1 and ‖(∂t + v · ∇)R̊‖0.2 But

unlike a standard mollification, bounding the derivatives ‖R̊`‖N is more in-
volved, and requires control over the geometry of the flow Ξs which obeys a
nonlinear ODE. The bounds for [Ξs]N are then similar to those in Appendix
D, having factors which grow exponentially after time ‖∇v‖−1

0 from Gron-
wall’s inequality. After all these estimates are established, it turns out that
the bounds for D2

t R̊` and R̊ − R̊` all appear to be (just barely) compatible
with a scheme aimed at proving the conjectured 1/3 exponent. Overall,

2For the present results one can essentially take `t proportional to the time scale µ−1

above, while obtaining a better exponent would require this parameter to be smaller (e.g.

the choice made in [18] where `t ∼ δ
−1/2
q+1 λ−1

q+1 would correspond to a 1/3 scheme).
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though, it appears that 1/5 is the limit of our current method, and that any
improvement on this exponent would require further new ideas.

6. Conclusion of the proof

In Sections 2-5 we showed the construction for a single step, referring to
(vq, pq, R̊q) as (v, p, R̊) and to (vq+1, pq+1, R̊q+1) as (v1, p1, R̊1). From now
on we will consider the full iteration again, hence using again the indices q
and q + 1.

In order to proceed, recall that the sequences {δq}q∈N and {λq}q∈N are
chosen to satisfy

δq = a−b
q
, acb

q+1 ≤ λq ≤ 2acb
q+1

for some given constants c > 5/2 and b > 1 and for a > 1. Note that this
has the consequence that if a is chosen sufficiently large (depending only on
b > 1) then

δ
1/2
q λ

1/5
q ≤ δ

1/2
q+1λ

1/5
q+1, δq+1 ≤ δq, and λq ≤ λ

2
b+1

q+1 . (106)

6.1. Choice of the parameters µ and `. We start by specifying the
parameters µ = µq and ` = `q: we determine them optimizing the right
hand side of (93). More precisely, we set

µ := δ
1/4
q+1δ

1/4
q λ

1/2
q λ

1/2
q+1 (107)

so that the first two expressions in (93) are equal, and then, having deter-
mined µ, set

` := δ
−1/8
q+1 δ

1/8
q λ−

1/4
q λ

−3/4
q+1 (108)

so that the last two expressions in (93) are equal (up to a factor λεq+1).
In turn, these choices lead to

‖R̊q+1‖0 +
1

λq+1
‖R̊q+1‖1 ≤ Cδ

3/4
q+1δ

1/4
q λ

1/2
q λ

ε−1/2
q+1 + Cδ

3/8
q+1δ

5/8
q λ

3/4
q λ

ε−3/4
q+1

= Cδ
3/4
q+1δ

1/4
q λ

1/2
q λ

ε−1/2
q+1

1 +

(
δ
1/2
q λ

1/3
q

δ
1/2
q+1λ

1/3
q+1

)3/4


(106)

≤ Cδ
3/4
q+1δ

1/4
q λ

1/2
q λ

ε−1/2
q+1 . (109)

Observe also that by (94), we have

‖∂tR̊q+1 + vq+1 · ∇R̊q+1‖0 ≤ Cδ
1/2
q+1λq+1

(
δ
3/4
q+1δ

1/4
q λ

1/2
q λ

ε−1/2
q+1

)
. (110)
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Let us check that the conditions (59) are satisfied for some β > 0 (re-
member that β should be independent of q). To this end we calculate

δ
1/2
q λq`

δ
1/2
q+1

=

(
δ
1/2
q λ

3/5
q

δ
1/2
q+1λ

3/5
q+1

)5/4

,
δ
1/2
q λq
µ

=

(
δ
1/2
q λq

δ
1/2
q+1λq+1

)1/2

,

1

`λq+1
=

(
δ
1/2
q+1λq

δ
1/2
q λq+1

)1/4

,
µ

δ
1/2
q+1λq+1

=

(
δ
1/2
q λq

δ
1/2
q+1λq+1

)1/2

.

Hence the conditions (59) follow from (106) choosing β = b−1
5b+5 .

6.2. Proof of Proposition 0.2. Fix the constants c > 5
2 and b > 1 and

also an ε > 0 whose choice, like that of a > 1, will be specified later.
The proposition is proved inductively. The initial triple is defined to be
(v0, p0, R̊0) = (0, 0, 0). Given now (vq, pq, R̊q) satisfying the estimates (6)-

(15), we claim that the triple (vq+1, pq+1, R̊q+1) constructed above satisfies
again all the corresponding estimates.

