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ABSTRACT. We show that for any a < % there exist a-Holder continuous weak solutions of the
three-dimensional incompressible Euler equation, which satisfy the local energy inequality and
strictly dissipate the total kinetic energy. The proof relies on the convex integration scheme
and the main building blocks of the solution are various Mikado flows with disjoint supports in
space and time.

1. INTRODUCTION

In this work, we consider the Cauchy problem for the incompressible Euler equations on the
spatially periodic domain [0, 7] x T3,

(1.1)

ow+V-(v®v)+Vp=0
V.v=0.

where T? = [, 7|3 and 0 < T' < . The Euler equations describe the motion of an ideal
volume-preserving fluid: v : [0,7] x T3> — R? represents the velocity of the fluid and p :
[0,T] x T3 — R the pressure.

A distributional solution of (1.1) is a solenoidal vector field v € L2([0,7] x T3;R3) for which
the first equation (the momentum equation) holds distributionally (i.e. the distributional curl
of opv + V - (v ® v) vanishes). The pressure is the unique (up to a time-dependent constant)
solution of Ap = Zij 6%(1)@'1)]-). A globally dissipative Euler flow is a distributional solution which

belongs L3([0,T] x T?) and satisfies additionally the local energy inequality

() o (1)) <o 0

in the sense of distributions (note that, by the classical Calderon-Zygmund inequality, p €
L32([0,T] x T3) and hence p|v|? is well defined). Integrating the latter inequality in space, we
derive that the global kinetic energy of the solution is nondecreasing:

2
jtf“;'(t,x) dr < 0. (1.3)

In order to motivate the energy inequality, we recall the well-known fact that smooth solutions
satisfy the local energy equality, namely

() o (1)) <o, »

which can be derived by scalar multiplying the momentum equation and making some standard
calculus manipulations. Correspondingly, smooth solutions preserve the total kinetic energy,
namely

o[
7<$7t> dx = const . (1.5)
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Next, consider “suitable” weak solutions of the Navier-Stokes equation

{(9tv+V~(v®v)+Vp=€Av (1.6)

V-v=0,

as defined in the celebrated work of Caffarelli, Kohn and Nirenberg [7]. The latter are distribu-
tional solutions in L*([0,T]; L*(T?)) n L2([0, T]; W2(T3)) which satisfy a corresponding local

energy inequality
[v]? [o]* [v]? 2
<e|A— —|Dv
at< 5 +V- 5 TP € 5 — | Dv|

and hence a corresponding integrated form

% ‘“2 j|Dv|2 (1.7)

Such suitable weak solutions can be proven to exist for any given L? (divergence-free) initial and,
thanks to the theory developed in [7], are regular outside of a compact set with zero Hausdorff
one-dimensional measure. If, as € | 0, they were to converge strongly in L? to a solution of the
Euler equation, the latter would be globally dissipative.

After a series of developments in the field, see [13, 14, 15, 1, 4, 2, 3, 5, 10, 19], Isett solved in
[18] a famous Conjecture of Lars Onsager in the theory of fully developed turbulence (cf. [21])
showing that for every a < % there are a-Holder solutions of (1.1) for which (1.5) fails. Slightly
after, Isett’s result was improved in [6] by Buckmaster, the first author, Székelyhidi and Vicol,
who showed the existence of a-Holder solutions in the Onsager range for which (1.3) holds with
a strict inequality. As a rigorous mathematical validation of the classical Kolmogorov’s theory
of turbulence, it would be rather interesting if one could show that some of these dissipative
solutions can be recovered as strong limits of suitable weak solutions v; of the Navier-Stokes
equations with vanishing e, since such a sequence would display anomalous dissipation, i.e.

hmlnfskJ J|ka| (t,z)drdt >0

for some finite time 7' > 0. However, as observed by Isett in [17], a strong limit of suitable
weak solutions of (1.6) would necessarily satisfy the local energy inequality (at least if the
convergence were to be in the L? topology). This naturally motivates a stronger version of the
Onsager conjecture, namely the existence of a-Hoélder globally dissipative solutions of the Euler
equations (i.e. satisfying (1.1) and (1.2)) for which

JW z) dx <J| oF (1.8)

The first author and Laszlé Székelyhidi produced the first bounded examples in [11], while
Isett in [17] has recently provided the first Holder examples. In this paper we improve upon the
regularity obtained by Isett, even though we are still relatively far from the conjectural threshold
1

g.
Theorem 1.1. For any 0 < 8 < % there are globally dissipative weak solutions v to the Euler
equation (1.1) in CP([0,T] x T3) for which (1.8) holds.

As it is the case of [17] (and in fact of any “convex integration” arguments starting from
[12, 13]) a byproduct of the construction is that neither (1.2) nor (1.4) are enough to restore
uniqueness of weak solutions.

2



Theorem 1.2. For any 0 < 8 < %, we can find infinitely many time-global weak solutions v
to the Buler equation (1.1) in CB([0,T] x T3) which have zero mean, satisfy the local energy
equality (1.4) and share the same initial data.

While the statement above imposes (1.4), which is clearly stronger than (1.2), it is not difficult
to modify our arguments to produce an analogous example of infinitely many distinct globally
dissipative weak solutions with the same initial data and such that (1.8) holds.

2. OUTLINE OF THE PROOF

We construct globally dissipative Euler flows approximated by sequences of dissipative Euler-
Reynolds flows, introduced in [17].

Definition 2.1 (Dissipative Euler-Reynolds flows). A tuple of smooth tensors (v, p, R, k, ) is a
dissipative Euler-Reynolds flow with global energy loss E(t) if k = % tr R and the tuple solves the

Fuler-Reynolds system with the Reynold-stress R + % Id and the relaxed local energy equality:
v+ V- -(v@v)+Vp=V-(R+%Id) =V R
V-v=0 (2.1)
o (Av?) + V- (30 +p)v) =Dy (k+ %) + V- (Rv) + V-,

where the advective derivative Dy is Dy = d¢ + (v - V) and (V - R); = 0;R;;. Even though it

is not really essential for our arguments, to be consistent with the term dissipative, we assume
that B/ < 0. Note moreover that the addition of a constant to E. We will therefore impose

E(0) =0 (2.2)

Jw xtdx—fw (z,0)d (2.3)

(which thus justifies the term energy loss).

and observe that, as a consequence,

It is obvious that when R, k, ¢ are all zero, (v, p) becomes a globally dissipative Euler flow
(and the requirement E’ < 0 is used only in this simple conclusion). Denoting an average
in space of a quantity w by w, for a given globally dissipative Euler flow (v,p), the averaged
pair (v,p) becomes a dissipative Euler-Reynolds flow with Reynolds stress R + %Id =7Q®
v — v @, unsolved flux density x + 5 = 1 |9|* — %W = str(R+ %Id)7 unsolved flux current

= (3[v]* + p) v—(3|v|*> + p) v— (%‘T}P — %W) o—Rv. This motivates the relation xk = 1 tr(R)

on the approximate solutions.

2.1. Induction scheme. The proof of the main theorem is based on an iterative procedure,
similarly to all the literature which came out after the works [13, 14], which introduced the
“Fuler-Reynolds flows”, namely the system of PDEs consisting of the first two equations in
(2.1). The idea to handle the local energy inequality by adding the third equation and the
unknown ¢ is instead a notable contribution of [17]. In the inductive procedure we assume to
have a tuple (vg, pqg, Rq, Kq, @q) solving (2.1) for which the “error (Ry, kq, pq)” is suitably small.
At the step ¢ + 1 we aim at finding a new dissipative Euler-Reynolds flow with reduced error
is substantially reduced compared to that of step ¢. This is accomplished by adding a suitable
correction (wg41,¢q+1) to the velocity and pressure (vg, py), namely defining vy1 = vq + Wgt1
and pg+1 = Ppg + qq+1 so that the new error (Rgy1,Kq+1,¢q+1) (which roughly speaking is
determined by the equations) is sensibly smaller than (R, kg, ¢4). The precise statement is
given in Proposition 2.3.
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First of all for ¢ € N (where we use the convention that 0 € N) we introduce the frequency A,
1
and the amplitude ¢ of the velocity vy, which have the form
Ag = D‘t()bq)]v 0g = /\;204’

where « is a positive parameter smaller than 1 and b and Ay are real parameters larger than 1
(however, while b will be typically chosen close to 1, A\g will be typically chosen very large). In
1

particular 62\, is a monotone increasing sequence.

In the induction hypothesis, we will assume several estimates on the tuple (vy, pg. Ry, kg, ©q)-
For technical reasons, the domains of definition of the tuples is changing at each step and it is
given by [—74—1,T + 74-1] X T3, where 7_; = o0 and for ¢ > 0 the parameter 74 is defined by

1111 \ 7!
Ty = (COA[)\(;)\;Hd;é;H)

for some geometric constant Cp and M (which will specified later in (3.9) and Proposition 2.3,
respectively) . Note the important fact that 7, is decreasing in ¢. In order to shorten our
formulas, it is convenient to introduce the following notation:

e 7 + o is the concentric enlarged interval (a — o,b + o) when Z = [a, b];

o |F,|n is the CPCY norm of F, on its domain of definition, namely

1Eqlln == [Fgllcoo,714m,_1:0M () -
We are now ready to detail the inductive estimates:
1 1
lvglo <1 =67, [vglv < MAJSG,  |pgly < A6, N =1,2, (2.4)
and
1
kq = itr(Rq)a (2.5)
3
| Dipglln—1 < gAY, (2.6)
1
|RyIn < A) 6411, |DeRg|n—1 < AY™%686441, N =0,1,2 (2.7)
3 13
logly < AY 82,1, | Dipglv—r < AV 76282, N =0,1,2 (2.8)

where Dy = 0 + v, -V and v = (b — 1)2.

Remark 2.2. Throughout the rest of the paper we will typically estimate |F'|y and |DyF|n—-1
for several functions, vectors and tensors F. However, in a writing like (2.7) and (2.8), for N = 0
we are not claiming any negative Sobolev estimate on DyF': the reader should just consider the
advective derivative estimate to be an empty statement when N = 0. The reason for this
convention is just to make the notation easier, as we do not have to state in a separate line the
estimate for | Fp in many future statements.

It seems natural to impose that %Id has a size comparable to Ry and require
IEllo < 01

1
|E"o < 36 01,

where we abuse notation and write |[Flo = [F[cor) for a time function F. As we already
discussed the dissipative Euler-Reynolds system is invariant under addition to £ of a constant
and we adopt the normalization condition E(0) = 0. We will therefore assume

E0)=0, E'<0 and [E™|o<dis Vn=0,1. (2.9)

Under this setting, the core inductive proposition is given as follows.
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Proposition 2.3 (Inductive proposition). There ezists a geometric constant M> 1 and func-
tions b(a) > 1 and Ag(a,b, M) > 0 such that the following property holds. Let o € (O,%),
be (1,b(a)) and Ao = Ag(,b, M) and assume that a tuple of tensors (vq,pg, Ry, kg, Pq) 5 @
dissipative Euler-Reynolds flow defined on the time interval [0,T] 4+ 7,1 satisfying (2.4)-(2.8)
for an energy loss E(t) satisfying (2.9). Then, we can find a corrected dissipative Euler-Reynolds
flow (Vg41, Pgt1, Rgt1, Kgt1, Pg+1) on the time interval [0,T] 4 7, for the same energy loss E(t)
which satisfies (2.4)-(2.8) for ¢+ 1 and

1
feger = valo + 5 lvgss — vl < M6E,y. (2.10)
g+1
While the latter proposition would be enough to prove Theorem 1.1, we will indeed need a
technical refinement in order to show Theorem 1.2. We have decided to state such refinement
separately in order to improve the readability of our paper. In its statement we will need the
following convention:

e given a function f on [0,7] x T3, supp,(f) will denote its temporal support, namely

supp;(f) := {t : 3 x with f(x) # 0}.

e given an open interval Z = [a, b], |Z| will denote its length (b —a) and Z + ¢ will denote
the concentric enlarged interval (a — o0,b + o).

Proposition 2.4 (Bifurcating inductive proposition). Let the geometric constant M> 1, the
functions b, Ao, the parameters o, b, Ao and the tuple (vq, pq, Ry, Kq, ©q) be as in the statement
of Proposition 2.3. For any time interval T < (0,T) with |Z| > 31, we can produce a first

tuple (Vg+1,Pg+1, Rg+1, Kg+1, Pg+1) and a second one (Vg41, Pg+1, Rg+1, Kg1, Pg+1) which share
the same initial data, satisfy the same conclusions of Proposition 2.3 and additionally

1
lvg+1 = Dg+1llooo,ryz2(re)) = 04415 supP(vg1 — Ugr1) < Z. (2.11)

Furthermore, if we are given two tuples (vq, g, Rq, Kq, ©q) and (0q, Dy, Rq, Rq, Pq) satisfying (2.4)-
(2.8) and

SUPpt(Uq — Ugy Pqg — Pgs Rq — Rq, Kqg = Kq,Pq — ‘ﬁq) cJ

for some interval J < (0,T), we can exhibit corrected counterparts (Vg+1, Pg+1, Rg+1, Kg+15 Pg+1)

and (Vg+1,Pg+1, Rg+1, Rg+1, Pg+1) again satisfying the same conclusions of Proposition 2.3 to-
gether with the following control on the support of their difference:

- 1
suppt(qu - 7~Jq+17]9q+1 _ijq-‘rla Rq+1 - Rq+17 Rq+1 — Rg+1, Pg+1 — <Pq+1> cJ+ ()\q&;)iy (2-12)

2.2. Proof of Theorem 1.2. In this argument we assume 7' > 20. Fix 8 < 1 and a € (8, 1).
Then, choose b and Ag in the range suggested in Proposition 2.3. We take EF = 0 and we start
with

(v07p07R07 RO?SOU) = (07070707O> .

It is easy to see that it solves (2.1) and satisfies (2.4)-(2.8). Now, the conclusion of Proposition

2.3 would be trivial in this case, since we could simply define (v1, p1, R1, k1, ¢1) to be identically

0. Nonetheless, consider any sequence of solutions (vq, pg, Ry, kg, ©q) to (2.1) and satisfying (2.4)-

(2.8) and (2.10). Since the sequence {v,} also satisfies (2.10), it is Cauchy in C°([0, T]; C*(T?)).
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Indeed, for any ¢ < ¢/, we have the following estimates’

q—q

lvg = vgllcoqorpcamay < D, gt — vori—tlleogoron ey
=1
q—q s 5
S Z g+t = vgri-tllo " Vgt — vg+i-1ly
=1

7—q 7—q
Z q+1 q+1 Z )‘q+1 — 0,
=1 =1

as ¢ goes to infinity because of 3 —«a < 0. Therefore, we obtain its limit v in C°([0, T]; C*(T3)).
Also, we note that p, solves Ap, = divdiv(R; — vy ® vg). By using the convergence of v,
in C°([0,T]; C*(T?)) to v (and that of R, to 0 in C°([0,T]; C%(T?)): note that an analogous
interpolation argument can be used for R, as well), we can obtain a mean-zero pressure p as
the limit of p, in CY([0,T]; C*(T?)), by Schauder estimates. Since (Ry, kg, ¢,) converges to 0
in C°([0,T] x T3), the limit (v, p) solves the Euler equation (1.1) and satisfies the local energy
equality (1.4) in the distributional distribution. Estimating

[0rvgllo < [lvglloDvgllo + | Dpgllo + [DRylo

the time regularity of v can be concluded with an analogous interpolation argument. Alterna-
tively it follows from the general results of [16] (see also [8] for a different argument). Hence
v e C*[0,T] x T?). We mention in passing that the pressure can be shown to belong to C2*
(in time and space): this can be concluded again by interpolation as done above or it can be
inferred from the general results of [16, §].

On the other hand, fix ¢ € N satisfying b7 > g. At the gth step using Proposition 2.4 we
can produce two distinct tuples, one which we keep denoting as above and the other which we
denote by (0, pg, Rq, Rq, 9q) and satisfies (2.11), namely

1
10 — val coo,r);L2(r3)) = 0¢ 5 suppy(vg — ) = 7,
with Z = (10,10 + 37;-1). Applying now the Proposition 2.3 iteratively, we can build a new
sequence (7, ﬁq,Rq,ng,cﬁq) of approximate solutions which satisfy (2.4)-(2.10) and (2.12), in-
ductively. Arguing as above, this second sequence converges to a solution (0,p) to the Euler
equation (1.1) satisfying (1.4). Indeed, o € C5([0,T] x T?). We remark that for any ¢ > g,

1
(Aq(s(;)il = [97T]7

18

supp;(vg — 9g) € Z +

I
<

q

(by adjusting g to be even larger than chosen above, if necessary), and hence 7, shares initial
data with v, for all g. As a result, two solutions 9, and v, have the same initial data. However,

Here and in the rest of the note, given two quantities A, and B, depending on the induction parameter
q we will use the notation A < B meaning that A < CB for some constant C' which is independent of ¢. In
some situations we will need to be more specific and then we will explicitely the depndence of C' on the various
parameters involved in our arguments.
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the new solution v differs from v because

a0
lv = Bllcoqo,ry;racrey) = lvg — Balcoqorpracry) — X 10ar1 = vg = (Bgr1 — Tg)l oo, rpsr2(re))
4=q
e}
~ 3 ~ ~
= |lvg — gl co(po,r);2(13)) — (27)2 Z (lvg+1 — vgllo + [9g+1 — Tgllo)
q=q+1
1 3 X1
=02 —2(2m)2 M Y 62, > 0.

The last inequality follows from adjusting Ag to a larger one if necessary. By changing the choice
of time interval Z and the choice of ¢, we can easily generate infinitely many solutions.

