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December 26, 2018

Turbulence: a challenge for mathemati-
cians

There is a huge literature on turbulent incompress-
ible flows in applied mathematics, physics and engi-
neering. The outcome of such tremendous effort has
been the derivation of several theories, which often al-
low quite accurate predictions of many phenomena.
There is also a quite broad consensus on which funda-
mental partial differential equations (in short PDEs)
describe with sufficient accuracy incompressible flu-
ids, namely the Navier Stokes and the Euler equa-
tions. Therefore, in a certain statistical or averaged
sense, the predictions of the “theory of turbulence”
should ultimately translate in mathematically veri-
fiable claims about the behavior of solutions to the
latter well-known PDEs. Indeed the working math-
ematician, even if not immediately confronted with
clear cut mathematical statements about turbulence
(at least as we understand them in pure mathemat-
ics), will be nonetheless able to derive some precise
mathematical consequences of the discussions right
at the start of most textbooks about turbulent flows.

Yet, it seems very hard to prove any of these state-
ments rigorously. Many valuable works in pure math-
ematics have shown the validity of some of the mech-
anisms identified by applied mathematicians, physi-

Communicated by Daniela De Silva
Camillo De Lellis is professor of mathematics at the Institute
for Avdanced Study and at the University of Zürich. His email
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cists and engineers. However these results are mostly
confined either to models or to situations obeying
some important (and as of yet unverifiable) apriori
assumptions. In this note we want to report on a
series of recent works which culminated in the com-
plete verification of a famous statement in the theory
of turbulence, not confined to some model or con-
strained by some special a priori assumption. These
results have uncovered a surprising and interesting
connection with a classical area of differential geom-
etry and have also been used in other contexts.

K41 theory and the Onsager conjecture

Consider the incompressible Navier-Stokes equations ∂tv + div(v ⊗ v) +∇p− ν∆v = 0

div v = 0 ,
(1)

describing the motion of an incompressible homoge-
neous viscous fluid, where we set the density to be 1
for simplicity. The pair (v, p) consists, respectively,
of a vector and a scalar function: v(x, t) is the veloc-
ity of the fluid particle which occupies the point x at
time t, and p is the hydrodynamic pressure. Whilst
acknowledging that most of the interesting hydrody-
namic phenomena in reality happen in the presence
of boundaries, in order to isolate a manageable math-
ematical situation we will assume in the rest of this
note that spatial domain is T3 = (R/2πZ)3, the 3-
dimensional flat torus with side-length 2π. In other
words, we consider the problem (1) with periodic
boundary conditions in the box [0, 2π]3.

The coefficient ν > 0 is called the kinematic vis-
cosity of the fluid. If the characteristic scale (which
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we have set to be unity) and the characteristic ve-
locity of the flow are both fixed, then ν is inversely
proportional to the Reynolds number Re, a quantity
without physical dimensions, which is characteristic
for the turbulent nature of the flow under consid-
eration. A good intuition for the nature of Re is
given by the following simple model. Replace the left
hand side of the first equation in (1) with an exter-
nal force f acting on low wavenumbers, for instance
f(x) = A sin(x1)e2, where A > 0 is a parameter and
e2 is the unit vector in the x2-direction. In this case
the system has a simple stationary solution, given
by v̄(x) = A

ν sin(x1)e2. Numerical experiments show
however that, as we increase the parameter A, the
stationary solution eventually becomes unstable, and
going through a series of bifurcations the observed
flow becomes more and more complex, at some stage
becoming chaotic - in other words turbulent. Note
that in this situation the characteristic velocity is A

ν

and the Reynolds number is given by Re = A
ν2 , so

that increasing A has the same effect as decreasing
ν. This can be seen by a simple rescaling of time:
given a solution v = v(x, t) of (1) with the external
force f above, set u(x, t) = ν−1v(x, ν−1t). Then u
is also a solution of the Navier-Stokes system on T3,
with kinematic viscosity equal to 1 and external force
ν−2f(x) = Re sin(x1)e2. The simple stationary solu-
tion becomes ū(x) = ν−1v̄(x) = Re sin(x1)e2, hence
Re is the only parameter remaining.