Estimates on R̊q+1. Note first of all that, using the form of the estimates
in (93) and (94), the estimates (11) and (15) follow from (10). On the other
hand, in light of (109), (10) follows from the recursion relation

Cδ
3/4
q+1δ

1/4
q λ

1/2
q λ

ε−1/2
q+1 ≤ ηδq+2.

Using our choice of δq and λq from Proposition 0.2, we see that this inequality
is equivalent to

C ≤ a
1
4
bq(1+3b−2cb+(2c−4−4εc)b2),

which, since b > 1, is satisfied for all q ≥ 1 for a sufficiently large fixed
constant a > 1, provided(

1 + 3b− 2cb+ (2c− 4− 4εc)b2
)
> 0.

Factorizing, we obtain the inequality (b − 1)((2c − 4)b − 1) − 4εcb2 > 0. It
is then easy to see that for any b > 1 and c > 5/2 there exists ε > 0 so that
this inequality is satisfied. In this way we can choose ε > 0 (and β above)
depending solely on b and c. Consequently, this choice will determine all
the constants in the estimates in Sections 2-5. We can then pick a > 1
sufficiently large so that, by (109) and (110), the inequalities (10), (11) and

(15) hold for R̊q+1.

Estimates on vq+1 − vq. By (50), Lemma 3.1 and (59) we conclude

‖vq+1 − vq‖0 ≤ ‖wo‖0 + ‖wc‖0 ≤ δ
1/2
q+1

(
M

2
+ λ−βq+1

)
, (111)

‖vq+1 − vq‖1 ≤ ‖wo‖1 + ‖wc‖1 ≤ δ
1/2
q+1

(
M

2
+ λ−βq+1

)
. (112)

Since λq+1 ≥ λ1 ≥ acb
2
, for a sufficiently large we conclude (6) and (7).
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Estimate on the energy. Recall Lemma 4.1 and observe that, by (59),
δ
1/2
q+1δ

1/2
q λq

λq+1
≤ δ

1/2
q+1µ

λq+1
. Moreover,

δq+1δ
1/2
q λq = a−b

q+1−bq/2+cbq+1
= ab

q((c−1)b−1/2) ≥ a ≥ 1 .

So the right hand side of (80) is smaller than C
δq+1δ

1/2
q λq
µ + C

δ
1/2
q+1µ

λq+1
, i.e.

smaller (up to a constant factor) than the right hand side of (93). Thus,
the argument used above to prove (10) gives also (12).

Estimates on pq+1 − p1. From the definition of pq+1 in (57) we deduce

‖pq+1 − pq‖0 ≤
1

2
(‖wo‖0 + ‖wc‖0)2 + C`‖vq‖1‖w‖0 .

As already argued in the estimate for (6), ‖wo‖+ ‖wc‖ ≤ Mδ
1/2
q . Moreover

C`‖v1‖1‖w‖0 ≤ CMδ
1/2
q+1δ

1/2
q λq`, which is smaller than the right hand side

of (93). Having already argued that such quantity is smaller than ηδq+2 we

can obviously bound C`‖vq‖1‖w‖0 with M2

2 δq+1. This shows (8). Moreover,
differentiating (57) we achieve the bound

‖pq+1 − pq‖1 ≤ (‖wo‖1 + ‖wc‖1)(‖wo‖0 + ‖wc‖0) + Cδ
1/2
q+1δ

1/2
q λqλq+1`

and arguing as above we conclude (9).

Estimates (16). Here we can use the obvious identity ∂twq = Dtwq −
(vq)` · ∇wq together with Lemmas 3.1 and 3.2 to obtain ‖∂tvq+1 − ∂tvq‖0 ≤
Cδ

1/2
q+1λq+1 Then, using (25), we conclude ‖∂tvq‖0 ≤ Cδ

1/2
q λq.

To handle ∂tpq+1 − ∂tpq observe first that, by our construction,

‖∂t(pq+1 − pq)‖0 ≤ (‖wc‖0 + ‖wo‖0)(‖∂twc‖0 + ‖∂two‖0)

+ 2‖w‖0‖∂tvq‖0 + `‖vq‖1‖∂tw‖0 .

As above, we can derive the estimates ‖∂two‖0 +‖∂twc‖0 ≤ Cδ
1/2
q+1λq+1 from

Lemmas 3.1 and 3.2. Hence

‖∂t(pq+1 − pq)‖0 ≤ Cδq+1λq+1 + Cδ
1/2
q+1δ

1/2
q λq + Cδ

1/2
q λq`δ

1/2
q+1λq+1 . (113)

Since ` ≤ λ−1
q and δ

1/2
q λq ≤ δ

1/2
q+1λq+1, the desired inequality follows. This

concludes the proof.