2.3. Proof of Theorem 1.1. Fix § < 7 and as above choose « € ([, %) In order to prove
Theorem 1.1 it suffices to produce a nonzero E which satisfies (2.9) and a starting tuple
(vo, po, Ro, ko, o) which satisfies (2.1)-(2.8). In fact, arguing as in the previous section we
can use inductively Proposition 2.3 to produce a sequence (vq, pg) which is converging uniformly
to a C solution (v, p) of the Euler equations on [0,T] for which, additionally, the identity

P ﬁﬂa _E
2 2

holds. Since any time-dependent function x € C((0,7")) would be an admissible test function,

we conclude
f é’txf txd:vdt—f E'(t)x(t)dt.
’]1‘3

Given that F is C', the latter implies that the total kinetic energy is a C! function and it in
facts coincides with F up to a constant, namely

f [ 7 29 d J I 0,2y de = B(T) = E(0)
T3 2 T3 2 ’ ‘

On the other hand E(0) =0, E' < 0 and E is not identically 0. In particular E(T") — E(0) < 0.

We are thus left with the task of finding a suitable £ and a starting tuple. £ will be assumed
to be smooth. We fix an integer parameter A > 0 (which will be chosen appropriately later) and
define

Po = ko = Oa

1 _ _
vo = (1 —265 + E(t))%(cos Axs,sin Axs, 0),
wo =10

and ~
d ) (0 0 sin Az
1o (1-202 +E@)2 | 0 0 —Ccos A\z3

Ro:= ) dt( B B
sin\r3 —cosAxg O

< % and thus vy and

[V

Note that, by assuming )¢ large enough, 0 < g — 41 < 262 E(t) <36
Ry are well defined and smooth, since

\ =

1
1- 262 + E(t) > (2.13)

\/[\D

Moreover, it is easy to check that the tuple satisfies (2.1), (2.5), and (2.8). Our task is therefore
to show that we can choose a nontrivial £ and a \ so to satisfy all the estimates (2.4) and (2.7).
7



We start recalling that F < 0 and estimating

xN

N

1
Jvolln < (1 —265)

which implies that (2.4) is satisfied as soon as

A < Aoéé : (2.14)
As for (2.7) we estimate
| Rollv < CANTHE o
|DeRo|n = [0eRolln < CANTH(IE" o + [E[R)
where C' is a geometric constant. Considering that by (2.14) we already have A < A\ and that

1
IElo < 6861 by assumption (and hence |E’|3 < 8067 < 8061), it suffices to impose | E” o < dod1
and

1
A= CNOZ. (2.15)
Since the existence of a nontrivial smooth function E with E(0) = 0, E’ < 0, and |E™ |y < 50% o
1

for n = 0,1,2 is obvious (choose for example E(t) = —&1(1 — exp(—43t))), we just need to

check that the requirements (2.14) are mutually compatible for some choice of the parameters

satisfying the assumptions of Proposition 2.3: taking into account that A must be an integer, the
1

requirement amounts to the inequality 62 (Ao — C’)\gv) > 1. Recall that 3y = 3(b —1)? and the
restrictions on b given by Proposition 2.3 certainly allows us to choose b so that 3(b — 1)? < %

1
The compatibility is then satisfied if A\g > C'A§ + 1. Since C' is a geometric constant, we just
need a sufficiently large Ao, which is again a restriction compatible with the requirements of
Proposition 2.3.

3. CONSTRUCTION OF THE VELOCITY CORRECTION

In this section we detail the construction of the correction w := v44+1 —v4. As in the literature
which started from the paper [13], the perturbation w is, in first approximation, obtained from
a family of highly oscillatory stationary solution of the incompressible Euler equation, which are
modulated by the errors R, and ¢, and transported along the “course grain flow” of the vector
field vg. There are several choices of stationary solutions that one could use. In this paper
our choice falls on what has proved to be the most efficient ones found so far, called Mikado
flows and first introduced in [10]. In order to define them, consider a function ¥ on R? and let
U(z) = e3d(z1,x2), where e3 = (0,0,1). Then it can be readily checked that U is a stationary
solution. We can now apply a stretching factor s > 0, a general rotation O and a translation by
a vector p to define

U(z) = sOU(O  (z —p)).
Observe that the periodization of this function defines a stationary solution on T? when Oes
belongs to aQ? for some a > 0. From now on, with a slight abuse of our terminology, the word
Mikado flow will always refer to such periodization. Moreover the vector f = sOes will be,
without loss of generality assumed to belong to Z? and will be called the direction of the Mikado
flow, while p will be called its shift.

In this paper f will vary in a finite fixed set of directions F (which in fact has cardinality 270)
and for each f we will specify an appropriate choice of ¥, which will be smooth and compactly
supported in a disk B(0, %0). The precise choice will be specified later. ¢ will not depend on
the shift p and we will denote by Uy the corresponding Mikado flows when p = 0. Observe that
Us = fis for some smooth ¢y € CP(R3) with f - Vi); = 0. One key point, which is used since
the pioneering work [10] is the following elementary lemma:

8



Lemma 3.1. For each f € F, let p(f) € R?, vy € R and A € N\{0}. Assume that the supports
of the maps Ug(- — p(f)) are pairwise disjoint. Then

Sy Ur(Ma - p(f))

feF
is a stationary solution of the incompressible Euler equations on T3.

Note that the supports of the functions Uy(- — p) and vy(- — p) are contained in a %—
neighborhood of

lf+p:={xeT3:(x—af—p)627rZ3 forsomeaeR}. (3.1)

If dy is sufficiently small, depending on f, the latter is a “thin tube” winding around the torus
a finite number of time (this inspired the authors of [10] to call Uy a Mikado flow, inspired
by the classical game originating in Hungary). In a first approximation we wish to define our
perturbation vy41 — v4 as

2 1 (Ry(t,2), 0q(t, 2))Up (Ma = p(f))

feF

where the coefficients v are appropriately chosen smooth functions (later on called “weights”),
A is a very large parameter and the p(f) are appropriately chosen shifts to ensure the disjoint
support condition of Lemma 3.1 (namely that the Cff—neighborhoods of Iy + p(f) are pairwise
disjoint). As already pointed out such Ansatz must be corrected and we need to modify the
perturbation so that it is approximately advected by the velocity v,. Note that on large time-
scales the flow of the velocity v, does not satisfy good estimates, while it satisfies good estimates
on a sufficiently small scale 7,. Following [3] and [15] this issue is solved by introducing a partition
of unity in time and “restarting’ the flow at a discretized set of times, roughly spaced according
to the parameter 7,. However, unlike [3] and [15] one has to face the delicate problem of keeping
the supports of the various Mikado flows disjoint. This is done by discretizing the construction
in space too, taking advantage of the fact that for sufficiently small space and time scales, the
supports of the transported Mikado flows remain roughly straight thin tubes: the argument
requires then a subtle combinatorial choice of the “shifts”. As in [13] the introduction of the
space-time discretization deteriorates the estimates and accounts for the Holder threshold %
This is certainly better than the exponent achieved by Isett in [17], however it comes short of
the conjectural exponent % precisely because of the several additional errors introduced by the
discretization.
We break down the exact description of the perturbation in the following steps:

e In Section 3.1 we describe the choice of the directions F and the respective functions
Uy

. Inf Section 3.2 we describe an appropriate regularization of the (vg, py, Ry, Kq, ¢q) and we
introduce the drift of the regularized velocity;

e In Section 3.3 we describe the main part of the velocity perturbation, which involves the
space-time discretization, the combinatorial choice of the shifts and the drifted Mikado
flows;

e In Section 3.4 we detail the choice of the weight of each Mikado flow;

e In Section 3.5 we specify a further correction of the main velocity perturbation, which
ensures that vy, 1 is solenoidal.

3.1. Mikado directions. To determine a set of suitable directions f, we recall two geometric
lemmas. In the first we denote by S the subset of R3*3 of all symmetric matrices, let Id be the
identity matrix and set | K| 1= |(Kim)|w = max m, |k | for K € R3%3,
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Lemma 3.2 (Geometric Lemma I). Let F = {fi}°_; be a set of vectors in Z3 and C a positive
constant such that

6
Z [i®fi=CId, and {f;® fi}S_, forms a basis of S. (3.2)

i=1

Then, there exists a positive constant Ny = No(F) such that for any N < Ny, we can find
functions {T'f,}5_; = C®(Sn; (0,0)), with domain Sy = {Id—K : K is symmetric, |K|, < N},
satisfying

6
Id—K =Y T%(Id— K)(fi®fi), ¥(Id—K)eSy.
=1

Proof. Since f; ® f; is a basis for S, there are unique linear maps L; : S — R such that
A= ZL Vi®fi  VAeS.

On the other hand by (3.2) and the uniqueness of such maps, L;(Id) = % for all i. Choose now

No so that L;j(A) > 5 for all A€ Sy,. It thus suffices to set I'y,(A) := 4/L;(A) for all A€ Sy,
to find the desired functions. O

Lemma 3.3 (Geometric Lemma II). Suppose that

{f1, f2, f3} < Z3\{0} is an orthogonal frame and fy = —(f1 + fo + f3). (3.3)

Then, for any No > 0, there are affine functions {I'f, }1<k<a © C(Vny; [No, 0)) with domain
= {ueR?®: |u| < No} such that

U = Z ka(u)fk Yu e VNO .

Proof. Since {fx}?_, is orthogonal, any vector u in R?® can be written as u = ZZ_I 7 ‘2 k f.. Define

2Ny + , k=1,2,3
Ly (u) = lf ‘2 _
2Ny k=4.

Clearly the functions are affine (and thus smooth), whereas a direct computation gives u =

Soboy Dp, (u) fr T € Vi, using |u] < No and [f] > 1, we get Ty, (u)] > 2No — £ > No when

k =1,2,3. Therefore, it is obvious to have |I'y, (u)| = Ny for any u € Vy;. O

Based on these lemmas, we choose 27 pairwise disjoint families 77 indexed by j € Z%, where
each F7 consists further of two (disjoint) subfamilies F7# U F7% with cardinalities |F7/%| = 6
and |F7¥| = 4, chosen so that F7-® and F7% satisfy (3.2) and (3.3), respectively. For example,
for j = (0,0,0) we can choose

Fil = {(1,4£1,0), (1,0, +1), (0,1, +1)}, F¥* ={(1,2,0),(~2,1,0),(0,0,1), (1, -3, —1)}

and then we can apply 26 suitable rotations (and rescalings). Next, the function ¢ will be chosen
for each f in two different Ways depending on whether f € 7% or f € F/%. Introducing the
shorthand notation (u) = §i u(z) dz, we impose the moment conditions

Wpy =@ =0, &i=1 VfeFR,

Wypy=0, @H=1 VfeF® (3.4)
10



The main point is that the Mikado directed along f € F/ will be used to “cancel the error R,”,
while the ones directed along f € F7*¢ will be used to “cancel the error ¢,” and the different
moment conditions will play a major role. In both cases we assume also that

n
10

where 7 is a geometric constant which will be specified later, cf. Proposition 3.5.

supp(¢¢) € B (lf, ) ={zeR: |z —y| < 1 for some y € Iy}, (3.5)

3.2. Regularization and drift. We start by suitably smoothing the tuple (vq, pg, Ry, Kq: ©q)-
To this aim we first introduce the parameters £ and /4, defined by

3
1 Sgi1 ) ® 1
b=—— (%)7&: T3, 1T 11
AgAger 1 Ad Ag+10d 0g4

The space regularizations of v, and p, are defined by applying a “low-pass filter” which roughly
speaking eliminates all the waves larger than ¢~!. In order to do so we first introduce some
suitable notation. First of all, for a function f in the Schwartz space S(R?), the Fourier transform
of f and its inverse on R? are denoted by

1
(2m)3 Jgs

fe) = (@ewida, Fla) = | )i

As usual, we understand the Fourier transform on more general functions as extended by duality
to S’(R3). Since practically all the objects considered in this note are functions, vectors and
tensors defined on I x T3 for some time domain I — R, regarding them as spatially periodic
functions on I x R, we will consider their Fourier transform as time-dependent elements of
S’'(R3). We then follow the standard convention on Littlewood-Paley operators. We let m(£) be
a radial smooth function supported in B(0,2) which is identically 1 on B(0,1). For any number
j € Z and distribution f in R3, we set

(@ = m () 1. Pag©= (1-m(5)) fo.

Pof(e) = (m (;) —m <2fl>) i)

For a positive real number S, we finally let P<g equal the operator Py for the largest J such

that 27 < S. We are thus ready to introduce the coarse scale velocity v, and pressure p; defined
by

and for j € Z

vp = Pey-1vq, po = Pep-1pq. (3.6)

Note that, regarding v as a spatially periodic function on I x T3, Pc,~1v can be written as the
space convolution of v with the kernel 23/m(2”7.), which belongs to S(R?). In particular vy is
also spatially periodic and will be in fact regarded as a function on I x T3. Similar remarks
apply to several other situations in the rest of this note.

The regularization of the errors Ry, k4 and ¢4 is more laborious and follows the intuition that,
while we need to regularize them in time and space, we want such regularization to give good
estimates on their advective derivatives along vy, for which we introduce the ad hoc notation

Du( = at+Uﬁ'V.
11



First of all we let ®(7,z;t) be the forward flow map with the drift velocity v, defined on some
time interval [a, b] starting at the initial time ¢ € [a,b):

0@ (1, x;t) = vo(T, (T, 23 1))
{fl)(t,ac;t) =x. D

Remark 3.4. Strictly speaking the map above is defined on [a, b] x R?. Note however that the
periodicity of v, implies that ® induces a well-defined map from [a, b] x T2 into T2. From now
on we will implicitly identify both maps.

We then take a standard mollifier p on R, namely a nonnegative smooth bump function
satisfying |pllz1r) = 1 and supp p = (—1,1). As usual we set ps(s) = 5§ tp(671s) for any § > 0.
We can thus introduce the mollification along the trajectory

(ps *o F)(t,x) = jR F(t+ s, ®(t+ s,x;t))ps(s)ds.

(Note that if F' and vy are defined on some time interval [a,b], then ps #¢ F' is defined on
[a,b] —¢.) This mollification can be found in [15] and is designed to satisfy

Dy o(ps #a F)(t,x) = J(DMF)(t + 5, Q(t + s,x;t))ps(s)ds = — fF(t + 5, ®(t + s,7;1))p5(s)ds .
The regularized errors are then given by

Ry = pe, ¢ P<y-1Rq, 00 = pe, *0 P<y-1pq, rp = tr(Ry). (3.8)

These errors can be defined on [0,T] + 27, by the choice of sufficiently large Ag. We will need
later quite detailed estimates on the difference between the original tuple and the regularized
one and on higher derivative of the latter. Such estimates are in fact collected in Section 5.

3.3. Partition of unity and shifts. We first introduce nonnegative smooth functions {xy},cz3
and {0y, }mez Whose sixtth powers give suitable partitions of unity in space R? and in time R,

respectively:
D@ =1, Y o) =1

nezs3 meZ
Here, xn(x) = xo(x —27n) where xp is a non-negative smooth function supported in Q(0,9/8)
satisfying xo = 1 on Q(0, 7/87), where from now on Q(x, r) will denote the cube {y : |[y—x| < 7}
(with 2| := max{|z;|}). Similarly, 0,,(t) = 0o(t — m) where 6y € CX(R) satisfies p = 1 on
[1/8,7/8] and 6y = 0 on (—1/8,9/8)¢. Then, we divide the integer lattice Z> into 27 equivalent
families [j] with j € Z3 via the usual equivalence relation
n = (n1,ng,ng) ~n = (n1,n9,n3) < n; =n; mod3 foralli=1,23.
We use these classes to define the set of indices
I ={(m,n,f): (m,n)€ZxZ> and fe Fr}.

For each I we denote by f; the third component of the index and we further subdivide .# into
Jr U I, depending on whether fr € F (LR or f; e FInle Next we introduce the parameters
T =174 and p = pg with 7.° 1'>0and uq_l € N\{0}, which are explicitly given by

11 1 _1 11 11
gt =3[AAZ 640, /3], Tt =40m Myt NGAZ 6460, (3.9)

(note that M in 7, is required in order to satisfy the last condition in (6.7)). we define
63 (r—1t), Ie.7 S(w™tr), Ie.s,
Qj(t) _ ;n( . ) R Xl(x) _ X2 (:u_l ) R
02,(r1t), Ie s, C(uta), e,
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Next, for each I let Uy, be the corresponding Mikado flow. Moreover, given I = (m,n, f),
denote by t,, the time t,, = m7 and let {; = &, be the solution of the following PDE (which
we understand as a map on R x T? taking values in T3, cf. Remark 3.4):

até.m + (UZ : V)ém =0
gm(tmy l’) =T

In the rest of the paper V&; will denote the Jacobi Matrix of the partial derivatives of the
components of the vector map £; and we will use the shorthand notations VﬁIT, Vﬁl_l and VﬁI_T
for, respectively, its transpose, inverse and transport of the inverse. Moreover, for any vector
f € R? and any matrix A € R3*® the notation V&7 f and VErA (resp. V&;lf, etc.) will be used
for the usual matrix product, regarding f as a column vector (i.e. a R3*!'-matrix).