Going back to the Navier-Stokes equations with no
driving external force, elementary calculations show
that for smooth solutions of (1) the total kinetic en-
ergy

E(t) :=
1

2

∫
|v(x, t)|2 dx

satisfies the energy balance law

d

dt
E(t) = −ν

∫
|∇v|2 dx.

Thus, at least formally, one would expect that as ν →
0, the energy dissipation rate vanishes. This naive ex-
pectation is contradicted by observation, both physi-
cal and numerical: the dissipation rate remains finite
and positive. This effect is called anomalous dissipa-
tion in the literature. Kolmogorov in the early 1940s

pioneered the statistical theory of turbulent motions,
assuming that generic flows can be seen as realiza-
tions of random fields. Kolmogorov’s theory postu-
lates (cf. [Fri95, Chapter 5]) that the energy dis-
sipation is strictly positive and independent of the
viscosity ν when the latter goes to 0 - in agreement
with observation. The key insight is that anomalous
dissipation arises from the fact that no matter how
small the kinetic viscosity ν is, there is a steady flow
or cascade of energy from low to high frequencies,
leading to large |∇v|2. In the words of J. von Neu-
mann [VN63], the decisive trait is that turbulence is
not a matter of ergodic distribution of a fixed amount
of energy, but the transport of a fixed flow of energy
from sources in the low frequencies to sinks in the
high frequencies in the Fourier- transform space As-
suming in addition local homogeneity and isotropy,
Kolmogorov derived his famous k−5/3 law, express-
ing the mean distribution of kinetic energy density
across an intermediate range of spatial frequencies
k0 < k < kν .

When ν ↓ 0, (1) becomes formally the incompress-
ible Euler equations ∂tv + div(v ⊗ v) +∇p = 0,

div v = 0 .
(2)

The energy balance law implies that smooth solutions
of (2) preserve the total kinetic energy.

Onsager suggested in his famous note [Ons49] the
possibility of anomalous dissipation for weak solu-
tions of the Euler equations as a consequence of the
energy cascade. Indeed, at least formally, as ν ↓ 0,
the inertial range of frequencies extends to infinity
(namely kν → ∞), hence Kolmogorov’s k−5/3 law
amounts to a certain regularity statement, when in-
terpreted for single velocity fields rather than ensem-
ble averages. This is exactly what Onsager proposed
in 19491. It is important to emphasize that the the-
ory of Kolmogorov is a statistical theory, dealing with

1Towards the end of his note Onsager writes:
... It is of interest to note that in principle, turbulent dis-

sipation as described could take place just as readily without
the final assistance of viscosity [A/N: in the previous pages
Onsager discusses the energy spectrum of turbulent solutions
of (1) on the threedimensional torus after rewriting the equa-
tions as an infinite-dimensional system of ODEs for the Fourier
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random fields whose distribution laws need to sat-
isfy several postulates, but even the mere existence
of such random fields is not at all obvious in rigor-
ous mathematical terms. In contrast, the suggestion
of Onsager turned the problem into a “pure PDE”
question that could be studied directly, and, after
nearly 70 years, we can finally state the theorem:

Theorem 1 Let (v, p) be a weak solution of (2) with

|v(x, t)− v(y, t)| ≤ C|x− y|θ ∀x, y, t (3)

(where C is a constant independent of x, y, t).

(a) If θ > 1
3 , then E(t) is necessarily constant;

(b) For θ < 1
3 there are solutions for which E(t) is

strictly decreasing.

In the historical context it is quite remarkable that
Onsager was able to formulate a mathematically very
precise statement. He gave, in particular, a rigorous
definition of “weak solutions” expanding (2) into an
infinite system of ODEs for its Fourier coefficients2,
a point of view which coincides with the concept of
“distributional solution” of the modern PDE liter-
ature. Nevertheless, it was only in the early 1990s
that mathematicians took note of this statement as a
mathematical conjecture, mostly as a result of Greg
Eyink’s efforts in providing a modern account of On-
sager’s unpublished work on the topic [ES06] and in
popularizing the subject in the mathematical fluid
dynamics community [Eyi94].