7. Onsager’s conjecture almost everywhere in time

In recent work [1] by the first author, a variant of the present scheme
was presented in order to prove the existence of non-trivial Euler flows with
compact temporal support which belong to the Hölder class C1/3−ε almost
everywhere in time. Specifically, the following theorem was proved:

Theorem 7.1. There exists a non-trivial vector field v ∈ C1/5−ε(T3 ×
(−1, 1),R3) with compact support in time and a scalar field p ∈ C2/5−2ε(T3×
(−1, 1)) with the following properties:
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(i) The pair (v, p) solves the incompressible Euler equations (1) in the
sense of distributions.

(ii) There exists a set Ω ⊂ (−1, 1) of Hausdorff dimension strictly less

than 1 such that if t /∈ Ω then v(·, t) is Hölder C1/3−ε continuous

and p is Hölder C2/3−2ε continuous3.

The construction of the convex interation scheme in [1] follows very closely
the scheme presented here with two main deviations:

(1) Unlike in the present work, the solutions constructed will not obey
any prescribed energy profile, but rather simply satisfy the property
of having compact support in time4.

(2) The time cutoff functions {χq,l}5 are modified in such a way that the
Hausdorff dimension of the set

Ω′ :=

∞⋂
q=1

∞⋃
q′=q

⋃
l

support(χ′q′,l) (114)

is strictly less than 1.

The proof then of the above theorem relies heavily on the estimates given
in the present work with the addition of sharper, time localized estimates.
The set Ω is taken to be a slight enlargement of Ω′ with identical Hausdorff
dimension. With the help of these additional estimates, it is shown that for
any time t ∈ (−1, 1) outside the set Ω, there exists an N = N(t) such that,
supressing dependence on t, we obtain the following estimates

‖wq‖0 +
1

λq
‖∂twq‖0 +

1

λq
‖wq‖1 ≤ λ−

1/3+ε0
q , (115)

‖pq − pq−1‖0 +
1

λq
‖∂t(pq − pq−1)‖0 +

1

λ2
q

‖pq − pq−1‖2 ≤ λ
−2/3+2ε0
q , (116)∥∥∥R̊q∥∥∥

0
+

1

λq

∥∥∥R̊q∥∥∥
1
≤ λ−2/3+2ε0

q+1 , (117)

for every q ≥ N and some 0 < ε0 < ε. The ability to obtain such estimates
is intimately related to the property Ω′ ⊂ Ω.

A minor detail to note is that unlike in the present scheme, in [1] one
must keep track of second order estimates on the pressure (as it was already
observed in [18], cf. Remark 3). This is done in order to eliminate the
second term appearing in (87), whose appearence is related to the sub-
optimal estimates (74) and (76). While this term poses no problems in the
present work, it seems to provide unduly restrictions on the molification
parameter ` which in turn provides an obstruction to proving Theorem 7.1.

3More precisely, the Hausdorff dimension d is such that 1 − d > Cε2 for some positive
constant C.

4This approach is also taken in [18].
5Here we include the subscript q to indicate the iteration in which the cutoff is defined.
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Appendix A. Proof of Proposition 1.1

Proof. First of all observe that a−kB−k = akBk. Thus the vector field
defined in (19) is real valued. Next notice that

divW (ξ) =
∑
|k|=λ0

ik ·Bkakeik·ξ = 0 ,

because k ·Bk = 0 for every k.
In turn we directly compute

div(W ⊗W )(ξ) =
∑
k,k′

i(Bk ⊗B′k) · (k + k′)ei(k+k′)·ξ

=
∑
k,k′

i

2
(Bk ⊗Bk′ +Bk′ ⊗Bk) · (k + k′)ei(k+k′)·ξ

(22)
=
∑
k,k′

(Bk ·B′k)(k + k′)ei(k+k′)·ξ = ∇1

2

∑
k,k′

Bk ·B′kei(k+k′)·ξ

=
1

2
∇(W ·W ) =

1

2
∇(W · W̄ ) =

1

2
∇|W |2 . (118)

Averaging this identity in ξ we infer

〈W ⊗W 〉 =
∑
|k|=λ0

|ak|2Bk ⊗Bk .

However, since Bk = B−k, we get

〈W ⊗W 〉 =
∑
|k|=λ0

|ak|2 Re
(
Bk ⊗Bk

)
=

∑
|k|=λ0

|ak|2
(
Ak ⊗Ak +

(
k

|k|
×Ak

)
⊗
(
k

|k|
×Ak

))
.

On the other hand, observe that the triple
√

2Ak,
√

2 k
|k| × Ak,

k
|k| forms an

orthonormal basis of R3. Thus,

2Ak ⊗Ak + 2

(
k

|k|
×Ak

)
⊗
(
k

|k|
×Ak

)
+

k

|k|
⊗ k

|k|
= Id .

