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Abstract. Given a multiple-valued function f , we deal with the problem of selecting its
single-valued branches. This problem can be stated in a rather abstract setting considering
a metric space E and a finite group G of isometries of E. Given a function f , which takes
values in the equivalence classes of E/G, the problem consists of finding a map g with the
same domain as f and taking values in E, such that at every point t the equivalence class of
g(t) coincides with f(t).

If the domain of f is an interval, we show the existence of a function g with these
properties which, moreover, has the same modulus of continuity of f . In the particular case
where E is the product of Q copies ofRn and G is the group of permutations of Q elements,
it is possible to introduce a notion of differentiability for multiple-valued functions. In
this case, we prove that the function g can be constructed in such a way to preserve Ck,α

regularity.
Some related problems are also discussed.

Mathematics Subject Classification (2000). 54C60

1. Introduction

The theory of multiple-valued functions in the sense of Almgren (see [2]) has sev-
eral applications in the framework of geometric measure theory. Indeed, multiple-
valued functions represent a very effective tool to approximate more abstract objects
arising in geometric measure theory. For example, Almgren (see [2]) shows that
some rectifiable currents are approximated by the graph of Lipschitz multiple-
valued functions. A special class of varifolds with second fundamental form in L p,
introduced by Hutchinson (see [12]), can be locally represented by the graph of
a multiple-valued function. There are also other objects similar to these functions,
like the union of Sobolev’s functions graphs introduced by Ambrosio, Gobbino &
Pallara (see [6]), or the weak limits of the union of graphs of Cα functions proposed
by De Giorgi (see [8,9]). The relations between these objects and Hutchinson’s
varifolds are investigated in [6].
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A general abstract setting to deal with multiple-valued functions is the following
(see Section 2 for details). Given a metric space (E, d) and a finite group G of
isometries of E, the quotient space E/G can be endowed with the quotient metric d̃
in a natural way. Moreover, for every x ∈ E we denote by [x] ∈ E/G the orbit of
x under G, i.e. the set {τx} ⊂ E as τ ranges through G.

Given a map f : A �→ E/G, where A is some set, the selection problem for f
is the following: to find f̃ : A �→ E such that [ f̃ (t)] = f(t) holds for every t ∈ A. It
is clear that this problem can always be solved by virtue of the Zorn lemma: in the
following, however, we shall be concerned with the existence of a selection which
preserves some properties of f such as continuity, but also differentiability and
higher regularity (provided, of course, that the structure of E allows some notion
of smoothness).

In the case where the set A is an interval, we can prove that every continuous
path admits a selection which inherits the modulus of continuity:

Theorem 1.1. Let (E, d) be a metric space and let G be a finite group of isometries
of E. Suppose f : [0, 1] → E/G is a continuous curve, and let ω f denote the
modulus of continuity of f , i.e.

ω f (δ) := sup
{
d̃
(

f(t), f(s)
) : t, s ∈ [0, 1] and |t − s| ≤ δ

}
.

Then there exists a selection g : [0, 1] → E of f (i.e. [g(t)] = f(t) for every
t ∈ [0, 1]) such that

ωg ≤ CG ω f ,(1)

where ωg denotes the modulus of continuity of g and CG is a constant which
depends only on the order of G.

The connection with multiple-valued functions becomes apparent if E = X Q

is the product of Q copies of a metric space X and G is the symmetric group of
order Q, acting on X Q in the natural way, i.e. if e = (x1, . . . , xQ) ∈ X Q and τ ∈ G
is a permutation, then

τe = (xτ1, . . . , xτQ ).

In this case, the quotient space E/G is just the set of all unordered Q-tuples of
elements of X, repetitions being allowed. A function f with values in E/G is then
multiple-valued in the usual sense, and solving the selection problem for f means
isolating Q single-valued branches of f .

Particularly relevant in the applications is the case where X = Rn , hence
E = (Rn)Q and E/G is the space of all unordered Q-tuples of vectors of Rn ,
repetitions being allowed. Keeping the notation of Hutchinson [12], we denote this
space of Q-tuples by QQ(Rn).

In this case, due to the linear structure of Rn , there is a natural notion of
a multiple-valued function of class Ck,α, which reduces to the usual one when
Q = 1 (see Sections 3 and 4 for details). It turns out that the selection problem for
a Ck,α multiple-valued function can be solved preserving Ck,α regularity. Indeed,
in Section 4 we will prove the following result:
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Theorem 1.2. Let f : [a, b] −→ QQ(Rn) be a Ck,α Q-valued function. Then there
exist functions gi : [a, b] −→ R

n such that gi ∈ Ck,α([a, b]) for i = 1, . . . , Q,
and the Q-tuple f(x) coincides with {gi(x)}Q

i=1 for every x ∈ [a, b].
The proof of this theorem consists of two steps. First we prove that a multivalued

continuous function can be split into single branches which inherit the modulus of
continuity. Then we are able to recover differentiability thanks to the last theorem
of Section 3. The first step, of course, relies on Theorem 1.1 above.

Some classical statement and definitions about multivalued functions in Rn are
recalled in Section 3, whereas in the last section of the paper we will give a partial
result when the domain of f is Rm and it takes values in the Q-tuples of real
numbers. In this case we prove that if f is continuous, then it is a finite union of
continuous branches, but we are not able to extend this result to regularity higher
than mere continuity.

