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Abstract

In this note we revisit Almgren’s theory of Q-valued functions, that are func-
tions taking values in the space AQ(R

n) of unordered Q-tuples of points in R
n. In

particular:

• we give shorter versions of Almgren’s proofs of the existence of Dir-
minimizing Q-valued functions, of their Hölder regularity and of the di-
mension estimate of their singular set;

• we propose an alternative, intrinsic approach to these results, not relying
on Almgren’s biLipschitz embedding ξ : AQ(R

n) → R
N(Q,n);

• we improve upon the estimate of the singular set of planar D-minimizing
functions by showing that it consists of isolated points.
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Introduction

The aim of this paper is to provide a simple, complete and self-contained refer-
ence for Almgren’s theory of Dir-minimizing Q-valued functions, so to make it an
easy step for the understanding of the remaining parts of the Big regularity paper
[Alm00]. We propose simpler and shorter proofs of the central results on Q-valued
functions contained there, suggesting new points of view on many of them. In ad-
dition, parallel to Almgren’s theory, we elaborate an intrinsic one which reaches
his main results avoiding the extrinsic mappings ξ and ρ (see Section 2.1 and
compare with 1.2 of [Alm00]). This “metric” point of view is clearly an original
contribution of this paper. The second new contribution is Theorem 0.12 where we
improve Almgren’s estimate of the singular set in the planar case, relying heavily
on computations of White [Whi83] and Chang [Cha88].

Simplified and intrinsic proofs of parts of Almgren’s big regularity paper have
already been established in [Gob06a] and [Gob06b]. In fact our proof of the
Lipschitz extension property for Q-valued functions is essentially the one given in
[Gob06a] (see Section 1.2). Just to compare this simplified approach to Almgren’s,
note that the existence of the retraction ρ is actually an easy corollary of the ex-
istence of ξ and of the Lipschitz extension theorem. In Almgren’s paper, instead,
the Lipschitz extension theorem is a corollary of the existence of ρ, which is con-
structed explicitly (see 1.3 in [Alm00]) . However, even where our proofs differ
most from his, we have been clearly influenced by his ideas and we cannot exclude
the existence of hints to our strategies in [Alm00] or in his other papers [Alm83]
and [Alm86]: the amount of material is very large and we have not explored it in
all the details.

Almgren asserts that some of the proofs in the first chapters of [Alm00] are
more involved than apparently needed because of applications contained in the
other chapters, where he proves his celebrated partial regularity theorem for area-
minimizing currents. We instead avoid any complication which looked unnecessary
for the theory of Dir-minimizing Q-functions. For instance, we do not show the
existence of Almgren’s improved Lipschitz retraction ρ∗ (see 1.3 of [Alm00]), since
it is not needed in the theory of Dir-minimizing Q-valued functions. This retraction
is instead used in the approximation of area-minimizing currents (see Chapter 3 of
[Alm00]) and will be addressed in the forthcoming paper [DLS].

In our opinion the portion of Almgren’s Big regularity paper regarding the the-
ory of Q-valued functions is simply a combination of clean ideas from the theory of
elliptic partial differential equations with elementary observations of combinatorial
nature, the latter being much less complicated than what they look at a first sight.
In addition our new “metric” point of view reduces further the combinatorial part,
at the expense of introducing other arguments of more analytic flavor.

1
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2 INTRODUCTION

The metric space AQ(R
n). Roughly speaking, our intuition ofQ-valued func-

tions is that of mappings taking their values in the unordered sets of Q points of
R

n, with the understanding that multiplicity can occur. We formalize this idea by
identifying the space of Q unordered points in R

n with the set of positive atomic
measures of mass Q.

Definition 0.1 (Unordered Q-tuples). We denote by �Pi� the Dirac mass in
Pi ∈ R

n and we define the space of Q-points as

AQ(R
n) :=

{
Q∑
i=1

�Pi� : Pi ∈ R
n for every i = 1, . . . , Q

}
.

In order to simplify the notation, we use AQ in place of AQ(R
n) and we write∑

i �Pi� when n and Q are clear from the context. Clearly, the points Pi do not have
to be distinct: for instance Q �P � is an element of AQ(R

n). We endow AQ(R
n) with

a metric which makes it a complete metric space (the completeness is an elementary
exercise left to the reader).

Definition 0.2. For every T1, T2 ∈ AQ(R
n), with T1 =

∑
i �Pi� and T2 =∑

i �Si�, we define

G(T1, T2) := min
σ∈PQ

√∑
i

∣∣Pi − Sσ(i)

∣∣2,
where PQ denotes the group of permutations of {1, . . . , Q}.

Remark 0.3. (AQ(R
n),G) is a closed subset of a “convex” complete metric

space. Indeed, G coincides with the L2-Wasserstein distance on the space of positive
measures with finite second moment (see for instance [AGS05] and [Vil03]). In
Section 4.1 we will also use the fact that (AQ(R

n),G) can be embedded isometrically
in a separable Banach space.

The metric theory of Q-valued functions starts from this remark. It avoids the
Euclidean embedding and retraction theorems of Almgren but is anyway powerful
enough to prove the main results on Q-valued functions addressed in this note. We
develop it fully in Chapter 4 after presenting (in Chapters 1, 2 and 3) Almgren’s
theory with easier proofs. However, since the metric point of view allows a quick,
intrinsic definition of Sobolev mappings and of the Dirichlet energy, we use it already
here to state immediately the main theorems.

Q-valued functions and the Dirichlet energy. For the rest of the paper Ω
will be a bounded open subset of the Euclidean space R

m. If not specified, we will
assume that the regularity of ∂Ω is Lipschitz. Continuous, Lipschitz, Hölder and
(Lebesgue) measurable functions from Ω into AQ are defined in the usual way. As
for the spaces Lp(Ω,AQ), they consist of those measurable maps u : Ω → AQ such
that ‖G(u,Q �0�)‖Lp is finite. Observe that, since Ω is bounded, this is equivalent
to ask that ‖G(u, T )‖Lp is finite for every T ∈ AQ.

It is a general fact (and we show it in Section 1.1) that any measurable Q-valued
function can be written as the “sum” of Q measurable functions.

Proposition 0.4 (Measurable selection). Let B ⊂ R
m be a measurable set and

let f : B → AQ be a measurable function. Then, there exist f1, . . . , fQ measurable
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R
n-valued functions such that

(0.1) f(x) =
∑
i

�fi(x)� for a.e. x ∈ B.

Obviously, such a choice is far from being unique, but, in using notation (0.1),
we will always think of a measurable Q-valued function as coming together with
such a selection.

We now introduce the Sobolev spaces of functions taking values in the metric
space of Q-points, as defined independently by Ambrosio in [Amb90] and Reshet-
nyak in [Res04].

Definition 0.5 (Sobolev Q-valued functions). A measurable function f : Ω →
AQ is in the Sobolev class W 1,p (1 ≤ p ≤ ∞) if there exist m functions ϕj ∈
Lp(Ω,R+) such that

(i) x �→ G(f(x), T ) ∈ W 1,p(Ω) for all T ∈ AQ;
(ii) |∂j G(f, T )| ≤ ϕj almost everywhere in Ω for all T ∈ AQ and for all

j ∈ {1, . . . ,m}.

Definition 0.5 can be easily generalized when the domain is a Riemannian man-
ifold M . In this case we simply ask that f ◦ x−1 is a Sobolev Q-function for every
open set U ⊂ M and every chart x : U → R

n. It is not difficult to show the
existence of minimal functions ϕ̃j fulfilling (ii), i.e. such that

ϕ̃j ≤ ϕj a.e. for any other ϕj satisfying (ii),

(see Proposition 4.2). We denote them by |∂jf |. We will later characterize |∂jf | by
the following property (cp. with Proposition 4.2): for every countable dense subset
{Ti}i∈N of AQ and for every j = 1, . . . ,m,

(0.2) |∂jf | = sup
i∈N

|∂j G(f, Ti)| almost everywhere in Ω.

In the same way, given a vector field X, we can define intrinsically |∂Xf | and prove
the formula corresponding to (0.2). For functions f ∈ W 1,2(Ω,AQ), we set

(0.3) |Df |2 :=

m∑
j=1

|∂jf |2 .

For functions on a general Riemannian manifold M , we choose an orthonormal
frame X1, . . .Xm and set |Df |2 =

∑
|∂Xi

f |2. This definition is independent of the
choice of coordinates (resp. of frames), as it can be seen from Proposition 2.17.

Definition 0.6. The Dirichlet energy of f ∈ W 1,2(U,AQ), where U is an open
subset of a Riemannian manifold, is given by Dir(f, U) :=

∫
U
|Df |2.

It is not difficult to see that, when f can be decomposed into finitely many reg-
ular single-valued functions, i.e. f(x) =

∑
i �fi(x)� for some differentiable functions

fi, then

Dir(f, U) =
∑
i

∫
U

|Dfi|2 =
∑
i

Dir(fi, U).

The usual notion of trace at the boundary can be easily generalized to this
setting.
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Definition 0.7 (Trace of Sobolev Q-functions). Let Ω ⊂ R
m be a Lipschitz

bounded open set and f ∈ W 1,p(Ω,AQ). A function g belonging to Lp(∂Ω,AQ) is
said to be the trace of f at ∂Ω (and we denote it by f |∂Ω) if, for every T ∈ AQ,
the trace of the real-valued Sobolev function G(f, T ) coincides with G(g, T ).

It is straightforward to check that this notion of trace coincides with the re-
striction of f to the boundary when f is a continuous function which extends con-
tinuously to Ω. In Section 4.2, we show the existence and uniqueness of the trace
for every f ∈ W 1,p. Hence, we can formulate a Dirichlet problem for Q-valued
functions: f ∈ W 1,2(Ω,AQ) is said to be Dir-minimizing if

Dir(f,Ω) ≤ Dir(g,Ω) for all g ∈ W 1,2(Ω,AQ) with f |∂Ω = g|∂Ω.
The main results proved in this paper. We are now ready to state the

main theorems of Almgren reproved in this note: an existence theorem and two
regularity results.

Theorem 0.8 (Existence for the Dirichlet Problem). Let g ∈ W 1,2(Ω,AQ).
Then, there exists a Dir-minimizing function f ∈ W 1,2(Ω,AQ) such that f |∂Ω =
g|∂Ω.

Theorem 0.9 (Hölder regularity). There exists a positive constant α = α(m,Q)
> 0 with the following property. If f ∈ W 1,2(Ω,AQ) is Dir-minimizing, then
f ∈ C0,α(Ω′) for every Ω′ ⊂⊂ Ω ⊂ R

m. For two-dimensional domains, we have the
explicit constant α(2, Q) = 1/Q.

For the second regularity theorem we need the definition of singular set of f .

Definition 0.10 (Regular and singular points). A Q-valued function f is reg-
ular at a point x ∈ Ω if there exists a neighborhood B of x and Q analytic functions
fi : B → R

n such that

f(y) =
∑
i

�fi(y)� for almost every y ∈ B

and either fi(x) 
= fj(x) for every x ∈ B or fi ≡ fj . The singular set Σf of f is the
complement of the set of regular points.

Theorem 0.11 (Estimate of the singular set). Let f be a Dir-minimizing func-
tion. Then, the singular set Σf of f is relatively closed in Ω. Moreover, if m = 2,
then Σf is at most countable, and if m ≥ 3, then the Hausdorff dimension of Σf is
at most m− 2.

Following in part ideas of [Cha88], we improve this last theorem in the following
way.

Theorem 0.12 (Improved estimate of the singular set).Let f be Dir-minimizing
and m = 2. Then, the singular set Σf of f consists of isolated points.

This note is divided into five parts. Chapter 1 gives the “elementary theory”
of Q-valued functions, while Chapter 2 focuses on the “combinatorial results” of
Almgren’s theory. In particular we give there very simple proofs of the existence
of Almgren’s biLipschitz embedding ξ : AQ(R

n) → R
N(Q,n) and of a Lipschitz

retraction ρ of RN(Q,n) onto ξ(RN(Q,n)). Following Almgren’s approach, ξ and ρ
are then used to generalize the classical Sobolev theory to Q-valued functions. In
Chapter 4 we develop the intrinsic theory and show how the results of Chapter 2 can
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be recovered independently of the maps ξ and ρ. Chapter 3 gives simplified proofs
of Almgren’s regularity theorems for Q-valued functions and Chapter 5 contains
the improved estimate of Theorem 0.12. Therefore, to get a proof of the four main
Theorems listed above, the reader can choose to follow Chapters 1, 2, 3 and 5, or
to follow Chapters 1, 4, 3 and 5.

Acknowledgements. The first author is indebted with Bernd Kirchheim for
many enlightening discussions on some topics of this paper. Both authors acknowl-
edge the support of the Swiss National Foundation. The second author acknowl-
edges the Forschungskredit of the University of Zürich. Both authors are grateful
to Bill Allard, Luigi Ambrosio, Matteo Focardi, Jonas Hirsch and Bernd Kirchheim
who read carefully a preliminary version of the manuscript and suggested several
corrections.
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CHAPTER 1

The elementary theory of Q-valued functions

This chapter consists of three sections. The first one introduces a recurrent
theme: decomposing Q-valued functions in simpler pieces. We will often build on
this and prove our statements inductively on Q, relying ultimately on well-known
properties of single-valued functions. Section 1.2 contains an elementary proof of
the following fact: any Lipschitz map from a subset of Rm into AQ can be ex-
tended to a Lipschitz map on the whole Euclidean space. This extension theorem,
combined with suitable truncation techniques, is the basic tool of various approx-
imation results. Section 1.3 introduces a notion of differentiability for Q-valued
maps and contains some chain–rule formulas and a generalization of the classical
theorem of Rademacher. These are the main ingredients of several computations
in later sections.

1.1. Decomposition and selection for Q-valued functions

Given two elements T ∈ AQ1
(Rn) and S ∈ AQ2

(Rn), the sum T + S of the
two measures belongs to AQ(R

n) = AQ1+Q2
(Rn). This observation leads directly

to the following definition.

Definition 1.1. Given finitely many Qi-valued functions fi, the map f1+f2+
. . .+ fN defines a Q-valued function f , where Q = Q1 +Q2 + . . .+QN . This will
be called a decomposition of f into N simpler functions. We speak of Lebesgue
measurable (Lipschitz, Hölder, etc.) decompositions, when the fi’s are measurable
(Lipschitz, Hölder, etc.). In order to avoid confusions with the summation of vectors
in R

n, we will write, with a slight abuse of notation,

f = �f1� + . . .+ �fN � .

If Q1 = . . . = QN = 1, the decomposition is called a selection.

Proposition 0.4 ensures the existence of a measurable selection for any mea-
surable Q-valued function. The only role of this proposition is to simplify our
notation.

1.1.1. Proof of Proposition 0.4. We prove the proposition by induction on
Q. The case Q = 1 is of course trivial. For the general case, we will make use of
the following elementary observation:

(D) if
⋃

i∈N
Bi is a covering of B by measurable sets, then it suffices to find a

measurable selection of f |Bi∩B for every i.

Let first A0 ⊂ AQ be the closed set of points of type Q �P � and set B0 =
f−1(A0). Then, B0 is measurable and f |B0

has trivially a measurable selection.
Next we fix a point T ∈ AQ \ A0, T =

∑
i �Pi�. We can subdivide the set of

indexes {1, . . . , Q} = IL ∪ IK into two nonempty sets of cardinality L and K, with

7



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

8 1. THE ELEMENTARY THEORY OF Q-VALUED FUNCTIONS

the property that

(1.1) |Pk − Pl| > 0 for every l ∈ IL and k ∈ IK .

For every S =
∑

i �Qi�, let πS ∈ PQ be a permutation such that

G(S, T )2 =
∑
i

|Pi −QπS(i)|2.

If U is a sufficiently small neighborhood of T in AQ, by (1.1), the maps

τ : U � S �→
∑
l∈IL

�
QπS(l)

�
∈ AL, σ : U � S �→

∑
k∈IK

�
QπS(k)

�
∈ AK

are continuous. Therefore, C = f−1(U) is measurable and �σ ◦ f |C� + �τ ◦ f |C�
is a measurable decomposition of f |C . Then, by inductive hypothesis, f |C has a
measurable selection.