For each I = (m,n, f) we will also choose a shift

(3.10)

2 = zm7n+ﬁf6R3

and, setting A = A\g41, we are finally able to introduce the main part of our perturbation, which
is achieved using the following “master function”

W(R’ 2 ta :E) = Z el(t)XI(gl(t’ x))'VI(Ra ®, tv :L')fol(t, x)UfI ()‘(gl(ta 55) - ZI)) 3 (3'11)
Ies

where the v7’s are smooth scalar functions (the “weights”) whose choice will be specified in the

next section. In order to simplify our notation we will use Uy for Uy, (- — z1), ¥ for ¥y, (- — 21)
and f7 for Vfl_l f1- We therefore have the writing

W= Orxr(Envefror(Ar) (3.12)

les
Note that, since we want W to be a periodic function of x, we will impose

Zman = Zmn! if u(n —n') e 2n7Z3. (3.13)
Finally, the main part of the correction vy41 — vq will take the form
Wo(t,x) := W(Ry(t,x), pu(t, x),t, ) (3.14)

which is well-defined on [0, 7] + 27,. (Indeed, it is possible to have [0,T] + 37, < [0,T] + 741
by the choice of sufficiently large Ag). In the rest of Section 3, without mentioning, our analysis
is done in the time interval [0,7] + 27,. Given the complexity of several formulas and future
computations, it is convenient to break down the functions W and w, in more elementary pieces.
To this aim we introduce the scalar maps

wy(t,z) == 0r(t)xr(&r(t, 2))vr(AEr(t, @),

using which we can write

W(R,¢,t,x) = Y (R, t,2)VE(t, )" frwr(t,x) = Y (R, @, t,2) fr(t, 2)wi (1, )
Ies Ies

and
wo = Y, WVE  frwr = Y v frwr.
les Iey
The crucial point in our construction is the following proposition, whose proof will be given in
Section 3.5.

Proposition 3.5. There is a constant n = n(F) in (3.5) such that it allows a choice of the shifts
21 = Zmm+Dy which ensure that for each (g, T¢, Ag+1), the conditions supp(wr) nsupp(wy) = &
for every I # J and that (3.13) for every m,n and n'.
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3.4. Choice of the weights. We next detail the choice of the functions 7, subdividing it into
two cases.

3.4.1. Energy weights. The weights ~; for I € ., will be chosen so that the low frequency part
of %|wo|2wo makes a cancellation with the mollified unsolved current ¢,. Because of Proposition
3.5, we have

wol*we = Y OIXHENTVIUE N1 €0)IVE f11PVE  fr

V=4
= Z 07x7 (&1 <¢f>|fl| fr+ Z 07X (i (¢1( g+1&1) — <7/’§>) |fI|2fI .
V=4 V=4

' '
=:(|wo|?wo)L =:(|wo|2wo)

In order to find the desired 77, we introduce the notation %, ,, , for {I € .7, : I = (m,n, f)}
and we observe that, by (3.4), it suffices to achieve

t L
(oo = S8 (L) (52) 5 . (3.15)
m,n Tq Hq IeSmm,p
Next we look for our coefficients in the following form:
Y= 7)\ 75%1
|f1]3

where I'; will be specified in a moment.
Recall that 7 is a solution to (3.10) and satisfies V&r|;—¢,, = Id and

Vet x) = VO (t, & (8 2)),

where ®,, is the “forward flow” ®(t, z;t,,) introduced in (3.7) and thus solves

é’t@m(t,aj) = Uﬁ(ty (I)m(taf)) (3 16)
D, (tm, z) = . '
This implies that
1
IVErlcoz, xrs) < exp(27¢[Vglo) < exp(2M7gAg04),
11d = V& ooz, xrs)= 1d = V0l oz, xR
< 274Vl oz, xr2) [Vvglo (3.17)

1 1
< 2MTyNg04 exp(2M g6 )

for the time interval Z,, = [ty — 374, tm + 374] 1 [0,7] + 27,. Therefore, for sufficiently large
Mg, we have

»P\OO

\fil = V& fr| =
||2)\375qf1(V§I)80£H00 < 30y

on the support of §r for some C;. Since {f;: I € S pno} = Flnl# satisfies (3.3), we can apply
Lemma 3.3 with Ny = 3C to solve

200 = >, VP = 2/\3”5qf1(V§z)w = > Tif
IEjmyn#p Iejm,nw
14



on each support of 6 (observe that we have crucially used that {5 = &, is independent of f; for
I € S pn,). Weare thus in the position to apply Lemma 3.3 to the set Flnle — ={fr:1€ Imne}
and we let 'y, I € %, 5, , be the correspondlng functions. As a result, we can set

Lyt z) = ( )\375q+21(v&)9012) : (3.18)

Note that the smoothness of the selected functions I'y, depends only on € and that in fact
Lemma 3.3 is just applied 27 times, taking into consideration that [n] € Z3. For later use we
record here the important “cancellation property” that the choice of our weights achieves:

1
§(|wo‘2wo)L = —Pe- (3.19)

3.4.2. Reynolds weights. Similarly to the previous section we decompose w, ® w, into the low
and high frequency parts,

Wo @ Wy = ZQ%X% ENTPT A1) f1 @ fi

*ZQIXI VW fr +291X1 VE (Y7 Agr1&r) — WD) fr® fi .

::(wo®wo)L (wo®wo)H

Since the weights for I € .#, have already been established, for each fixed (m,n) we denote
by I(m,n) the sets of indices (m'n’) such that max{|m — m/|x,|n — 1|} < 1 (where |u|y :=
max{|u1l, |usl, |us|} for any u € R?) and rewrite

(wo @ wo)r = Y 65, (:) X5 <§m> D o aihi®fi+ Y 0pGEDTWN® [
m,n q Hq Iedm n.R Je g,

= Z O () <€m> Y, vifiefi+ > 05 (NI @

Hq 1€Y' n,R Jeﬂ/ np
(m’ n')el (m.n)

To make w, ® w, cancel out d4411d — R;, we recall that fI ® fr = V{I_I(fj ® f;)V{I_T and set

Y A=V [5q+1ld ~R— ) D G ENWD® f| Ve

IeImmn.r (m'n")el(m,n) JEI, 1 1, i
(3.20)
We now define M as
M = 0441[VEVE] —1d] — VERVES
- V¢ > D OGENIWD® fr | VET
(m'n")el(m,n) JEL 1 1
1
and vy = 5;+1F1 (for I € S, . r) and impose
2 Difr@ fr=1d+ 6, M; (3.21)

Ieﬂm,n,R

In order to show that such a choice is possible observe that we can make [J,- +11MI o (supp(67) x®3)

sufficiently small, provided that Ag is sufficiently large, because of (3.17), H(Sq +1RgH0 < )\_37, and,
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Héqullfy?,Ho < A2 when J € St o We can thus apply Lemma 3.2 to {f; : I € Sy, , g} = FINE

and, denoting by I'y, the corresponding functions, we just need to set
I =Ty (Id— 65 M),

Observe once again that this means applying Lemma 3.2 just 27 times, given that there are 27
different families FIE. We finally record the desired “cancellation property” that the choice
of the weights achieves:
t
(wo @ wo), = Y 05, () X5 <f;”> (0g+11d = Ry) = 84411d — Ry. (3.22)
q

m,n Tq

3.5. Fourier expansion in fast variables and corrector w.. In the rest of this article, we
use a representation of w,, w, ® w,, and %]w0|2w0 based on the Fourier series of vy, 1/1% and zﬁ’ .
Indeed, since 17 is a smooth function on T® with zero-mean, we have

Yr(z) = bre™®, 3a) = éro+ D1 e, Y3(@) = dro + > dp ™

keZ3\{0} keZ3\{0} keZ3\{0}
(3.23)
In particular,
¢ro =W, dio= .
Since vy is in C®(T3), we have
SRR orl + > kel + Y RO dr gl <1, Y [éral? < 1 (3.24)
keZ3 keZ3 keZ3 keZ3
for ng = [ %]. Also, it follows from f; - Vipy = f1- Vb2 = fr- Vb3 = 0 that
b[,k(f[ . ]C) = éj’k(f[ . k) = de(f] . k) = 0. (3.25)
Next, as a consequence of (3.19), (3.22), and (3.23), we have
1 A
Wy = Z Z 5;+1bm,ke’>‘q+1k'£’ (3.26)
m keZ3\{0}
Wo @ Wy = dg411d — Ry + Z Z 5q+1cm7kei’\‘1“k'€’ (3.27)
m keZ3\{0}
1| ‘2 = —p) + 12 2 5% d iXg+1k-€r (3 28)
B Wo| Wo = —¢¢ B q+19%m k€ .
m keZ3\ {0}
L2 3 1 iNgr1k€r
5 lwol® = —re + S0 + 52 Z Syt tr(Cm )€ Ma 1 REL, (3.29)
m keZ3\{0}
where the relevant coefficients are defined as follows:
5 N
b e = Z Orx1(€r)d, vk fr = Z Brf1,
I'mr=m I'mr=m
Cmk = . Z Q%X%(&)‘Sq_jl')’%él,kfl ® f1, (3.30)
mr=m
3.3 3 .35 |F2F
dm e = Z 01x1(€)0, A vidrl frl” f1-
I'mr=m
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Observe that, by the choice of 0y, if |[m —m/| > 1, then

Suppy (b, k) N SUPPy 4 (b 1) = SUPDy 4 (Cim k) O SUDPDy & (Cont 1)
= suppy ,(dm k) N SUppPy 4 (d 1) = I
for any k, k' € Z3\{0}.
We next prescribe an additional correction w, to make w = w, + w, divergence-free. Since

we have (3.25) and the identity V x (V&JU(&r)) = V&1V x U)(&;) for any smooth function
U (see for example [10]), we have

1k o '
V x <bl kngl |]:|2f1 Mqﬂk&]) = b[’kVSI_lerl/\qu-&.

Using this, the “preponderant part” w, of the velocity correction can be written as
- N s N Buve et

meZ I'mp=m
keZ3\{0}

)‘q-i-l

2
- 66’“ >, BV x (VfTZk L “qﬂ’“ff).

2
MEZ q+1 I:mr=m |k|
keZ3\{0}

Therefore, we define

62 ik . 52 .
Og+1 Tk X f1\ inirkee g+1 Ags1he€
We = VBy X <V§ >e TS = ——— ) ey e TV (3.31)
/\q+1 mze:Z mzzm ‘k|2 )\q-&-l/‘qr%
keZ3\{0}
where
-5 9 ik x fr
emk = tg Y, V(Orxr(&)d, Avibrx) x | (VEr) RrEA (3.32)

I'mi=m
In this way, the final velocity correction vg11 — vy =: w = w, + w, can be written as
1
52
q

ZBI kV§TZk X J1 ehariher |

w=V x
q+1lk |k7|2

and hence it is divergence-free. For later use, we remark that if |m — m/|>1, supp, ,(emr) N

SUPP; 4 (€m/ 1) = & holds for any k, k' € Z*\{0}. Also, by its definition, the correction w has the
representation

1 .
w=" 3 G2 (b + geipig) Lemp)e ke (3.33)
meZ keZ3\{0}

4. DEFINITION OF THE NEW ERRORS

4.1. Preliminaries. To define the new triple (kq, Rq, ¢4) We need to “invert the divergence” of
vector fields and tensors. For this purpose, we recall the inverse divergence operator introduced

n [13].

Definition 4.1 (Inverse divergence operator). For any f € C®(T3;R3), the inverse divergence
operator is defined by

1 1, _ _ _
(Rf)ij = Rijrfr = _iA 2Ok fr + §A Yo frdij — AT10if; — A0, fi
17



Remark 4.2. The image of the divergence free operator R f(x) is designed to be a trace-free
symmetric matrix at each point x and to solve

div(Rf) = f =<{f>-

To define unsolved currents, we also need an inverse divergence operator which maps a mean-
zero scalar function to a mean-zero vector-valued one. To this end, we abuse the notation and
define

(Rg)i = A‘lé’ig.
Indeed, divRg = g — (9.

4.2. New Reynolds stress. Having defined the correction w of the velocity as in the previous
steps and after setting 0 for the correction on the pressure (namely p,1 = p,), we can reorganize
the Euler-Reynolds system and the relaxed local energy equality as the equations for the new
Reynolds stress Rq+1 and for the unsolved current ¢q41, respectively (while we simply impose
KRg+1 = %tr Rq+1.

We first define R,41. Using the given relation divg + V - (v, ® v4) + Vpy = V - Ry (note that
we are dropping @Id from the equation as the latter, being just a function of time, disappears
after we apply the divergence) , we can write the equation for R4y as

V Rgi1 = 0tvg1 + V- (V41 ® vg11) + Vg1
=0 +v-Vw+w-Vo+V- (w®w+ Ry)
_ L —— ¢ /
=V-Rp :IV'EN ::V-Eio
+ V- ((vg—v) @w +w® (vg — vg) + Ry — Ry),

"

v~

*
=:V-Ry
*
and Rp can be decomposed further as

V-éo:V~(wo®wo+R5)+V~(wo®wc+wc®wo+wc®wc).

" v "

e Tk
=V-Ro1 =V-Rp2
In fact we will define R, 1 as
* * * * # 2
Ryi1 = Ry + Ry + Ro1 + Ro2 + Ry + gg(t)ld. (4.1)

Note that the last summand is not impacting the divergence of R,;1, since it is a function
of time only. The reason for introducing this extra term, which at the moment is not of any
relevance, will be clear once we get to the definition of the new current.

First, our choice of ﬁOQ and }%M are
%
Ro2 = wo, @ we + we @ wo + we @ We . (42)
and

*
Ry =Ry—Ro+ (vg—v) Qw4+ w® (vg — v),
X AN -~ (4.3)

* *
=Rnn =Rp2

which are the only two Reynolds stress errors which might have nonzero trace. For the other
errors, we solve the divergence equation by using the inverse divergence operator R in Definition
18



4.1 to get trace-free errors, namely we set
Ror =RV - (w, ®w, + Ry))
]ﬂ%N = R(w - Vuy)
ﬁT = R(Cw + vy - Vw) .

Observe that all the tensors to which we apply the operator R have zero average, because
w- Vo=V -(w®uv), vg- Vw =V - (v, ®w) and w (and therefore d;w) have zero average.
As a result, we also have
% *k
tr Rq+1 = tl"(ROQ + RM) + 20,
which gives
1 1 * *
Rg+1 = 5 tr Rq+1 = 5 tr(ROQ + RM) + 0. (44)
In fact, for later use we will split the function ¢ into the sum of three functions, gy + 01 + 02
and we thus have
1 ¥ *
Kgt1 =5 tr(Ro2 + Rar) + 00 + 01 + 02.

4.3. New current. Applying the frequency cut-off Pcy-1 to the Euler-Reynolds system, we
have
Ot + V- (v ®ug) + Vpr = V- Pey1 Ry + Q(vg, vg).
where, upon setting (v, ®vq)r = Pep-1(v4®vy), the term Q(vy, vq) is the following commutator:
Q(vg,vg) =V - (ve @ vg — (Vg ® vg)e) - (4.5)
Also, we recall that the tuple (vg, pg, Ry, Kq, ¢q) solves

1 1
o (2\vq|2) +V- ((2yvq\2 + pq> vq> = (0 + g V)kg+ 3E'(t) + V- (Rgvg) + V - .

Using these equations, the relaxed local energy equality for (vg11, Pg+1, Rg+1: Kg+1, Pg+1) can be
reorganized as

1 1
Ot (2|Uq+1|2> + V- <<2|Uq+1|2 +Pq+1> Uq+1>

=3E' () + (6 +vg- V) (;W + kg + (Vg — ve) - w) +V- <<;!wlz> w+ w)

"

~— ~—

:¢(5t+vq+1-v)(ﬁq+1*Ql*Qz)JrV-:ST =V-$o
+ diV(Rq+1vq+1) - diV(Rq+1TU)
[ —

*
=V-or

# 9 (Gl = o+ g =90 ) w) 4 (g = 00) + 5 - (w0 + Ry~ Ryir) 1y = v0)

<

=V-$ur
+ (div Pep-1 Ry + Q(vg,vq)) - w

<

=V-$r1+oer
+ (w®w — bg41ld + Ry — Ryq1 + (vg — ) Qw + w ® (vg — vy)) : VUZ .

.

=0102+V-$piz
The functions gg, 01, and g2 will be defined so to ensure that the divergence equations can be

solved. Indeed observe that in order to solve V -z = f on the periodic torus, it is necessary and
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sufficient that the average of f equals 0. In fact under such assumption a solution is provided
by the operator R introduced above. More precisely, first of all we observe that we can set

$0 = Qo1 +Po2: =R (V- ((%|wo\2) wo + ¢¢)) + R (V- (%(|w|2w — |w0|2w0))) (4.6)
ér 1= (Rge1 — Feld)w (4.7)
ou = (51vg = vel® + (pg — ) w + g — @1

(4.8)
+ (w® w—6g411d + Ry — Rgs1 + 30Id)(vg — vy) .
Next, recall that kg1 = %tr(ﬁog + ﬁM) + o and that
1, 5 3 1 3 3 1
5\11}] + kg + (vg —vp) - w = §6q+1 + 5‘61"(302 + Ryr) + St (wo @ wo — dg111d + Ry) w9)
4.9
3 1
= §6q+1 + Rg+1 — 0 + 5 tr (wo R w, — (5q+11d + Rg) .
In particular, the equation for ¢r becomes:
V.-gr+ oy = div(—(Kkg+1 — 0)w + %tr (Wo @ Wo — dg411 + Ry) (vg — vp)
+ %Dt,ﬁ tr (wo ® wo — 0g4+11 + Ry)
(where we have used that V - w = 0). Hence we can define QET = Sle + QZTQ and g as
1
o1 = —(Kg+1 — 0)w + 3 tr (wo @ wo — dg4+11 + Ry) (vg — ve) (4.10)
t
o0(t) = f (D3 tr (wo @ wo — dgi11 + Re))(s) ds (4.11)
0
$ro =R (Dt,g% tr (wo ® wo — Og+11 + Rg)) . (4.12)

Observe that g is defined in such a way that div @po + 0y = Dt,ﬁé tr (wo ® wo — dg411 + Ry).
Similarly, we set

01(t) := L<(div Pp-1Ry + Q(vg,vq)) - wH(s) ds (4.13)

t
02(t) := f {(w®w — 4411d + Ry — Ryy1 + (vg — v0) @ w +w ® (vg — vg)) : Vo )(s)ds (4.14)
0
and
G = R ((div Pep-1 Ry + Q(vg,vq)) - w — O101)
Sr2 =R (w®w — bg411d + Ry — Rgy1 + (vg — v0) @w + w ® (vg — vy)) Vo, — 0102)
Observe that, while R,41 has been defined in terms of o, we have
T * # ® * * 2 T
Ry11: Vv, = (Rr + Ry + Ro1 + Ro2 + Ry + gg(zt)ld) : Vo,
% * % * % T
= (Rr + Ry + Ro1 + Roa + Ryr) : Vo

since Id : Vv = V - vy = 0. In particular the right hand side of (4.14) is independent of gs.