This shows (21) and hence completes the proof. �

Appendix B. Proof of Lemma 1.3

The lemma was first proved in [11], where the argument is very close to
the classical decomposition of a Riemannian metric into “primitive ones”, a
fundamental point of Nash’s existence theorem for C1-isometric embeddings,
see [20] and also [17]. The proof reported here is instead closer in spirit to
[18] and gives more explicit formulas for the families of vectors Λj .

In this paper the Lemma is applied with N = 2 (cp. with [11] and [9]
where it is applied with N = 8). However the general form might be useful
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in different contexts. For instance, in order to handle a general torus R3/Γ,
a larger N and a suitable variant of the Lemma seem necessary: see [18] for
the details.

Proof. The case N = 1. Let e1, e2, e3 be the standard basis vectors of R3

and define the sets

Λ1 = {±(ei ± ej) | 1 ≤ i < j ≤ 3} ⊆ Z3 ∩ {|k| =
√

2}

and

Λ+
1 = {(ei ± ej) | 1 ≤ i < j ≤ 3}

which are integral analogues of the dodecahedron and projective dodeca-
hedron used in [18]. Note that Λ1 is invariant under the finite reflection
group G generated by the permutations of the basis vectors (e1, e2, e3) to-
gether with the reflections about coordinate planes and coordinate axes,
which negate one or two basis vectors respectively. We have the following
properties.

(1) Linear Independence. The tensors

B =

{
Id− k ⊗ k

|k|2
| k ∈ Λ+

1

}
(119)

are linearly independent and hence form a basis for the space of
symmetric matrices, here viewed as bilinear forms.

(2) Symmetry. We have the identity

1

2

∑
k∈Λ1

(
Id− k ⊗ k

|k|2

)
= 4 · Id . (120)

To establish (119), consider a linear dependence relation∑
k∈Λ+

1

Ck

(
Id− k ⊗ k

|k|2

)
= 0 . (121)

The space of linear relations (121) gives a linear representation of the group
G as G permutes the elements of B transitively. By symmetry, it therefore
suffices to show that Ce1+e2 = 0, which we now prove.

After averaging (121) over the subgroup permuting the set {±(e1 ± e2)}
(which acts transitively on Λ1 \ {±(e1 ± e2)}) we can arrange that all the

coefficients C(ei±e3) = Ĉ are equal for i = 1, 2, and from (121) we obtain∑
±
C(e1±e2)

(
Id− (e1 ± e2)2

|e1 ± e2|2

)
= −Ĉ

∑
k∈Λ+

1 \{e1±e2}

(
Id− k ⊗ k

|k|2

)
. (122)

Comparing the equations obtained from taking traces versus applying (122)

to e3⊗e3, we conclude that Ĉ = 0. Then applying (122) to (e1±e2)⊗(e1±e2),
we conclude that Ce1±e2 = 0 as desired.
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The identity (120) follows from the linear independence of B, which im-
plies that there are unique coefficients Ck solving∑

k∈Λ+
1

Ck

(
Id− k ⊗ k

|k|2

)
= Id . (123)

By uniqueness, the coefficients Ck must all be equal upon averaging over G.
Equation (120) then follows by comparing traces.

Lemma 1.3 for N = 1 is now an immediate corollary of the properties
(119) and (120). Namely, as long as ε varies among symmetric matrices in
some ball Br0(0), the equation

1

2

∑
k∈Λ1

(
γ

(1)
k

)2
(

Id− k ⊗ k
|k|2

)
= Id + ε (124)

has unique, positive solutions γ
(1)
k for which γ

(1)
−k = γ

(1)
k and

γ
(1)
k (Id + ε)− 1

2
= O(|ε|) .

The smooth dependence of γ
(1)
k on ε in the ball Br0(0) is also clear.

Remark 4. One can also see equation (120) from the fact that Id is, up to
a constant, the unique, symmetric bilinear form invariant under the action
of G.6 This approach is closer to the proof in [18], which uses the identity
(120) for the dodecahedron to prove the linear independence (119) through
a symmetry argument.

The case N > 1. Now assume N > 1 and let Λ∗ be the family of integer
vectors constructed from the case N = 1. It suffices to obtain families of
integer vectors Λj , j = 1, 2, . . . , N which all lie on the same sphere and have
the properties (119) and (120). This can be done as follows. By rotating
the family Λ∗, we can easily produce arbitrarily many families of vectors
ΛR
j ⊆ R3 ∩ {|k| =

√
2}, j = 1, . . . N which are disjoint from each other and

for which the properties of linear independence (119) and symmetry (120)
also hold. For example, we can use families of the form

ΛR
j = {eθje1×k | k ∈ Λ∗} ,

obtained from the one parameter group of rotations

eθe1×k =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 k (125)

which rotate Λ∗ about the e1 axis without leaving any member of Λ∗ fixed.
For generic choices of θj ∈ R/(2πZ), j = 1, . . . , N the families ΛR

j will be

6One calculates the dimension of the space of G-invariant symmetric bilinear forms
by taking the trace of the projection operator 1

|G|
∑
g∈G Sym2g and using the identity

tr Sym2g = (tr g2 + (tr g)2)/2.
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pairwise disjoint, but will not contain vectors in Z3. However, for a dense
subset of θj , the values (cos θj , sin θj) will be rational numbers, which can
be seen for instance by mapping Q ⊆ R into a dense subset of the circle by
the inverse of the stereographic projection

x 7→
(

2x

1 + x2
,
x2 − 1

1 + x2

)
.