According to this argument, it is possible to cover AQ \ A0 with open sets U ’s
such that, if B = f−1(U), then f |B has a measurable selection. Since AQ \A0 is an
open subset of a separable metric space, we can find a countable covering {Ui}i∈N

of this type. Since {B0} ∪ {f−1(Ui)}∞1=1 is a measurable covering of B, from (D)
we conclude the proof.

1.1.2. One dimensional W 1,p-decomposition. A more serious problem is
to find selections which are as regular as f itself. Essentially, this is always possible
when the domain of f is 1-dimensional. For our purposes we just need the Sobolev
case of this principle, which we prove in the next two propositions.

In this subsection I = [a, b] is a closed bounded interval of R and the space of
absolutely continuous functions AC(I,AQ) is defined as the space of those contin-
uous f : I → AQ such that, for every ε > 0, there exists δ > 0 with the following
property: for every a ≤ t1 < t2 < ... < t2N ≤ b,∑

i

(t2i − t2i−1) < δ implies
∑
i

G
(
f(t2i), f(t2i−1)

)
< ε.

Proposition 1.2. Let f ∈ W 1,p(I,AQ). Then,

(a) f ∈ AC(I,AQ) and, moreover, f ∈ C0,1− 1
p (I,AQ) for p > 1;

(b) there exists a selection f1, . . . , fQ ∈ W 1,p(I,Rn) of f such that |Dfi| ≤
|Df | almost everywhere.

Remark 1.3. A similar selection theorem holds for continuous Q-functions.
This result needs a subtler combinatorial argument and is proved in Almgren’s Big
regularity paper [Alm00] (Proposition 1.10, p. 85). The proof of Almgren uses
the Euclidean structure, whereas a more general argument has been proposed in
[DLGT04].

Proposition 1.2 cannot be extended to maps f ∈ W 1,p(S1,AQ). For example,
we identify R

2 with the complex plane C and S
1 with the set {z ∈ C : |z| = 1}

and we consider the map f : S1 → AQ(R
2) given by f(z) =

∑
ζ2=z �ζ�. Then,

f is Lipschitz (and hence belongs to W 1,p for every p) but it does not have a
continuous selection. Nonetheless, we can use Proposition 1.2 to decompose any
f ∈ W 1,p(S1,AQ) into “irreducible pieces”.

Definition 1.4. f ∈ W 1,p(S1,AQ) is called irreducible if there is no decompo-
sition of f into 2 simpler W 1,p functions.
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Proposition 1.5. For every Q-function g ∈ W 1,p(S1,AQ(R
n)), there exists a

decomposition g =
∑J

j=1 �gj�, where each gj is an irreducible W 1,p map. A function
g is irreducible if and only if

(i) card (supp (g(z))) = Q for every z ∈ S
1 and

(ii) there exists a W 1,p map h : S
1 → R

n with the property that f(z) =∑
ζQ=z �h(ζ)� .

Moreover, for every irreducible g, there are exactly Q maps h fulfilling (ii).

The existence of an irreducible decomposition in the sense above is an obvi-
ous consequence of the definition of irreducible maps. The interesting part of the
proposition is the characterization of the irreducible pieces, a direct corollary of
Proposition 1.2.

Proof of Proposition 1.2. We start with (a). Fix a dense set {Ti}i∈N ⊂
AQ. Then, for every i ∈ N, there is a negligible set Ei ⊂ I such that, for every
x < y ∈ I \ Ei,∣∣G(f(x), Ti)− G(f(y), Ti)

∣∣ ≤ ∣∣∣∣
∫ y

x

G(f, Ti)
′
∣∣∣∣ ≤

∫ y

x

|Df |.

Fix x < y ∈ I \ ∪iEi and choose a sequence {Til} converging to f(x). Then,

(1.2) G(f(x), f(y)) = lim
l→∞

∣∣G(f(x), Til)− G(f(y), Til)
∣∣ ≤ ∫ y

x

|Df | .

Clearly, (1.2) gives the absolute continuity of f outside ∪iEi. Moreover, f can
be redefined in a unique way on the exceptional set so that the estimate (1.2)
holds for every pair x, y. In the case p > 1, we improve (1.2) to G(f(x), f(y)) ≤
‖ |Df | ‖Lp |x− y|(p−1)/p, thus concluding the Hölder continuity.

For (b), the strategy is to find f1, . . . , fQ as limit of approximating piecewise
linear functions. To this aim, fix k ∈ N and set

Δk :=
b− a

k
and tl := a+ lΔk, with l = 0, . . . , k.

By (a), without loss of generality, we assume that f is continuous and we consider
the points f(tl) =

∑
i

�
P l
i

�
. Moreover, after possibly reordering each {P l

i }i∈{1,...,Q},
we can assume that

(1.3) G(f(tl−1), f(tl))
2 =

∑
i

∣∣P l−1
i − P l

i

∣∣2 .
Hence, we define the functions fk

i as the linear interpolations between the points
(tl, P

l
i ), that is, for every l = 1, . . . , k and every t ∈ [tl−1, tl], we set

fk
i (t) =

tl − t

Δk
P l−1
i +

t− tl−1

Δk
P l
i .

It is immediate to see that the fk
i ’s are W 1,1 functions; moreover, for every t ∈

(tl−1, tl), thanks to (1.3), the following estimate holds,

(1.4)
∣∣Dfk

i (t)
∣∣ =

∣∣P l−1
i − P l

i

∣∣
Δk

≤ G(f(tl−1), f(tl))

Δk
≤ −
∫ tl

tl−1

|Df | (τ ) dτ =: hk(t).

Since the functions hk converge in Lp to |Df | for k → +∞, we conclude that the
fk
i ’s are equi-continuous and equi-bounded. Hence, up to passing to a subsequence,
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which we do not relabel, there exist functions f1, . . . , fQ such that fk
i → fi uni-

formly. Passing to the limit, (1.4) implies that |Dfi| ≤ |Df | and it is a very simple
task to verify that

∑
i �fi� = f . �

Proof of Proposition 1.5. The decomposition of g into irreducible maps is
a trivial corollary of the definition of irreducibility. Moreover, it is easily seen that
a map satisfying (i) and (ii) is necessarily irreducible.

Let now g be an irreducible W 1,p Q-function. Consider g as a function on
[0, 2π] with the property that g(0) = g(2π) and let h1, . . . , hQ in W 1,p([0, 2π],Rn)
be a selection as in Proposition 1.2. Since we have g(0) = g(2π), there exists a
permutation σ such that hi(2π) = hσ(i)(0). We claim that any such σ is necessarily
a Q-cycle. If not, there is a partition of {1, . . . , Q} into two disjoint nonempty
subsets IL and IK , with cardinality L and K respectively, such that σ(IL) = IL
and σ(IK) = IK . Then, the functions

gL =
∑
i∈IL

�hi� and gK =
∑
i∈IK

�hi�

would provide a decomposition of f into two simpler W 1,p functions.
The claim concludes the proof. Indeed, for what concerns (i), we note that, if

the support of g(0) does not consist of Q distinct points, there is always a permu-
tation σ such that hi(2π) = hσ(i)(0) and which is not a Q-cycle. For (ii), without
loss of generality, we can order the hi in such a way that σ(Q) = 1 and σ(i) = i+1
for i ≤ Q− 1. Then, the map h : [0, 2π] → R

n defined by

h(θ) = hi(Qθ − 2(i− 1)π), for θ ∈ [2(i− 1)π/Q, 2iπ/Q],

fulfils (ii). Finally, if a map h̃ ∈ W 1,p(S1,Rn) satisfies

(1.5) g(θ) =
∑
i

�
h̃((θ + 2iπ)/Q)

�
for every θ,

then there is j ∈ {1, . . . , Q} such that h̃(0) = h(2jπ/Q). By (i) and the continuity

of h and h̃, the identity h̃(θ) = h(θ + 2jπ/Q) holds for θ in a neighborhood of
0. Therefore, since S

1 is connected, a simple continuation argument shows that
h̃(θ) = h(θ + 2jπ/Q) for every θ. On the other hand, all the h̃ of this form are
different (due to (i)) and enjoy (1.5): hence, there are exactly Q distinct W 1,p

functions with this property. �
1.1.3. Lipschitz decomposition. For general domains of dimension m ≥ 2,

there are well-known obstructions to the existence of regular selections. However,
it is clear that, when f is continuous and the support of f(x) does not consist
of a single point, in a neighborhood U of x, there is a decomposition of f into
two continuous simpler functions. When f is Lipschitz, this decomposition holds
in a sufficiently large ball, whose radius can be estimated from below with a sim-
ple combinatorial argument. This fact will play a key role in many subsequent
arguments.

Proposition 1.6. Let f : B ⊂ R
m → AQ be a Lipschitz function, f =∑Q

i=1 �fi�. Suppose that there exist x0 ∈ B and i, j ∈ {1, . . . , Q} such that

(1.6) |fi(x0)− fj(x0)| > 3 (Q− 1)Lip(f) diam(B).

Then, there is a decomposition of f into two simpler Lipschitz functions fK and fL
with Lip(fK),Lip(fL) ≤ Lip(f) and supp (fK(x)) ∩ supp (fL(x)) = ∅ for every x.
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Proof. Call a “squad” any subset of indices I ⊂ {1, . . . , Q} such that

|fl(x0)− fr(x0)| ≤ 3 (|I| − 1) Lip(f) diam(B) for all l, r ∈ I,

where |I| denotes the cardinality of I. Let IL be a maximal squad containing 1,
where L stands for its cardinality. By (1.6), L < Q. Set IK = {1, . . . , Q}\ IL. Note
that, whenever l ∈ IL and k ∈ IK ,

(1.7) |fl(x0)− fk(x0)| > 3Lip(f) diam(B),

otherwise IL would not be maximal. For every x, y ∈ B, we let πx, πx,y ∈ PQ be
permutations such that

G(f(x0), f(x))
2 =

∑
i

∣∣fi(x0)− fπx(i)(x)
∣∣2 ,

G(f(x), f(y))2 =
∑
i

∣∣fi(x)− fπx,y(i)(y)
∣∣2 .

We define the functions fL and fK as

fL(x) =
∑
i∈IL

�
fπx(i)(x)

�
and fK(x) =

∑
i∈IK

�
fπx(i)(x)

�
.

Observe that f = �fL� + �fK�: it remains to show the Lipschitz estimate. For this
aim, we claim that πx,y(πx(IL)) = πy(IL) for every x and y. Assuming the claim,
we conclude that, for every x, y ∈ B,

G(f(x), f(y))2 = G(fL(x), fL(y))2 + G(fK(x), fK(y))2,

and hence Lip(fL),Lip(fK) ≤ Lip(f).
To prove the claim, we argue by contradiction: if it is false, choose x, y ∈ B,

l ∈ IL and k ∈ IK with πx,y(πx(l)) = πy(k). Then,
∣∣fπx(l)(x)− fπy(k)(y)

∣∣ ≤
G(f(x), f(y)), which in turn implies

3 Lip(f) diam(B)
(1.7)
< |fl(x0)− fk(x0)|

≤
∣∣fl(x0)− fπx(l)(x)

∣∣+ ∣∣fπx(l)(x)− fπy(k)(y)
∣∣+ ∣∣fπy(k)(y)− fk(x0)

∣∣
≤ G(f(x0), f(x)) + G(f(x), f(y)) + G(f(y), f(x0))

≤ Lip(f) (|x0 − x|+ |x− y|+ |y − x0|)
≤ 3Lip(f) diam(B).

This is a contradiction and, hence, the proof is complete. �

1.2. Extension of Lipschitz Q-valued functions

This section is devoted to prove the following extension theorem.

Theorem 1.7 (Lipschitz Extension). Let B ⊂ R
m and f : B → AQ(R

n) be
Lipschitz. Then, there exists an extension f̄ : Rm → AQ(R

n) of f , with Lip(f̄) ≤
C(m,Q)Lip(f). Moreover, if f is bounded, then, for every T ∈ Q �P �,

(1.8) sup
x∈Rm

G(f̄(x), T ) ≤ C(m,Q) sup
x∈B

G(f(x), T ).

Note that, in his Big regularity paper, Almgren deduces Theorem 1.7 from the
existence of the maps ξ and ρ of Section 2.1. We instead follow a sort of reverse
path and conclude the existence of ρ from that of ξ invoking Theorem 1.7.
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It has already been observed by Goblet in [Gob06a] that the Homotopy Lemma
1.8 below can be combined with a Whitney-type argument to yield an easy direct
proof of the Lipschitz extension Theorem, avoiding Almgren’s maps ξ and ρ. In
[Gob06a] the author refers to the general theory built in [LS97] to conclude The-
orem 1.7 from Lemma 1.8. For the sake of completeness, we give here the complete
argument.

1.2.1. Homotopy Lemma. Let C be a cube with sides parallel to the coor-
dinate axes. As a first step, we show the existence of extensions to C of Lipschitz
Q-valued functions defined on ∂C. This will be the key point in the Whitney type
argument used in the proof of Theorem 1.7.

Lemma 1.8 (Homotopy lemma). There is a constant c(Q) with the following
property. For any closed cube with sides parallel to the coordinate axes and any
Lipschitz Q-function h : ∂C → AQ(R

n), there exists an extension f : C → AQ(R
n)

of h which is Lipschitz with Lip(f) ≤ c(Q)Lip(h). Moreover, for every T = Q �P �,

(1.9) max
x∈C

G(f(x), T ) ≤ 2Q max
x∈∂C

G(h(x), T ).

Proof. By rescaling and translating, it suffices to prove the lemma when C =
[0, 1]m. Since C is biLipschitz equivalent to the closed unit ball B1 centered at 0,
it suffices to prove the lemma with B1 in place of C. In order to prove this case,
we proceed by induction on Q. For Q = 1, the statement is a well-known fact
(it is very easy to find an extension f̄ with Lip (f̄) ≤ √

nLip(f); the existence of
an extension with the same Lipschitz constant is a classical, but subtle, result of
Kirszbraun, see 2.10.43 in [Fed69]). We now assume that the lemma is true for
every Q < Q∗, and prove it for Q∗.

Fix any x0 ∈ ∂B1. We distinguish two cases: either (1.6) of Proposition 1.6
is satisfied with B = ∂B1, or it is not. In the first case we can decompose h as
�hL� + �hK�, where hL and hK are Lipschitz functions taking values in AL and
AK , and K and L are positive integers. By the induction hypothesis, we can find
extensions of hL and hK satisfying the requirements of the lemma, and it is not
difficult to verify that f = �fL� + �fK� is the desired extension of h to B1.

In the second case, for any pair of indices i, j we have that

|hi(x0)− hj(x0)| ≤ 6Q∗ Lip(h).

We use the following cone-like construction: set P := h1(x0) and define

(1.10) f(x) =
∑
i

�

|x|hi

(
x

|x|

)
+
(
1− |x|

)
P

	

.

Clearly f is an extension of h. For the Lipschitz regularity, note first that

Lip(f |∂Br
) = Lip(h), for every 0 < r ≤ 1.

Next, for any x ∈ ∂B, on the segment σx = [0, x] we have

Lipf |σx
≤ Q∗ max

i
|hi(x)− P | ≤ 6 (Q∗)2 Lip(h).

So, we infer that Lip(f) ≤ 12 (Q∗)2 Lip(h). Moreover, (1.9) follows easily from
(1.10). �



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1.2. EXTENSION OF LIPSCHITZ Q-VALUED FUNCTIONS 13

1.2.2. Proof of Theorem 1.7. Without loss of generality, we can assume
that B is closed. Consider a Whitney decomposition {Ck}k∈N

of R
m \ B (see

Figure 1). More precisely (cp. with Theorem 3, page 16 of [Ste70]):

(W1) each Ck is a closed dyadic cube, i.e. the length lk of the side is 2k for
some k ∈ Z and the coordinates of the vertices are integer multiples of lk;

(W2) distinct cubes have disjoint interiors and

(1.11) c(m)−1dist(Ck, B) ≤ lk ≤ c(m) dist(Ck, B).

As usual, we call j-skeleton the union of the j-dimensional faces of Ck. We now
construct the extension f̄ by defining it recursively on the skeletons.

B

0 skeleton
elements of the

a segment of
the 1-skeleton

Figure 1. The Whitney decomposition of R2 \B.

Consider the 0-skeleton, i.e. the set of the vertices of the cubes. For each vertex
x, we choose x̃ ∈ B such that |x− x̃| = dist(x,B) and set f̄(x) = f(x̃). If x and y
are two adjacent vertices of the same cube Ck, then

max
{
|x− x̃| , |y − ỹ|

}
≤ dist(Ck, B) ≤ c lk = c |x− y| .