coefficients; the “absence of viscosity” refers to setting ν = 0
in (1)]. In the absence of viscosity, the standard proof of the
energy conservation does not apply, because the velocity field
does not remain differentiable! In fact it is possible to show
that the velocity field in such “ideal” turbulence cannot obey
any Lipschitz condition of the form

|~v(~r′ + ~r)− ~v(~r′)| < (const.)rn

for any n greater than 1
3

; otherwise the energy is conserved.
2Onsager’s continuation of the aforementioned paragraph

reads:
Of course, under the circumstances, the ordinary formula-

tion of the laws of motion in terms of differential equations
becomes inadequate and must be replaced by a more general
description; for example the formulation (15) [A/N: the refer-
ence is to formula (15) in Onsager’s paper] in terms of Fourier
series will do.

Part (a) of Theorem 1 was proved in [CET94] using
a regularization procedure and a clever and powerful,
yet elementary, commutator estimate.

Part (b) of Theorem 1 took another 25 years, with
a series of partial results and gradual improvements
[Sch93, Shn97, Shn00, DLSJ09, DLSJ08, DLSJ12,
DLSJ14, Ise13, Buc14, Buc15, BDLISJ15, DSJ17], fi-
nally culminating in [Ise16] and the subsequent im-
provement [BDLSJV18].

Well-formulated mathematical conjectures are not
just about solving a problem. We associate with them
the hope of learning something deeper about the con-
text in which the problem was formulated, possibly
revealing unexpected connections between different
parts of mathematics. The story of Onsager’s con-
jecture fits very well in this ideal: the proof of The-
orem 1 is quite possibly more interesting than the
actual statement (which, in some sense, was already
“clear” to physicists). It reveals a new mechanism
by which energy cascades may appear in solutions
of nonlinear PDEs. This mechanism has already led
to further breakthroughs, see below, and has uncov-
ered an entirely unexpected connection between the
mathematically elusive concept of turbulence and the
“New Land” (cf. [Gro17]) discovered by John Nash
in differential geometry.

The Scheffer-Shnirelman paradox

In [Sch93] V. Scheffer constructed a non-trivial weak
solution to the Euler equations in R2 with com-
pact support in space and time. Subsequently
A. Shnirelman in [Shn97] gave an entirely different
proof in T2. Such a result is hard to interpret physi-
cally, as it would correspond to a perfect incompress-
ible fluid which can start and stop moving by itself,
without the action of external forces. As such, for a
long time Scheffer’s Theorem remained some sort of
“paradox” in the PDE literature [Vil08], cited mostly
as a warning example of unphysical behaviour if the
notion of solution is too weak, with emphasis more on
the non-uniqueness aspect rather than the violation
of energy conservation. Indeed, since the weak solu-
tions constructed here are merely square-integrable in
space-time, there is no control on the regularity of the
total kinetic energy E(t) (which is not even known to
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be bounded for every t), therefore in principle E need
not be monotone on any time-interval. The first re-
sult in connection with Theorem 1(b) was obtained
by Shnirelman in [Shn00] - he showed the existence
of a solution on T3 with finite and strictly monotone
decreasing energy on some time interval. Neverthe-
less, this solution is not continuous, and, since it was
obtained using a generalized flow model with sticky
particles, it seemed to have no connection to the en-
ergy cascade picture postulated by Kolmogorov and
Onsager.

Differential inclusions, relaxation and
Reynolds stress

Much less known than his works on the Euler and
Navier-Stokes equations, the unpublished PhD thesis
of Scheffer [Sch74] contains some remarkable precur-
sors of fundamental results in the vectorial calculus of
variations. One of them is akin to Evans’ ε-regularity
theorem [Eva86] for minimizers of elliptic energies
(the precise assumption is “uniform quasiconvexity”)
and the other one is a precursor of a striking singu-
larity theorem by Müller and Šverak [MŠ03]. The
latter paper (which as we will see below has been
an important source of inspiration for at least an-
other reason) proves the existence of a rather badly
behaved Lipschitz critical point to elliptic energies
which fall under the assumptions of Evans’ theorem:
such critical point is nowhere differentiable, in stark
contrast with minimizers, which according to Evans
must be smooth on a dense open subset.