Restricting to these choices of θj , we obtain arbitrarily many families

ΛQ
j = {eθje1×k | k ∈ Λ∗} ⊆ Q3 ∩ {|k| =

√
2} j = 1, . . . , N

which are pairwise disjoint and have rational entries. Having chosen N such

ΛQ
j , we obtain the desired Λ1, . . . ,ΛN by scaling Λj = MΛQ

j by an integer

M chosen to ensure Λj ⊆ Z3 ∩ {|k| =
√

2M}. As properties (119) and
(120) are not disturbed by rotation and scaling, this proves Lemma 1.3 with
λ =
√

2M and r0 independent of N . �

Appendix C. Hölder spaces

In the following m = 0, 1, 2, . . . , α ∈ (0, 1), and β is a multi-index. We
introduce the usual (spatial) Hölder norms as follows. First of all, the supre-
mum norm is denoted by ‖f‖0 := supT3×[0,1] |f |. We define the Hölder
seminorms as

[f ]m = max
|β|=m

‖Dβf‖0 ,

[f ]m+α = max
|β|=m

sup
x 6=y,t

|Dβf(x, t)−Dβf(y, t)|
|x− y|α

,

where Dβ are space derivatives only. The Hölder norms are then given by

‖f‖m =
m∑
j=0

[f ]j

‖f‖m+α = ‖f‖m + [f ]m+α.

Moreover, we will write [f(t)]α and ‖f(t)‖α when the time t is fixed and the
norms are computed for the restriction of f to the t-time slice.

Recall the following elementary inequalities:

[f ]s ≤ C
(
εr−s[f ]r + ε−s‖f‖0

)
(126)

for r ≥ s ≥ 0, ε > 0, and

[fg]r ≤ C
(
[f ]r‖g‖0 + ‖f‖0[g]r

)
(127)

for any 1 ≥ r ≥ 0. From (126) with ε = ‖f‖
1
r
0 [f ]

− 1
r

r we obtain the standard
interpolation inequalities

[f ]s ≤ C‖f‖
1− s

r
0 [f ]

s
r
r . (128)
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Next we collect two classical estimates on the Hölder norms of compo-
sitions. These are also standard, for instance in applications of the Nash-
Moser iteration technique.

Proposition C.1. Let Ψ : Ω→ R and u : Rn → Ω be two smooth functions,
with Ω ⊂ RN . Then, for every m ∈ N\{0} there is a constant C (depending
only on m, N , n) such that

[Ψ ◦ u]m ≤ C([Ψ]1[u]m + ‖DΨ‖m−1‖u‖m−1
0 [u]m) (129)

[Ψ ◦ u]m ≤ C([Ψ]1[u]m + ‖DΨ‖m−1[u]m1 ) . (130)

Appendix D. Estimates for transport equations

In this section we recall some well known results regarding smooth solu-
tions of the transport equation:{

∂tf + v · ∇f = g,
f |t0 = f0,

(131)

where v = v(t, x) is a given smooth vector field. We denote the advective
derivative ∂t + v · ∇ by Dt. We will consider solutions on the entire space
R3 and treat solutions on the torus simply as periodic solution in R3.

Proposition D.1. Assume t > t0. Any solution f of (131) satisfies

‖f(t)‖0 ≤ ‖f0‖0 +

ˆ t

t0

‖g(τ)‖0 dτ , (132)

[f(t)]1 ≤ [f0]1e
(t−t0)[v]1 +

ˆ t

t0

e(t−τ)[v]1 [g(τ)]1 dτ , (133)

and, more generally, for any N ≥ 2 there exists a constant C = CN so that

[f(t)]N ≤
(

[f0]N + C(t− t0)[v]N [f0]1

)
eC(t−t0)[v]1+

+

ˆ t

t0

eC(t−τ)[v]1
(

[g(τ)]N + C(t− τ)[v]N [g(τ)]1

)
dτ. (134)

Define Φ(t, ·) to be the inverse of the flux X of v starting at time t0 as the
identity (i.e. d

dtX = v(X, t) and X(x, t0) = x). Under the same assumptions
as above:

‖DΦ(t)− Id‖0 ≤ e
(t−t0)[v]1 − 1 , (135)

[Φ(t)]N ≤ C(t− t0)[v]Ne
C(t−t0)[v]1 ∀N ≥ 2. (136)

Proof. We start with the following elementary observation for transport
equations: if f solves (131), then d

dtf(X(t, x), t) = g(X(t, x), t) and con-
sequently

f(t, x) = f0(Φ(x, t)) +

ˆ t

t0

g(X(Φ(t, x), τ), τ) dτ.
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The maximum principle (132) follows immediately. Next, differentiate (131)
in x to obtain the identity

DtDf = (∂t + v · ∇)Df = Dg −DfDv.

Applying (132) to Df yields

[f(t)]1 ≤ [f0]1 +

ˆ t

t0

([g(τ)]1 + [v]1[f(τ)]1) dτ.

An application of Gronwall’s inequality then yields (133).
More generally, differentiating (131) N times yields

∂tD
Nf + (v · ∇)DNf = DNg +

N−1∑
j=0

cj,ND
j+1f : DN−jv (137)

(where : is a shorthand notation for sums of products of entries of the cor-
responding tensors).

Also, using (132) and the interpolation inequality (128) we can estimate

[f(t)]N ≤ [f0]N +

ˆ t

t0

(
[g(τ)]N + C

(
[v]N [f(τ)]1 + [v]1[f(τ)]N

))
dτ.

Plugging now the estimate (133), Gronwall’s inequality leads – after some
elementary calculations – to (134).

The estimate (136) follows easily from (134) observing that Φ solves (131)
with g = 0 and D2Φ(·, t0) = 0. Consider next Ψ(x, t) = Φ(x, t) − x and
observe first that ∂tΨ + v · ∇Ψ = −v. Since DΨ(·, t0) = 0, we apply (133)
to conclude

[Ψ(t)]1 ≤
ˆ t

t0

e(t−τ)[v]1 [v]1dτ = e(t−t0)[v]1 − 1 .

Since DΨ(x, t) = DΦ(x, t)− Id, (135) follows. �

Appendix E. Constantin-E-Titi commutator estimate

Finally, we recall the quadratic commutator estimate from [3] (cf. also
with [4, Lemma 1]):

Proposition E.1. Let f, g ∈ C∞(T3 × T) and ψ the mollifier of Section 2.
For any r ≥ 0 we have the estimate∥∥∥(f ∗ ψ`)(g ∗ ψ`)− (fg) ∗ ψ`

∥∥∥
r
≤ C`2−r‖f‖1‖g‖1 ,

where the constant C depends only on r.
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Appendix F. Schauder Estimates

We recall here the following consequences of the classical Schauder esti-
mates (cf. [11, Proposition 5.1]).

Proposition F.1. For any α ∈ (0, 1) and any m ∈ N there exists a constant
C(α,m) with the following properties. If φ, ψ : T3 → R are the unique
solutions of  ∆φ = f

ffl
φ = 0

 ∆ψ = divF

ffl
ψ = 0

,

then

‖φ‖m+2+α ≤ C(m,α)‖f‖m,α and ‖ψ‖m+1+α ≤ C(m,α)‖F‖m,α . (138)

Moreover we have the estimates

‖Rv‖m+1+α ≤ C(m,α)‖v‖m+α (139)

‖R(divA)‖m+α ≤ C(m,α)‖A‖m+α (140)

Proof. The estimates (139) and (140) are easy consequences of (138) and
the definition of the R operator. The estimates (138) are the usual Schauder
estimates, see for instance [16, Chapter 4]. The meticulous reader will notice
that the estimates in [16] are stated in Rn for the potential-theoretic solution
of the Laplace operator. The periodic case is however an easy corollary (see
[11] for the details). �

Appendix G. Stationary phase lemma

We recall here the following simple facts. For completeness we include
the proof given in [11].

Proposition G.1. (i) Let k ∈ Z3 \ {0} and λ ≥ 1 be fixed. For any
a ∈ C∞(T3) and m ∈ N we have∣∣∣∣ˆ

T3

a(x)eiλk·x dx

∣∣∣∣ ≤ [a]m
λm

. (141)

(ii) Let k ∈ Z3 \ {0} be fixed. For a smooth vector field a ∈ C∞(T3;R3)
let F (x) := a(x)eiλk·x. Then we have

‖R(F )‖α ≤
C

λ1−α ‖a‖0 +
C

λm−α
[a]m +

C

λm
[a]m+α, (142)

where C = C(α,m).