Hence, we have

G
(
f̄(x), f̄(y)

)
= G (f(x̃), f(ỹ)) ≤ Lip(f) |x̃− ỹ| ≤ Lip(f)

(
|x̃− x|+ |x− y|+ |y − ỹ|

)
≤ cLip(f) |x− y| .

Using the Homotopy Lemma 1.8, we extend f to f̄ on each side of the 1-skeleton. On
the boundary of any 2-face, f̄ has Lipschitz constant smaller than
9C(m,Q) Lip(f). Applying Lemma 1.8 recursively we find an extension of f̄ to
all Rm such that (1.8) holds and which is Lipschitz in each cube of the decomposi-
tion, with constant smaller than C(m,Q) Lip(f).

It remains to show that f̄ is Lipschitz on the whole R
m. Consider x, y ∈ R

m,
not lying in the same cube of the decomposition. Our aim is to show the inequality

(1.12) G
(
f̄(x), f̄(y)

)
≤ C Lip(f) |x− y|,
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with some C depending only onm and Q. Without loss of generality, we can assume
that x 
∈ B. We distinguish then two possibilities:

(a) [x, y] ∩B 
= ∅;
(b) [x, y] ∩B = ∅.

In order to deal with (a), assume first that y ∈ B. Let Ck be a cube of the
decomposition containing x and let v be one of the nearest vertices of Ck to x.
Recall, moreover, that f̄(v) = f(ṽ) for some ṽ with |ṽ − v| = dist(v,B). We have
then

G
(
f̄(x), f̄(y)

)
≤ G

(
f̄(x), f̄(v)

)
+ G

(
f̄(v), f(y)

)
= G

(
f̄(x), f̄(v)

)
+ G (f(ṽ), f(y))

≤ C Lip(f) |x− v|+ Lip(f) |ṽ − y|
≤ C Lip(f)

(
|x− v|+ |ṽ − v|+ |v − x|+ |x− y|

)
≤ C Lip(f)

(
lk + dist(Ck, B) + diam (Ck) + |x− y|

)
(1.11)

≤ C Lip(f) |x− y| .
If (a) holds but y 
∈ B, then let z ∈]a, b[∩B. From the previous argument we know
G(f̄(x), f̄(z)) ≤ C|x − z| and G

(
f̄(y), f̄(z)

)
≤ C|y − z|, from which (1.12) follows

easily.
If (b) holds, then [x, y] = [x, P1] ∪ [P1, P2] ∪ . . . ∪ [Ps, y] where each interval

belongs to a cube of the decomposition. Therefore (1.12) follows trivially from the
Lipschitz estimate for f̄ in each cube of the decomposition.

1.3. Differentiability and Rademacher’s Theorem

In this section we introduce the notion of differentiability for Q-valued functions
and prove two related theorems. The first one gives chain-rule formulas forQ-valued
functions and the second is the extension to the Q-valued setting of the classical
result of Rademacher.

Definition 1.9. Let f : Rm ⊃ B → AQ(R
n) and x0 ∈ B. We say that f is

differentiable at x0 if there exist Q matrices Li satisfying:

(i) G(f(x), Tx0
f) = o(|x− x0|), where

(1.13) Tx0
f(x) :=

∑
i

�Li · (x− x0) + fi(x0)� ;

(ii) Li = Lj if fi(x0) = fj(x0).

The Q-valued map Tx0
f will be called the first-order approximation of f at x0. The

point
∑

i �Li� ∈ AQ(R
n×m) will be called the differential of f at x0 and is denoted

by Df(x0).

Remark 1.10. What we call “differentiable” is called “strongly affine approx-
imable” by Almgren.

Remark 1.11. The differential Df(x0) of a Q-function f does not determine
univocally its first-order approximation Tx0

f . To overcome this ambiguity, we
write Dfi for Li in Definition 1.9, thus making evident which matrix has to be
associated to fi(x0) in (i). Note that (ii) implies that this notation is consistent:
namely, if g1, . . . , gQ is a different selection for f , x0 a point of differentiability
and π a permutation such that gi(x0) = fπ(i)(x0) for all i ∈ {1, . . . , Q}, then
Dgi(x0) = Dfπ(i)(x0). Even though the fi’s are not, in general, differentiable,
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observe that, when they are differentiable and f is differentiable, the Dfi’s coincide
with the classical differentials.

If D is the set of points of differentiability of f , the map x �→ Df(x) is a
measurable Q-valued map, which we denote by Df . In a similar fashion, we define
the directional derivatives ∂νf(x) =

∑
i �Dfi(x) · ν� and establish the notation

∂νf =
∑

i �∂νfi�.

1.3.1. Chain rules. In what follows, we will deal with several natural oper-
ations defined on Q-valued functions. Consider a function f : Ω → AQ(R

n). For

every Φ : Ω̃ → Ω, the right composition f ◦ Φ defines a Q-valued function on Ω̃.
On the other hand, given a map Ψ : Ω × R

n → R
k, we can consider the left com-

position, x �→
∑

i �Ψ(x, fi(x))�, which defines a Q-valued function denoted, with a
slight abuse of notation, by Ψ(x, f).

The third operation involves maps F : (Rn)Q → R
k such that, for every Q

points (y1, . . . , yQ) ∈ (Rn)
Q

and π ∈ PQ,

(1.14) F (y1, . . . , yQ) = F
(
yπ(1), . . . , yπ(Q)

)
.

Then, x �→ F (f1(x), . . . , fQ(x)) is a well defined map, denoted by F ◦ f .

Proposition 1.12 (Chain rules). Let f : Ω → AQ(R
n) be differentiable at x0.

(i) Consider Φ : Ω̃ → Ω such that Φ(y0) = x0 and assume that Φ is differen-
tiable at y0. Then, f ◦ Φ is differentiable at y0 and

(1.15) D(f ◦ Φ)(y0) =
∑
i

�Dfi(x0) ·DΦ(y0)� .

(ii) Consider Ψ : Ωx × R
n
u → R

k such that Ψ is differentiable at (x0, fi(x0))
for every i. Then, Ψ(x, f) fulfills (i) of Definition 1.9. Moreover, if (ii)
holds, then

(1.16) DΨ(x, f)(x0) =
∑
i

�DuΨ(x0, fi(x0)) ·Dfi(x0) +DxΨ(x0, fi(x0))� .

(iii) Consider F : (Rn)Q → R
k as in (1.14) and differentiable at (f1(x0), . . . ,

fQ(x0)). Then, F ◦ f is differentiable at x0 and

(1.17) D(F ◦ f)(x0) =
∑
i

Dyi
F (f1(x0), . . . , fQ(x0)) ·Dfi(x0).

Proof. All the formulas are just routine modifications of the classical chain-
rule. The proof of (i) follows easily from Definition 1.9. Since f is differentiable at
x0, we have

G
(
f ◦ Φ(y),

∑
i

�Dfi(x0) · (Φ(y)− Φ(y0)) + fi(Φ(y0))�

)
= o (|Φ(y)− Φ(y0)|)

= o (|y − y0|),(1.18)

where the last equality follows from the differentiability of Φ at y0. Moreover, again
due to the differentiability of Φ, we infer that

(1.19) Dfi(x0) · (Φ(y)− Φ(y0)) = Dfi(x0) ·DΦ(y0) · (y − y0) + o(|y − y0|).
Therefore, (1.18) and (1.19) imply (1.15).
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For what concerns (ii), we note that we can reduce to the case of card(f(x0)) =
1, i.e.

(1.20) f(x0) = Q �u0� and Df(x0) = Q �L� .

Indeed, since f is differentiable (hence, continuous) in x0, in a neighborhood of
x0 we can decompose f as the sum of differentiable multi-valued functions gk,
f =

∑
k �gk�, such that card(gk(x0)) = 1. Then, Ψ(x, f) =

∑
k �Ψ(x, gk)� in a

neighborhood of x0, and the differentiability of Ψ(x, f) follows from the differentia-
bility of the Ψ(x, gk)’s. So, assuming (1.20), without loss of generality, we have to
show that

h(x) = Q �Du Ψ(x0, u0) · L · (x− x0) +Dx Ψ(x0, u0) · (x− x0) + Ψ(x0, u0)�

is the first-order approximation of Ψ(x, f) in x0. Set

Ai(x) = Du Ψ(x0, u0) · (fi(x)− u0) +Dx Ψ(x0, u0) · (x− x0) + Ψ(x0, u0).

From the differentiability of Ψ, we deduce that

(1.21) G
(
Ψ(x, f),

∑
i

�Ai(x)�

)
= o

(
|x− x0|+ G(f(x), f(x0))

)
= o (|x− x0|) ,

where we used the differentiability of f in the last step. Hence, we can conclude
(1.16), i.e.

G (Ψ(x, f), h(x)) ≤ G
(
Ψ(x, f),

∑
i

�Ai(x)�

)
+ G

(∑
i

�Ai(x)� , h(x)

)

≤ o (|x− x0|) + ‖Du Ψ(x0, u0)‖G
(∑

i

�fi(x)�, Q �L·(x− x0) + u0�

)

= o (|x− x0|) .
where ‖Duψ(x0, u0)‖ denotes the Hilbert–Schmidt norm of the matrixDu Ψ(x0, u0).

Finally, to prove (iii), fix x and let π be such that

G
(
f(x), f(x0)

)2
=
∑
i

|fπ(i)(x)− fi(x0)|2.

By the continuity of f and (ii) of Definition 1.9, for |x− x0| small enough we have

(1.22) G
(
f(x), Tx0

f(x)
)2

=
∑
i

|fπ(i)(x)−Dfi(x0) · (x− x0)− zi|2.

Set fi(x0) = zi and z = (z1, . . . , zQ) ∈ (Rn)Q. The differentiability of F implies∣∣∣∣∣F ◦ f(x)− F ◦ f(x0)−
∑
i

Dyi
F (z) ·

(
fπ(i)(x)− zi

)∣∣∣∣∣ = o (G(f(x), f(x0))

= o(|x− x0|).
(1.23)

Therefore, for |x− x0| small enough, we conclude

(1.24)

∣∣∣∣∣
∑
i

Dyi
F (z) ·

(
fπ(i)(x)− zi −Dfi(x0) · (x− x0)

)∣∣∣∣∣ ≤
≤ C

∑
i

|fπ(i)(x)−Dfi(x0) · (x− x0)− zi|
(1.22)
= o(|x− x0|),
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with C = supi ‖Dyi
F (z)‖. Therefore, using (1.23) and (1.24), we conclude (1.17).

�

1.3.2. Rademacher’s Theorem. In this subsection we extend the classical
theorem of Rademacher on the differentiability of Lipschitz functions to the Q-
valued setting. Our proof is direct and elementary, whereas in Almgren’s work the
theorem is a corollary of the existence of the biLipschitz embedding ξ (see Section
2.1). An intrinsic proof has been already proposed in [Gob06b]. However our
approach is considerably simpler.

Theorem 1.13 (Rademacher). Let f : Ω → AQ be a Lipschitz function. Then,
f is differentiable almost everywhere in Ω.

Proof. We proceed by induction on the number of values Q. The case Q = 1
is the classical Rademacher’s theorem (see, for instance, 3.1.2 of [EG92]). We next
assume that the theorem is true for every Q < Q∗ and we show its validity for Q∗.

We write f =
∑Q∗

i=1 �fi�, where the fi’s are a measurable selection. We let Ω̃
be the set of points where f takes a single value with multiplicity Q:

Ω̃ =
{
x ∈ Ω : f1(x) = fi(x) ∀i

}
.

Note that Ω̃ is closed. In Ω \ Ω̃, f is differentiable almost everywhere by inductive

hypothesis. Indeed, by Proposition 1.6, in a neighborhood of any point x ∈ Ω \ Ω̃,
we can decompose f in the sum of two Lipschitz simpler multi-valued functions,
f = �fL� + �fK�, with the property that supp (fL(x)) ∩ supp (fK(x)) = ∅. By
inductive hypothesis, fL and fK are differentiable, hence, also f is.

It remains to prove that f is differentiable a.e. in Ω̃. Note that f1|Ω̃ is a
Lipschitz vector valued function and consider a Lipschitz extension of it to all Ω,
denoted by g. We claim that f is differentiable in all the points x where

(a) Ω̃ has density 1;
(b) g is differentiable.

Our claim would conclude the proof. In order to show it, let x0 ∈ Ω̃ be any given
point fulfilling (a) and (b) and let Tx0

g(y) = L · (y− x0) + f1(x0) be the first order
Taylor expansion of g at x0, that is

(1.25) |g(y)− L · (y − x0)− f1(x0)| = o(|y − x0|).

We will show that Tx0
f(y) := Q �L · (y − x0) + f1(x0)� is the first order expansion

of f at x0. Indeed, for every y ∈ R
m, let r = |y − x0| and choose y∗ ∈ Ω̃ ∩B2r(x0)

such that

|y − y∗| = dist
(
y, Ω̃ ∩B2r(x0)

)
.

Being f , g and Tg Lipschitz with constant at most Lip(f), using (1.25), we infer
that

G
(
f(y), Tx0

f(y)
)
≤ G

(
f(y), f(y∗)

)
+ G

(
Tx0

f(y∗), Tx0
f(y)

)
+ G

(
f(y∗), Tx0

f(y∗)
)

≤ Lip(f) |y − y∗|+QLip(f) |y − y∗|+
+ G

(
Q �g(y∗)� , Q �L · (y∗ − x0) + f1(x0)�

)
≤ (Q+ 1) Lip(f) |y − y∗|+ o

(
|y∗ − x0|

)
.(1.26)
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Since |y∗ − x0| ≤ 2 r = 2 |y − x0|, it remains to estimate ρ := |y − y∗|. Note that

the ball Bρ(y) is contained in Br(x0) and does not intersect Ω̃. Therefore

(1.27) |y − y∗| = ρ ≤ C
∣∣∣B2r(x0) \ Ω̃

∣∣∣1/m ≤ C(m) r

(
|B2r(x0) \ Ω̃|
|B2r(x0)|

) 1
m

.

Since x0 is a point of density 1, we can conclude from (1.27) that |y − y∗| =
|y−x0| o(1). Inserting this inequality in (1.26), we conclude that G(f(y), Tx0

f(y)) =
o(|y − x0|), which shows that Tx0

f is the first order expansion of f at x0. �
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CHAPTER 2

Almgren’s extrinsic theory

Two “extrinsic maps” play a pivotal role in the theory of Q-functions developed
in [Alm00]. The first one is a biLipschitz embedding ξ of AQ(R

n) into R
N(Q,n),

where N(Q,n) is a sufficiently large integer. Almgren uses this map to define
Sobolev Q-functions as classical RN -valued Sobolev maps taking values in Q :=
ξ(AQ(R

n)). Using ξ, many standard facts of Sobolev maps can be extended to the
Q-valued setting with little effort. The second map ρ is a Lipschitz retraction of
R

N(Q,n) onto Q, which is used in various approximation arguments.
The existence of the maps ξ and ρ is proved in Section 2.1. In Section 2.2 we

show that Sobolev Q-valued functions in the sense of Almgren coincide with those
of Definition 0.5 and we use ξ to derive their basic properties. Finally, Section 2.3
shows that our definition of Dirichlet’s energy coincides with Almgren’s one and
proves the Existence Theorem 0.8. Except for Section 2.2, no other portion of this
paper makes direct use of ξ or of ρ: the regularity theory of Chapters 3 and 5 needs
only the propositions stated in Section 2.2, which we are going to prove again in
Chapter 4 within the frame of an “intrinsic” approach, that is independent of ξ
and ρ.

2.1. The biLipschitz embedding ξ and the retraction ρ

Theorem 2.1. There exist N = N(Q,n) and an injective map ξ : AQ(R
n) →

R
N such that:

(i) Lip(ξ) ≤ 1;
(ii) if Q = ξ(AQ), then Lip(ξ−1|Q) ≤ C(n,Q).

Moreover, there exists a Lipschitz map ρ : RN → Q which is the identity on Q.

The existence of ρ is a trivial consequence of the Lipschitz regularity of ξ−1|Q
and of the Extension Theorem 1.7.