The work [MŠ03] belongs, unlike the papers [Sch93,
Shn97, Shn00], to an established mathematical tra-
dition, in the sense that during the 1990s and early
2000 several authors used analogous ideas to produce
rather striking examples of irregular solutions to vari-
ous systems of partial differential equations, all falling
in the class of “differential inclusions” (the most no-
table examples are the works [DM97, Syc01, Kir03]).
In fact an important functional analytic aspect of
these ideas was pioneered in the context of ordinary
differential equations in the work [Cel80], see also
[BF94, Cel05]. The basic principle underlying these
works can be explained on the simplest of differential

inclusions: consider the sets

X =
{
z : [0, 1]→ R : |z| ≤ 1 a.e.

}
S =

{
z : [0, 1]→ R : |z| = 1 a.e.

}
.

(4)

Then S is dense in X with respect to the weak* topol-
ogy in L∞ (in fact Baire-residual), see [Cel80, BF94].
This statement easily follows from Mazur’s lemma
and emphasizes the relationship between weak con-
vergence and convex hulls.

The jump from this basic principle to partial dif-
ferential equations was made possible by the seminal
work [Tar77] by L. Tartar (see also [DiP85] for anal-
ogous ideas appearing at the same time), which ex-
amined the relations between weak convergence and
differential constraints and uncovered new phenom-
ena depending on the core PDE structure. As an
example, consider the following n-dimensional gener-
alization of (4):

X =
{
u : B → Rn : ∇u ∈ coK a.e.

}
S =

{
u : B → Rn : ∇u ∈ K a.e.

}
,

(5)

where B ⊂ Rn is the open unit ball, K is a compact
subset of n×n matrices and coK denotes the convex
hull of K. If K = O(n), the set of linear isometries,
then S is dense in X with respect to the uniform
topology [Gro86]. However, if K = SO(n), the set of
orientation-preserving linear isometries, then S con-
sists only of affine functions [Res94]. The situation
for a general K lies somewhere in between these ex-
treme cases, see [MŠ98, KŠM03].

It turns out [DLSJ09] that the Euler system (2),
when interpreted as a differential inclusion similar to
(5), falls in the same category as the O(n)-case above.
In order to explain this, note that the density of S
in X can be interpreted as a relaxation statement.
Consider a sequence of Lipschitz maps uk : B → Rn
with ∇u(x) ∈ O(n) for a.e. x ∈ B, i.e.

∂iu · ∂ju = δij a.e., (6)

which converge uniformly to a limit u. Without any
additional information on the sequence, we can only
say that the limit satisfies ∇u(x) ∈ coO(n) a.e., i.e.

∂iu · ∂ju ≤ δij a.e. (7)

4



in the sense of quadratic forms. In more geometric
language, the uniform limit of a sequence of isome-
tries is a short map. The density of S in X is a kind
of converse of this statement, that is, the system (7)
is the relaxation of the system (6).

The analogous question for the Euler equations is
as follows: Consider a sequence of uniformly bounded
weak solutions vk to (2), which converge weakly in L2

to some limit function v̄. Then v̄ satisfies the Euler
equations with an error term: ∂tv + div(v ⊗ v +R) +∇p = 0

divv = 0,
(8)

where, denoting by v ⊗ v the weak limit of vk ⊗ vk,

R = v ⊗ v − v ⊗ v . (9)

Without any additional information on the sequence
vk, we have no reason to expect that the symmetric
tensor R vanishes, the only information we can gather
is that R(x, t) ≥ 0 a.e. in the sense of quadratic
forms (the passage from R = 0 to R ≥ 0 is the pre-
cise analogue to the passage from K to coK in (5)).
The tensor R is, in a slightly different guise, a very
well known object in the theory of turbulence, called
Reynolds stress, which arises by a formal averaging
of the equations (1) or (2). Thinking of a turbulent
velocity field as the sum v = v̄ + w of a mean flow v̄
and a (random) fluctuation, the induced stress by the
fluctuation on the mean flow is given by R = w ⊗ w.
This is the same formula as (9). Indeed, the process
of taking weak limits is somewhat akin to averaging
high-frequency oscillations, and weak convergence in
place of averaging random fluctuations has been pro-
posed by P. Lax [Lax91] as a deterministic approach
to turbulence.