2. Lifting of paths

This section is entirely devoted to the proof of Theorem 1.1.
Let (E, d) be a metric space, and let G be a finite group of isometries of E.

Given x ∈ E, we define the orbit of x as

[x] :=
⋃

τ∈G

{τx}.(2)

It is clear that the relation

x ∼ y ⇔ [x] = [y]
is an equivalence relation, and x ∼ y holds true if and only if x = τy for some
τ ∈ G. Moreover, the quotient space E/∼ of the equivalence classes (denoted also
by E/G) can be given a natural metric in the following way:

d̃([x], [y]) := min
σ∈G

d(x, σy).(3)

Given a set A and a function f : A → E/G, a function g : A → E is said to
be a selection (or also a lifting) of f if

[g(t)] = f(t) ∀t ∈ A.

The proof of Theorem 1.1 can be divided into three steps:

(a) first we consider the case where E is a vector space: the general case will later
be recovered by an embedding argument;

(b) we construct a sequence of equicontinuous and piecewise affine functions (gn),
which sort of interpolate f on a mesh of points;

(c) we use a variant of the classical Ascoli–Arzelà theorem to show that the se-
quence of functions has a cluster point and we show that this limiting function
is a selection for f .
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On estimating the modulus of continuity of gn in step (b), we rely on the follow-
ing combinatorial lemma about finite groups which, to the best of our knowledge,
cannot be found in the literature:

Lemma 2.1. Let G be a finite group of order o(G) and let m > 0 be a natural
number. Suppose that {σi, j}, with 0 ≤ i < j ≤ m, are elements of G, with the only
assumption that

σi,i+1 = 1G, i = 0, . . . , m − 1.(4)

Then there exist a natural number k with k ≤ 2 o(G) − 1, and natural numbers
{i j}, j = 0, . . . , k such that

0 = i0 < i1 < · · · < ik−1 < ik = m(5)

and

σi0,i1σi1,i2 · · · σik−1 ,ik = 1G .(6)

Before proceeding to the proof, we introduce some terminology. Under the
assumption of Lemma 2.1, we say that τ ∈ G is h-reachable in (at most) s steps if
there exist {i j}, j = 0, . . . , r such that r ≤ s,

0 = i0 < i1 < · · · < ir = h

and

σi0,i1σi1,i2 · · ·σir−1 ,ir = τ.

If E ⊆ G, we say that E is h-reachable in s steps if each of its elements is. We
note that if E is i-reachable in s steps, then Eσi, j (where Eσ denotes the set {τσ}
as τ runs through E) is j-reachable in s + 1 steps, whenever i < j ≤ m.

With this terminology, Lemma 2.1 states that 1G is m-reachable in at most
2 o(G)−1 steps (note that, due to (4), 1G is trivially m-reachable in m steps: there-
fore, the non-trivial part of the lemma is an upper bound to k which is independent
of m).

Proof. If G = {1G} or m = 1, then the lemma is trivial, so we suppose that
|G| > 1 and m > 1. Let P be the family of all pairs (i, E) such that 1 < i ≤ m,
1G ∈ E ⊆ G, |E| ≥ 2 and

E is i-reachable in at most 2(|E| − 1) steps.(7)

Let us partially order P by monotonicity, i.e.

(i, E) ≤ ( j, F) ⇔ i ≤ j and E ⊆ F.

Step 1. If P = ∅, then the lemma holds true.
To see this, define

I := { j : 1 < j ≤ m and σ0, j �= 1G}.
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If I = ∅, then σ0,m = 1G and the claim follows. Otherwise, we set i := min I and
E = {1G, σ0,i}. But then (E, i) ∈ P , since σ0,i is trivially i-reachable in one step,
and σ0,i−1σi−1,i = σ0,i−1 = 1G (we have used the definition of i and (4)), hence
1G is i-reachable in two steps.

Step 2. If P �= ∅, let (i, E) ∈ P be maximal (with respect to the above par-
tial order). If i = m, then 1G ∈ E is m-reachable in 2|E| − 2 < 2 o(G) − 1
steps and the claim follows. If i < m and E = G, then σ−1

i,m ∈ E is i-reachable
in 2 o(G) − 2 steps, hence 1G is m-reachable in 2 o(G) − 1 steps and the claim
follows.

It remains to consider the case where i < m and E ⊂ G with strict inclusion.
In this case, let

I := { j : i < j ≤ m and Eσi, j �= E}.
If I = ∅, then Eσi,m = E; in particular, eσi,m = 1G for some e ∈ E. Since e is
i-reachable in 2|E| − 2 steps, 1G is m-reachable in 2|E| − 1 steps and the claim
follows.

If I �= ∅, we define j := min I and F := E∪Eσi, j . If we show that ( j, F) ∈ P ,
then we get a contradiction (since this would violate the maximality of (i, E)) and
the lemma is completely proved. It suffices to show that the whole F is j-reachable
in 2|F| − 2 steps. Not that (4) implies that j > i + 1, hence the choice of j implies
Eσi, j−1 = E, and therefore Eσi, j−1σ j−1, j = E. Using (7), we obtain that E is
j-reachable in 2|E| steps. Similarly, Eσi, j is j-reachable in 2|E| steps, and the
proof is completed observing that 2|E| ≤ 2|F| − 2 (note the |F| > |E|, since
Eσi, j �= E). ��

Now we are in a position to prove Theorem 1.1 in full details.