Proof of the existence of ρ given ξ. Consider ξ−1 : Q → AQ. Since
this map is Lipschitz, by Theorem 1.7 there exists a Lipschitz extension f of ξ−1

to the entire space. Therefore, ρ = ξ ◦ f is the desired retraction. �
For the proof of the first part of Theorem 2.1, we follow instead the ideas of

Almgren. A slight modification of these ideas, moreover, leads to the construction
of a special biLipschitz embedding: this observation, due to B. White, was noticed
in [Cha88].

Corollary 2.2. There exist M = M(Q,n) and an injective map ξBW :
AQ(R

n) → R
M with the following properties: ξBW satisfies (i) and (ii) of The-

orem 2.1 and, for every T ∈ AQ(R
n), there exists δ > 0 such that

(2.1) |ξBW (T )− ξBW (S)| = G(T, S) ∀ S ∈ Bδ(T ) ⊂ AQ(R
n).

19
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We point out that we will not make any use in the following of such special
embedding ξBW , since all the properties of Q-valued functions are independent of
the embedding we choose. Nevertheless, we give a proof of Corollary 2.2 because
it provides a better intuition on Q-valued functions (see Proposition 2.20) and can
be used to give shorter proofs of several technical lemmas (see [DLS]).

2.1.1. A combinatorial Lemma. The key to the proof of Theorem 2.1 is
the following combinatorial statement.

Lemma 2.3 (Almgren’s combinatorial Lemma). There exist α = α(Q,n) > 0
and a set of h = h(Q,n) unit vectors Λ = {e1, . . . eh} ⊂ S

n−1 with the following
property: given any set of Q2 vectors,

{
v1, . . . , vQ2

}
⊂ R

n, there exists el ∈ Λ such
that

(2.2) |vk · el| ≥ α |vk| for all k ∈
{
1, . . . , Q2

}
.

Proof. Choose a unit vector e1 and let α(Q,n) be small enough in order to
ensure that the set E :=

{
x ∈ S

n−1 : |x · e1| < α
}
has sufficiently small measure,

that is

(2.3) Hn−1(E) ≤ Hn−1(Sn−1)

8 · 5n−1 Q2
.

Note that E is just the α-neighborhood of an equatorial (n − 2)-sphere of Sn−1.
Next, we use Vitali’s covering Lemma (see 1.5.1 of [EG92]) to find a finite set
Λ = {e1, . . . , eh} ⊂ S

n−1 and a finite number of radii 0 < ri < α such that

(a) the balls Bri(ei) are disjoint;
(b) the balls B5 ri(ei) cover the whole sphere.

We claim that Λ satisfies the requirements of the lemma. Let, indeed, V ={
v1, . . . , vQ2

}
be a set of vectors. We want to show the existence of el ∈ Λ which

satisfies (2.2). Without loss of generality, we assume that each vi is nonzero. More-
over, we consider the sets Ck =

{
x ∈ S

n−1 : |x · vk| < α |vk|
}
and we let CV be the

union of the Ck’s. Each Ck is the α-neighborhood of the equatorial sphere given
by the intersection of Sn−1 with the hyperplane orthogonal to vi. Thus, by (2.3),

(2.4) Hn−1 (CV ) ≤
Hn−1(Sn−1)

8 · 5n−1
.

Note that, due to the bound ri < α,

(2.5) ei ∈ CV ⇒ Hn−1 (CV ∩Bri(ei)) ≥
Hn−1(Bri(ei) ∩ S

n−1)

2
.

By our choices, there must be one el which does not belong to CV , otherwise

Hn−1(Sn−1)

2 · 5n−1

(a) & (b)

≤
∑
i

Hn−1
(
Bri(ei) ∩ S

n−1
) (2.5)

≤ 2
∑
i

Hn−1 (CV ∩Bri(ei))

(a)

≤ 2Hn−1 (CV )
(2.4)

≤ Hn−1(Sn−1)

4 · 5n−1
,

which is a contradiction (here we used the fact that, though the sphere is curved,
for α sufficiently small the (n − 1)-volume of Bri(ei) ∩ S

n−1 is at least 2−15−n+1

times the volume of B5 ri(ei) ∩ S
n−1). Having chosen el 
∈ CV , we have el 
∈ Ck for

every k, which in turn implies (2.2). �
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2.1.2. Proof of the existence of ξ. Let Λ = {e1, . . . eh} be a set satisfying
the conclusion of Lemma 2.3 and set N = Qh. Fix T ∈ AQ(R

n), T =
∑

i �Pi�. For
any el ∈ Λ, we consider the Q projections of the points Pi on the el direction, that
is Pi ·el. This gives an array of Q numbers, which we rearrange in increasing order,
getting a Q-dimensional vector πl(T ). The map ξ : AQ → R

N is, then, defined by

ξ(T ) = h−1/2(π1(T ), . . . , πh(T )).
The Lipschitz regularity of ξ is a trivial corollary of the following rearrangement

inequality:

(Re) if a1 ≤ . . . ≤ an and b1 ≤ . . . ≤ bn, then, for every permutation σ of the
indices,

(a1 − b1)
2 + · · ·+ (an − bn)

2 ≤ (a1 − bσ(1))
2 + · · ·+ (an − bσ(n))

2.

Indeed, fix two points T =
∑

i �Pi� and S =
∑

i �Ri� and assume, without loss of
generality, that

(2.6) G(T, S)2 =
∑
i

|Pi −Ri|2 .

Fix an l. Then, by (Re), |πl(T )− πl(S)|2 ≤
∑

((Pi −Ri) · el)2. Hence, we get

|ξ(T )− ξ(S)|2 ≤ 1

h

h∑
l=1

Q∑
i=1

((Pi −Ri) · el)2 ≤ 1

h

h∑
l=1

Q∑
i=1

|Pi −Ri|2

(2.6)
=

1

h

h∑
l=1

G(T, S)2 = G(T, S)2.

Next, we conclude the proof by showing, for T =
∑

i �Pi� and S =
∑

i �Ri�, the
inequality

(2.7) G(T, S) ≤
√
h

α
|ξ(T )− ξ(S)| ,

where α is the constant in Lemma 2.3. Consider, indeed, the Q2 vectors Pi − Rj ,
for i, j ∈ {1, . . . , Q}. By Lemma 2.3, we can select a unit vector el ∈ Λ such that

(2.8) |(Pi −Rj) · el| ≥ α |Pi −Rj | , for all i, j ∈ {1, . . . , Q}.

Let τ and λ be permutations such that

πl(T ) = (Pτ(1) · el, . . . , Pτ(Q) · el) and πl(S) = (Rλ(1) · el, . . . , Rλ(Q) · el).

Then, we conclude (2.7),

G(T, S)2 ≤
Q∑
i=1

∣∣Pτ(i) −Rλ(i)

∣∣2 (2.8)

≤ α−2

Q∑
i=1

(
(Pτ(i) −Rλ(i)) · el

)2
= α−2 |πl(T )− πl(S)|2

≤ α−2 h |ξ(T )− ξ(S)|2 .
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2.1.3. Proof of Corollary 2.2. Let Λ = {e1, . . . eh} be the set of unit vectors
in the proof of Theorem 2.1. We consider the enlarged set Γ of nh vectors containing
an orthonormal frame for each el ∈ Λ,

Γ =
{
e11, . . . , e

n
1 , . . . , e

1
h, . . . , e

n
h

}
,

where, for every α ∈ {1, . . . , h}, e1α = eα and {e1α, . . . , enα} is an orthonormal basis of
R

n. Note that, in principle, the vectors eβα may not be all distinct: this can happen,
for example, if there exist two vectors ej and el which are orthogonal. Nevertheless,
we can assume, without loss of generality, that Γ is made of nh distinct vectors (in
passing, this is can always be reached by perturbing slightly Λ).

Then, we define the map ξBW in the same way as ξ, with Γ replacing Λ: for
T =

∑
i �Pi�,

ξBW (T ) = h−1/2
(
π1
1(T ), . . . , π

n
1 (T ), . . . , π

1
h(T ) . . . , π

n
h(T )

)
,

where πβ
α(T ) is the array of Q scalar products Pi ·eβα rearranged in increasing order.

Clearly, ξBW satisfies the conclusion of Theorem 2.1. We need only to show
(2.1).

To this aim, we start noticing that, given T =
∑

i �Pi� ∈ AQ, there exists
δ > 0 with the following property: for every S =

∑
i �Ri� ∈ Bδ(T ) and every

πβ
α, assuming that G(T, S)2 =

∑
i |Pi − Ri|2, there exists a permutation σβ

α ∈ PQ

such that the arrays (Pi · eβα) and (Ri · eβα) are ordered increasingly by the same
permutation σβ

α, i.e.

πβ
α(T )=

(
Pσβ

α(1)
· eβα, . . . , Pσβ

α(Q) · e
β
α

)
and πβ

α(S)=
(
Rσβ

α(1) · e
β
α, . . . , Rσβ

α(Q) · e
β
α

)
.

It is enough to choose 4 δ = minα,β
{
|Pi · eβα − Pj · eβα| : Pi · eβα 
= Pj · eβα

}
. Indeed,

let us assume that Ri · eβα ≤ Rj · eβα. Then, two cases occur:

(a) Rj · eβα − Ri · eβα ≥ 2δ,
(b) Rj · eβα − Ri · eβα < 2δ.

In case (a), since S ∈ Bδ(T ), we deduce that Pi ·eβα ≤ Ri ·eβα+δ ≤ Rj ·eβα−δ ≤ Pj ·eβα.
In case (b), instead, we infer that |Pj · eβα −Pi · eβα| ≤ Rj · eβα + δ−Ri · eβα − δ < 4 δ,
which, in turn, by the choice of δ, leads to Pj · eβα = Pi · eβα. Hence, in both cases
we have Pi · eβα ≤ Pj · eβα, which means that Pi · eβα can be ordered in increasing way
by the same permutation σβ

α.
Therefore, exploiting the fact that the vectors πβ

α(T ) and πβ
α(S) are ordered by

the same permutation σβ
α, we have that, for T and S as above, it holds

|ξBW (T )− ξBW (S)|2 = h−1
h∑

α=1

n∑
β=1

|πβ
α(T )− πβ

α(S)|2

= h−1
h∑

α=1

n∑
β=1

Q∑
i=1

|Pσβ
α(i) · e

β
α −Rσβ

α(i) · e
β
α|2

= h−1
h∑

α=1

Q∑
i=1

|Pi −Ri|2

= h−1
h∑

α=1

G(T, S)2 = G(T, S)2.
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This concludes the proof of the corollary.

2.2. Properties of Q-valued Sobolev functions

In this section we prove some of the basic properties of Sobolev Q-functions
which will be used in the proofs of the regularity theorems. It is clear that, using
ξ, one can identify measurable, Lipschitz and Hölder Q-valued functions f with the
corresponding maps ξ ◦ f into R

N , which are, respectively, measurable, Lipschitz,
Hölder functions taking values in Q a.e. We now show that the same holds for the
Sobolev classes of Definition 0.5.

Theorem 2.4. Let ξ be the map of Theorem 2.1. Then, a Q-valued function f
belongs to the Sobolev space W 1,p(Ω,AQ) according to Definition 0.5 if and only if
ξ ◦ f belongs to W 1,p(Ω,RN ). Moreover, there exists a constant C = C(n,Q) such
that

|D(ξ ◦ f)| ≤ |Df | ≤ C |D(ξ ◦ f)|.

Proof. Let f be a Q-valued function such that g = ξ◦f ∈ W 1,p(Ω,RN ). Note
that the map ΥT : Q � y �→ G(ξ−1(y), T ) is Lipschitz, with a Lipschitz constant
C that can be bounded independently of T ∈ AQ. Therefore, G(f, T ) = ΥT ◦ g
is a Sobolev function and |∂j (ΥT ◦ g)| ≤ C|∂jg| for every T ∈ AQ. So, f fulfills
the requirements (i) and (ii) of Definition 0.5, with ϕj = C |∂jg|, from which, in
particular, |Df | ≤ C |D(ξ ◦ f)|.

Vice versa, assume that f is in W 1,p(Ω,AQ) and let ϕj be as in Definition
0.5. Choose a countable dense subset {Ti}i∈N of AQ, and recall that any Lipschitz
real-valued function Φ on AQ can be written as

Φ(·) = sup
i∈N

{
Φ(Ti)− Lip (Φ) G(·, Ti)

}
.

This implies that ∂j (Φ ◦ f) ∈ Lp with |∂j (Φ ◦ f)| ≤ Lip(Φ)ϕj. Therefore, since
Ω is bounded, Φ ◦ f ∈ W 1,p(Ω). Being ξ a Lipschitz map with Lip(ξ) ≤ 1, we
conclude that ξ ◦ f ∈ W 1,p(Ω,RN ) with |D(ξ ◦ f)| ≤ |Df |. �

We now use the theorem above to transfer in a straightforward way several
classical properties of Sobolev spaces to the framework of Q-valued mappings. In
particular, in the subsequent subsections we deal with Lusin type approximations,
trace theorems, Sobolev and Poincaré inequalities, and Campanato–Morrey esti-
mates. Finally Subsection 2.2.5 contains a useful technical lemma estimating the
energy of interpolating functions on spherical shells.

2.2.1. Lipschitz approximation and approximate differentiability. We
start with the Lipschitz approximation property for Q-valued Sobolev functions.

Proposition 2.5 (Lipschitz approximation). Let f be in W 1,p(Ω,AQ). For
every λ > 0, there exists a Lipschitz Q-function fλ such that Lip (fλ) ≤ λ and

(2.9)
∣∣{x ∈ Ω : f(x) 
= fλ(x)

}∣∣ ≤ C

λp

∫
Ω

(
|Df |p + G(f,Q �0�)p

)
,

where the constant C depends only on Q, m and Ω.

Proof. Consider ξ ◦ f : by the Lusin-type approximation theorem for clas-
sical Sobolev functions (see, for instance, [AF88] or 6.6.3 of [EG92]), there ex-
ists a Lipschitz function hλ : Ω → R

N such that |{x ∈ Ω : ξ ◦ f(x) 
= hλ(x)}| ≤
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(C/λp) ‖ξ ◦ f‖pW 1,p . Clearly, the function fλ = ξ−1 ◦ ρ ◦ hλ has the desired prop-
erty. �

A direct corollary of the Lipschitz approximation and of Theorem 1.13 is that
any Sobolev Q-valued map is approximately differentiable almost everywhere.

Definition 2.6 (Approximate Differentiability). A Q-valued function f is ap-

proximately differentiable in x0 if there exists a measurable subset Ω̃ ⊂ Ω containing
x0 such that Ω̃ has density 1 at x0 and f |Ω̃ is differentiable at x0.

Corollary 2.7. Any f ∈ W 1,p(Ω,AQ) is approximately differentiable a.e.

The approximate differential of f at x0 can then be defined as D(f |Ω̃) because
it is independent of the set Ω̃. With a slight abuse of notation, we will denote it by
Df , as the classical differential. Similarly, we can define the approximate directional
derivatives. Moreover, for these quantities we use the notation of Section 1.3, that
is

Df =
∑
i

�Dfi� and ∂νf =
∑
i

�∂νfi� ,

with the same convention as in Remark 1.11, i.e. the first-order approximation is
given by Tx0

f =
∑

i �fi(x0) +Dfi(x0) · (x− x0)�.

Proof of Corollary 2.7. For every k ∈ N, choose a Lipschitz function fk
such that Ω \ Ωk := {f 
= fk} has measure smaller than k−p. By Rademacher’s
Theorem 1.13, fk is differentiable a.e. on Ω. Thus, f is approximately differentiable
at a.e. point of Ωk. Since |Ω \ ∪kΩk| = 0, this completes the proof. �

Finally, observe that the chain-rule formulas of Proposition 1.12 have an obvious
extension to approximate differentiable functions.

Proposition 2.8. Let f : Ω → AQ(R
n) be approximate differentiable at x0. If

Ψ and F are as in Proposition 1.12, then (1.16) and (1.17) holds. Moreover, (1.15)
holds when Φ is a diffeomorphism.

Proof. The proof follows trivially from Proposition 1.12 and Definition 2.6.
�

2.2.2. Trace properties. Next, we show that the trace of a Sobolev Q-
function as defined in Definition 0.7 corresponds to the classical trace for ξ ◦ f .
First we introduce the definition of weak convergence for Q-valued functions.