The work in [DLSJ09, DLSJ08] established the re-
lationship between the system (8) and (2). More pre-
cisely, the main result in [DLSJ08] states that (mod-
ulo some technical assumptions) any solution v̄ of (8)
can be weakly approximated by weak (bounded, but
in general discontinuous) solutions v of (2), so that,
in this sense, the system (8) is the relaxation of the
Euler system. In this way we were able to place the
existence theorems of Scheffer and Shnirelman in a

very general and flexible context, applicable not just
to the incompressible Euler equations, but to several
other PDEs, see e.g. [CFG10, Shv11, CDLK15] (note
in contrast, that Shnirelman’s proofs heavily relied on
generalized flows and thus on Arnold’s geodesic flow
formulation of the incompressible Euler equations).
Moreover, our work provided a surprising fil rouge
between Scheffer’s PhD thesis and his work [Sch93]
on the incompressible Euler equations.

Note however that, in terms of regularity and the
energy cascade picture, these results were no closer
to Theorem 1(b) than [Sch93, Shn97, Shn00].

Convex integration and the Nash-
Kuiper paradox

As mentioned above, there is a second reason why
the paper [MŠ03] by S. Müller and V. Šverak was a
major source of inspiration for us. The authors in
[MŠ03] pointed out for the first time an important
relation between the results in the theory of differen-
tial inclusions and Gromov’s h-principle in geometry.
In particular the method of convex integration, intro-
duced by M. Gromov [Gro86] and extended in [MŠ03]
to Lipschitz mappings, provides a very powerful tool
to construct solutions to nonlinear PDEs.

The origin of Gromov’s convex integration lies
in the famous Nash-Kuiper theorem on isometric
embeddings of Riemannian manifolds. Let Σ be
a smooth compact manifold of dimension n ≥ 2,
equipped with a Riemannian metric g. A map u :
Σ → RN is isometric if it preserves the length of
curves, i.e. if

`g(γ) = `e(u ◦ γ) for any C1 curve γ ⊂ Σ, (10)

where `g(γ) denotes the length of γ with respect to
the metric g:

`g(γ) =

∫ √
g(γ(t))[γ̇(t), γ̇(t)] dt . (11)

If u ∈ C1(Σ;RN ) this means, using the language of
Riemannian geometry, that the pull back of the Eu-
clidean metric u]e agrees with g. In local coordinates
such relation is the following system of partial differ-
ential equations

∂iu · ∂ju = gij , (12)
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which can be seen as an (inhomogeneous) differential
inclusion - compare with (6).

The existence of isometric immersions (and embed-
dings) of Riemannian manifolds into some Euclidean
space is a classical problem, explicitly formulated for
the first time by Schläfli, see [Sch71], who conjectured
that the system is solvable locally if the dimension N

of the target is at least n(n+1)
2 , matching the number

of equations in (12). An isometric immersion in co-
dimension 1 would seem a rare bird, since, with the
exception of the case n = 2, the system (12) would
be heavily overdetermined. Yet, in [Nas54] J. Nash
astonished the geometry world by proving essentially
that the only obstruction to the existence of solutions
of (12) is topological, at least in the class of C1 maps.

In order to state Nash’s Theorem let us recall that
an immersion u : Σ → RN is called short if it
“shrinks” the length of curves. For C1 immersions
and in local coordinates such condition is equivalent
to the inequality

∂iu · ∂ju ≤ gij (13)

in the sense of quadratic forms - compare with (7).

Theorem 2 Let (Σ, g) be a smooth closed n-
dimensional Riemannian manifold. Any C∞ short
immersion u : Σ → RN with N ≥ n + 1 can be uni-
formly approximated by C1 isometric immersions. If
u is, in addition, an embedding, then it can be ap-
proximated by C1 isometric embeddings.

Nash proved Theorem 2 for N ≥ n + 2 and sug-
gested that his strategy could be suitably modified
to work in the case N = n+ 1; the details were then
given in two subsequent works by N. Kuiper [Kui55].