5. PRELIMINARY ESTIMATES

We now start detailing the estimates which will lead to the proof of the inductive propositions.
In this section, we set || - |n = | - |co(jo,7] ;0% (13))-
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5.1. Regularization. First of all we address a series of a-priori estimates on the regularized
tuple and on their differences with the original one. By its construction, we can easily see that

1
lvelv <n 07763, el <n 76y, VN =1,
3
ID7eRello S €201, [Dfapello s €A ¥03,1, Vs = 0.
Also, there exists b(a) > 1 such that for any b € (1,b()) we can find Ag = Ag(a,b, M) with
the following property: if Ao = Ag, then |VVNH1®(t + s,2;t)| <pr £~V holds for N > 0 and
s € [, ¢¢]. This implies

G D3 R vSs.vmr €A 1641 (5.1)

3
GID; e v s VAT

. (5.2)

For the detailed computation, see [15, Sectionl8].
On the other hand, the differences between the regularized objects (v, pe, Ry, p¢) and their
original counterparts satisfy the following estimates.

Lemma 5.1. There exists b(a) > 1 such that for any b € (1,b(a)) we can find Ao(c,b, M)
with the following property. If Ao = Ao and N € {0,1,2} (recall that we follow the notational
convention explained in Remark 2.2) then:

ot
w

_1 1
lvg — vel|n + 6q 2| Dee(vg — ve)lv—1 < 27V A268,

(@)}
B

_1
Ipg = pellv + 8g > | Dee(pg — po) -1 < 27V AGd,,

1 1 1 1 3
1 Ny 111
|Rg — Relln + 0451 [ Dee(Rg — Re) [n—1 S AgyaAd Ag 2164 644
1 1 1 1 5
1 N Lol 15
log — pellv + 6,21 Dee(eg — po) [N—1 S Agy1Ad Ay 104 6441

— — — —
A ¢
(@) ot

= =L =z

Here, we allow the implicit constants to be depending on M.
Proof. Set Poy—1F := F — Py-1F = P_osF, where J € N is the largest natural number such
that 27 < lfl. By Bernstein’s inequality, we have |F — P<y-1F|g = |Psy-1F|o < ¢|VIF| for
any F e C7(T3). Using (2.4) we then get
1

[vg = vely < 7N |V20lo < 27VAZZ,

Ipg —pelv < 7N |V?plo < 27VAZS,.
Also, we have

(P =t %0 P)ts2) = | (P 45,90 + 5.2:) = F(t.0)pu (5)ds

S
= f f D F(t+ 1,9(t + 7,2;t))dTpe, (5)ds,
R JO

from which we conclude || F'—py, ¢ F'||co((a,5)«13) < €| Do Fllco([a,p] 44, xT3) Decause of supp(py, ) ©
(=4, 4;). In addition, we have a following decompositions,

F— Pl ¥ P<571F = (F - Pg(—lF) + (ng—lF il ngle), (57)

Dt’fpggle = ngletgF + [’Ug . V, ngfl]F, (58)

where as usual [A, B] denotes the commutator AB — BA of the two operators A and B. Note

that D, (F' can be further decomposed as Dy ¢F' = D F + (vg—vg) - VF. Then, using (2.7), (2.8),
21



and (A.3), we obtain
| Rq = Rello < |1P>e-1 Rgllo + £e]| Dy e Pep—1 Ryl o(zaxr2)
< C||Rgl2 + £(| DRyl ozaxtsy + €IVglozaxt) | VRl o (zaxt))

1 1.1 13
< ((O0g)* + eXg0G )N 0041 € A A104 0441,

and
log — ello < |1Pse-1pgllo + Lol Dee Peo-1¢gllo(zaxts)
< Cleglz + (| Drepglozaxesy + L1V gl ozaxts) [Veqloaxs))
1 3 1.1 15
S ((OA)? + 003 )M 7001 S AFALAGE 004,
where 79 = [0,7] + 7,-1. Furthermore, we use [VN®(t + s,2;t)| <y AY 7! for N = 1,2,
s €[4, 4], t = 0, and combine it with (2.7), (2.8), and (A.1), to obtain for N = 1,2,
|Rq = Rell v < |1Pag-1Ryllv + | Ryllv + [ Rellv < (051 (€0g) + A0 DA 81

1 1 1 3
N 2y 2 5151
SEWERY, )‘q+15q 5q+1

and
3
2

leg = ¢ellv S 1Pse-reglln + legln + lpelv S (A1 (E0g)? + XA 2162,
1 1 1 5
N b oL 18
< MAEA B0
provided that sufficiently small b — 1 > 0 and sufficiently large Ag.
Now, we consider the advective derivatives. We remark that for Fy = P—1F, we can write

Dyy(F — Fy) = Dy yPoyr F = Poy1 Dy oF + [vg - V, Po g | F.
Then, we apply this to F' = v and F' = p and use (A.4) to obtain
| Dte(vg — ve) [n—1 < |Pog-1 D gvg|n—1 + [[[ve - V, Psp=1]vg| N1
1
S Dy w + £ (v = ve) - Vol + V[ Vglg < 27N (203)?
and
| Dte(pg — pe)|N—1 < | Pop=1Degpgln—1 + [[[ve - V, Pep-1]pg| v -1
11
S UDwpqln + £ (vg = ve) - Vpgllv + N[Vl Vpgllo < 27N (A8¢)%65 -
In a similar way, we have

1
| DtePop-1Rylln—1 < | DeeRylv-1 + €N [Vuglol VRyllo < A7 Aedi Ay ¥ 1811

i 3 (5.9)
| DtePop-10ln-1 < |Deegqlln-1 + N [Voglo|[Vigllo < Agii Agdd A7>762,1-
Simply applying the triangle inequality, it can be easily shown that
1
HDt,Z[Pséfqu — P *o P«*qu] Inv-1 < 2“Dt,ZPSZ*1RqHN—1 < )\évﬁl)‘qéqz A(;quﬂ (5.10)
1 3 :
|Dee[Pep-10g = pe, #0 Pep-19q][N—1 < 2[ Dt gPep-19g[ -1 < )\év+_11/\q5¢12 )‘(1_375;-&-1'
Combining (5.7), (5.9), and (5.10), it follows that
1 1 .1 13
| Dee(Rg = Re)[v-1 S Ag10g1 - Ad 104 0441
1 1 1 15
| Dt e(g — o) n-1 S AJ10201 - A A 04 00
O
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5.2. Quadratic commutator. We next deal with a quadratic commutator estimate, which is a
version of the estimate in [9] leading to the proof of the positive part of the Onsager conjecture.

Lemma 5.2. For any N =0, Q(v,v) =V - (v, Qv — (v®v)y) satisfies
1 1 1
[Qvg:vg) v < €7V (NG7)? [DeeQ(vg, vg)Iv S 785G (Ag03). (5.11)
Here, we allow the implicit constants to be depending on M.

Proof. In order to simplify our notation we drop the subscript ¢ fom v,. The estimate for
|Q(v,v)||n easily follows from (A.2). To estimate D; Q(v,v), we first decompose Q(v,v) into

Q(v,v) = (vg—v) - Vg + [v-V, Peyi]o.

~

Recall that le:f(f) = ]5;27]"(5) =m (%) (&) for some radial function m € S, where J € N

is the maximum number satisfying 27 < ¢=!. For the convenience, we set my,(z) = 23/m(27z).
Then, by Poison summation formula, P, f(z) = {55 f(z — y)me(y)dy holds. Using this, the
advective derivative of the commutator term can be written as follows,

Dealv- ¥, Pelo = @1+ (o) - 9) [((vla) = vl = ) - Vele = p)lo)dy
~ [(Drta) = Digvla = ) - V1ot — ey
~ [wnle) = wute = ) Vsl — ) Vuote — y)ita(w)y
+[(0@) = oo - ) - DPyete = i)y
+ [ (00) = v6a = p)uen(@) — oo — )u(@us) o~ y)ialu)dy
Based on the decompositions, we use (2.4), (5.3), and |[y["] 11 (gs) < £% n > 0, to get

| Dt,eQ(v; 0)llo S [ Dre(v = ve) o[ Vvelo + [[v = vello Dr.e Vel

1
+ UV Dy gv]o|Vollo + £ Vol§ + €|Vv]o|DeeVolo + [ Vol§[V0]o < €(A08)?

1
Here, we use |V Dy gvlo < |[VDie(ve —v)|o + VDo + [V (((v —ve) - V)ve) o < (A;02)?, and

1
| DteVvelo < [V Deevello + [Volg < (Ad7)*.

In the case of N > 1, we remark that D, Q(v,v) has frequency localized to < ¢71, so that the
remaining estimates follows from the Bernstein inequality. Similarly, we also have

1
| DoV v < €N (Ag02)°. (5.12)

g

5.3. Estimates on the backward flow. Finally we address the estimates on the backward
flow f].
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Lemma 5.3. For every b > 1 there exists Ao = Ao(b) such that for \g = Ao the backward flow
map &1 satisfies the following estimates on the time interval Z,, = [tm—%Tq, tm—l-%’i'q] N[0, T]+27,

1
11d — Vér|coz,, xr3) < £ (5.13)
1
|D5 VErlcozen sy SN €N (Ag0d)° (5.14)
1
1D; (VD) ™l coz,om meyy S €N (Ag88)°, (5.15)

forany N = 0 and s = 0,1,2. Note that the implicit constants in the inequalities are independent
of the index I = (m,n, f). In particular,

V&l coz,.om @sy) + 1(VED lcoz,onmsy v €. (5.16)
The implicit constant in this inequality is also independent of M.

Proof. First, we can find Ag(b) such that for any Ag = Ag(b), 74| Vv]o < 15 holds. Then, (5.13)
easily follows from (3.17). Also,

HV&”CO(Im;CN(Rs)) SN 14+ 74|V v S 1+ N < N (5.17)
which follows ‘|(V§I)_1||CO(Im;CN(R3)) <n ¢~N. Since we have

Dy V& = —(VEN(Vug), DF V& = (V) (Vue)? = (V&) Dy Vg,

1
using (5.12) and (5.17), | D} ,Vér co(z,,.on ®s)) Sn,M 07N (\;02 ) easily follows. Lastly, we have
Dy o(VEN T = Vu(VEN T D7 y(VENT = Dy Vup(VEDN ™ + (V)2 (VE)
Therefore, (5.15) can be obtained similarly. O

6. CHOICE OF SHIFTS: PROOF OF PROPOSITION 3.5

This section is perhaps the most crucial in our note, as it ensures the key property in the
construction of w,, namely the disjointness of the supports of the single blocks wy in its definition.

6.1. An elementary geometric observation. The basic tool is an elementary fact about
closed geodesics in the three-dimensional torus. In order to state it efficiently we introduce
the following notation. Given a vector f € Z*\{0} and a point p € R3, we consider the line
{Af+p: ) e R} c R3 With aslight abuse of notation, we then denote by Iy p the “periodization”
of such line, namely

lip:={\f+p: XeR}+27Z3, (6.1)

and the corresponding closed geodesic in T3. Next, given two closed geodesics s and ¢ in the
torus (or, equivalently, the periodizations of the corresponding lines in R?), we define

dist(s,0) := min{|z —y| : z € s,y € 7}

Lemma 6.1. Let F be a given family of vectors in Z3 with a finite cardinality and d be a given
positive real number. Then, we can find n = n(F,d) > 0 such that the following holds. For any

two sets of closed geodesics {sy} = {ly, }rer and {3y} = {lq,}rer satisfying
dist(sy,sg) > 2d, dist(3f,5,) > 2d, Vf£geF, (6.2)
we can always find z € R3 with |z] < id such that the shifted geodesics {57} = {lyq4,+-} satisfy

min{dist(ss,3,) : f,g € F} = . (6.3)
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Proof. The proof is based on a contradiction argument. Suppose that there exist a family F
with a finite cardinality and a positive number d for which the statement fails no matter how
small 77 > 0 is chosen. Considering then for each = 1 with k € N\{0} a pair of families of

geodesics which contradict the statement. We then achieve 2|F| sequences of closed geodesics
{0} and {35}, f,g € F, k € N such that:

(a) For any f € F, sgck) and E;k) are given by lg k), ls g, (k) for some choice of vectors
pr(k),qr(k), which without loss of generality we can assume to satisfy the bounds
’pf(k)‘om |Qf(k>‘oo <

(b) The geodesics satisfy the bound

dist(s\", s{") = 2d, dist(3\",5(") > 2d, Vf#geF.
(c¢) For each ke N
. . 1
‘H|13}1{ [mm {dlst(lﬂpf(k)ﬂ,lg’qk(g)) : f,g€ .7-"}] < T
#ISg

Clearly, by extraction of a subsequence we can assume that all the sequences {p¢(k)}, {qr(k)}
converge to some limits py and gy. We thus can consider the corresponding geodesics sy = Iy,

and 8y = Iy 4. The simple inequalities dist(sgck), s¢) < |pg(k) —pys| and dist(fégck), 5f) < |q](ck) —q|

imply

I dist (s dist(3%,3;) [ = 0.
Jim [I}lea}gc ist (s ,Sf)—kr;lea})_( ist(5;7, 5¢) 0

This implies that

. 1
}Eg}dmt(lﬁpﬁz,l%qg) =0, V]z] < Zd’ (6.4)
dist(lp,,lop,) = 2d,  dist(lyg,,lgq,) = 2d, Vf #geF. (6.5)

Denote by 7T the collection of (f,g) € F x F such that Iy, nlg,, # & and set
S = min{dist(lﬁpf,lg,qg) (f,9)¢T}>0.

Clearly, as long as |2| < 3, we have

: 0

dlSt(lf’pf+Zﬂlg,Qg) = 5 >0 V(f,9)¢T. (6.6)
Consider next that, by (6.5), if p € ly5, Nl q,, then p cannot belong to any other geodesic lf’,p’f
or ly g . Furthermore, for any |z| < d/4, we have Iy, 1. Ny = & for all g #geF and
lf/7p}+z Nlgg, = & for all f' # f e F. Consider that, for (f,g) € T, either Iy, nl;,, has
finite cardinality (which occurs when f and g are not colinear) or else Iy, ;= lgaq, (which occurs
when f and g are colinear). In both cases, let L(f, g) be the linear space spanned by {f, g} and
observe that, if z € S? is any vector such that ¢ ¢ L(f,g), then there is §(f, g,¢) > 0 such that

liprarc N lgqy =& V1 e (0,6(f,9,0))-

Since {L(f,g) : (f,g) € T} is a set with finite cardinality, it is clear that we can choose a vector
¢ € S? such that

¢ |J Lira).
(f,9)eT
Having fixed such a (, if z = 7( and 7 is a sufficiently small positive number, we conclude from
the considerations above that |z| < id and

lf,pfﬂ Nlggy = Vf,ge F.
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Given that F is a finite set, the latter statement clearly contradicts (6.4). n

6.2. Proof of Proposition 3.5: Set up. First of all we wish to determine the constant 7 of
the Proposition. Recall that a family F= Ujezg]:j < Z3\{0} has been fixed in Section 3.1 and
it consists of 270, pairwise noncolinear, elements. We first notice that we can choose a finite
family {py} rer of shifts with the property that

Ly Nlgp, = Vf#geF.
Hence we denote by dy the positive number
3dy := min {dist(lfvpf,lg’ﬁg) cf#£ge€ ]:}

and we apply Lemma 6.1 to F and d = dp to get the corresponding n(F,dy). The resulting
positive constant 7 of Proposition 3.5 is then n = min{n(F,dy), do/2}. Therefore we will now
proceed to prove the claim of the Proposition.

In order to simplify our notation we will use x, 7 and A in place of yg, 7, and A\g41 and v in
place of vy,. We recall the following consequences of our choice of the parameters, which will
play a fundamental role in the proof:

_ 1 Ui
1
AeN <—, < .
p < AeN, 7|Vl 10 ut|| Voo TomX (6.7)
(Here, |- lo = [ - |c(o,r)+7,_, x13)-) Next, the choice of the 2, , will be made inductively in the
time discretization parameter m, so that
d
| Zmn| < ZO' (6.8)

Before coming to the specific choice, we argue that the condition (6.8) guarantees
supp(wr) N supp(wy) = I for all I # J with m; =my ; = m.