Proof of Theorem 1.1. We first suppose that E is a normed vector space (and hence
that d(x, y) = ‖x − y‖).

Choose a natural number n > 1, and let

ti := i

n
, i = 0, . . . , n.

We claim that there exist xi ∈ E, i = 0, . . . , n, satisfying

[xi] = f(ti), i = 0, . . . , n(8)

and

d(xi, xi+1) = d̃
(

f(ti), f(ti+1)
)
, i = 0, . . . , n − 1.(9)

Indeed, we can choose an arbitrary x0 ∈ f(0) (i.e., we can pick x0 ∈ E such
that [x0] = f(0)). Arguing inductively, suppose that we have already found xi ,
i = 1, . . . , j , for some j ≥ 0, satisfying (8) for i = 1, . . . , j and (9) for i =
0, . . . , j − 1 (note that this condition is empty for j = 0). If j = n then we are
done, otherwise, we let

A j+1 := {
x ∈ E : [x] = f(t j+1) and d̃([x j], [x]) = d(x j, x)

}
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(the fact that A j+1 is non-empty easily follows from the definition of d̃ ). If we
define x j+1 to be an (arbitrarily chosen) element of A j+1, it is clear that (8) and
(9) are satisfied, respectively, for i = j + 1 and i = j , and our claim is proved by
induction.

Now we define

gn(ti) := xi, i = 0, . . . , n.

Let l, m be natural numbers such that 0 ≤ l < l + m ≤ n. We want to estimate
the distance d(xl, xl+m) by the modulus of continuity of f . For every pair i, j with
0 ≤ i < j ≤ m, there exists σi, j ∈ G such that

d(xl+i , σi, j xl+ j) = d̃
([xl+i ], [xl+ j ]).(10)

By virtue of (8) and (9), we can choose σi,i+1 = 1G , hence we can invoke
Lemma 2.1. Let i0, . . . , ik (with k ≤ 2 o(G) − 1) be as in (5), (6), and set

τ0 := 1G , τ j := σi0,i1σi1,i2 · · · σi j−1,i j , j = 1, . . . , k,

and note that τk = 1G according to (6). We have then, from the triangle inequality,

d(xl, xl+m) = d(τ0xl+i0 , τkxl+ik ) ≤
k−1∑

j=0

d(τ j xl+i j , τ j+1xl+i j+1)

=
k−1∑

j=0

d(τ j xl+i j , τ jσi j ,i j+1 xl+i j+1).

Using (10) we obtain

d(xl, xl+m) ≤
k−1∑

j=0

d̃([xl+i j ], [xl+i j+1]) =
k−1∑

j=0

d̃
(

f(tl+i j ), f(tl+i j+1 )
)

≤
k−1∑

j=0

ω f (tl+i j+1 − tl+i j ) ≤
k−1∑

j=0

ω f (tl+m − tl)

≤ (2 o(G) − 1)ω f (tl+m − tl).

From the arbitrariness of l, m we may write the last inequality as

d
(
gn(ti), gn(t j)

) ≤ (
2 o(G) − 1

)
ω f (|t j − ti |), i, j = 0, . . . , n.(11)

Then we extend gn to be piecewise affine and continuous, i.e.

gn(t) := gn(ti) + n(t − ti)
(
gn(ti+1) − gn(ti)

)
if t ∈ (ti, ti+1)

(here we exploit the linear structure of E). A standard argument then reveals
that (up to a multiplicative factor on the right-hand side), the estimate (11) holds
everywhere on [0, 1], i.e.

d
(
gn(t), gn(s)

) ≤ CG ω f (|t − s|), s, t ∈ [0, 1],(12)
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for some constant CG depending only on the order of G. Now let

C := {x ∈ E : [x] ∈ f([0, 1])}.
We claim that C is compact. Indeed, let {xn} ⊂ C be a sequence. Since f([0, 1])
is compact in E/G, passing to a subsequence (not relabelled) we may assume that
[xn] converge to [x] for some x ∈ E. Let σn ∈ G be such that

d(xn, σn x) = d̃([xn], [x]).
Since G is finite, there exists σ ∈ G such that σ = σnk , for a suitable sub-
sequence {nk}. Then we have

d(xnk , σx) = d(xnk , σnk x) = d̃([xnk ], [x]).
Since the last term vanishes as k → ∞, we obtain that xnk → σx ∈ C, therefore C
is sequentially compact, hence compact.

From Theorem 2.3 below, we obtain that, up to a subsequence, {gn} converges
uniformly to g : [0, 1] → C, and it is easy to check that g satisfies [g(t)] = f(t) for
every t ∈ [0, 1]. Moreover, the estimate (12) is maintained on passing to the limit.

Finally, the case where (E, d) is a generic metric space can be reduced to the
linear case by an isometric embedding argument, as follows. Let E ′ be the linear
space of all real bounded functions on E, endowed with the sup norm, choose
x0 ∈ E and define T : E → E ′ as

(Tx)(y) := d(x0, y) − d(x, y), ∀x, y ∈ E.

It is easy to check (using the triangle inequality) that T is an isometric embedding
of E into E ′: then one can repeat the above construction working in E ′. In passing,
note that it may well happen that an interpolating gn cannot be pulled back to E:
however, this is certainly true of the limit function g, and this concludes the proof.��
Remark 2.2. We point out that (9) implies that

d
(
gn(ti+1), gn(ti)

) ≤ ω f (1/n), i = 0, . . . , n − 1.