Theorem 2 can be seen as the C1 analogue of the re-
laxation statement in (5). However, whilst it is rather
easy to imagine Lipschitz isometric maps arising as
“foldings” of the manifold Σ, the C1 case came as
a complete surprise, in particular because the Nash-
Kuiper theorem cannot hold for C2 maps. For in-
stance, a C2 isometric immersion of a closed posi-
tively curved sphere in the three-dimensional space
is necessarily convex, and in fact the shape is de-
termined up to rigid motions by a classical result
of Cohn-Vossen and Herglotz [CV30, Her43]. In the

1950s Yu. Borisov showed that such result can be ex-
tended to C1, 23+ε isometries, cf. [Bor59]. In fact,
since for a C1 surface the Gauss map is continuous,
with a well-defined Brouwer degree, there was some
hope that the rigidity statement of Cohn-Vossen and
Herglotz can be extended to to the C1 case. It was
this hope that was shattered by Nash’s result.

Subsequently, Borisov announced that the Nash-
Kuiper theorem can be extended to C1,α isometries
provided α is sufficiently small [Bor65]. While a de-
tailed proof of these announcements only appeared
in one special case in [Bor04], in the joint work
[CDLSJ12] with Sergio Conti we revisited these ex-
tensions and provided a unified framework for all the
results announced in [Bor65]. In that paper we also
noticed that the geometric considerations leading to
Borisov’s rigidity statement [Bor59] can be substi-
tuted by a short PDE argument which relies on the
same commutator estimate as in Constantin, E and
Titi’s proof of Theorem 1(a).

Thus, a striking analogy between isometric immer-
sions and solutions of the Euler equations arose: at
sufficiently high regularity (C2 for isometries, C1 for
Euler) solutions are well-behaved and with appro-
priate side-conditions uniquely determined, at suf-
ficiently low regularity (Lipschitz/C1 for isometries,
bounded/C0 for Euler) solutions with completely dif-
ferent behavior appear. It was thus natural to try
to adapt the ideas of Nash in [Nas54] to the Euler
equations. It is important to emphasize, however,
that this analogy concerns more the non-uniqueness
aspect of weak solutions of Euler, i.e. the unphysi-
cal behavior already observed in connection with the
Scheffer-Shnirelman paradox. On the other hand,
in light of Gromov’s h-principle, one should perhaps
view this aspect more as an expression of flexibil-
ity rather than non-uniqueness - the violation of en-
ergy conservation is one aspect of this flexibility. In-
deed, while part (a) of Theorem 1 shows that above
the Hölder exponent 1

3 solutions cannot be too flexi-
ble, it is not at all clear what to expect about their
uniqueness: one guess might be that the threshold
for uniqueness is a small improvement of C1 (in the
Osgood sense).
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Dissipative continuous solutions

Inspired by Nash’s proof in [Nas54] we devised in
[DLSJ12] a “convex integration” scheme leading to
continuous dissipative solutions of (2). Subsequently
we showed in [DLSJ14] that these solutions satisfy
Theorem 1(b) with exponent θ < 1

10 . The construc-
tion is based on an iteration, where at each step
we add a highly oscillatory correction in order to
decrease the defect to being a solution. More pre-
cisely, we construct inductively a sequence of solu-
tions (vq, pq, Rq), q = 1, 2, . . . to ∂tvq + div(vq ⊗ vq) +∇pq = −divRq ,

divvq = 0 ,
(14)

such that vq → v and Rq → 0 uniformly. Observe
that (14) is the same system as (8). Accordingly,
vq+1 = vq +wq+1 where we think of vq as the “mean
flow” on length-scales ≥ λ−1q and wq+1 is the “fluc-
tuation” on this scale. Thus, up to lower order cor-
rections wq+1 should have the form

wq+1(x, t) = W
(
vq(x, t), Rq(x, t), λq+1x, λq+1t

)
,

(15)
where W (v,R, ξ, τ) is some “master function” and
λq+1 a parameter which increases at least exponen-
tially fast at each step. In comparison, in the proof
of Nash [Nas54] these “fluctuations” are spirals (and
in [Kui55] corrugations) aimed at increasing the met-
ric – thereby reducing the metric error – in a single
coordinate direction.