Definition 2.9 (Weak convergence). Let fk, f ∈ W 1,p(Ω,AQ). We say that
fk converges weakly to f for k → ∞, (and we write fk ⇀ f) in W 1,p(Ω,AQ), if

(i)
∫
G(fk, f)p → 0, for k → ∞;

(ii) there exists a constant C such that
∫
|Dfk|p ≤ C < ∞ for every k.

Proposition 2.10 (Trace of Sobolev Q-functions). Let f ∈ W 1,p(Ω,AQ).
Then, there is a unique function g ∈ Lp(∂Ω,AQ) such that f |∂Ω = g in the sense
of Definition 0.7. Moreover, f |∂Ω = g if and only if ξ ◦ f |∂Ω = ξ ◦ g in the usual
sense, and the set of mappings

(2.10) W 1,2
g (Ω,AQ) :=

{
f ∈ W 1,2(Ω,AQ) : f |∂Ω = g

}
is sequentially weakly closed in W 1,p.
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Proof. For what concerns the existence, let g = ξ−1(ξ◦f |∂Ω). Since ξ◦f |∂Ω =
ξ ◦ g, for every Lipschitz real-valued map Φ on Q, we clearly have Φ ◦ ξ ◦ f |∂Ω =
Φ ◦ ξ ◦ g. Since ΥT (·) := G(ξ−1(·), T ) is a Lipschitz map on Q for every T ∈ AQ,
we conclude that f |∂Ω = g in the sense of Definition 0.7.

The uniqueness is an easy consequence of the following observation: if h and g
are maps in Lp(∂Ω,AQ) such that G(h(x), T ) = G(g(x), T ) for Hn−1-a.e. x and for
every T ∈ AQ, then h = g. Indeed, fixed a countable dense subset {Ti}i∈N of AQ,
we have

G
(
h(x), g(x)

)
= sup

i

∣∣G(h(x), Ti)− G(g(x), Ti)
∣∣ = 0 Hn−1-a.e.

The last statement of the proposition follows easily and the proof is left to the
reader. �

2.2.3. Sobolev and Poincaré inequalities. As usual, for p < m we set
1
p∗ = 1

p − 1
m .

Proposition 2.11 (Sobolev Embeddings). The following embeddings hold:

(i) if p < m, then W 1,p(Ω,AQ) ⊂ Lq(Ω,AQ) for every q ∈ [1, p∗], and the
inclusion is compact when q < p∗;

(ii) if p = m, then W 1,p(Ω,AQ) ⊂ Lq(Ω,AQ), for every q ∈ [1,+∞), with
compact inclusion;

(iii) if p > m, then W 1,p(Ω,AQ) ⊂ C0,α(Ω,AQ), for α = 1− m
p , with compact

inclusion if α < 1− m
p .

Proof. Since f is a Lq (resp. Hölder) Q-function if and only if ξ ◦ f is Lq

(resp. Hölder), the proposition follows trivially from Theorem 2.4 and the Sobolev
embeddings for ξ ◦ f (see, for example, [Ada75] or [Zie89]). �

Proposition 2.12 (Poincaré inequality). Let M be a connected bounded Lip-
schitz open set of an m-dimensional Riemannian manifold and let p < m. There
exists a constant C = C(p,m, n,Q,M) with the following property: for every
f ∈ W 1,p(M,AQ), there exists a point f ∈ AQ such that

(2.11)

(∫
M

G
(
f, f

)p∗
) 1

p∗

≤ C

(∫
M

|Df |p
) 1

p

.

Remark 2.13. Note that the point f in the Poincaré inequality is not uniquely
determined. Nevertheless, in analogy with the classical setting, we call it a mean
for f .

Proof. Set h := ξ ◦ f : M → Q ⊂ R
N . By Theorem 2.4, h ∈ W 1,p(M,RN ).

Recalling the classical Poincaré inequality (see, for instance, [Ada75] or [Zie89]),
there exists a constant C = C(p,m,M) such that, if h = −

∫
M

h, then

(2.12)

(∫
M

∣∣h(x)− h
∣∣p∗

dx

) 1
p∗

≤ C

(∫
M

|Dh|p
) 1

p

.

Let now v ∈ Q be such that
∣∣h− v

∣∣ = dist
(
h,Q

)
(v exists because Q is closed).

Then, since h takes values in Q almost everywhere, by (2.12) we infer

(2.13)

(∫
M

∣∣h− v
∣∣p∗

dx

) 1
p∗

≤
(∫

M

∣∣h− h(x)
∣∣p∗

dx

) 1
p∗

≤ C

(∫
M

|Dh|p
) 1

p

.
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Therefore, using (2.12) and (2.13), we end up with

‖h− v‖Lp∗ ≤
∥∥h− h

∥∥
Lp∗ +

∥∥h− v
∥∥
Lp∗ ≤ 2C ‖Dh‖Lp .

Hence, it is immediate to verify, using the biLipschitz continuity of ξ, that (2.11)
is satisfied with f = ξ−1(v) and a constant C(p,m, n,Q,M). �

2.2.4. Campanato–Morrey estimates. We prove next the Campanato–
Morrey estimates for Q-functions, a crucial tool in the proof of Theorem 0.9.

Proposition 2.14. Let f ∈ W 1,2(B1,AQ) and α ∈ (0, 1] be such that∫
Br(y)

|Df |2 ≤ A rm−2+2α for every y ∈ B1 and a.e. r ∈]0, 1− |y|[.

Then, for every 0 < δ < 1, there is a constant C = C(m,n,Q, δ) with

(2.14) sup
x,y∈Bδ

G(f(x), f(y))
|x− y|α =: [f ]C0,α(Bδ)

≤ C
√
A.

Proof. Consider ξ ◦ f : as shown in Theorem 2.4, there exists a constant C
depending on Lip(ξ) and Lip(ξ−1) such that∫

Br(y)

|D(ξ ◦ f)(x)|2dx ≤ C Arm−2+2α

Hence, the usual Campanato–Morrey estimates (see, for example, 3.2 in [HL97])
provide the existence of a constant C = C(m,α, δ) such that

|ξ ◦ f(x)− ξ ◦ f(y)| ≤ C
√
A |x− y|α for every x, y ∈ Bδ.

Thus, composing with ξ−1, we conclude the desired estimate (2.14). �

2.2.5. A technical Lemma. This last subsection contains a technical lemma
which estimates the Dirichlet energy of an interpolation between two functions de-
fined on concentric spheres. The lemma is particularly useful to construct competi-
tors for Dir-minimizing maps.

Lemma 2.15 (Interpolation Lemma). There is a constant C = C(m,n,Q) with
the following property. Let r > 0, g ∈ W 1,2(∂Br,AQ) and f ∈ W 1,2(∂Br(1−ε),AQ).

Then, there exists h ∈ W 1,2(Br \ Br(1−ε),AQ) such that h|∂Br
= g, h|∂Br(1−ε)

= f
and

(2.15) Dir(h,Br \Br(1−ε)) ≤ C ε r
[
Dir(g, ∂Br) + Dir(f, ∂Br(1−ε))

]
+

+
C

ε r

∫
∂Br

G (g(x), f ((1− ε) x))
2
dx.

Proof. By a scaling argument, it is enough to prove the lemma for r = 1. As
usual, we consider ψ = ξ ◦g and ϕ = ξ ◦f . For x ∈ ∂B1 and t ∈ [1−ε, 1], we define

Φ(t x) =
(t− 1 + ε)ψ(x) + (1− t)ϕ ((1− ε) x)

ε
,

and Φ = ρ◦Φ. It is straightforward to verify that Φ belongs to W 1,2(B1 \B1−ε,Q).
Moreover, the Lipschitz continuity of ρ and an easy computation yield the following
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estimate,∫
B1\B1−ε

∣∣DΦ
∣∣2 ≤ C

∫
B1\B1−ε

|DΦ|2

≤ C

∫ 1

1−ε

∫
∂B1

(
|∂τϕ(x)|2+|∂τψ(x)|2+

∣∣∣∣ψ(x)− ϕ ((1− ε)x)

ε

∣∣∣∣
2
)
dx dt

= C ε {Dir(ψ, ∂B1) + Dir(ϕ, ∂B1−ε)}+

+ C ε−1

∫
∂B1

|ψ(x)− ϕ ((1− ε)x)|2 dx,

where ∂τ denotes the tangential derivative. Consider, finally, h = ξ−1 ◦ Φ: (2.15)
follows easily from the biLipschitz continuity of ξ. �

The following is a straightforward corollary.

Corollary 2.16. There exists a constant C = C(m,n,Q) with the following
property. For every g ∈ W 1,2(∂B1,AQ), there is h ∈ W 1,2(B1,AQ) with h|∂B1

= g
and

Dir(h,B1) ≤ C Dir(g, ∂B1) + C

∫
∂B1

G(g,Q �0�)2.

2.3. Existence of Dir-minimizing Q-valued functions

In this section we prove Theorem 0.8. We first remark that Almgren’s definition
of Dirichlet energy differs from ours. More precisely, using our notations, Almgren’s
definition of the Dirichlet energy is simply

(2.16)

∫
Ω

∑
i=1,...,Q

j=1,...,m

|∂jfi(x)|2 dx,

where ∂jfi are the approximate partial derivatives of Definition 2.6, which exist
almost everywhere thanks to Corollary 2.7. Moreover, (2.16) makes sense because
the integrand does not depend upon the particular selection chosen for f . Be-
fore proving Theorem 0.8 we will show that our Dirichlet energy coincides with
Almgren’s.

Proposition 2.17 (Equivalence of the definitions). For every f ∈ W 1,2(Ω,AQ)
and every j = 1, . . . ,m, we have

(2.17) |∂jf |2 =
∑
i

|∂jfi|2 a.e.

Therefore the Dirichlet energy Dir(f,Ω) of Definition 0.6 coincides with (2.16).

Remark 2.18. Fix a point x0 of approximate differentiability for f and con-
sider Tx0

(x) =
∑

�fi(x0) +Dfi(x0) · (x− x0)� its first order approximation at x0.
Note that the integrand in (2.16) coincides with

∑
i |Dfi(x0)|2 (where |L| denotes

the Hilbert-Schmidt norm of the matrix L) and it is independent of the orthonor-
mal coordinate system chosen for R

m. Thus, Proposition 2.17 (and its obvious
counterpart when the domain is a Riemannian manifold) implies that Dir(f,Ω) is
as well independent of this choice.
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Remark 2.19. In the sequel, we will often use the following notation: given a
Q-point T ∈ AQ(R

n), T =
∑

i �Pi�, we set

|T |2 := G(T,Q �0�)2 =
∑
i

|Pi|2.

In the same fashion, for f : Ω → AQ, we define the function |f | : Ω → R by setting
|f |(x) = |f(x)|. Then, Proposition 2.17 asserts that, since we understand Df and
∂jf as maps into, respectively, AQ(R

n×m) and AQ(R
n), this notation is consistent

with the definitions of |Df | and |∂jf | given in (0.3) and (0.2).

The Dirichlet energy of a function f ∈ W 1,2 can be recovered, moreover, as
the energy of the composition ξBW ◦ f , where ξBW is the biLipschitz embedding
in Corollary 2.2 (compare with Theorem 2.4).

Proposition 2.20. For every f ∈ W 1,2(Ω,AQ), it holds |Df | = |D(ξBW ◦ f)|
a.e. In particular, Dir(f,Ω) =

∫
Ω
|D(ξBW ◦ f)|2.

Although this proposition gives a great intuition about the energy of Q-valued
functions, as already pointed out, we will not use it in the rest of the paper, the
reason being that, the theory is in fact independent of the biLipschitz embedding.

2.3.1. Proof the equivalence of the definitions.

Proof of Proposition 2.17. We recall the definition of |∂jf | and |Df | given
in (0.2) and (0.3): chosen a countable dense set {Tl}l∈N ⊂ AQ, we define

|∂jf | = sup
l∈N

|∂jG(f, Tl)| and |Df |2 :=

m∑
j=1

|∂jf |2 .

By Proposition 2.5, we can consider a sequence gk =
∑Q

i=1

�
gki

�
of Lipschitz func-

tions with the property that |{gk 
= f}| ≤ 1/k. Note that |∂jf | = |∂jgk| and∑
i |∂jgki |2 =

∑
i |∂jfi|2 almost everywhere on {gk = f}. Thus, it suffices to prove

the proposition for each Lipschitz function gk.
Therefore, we assume from now on that f is Lipschitz. Note next that on the

set El = {x ∈ Ω : f(x) = Tl} both |∂jf | and
∑

i |∂jfi|2 vanish a.e. Hence, it
suffices to show (2.17) on any point x0 where f and all G(f, Tl) are differentiable
and f(x0) 
∈ {Tl}l∈N.

Fix such a point, which, without loss of generality, we can assume to be the
origin, x0 = 0. Let T0f be the first oder approximation of f at 0. Since G(·, Tl)
is a Lipschitz function, we have G(f(y), Tl) = G(T0f(y), Tl) + o(|y|). Therefore,
g(y) := G(T0f(y), Tl) is differentiable at 0 and ∂jg(0) = ∂jG(f, Tl)(0).

We assume, without loss of generality, that G(f(0), Tl)
2 =

∑
i |fi(0) − Pi|2,

where Tl =
∑

i �Pi�. Next, we consider the function

h(y) :=

√∑
i

|fi(0) +Dfi(0) · y − Pi|2.

Then, g ≤ h. Since h(0) = g(0), we conclude that h − g has a minimum at 0.
Recall that both h and g are differentiable at 0 and h(0) = g(0). Thus, we conclude
∇h(0) = ∇g(0), which in turn yields the identity

(2.18) ∂j G(f, Tl)(0) = ∂jg(0) = ∂jh(0) =
∑
i

(fi(0)− Pi) · ∂jfi(0)√∑
i |fi(0)− Pi|2

.
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Using the Cauchy-Schwarz inequality and (2.18), we deduce that

(2.19) |∂jf |(0)2 = sup
l∈N

|∂jG(f, Tl)(0)|2 ≤
∑
i

|∂jfi(0)|2 .

If the right hand side of (2.19) vanishes, then we clearly have equality. Other-
wise, let Qi = fi(0)+λ ∂jfi(0), where λ is a small constant to be chosen later, and
consider T =

∑
i �Qi�. Since {Tl} is a dense subset of AQ, for every ε > 0 we can

find a point Tl =
∑

i �Pi� such that

Pi = fi(0) + λ ∂jfi(0) + λRi, with |Ri| ≤ ε for every i.

Now we choose λ and ε small enough to ensure that G(f(0), Tl)
2 =

∑
i |fi(0)−Pi|2

(indeed, recall that, if fi(0) = fk(0), then ∂jfi(0) = ∂jfk(0)). So, we can repeat
the computation above and deduce that

∂j G(f, Tl)(0) =
∑
i

(fi(0)− Pi) · ∂jfi(0)√∑
i |fi(0)− Pi|2

=
∑
i

(∂jfi(0) +Ri) · ∂jfi(0)√∑
i |∂jfi(0) +Ri|2

.

Hence,

|∂jf |(0) ≥
∑
i

(∂jfi(0))
2 + ε|∂jfi(0)|√∑

i(|∂jfi(0)|+ ε)2
.

Letting ε → 0, we obtain the inequality |∂jf |(0) ≥
∑

j(∂jfi(0))
2. �

Proof of Proposition 2.20. As for Proposition 2.17, it is enough to show
the proposition for a Lipschitz function f . We prove that the functions |Df | and
|D(ξBW ◦ f)| coincide on each point of differentiability of f .

Let x0 be such a point and let Tx0
f(x) =

∑
i �fi(x0) +Dfi(x0) · (x− x0)� be

the first order expansion of f in x0. Since G(f(x), Tx0
f(x)) = o(|x − x0|) and

Lip(ξBW ) = 1, it is enough to prove that |Df |(x0) = |D(ξBW ◦ Tx0
f)(x0)|.

Using the fact that Dfi(x0) = Dfj(x0) when fi(x0) = fj(x0), it follows easily
that, for every x with |x− x0| small enough,

G(Tx0
f(x), f(x0))

2 =
∑
i

|Dfi(x0) · (x− x0)|2.

Hence, since ξBW is an isometry in a neighborhood of each point, for |x−x0| small
enough, we infer that

(2.20) |ξBW (Tx0
f(x))− ξBW (f(x0))|2 =

∑
i

|Dfi(x0) · (x− x0)|2.