In principle, this estimate concerning two adjacent points of the mesh could be
used to estimate the modulus of continuity of gn on the whole mesh. Namely, using
the triangle inequality one would immediately obtain

d
(
gn(t j), gn(ti)

) ≤ | j − i| ω f (1/n), ∀i, j ∈ {0, . . . , n}.
However, this estimate does not allow one to replace the right-hand side by a quan-
tity of the kind

ω f (| j − i|/n) = ω f (|t j − ti |),
unless ω f has linear growth (i.e., unless f is Lipschitz continuous).

From this it appears that Lemma 2.1 is fundamental in order to obtain (11),
since the constant CG on the right-hand side does not depend on n.
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The following theorem is a variant of the classical Ascoli–Arzelà theorem. The
proof is omitted, since it can be carried out as usual, with only minor changes
(see [7]).

Theorem 2.3 (Ascoli–Arzelà revisited). Let I, E be two metric spaces with I
compact, and let {gn} be a sequence of continuous functions from I into E such
that:

– {gn} is equicontinuous;
– there exists a compact set C ⊆ E such that, for every

δ-neighbourhood Cδ of C, there holds gn(I ) ⊆ Cδ provided n is large enough
(depending on δ).

Under the above assumptions, there exists g : I �→ C and a subsequence {nk} such
that {gnk} converges to g, uniformly on I.

3. Continuous selections for Q-valued functions

In this section we deal with multiple-valued functions in Rn . This is a special case
of the general problem stated in the previous section, as long as we are concerned
about continuity. We shall be interested, actually, in differentiability too, and this
is a concept which could not be treated in the general case, due to the lack of
vectorial structure in a generic metric space E. First of all we shall state the basic
definitions for the continuity and the differentiability the way they were expressed
by Almgren (see [2], [4], [5]).

Let Q ∈ N.

Definition 3.1. We define by QQ(Rn) the set of the unordered (and generally not
distinct) Q-tuples of points of Rn.

To be more precise, given a point x ∈ Rn let [[x]] be the Dirac delta concen-
trated on x. Then, an element S ∈ QQ(Rn) can be seen simply as a measure of the
form

S =
Q∑

i=1

[[xi]], xi ∈ Rn, i = 1 . . . , Q.

Let ΣQ be the set of the permutations of {1, . . . , Q}. Then we can define a metric
on QQ(Rn) by setting

F

(
Q∑

i=1

[[xi]],
Q∑

i=1

[[yi]]
)

= min

{
Q∑

i=1

|xi − yπ(i)| : π ∈ ΣQ

}

.

Remark 3.2. Let E = (Rn)Q . Given x, y ∈ E (with x = (x1, . . . , xQ) y =
(y1, . . . yQ), xi, yi ∈ Rn), we set

d(x, y) =
Q∑

i=1

|xi − yi|.
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Let G be the set of applications on E defined this way: given a permutation τ ∈ ΣQ

we set Φτ : E −→ E

Φτ ((x1, . . . , xQ)) = (xτ(1), . . . xτ(Q)).

It is clear that d(Φτ (x),Φτ (y)) = d(x, y), hence G = {Φτ : τ ∈ ΣQ} is a group
of isometries of E. We can identify the quotient space E/G and QQ(Rn) with the
natural isomorphism [x] ←→ ∑Q

i=1[[xi]], where [x] is the orbit of x (see (2)).
The metric d̃ coincides with F . This somewhat redundant notation is motivated by
the effort to keep the same notations of some previous works on multiple-valued
functions in the Euclidean case (see for example [2] and [12]).

If A ⊂ Rm and f : A −→ QQ(Rn) we say that f is a Q-valued function
on A; the continuity of f has to be intended with respect to the metric F on
QQ(Rn). Given a Q-valued function f : A −→ QQ(Rn) we can find Q functions
fi : A −→ R

n such that f(x) = ∑Q
i=1[[ fi(x)]].

Definition 3.3. Let A ⊂ Rm and f : A −→ QQ(Rn) be a Q-valued function. We
say that f is Lipschitz if there exists c > 0 such that

F ( f(x), f(y)) ≤ c|x − y|, ∀ x, y ∈ A.

We say that f is Hölder continuous if there exist λ > 0, 0 < α < 1 such that

F ( f(x), f(y)) ≤ λ|x − y|α, ∀ x, y ∈ A.

Definition 3.4. Let A ⊂ Rm be an open set and f : A −→ QQ(Rn) a Q-valued
function. Given x ∈ A we say that f can be affinely approximated at x if there exist
linear functions Li(x) : Rm −→ R

n, i = 1, . . . , Q such that, if we set

A f(x)(y) =
Q∑

i=1

[[ fi(x) + Li(x)(y − x)]]

it results in

lim
y→x

F ( f(y), A f(x)(y))

|y − x| = 0.

If f can be affinely approximated at each point x ∈ A we say that f can be affinely
approximated in A. We call the Q-valued function L = ∑Q

i=1[[Li]] the derivative
of f .

Remark 3.5. Let A ⊂ Rm be an open set and f : A −→ QQ(Rm) be affinely
approximatable in A with derivative L. Then f is continuous in A.