Indeed, observe that the last claim is implied by the disjointness of the supports of the functions
x1(&NYr(Ar) and x5(€7)Y s (ANEy). However & = &5 = &, and thus it suffices to show the
disjointness of the supports of x7(-)¥r(A:), which depends only on the x variables. Moreover
observe that xrx; = 0 if |n;y — ns|e > 1. Hence it suffices to show

supp(¢r) nsupp(spy) = & for all I = (m,n, f) # (m,n’,g) = J when |n —n'|x < 1. (6.9)

Under such assumption, by (3.5)

supp(¢7) < B(lgpy+2,, /> 1/10)

However, since I # J and either [n] # [n/] or n = n/, we necessarily have f # g. This means
that dist(ly3,,lgp,) = 2do and thus that

) 3
dist(lyp, + Zmmns lgpy + Zmmr) = §d0.

Since n < %0, the latter inequality ensures (6.9).

We are now left with the inductive specification of the extra shifts z,,,. At the initial step
m = —2, we just set 2, ,, = 0. Next note that supp(f;) nsupp(6;) = & when |m; —my| > 1.
Hence in the inductive step we fix m and, assuming to have chosen z,, , for all m’ < m and all
n, we wish to choose the “next generation” of 2,41, such that

supp(0rx1(€0)Yr(A&r)) 0 supp(Oox s (§2)¥s(Nes)) = B VI = (m+1,n, f),V] = (m,n,g).

We will not deal with condition (3.13), as it will be clear from the algorithm for choosing 2,41,
that it will be automatically satisfied. Recall next that supp(6;) n supp(fs) < (r(m + 1) —
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5 Tm+1)+ %) = (tmy1 — §,tmy1 + 5), while & = §np1 and &5 = &, (defined in (3.10)). The
above condition thus implied by

Supp(X1 (Em+1(L, ) Y1(Am+1(L, ) O supp(xs (Em(ts ) 0s (Am(t, ) = &
forall t,;1 — 5 <t <tmu1+3g, 1= (m+1n,f)and J=(m,n,g). (6.10)

Moreover, the choice of each 2,1, will be independent of the choice of other 2,17 except for
the condition zp41n = 2m+1.7 when p(n — i) € 2rZ3, which will be enforced by the fact that
we will only specify the choice when n € [0, 27~ 1]3.

6.3. Proof of Proposition 3.5: conclusion. Let m, be the smallest integer satisfying T <
tm,.. From now on n € Z? and m € {—=1,--- ,m.} are thus fixed and we wish to show that
for a suitable choice of z,, satisfying (6.8), condition (6.10) holds. We recall the flow map
®,, introduced in (3.16) and observe that &,,(t, ) = [®.,,(¢,-)]"'. Moreover, by the semigroup
property of flows,

Dyt 1(8, P (b1, 7)) = P (s, ). (6.11)
and note that the latter can be equivalently written as
Prnt1(8,y) = P (8, Em(tmt1,9)) - (6.12)
These relations imply that
supp(xJ (§m (¢, )7 (A (t,-))) = Pon(t, supp(xs ()¢ (X)) (6.13)
supp (X1 (Em+1(t, )01 (Amy1(t, ) = P (t, Em (Emr1, supp (X1 ()9r(A))) - (6.14)

In particular, (6.10) is reduced to show

supp(xs ()17 (A)) 0 & (tma1,supp(xs ()r(A)) = &
forall I = (m+1,n, f) and J = (m,n’,g). (6.15)

Consider now 41 := & (tm+1, 2mpun) and choose n such that z,,41 € @Q = Q(2mun, 7). We
claim that &, (¢,m+1,supp(xr)) cannot intersect supp(ys) if [ny —n| > 1, which follows from the
fact that ®,,(t,-) is a diffeomorphism for every ¢ and the claim that

gm(tm-i-l, supp(xj)) < gm(tm-&-lv Q(zﬂﬂn7 %T“)) - Q(xm-&-la 13%) . (6'16)

The first inclusion is obvious because by definition supp x; € Q(2mwun, %T“). As for the second
inclusion, recall the estimates (cf. (3.17))

[V&m (tmr1:-)llo < exp(7q[[Vvglo)

[V&m(tmi1s-) = Idfo < 74 Vvgllo exp(ry [Vgllo) <

| =

Thus, for every = € Q(2mun, 9%“) we can estimate

Em(tms1,7) — Tyt = Em(tma1, ©) — Emtme, 2mun)

1
= f Vém(tmi1, Az + (1 — X\)2mun) - (x — 2wun) dX
0

1

=x —2mun + j (V&n(tme1, Ax + (1 — XN)2mun) —1d) - (x — 2wpun) dX
0

=x—2run+ FE.

Hence, in order to show the second inclusion in (6.16) it suffices to estimate

9/3 o TH

] < IV&m(tmer1, ) = Idfofo — 2mun| < —fmmu < =
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Given the argument above, (6.13) and (6.14) imply that

supp(xs(+)) M supp Em+1(tm, supp(xr)) = &

for every I = (m + 1,n, f) and J = (m,n’, f) with |n’ — n| > 1. Therefore, in order to show
(6.15), we will focus on the following remaining cases:

supp(1s(A;+)) N &m (tmr1, X1 ()hr(A-)) = &
forall I = (m+ 1,n,f) and J = (m,n’,g) with |n' — 1|, < 1. (6.17)
In particular note that {n/ : [n’ — 7|, < 1} consists of 27 points in the integer lattice Z3,
containing exactly one element for each equivalence class in Zg.
In order to deal with these last 270 cases of indices for J together with the 10 cases of

possibility for I, observe first that, inserting s = t,,, in (6.12), we have @, 11 (tm, ) = &mn(tm+1, )
and thus (6.15) becomes in fact

supp(¥7 (A, +)) N Lot (b, X1 ()1 (X)) = & (6.18)

Introduce now the “frozen flow” ¥ given by

OV (t,x) = v(t, Ppy1(t, 2mun))
U(tmi1, ) = T.

Observe that U(t, z) translates x by some vector depending on time and so

U(t,z) =z + Jt (8, Ppyt1(s,2mun))ds = x + u(t). (6.19)

tm+1
Moreover, by definition W(t,,, 2mun) = Zp,+1, which means that, upon introducing z := ;,+1 —
2wun,
U(tm,z) =2+ . (6.20)
Observe next that @41 (tm, 27np) = (ty, 2rnu). Hence for x € Q(2mun, 2 =F) o supp(xr) we
can estimate

tm+1
Byt (b ) — Uty 7)o < f 10Bpe1(5,7) — 05U(5, )| ods

tm+1
< J [0(8, Prr1(s,x)) — (8, Prs1(s, 2mun))|w0ds (6.21)

TuwuouwmﬂHcoqtm,tmﬂma)|x ~ 2rpnly
9ﬂu7

IVulo < ﬁ

In particular we conclude that
|Prt1(tm, ) — (2 +2)[ <

If we introduce T := Az, we conclude that

D1 (Ems supp(xs ()91 (A-) = Bsupp(¢r(A - =), n/(44)) -
Hence, (6.18) is satisfied if we have

supp(.7) N B(supp(¢1(- — 7)), n/4) = & (6.22)
for the set 270 indices J = (m,n’,g) with |n — n’|Oo < 1 and for the 10 indices I = (m,n,g).
Observe now that, by the construction of the ¥ ;’s, we know that:
e The map {J = (m,n’,g) : [n'—n|e <1,} 3J — g € F is a one-to-one map and the map
{I=(m+1,n,f)} 31— feF is injective.
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e We have that for each g € F there is a point p, such that

supp(s) < B(ly,5,,n/10) (6.23)
while for each I = (m + 1,n, f), if we let py := pyr + Z, then
B(supp(¢1(- — %)), n/4) © B(lfp+zms1.0> 71/20). (6.24)
e Finally
dist(lyp, L p,) = 2do  dist(lgp,,lys,) =2do  Vf# [ g#g" (6.25)

In particular, we are in the position to apply Lemma 6.1 and thus find a shift 2,41, with
|Zm+1.n| < %" such that

diSt(lf,pf+2m+1,n7 lg,ﬁg) =1 Vf,g. (6.26)
Clearly, (6.23), (6.24) and (6.26) imply (6.22) and thus completes the proof of the proposition.

7. ESTIMATES IN THE VELOCITY CORRECTION

The main point of this section is to get the estimates on the velocity correction. In this
section, we set | - [N = | - [ co(jo,7)+r;0n (13))-
The following proposition provides the estimates for the perturbation w.

Proposition 7.1. For N =0,1,2 and s = 0,1, 2, the following estimates hold for w,, w., and
W = Wy + We:

1

oD gwol NS MAY 162, (7.1)
5%4-1

73 D; pwe | NS AN 7.2

4 | DE gwe| AW (7.2)
1

oI Df N SmAY 1621, (7.3)

where the implicit constants are independent of s, N, and q in w = wgy+1. Moreover,
1
Jwln < )‘é\ir15q2+1a (7.4)
where the implicit constant is additionally independent of M.

The latter estimates are in fact a simple consequence of estimates on the functions b, ¢, d and
e defined in (3.30) and (3.32)

Lemma 7.2. For any N > 0 and s = 0, 1,2, the coefficients by, 1., Cm k> dm i, and ey, . defined
by (3.30) and (3.32) satisfy the following,

oD bl Snar iy ma by (7.5
7D} gem i In SN g™ m?XIEI,kI (7.6)
o
7ol DF el kNS xar o™ max |y i (7.7)
D5 pemillvSnar pg ™ max by . (7.8)
Moreover, for N = 0,1, 2,
16l v + lempln < pg ™ max b1kl (7.9)

where the implicit constant is independent of M and N.
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Remark 7.3. Observe that, by the definition of the respective coefficients, the moduli |ZC;I,/€|,

|ér.k| and ‘C%)[k‘ just depend on the third component of the index I = (m, n, f), since they involve
the functions 1, but not the “shifts” z,,,. In particular, the set of their possible values is a
finite number, independent of ¢ and just depending on the collection of the family of functions
1y and on the frequency k.

Proof. First of all, it is easy to see that for any s > 0 and N >
1D 01l comy = 10501l comy <s 74 °
||X1(€I)H00(zm;cN(R3)) <y g™, Dy xr(€n)] =

where T, = [tm — 374, tm + 57,]. Indeed, the estimate of x;(&;) follows from (5.14), Lemma

A1, and /1 < u;l. We remark that the implicit constants are independent of I.
Recall that when f € .7,

(7.10)

~ )‘fl_ 6q+1FI Aq 5q+1FI
r = _
\frl3 \%33 ik
for
Ty(x) = ( 2)‘376q+21(vfl)905)

where I';’s are the functions given by Lemma 3.3. First it is easy to see that (5.15) implies

1
1D; JL(VED ™ frlllcoqz,on rey) SN, (Ag0E )€ (7.11)
Also, using (5.14) and (5.2),
1
| Dz (2)\3”5q+21(V§1)w)HCO(zm;cN(RS))SN,M(EZS + (A7) s e (7.12)
Next, for any smooth functions I' = I'(z) and g = ¢g(t, ) we have

IDLel@ley S 35 I1Deegl o (VD) (9)] e
Ni1+No=N

IDZC@ley < 35 IDZegl e (VD) (@)l ove + 1Dteg ® Dyegllom 1Y) (9)] e
Ni+No=N

(7.13)

and therefore we obtain by Lemma A.2
1
| D3 (V)™ frl™ 3“00 (TN (®3)) SN, M (Ag og) N

| D;[(TF )3 (— )‘375q+21(V§I)(P€)]HCO(Im;CN(]R3))$N7MTq_S£_N

Here, we used (7.11) and (7.12) which we can apply thanks to the fact that [(V&;) ™! f7| > 2 and
I't, = 3 (according to our choice of Ny in applying Lemma 3.3). Also the implicit constant in
the second inequality can be chosen to be independent of I because of the finite cardinality of
the functions f7. On the other hand, in the case of s =0 and N = 0, 1,2, because of (2.8) and
(5.16), the implicit constants in both inequalities can be chosen to be independent of N and M.
Therefore, it follows that, when I € .7,

_1
1D o8y A vSnary 0. (7.14)
In particular, for N = 0,1, 2,

_1
15, 2yl < €7V
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_1
On the other hand, when I € ., recall that 6,y = I't = ', (Id — 5q_+11./\/lj) for a finite
collection of smooth functions f; chosen through Lemma 3.2. First we obtain the estimate for
MI7
IMilcoz,.ov®s))
<N g1 (VEN(VENT = 1d||oz,,.on @)

+ Z Hvé.]Hco(Im;Cgfl)”Re”NQ|‘V§I||CO(Im;Ca]sV3)
Ni1+N2+N3=N
yy 2 Vel oz, oty X EN ooz, o) Wil o o) | VEr L oz, ot

N1+N2+N3+Ny=N J:feF; .,
< 5q+11uq_N’
using (5.13), (5.14), (5.1), (7.10), and (7.14), Similarly, we have
| D3 Millv Snar Sgamy g™,
but |M;|xy < (5q+1,uq’N for N = 0,1, 2. Then, (7.13) and Lemma A.1 imply that when f; € F7 g,
for s =0,1,2 and N = 0,
_1
1D 00, 21 = D5 (T gy (1d = 858 M) v v 74 °pg ™ (7.15)
In particular, for N = 0,1, 2, the implicit constant can be chosen to be independent of M and
N;
_1 N
qu-l—QI’YIHN S /’Lq .

Finally, recall the definition of b, 1, ¢ ks i k> and ey, . Then, the estimates (7.5)-(7.9) follows
from (7.10), (7.14), and (7.15). O

Proof of Proposition 7.1. Using (7.5), (7.8), (5.14), and (3.24), we easily have the estimates
1 1

)\;ﬁHonN <N 02, and )\;ﬁHwCHN <N (>\q+1/$q)_153+1, recalling Remark 7.3. On the other
hand, we observe that Dt,ge“‘qﬂk'& = 0 because of D, ¢§; = 0. Hence the remaining inequalities
in (7.1) and (7.2) are obtained in a similar fashion. Finally, (7.3) follows from (7.1) and (7.2).
Note that all estimates used in the proof have implicit constants independent of q. Moreover,
the finite cardinalities of the range of NV and s make it possible to choose the implicit constants
in (7.1), (7.2), and (7.3) independent of N and s too. Furthermore, when s = 0, we can also
make the implicit constants independent of M. O

8. A MICROLOCAL LEMMA

We will need in the sequel a suitable extension of [20, Lemma 4.1], where we will use the
notation

FAk) = + f@)e Fde, flx)= D, Z[fl(k)e*"
ke keZ3
for the Fourier series of periodic functions.

Lemma 8.1 (Microlocal Lemma). Let T be a Fourier multiplier defined on C*(T3) by
F[Th](k) = m(k).Z[n](k), VkeZ?

for some m which has an extension in S(R3) (which for convenience we keep denoting by m).
Then, for any ng € N, X\ > 0, and any scalar functions a and & in C®(T?), T(ae™) can be
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decomposed as

2ng

T(aet) = [am(wg) + ) CRE& a) - (VPm)(AVE) + £ (&, ) | €7
k=1

for some tensor-valued coefficient Cp(€,a) and a remainder e, (€, a) which is specified in the
following formula:

_ (_1)nlcn1,n2
G o) = 3 e

=no+1 (8.1)
[ e vy e 905, 60 (0 - )y,
where ¢, pn, s a constant depending only on ny and na, and the function B,[&] is
Bal€)(r) = Ba(iAZ'(r),iAZ"(r), - ,iAZ"(r)),

1

Z[E)(r) = 7€, (r) = f (1— 8)(y- V)¢ — rsy)ds,

0
with By, denoting the nth complete exponential Bell polynomial (cf. (8.6) for its definition).

Before coming to its proof, we collect an important consequence on the operator R.

Corollary 8.2. Let N = 0,1,2 and F = Zk€Z3\{O} ez m ke et 1FEm - Assume that a function
am . fullfills the following requirements.
(i) The support of am, ) satisfies supp(am k) < (tm — %Tq,tm + %Tq) x R3. In particular, for m
and m’ neither same nor adjacent, we have
Supp(am,k) N supp(am ) = &, Yk, K € Z*\{0}. (8:2)

(i) For any j =0 and (m,k) € Z x 73,

i Si g lawl, D[P ar| < ap,
k

1
lamgels + Ag16241) ™ | De e i

for some ap > 0, where ng = [(1)2_171(?%)&)] and | - [; = | - c(zci(rsy)y on some time interval

7 < R.

Then, for any b > 1, we can find Ay(b) such that for any Ao = Ao(b), RF satisfies the following
mequalities:

* 1
IRFn s A ar,  |[DRF|v-1 s AYG'62, ar

%
upon setting Dy = 0y + vg41 - V.

8.1. Proof of Lemma 8.1. Recall that 7 is the inverse Fourier transform of m in R3. By the
Poisson summation formula, we have

T(ae)(z) = @) J FR(y)a(z — y)eNEE—1 €@ gy
R3
_ ei/\g(x)f ﬁ(y)a(x)efi/\vg(x)'ydy (8.3)
R3

+ N ng (e VY (Hyy (1) — Hey (0))dy
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where
1

Hayy(r) = alz —ry)e™ 7= Z[¢ly (r) = ?”L (1= )y V)*(x — rsy)ds.