Proof. For j = 0, 1, . . . define

Aj(y, ξ) := −i

[
k

|k|2

(
i
k

|k|2
· ∇
)j

a(y)

]
eik·ξ ,

Fj(y, ξ) :=

[(
i
k

|k|2
· ∇
)j

a(y)

]
eik·ξ .
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Direct calculation shows that

Fj(x, λx) =
1

λ
div
[
Aj(x, λx)

]
+

1

λ
Fj+1(x, λx).

In particular for any m ∈ N

a(x)eiλk·x = F0(x, λx) =
1

λ

m−1∑
j=0

1

λj
div
[
Aj(x, λx)

]
+

1

λm
Fm(x, λx) .

Integrating this over T3 and using that |k| ≥ 1 we obtain (141).

Consider next the solution φλ ∈ C∞(T3) of

∆φλ = fλ in T3

with
´
T3 φλ = 0, where

fλ(x) := a(x)eiλk·x −
 
T3

a(y)eiλk·y dy.

Then for any α ∈ (0, 1) and m ∈ N we claim the estimate

‖∇φλ‖α ≤
C

λ1−α ‖a‖0 +
C

λm−α
[a]m +

C

λm
[a]m+α, (143)

where C = C(α,m).
Indeed, using (126) and (127) with the Fj ’s and Aj ’s introduced above,

we have for any j ≤ m− 1

‖Aj(·, λ·)‖α ≤ C (λα[a]j + [a]j+α)

≤ Cλj+α
(
λ−m[a]m + ‖a‖0

)
and similarly

‖Fm(·, λ·)‖α ≤ C (λα[a]m + [a]m+α) .

Moreover, according to the standard estimate (138),

‖∇φ‖α ≤ C
(

1

λ

m−1∑
j=0

1

λj
‖Aj(·, λ·)‖α +

1

λm
‖Fm(·, λ·)‖α +

∣∣∣∣ 
T3

F0(x, λx) dx

∣∣∣∣),
hence, using (141) for the last term,

‖∇φ‖α ≤
C

λ1−α ‖a‖0 +
C

λm−α
[a]m +

C

λm
[a]m+α

as required.
Taking into account the definition of R, the estimate (142) follows now

applying (143) and Proposition F.1 above (recall also that, if v is a vector
field, its Leray projection P(v) is given by v −

ffl
v − ∇φ, where ∆φ =

div v). �
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Appendix H. One further commutator estimate

Proposition H.1. Let k ∈ Z3 \ {0} be fixed. For any smooth vector field
a ∈ C∞(T3;R3) and any smooth function b, if we set F (x) := a(x)eiλk·x, we
then have

‖[b,R](F )‖α ≤ λα−2‖a‖0‖b‖1 + Cλα−m (‖a‖m−1+α‖b‖1+α + ‖a‖α‖b‖m+α)

(144)

where C = C(α,m).

Proof. Step 1 First of all, given a vector field v define the operator

S(v) := ∇v + (∇v)t − 2

3
(div v)Id .

First observe that

divS(v) = 0 ⇐⇒ v ≡ const. (145)

One implication is obvious. Next, assume divS(v) = 0. This is equivalent
to the equations

∆vj +
1

3
∂jdiv v = 0 (146)

Differentiating and summing in j we then conclude

4

3
∆div v = 0 .

Thus div v must be constant and, since any divergence has average zero, we
conclude that div v = 0. Thus (146) implies that ∆vi = 0 for every i, which
in turn gives the desired conclusion.

From this observation we conclude the identity

S(v) = R(divS(v)) for all v ∈ C∞(T3,R3). (147)

Indeed, observe first that R(z) = S(w), where w = 1
4P(u) + 3

4u for the
solution u of ∆u = z −

ffl
z with

´
u = 0. Thus, applying the argument

above, since both sides of (147) have zero averages, it suffices to show that
they have the same divergence. But since divR(z) = z−

ffl
z, the divergences

of the two sides of (147) obviously coincide.

Step 2 Next, for a ∈ C∞(T3,R3), k ∈ Z3 \ {0} and λ ∈ N \ {0}, consider

S (aeiλk·x) := −S
(

3

4

a

λ2|k|2
eiλk·x +

1

4λ2|k|2

(
a− (a · k)k

|k|2

)
eiλk·x

)
.

Observe that

S (baeiλk·x)− bS (aeiλk·x) =
aA(b)

λ2
eiλk·x , (148)

where A is an homogeneous differential operator of order one with constant
coefficients (all depending only on k). Moreover,

aeiλk·x − div S (aeiλk·x) =
B1(a)

λ
eiλk·x +

B2(a)

λ2
eiλk·x ,
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where B1 and B2 are homogeneous differential operators of order 1 and 2
(respectively) with constant coefficients (again all depending only on k).