Definition 3.6. We say that a Q-valued function f : A −→ QQ(Rn), A ⊂ Rm,
is C1(A) if f is affinely approximatable with derivative L and the multiple-valued
function G : A → QQ(Rn × Rmn) given by

x → G(x) =
Q∑

i=1

[[( fi, Li)]],
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is continuous. Moreover we say that f is C1,α(A) if there exists a constant c > 0
such that, for each x, y ∈ A it results in

min

{
Q∑

i=1

| fi(x) − fπ(i)(y)|
|x − y| + ‖Li(x) − Lπ(i)(y)‖

|x − y|α : π ∈ ΣQ

}

≤ c,

where ‖Li(x)‖ is the norm of the linear functional Li(x) : Rm −→ R
n.

In the same way we can define the class Ck,α(A). The question is if for
a Q-valued function f it is possible to choose the functions fi in such a way
that each fi is regular in an ordinary sense. The answer is, in general, negative
(see [12]). We will show that this is possible in some special cases.

Definition 3.7. Let A ⊂ Rm and f : A −→ QQ(Rn) be a continuous Q-valued
function. If there exist continuous functions gi : A −→ R

n, i = 1, . . . , Q such
that f(x) = ∑Q

i=1[[gi(x)]], ∀ x ∈ A then we say that the vector (g1, ..., gQ) is
a continuous selection for f . To simplify notation we will refer to g = ∑Q

i=1[[gi]]
as the Q-valued function that is a continuous selection of f . (Of course g and f
are the same multivalued function: by misuse of notation we are distinguishing two
different selections.)

Definition 3.8. If f is Hölder (Lipschitz) continuous and gi is Hölder (Lipschitz)
continuous for every i, we say that g is an Hölder (Lipschitz) selection for f .
Moreover, if f is also affinely approximatable with derivative L, we define Mi (x) =
Lπx (i)(x), where πx ∈ ΣQ is any permutation such that gi(x) = fπx (i)(x). Of course
if we set

Ag(x)(y) =
Q∑

i=1

[[gi(x) + Mi(x)(y − x)]],

then Ag(x)(y) = A f(x)(y). Again by misuse of notation, even if M(x) =∑Q
i=1[[Mi(x)]] is the same multivalued function of L, we call M the derivative

of g.

Remark 3.9. The choice of the permutation πx is clearly not unique but, for our
purpose, we do not have to care about this. Nevertheless, it is possible to fix any
rule for the choice of πx , for example,






πx(1) = min{ j : f j(x) = g1(x)}
πx(k + 1) = min{ j : f j(x) = gk+1(x), j �= πx(i) ∀ i = 1, . . . , k}

for k = 1, . . . Q − 1.

As we will see in Section 4, using the result of the previous section, when
f is a Q-valued differentiable function with derivative L we are able to make
a continuous selection g of f and a continuous selection M of L. But a priori this
does not mean that the Mi are the derivatives of the gi . However the statement is
true and we will prove it after several lemmas.
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Theorem 3.10. Let A ⊂ Rm and f : A −→ QQ(Rn) be a Q-valued function
affinely approximatable with continuous derivative L. If there exists a Q-valued
function g, affinely approximatable with derivative M, such that g is a contin-
uous selection for f and M is a continuous selection for L, then the functions
gi : A −→ R

n are of class C1 and dgi(x) = Mi (x), for every x ∈ A and for every
i = 1, . . . , Q.

Lemma 3.11. Let A ⊂ Rm and f : A −→ QQ(Rn) be a continuous Q-valued
function and let g be a continuous selection for f . Fix x ∈ A, i ∈ {1, . . . , Q} and
set Ii(x) = { j ∈ {1, . . . , Q} : g j(x) = gi(x)}. For y �= x let π

y
x ∈ ΣQ be any

permutation which attains the following minimum:

min
π∈ΣQ

Q∑

j=1

|g j(x) + M j (x)(y − x) − gπ( j)(y)| := F (Ag(x)(y), g(y)).

Then, if g is affinely approximatable at x, there exists δ > 0 such that

π y
x (Ii(x)) = (π y

x )−1(Ii(x)) = Ii(x) ∀ y ∈ A : |x − y| < δ.

Moreover, there exists δ′ > 0 such that for every z ∈ Bδ′(x) ∩ A it results in

Ii(x) =
⋃

j∈Ii(x)

I j(z).

Proof. Let us choose an arbitrary k ∈ Ii(x). By contradiction, let (yn) ⊂ A be
a sequence converging to x such that π yn

x (k) �∈ Ii(x), ∀ n ∈ N. Using the continuity
of every g j we have that there exists ε > 0 such that, for n large enough,

∣∣gk(x) − gπ
yn
x (k)(yn)

∣∣ = ∣∣gi(x) − gπ
yn
x (k)(yn)

∣∣ > ε.

Hence,

F (Ag(x)(yn), g(yn)) ≥
∣∣gk(x) + Mk(x)(yn − x) − gπ

yn
x (k)(yn)

∣∣

|yn − x|
≥ ε

|yn − x| − ‖Mk(x)‖ −→ ∞ when n → ∞,

which gives the contradiction because g is affinely approximatable at x. Then, there
exists δk > 0 such that π

y
x (k) ∈ Ii(x) if |y − x| < δk. If we set δ = min{δ j : j ∈

Ii(x)} then π
y
x (Ii(x)) ⊂ Ii(x) for every y ∈ A such that |y − x| < δ. The opposite

inclusion and the equality (π
y
x )−1(Ii(x)) = Ii(x) follow from the invertibility of π

y
x .