For x = t ej +x0 in (2.20), where the ej ’s are the canonical basis in R
m, taking the

limit as t goes to zero, we obtain that

|∂j(ξBW ◦ Tx0
f)(x0)|2 =

∑
i

|∂jfi|2(x0).

Summing in j and using Proposition 2.17, we conclude that |Df |(x0) = |D(ξBW ◦
Tx0

f)(x0)|, which concludes the proof. �
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2.3.2. Proof of Theorem 0.8. Let g ∈ W 1,2(Ω,AQ) be given. Thanks to
Propositions 2.10 and 2.11, it suffices to verify the sequential weak lower semicon-
tinuity of the Dirichlet energy. To this aim, let fk ⇀ f in W 1,2(Ω,AQ): we want
to show that

(2.21) Dir(f,Ω) ≤ lim inf
k→∞

Dir(fk,Ω).

Let {Tl}l∈N be a dense subset of AQ and recall that |∂jf |2 = supl
(
∂jG(f, Tl)

)2
.

Thus, if we set

hj,N = max
l∈{1,...,N}

(
∂jG(f, Tl)

)2
,

we conclude that hj,N ↑ |∂jf |2. Next, for every N , denote by PN the collections
P = {El}Nl=1 of N disjoint measurable subsets of Ω. Clearly, it holds

hj,N = sup
P∈P

∑
El∈P

(
∂jG(f, Tl)

)2
1El

.

By the Monotone Convergence Theorem, we conclude

Dir(f,Ω) =
m∑
j=1

sup
N

∫
h2
j,N =

m∑
j=1

sup
N

sup
P∈PN

∑
El∈P

∫
El

(
∂jG(f, Tl)

)2
.

Fix now a partition {F1, . . . , FN} such that, for a given ε > 0,∑
l

∫
Fl

(
∂jG(f, Tl)

)2 ≥ sup
P∈PN

∑
El∈P

∫
El

(
∂jG(f, Tl)

)2 − ε.

Then, we can find compact sets {K1, . . . ,KN} with Kl ⊂ Fl and∑
l

∫
Kl

(
∂jG(f, Tl)

)2 ≥ sup
P∈PN

∑
El∈P

∫
El

(
∂jG(f, Tl)

)2 − 2ε.

Since the Kl’s are disjoint compact sets, we can find disjoint open sets Ul ⊃ Kl. So,
denote by ON the collections of N pairwise disjoint open sets of Ω. We conclude

(2.22) Dir(f,Ω) =

m∑
j=1

sup
N

∫
h2
j,N =

m∑
j=1

sup
N

sup
P∈ON

∑
Ul∈P

∫
Ul

(
∂jG(f, Tl)

)2
.

Note that, since G(fk, Tl) → G(f, Tl) strongly in L2(Ω), then ∂jG(fk, Tl) ⇀
∂jG(f, Tl) in L2(U) for every open U ⊂ Ω. Hence, for every N and every P ∈ ON ,
we have∑

Ul∈P

∫
Ul

(
∂jG(f, Tl)

)2 ≤ lim inf
k→+∞

∑
Ul∈P

∫
Ul

(
∂jG(fk, Tl)

)2 ≤ lim inf
k→∞

∫
Ω

|∂jfk|2.

Taking the supremum in ON and in N , and then summing in j, in view of (2.22),
we achieve (2.21).
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CHAPTER 3

Regularity theory

This chapter is devoted to the proofs of the two Regularity Theorems 0.9 and
0.11. In Section 3.1 we derive some Euler-Lagrange conditions for Dir-minimizers,
whereas in Section 3.2 we prove a maximum principle for Q-valued functions. Using
these two results, we prove Theorem 0.9 in Section 3.3. Then, in Section 3.4 we
introduce Almgren’s frequency function and prove his fundamental estimate. The
frequency function is the main tool for the blow-up analysis of Section 3.5, which
gives useful information on the rescalings of Dir-minimizing Q-functions. Finally, in
Section 3.6 we combine this analysis with a version of Federer’s reduction argument
to prove Theorem 0.11.

3.1. First variations

There are two natural types of variations that can be used to perturb Dir-
minimizing Q-valued functions. The first ones, which we call inner variations, are
generated by right compositions with diffeomorphisms of the domain. The second,
which we call outer variations, correspond to “left compositions” as defined in
Subsection 1.3.1. More precisely, let f be a Dir-minimizing Q-valued map.

(IV) Given ϕ ∈ C∞
c (Ω,Rm), for ε sufficiently small, x �→ Φε(x) = x+ εϕ(x) is

a diffeomorphism of Ω which leaves ∂Ω fixed. Therefore,

(3.1) 0 =
d

dε

∣∣∣∣
ε=0

∫
Ω

|D(f ◦ Φε)|2.

(OV) Given ψ ∈ C∞(Ω × R
n,Rn) such that supp (ψ) ⊂ Ω′ × R

n for some
Ω′ ⊂⊂ Ω, we set Ψε(x) =

∑
i �fi(x) + εψ(x, fi(x))� and derive

(3.2) 0 =
d

dε

∣∣∣∣
ε=0

∫
Ω

|DΨε|2.

The identities (3.1) and (3.2) lead to the following proposition.

Proposition 3.1 (First variations). For every ϕ ∈ C∞
c (Ω,Rm), we have

(3.3) 2

∫ ∑
i

〈
Dfi : Dfi ·Dϕ

〉
−
∫

|Df |2 divϕ = 0.

For every ψ ∈ C∞(Ωx × R
n
u,R

n) such that

supp (ψ) ⊂ Ω′ × R
n for some Ω′ ⊂⊂ Ω,

and

(3.4) |Duψ| ≤ C < ∞ and |ψ|+ |Dxψ| ≤ C (1 + |u|) ,
31
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we have
(3.5)∫ ∑

i

〈
Dfi(x) : Dxψ(x, fi(x))

〉
dx+

∫ ∑
i

〈
Dfi(x) : Duψ(x, fi(x))·Dfi(x)〉 dx = 0.

Testing (3.3) and (3.5) with suitable ϕ and ψ, we get two key identities. In
what follows, ν will always denote the outer unit normal on the boundary ∂B of a
given ball.

Proposition 3.2. Let x ∈ Ω. Then, for a.e. 0 < r < dist(x, ∂Ω), we have

(3.6) (m− 2)

∫
Br(x)

|Df |2 = r

∫
∂Br(x)

|Df |2 − 2 r

∫
∂Br(x)

∑
i

|∂νfi|2,

(3.7)

∫
Br(x)

|Df |2 =

∫
∂Br(x)

∑
i

〈∂νfi, fi〉.

Remark 3.3. The identities (3.6) and (3.7) are classical facts for R
n-valued

harmonic maps f , which can be derived from the Laplace equation Δf = 0.

3.1.1. Proof of Proposition 3.1. We apply formula (1.15) of Proposition
2.8 to compute

(3.8) D(f ◦ Φε)(x) =
∑
i

�Dfi(x+ εϕ(x)) + ε[Dfi(x+ εϕ(x))] ·Dϕ(x)� .

For ε sufficiently small, Φε is a diffeomorphism. We denote by Φ−1
ε its inverse.

Then, inserting (3.8) in (3.3), changing variables in the integral (x = Φ−1
ε (y)) and

differentiating in ε, we get

0 =
d

dε

∣∣∣∣
ε=0

∫
Ω

∑
i

|Dfi(y) + εDfi ·Dϕ(Φ−1
ε (y))|2 det (DΦ−1

ε (y)) dy

= 2

∫ ∑
i

〈
Dfi(y) : Dfi(y) ·Dϕ(y)

〉
dy −

∫ ∑
i

|Dfi(y)|2divϕ(y) dy.

This shows (3.3). As for (3.5), using (1.16) and then differentiating in ε, the proof
is straightforward (the hypotheses in (3.4) ensure the summability of the various
integrands involved in the computation).

3.1.2. Proof of Proposition 3.2. Without loss of generality, we assume x =
0. We test (3.3) with a function ϕ of the form ϕ(x) = φ(|x|) x, where φ is a function
in C∞([0,∞)), with φ ≡ 0 on [r,∞), r < dist(0, ∂Ω), and φ ≡ 1 in a neighborhood
of 0. Then,

(3.9) Dϕ(x) = φ(|x|) Id + φ′(|x|) x⊗ x

|x| and divϕ(x) = mφ(|x|) + |x|φ′(|x|),

where Id denotes the m×m identity matrix. Note that

∂νfi(x) = Dfi(x) ·
x

|x| .
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Then, inserting (3.9) into (3.3), we get

0 = 2

∫
|Df(x)|2 φ(|x|) dx+ 2

∫ Q∑
i=1

|∂νfi(x)|2 φ′(|x|) |x| dx

−m

∫
|Df(x)|2 φ(|x|) dx−

∫
|Df(x)|2 φ′(|x|) |x| dx.

By a standard approximation procedure, it is easy to see that we can test with

(3.10) φ(t) = φn(t) :=

{
1 for t ≤ r − 1/n,
n (r − t) for r − 1/n ≤ t ≤ r.

With this choice we get

0 = (2−m)

∫
|Df(x)|2 φn(|x|) dx− 2

n

∫
Br\Br−1/n

Q∑
i=1

|∂νfi(x)|2 |x| dx

+
1

n

∫
Br\Br−1/n

|Df(x)|2 |x| dx.

Let n ↑ ∞. Then, the first integral converges towards (2−m)
∫
Br

|Df |2. As for the

second and third integral, for a.e. r, they converge, respectively, to

−r

∫
∂Br

Q∑
i=1

|∂νfi|2 and r

∫
∂Br

|Df |2.

Thus, we conclude (3.6).

Similarly, test (3.5) with ψ(x, u) = φ(|x|) u. Then,

(3.11) Duψ(x, u) = φ(|x|) Id and Dxψ(x, u) = φ′(|x|) u⊗ x

|x| .

Inserting (3.11) into (3.5) and differentiating in ε, we get

0 =

∫
|Df(x)|2 φ(|x|) dx+

∫ Q∑
i=1

〈fi(x), ∂νfi(x)〉φ′(|x|) dx.

Therefore, choosing φ as in (3.10), we can argue as above and, for n ↑ ∞, we
conclude (3.7).

3.2. A maximum principle for Q-valued functions

The two propositions of this section play a key role in the proof of the Hölder
regularity for Dir-minimizing Q-functions when the domain has dimension strictly
larger than two. Before stating them, we introduce two important functions on
AQ(R

n).

Definition 3.4 (Diameter and separation). Let T =
∑

i �Pi� ∈ AQ. The
diameter and the separation of T are defined, respectively, as

d(T ) := max
i,j

|Pi − Pj | and s(T ) := min
{
|Pi − Pj | : Pi 
= Pj

}
,

with the convention that s(T ) = +∞ if T = Q �P �.

The following proposition is an elementary extension of the usual maximum
principle for harmonic functions.
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Proposition 3.5 (Maximum Principle). Let f : Ω → AQ be Dir-minimizing,
T ∈ AQ and r < s(T )/4. Then, G(f(x), T ) ≤ r for Hm−1-a.e. x ∈ ∂Ω implies that
G(f, T ) ≤ r almost everywhere on Ω.

The next proposition allows to decompose Dir-minimizing functions and, hence,
to argue inductively on the number of values. Its proof is based on Proposition 3.5
and a simple combinatorial lemma.

Proposition 3.6 (Decomposition for Dir-minimizers). There exists a positive
constant α(Q) > 0 with the following property. If f : Ω → AQ is Dir-minimizing
and there exists T ∈ AQ such that G(f(x), T ) ≤ α(Q) d(T ) for Hm−1-a.e. x ∈ ∂Ω,
then there exists a decomposition of f = �g�+ �h� into two simpler Dir-minimizing
functions.

3.2.1. Proof of Proposition 3.5. The proposition follows from the next
lemma.

Lemma 3.7. Let T and r be as in Proposition 3.5. Then, there exists a retrac-
tion ϑ : AQ → Br(T ) such that

(i) G(ϑ(S1), ϑ(S2)) < G(S1, S2) if S1 /∈ Br(T ),

(ii) ϑ(S) = S for every S ∈ Br(T ).

We assume the lemma for the moment and argue by contradiction for Propo-
sition 3.5. We assume, therefore, the existence of a Dir-minimizing f with the
following properties:

(a) f(x) ∈ Br(T ) for a.e. x ∈ ∂Ω;

(b) f(x) 
∈ Br(T ) for every x ∈ E ⊂ Ω, where E is a set of positive measure.

Therefore, there exist ε > 0 and a set E′ with positive measure such that f(x) 
∈
Br+ε(T ) for every x ∈ E′. By (ii) of Lemma 3.7 and (a), ϑ ◦ f has the same trace
as f . Moreover, by (i) of Lemma 3.7, |D(ϑ ◦ f)| ≤ |Df | a.e. and, by (i) and (b),
|D(ϑ ◦ f)| < |Df | a.e. on E′. This implies Dir(ϑ ◦ f,Ω) < Dir(f,Ω), contradicting
the minimizing property of f .

Proof of Lemma 3.7. First of all, we write

T =

J∑
j=1

kj �Qj� ,

where |Qj −Qi| > 4 r for every i 
= j.

If G(S, T ) < 2r, then S =
∑J

j=1 �Sj� with Sj ∈ B2r(kj �Qj�) ⊂ Akj
. If, in

addition, G(S, T ) ≥ r, then we set

Sj =

kj∑
l=1

�Sl,j� ,

and we define

ϑ(S) =

J∑
j=1

kj∑
l=1

�
2r − G(T, S)

G(T, S) (Sl,j −Qj) +Qj

	

.
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We then extend ϑ to AQ by setting

ϑ(S) =

{
T if S /∈ B2r(T ),

S if S ∈ Br(T ).

It is immediate to verify that ϑ is continuous and has all the required properties. �

3.2.2. Proof of Proposition 3.6. The key idea is simple. If the separation of
T were not too small, we could apply directly Proposition 3.5. When the separation
of T is small, we can find a point S which is not too far from T and whose separation
is sufficiently large. Roughly speaking, it suffices to “collapse” the points of the
support of T which are too close.

Lemma 3.8. For every 0 < ε < 1, we set β(ε,Q) = (ε/3)3
Q

. Then, for every
T ∈ AQ with s(T ) < ∞, there exists a point S ∈ AQ such that

β(ε,Q) d(T ) ≤ s(S) < ∞,(3.12)

G(S, T ) ≤ ε s(S).(3.13)

Assuming Lemma 3.8, we conclude the proof of Proposition 3.6. Set ε = 1/8

and α(Q) = ε β(ε,Q) = 24−3Q/8. From Lemma 3.8, we deduce the existence of an
S satisfying (3.12) and (3.13). Then, there exists δ > 0 such that, for almost every
x ∈ ∂Ω,

G(f(x), S) ≤ G(f(x), T ) + G(T, S)
(3.13)

≤ α(Q) d(T ) +
s(S)

8
− δ

(3.12)

≤ s(S)

4
− δ.

So, we may apply Proposition 3.5 and infer that G(f(x), S) ≤ s(S)
4 − δ for almost

every x in Ω. The decomposition of f in simpler Dir-minimizing functions is now a

simple consequence of the definitions. More precisely, if S =
∑J

j=1 kj �Qj� ∈ AQ,

with the Qj ’s all different, then f(x) =
∑J

j=1 �fj(x)�, where the fj ’s are Dir-

minimizing kj-valued functions with values in the balls B s(S)
4 −δ

(kj �Qj�).

Proof of Lemma 3.8. For Q ≤ 2, we have d(T ) ≤ s(T ) and it suffices to
choose S = T . We now prove the general case by induction. Let Q ≥ 3 and assume
the lemma holds for Q− 1. Let T =

∑
i �Pi� ∈ AQ. Two cases can occur:

(a) either s(T ) ≥ (ε/3)3
Q

d(T );

(b) or s(T ) < (ε/3)3
Q

d(T ).

In case (a), since the separation of T is sufficiently large, the point T itself, i.e.
S = T , fulfills (3.13) and (3.12). In the other case, since the points Pi are not all
equal (s(T ) < ∞), we can take P1 and P2 realizing the separation of T , i.e.

(3.14) |P1 − P2| = s(T ) ≤
(ε
3

)3Q
d(T ).