The basic idea for reducing the error with such an
Ansatz is the following: assuming that vq is already
the correct solution up to spatial frequencies of order
λq, and wq+1 is supported on spatial frequencies of
order λq+1, it is easy to see that the only possibility
for wq+1 to correct the error Rq is via the high-high
to low interaction in the product wq+1 ⊗ wq+1. In
other words, the master function W should satisfy
the properties that ξ 7→ W (v,R, ξ, τ) is 2π-periodic
with average

〈W 〉 :=
1

(2π)3

∫
T3

W (v,R, ξ, τ) dξ = 0;

and the average stress is given by R, i.e.

〈W ⊗W 〉 = R ;

Note how these requirements are consistent with (9).
Now assume that ξ → W (v,R, ξ, τ) is a stationary
solution of Euler for any v,R, τ . Substituting this
Ansatz for vq+1 into (14) then yields as the main
quadratic interaction term div(wq+1 ⊗wq+1 −Rq) +
∇pq+1, leading to a new Reynolds stress Rq+1 with
Fourier support on frequencies of order λq+1. In this
way we can push the error to high frequencies by
successively “undoing” the averaging process leading
to Reynolds stresses in (8)-(9).

As explained in [SJ16, DLSJ17], starting from the
Ansatz above it is possible to write down a family of
conditions that W would have to satisfy, ideally, so
to give a “clean” convex integration iteration leading
to a proof of Theorem 1(b). Although this family of
conditions is somewhat naive and unfortunately no
such W exists (indeed, the scaling of time in (15)
is clearly “wrong”), approximations based on a spe-
cial family of stationary solutions of Euler called Bel-
trami flows can be used. This lead to the results in
[DLSJ12, DLSJ14].

Climbing the Onsager ladder

The reason why the construction in [DLSJ12,
DLSJ14] was only able to produce weak solutions to
the Euler system as in Theorem 1(b) with Hölder
exponent θ < 1

10 is the rather poor control of the lin-
ear (i.e. transport) interaction term between “mean
flow” vq and “fluctuation” wq+1. Indeed, whilst it is
quite clear from dimensional considerations that the
scaling (λq+1x, λq+1t) in (15) is unnatural, several
modifications were introduced later in the precise im-
plementation of the basic iteration scheme described
above. P. Isett introduced in his PhD thesis [Ise13]
the correct space-time scaling, which eventually lead
to an improvement of Theorem 1(b) with Hölder ex-
ponent θ < 1

5 , cf. [BDLISJ15]. Moreover, follow-
ing an idea from the PhD thesis of T. Buckmaster
to introduce temporal intermittency [Buc15, Buc14],
in the joint work [BDLSJ16] we reached for the first
time the threshold θ < 1

3 , although not in the desired
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scale of spaces: more precisely, for any θ < 1
3 we

show the existence of nontrivial continuous solutions
with compact temporal support (i.e. in the spirit of
the Scheffer-Shnirelman paradox) which satisfy the
condition

|v(x, t)− v(y, t)| ≤ C(t)|x− y|θ for every x, y, t ,

where C is an L1 function of time.
The correct scale of spaces was finally achieved in

[Ise16], where P. Isett proved the existence of com-
pactly supported nontrivial solutions in Cθ for ev-
ery θ < 1

3 . The proof in [Ise16] contains two new
ideas. Firstly, in [DSJ17] S. Daneri and the second
author introduced a new class of “master functions”
W called Mikado flows, which are more stable under
convection by a large-scale mean flow. However, it is
not possible to use such W directly in the scheme of
[DLSJ12] (and its subsequent refinements), not even
to produce continuous solutions. The second key idea
in [Ise16] is a gluing technique, which combines the
convex integration technique with the free (unforced)
Euler dynamics in an alternating fashion. A short-
coming of [Ise16] is the insufficient control of the ki-
netic energy E(t). The final proof of Theorem 1(b)
was then given in [BDLSJV18].

Further developments and open prob-
lems

Several interesting challenges remain in the area. One
is to produce a sequence of Leray-Hopf solutions to
the Navier-Stokes equations with vanishing viscosity
which exhibit anomalous dissipation. This would be
the case if, for instance, one were able to show that at
least one of the solutions of Euler constructed by the
convex integration method is a limit of Leray-Hopf
solutions of the Navier-Stokes equations with vanish-
ing viscosity. The latter problem might be linked to
constructing dissipative solutions which are Onsager-
critical, although it is not clear which scale of spaces
is most natural.