By the continuity of every gk we know that there exists δ′ > 0 such that if
|z − x| < δ′ then gk(z) �= g j(z) for every j ∈ Ii(x) and for every k �∈ Ii(x). Let us
choose arbitrary j ∈ Ii(x), z ∈ Bδ′(x) ∩ A and k ∈ I j(z). If it was k �∈ Ii(x) then
gk(z) �= g j(z), which contradicts the fact that k ∈ I j(z). Hence I j(z) ⊂ Ii(x). On
the other side j ∈ I j(z) for every j ∈ Ii(x), hence Ii(x) ⊂ ⋃

j∈Ii (x) I j(z). ��
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Corollary 3.12. Let A ⊂ Rm and f : A −→ QQ(Rn) be continuous and affinely
approximatable and let g be any continuous selection affinely approximatable
for f , with derivative M. If x ∈ A and i ∈ {1, . . . , Q} are such that gi(x) �= g j(x)

for every j �= i, then gi is differentiable at x and dgi(x) = Mi(x).

Corollary 3.13. Let A ⊂ Rm, f : A −→ QQ(Rn) be a continuous and affinely
approximatable Q-valued function and g : A −→ QQ(Rn) be a continuous
affinely approximatable selection for f as in Definition 3.8. Let us fix x ∈ A and
i ∈ {1, . . . , Q}. For k ∈ {1, . . . , m} we shall use the notation Mk

j for the k-th

column of the matrix M j . Then if Mk
j (x) = Mk

i (x) for every j ∈ {1, . . . , Q} such

that g j(x) = gi(x), then there exists ∂gi
∂xk

(x) = Mk
i (x).

Proof. Let Ii(x) and π
y
x be as in Lemma 3.11. It follows that there exists δ > 0

such that if |y − x| < δ then gπ
y
x (i)(x) = gi(x), hence Mk

(π
y
x )−1(i)

(x) = Mk
i (x). If we

call {e1, . . . , em} the canonical base of Rm , it follows easily that

lim
h→0

∣∣gi(x) + Mk
i (x)h − gi(x + hek)

∣∣

|h| = 0. ��
Proof of Theorem 3.10. We will prove the theorem by induction on Q.

We are reminded that the functions gk and Mk are continuous, hence, we need
to prove only that every gk is differentiable and dgk = Mk . If Q = 1 there is
nothing to prove. Now we suppose that the thesis is true for Q ≤ K and we will
prove it for Q = K + 1. Let f : A −→ QK+1(R

n) be a C1 function, and let g and
M be as in the hypothesis of the theorem.

Let us fix x ∈ A. We will distinguish two cases:

a) there exist i, j ∈ {1, . . . , K + 1} such that gi(x) �= g j(x);
b) g1(x) = · · · = gK+1(x).

In case a) let π
y
x be as in Lemma 3.11. It follows that there exists δ > 0 such

that, if y ∈ A and |y − x| < δ then π
y
x (Ii(x)) = (

π
y
x
)−1

(Ii(x)) = Ii(x). If we set

Ji(x) = {1, . . . , K + 1} \ Ii(x), then we have π
y
x (Ji(x)) = (

π
y
x
)−1

(Ji(x)) = Ji(x).
We can split the functions gk into two groups in order to create the following
multiple-valued functions:

h(y) =
∑

k∈Ii (x)

[[gk(y)]], ϕ(y) =
∑

k∈Ji(x)

[[gk(y)]]

defined in the neighbourhood of x, Bδ(x) ∩ A. We will prove that h and ϕ are C1

multiple-valued functions.
The first thing we prove is that h is affinely approximatable in a neighbourhood

of x. From Lemma 3.11 there exists δ′ ≤ δ such that Ii(x) = ⋃
j∈Ii (x) I j(z) for

every z ∈ Bδ′(x) ∩ A. Then, for every y in a neighbourhood of z, it results in

π y
z (Ii(x)) =

⋃

j∈Ii (x)

π y
z (I j(z)) =

⋃

j∈Ii (x)

I j(z) = Ii(x).
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Hence, if we define σIi (x) as the set of all the permutations over Ii(x), we have

lim
y→z

F (Ah(z)(y), h(y))

|y − z|

= lim
y→z

min
{∑

k∈Ii (x) |gk(z) + Mk(z)(y − z) − gπ(k)(y)| : π ∈ σIi (x)

}

|y − z|
≤ lim

y→z

∑
k∈Ii (x) |gk(z) + Mk(z)(y − z) − gπ

y
z (k)(y)|

|y − z| = 0

because g is affinely approximatable at z. Hence h is affinely approximatable at z
for every z ∈ Bδ′ ∩ A. Of course, from the continuity of gi and Mi it follows that
the map

h(y) =
∑

k∈Ii (x)

[[(gk(y), Mk(y))]]

is continuous. Hence we have proved that h is a C1 Q-valued function with Q ≤ K
and the induction hypothesis tells us that the gk, with k ∈ Ii(x) are of class C1

in Bδ′(x). The same result holds true for ϕ. Hence we have obtained that gk is
differentiable at x for every k = 1, . . . , K + 1 and dgk(x) = Mk(x).