Indeed, it follows from
1

€a 1)~ €(x) + - VE@) = | (1= 8)(y- V)Pe(o — sy)ds.
0
In order to avoid a cumbersome notation, from now we drop the index z,y in H and Z and the
dependence on ¢ in Z. The decomposition of T'(ae¢ ) follows from Taylor’s theorem applied to
Hatr=0:

no  ry(n) 1 (no+1)
H(1)— H(0) = )] il n!(o) +L A - ( )(1 — r)"dr, (8.4)

n=1
The nth derivative of H can be computed by the Faa di Bruno’s formula,
HO@) = Y ) (ale = ry))ap2e 0

ni+na2=n

. (8.5)
= D (D)™ (- V)" a) (@ — ry)eN B, (M2 iNZ - - ixZ ™))

ni+ne=n

where Z(™ is the nth derivative of Z, and B,, is the nth complete exponential Bell polynomial
given by

n
Bu(z1,...,2n) = > Bug(z1, 72, Tngr1), (8.6)
k=1
where

_ n! T1\J1 T2\ T2 Tp—kal In—k+1
Bn,k(ﬂflyl’%...,l'n—k-i-l) _2]1']2']n—k+1' (F) (a) ((n—k+1)' 3

and the summation is taken over {jx} < N U {0} satisfying
Jitdet otk =k 142243+ (n—k+1)jngs1 =n. (8.7)
Observe that Z has the form Z(r) = rZy(r), which follows

Z0 () =nzy" V) +r 2 (r), 27 (0) = nzy" M (0). (8.8)
The nth derivative of Z; is
1
Z87) = | (1= (9" (v V)2 = ). (8.9)
In particular,
(n) _ ! n n+ _ (=" n+
Zy '(0) = Jo (1=5)(=8)"(y - V)""2¢(x)ds = m(y V)R ().

Therefore, we obtain

HO0) = Y npna(—1)™ (y - V)™ a(2) By (iXZ0(0), -+ ,ixnaZy"™ 1 (0))

ni+ng=n

= Z Z Cm,cz(_l)nl)‘ky@nJrk : vnla($) ®6~n2,k[€]($)7

nit+nz=n k=1
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for some function f,, 1[£](z), and hence

& HDO) L o W k
RO s, - $ e (wmoe
=1 : k=1

for some tensor-valued coefficient C7 (€, a). Indeed, the factor y®"* gives the (n + k)th deriva-
tives of m.
Considering the remainder, we use (8.5) to define ,,(&, a) by

6710 (fa

_ JJ —iAVE(z)y (vay)(no"'l)(r)dy(l—T’)nOdT
R3

— ) Cni,ng

nn!
ni+ng= n0+1 0

f |, BTy V) @)= )P0 5 €] (0= )y
where in the second equality

B [E](F) = By GIAZ' (1), iXZ" (1), - - - ,iXZ("2) (1))

= Z (Z)\)IC_B,%]{(Z’(T)7 e Z”2*k+1(r))'

=1

El

This completes the proof.

8.2. Proof of Corollary 8.2.
Step 1. Decomposition of F.
We first claim that F' can be written as

F = PZ)\q+1 2 am,kei)\q-'—lkfm Z Enq+1 k- &m, am,k)ei)\q-'—lkfmv (8'10)

m,k
where P ., is defined by
Pzrgin = Z Py;

23.2%)\“1
and
5n8+1 (k gmyam k) Z Eno,j(k : §m7am,k)-

2128 Aq41
The remainder €y, (£, a) is obtained by applying Lemma 8.1 to Py, and ng = [%]. To
prove the claim, we first decompose Pz, into
Pz)\q+1 = Z P2j + P>2J =: P/\q+1§'S2J + P>2J.
SXgr1<29<2/

and denote the multipliers of Py, << and P,; by m<; and m;. Indeed, they satisfy
— 3
supp(m<y) = B(0,2"*1), m<y =1 on B(0,27)\B(0, 5 Ag41)
supp(m;) < B(0,27 )\ B(0,2771).
Then, since for any k € Z3\{0},

%\lﬂ < V- &) < 2k, on T, x R3

<3
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by [Id=V&nllcoz,, xrs) < 1, where Z,,, = (ty,— 37, tm+374) N Z, we have for any 27% > 2X\ 11|k,
mSJk ()\q+1V(k : gm)) = 17 m](At}H—lv(k : §m)) = 07 v.] > ka

on the support of a,, Therefore, applying Lemma 8.1 to PAq+1$~ <o, and Py; for j > Ji, we
obtain

Ngs1ke Ngs1k- S
P>\q+1§-<2‘7k (@ e 0 Em) = ket mot Z €noj (K - &my A i )€ TH! &m

12727k
Py; (am7kel)\q+lkfm) = Eng,j (k “Em, am7k)el>\q+1k.§m-

Indeed, the remainder in the first equality follows from m<; = >3 o1 <23 <27k M- Summing
them up in j and reorganizing the terms, we have

A g MO = Py (am,kem+lk{m> — 0T (- gy Q)€ (8.11)

Taking summation again in m and k, the desired decomposition follows.

Step 2. The estimates for the remainder.
We aim to obtain the following estimates.

I Y ens™ (k- maami)lo Sno (Agr1ptg) ™0 Vap, (8.12)
m,k
1
H Z Dygens™ (k + Emy ami)lo np Aq+10241 (Ag1p1g) "0 Vap. (8.13)

First, we remark the following relations between parameterS'
Ag <M <pgt €A1 A 5q g)\q+15
Recall the definition of e, (£, a) from (8.1):
Eno,j(k “Ems am,k)(x)

D™ Cmms (M [ o —dasi D)€ @) () oy _
> , m;(y)e (v V)" am g (x —19)
no-: 0 JR3

ni1+ns=ng+1

q+1-

P RS0 k-6, (r) (1 = 7)™ dydr.
It is obvious that

|e*i>\q+1(y'v)(k'§m)(ff)| <1, ‘ei/\q+1Z(T)| <1,
(- V)" amp(z —ry)| < ly L S Y™ g " a-
On the other hand, recall
ng
Bralk - &m](r) = > (iAgi1)' Bpy(Z'(r), -+, 2™~ (1)),
=1
20 () = Z[k - &u] ™ (r) = nZg" (1) + 257 (r),
1
Z80) = | (1= 8) (=) (- 92k ) = )i (8.14)

Using (5.14), it can be easily seen that for r € [0,1] and ¢ € Z,,,,
12®lcg < n25" Pleg + 125" ey

S [V - En)lep + 1ul" P21V (B - &n)lgner S Tyl R g (1 + [ylug )
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Therefore, in the same range of r and t,

1Bnalk - €ml(r)lco Sna D3 Aqeal (27 (Z02 71D ynamiit g

!
<ns ZA Calyl Rl (ylpg )™ Z lylug "
1=0

nag l
Sna (g )™ R gy D L (ylug )
=1 i=0

where the summations in the first inequality is taken over

1<I<ns, ji++jmisr =0l Ji+-+ng—1+1)jn, 101 = no
and the last inequality follows from |k|' < |k|"2 < |k|™*! for any k € Z3\{0}. Combining all
estimates, the remainder €, j(k - &m, am i) satisfies

no+1 1

[€n0.3 (% * Ems @m k)| 00T, ) Smo [0 k] Y5 D7 Mpaptg CH oD [y 0 0 oy s,
=1 =0

which implies that

A
lens™ (k- &ms amp)lco@nxrs) S D5 €00 (k- &ms am i) oz, r9)
QjZ%)‘tHl
Sno 1R[] (Agr1p1q) "0,
Therefore, using supp(eng+1 (k- &m,am)) < supp(am,k) and (8.2), we obtain the first part of the
claim:
I Z Enqﬂ k- &ms amk) o < Z [ Zgnqﬂ k- &ms amk) | o
3ZSUP H5nq+1 k- &m, am,k)||CO(Im><R3)
Sno Z |k|n0+1|&k|(>‘q+1ﬂq)_(n0+l) S ()‘q+1ﬂq)_(n0+1)aF-
keZ3\{0}
Indeed, we use |\|y|“w\{j”L;(R3) < (279" and pgt < Aot

To find the estimate for Dy sepny(k - &m, am i), we compute the advective derivatives of each
piece of the integrand of the integral in ey, j(k - &m, am, k) as follows;

Dy g EEDE) (3, 4 vy(x) - V. )e—Pa VoEn) @)y
= —iAg11 DoV (k - &) () - ye~Par1V(kém)(@)y,
Diel(y - V)" amp(x = ry)] = (ve(x) — ve(x — 1)) - V((y - V)™ (@ — 19)))
+ (Dee(y - V)" am i) (x — 1Y),
and

(Dt,gei)\qulZ%y(T)) = i)‘q—i-l(at + ’Ug(ﬂj) . V:c)Zx y(T)@i)\qulZI’y(r)

)

1
= i)\q+1rf (1-s)y®uy: (DtygVQ(k‘ &) (z — ry)dsei)‘q“zﬂ”’y(”
0

1
idgar fo (- s)y @y : [(vele) — vela — y)) - VIV (k- ) (@ — ry)dscar Zea ()
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For the last piece, we recall B, [k - &ml;

S no! Z' )\ kD) (3 Frat
Dy tBnylk - €m] = Dy Z(MQH)IZ 2 ' < Y ) 97()

-1 T jl!"'jng—l-‘rl- 1! (ng—l—l-l)!

First, using (5.14), we have on Z,,
1
DtV (k- Em)lco S Agdd [K|

1
[DeeV2 (k- €m)llco < [KIIVDeeVemlco + [kl[Vullo[V2€mlco < Agdd 11g K],
which follows that for r € [0,1] and ¢ € Z,,,

. 1
| Dy ge™ et @VIEEm) | 0o < Xg 1|yl Ag0Z |K]

' i (8.15)
| Dy gea+1 720 | oo < Agapag " Agd 1yl |RI(1+ [yle ™).
Also, for any smooth function g, we can write
Doy -V)"g = (y- V)" (Deeg) + [Dee, (y - V)" ]g.
Since the commutator term [D; ¢, (y - V)™ ]g has a representation,
[Dee,(y-V)"lg=[ve- V. (y-V)"lg = 3, Conmally - V)™ e Vi(y - V)™,
mi+mo=ni
1<misng
we have
I[Dees (- V)" glo s yl™ > V™ welo] V™ glo,
m1+mo=ni
1<mi<n
and hence
[Dee(y - V)™ gllo Sy [y™ [ IV Dreglo+ > V™ welo] V™2 glo | - (8.16)
mi+ma=ni
I<mis<m
In particular, we have
l o
1Dty - V)" amkllo Sy A1 [yl™ g ™" la] (8.17)

1
I Deely - V)2 (k- €m) ooz, sy S 191" 2203 g VK]

Here, the second inequality uses Dy ¢&,,, = 0. This suggests that Zy in (8.14) satisfies for r € [0, 1]
and t € Z,,

1
1628 ey < UO (1= 8)(=8)"(Dre)al(y - V)" (k - &) (@ — rsy)]ds

&

< k| P [ve = ve(- = rsy) oIV (y - V)" 2l co + |kl Dee(y - V)" Emllco
s€0,

< [Klly" V0l oo IV P emllco + Kl Dee(y - V)" 2mllco

1
< 1" INGOF 1y (P g ® + ylig )1
Therefore, the advective derivative of Z,EZ) with k - &, can be estimated as

-1
1D16Z2™ o < n|DieZS" Pl + vl Do 2 o s,
< "N 1y (1 + [ylpg  + [yl g ) Ik,
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in the same range of r and ¢t. Combining the estimates (8.15)7 (8.17), and (8.18), we can see that

Dy generates a factor whose value is bounded by Ag110, H]k\(l + (/\q+1\y])3). More precisely,

for any 7 € [0, 1], if [ Fco(z,, «ks) < bF, then [ Dy cFloo(z,, xgs) < )‘q+15q+1’k\(1 + (Ag+11y)?)br,
where the possible F are e~artWVIEEn)@) - (y . 7)Ma,, j(z — ry), ePartZea) - Z00and
By [k - Em]- As a result,

[ ZDwen‘”l (k- &my am i) lo Sng Aq+15q+1 D1 LR | (Agapg) 0T
keZ3\ {0}

1
< )\q+15(12+1(Aq+1ﬂq)7(n0+1)aF-

Step 3. The estimates for RF.
We first note several thingS' The parameters satisfy the additional relations

E)\q(SQ <52 A

3
q+1 q+1 <9

g+1» /\3+1()‘q+lﬂq)7(no+1) <1

by the choice of ng. Furthermore, for any b > 1, we can find Ag(b) such that for any Ao = Ag(b),
we have /~1A\ "1 < 3. As a consequence of the decomposition (8.10), we have the frequency

qg+1 == 64°
localization of the remainder part of F,
Parxg Fi=F — Pz, F = Z entt (K - &y Ay )€1 Em (8.19)

Lastly, using the assumptions on a,, , and &, F' = Zkezg\{o} D meZ amke“‘qﬂk'ém satisfies

1
HFHN < )\q+la’F7 HDt,ZFHN—l s )\51V+15q2+1aF7 N = O, ]., 2.
Then, we recall the decomposition (8.10) of F' and use the Bernstein inequality to get

A i .
IREIN < IRP2x Fllv + IR Y ent™ (k- s am p)er1Hem |y

k,m

A _
q+1H Z En q+1 k : fmaam,k)HO Sno /\é\leaF
k,m

for N =0,1,2. Indeed, the second and third inequalities follows from a crude estimate |R flo <
| fllo and (8.12).*

To estimate D;RF, we use the decomposition
DiRF = RDyoF + [vg -V, RIF + ((vg — vg) + w) - VRF.

For the remaining part, we only consider N = 1,2. Since D;F' = Zk’m Dwam’ke“‘q“kf’“, the
first term can be estimated as above,

1 A 1
|RDy¢Fln-1 < mth,zFum + AT Z ena (k- &ms Degamp)lo < MY 7'62, am.

Also, we recall |w]y_1 + v —vel|n=1 < A5 152, so that

q+1 “q+1°
1
N—153
[((v—2v¢) +w) - VRF|n-1 < Agi1 0gi10F-
Regarding to the commutator term, we plug the decomposition (8.10),

[v- V,RIF = [vg -V, RIPax,, F — [vg- V., R] Y. €nt™ (k- &y et 1E6m,

m,k

q+1

38



. A : . . .
Since vy and Py, F = ent™ (k - &m, am i) e a+1¥6m have frequencies localized to < Ag41,

I[ve - V. RIPr,y Fllv-1 £ A0 lve - V. RIP<a, 1 Flo < A oelo [V P, o0 Flo

q+1 q+1

q+1” Z q+1 (k- Ems A, K)o < )‘é\{i-lléq-i-laF

q+1

Indeed, the second inequality follows from |Rg[o < [g]o. To estimate the other commutator
term, we consider F; = Py; F' for 27 > %/\qﬂ,

~[oe- V,RIFj() = Y, (Z[RI(k) = F[RI(0))in - F o] (k —n) F[E](n)e™

k,neZ3
= 2 Z VILF[R)(m)in - Flvd) (k — n) FF}) (n)e™ (8.20)
knez3 1= 1
1
+ li [(k—mn)- V]loJrlﬁ[R] (m+o(k—n))(1— U)lodainﬂ[w] (k — ﬁ)f[Fj] (n)eik-m’

(8.21)

where Z[Rf]|(k) = Z[R](k).Z|[f](k) and |y > 2 is an integer satisfying )\q+1(€/\q+1)710 < 1
The estimate for (8.20) follows from

lo
1
| Y 20)xr <Y 71V VRPea Pl

2j>%,\t1+1 =1
Y Z *||VZWHN1 IVRiPzx, 1 Fllv
Ni+Ny=N-1Il= 1

N
< ) UVulmIFlN, < >\q+115q+1aF7
Ni1+N2=N-1

where the operator R; has a Fourier multiplier defined by .%# [ng]( ) = Vl FR](n)F[g](n) for
any n € Z3. To estimate (8.21), we use |k —n| < 2071 < 2,11 < 3|n| and hence |k| < |n| to get

VNS 820 s YN kN |k|77|lz|+1 | Z [ (k= )| 7 [F5](n)]

27> 341 J km
s ZZ = oL Vo) (b — )l [0l =20\ F [F5] ()]
J k,n
NZ 2; 970+ 1 Z IVl p2ep3) | VY T Fjll 2 s

k| <27

gfl lo N
< (5) AalvelolFlo < 4800 ar.
q

Indeed, the last inequality follows from the choice of [y. To summarize, we obtain
1
I[ve - V, RIP2x,. Flln-1 € AY5'62 ar, (8.22)

*
and combine with all other estimates to get the desired one |D/RF|n—_1 )\é\frl (5 qar for
N =12
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9. ESTIMATES ON THE REYNOLDS STRESS

In this section, we obtain the relevant estimates for the new Reynolds stress and its new
advective derivative BthH = 0tRgq41 + Vg41 - VRy11, summarized in the following proposition.
For technical reasons it is however preferable to estimate rather Rqi1 — %gld, as indeed the
estimates on the function o(t) are akin to those for the new current, which will be detailed in
the next section. For the remaining sections, we set | - [nx = | - |co(o,r147,:0% (13))-

Proposition 9.1. There exists b(a) > 1 with the following property. For any 1 < b < b(a) we
can find Ao = Ao(a, b, M) such that the following estimates hold for every Ao = Ag:

3

fIq+
1

i isd N—3y
HDt(RqH_%QId)HN—l CM)‘q+15q+l /\q)‘q+15q45;+1 )‘q-i-l 5q+15q+27 YN =1,2.

N-3

|Rg1 — 20ld|n < CarAY - )\ 2 51 <A1 Ogr2, YN =0,1,2

q+1

(9.1)

where Cyy depends only upon the M > 1 of Proposition 2.8 and Proposition 2.4.

Taking into account (4.1), We will just estimate the separate terms RT, RN, R01, ROQ and

RM For the errors R02 and RM, we use a direct estimate, while the other errors, including the
inverse divergence operator, are estimated by Corollary 8.2. In the following subsections, we fix

1
[%] so that )\qH()\qHuq)_(”OH) < 6441 for any ¢ and allow the dependence on M

ng =
of the implicit constants in <. Also, we remark that
1
1 Og+1
Ag+1Tq  Agtiflg

1 1 1

Sar M AOE . (9.2)

For the convenience, we restrict the range of N as in (9.1) in this section, without mentioning
it further.