Moreover, since Q ≥ 3, we may also assume that, suppressing P1, we do not reduce
the diameter, i.e. that

(3.15) d(T ) = d
(
T̃
)
, where T̃ =

Q∑
i=2

�Pi� .
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For T̃ , we are now in the position to use the inductive hypothesis (with ε/3 in place

of ε). Hence, there exists S̃ =
∑Q−1

j=1 �Qj� such that

(3.16)
(ε
9

)3Q−1

d
(
T̃
)
≤ s

(
S̃
)

and G
(
S̃, T̃

)
≤ ε

3
s
(
S̃
)
.

Without loss of generality, we can assume that

(3.17) |Q1 − P2| ≤ G
(
S̃, T̃

)
.

Therefore, S = �Q1� + �S̃� ∈ AQ satisfies (3.12) and (3.13). Indeed, since s(S) =

s(S̃), we infer

(3.18)
(ε
3

)3Q
d(T )

(3.15)

≤ ε

3

(ε
9

)3Q−1

d
(
T̃
) (3.16)

≤ ε

3
s
(
S̃
)
=

ε

3
s(S),

and

G(S, T ) ≤ G
(
S̃, T̃

)
+ |Q1 − P1| ≤ G

(
S̃, T̃

)
+ |Q1 − P2|+ |P2 − P1|

(3.14), (3.17)

≤ 2G
(
S̃, T̃

)
+
(ε
3

)3Q
d(T )

(3.16), (3.18)

≤ 2 ε

3
s(S) +

ε

3
s(S) = ε s(S).

�

3.3. Hölder regularity

Now we pass to prove the Hölder continuity of Dir-minimizing Q-valued func-
tions. Theorem 0.9 is indeed a simple consequence of the following theorem.

Theorem 3.9. There exist constants α = α(m,Q) ∈]0, 1[ (with α = 1
Q when

m = 2) and C = C(m,n,Q, δ) with the following property. If f : B1 → AQ is
Dir-minimizing, then

[f ]C0,α(Bδ) = sup
x,y∈Bδ

G(f(x), f(y))
|x− y|α ≤ C Dir(f,Ω)

1
2 for every 0 < δ < 1.

The proof of Theorem 3.9 consists of two parts: the first is stated in the follow-
ing proposition which gives the crucial estimate; the second is a standard application
of the Campanato–Morrey estimates (see Section 2.2, Proposition 2.14).

Proposition 3.10. Let f ∈ W 1,2(Br,AQ) be Dir-minimizing and suppose that

g = f |∂Br
∈ W 1,2(∂Br,AQ).

Then, we have that

(3.19) Dir(f,Br) ≤ C(m) rDir(g, ∂Br),

where C(2) = Q and C(m) < (m− 2)−1.

The minimizing property of f enters heavily in the proof of this last proposition,
where the estimate is achieved by exhibiting a suitable competitor. This is easier
in dimension 2 because we can use Proposition 1.5 for g. In higher dimension the
argument is more complicated and relies on Proposition 3.6 to argue by induction
on Q. Now, assuming Proposition 3.10, we proceed with the proof of Theorem 3.9.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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3.3.1. Proof of Theorem 3.9. Set

γ(m) :=

{
2Q−1 for m = 2,
C(m)−1 −m+ 2 for m > 2,

where C(m) is the constant in (3.19). We want to prove that

(3.20)

∫
Br

|Df |2 ≤ rm−2+γ

∫
B1

|Df |2 for every 0 < r ≤ 1.

Define h(r) =
∫
Br

|Df |2. Note that h is absolutely continuous and that

(3.21) h′(r) =

∫
∂Br

|Df |2 ≥ Dir(f, ∂Br) for a.e. r,

where, according to Definitions 0.5 and 0.6, Dir(f, ∂Br) is given by

Dir(f, ∂Br) =

∫
∂Br

|∂τf |2,

with |∂τf |2 = |Df |2 −
∑Q

i=1 |∂νfi|2. Here ∂τ and ∂ν denote, respectively, the tan-
gential and the normal derivatives. We remark further that (3.21) can be improved
for m = 2. Indeed, in this case the outer variation formula (3.6), gives an equipar-
tition of the Dirichlet energy in the radial and tangential parts, yielding

(3.22) h′(r) =

∫
∂Br

|Df |2 =
Dir(f, ∂Br)

2
.

Therefore, (3.21) (resp. (3.22) when m = 2) and (3.19) imply

(3.23) (m− 2 + γ)h(r) ≤ r h′(r).

Integrating this differential inequality, we obtain (3.20):∫
Br

|Df |2 = h(r) ≤ rm−2+γ h(1) = rm−2+γ

∫
B1

|Df |2.

Now we can use the Campanato–Morrey estimates for Q-valued functions given
in Proposition 2.14 in order to conclude the Hölder continuity of f with exponent
α = γ

2 .

3.3.2. Proof of Proposition 3.10: the planar case. It is enough to prove
(3.19) for r = 1, because the general case follows from an easy scaling argument.
We first prove the following simple lemma.

Remark 3.11. In this subsection we introduce a complex notation which will
be also useful later. We identify the plane R

2 with C and therefore we regard the
unit disk as

D = {z ∈ C : |z| < 1} = {r eiθ : 0 ≤ r < 1, θ ∈ R}
and the unit circle as

S
1 = ∂ D = {z ∈ C : |z| = 1} = {eiθ : θ ∈ R}.

Lemma 3.12. Let ζ ∈ W 1,2(D,Rn) and consider the Q-valued function f defined
by

f(x) =
∑
zQ=x

�ζ(z)� .
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Then, the function f belongs to W 1,2(D,AQ) and

(3.24) Dir(f,D) =

∫
D

|Dζ|2 .

Moreover, if ζ|S1 ∈ W 1,2(S1,Rn), then f |S1 ∈ W 1,2(S1,AQ) and

(3.25) Dir(f |S1 , S1) =
1

Q

∫
S1

|∂τ ζ|2 .

Proof. Define the following subsets of the unit disk,

Dj =
{
r eiθ : 0 < r < 1, (j − 1) 2π/Q < θ < j 2π/Q

}
and

C =
{
r eiθ : 0 < r < 1, θ 
= 0

}
,

and let ϕj : C → Dj be determinations of the Qth-root, i.e.

ϕj

(
reiθ

)
= r

1
Q ei(

θ
Q+(j−1) 2π

Q ).

It is easily recognized that f |C =
∑

j �ζ ◦ ϕj�. So, by the invariance of the Dirichlet

energy under conformal mappings, one deduces that f ∈ W 1,2(C,AQ) and

(3.26) Dir(f, C) =
Q∑
i=1

Dir(ζ ◦ ϕi, C) =
∫
D

|Dζ|2 .

From the above argument and from (3.26), it is straightforward to infer that f
belongs to W 1,2(D,AQ) and (3.24) holds. Finally, (3.25) is a simple computation
left to the reader. �

We now prove Proposition 3.10. Let g =
∑J

j=1 �gj� be a decomposition into

irreducible kj-functions as in Proposition 1.5. Consider, moreover, the W 1,2 func-
tions γj : S

1 → R
n “unrolling” the gj as in Proposition 1.5 (ii):

gj(x) =
∑

zkj=x

�γj(z)� .

We take the harmonic extension ζl of γl in D, and consider the kl-valued func-
tions fl obtained “rolling” back the ζl: fl(x) =

∑
zkl=x �ζl(z)�. The Q-function

f̃ =
∑J

l=1 �fl� is an admissible competitor for f , since f̃ |S1 = f |S1 . By a simple
computation on planar harmonic functions, it is easy to see that

(3.27)

∫
D

|Dζl|2 ≤
∫
S1

|∂τγl|2 .

Hence, from (3.24), (3.25) and (3.27), we easily conclude (3.19):

Dir(f,D) ≤ Dir
(
f̃ ,D

)
=

J∑
l=1

Dir(fl,D)
(3.24)
=

J∑
l=1

∫
D

|Dζl|2

(3.27)

≤
J∑

l=1

∫
S1

|∂τγl|2
(3.25)
=

J∑
l=1

kl Dir(gl, S
1) ≤ QDir(g, S1).
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3.3.3. Proof of Proposition 3.10: the case m ≥ 3. To understand the
strategy of the proof, fix a Dir-minimizing f and consider the “radial” competitor
h(x) = f(x/|x|). An easy computation shows the inequality Dir(h,B1)

≤ (m − 2)−1Dir(f, ∂B1). In order to find a better competitor, set f̃(x) =∑
i �ϕ(|x|)fi(x/|x|)�. With a slight abuse of notation, we will denote this func-

tion by ϕ(|x|)f(x/|x|). We consider moreover functions ϕ which are 1 for t = 1 and
smaller than 1 for t < 1. These competitors are, however, good only if f |∂B1

is not
too far from Q �0�.

Of course, we can use competitors of the form

(3.28)
∑
i

�

v + ϕ(|x|)
(
fi

(
x

|x|

)
− v

)	

,

which are still suitable if, roughly speaking,

(C) on ∂B1, f(x) is not too far from Q �v�, i.e. from a point of multiplicity Q.

A rough strategy of the proof could then be the following. We approximate f |∂B1

with a f̃ = �f1� + . . . + �fJ� decomposed into simpler W 1,2 functions fj each of

which satisfies (C). We interpolate on a corona B1 \B1−δ between f and f̃ , and we

then use the competitors of the form (3.28) to extend f̃ to B1−δ. In fact, we shall
use a variant of this idea, arguing by induction on Q.

Without loss of generality, we assume that

(3.29) Dir(g, ∂B1) = 1.

Moreover, we recall the notation |T | and |f | introduced in Remark 1.11 and fix the
following one for the translations:

if v ∈ R
n, then τv(T ) :=

∑
i

�Ti − v� , for every T =
∑
i

�Ti� ∈ AQ.

Step 1. Radial competitors. Let g =
∑

i �Pi� ∈ AQ be a mean for g, so that
the Poincaré inequality in Proposition 2.12 holds, and assume that the diameter of
ḡ (see Definition 3.4) is smaller than a constant M > 0,

(3.30) d(g) ≤ M.

Let P = Q−1
∑Q

i=1 Pi be the center of mass of g and consider f̃ = τP ◦ f and

h = τP ◦g. It is clear that h = f̃ |∂B1
and that h = τP (g) is a mean for h. Moreover,

by (3.30), ∣∣h∣∣2 =
∑
i

|Pi − P |2 ≤ QM2.

So, using the Poincaré inequality, we get

(3.31)

∫
∂B1

|h|2 ≤ 2

∫
∂B1

G
(
h, h

)2
+2

∫
∂B1

∣∣h∣∣2 ≤ C Dir(g, ∂B1)+CM2
(3.29)

≤ CM ,

where CM is a constant depending on M .

We consider the Q-function f̂(x) := ϕ(|x|)h
(

x
|x|

)
, where ϕ is a W 1,2([0, 1])

function with ϕ(1) = 1. From (3.31) and the chain-rule in Proposition 1.12, one
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can infer the following estimate:∫
B1

∣∣∣Df̂
∣∣∣2 =

(∫
∂B1

|h|2
)∫ 1

0

ϕ′(r)2 rm−1dr +

(∫
∂B1

|Dh|2
)∫ 1

0

ϕ(r)2 rm−3dr

≤
∫ 1

0

(
ϕ(r)2 rm−3 + CMϕ′(r)2 rm−1

)
dr =: I(ϕ).

Since τ−P

(
f̂
)
is a suitable competitor for f , one deduces that

Dir(f,B1) ≤ inf
ϕ∈W1,2([0,1])

ϕ(1)=1

I(ϕ).

We notice that I(1) = 1
m−2 , as pointed out at the beginning of the section. On

the other hand, ϕ ≡ 1 cannot be a minimum for I because it does not satisfy the
corresponding Euler–Lagrange equation. So, there exists a constant γM > 0 such
that

(3.32) Dir(f,B1) ≤ inf
ϕ∈W1,2([0,1])

ϕ(1)=1

I(ϕ) =
1

m− 2
− 2 γM .

In passing, we note that, when Q = 1, d(T ) = 0 and hence this argument proves
the first induction step of the proposition (which, however, can be proved in several
other ways).

Step 2. Splitting procedure: the inductive step. Let Q be fixed and assume that
the proposition holds for every Q∗ < Q. Assume, moreover, that the diameter of g
is bigger than a constant M > 0, which will be chosen later:

d(g) > M

Under these hypotheses, we want to construct a suitable competitor for f . As
pointed out at the beginning of the proof, the strategy is to decompose f in suitable
pieces in order to apply the inductive hypothesis. To this aim:

(a) let S =
∑J

j=1 kj �Qj� ∈ AQ be given by Lemma 3.8 applied to ε = 1
16 and

T = g, i.e. S such that

βM ≤ β d(g) < s(S) = min
i �=j

|Qi −Qj |,(3.33)

G(S, g) < s(S)

16
,(3.34)

where β = β(1/16, Q) is the constant of Lemma 3.8;
(b) let ϑ : AQ → Bs(S)/8(S) be given by Lemma 3.7 applied to T = S and

r = s(S)
8 .

We define h ∈ W 1,2(∂B1−η) by h ((1− η)x) = ϑ (g(x)), where η > 0 is a parameter

to be fixed later, and take ĥ a Dir-minimizing Q-function on B1−η with trace h.
Then, we consider the following competitor,

f̃ =

{
ĥ on B1−η

interpolation between ĥ and g as in Lemma 2.15,

and we pass to estimate its Dirichlet energy.
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By Proposition 3.6, since ĥ has values in Bs(S)/8(S), ĥ can be decomposed into
two Dir-minimizing K and L-valued functions, with K,L < Q. So, by inductive
hypothesis, there exists a positive constant ζ such that
(3.35)

Dir
(
ĥ, B1−η

)
≤
(

1

m− 2
− ζ

)
(1− η)Dir(h, ∂B1−η) ≤

(
1

m− 2
− ζ

)
Dir(g, ∂B1),

where the last inequality follows from Lip(ϑ) = 1.
Therefore, combining (3.35) with Lemma 2.15, we can estimate

(3.36) Dir
(
f̃ , B1

)
≤
(

1

m− 2
− ζ + Cη

)
Dir(g, ∂B1) +

C

η

∫
∂B1

G
(
g, ϑ(g)

)2
,

with C = C(n,m,Q). Note that

G (g, ϑ(g(x))) ≤ G (g(x), g) for every x ∈ ∂B1,

because, by (3.34), ϑ(g) = g. Hence, if we define

E :=
{
x ∈ ∂B1 : g(x) 
= ϑ(g(x))

}
=
{
x ∈ ∂B1 : g(x) /∈ Bs(S)/8(S)

}
,

the last term in (3.36) can be estimated as follows:∫
∂B1

G
(
g, ϑ(g)

)2
=

∫
E

G
(
g, ϑ(g)

)2 ≤ 2

∫
E

[
G
(
g, g
)2

+ G
(
g, ϑ(g)

)2]

≤ 4

∫
E

G
(
g, g
)2
dx ≤ 4 ‖G

(
g, g
)2‖Lq |E|(q−1)/q

≤ C Dir(g, ∂B1) |E|(q−1)/q = C |E|(q−1)/q,(3.37)

where the exponent q can be chosen to be (m− 1)/(m− 3) if m > 3, otherwise any
q < ∞ if m = 3.

We are left only with the estimate of |E|. Note that, for every x ∈ E,

G(g(x), g) ≥ G(g(x), S)− G(g, S)
(3.34)

≥ s(S)

8
− s(S)

16
=

s(S)

16
.

So, we deduce that

(3.38) |E| ≤
∣∣∣∣
{
G(g, g) ≥ s(S)

16

}∣∣∣∣ ≤ C

s(S)2

∫
∂B1

G(g, g)2
(3.33)

≤ C

M2
Dir(g, ∂B1).

Hence, collecting the bounds (3.35), (3.37) and (3.38), we conclude that

(3.39) Dir
(
f̃ , B1

)
≤
(

1

m− 2
− ζ + Cη +

C

ηMν

)
,

where C = C(n,m,Q) and ν = ν(m).

Step 3. Conclusion. We are now ready to conclude. First of all, note that ζ
is a fixed positive constant given by the inductive assumption that the proposition
holds for Q∗ < Q. We then choose η so that Cη < ζ/2 and M so large that
C/(ηMν) < ζ/4, where C is the constant in (3.39). Therefore, the constants M ,
γM and η depend only on n,m and Q. With this choice, Step 2 shows that

Dir(f,B1) ≤ Dir
(
f̃ , B1

) (3.39)

≤
(

1

m− 2
− ζ

4

)
Dir(g, ∂B1), if d(g) > M ;
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whereas Step 1 implies

Dir(f,B1)
(3.32)

≤
(

1

m− 2
− 2 γM

)
Dir(g, ∂B1), if d(g) ≤ M.