Now examine case b). Let us fix k ∈ {1, . . . , m}. There are two possibilities:

b1) there exists δ > 0 such that for every h ∈ R with 0 < |h| < δ there exist i, j
such that gi(x + hek) �= g j(x + hek);

b2) there exists a sequence of real numbers hn −→ 0 such that
g1(x + hnek) = · · · = gK+1(x + hnek).

In case b1) we can apply the result in a) to the points x + hek, obtaining that every
gi has a partial derivative with respect to xk on the open segments joining x to
x + δek and x to x − δek. Then there exists η depending on h, with |η| < |h|, such
that:

∂gi

∂xk
(x) = lim

h→0

gi(x + hek) − gi(x)

h
= lim

h→0

∂gi

∂xk
(x + ηek)

= lim
h→0

Mk
i (x + ηek) = Mk

i (x) i = 1, . . . K + 1.

In case b2) we set yn = x + hnek. Then,

0 = lim
n→∞

F (Ag(x)(yn), g(yn))

|hn|

= lim
n→∞

K+1∑

i=1

∣∣∣gi(x) + Mi(x)hnek − gπ
yn
x (i)(yn)

∣∣∣

|hn|

= lim
n→∞

K+1∑

i=1

∣∣g1(x) + Mk
i (x)hn − g1(yn)

∣∣

|hn | .
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Hence Mk
1(x) = · · · = Mk

K+1(x) and Corollary 3.13 gives us the existence of
∂gi
∂xk

(x) for i = 1, . . . , K + 1.

In both cases there exist the derivatives ∂gi
∂xk

(x) = Mk
i (x), for every k =

1, . . . , m. Then the continuity of Mk
i gives us the differentiability of each gi

in x. This concludes the proof. ��

4. Vectorial Q-valued curves

In this section we examine what happens when m = 1. We shall prove that, in
this case and under suitable regularity hypothesis, the graph of a multiple-valued
function is actually the finite union of curves in Rn+1.

Theorem 4.1. Let [a, b] ⊂ R and f : [a, b] −→ QQ(Rn), f(x) = ∑Q
i=1[[ fi(x)]]

be a Cα Q-valued function. Then there exists a Cα selection for f .

Proof. For simplicity let [a, b] = [0, 1]. We are going to apply Theorem 1.1. We
define E, G and d̃ as in Remark 3.2 and we set f̃ : [0, 1] −→ E/G as

f̃ (t) = [
( fi(t), . . . , fQ(t))

]
.

Then we have that:

d̃
(

f̃ (t), f̃ (s)
) = F

(
Q∑

i=1

[[ fi(t)]],
Q∑

i=1

[[ fi(s)]]
)

≤ c|t − s|α.

Hence f̃ is Hölder continuous and ω f̃ (δ) ≤ cδα. Then, by Theorem 1.1 there exists
a lifting g : [0, 1] −→ E such that g is Hölder continuous with exponent α. This
completes the proof. ��
Theorem 4.2. Let f : [a, b] −→ QQ(Rn) be a C1,α Q-valued function. Then there
exist functions gi : [a, b] −→ R

n such that gi ∈ C1,α([a, b]) for i = 1, . . . , Q and
f(x) = ∑Q

i=1[[gi(x)]].
Proof. Once again we suppose that [a, b] = [0, 1].

Let us join together f and its derivative to obtain a vectorial function with 2n
components:

F : [a, b] −→ QQ(R2n), F(x) =
Q∑

i=1

[[ fi(x), Li(x)]].

We observe that F is a Cα multiple-valued function, indeed,

F (F(x), F(y)) = min

{
Q∑

i=1

|Fi(x) − Fπ(i)(y)| : π ∈ ΣQ

}

≤ |x − y|α min

{
Q∑

i=1

| fi(x) − fπ(i)(y)|
|x − y| + |Li(x) − Lπ(i)(y)|

|x − y|α : π ∈ ΣQ

}

.
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Then we can apply Theorem 4.1 to obtain a Hölder selection G for F. Let G(x) =∑Q
i=1[[(gi(x), Mi(x))]]. Observing that F (g(x), g(y)) ≤ F (G(x), G(y)) we have

that g is a Hölder selection for f . The same result holds for M which is a Hölder
selection for L. It is easy to prove that g is affinely approximatable with deriva-
tive M. Hence we can apply Theorem 3.10 to obtain that gi ∈ C1([a, b]), for every
i = 1, . . . , Q. Since g′

i(x) = Mi (x) is Hölder continuous, then gi ∈ C1,α([a, b]),
for every i = 1, . . . , Q. ��

In the same way we can prove that a Ck,α Q-valued function of real variable
admits a Ck,α selection.

5. Scalar Q-valued functions

In this last section we examine the case n = 1. In this situation we obtain a dif-
ferent result with respect to vectorial curves. In fact we are not able to prove the
differentiability.

Theorem 5.1. Let A ⊂ R
m. If f : A −→ QQ(R) is continuous then there

exist continuous functions gi : A −→ R, i = 1, . . . , Q, such that f(x) =∑Q
i=1[[gi(x)]], ∀ x ∈ A.

Proof. We shall prove the thesis by induction. If Q = 1 there is nothing to prove.
Let Q ≥ 2. We can write f(x) = ∑Q

i=1[[ fi(x)]], ∀ x ∈ A. We are going to show
that it is possible to sort the functions fi to obtain the continuity. Let us define

g(x) = max { fi(x) : i = 1, . . . , Q}
I(x) = max {i ∈ {1, . . . Q} : fi(x) = g(x)} .