A second important challenge in connection with
the Kolmogorov-Onsager theory is to introduce in-
termittency and in this way to be able to recover
the measured deviations from K41 self-similarity and

possible multifractality. In their remarkable recent
work [BV17] Buckmaster and Vicol have constructed
a convex integration scheme which produces weak so-
lutions of the Navier-Stokes equations, by introduc-
ing intermittency. In particular they were able to
show that:

• For such weak solutions the Cauchy problem to
the Navier-Stokes equations is ill-posed;

• Any “convex-integration solution” of Euler can
be approximated strongly in L2 by weak solu-
tions of Navier-Stokes.

Furthermore, in the joint work [BCV18] with
M. Colombo they could produce such solutions with
the additional property that they are smooth except
for a small closed set of times (of Hausdorff dimen-
sion strictly smaller than 1). While the above re-
sults are striking, they seem for the moment far from
producing solutions that belong to the energy space.
The latter can be instead reached when the Lapla-
cian in the viscosity is replaced by a fractional Lapla-
cian with sufficiently low exponent (cf. [CDLDR18,
De 18]; the latter works follow more closely the con-
structions in [BDLISJ15] and [BDLSJV18]). In a
similar line of research, the second author in joint
work with S. Modena [MSJ17, MSJ18] constructed
convex integration solutions to the transport and con-
tinuity equations with Sobolev vector fields which are
not renormalized, thus showing optimality of the in-
tegrability assumptions in the DiPerna-Lions theory.

A further important issue is related to the clo-
sure problem and dynamical behavior of the Reynolds
stress. While the results in [DLSJ08, DSJ17,
BDLSJV18] imply that in the absence of bound-
aries there is no constraint on the evolution of the
Reynolds stress tensor, a series of results on initial
value problems associated to classical hydrodynamic
instabilities [SJ11, SJ12, CCF16, FS18] point at the
possibility that in the presence of initial conditions
or boundaries this is not the case anymore. The con-
strained evolution of the Reynolds stress in the gen-
eral situation remains to be explored.

Regarding the analogy between Euler and isomet-
ric immersions, note that Theorem 1 provides a sharp
threshold between two competing situations. A sort
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of analog of the Onsager’s conjecture has been re-
cently proved for the isometric embedding problem,
where the threshold exponent turns out to be 1

2 . In
the recent work [DLI18] D. Inauen and the first au-
thor have shown that, while isometric embeddings
of class C1, 12+ε satisfy a suitable generalization of a
classical theorem in differential geometry (namely the
Levi-Civita connection of the manifold coincides with
the connection induced on the immersion by the am-
bient Euclidean space), for every ε > 0 it is possi-

ble to construct C1, 12−ε isometric embeddings which
violate it. Even though the latter result shows the
criticality of the exponent 1

2 , the most compelling
conjecture in the area is still unsolved:

Conjecture 3 Consider a positively curved sphere
(S2, g) and isometric immersions v ∈ C1,α(S2,R3).

(a) If α > 1
2 , then v(S2) is convex and it is unique

up to ambient isometries.

(b) If α < 1
2 any short immersion (resp. embedding)

u can be uniformly approximated by a sequence
of isometric immersions (resp. embedding) vk ∈
C1,α(S2).

As already mentioned, part (a) of the Conjecture
is known to hold for α > 2

3 . Concerning part (b),
the joint work of the authors with Inauen [DLISJ18]
prove the statement for positively curved disks when
α < 1

5 , while forthcoming work of the second author
with W. Cao settles the case of general surfaces for
α < 1

5 .
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László Székelyhidi Jr. A Nash-Kuiper
theorem for C1,1/5−δ immersions of
surfaces in 3 dimensions. Revista
Matemática Iberoamericana, math.DG,
2018.

[DLSJ08] Camillo De Lellis and László
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Unexpected solutions of first and sec-
ond order partial differential equa-
tions. In Proceedings of the Inter-
national Congress of Mathematicians,
Vol. II (Berlin, 1998), pages 691–702
(electronic), 1998.
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