We use then the identity (147) to write

− [b,R](F ) = R(bF )− bR(F ) = S (baeiλk·x)− bS (aeiλk·x)

+R
(
bF − div S (baeiλk·x)

)
− bR

(
F − div S (aeiλk·x)

)
=
aA(b)

λ2
eiλk·x +R

(
B1(ab)

λ
eiλk·x +

B2(ab)

λ2
eiλk·x

)
− bR

(
B1(a)

λ
eiλk·x +

B2(a)

λ2
eiλk·x

)
. (149)

Using the Leibniz rule we can write B1(ab) = B1(a)b+aB1(b) and B2(ab) =
B2(a)b+aB2(b)+C1(a)C1(b), where C1 is an homogeneous operator of order
1. We can then reorder all terms to write

−[b,R](F ) =
aA(b)

λ2
eiλk·x

+R
(
aB1(b)

λ
eiλk·x

)
+R

(
aB2(b) + C1(a)C1(b)

λ2
eiλk·x

)
− 1

λ
[b,R]

(
B1(a)eiλk·x

)
− 1

λ2
[b,R]

(
B2(a)eiλk·x

)
. (150)

In the first two summands appear only derivatives of b, but there are no
zero order terms in b. We can then estimate the two terms in the second
line applying Proposition G.1, with m = N − 1 to the first summand and
with m = N−2 to the second summand. Applying in addition interpolation
identities, we conclude

‖[b,R](F )‖α ≤ C
‖a‖0‖b‖1
λ2−α + C

‖a‖N−1+α‖b‖1+α + ‖a‖N−2+α‖b‖2+α

λN−α

+ C
‖a‖1+α‖b‖N−1+α + ‖a‖α‖b‖N+α

λN−α

+
1

λ

∥∥∥[b,R]
(
B1(a)eiλk·x

)∥∥∥
α︸ ︷︷ ︸

II

+
1

λ2

∥∥∥[b,R]
(
B2(a)eiλk·x

)∥∥∥
α
. (151)

(Indeed the above estimate is slightly sub-optimal up to fractional deriva-
tives of order α and multiplying factors of order λα.)

Step 3 We can now apply the same idea to the term II in (151), which is
of the form ‖[b,R](F ′)‖α, where F ′(x) = B1(a)(x)eiλk·x and B1(a) are linear
combinations of first order derivatives of a. However this time we apply it
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with N − 1 in place of N and we estimate

‖[b,R](F )‖α ≤ Cλα−2‖b‖1
(
‖a‖0 + λ−1‖a‖1

)
+ C
‖a‖N−1+α‖b‖1+α + ‖a‖N−2+α‖b‖2+α

λN−α

+ C
‖a‖2+α‖b‖N−2+α + ‖a‖1+α‖b‖N−1+α + ‖a‖α‖b‖N+α

λN−α

+
1

λ2

∥∥∥[b,R]
(
B′2(a)eiλk·x

)∥∥∥
α

+
1

λ3

∥∥∥[b,R]
(
B′3(a)eiλk·x

)∥∥∥
α
, (152)

where B′2 = B2 + B1 ◦ B1 is a second order operator and B′3 = B2 ◦ B1

a third order operator (both with constant coefficients). Proceeding now
inductively, we end up with

‖[b,R](F )‖α ≤ Cλα−2‖b‖1
N−2∑
i=1

λ−i‖a‖i + Cλα−N
N−1∑
i=0

‖a‖i+α‖b‖N−i+α

(153)

+
1

λN−1

∥∥∥[b,R]
(
B′N−1(a)eiλk·x

)∥∥∥
α

+
1

λN

∥∥∥[b,R]
(
B′N (a)eiλk·x

)∥∥∥
α
,

(154)

where B′N−1 and B′N are two linear constant coefficients operators of order
N − 1 and N respectively.

Finally, we apply Proposition G.1 and Proposition F.1 to the final two
terms and interpolate to reach the desired estimate. �

To compare with the proof in [18], estimates analogous to Propositions
F.1, G.1 and H.1 are established through a different approach in Sections 6
and 26 of [18], but there is also an additional section (Section 27) devoted
to special solutions of div R = U obtained by solving a transport equation.
This section corresponds roughly speaking to an improved estimate for the
final term in (153). A similar improvement can be reached by observing
that, since [b,R] = 0 when b is a constant, we can assume, w.lo.g., that
b has average 0, from which we conclude the control ‖b‖r ≤ C(r)‖∇b‖r−1

for all r ≥ 1. Thus we could replace all terms ‖b‖r with ‖∇b‖r−1 in (144).
Since Proposition H.1 is applied to b = vi` (i.e. components of v`), the
corresponding error estimates display a dependence upon ∇v rather than
upon v itself, which is natural in view of the Galilean invariance of the
Euler equations (cf. [18]). We do not keep track of this because it does not
improve the main results of the paper.
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