We want to show that g is continuous. Let us fix x, y ∈ A; then g(x) = fI(x)(x),

g(y) = f I(y)(y). If g(x) ≥ g(y) then

|g(x) − g(y)| = f I(x)(x) − f I(y)(y) ≤ f I(x)(x) − fk(y) ∀ k ∈ {1, . . . , Q}.
Hence, for every π ∈ ΣQ we have:

|g(x) − g(y)| ≤ f I(x)(x) − fπ(I(x))(y) ≤
Q∑

i=1

∣∣ fi(x) − fπ(i)(y)
∣∣

and, taking the minimum on ΣQ :

|g(x) − g(y)| ≤ F ( f(x), f(y)) .

The same results hold true if g(x) ≤ g(y), and therefore g is continuous.
The next step is to show that the (Q−1)-valued function obtained “subtracting”

g from f is continuous (with the metric on QQ−1(R)). Let f̃ (x) = ∑
i �=I(x)[[ fi(x)]].

Given x, y ∈ A we fix a permutation π ∈ ΣQ .
If π(I(x)) = I(y) then we define a one-to-one function

α : {i : 1 ≤ i ≤ Q, i �= I(x)} −→ { j : 1 ≤ j ≤ Q, j �= I(y)}
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by α(i) = π(i). Then
Q∑

i=1

| fi(x) − fπ(i)(y)| ≥
∑

i �=I(x)

| fi(x) − fα(i)(y)| ≥ F ( f̃ (x), f̃ (y)).

If π(I(x)) �= I(y) then we claim that

| f I(x)(x) − fπ(I(x))(y)| + | fπ−1(I(y))(x) − f I(y)(y)|(13)

≥ | fπ−1(I(y))(x) − fπ(I(x))(y)|.
Indeed, if fπ−1(I(y))(x) ≤ fπ(I(x))(y) then

| fπ−1(I(y))(x) − fπ(I(x))(y)| = fπ(I(x))(y) − fπ−1(I(y))(x)(14)

≤ f I(y)(y) − fπ−1(I(y))(x) ≤ | fπ−1(I(y))(x) − f I(y)(y)|.
With the same argument, if fπ(I(x))(y) ≤ fπ−1(I(y))(x) then

| fπ−1(I(y))(x) − fπ(I(x))(y)| ≤ | f I(x)(x) − fπ(I(x))(y)|.(15)

From (14) and (15), (13) follows, hence, we can define
{

α(k) = π(k) for k �= I(x), π−1(I(y))

α(π−1(I(y)) = π(I(x)).

α is well defined, one-to-one and

Q∑

i=1

| fi(x) − fπ(i)(y)| ≥
∑

i �=I(x)

| fi(x) − fα(i)(y)| ≥ F ( f̃ (x), f̃ (y)).

Taking the minimum on π ∈ ΣQ we have

F ( f(x), f(y)) ≥ F ( f̃ (x), f̃ (y)),

hence f̃ is a continuous (Q − 1)-valued function. This completes the proof. ��
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Astérisque 118, 13–32 (1984)

6. Ambrosio, L., Gobbino, M., Pallara, D.: Approximation problems for curvature vari-
folds. J. Geom. Anal. 8, 1–19 (1998)

7. Ambrosio, L., Tilli, P.: Selected topics on “Analysis in Metric Spaces”. Scuola Normale
Superiore, Pisa (2000). In press

8. De Giorgi, E.: Introduzione ai problemi con discontinuità libere. In: Symmetry in nature:
a volume in honour of L. A. Radicati di Brozolo, I. Scuola Normale Superiore, Pisa,
265–285 (1989)

9. De Giorgi, E.: Free discontinuity problems in calculus of variations. In: Frontiers of
pure and applied mathematics, a collection of papers dedicated to J. L. Lions on the
occasion of his 60th birthday, ed. by R. Dautray, pp. 55–62. Amsterdam: North–Holland
1991

10. Federer, H.: Geometric measure theory. Berlin: Springer 1969
11. Grisanti, C.R.: On a functional depending on curvature and edges. Rend. Semin. Mat.

Univ. Padova 105 (2001)
12. Hutchinson, J.E.: C1,α multiple function regularity and tangent cone behaviour for

varifolds with second fundamental form in L p. In: Geometric measure theory and the
calculus of variations (Arcata, Calif., 1984), ed. by W.K. Allard, F.J. Almgren. Proc.
Symp. Pure Math. 44, 281–306. Providence: Ann. Math. Soc. 1986

13. Mantegazza, C.: Curvature Varifolds with boundary. J. Differ. Geom. 43, 807–843
(1996)

14. Mattila, P.: Lower semicontinuity, existence and regularity theorems for elliptic vari-
ational integrals of multiple valued functions. Trans. Am. Math. Soc. 280, 589–610
(1983)

15. Simon, L.: Lectures on geometric measure theory. Proceedings of the Centre for Math-
ematical Analysis, Australian National University, 3. Australian National University,
Canberra: Centre for Mathematical Analysis 1983

16. Solomon, B.: A new proof of the closure theorem for integral currents. Indiana Univ.
Math. J. 33, 393–418 (1984)