9.1. Transport stress error. Recall that
*
Ry = R (Dyyw) .

Since Dy ¢§1 = 0, we have

l .
Dygw=Dig | Y, Y 621(bmk + Agripg) emp)e b
meZ kel (0)

l .
- Z Z 6q2+1Dt7f(bm,k + (Aq-"_lll'l’q)716m’k)€l)\q+1k.€l'
m k
Since by, 1, and e, i, satisfy supp(bm, k), supp(emk) < (tm — %Tq,tm N %Tq) SR and

| Db + Aq1bg) ™ emi) |y + (Aq+15q+1) D7 bk + (Ag+1110) ™ emi) |

_n bkl

N,M :u’q T ’
q

<

for any N > 0 by (7.5) and (7.8), we can apply Corollary 8.2 to get

1 1

52 52
Rylly < AN, —2t! D,R <N g2 a1 9.3
|Rr|n < S I DeRrln-1 = Agi10g41 5, o (9.3)
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9.2. Nash stress error. Set ﬁN =R ((w- V)vy) and observe that

l .
(w - V)ve = Z Z 02,1 (b + Agy1tg) emp) - V)vgera+1her,
m keZ\{0}

Since by, 1, and e, x satisfy supp(by, ), supp(em k) < (tm — 57; tm + %Tq) x R? and
| (B + Agt1ttg) emp) - Vel g Sxv g ™ [br il Ag6Z

1 <o 1
| Dt el (b g + <)‘q+lﬂq)7lem,k) Vvllly Sw /\q+15¢12+1M;N|bI,k|/\q5q2
for any N > 0 by (2.4), (5.12), (7.5), and (7.8), we apply Corollary 8.2 and obtain

1 1

62 62
Ryly < AN, 2+t DR <N g2 el 9.4
IR~ TR s’ IDeRN|IN-1 < Agia Eb . (9.4)

9.2.1. Oscillation stress error. Recall that éo = ]§01 + ﬁog where
k
Ro1 = 'R(V . (wo®wo + Rg))

%
Ro2 = wo @ we + We @ Wo + We @ We.

We compute

V- (wo ®@wo + Rp) = V- (wo @ Wy — dg411d + Ry) = div Z 5q+1cm7kei)‘q+1k'€’
ke%lg’e\z{o}
= Z dg+1 div(cm,k)ei)‘q“k'gl,
m.k
because of ¢r i (fr - k) = 0. Also, since we have

Dy ¢ div ey i = div(Dy g i) — (V)i 0i (Cmke) jis

ez k]

it follows from (7.6) that |divem il y + (/\q+1(5q+1) YDeedivemply Snm qu for any

N > 0. Finally using supp(cmx) < (tm — %Tq, tm + Tq) x R3, we apply Corollary 8. 2 to get

0, 1 0, 1
L |DeBor |- 1S/\q+15§+1 -

)\q+1,uq7 A +1Nq.

|Rorln At - (9.5)

On the other hand, we use (7.1), (7.2), (7.3), and (5.3) to estimate R02 as follows,

* Og+1
|Ro2lv s D0 lwolmlwelwg + DY) lwellw lwellw, < Al - =2

b
Ni4No=N N1+ No=N Ag+1Hq

* k% 3k *
|DiRoz||n-1 < || Dt gRoz||n—1 + [[(w + v —vg) - VRo2| N—1

S Z |‘Dt7ZwOHN1 lwellwv, + [[wol vy HDt,chHNQ + HDt,chHNl lwell v,
N1+Na=N-1

5qul

*
+ > (lwly, + v = vel m) I Rozvas1 < X +15q+1 Y :
Ni+No=N-1 g+1lq

Therefore, we have

1) q+1 0, +1
Rolx < AN . IDR <A 52 N Oorl
H OHN q+1 /\ g H t O”N 1 q+19%41 " Ag+1 )\q+1Mq
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9.3. Mediation stress error. Recall that
éM =R—Ri+(v—v)Q@w+w® (v—1uv).
Using (5.5), (5.3), and (7.3), we have
¥
|Rully S IR=Relw+ ) o= v, [wl,
Ni1+No=N

1 1 1 3 1 1 1 1 1 3
N 3\"2 sisd 253553 N y2y"2 5ig1
S A1 (AdAG104 0551 + (EAg) 04071 1) S Agir - Ad Ag 104 041

k% %k 3k * %
To estimate DRy, we additionally use the decomposition Dy Ryr = Dy ¢Rar+((v—ve)+w)-V Ry
to obtain

k% k k *
IDiRMIN-1 S ID(R = Re)In-1+ >, [Delv—v0)|n |wlny, + v —vel v, | Dew] v,
Ni1+N2=N-1
N 1 1 1 1 3
P VRT LIRD VDS Fr

To summarize, we obtain

_1
2

q+1

13 kK 1 1
1514 N 2 2
63601, IDiRar|not € ANL82 AN

_1
2
q+1

3
4

* 1 13
| Rarn < A A2 A 8300 (9.7)

Finally, Proposition 9.1 follows from (9.3)-(9.7) and (9.2).

10. ESTIMATES FOR THE NEW CURRENT

In this section, we obtain the last needed estimates, on the new unsolved current 411 and on
the remaining part of the Reynolds stress %Qld, which we summarize in the following proposition.

Proposition 10.1. There exists b(a) > 1 with the following property. For any 1 < b < b(«)
there is Ag = Ao(a, b, M) such that the following estimates hold for A\g = Ay:

N-3v<3
||90(1+1HN < >\q+1 K (]2+25 VN =0,1,2, (10 1)
* N—3~ o2 3 ’
|Dpgiillv-t < Agyq 762,102,0, YN =12,
3 1
— 3~y o2 B
lollo + []lo < )\q+¥ ara- (07, removed) (10.2)

Without mentioning, we assume that IV is in the range above and allow the dependence on M
of the implicit constants in < in this section. For convenience, we single out the following fact,
which will be repeatedly used: note that there exists b(ct) > 1 such that for any 1 < b < b(«)
and a constant C'y depending only on M, we can find Ag = Ag(a, b, M) which gives

3

) 62 2 15 3
q+1 q+1 94 _sa¢5a —3752
CM A + A + 1 6(1 6q+1 < >‘q+16q+27
q+17q q+1Mg )2

q+1

for any Ag = Ag.
Another important remark which will be used in this section is that

R(g(t,-) + h(t)) = R(g(t,-)) (10.3)

for every smooth periodic time-dependent vector field g and for every h which depends only on
time.
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10.1. High frequency current error. We start by observing that ¢g; is
or1 = R ((div Py-1R + Q(vg,vq)) - w) (10.4)
by (10.3). We thus can apply Corollary 8.2 to
(div Pep-1 Ry + Q(vg,vq)) - w
1 ,
- Z(div Pep-1Rg + Q(vy, Uq))5¢;2+1(bm,k + ()‘ququ)_lem,}g)6Z>\q+1k'£l.

m,k

Indeed, using (2.7), (5.11), (7.5), (7.8), we obtain

B - Al 3y 3
|Galn < /\q+1155+1()\é 811+ (LA)AG) < Ay ;qu 0241

Furthemore, (2.4), (2.7), (5.3), and (A.3) imply
| Dy ¢ div Pep—1 Rg||n—1 < || div Pep-1 Dy g Ryl|n—1 + || div[ve - V, Pey—1]Rg| n—1
+ (Vo) kiOk P<i-1 (Rg)ij| v

AJqVHl(HDt,eRqu +l[ve -V, Pegr]Ryll1 + [Voglo VRy[lo)

1-3
)‘q+15q2+1)‘ Tog+1-
Then, it follows that

. 1-3y
| Depr | v—1 S A 02, /\q 021

In order to deal with ¢z, we use the definition of Ryy1 to get

ww — 0g411d + Ry — Rg41

= (wo QR w, — 5q+11d + Rg) — Ro1 — Rr — Ry — Rpyo — gQId.
Using Id : Vo, = Vv, = 0 and (10.3), we can then write
S =R (w®w — bg41] + Rg— Rg1 + (v —vp) Qu + w ® (v — vy)) Vv;) (10.6)

* * * T
=R (((wo ® wo — 0g411d + Ry) — Ro1 — Rr — Rn) : Vy, ) .
Apply Corollary 8.2 with (3.27), (7.6), and (2.4), we have

6q+1
q Aq 1

IR ((wo ® wo — O0g+11d + Ry) : Vo, ) Inv < q+1)\ 62

* 2 5q+1
|DiR ((wo ® wo — Gg411d + Ry) = Vi, ) [nN—1 < )\q+16q+1)\ 62 Nort”

By (8. 10) and (8.19), recall that the Reynolds stress errors ﬁA, which represents either §01,
RT, or RN, can be written as RA = RG satisfying

1

Sg+1  Ogt1 Og+1 ‘52 1
IGAln S Ay | 2= + L2 |, IDeeGallnv-1 S A 15q+1 RAT R AEN ] (10.7)
Hq Tq Hq Tq

Mok eidg+1k€r and has a decomposition

Ga,

Furthermore, such G has the form »; k9A

Ga =Pzx,.,Ga + P<a
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as in (8.10) and (8.19), where P<),  ,Gx satisfies

q+1
1

2 3 gr1 | Ot - Og+1 52“
IP<rg i Gallo S A21020 | === 4+ 2= |, IDeePsr, 1 Gallo S A l0gm | = + L=
Hq Tq Hq Tq

(10.8)

Indeed, they follow from (8.12) and (8.13). Since Vu, has the frequency localized to < ¢!
and (7! < 7 )\q+1 for sufficiently large Ao, RPsx,.,Ga : (Vo) has the frequency localized to

1
R Ay and

q+1

IR (RP2x,:1Ga: (Vo)) v < g1 Gt (Vo) Tw

1
S 13 D 1Galm Vel
q+1 N+ No=N

On the other hand, RP<y ., G : (Vug) T has the frequency localized to < A +17 so that
R (RP<riGas s (V00)T) v € AV alR (RPr, G £ (Te0)T) o S A4 [Pery, i Galol Vol
Therefore, using (10.7) and (10.8), we obtain
* %k *
IR(Eo1 = (Vo)) v + [R(Br : (Vo)) v + [R(Ru : (VW)T)HN

1
6q2+1 L a1 ) Addd

<AV .
Ag+1Tq  Agriflg | Ag+1

q+1

To estimate their advective derivatives, we use the decomposition
% % % %
DR (RA : (VU[)T> =D /R (RA : (va)T) + (wH (v —vp)) - V(Ra = (Vup) ).

We can easily see that
1 1
6q2+1 5q+1 )\qéqz
Ag+1Tqg  Agtiflg | Ag+1

*
[(w + (v =v0)) - VR(Ba = (Vo)) v—1 < A +15q+1

%
For the estimate of the first term, we use again the decomposition Rn = RPsy ., GaA +

Rpg)\qHGA and

q+1

IDLeR(Ra = (Tur)T) -1 < [DreR(RP2x,,, G+ (Vo)) v
+ | DegR(RP<r, 1 Ga (Vo)) n-1.
In order to estimate the right hand side, consider the decomposition
Dy yRPzx, .. H = RPzx, 1 DiH + Rlvg -V, Pox, JH + [ve - V, R P2y, ., H,

g+1
for any smooth function H and Littlewood-Paley operator Pz, ,, projecting to the frequency
2 Ag+1. Similar to the proof of Lemma A.4, we have

I[ve - V, Pex,i JH [v-1 £ A37° 1 Voelo| VH o
Also, similar to (8.22), we obtain

Ilve- Vi RIP2r o Hvvs Y € Voew [ H] v (10.9)
Ny+Ny=N—1
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Since Py, Dy ¢H and [ve -V, P> Ag . JH have frequencies localized to 2 Ag41, it follows that

1Dt RP2x, o HlN-1

SIRP2x 1 DieHlIN-1 + [Rlve -V, Pox i [H | n—1 + [[[ve - V,R] P2, H N1
1 1

< Nor 1P2xgp1 DeeH N1 + o lve -V, Paxgi i JH | N—1 + [[[ve - V, RIPox, o H N1
1 _

<5 » IDeeH|nv—1 + A IVl Vo + ), Vel [H s
q

Ni1+Na2=N-1
(10.10)

Now, we apply it to H = RPs»..,Ga : (Vuy)'. For such H, we have H = PzéAqHH for

q+1

sufficiently large Ag, so that
| Dt/ R(RP2x,, Ga : (Vo) T) vt

1 _
< ot |De(RP2x, Ga s (Vo) D) [v—1 + AY P Voo RP2x, Ga  (Voe) T
+ >, VulmRPaGa  (Vor) T,
N1+No=N-1
1
gt Sgr1 g1 i
S A e e D2

Tq

Indeed, the second inequality can be obtained by applying (10.10) again to H = G,

IDte(RPzr, 1 Gt Vug) [ N-1
S D IDuRPar, L Galn [Voelv, + IRP2a, Galln [ Do Ve,
Ni+No=N-1
< L ip,c A2 T VG v
s D)) v 1PeGalvy + AT Volo VGl ) Vel g
Ny +Na=N-1 \atl
IGalln
+ D UVl [Galv Vv + )] 1PV,
Ni11+Ni2=N; N1+No=N-1 g+l
N1+No=N-1
1
1 5 52 1
N-1 +1 +1
S Aget Og+1 L+Z’T Agdq

and

IRP2ri Gt (Vo)) TIvor € D) IRP2r, . Gallv Vel v,
Ni+N2=N-1
1
S 02 1
N— +1 +1
DA T2 | 2,05 .

gr1 |\ —/—— ¥ —
Tq

To estimate the remaining term ||D; R(RP<x
quency of D; /R(RP<

G (Vue) )| nv_1, we observe that the fre-

1 Ga s (Vop)T) is localized to < Agy1, so that

Do R(RP<x,1Ga : (Vo)) v—1 < ANZ Dy R(RP<

q+1
45

GA : (V'U[)T)HQ.
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Then, we control the right hand side as
| D eR(RP<x, Gt (Vor) o
< [RD4e(RP2r 1 Gt (Vo) o + [[ve - V. RIRPx,: G (Vue) Vo
S [DeeRPr Galol Voo + 1P<a, Gallo| DeeVoello
+ [velo| V(RPex,. G = (Vo) o

a+1
< (IDtePergi: Galo + [[ve - Vi RIP<a, 1 Gallo) [ Voelo
+ Psrg 11 Gallol DeeVoelo + Ag+1[ Py Gallo[Voelo

1

2 R TS 3
S Ag0¢ ([ DreP<rg 1 Galo + Ag+1|Prg 1 Galo) € Agfidga + Ag03 .

Tq Hq
Here, we used |Rg[o < |lglo- As a result, we obtain
L 1
5 3 o4 1 0 +1 A (55
Dy yR(Ra = (Vo) )| v—1 S AV, 62 ot | % %
H 7 ( ( ) )H a+1%+1 )\q+17'q )\q+1/~‘q /\q+1
and
1 1
s 5 3 o7 1 ) 1 A 55
IDiR(Ra + (Vog) )1 S AJy 62, | — 1 + —2F 4%

Ag+1Tqg  Agriftg | Mgt

Therefore, the estimates for Ggo follow,

% 5q+1
q .
>\q+1

% 5q+1

L < N %
q )\q+17 ||Dt<10H2HN*1 ~ >\q+15q+1)\q5

N
|Gm2ln < AR 1 A0
To summarize, we get

x L N-3y:3 5 L N-3y:3 <3
IPrln < A e I1DmIN-1 < £ AT 00110010 -

10.2. Estimates on p; and g2. We will in fact show the stronger estimate

1 343
léiflo < m/\q+¥6;+2 (10.11)

1 a8
RS m%ﬁ%ﬂg (10.12)

from which the estimates follow by integration

1 4
HQlHO < 5)\(14_’1}/6(124,_2 (1013)
1 4 8
HQ2H0 < 5Aq+¥5¢12+2 . (1014)

Observe that, if we denote G and Go, respectively, the arguments of R in the formulas (10.4)
and (10.6) we just have

o(t) = JTS it z) da.

*
We can then argue as we did in the previous section to estimate |Rp;llo = [|[R(Gi)]o, taking
advantage of Lemma A.2 and the representations (3.26)-(3.29).
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10.3. Transport current error. We use the definition of & and recall its splitting into Sr1+
$r9. Since we have |Jera+1FEr| < )\é\ﬂr1|kl2 for any k € Z*\{0}, Dy eta+1%¢1 = 0, and almost
disjoint support of ¢, , (3.27) and (7.6) imply

|lwo ® wo — dg411 + Ry N < Z I Z 5q+lcm,k€i>\q“k'&”N S )\é\i15q+17 (10.15)
keZ3\{0} meZ

* .
| Di(wo @ wo — g1l + Re)In-1 S D, | Y] Sqs1(Depem e H4 |y
keZA\{0} meZ

+ [[(w + (v —vg) - V)(wo ® wo — dg111 + Re)|n-1 (10.16)

1
N 3
< )‘q+15q+1 +Og+1-

We then can use (9.1), (7.3), (10.15), (10.16), (5.3), and kg4+1 = 5 tr(Rg+1) to estimate

IEmlv s D) IRgr— 2w Jwln, + D) wo ®wo — dga + Relln, | (vg — ve) v
Ni1+No=N Ni1+No=N

_1 1 5
2 4 §4
q+16q 5q+1?

1 1 1 1 1 1
<A (Ag A 10460, + e%ﬁag) g1 S AYAZA

* % *
I1Deprln-1r s ), [Dd(Ryrr — 501d) v [w]n, + | Rysr — 301d| n, | Dew| v,
Ni+No=N-1
%

+ > IDi(wo ®wo — dgaT + Re)l|wy vg — velws

Ni1+No=N-1

*

+ D | we®wo — bg41] + Rellw, | Devg — ve)| n,

Ni+No=N-1

1 1 1 1 5
N 2 2\ 2 §451
S /\q+15q+1/\q )‘q+15q 5q+1'

As for S, by (3.27), fr2 = 3R (Zm 2kez\ (0} Oa+1 tr(DLgcm,k)ei/\4+1k‘§I) and estimate it using
Corollary 8.2 with (7.6) as follows

5q+1 6q+1

* 1
o Didraln-1 S A2, -

% N
Tallv S Ay - —_—
HSO H q+1 )\q+17—q )\q+17_q

To summarize, we have

L\ N3y LiN—3y55 53

*
H(;THN < g q+1 q+27 ”DtéTHN—l < g q+1 q+1 q+2'

by a suitable choice of b and Ag.

10.4. Estimates on pg. We next observe that we have
) )
erPe = X ¥ 2 tr(Duena)e O do
m keZ3\{0}
and it thus suffices to use Lemma A.2 to estimate

1 —375%

/
< 00— .
HQOHO 5(T T 7_0) g+1%g+2

The estimate for [ follows thus from integrating the latter in time.
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10.5. Oscillation current error. Recall that 3?701 =R (div (%\wolzwo + w)). We remark that
(3.29) gives

1 3 . 3 .
div <2|wo|2wo + W) = div Z Z (5q2+1dm,k€“\q“k'£1 = Z 5q2+1 div(dm,k)e”\q“kff,
meZ keZ3\{0} mok

because of cil,k(fl - k) = 0. Also, we have

) o Agr162 _
IDicdiv sl < 1Desdnilcr + 1(V)T s Vil wagy My =2t W9 2 0.
q
Therefore, using supp(dpm k) < (tm — 374, tm + 574) x R3, it follows from Corollary 8.2 with (7.7)

that

3 3

01 A, & N 53 O 11
3 » I1Pworln-1 £ A0 - 5 :
q+1Hq q+1Hq

Next recall that $pog = $(Jw|*w — |w,[*w,). Then, (7.1)-(7.3) imply

N
|[Go1lln < Ay -

3
2

)

+1
[Goalln < [l(w - weyw|n + [[|we*w]n + [wo*weln < A1 - 5y .

q+1Hq
53
* * * 1
N +1
| Difool v < |Di(|wol*we)| v + | De[(2wo - we + [we)w]|n < Agh182, - Aqimq'

Therefore, combining the estimates, we get
% L N—3y:3 g 1 N_gy L 3
[Pollv < 221" 0g1ar Dot < 22010511004,
for sufficiently small b — 1 > 0 and large .

10.6. Reynolds current error. Recall that pp = (Rg+1— %gld)w. Similar to the estimate for
Kw in g’ETl, we have

% N 11 1 5 1 N—3~ 3
2\ 2 §454 - 2
HQORHN < )‘q+1)‘q >\q+15q 5q+1 < 5)‘qu1 5q+2’

L. N 1 1 _1 1 5 1 N—3y 1 3
2 2 2 4 S4 - 2 2
IDiGRIN-1 S Aghi041 A A 108 051 < 2Ag11" 0041004

for sufficiently small b — 1 > 0 and large .
10.6.1. Mediation current error. Recall that
bar = (3l = el + 0 = 20)) w0+ (0 = 0
+ (w®w — Sg411d + Ry — Rgy1 + 20l1d)(vg — vy).
Then we recall that

* k) * *
w@w — Sg411d + Ry — Ry + 20ld = (wo @ wo — 8g411d + Ry) — Ro1 — Ry — Ry — Ruo,
(10.17)

so that it can be controlled in a similar way with ngl,

1 5
2 1

1 1
l(w@w — 6g111d + Ry — Ryy1 + %Qld)(vq —vp)|n < )\(]1\;1)‘!12 )‘q+15; 5q+17

* 1 1 _1 1 5
| Di[(w ® w — 64411d + Ry — Ryy1 + 501d)(vg — vo)][v—1 <ar AQ3 162108 A, 2104 6.4
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For the remaining terms, we use (5.3), (5.4), (5.6), and (7.3) to get

" 1. N_3,.3 x L 1 ny_gy.k 3
[Parlln < A 00k, IDMIN-1 < ZAg 700410010

11. PROOFS OF THE KEY INDUCTIVE PROPOSITIONS

11.1. Proof of Proposition 2.3. For a given dissipative Euler-Reynolds flow (vy, pq, Rq, Kq, ©q)
on the time interval [0, 7| +7,-1, we recall the construction of the corrected one: vy41 = vg+wg41
and pg+1 = Pg + gg+1, where w4 is defined by (3.33) and g44+1 = 0 on [0, 7] + 7,. Furthermore,
we find a new Reynolds stress R, and an unsolved flux current ¢411 which solve (2.1) together
with vgi1, pg+1, and kg1 = 5 tr(Rg41) and satisfy (9.1), (10.1) and (10.2) for sufficiently small
b—1 > 0 and large A\g. In other words, (vVg+1,Pg+1, Rg+1,Kq+1,Pg+1) s a dissipative Euler-
Reynolds flow for the energy loss E and the error (Ry41, 9q+1, Kq+1) satisfies (2.5)-(2.8) for g +1
as desired. Now, denote the absolute implicit constant in the estimate (7.4) for w by My and
define M = 2Mj. Then, one can easily see that

1 1 1
[vg+1 = vgllo + ——llvgs1 — vl = [wgsafo + lwgsally < 2Modgq = Mg,

q+1 )\q+1

Also, using (2.4) and (7.3), we have

1 1 1
lvg+1llo < [vgllo + [wg+1fo <1 —=0¢ + Mody <1 =674,

1
< MY ,62

FRS | 1
[vgrlly < vgll + [wgsa v < MAG'6F + 5 MAGL 6 G+

q+1

Ipg+1/~
1(0r + Ug+1 - v)pq+1HN—1

PN + llgg+1lly = [pgln < /\évéq < /\¢]1\£r15q+1,
(O +vg - V)pgllny + [w - Vpg|n-1

NN

3 1 3
2\N 2 N-1 2 N
< 8NN + MOZ AT 0N < 820N,

for N = 1,2, provided that )\g is sufficiently large. Therefore, we construct a desired corrected
flow (Uq+17pq+17 Rq+17 Rg+1, SOq-&-l)-

11.2. Proof of Proposition 2.4. Consider a given time interval Z < (0,7") with |Z| > 37,.
Then, we can always find mg such that supp(0p, (7, ') < Z. Now, if I = (mq,n, f) belongs to
SR, we replace v7 in wg41 by 41 = —v7. In other words, we replace I'; by I'; = —T';. Otherwise,
we keep the same 7. Note that I'; still solves (3.21) and hence 7; satisfies (3.20). Also, we
set Pg+1 = pg+1. Since the replacement does not change the estimates for I'y used in the proof
of Lemma 7.2, the corresponding coefficients Em,k, Cm k> Jm,k, and €, ), satisfy (7.5)-(7.8), and
W = W, We, and Wq4+1, generated by them, also fullfill (7.1)-(7.3). As a result, the corrected
dissipative Euler-Reynolds flow ('Eq+1,ﬁq+1,Rq+1,%q+1,§5q+1) satisfies (2.4)-(2.8) for ¢ + 1 and
(2.10) as desired. On the other hand, by the construction, the correction gy, differs from wg41q
on the support of O, (7, L.). Therefore, we can easily see

SUppPy (Vg1 — Ug+1) = supp;(wgs1 — Wes1) < I.

Furthermore, by (3.20) and (3.21), we have

D IVENT P = [(VE)TE ) e fI(VED T

Iesy feFI.r
= tr(0g411d — (Ry); — M)
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where M = Do 00X T (E1) Dipes, Vi (§ps ¥3,dx) (VE) L @ (VEp) ™. In particular
1Mo < A #0311

(see the proof in section 3.4.2). In this proof, |- |x denotes | - | o, r.on(rsy)- Then, it follows
that

wo — o> = Y, 40FOXTEDVIVED) T P+ (Y7 (Agi&r) — 1))

IE,ﬂR:m[:mo

= D) ABIG(E) (30g11 — tr(Ry) — tr(DM))

IEﬂR:mI:mo
= S 4BV T S e e
keZ3\{0} IeISr:mr=mo
= 40,6% (Tq_lt)(35q+1 —tr Ry — tr J\7) + Z 45411 tr(éﬁmk)ei)‘q“k'&,
keZ3\{0}

where
tr(éﬁo,k) = Z 91( )X1(51)5q+171817k|(V§I)71f1|2~

Iegr:mr=mg
Since we can obtain || tr(éﬁo’k)HN < pgN|érg| for N = 0,1,2 in the same way used to get the
estimate (7.6) for ¢, 1, we conclude

Jwo = ol ooz z2rey) = 42m)* (38¢41 — |Rello — [ tx(3) o)

- Z q+1f ekt ,k)ei/\“lk'&dx

keZ3
12041 — Coqr1 (A% + 2727 + (Aga1ttg) 2)

for sufficiently large \g. Indeed, in the second inequality, we used Lemma A.2 to get

2

k

3 e (@t )l + 1ty oI VELl oty — Lyt + 2ralic2(19)

ftr(éﬁok)e}‘q“k'&daz <

k 2+1|k|2
1

oo €1kl 1
< Ogring) 2] oz < Qavitta) Z|01k\2 ZW
k k

Therefore, we obtain

lvg+1 — Bg+1llcogo,ry;z(rsy) = lwg1 — Wa+1lcoqo,;z2(ms))

- 3
= [wo = wollco(o,r;L2(13)) — (27) 2 ([wefo + [[welo)
3
1 (2m)22My L L
> 202, — 01 =07
q+1 >‘q+1/~5q q+1 q+1

for sufficiently large Ag. ~
Lastly, we suppose that a dissipative Euler-Reynolds flow (04, pg, Rq, Rq, §q) satisfies (2.4)-
(2.8) and

supp, (Vg — Uq, Pq — Pgs Bg — Rq, kg — Rq,pq — ) = T
for some time interval 7. Proceed to construct the regularized flow, Ry and P as we did
1

for Ry and ¢, and note that they differ only in J + I « J + (\62)"'. Consequently, wy41
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1
differ from 1,41 only in J + (A\;6Z)~! and hence the corrected dissipative Euler-Reynolds flows
(Vg+1, Pg+15 Ry 1, Kga1, Pg+1) and (Dg+1, Dgr1, Ryv1, Rge1, Pg+1) satisty

1
~ ~ 5 ~ ~ 3\—1
SuPpt(Uqul — Vg41,Pg+1 — Pg+1, Rgr1 — Rgi1, Kge1 — Rge1, Pgr1 — SOqul) cJ+ ()‘q(SqQ) .

APPENDIX A. SOME TECHNICAL LEMMAS

The proof of the following two lemmas can be found in [6, Appendix].

Lemma A.1 (Holder norm of compositions). Suppose F': Q — R and ¥ : R™ — Q are smooth
functions for some Q@ < R™. Then, for each N € N, we have

IV¥(F o W)o < [VEo| V¥ -1 + [V n-1[]5"¥]n
IV¥(Fo®)o < [VEoIVE|n-1 + [VF|n-1| V[, (A1)
where the implicit constant in the inequalities depends only on n, m, and N.

Lemma A.2. Let N > 1. Suppose that a € C*(T?) and & € C*(T3;R3) satisfies

for some constant C > 1. Then, we have

ik lalln + llalol V€]~
Lr?’ a(x)e fdx‘ < N ,

where the implicit constant in the inequality is depending on C and N, but independent of k.

Lemma A.3 (Commutator estimate). Let f and g be in C*([0,T] x T3) and set f = P<y1 f,
ge = Pey-19 and (fg)¢ = P<y-1(fg). Then, for each N = 0, the following holds,

| fege = (F9)eln <n 7N fl1]glh- (A.2)

Proof. Since the expression that we need to estimate is localized in frequency, by Bernstein’s
inequality it suffices to prove the case N = 0. Recall now the function m used to define the
Littlewood—Paley operators and the number J, which is the maximal natural number such that
27 < ¢!, Denoting by m the inverse Fourier transform and by m, the function m(z) =
237127 x), a simple computation (see for instance [9]) gives

(fege — (F9))(x) = j j — ) (o) — g(x — 2))iie(y)iie(2) dy dz
:* >0— 1f( ) >0— 1f( )

and the claim follows at once from Bernstein’s inequality. O
Lemma A.4. For any N = 0, we have
I[ve - ¥, Peg]F|lv < 417N [Volo|[VF o (A.3)
I[ve - V, Pop ] Flly < 417N V0o VEo- (A4)
Proof. First, we observe that
[ve - V, Poyr]F(z) = vp - V(Poyrr FF = F) + (vg - VF) = Py (v - VF)

= —Uy - VPS5—1F + ng—l(vg . VF) = —[’Ug -V, ng—l]F.
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First of all it suffices to consider the case N = 0, as the expression that we want to estimate
is localized in frequency. Next, using the functions 7, introduced in the proof of the previous
lemma, we can compute at once

[ve - V, Pegr ] F ()] < JRP’ ve(x) — ve(y)l[e(z — y)|[VF(y)|dy
< [zl L2 [Vvelo [V Fllo < €[ Volo [V F o -

Observe now that

el = 277 j 2l da <

to conclude the proof. O

Acknowledgments. The first author has been supported by the NSF under Grant No. DMS-
1946175. The second author has been supported by the National Science Foundation under
Grant No. DMS-1638352.

[1]
2]

(10]
(11]

(12]

[20]
(21]

REFERENCES

T. Buckmaster. Onsager’s Conjecture. PhD thesis, Universitit Leipzig, 2014.
T. Buckmaster. Onsager’s conjecture almost everywhere in time. Communications in Mathematical Physics,
333(3):1175-1198, 2015.
T. Buckmaster, C. De Lellis, P. Isett, and L. Székelyhidi Jr. Anomalous dissipation for 1/5-holder Euler
flows. Annals of Mathematics, 182(1):127-172, 2015.
T. Buckmaster, C. De Lellis, and L. Székelyhidi, Jr. Transporting microstructure and dissipative Euler flows.
arXivw:1302.2815, 02 2013.
T. Buckmaster, C. De Lellis, and L. Székelyhidi, Jr. Dissipative Euler flows with Onsager-critical spatial
regularity. Comm. Pure Appl. Math., 69(9):1613-1670, 2016.
T. Buckmaster, C. De Lellis, L. Székelyhidi Jr., and V. Vicol. Onsager’s conjecture for admissible weak
solutions. Communications on Pure and Applied Mathematics, 72(2):229-274, 2020/05/19 2019.
L. Caffarelli, R. Kohn, and L. Nirenberg. Partial regularity of suitable weak solutions of the Navier-Stokes
equations. Comm. Pure Appl. Math., 35(6):771-831, 1982.
M. Colombo and L. De Rosa. Regularity in time of Hélder solutions of Euler and hypodissipative Navier-
Stokes equations. SIAM J. Math. Anal., 52(1):221-238, 2020.
P. Constantin, W. E, and E. Titi. Onsager’s conjecture on the energy conservation for solutions of Euler’s
equation. Comm. Math. Phys., 165(1):207-209, 1994.
S. Daneri and L. Székelyhidi. Non-uniqueness and h-principle for Holder-continuous weak solutions of the
Euler equations. Archive for Rational Mechanics and Analysis, 224(2):471-514, 2017.
C. De Lellis and L. Székelyhidi. On admissibility criteria for weak solutions of the euler equations. Archive
for Rational Mechanics and Analysis, 195(1):225-260, 2010.
C. De Lellis and L. Székelyhidi, Jr. The h-principle and the equations of fluid dynamics. Bull. Amer. Math.
Soc. (N.S.), 49(3):347-375, 2012.
C. De Lellis and L. Székelyhidi, Jr. Dissipative continuous Euler flows. Invent. Math., 193(2):377-407, 2013.
C. De Lellis and L. Székelyhidi, Jr. Dissipative Euler flows and Onsager’s conjecture. J. FEur. Math. Soc.
(JEMS), 16(7):1467-1505, 2014.
P. Isett. Holder continuous Euler flows with compact support in time. ProQuest LLC, Ann Arbor, MI, 2013.
Thesis (Ph.D.)-Princeton University.
P. Isett. Regularity in time along the coarse scale flow for the incompressible Euler equations. ArXiv e-prints,
July 2013.
P. Isett. Nonuniqueness and existence of continuous, globally dissipative Euler flows. arXiv:1710.11186, 2017.
P. Isett. A proof of Onsager’s conjecture. Annals of Mathematics, 188(3):871-963, 2018.
P. Isett and S.-J. Oh. On nonperiodic Euler flows with Hélder regularity. Archive for Rational Mechanics
and Analysis, 221(2):725-804, 2016.
P. Isett and V. Vicol. Holder continuous solutions of active scalar equations. Annals of PDE, 1(1):1-77, 2015.
L. Onsager. Statistical hydrodynamics. Il Nuovo Cimento (1943-1954), 6:279-287, 1949.

52



CaAMILLO DE LELLIS

SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY AND UNIVERSITAT ZURICH
1 EINSTEIN DR., PRINCETON NJ 08540, USA

E-MAIL ADDRESS: CAMILLO.DELELLISQMATH.IAS.EDU

Hyunju Kwon

SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY
1 EINSTEIN DR., PRINCETON NJ 08540, USA

E-MAIL ADDRESS: HKWON@MATH.IAS.EDU

53