This concludes the proof.

3.4. Frequency function

We next introduce Almgren’s frequency function and prove his celebrated esti-
mate.

Definition 3.13 (The frequency function). Let f be a Dir-minimizing function,
x ∈ Ω and 0 < r < dist(x, ∂Ω). We define the functions

(3.40) Dx,f (r) =

∫
Br(x)

|Df |2, Hx,f (r) =

∫
∂Br

|f |2 and Ix,f (r) =
rDx,f (r)

Hx,f (r)
.

Ix,f is called the frequency function.

When x and f are clear from the context, we will often use the shorthand
notation D(r), H(r) and I(r).

Remark 3.14. Note that, by Theorem 3.9, |f |2 is a continuous function. There-
fore, Hx,f (r) is a well-defined quantity for every r. Moreover, if Hx,f (r) = 0, then,
by minimality, f |Br(x) ≡ 0. So, except for this case, Ix,f (r) is always well defined.

Theorem 3.15. Let f be Dir-minimizing and x ∈ Ω. Either there exists �
such that f |B	(x) ≡ 0 or Ix,f (r) is an absolutely continuous nondecreasing positive
function on ]0, dist(x, ∂Ω)[.

A simple corollary of Theorem 3.15 is the existence of the limit

Ix,f (0) = lim
r→0

Ix,f (r),

when the frequency function is defined for every r. The same computations as those
in Theorem 3.15 yield the following two corollaries.

Corollary 3.16. Let f be Dir-minimizing in B�. Then, I0,f (r) ≡ α if and
only if f is α-homogeneous, i.e.

(3.41) f(y) = |y|αf
(
y �

|y|

)
.

Remark 3.17. In (3.41), with a slight abuse of notation, we use the following
convention (already adopted in Subsection 3.3.3). If β is a scalar function and
f =

∑
i �fi� a Q-valued function, we denote by βf the function

∑
i �β fi�.

Corollary 3.18. Let f be Dir-minimizing in B�. Let 0 < r < t ≤ � and
suppose that I0,f (r) = I(r) is defined for every r (i.e. H(r) 
= 0 for every r).
Then, the following estimates hold:

(i) for almost every r ≤ s ≤ t,

(3.42)
d

d τ

∣∣∣
τ=s

[
ln

(
H(τ )

τm−1

)]
=

2 I(r)

r

and

(3.43)
(r
t

)2I(t) H(t)

tm−1
≤ H(r)

rm−1
≤
(r
t

)2I(r) H(t)

tm−1
;
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(ii) if I(t) > 0, then

(3.44)
I(r)

I(t)

(r
t

)2I(t) D(t)

tm−2
≤ D(r)

rm−2
≤
(r
t

)2I(r) D(t)

tm−2
.

3.4.1. Proof of Theorem 3.15. We assume, without loss of generality, that
x = 0. D is an absolutely continuous function and

(3.45) D′(r) =

∫
∂Br

|Df |2 for a.e. r.

As for H(r), note that |f | is the composition of f with a Lipschitz function, and
therefore belongs to W 1,2. It follows that |f |2 ∈ W 1,1 and hence that H ∈ W 1,1.

In order to compute H ′, note that the distributional derivative of |f |2 coincides
with the approximate differential a.e. Therefore, Proposition 2.8 justifies (for a.e.
r) the following computation:

H ′(r) =
d

dr

∫
∂B1

rm−1 |f(ry)|2dy

= (m− 1)rm−2

∫
∂B1

|f(ry)|2dy +

∫
∂B1

rm−1 ∂

∂r
|f(ry)|2 dy

=
m− 1

r

∫
∂Br

|f |2 + 2

∫
∂Br

∑
i

〈∂νfi, fi〉.

Using (3.6), we then conclude

(3.46) H ′(r) =
m− 1

r
H(r) + 2D(r).

Note, in passing, that, since H and D are continuous, H ∈ C1 and (3.46) holds
pointwise.

If H(r) = 0 for some r, then, as already remarked, f |Br
≡ 0. In the opposite

case, we conclude that I ∈ C ∩W 1,1
loc . To show that I is nondecreasing, it suffices

to compute its derivative a.e. and prove that it is nonnegative. Using (3.45) and
(3.46), we infer that

I ′(r) =
D(r)

H(r)
+

r D′(r)

H(r)
− r D(r)

H ′(r)

H(r)2

=
D(r)

H(r)
+

r D′(r)

H(r)
− (m− 1)

D(r)

H(r)
− 2r

D(r)2

H(r)2

=
(2−m)D(r) + r D′(r)

H(r)
− 2 r

D(r)2

H(r)2
for a.e. r.(3.47)

Recalling (3.6) and (3.7) and using the Cauchy–Schwartz inequality, from (3.47) we
conclude that, for almost every r,
(3.48)

I ′(r) =
r

H(r)2

⎧⎨
⎩
∫
∂Br(x)

|∂νf |2 ·
∫
∂Br(x)

|f |2 −
(∫

∂Br(x)

∑
i

〈∂νfi, fi〉
)2
⎫⎬
⎭ ≥ 0.
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3.4.2. Proof of Corollary 3.16. Let f be a Dir-minimizing Q-valued func-
tion. Then, I(r) ≡ α if and only if equality occurs in (3.48) for almost every r, i.e.
if and only if there exist constants λr such that

(3.49) fi(y) = λr ∂νfi(y), for almost every r and a.e. y with |y| = r.

Recalling (3.7) and using (3.49), we infer that, for such r,

α = I(r) =
r D(r)

H(r)
=

r
∫
∂Br

∑
i〈∂νfi, fi〉∫

∂Br

∑
i |fi|2

(3.49)
=

rλr

∫
∂Br

∑
i |fi|2∫

∂Br

∑
i |fi|2

= rλr.

So, summarizing, I(r) ≡ α if and only if

(3.50) fi(y) =
α

|y| ∂νfi(y) for almost every y.

Let us assume that (3.41) holds. Then, (3.50) is clearly satisfied and, hence,
I(r) ≡ α. On the other hand, assuming that the frequency is constant, we now
prove (3.41). To this aim, let σy = {r y : 0 ≤ r ≤ �} be the radius passing

through y ∈ ∂B1. Note that, for almost every y, f |σy
∈ W 1,2

loc ; so, for those y,

recalling the W 1,2-selection in Proposition 1.2, we can write f |σy
=
∑

i

�
fi|σy

�
,

where fi|σy
: [0, �] → R

n are W 1,2
loc functions. By (3.50), we infer that fi|σy

solves
the ordinary differential equation

(fi|σy
)′(r) =

α

r
fi|σy

(r), for a.e. r.

Hence, for a.e. y ∈ ∂B1 and for every r ∈ (0, �], fi|σy
(r) = rα f (y), thus concluding

(3.41).

3.4.3. Proof of Corollary 3.18. The proof is a straightforward consequence
of equation (3.46). Indeed, (3.46) implies, for almost every s,

d

d τ

∣∣∣
τ=s

(
H(τ )

τm−1

)
=

H ′(s)

sm−1
− (m− 1)H(s)

sm
(3.46)
=

2D(s)

sm−1
,

which, in turn, gives (3.42). Integrating (3.42) and using the monotonicity of I, one

obtains (3.43). Finally, (3.44) follows from (3.43), using the identity I(r) = r D(r)
H(r) .

3.5. Blow-up of Dir-minimizing Q-valued functions

Let f be a Q-function and assume f(y) = Q �0� and Dir(f,B�(y)) > 0 for every
�. We define the blow-ups of f at y in the following way,

(3.51) fy,�(x) =
�

m−2
2 f(� x+ y)√
Dir(f,B�(y))

.

The main result of this section is the convergence of blow-ups of Dir-minimizing
functions to homogeneous Dir-minimizing functions, which we call tangent func-
tions.

To simplify the notation, we will not display the subscript y in fy,ρ when y is
the origin.

Theorem 3.19. Let f ∈ W 1,2(B1,AQ) be Dir-minimizing. Assume f(0) =
Q �0� and Dir(f,B�) > 0 for every � ≤ 1. Then, for any sequence {f�k

} with
ρk ↓ 0, a subsequence, not relabeled, converges locally uniformly to a function g :
R

m → AQ(R
n) with the following properties:

(a) Dir(g,B1) = 1 and g|Ω is Dir-minimizing for any bounded Ω;
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(b) g(x) = |x|α g
(

x
|x|

)
, where α = I0,f (0) > 0 is the frequency of f at 0.

Theorem 3.19 is a direct consequence of the estimate on the frequency function
and of the following convergence result for Dir-minimizing functions.

Proposition 3.20. Let fk ∈ W 1,2(Ω,AQ) be Dir-minimizing Q-functions
weakly converging to f . Then, for every open Ω′ ⊂⊂ Ω, f |Ω′ is Dir-minimizing
and it holds moreover that Dir(f,Ω′) = limk Dir(fk,Ω

′).

Remark 3.21. In fact, a suitable modification of our proof shows that the
property of being Dir-minimizing holds on Ω. However, we never need this stronger
property in the sequel.

Assuming Proposition 3.20, we prove Theorem 3.19.

Proof of Theorem 3.19. We show later I0,f (0) > 0. We consider any ball
BN of radius N centered at 0. It follows from estimate (3.44) and I0,f (0) > 0
that Dir(f�, BN ) is uniformly bounded in �. Hence, the functions f� are all Dir-
minimizing and Theorem 3.9 implies that the f�k

’s are locally equi-Hölder contin-
uous. Since f�(0) = Q �0�, the f�’s are also locally uniformly bounded and the
Ascoli–Arzelà theorem yields a subsequence (not relabeled) converging uniformly
on compact subsets of Rm to a continuous Q-valued function g. This implies easily
the weak convergence (as defined in Definition 2.9), so we can apply Proposition
3.20 and conclude (a) (note that Dir(f�, B1) = 1 for every �). Observe next that,
for every r > 0,

(3.52) I0,g(r) =
rDir(g,Br)∫

∂Br
|g|2 = lim

�→0

rDir(f�, Br)∫
∂Br

|f�|2
= lim

�→0

� rDir(f,B� r)∫
∂B	 r

|f |2 = I0,f (0).

So, (b) follows from Corollary 3.16, once we have shown that I0,f (0) > 0. Since
f(0) = Q �0�, H(r) ≤ CrD(r), for some constant C. Indeed, assume w.l.o.g.
r = 1. If |x| = 1, then |f(x)|2 ≤ 2G(f(x/2), f(0))2 + 2G(f(x), f(x/2))2 ≤ CD(1) +

2
∫ 1

1/2
|Df(τx)|2dτ (the last step follows from Theorem 3.9). Integrating the in-

equality in x ∈ ∂B1 we conclude H(1) ≤ CD(1). �

Proof of Proposition 3.20. We consider the case of Ω = B1: the general
case is a routine modification of the arguments (and, besides, we never need it
in the sequel). Since the fk’s are Dir-minimizing and, hence, locally Hölder equi-
continuous, and since the fk’s converge strongly in L2 to f , they actually converge
to f uniformly on compact sets. Set Dr = lim infk Dir(fk, Br) and assume by
contradiction that f |Br

is not Dir-minimizing or Dir(f,Br) < Dr for some r < 1.
Under this assumption, we can find r0 > 0 such that, for every r ≥ r0, there exist
a g ∈ W 1,2(Br,AQ) with

(3.53) g|∂Br
= f |∂Br

and γr := Dr −Dir(g,Br) > 0.

Fatou’s Lemma implies that lim infk Dir(fk, ∂Br) is finite for almost every r,∫ 1

0

lim inf
k→+∞

Dir(fk, ∂Br) dr ≤ lim inf
k→+∞

∫ 1

0

Dir(fk, ∂Br) dr ≤ C < +∞.

Passing, if necessary, to a subsequence, we can fix a radius r ≥ r0 such that

(3.54) Dir(f, ∂Br) ≤ lim
k→+∞

Dir(fk, ∂Br) ≤ M < +∞.
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We now show that (3.53) contradicts the minimality of fk in Br for large n. Let,

indeed, 0 < δ < r/2 to be fixed later and consider the functions f̃k on Br defined
by

f̃k(x) =

{
g
(

r x
r−δ

)
for x ∈ Br−δ,

hk(x) for x ∈ Br \Br−δ,

where the hk’s are the interpolations provided by Lemma 2.15 between fk ∈
W 1,2(∂Br,AQ) and g

(
r x
r−δ

)
∈ W 1,2(Br−δ,AQ). We claim that, for large k, the

functions f̃k have smaller Dirichlet energy than fk, thus contrasting the minimizing
property of fk, and concluding the proof. Indeed, recalling the estimate in Lemma
2.15, we have

Dir
(
f̃k, Br

)
≤ Dir

(
f̃k, Br−δ

)
+Cδ

[
Dir
(
f̃k, ∂Br−δ

)
+Dir

(
fk, ∂Br

)]
+
C

δ

∫
∂Br

G
(
fk, f̃k

)2
≤ Dir(g,Br) + C δDir(g, ∂Br) + C δDir(fk, ∂Br) +

C

δ

∫
∂Br

G(fk, g)2.

Choose now δ such that 4C δ (M + 1) ≤ γr, where M and γr are the constants in
(3.54) and (3.53). Using the uniform convergence of fk to f , we conclude, for k
large enough,

Dir
(
f̃k, Br

)(3.53), (3.54)
≤ Dr − γr + C δM + C δ (M + 1) +

C

δ

∫
∂Br

G(fk, f)2,

≤ Dr −
γr
2

+
C

δ

∫
∂Br

G(fk, f)2 < Dr −
γr
4
.

This gives the contradiction. �

3.6. Estimate of the singular set

In this section we estimate the Hausdorff dimension of the singular set of Dir-
minimizing Q-valued functions as in Theorem 0.11. The main point of the proof is
contained in Proposition 3.22, estimating the size of the set of singular points with
multiplicity Q. Theorem 0.11 follows then by an easy induction argument on Q.

Proposition 3.22. Let Ω be connected and f ∈ W 1,2(Ω,AQ(R
n)) be Dir-

minimizing. Then, either f = Q �ζ� with ζ : Ω → R
n harmonic in Ω, or the

set

ΣQ,f = {x ∈ Ω : f(x) = Q �y� , for some y ∈ R
n}

(which is relatively closed in Ω) has Hausdorff dimension at most m − 2 and it is
locally finite for m = 2.

We will make a frequent use of the function σ : Ω → N given by the formula

(3.55) σ(x) = card(supp f(x)).

Note that σ is lower semicontinuous because f is continuous. This implies, in turn,
that ΣQ,f is closed.
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3.6.1. Preparatory Lemmas. We first state and prove two lemmas which
will be used in the proof of Proposition 3.22. The first reduces Proposition 3.22 to
the case where all points of multiplicity Q are of the form Q �0�. In order to state
it, we introduce the map η : AQ(R

n) → R
n which takes each measure T =

∑
i �Pi�

to its center of mass,

η(T ) =

∑
i Pi

Q
.

Lemma 3.23. Let f : Ω → AQ(R
n) be Dir-minimizing. Then,

(a) the function η ◦ f : Ω → R
n is harmonic;

(b) for every ζ : Ω → R
n harmonic, g :=

∑
i �fi + ζ� is as well Dir-minimizing.

Proof. The proof of (a) follows from plugging ψ(x, u) = ζ(x) ∈ C∞
c (Ω,Rn)

in the variations formula (3.5) of Proposition 3.1. Indeed, from the chain-rule
(1.17), one infers easily that QD(η ◦ f) =

∑
i Dfi and hence, from (3.5) we get∫

〈D(η ◦ f) : Dζ〉 = 0. The arbitrariness of ζ ∈ C∞
c (Ω,Rn) gives (a).

To show (b), let h be any Q-valued function with h|∂Ω = f |∂Ω: we need to

verify that, if h̃ :=
∑

i �hi + ζ�, then Dir(g,Ω) ≤ Dir(h̃,Ω). From Almgren’s form
of the Dirichlet energy (see (2.16)), we get

Dir(g,Ω) =

∫
Ω

∑
i,j

|∂jgi|2 =

∫
Ω

∑
i,j

{
|∂jfi|2 + |∂jζ|2 + 2 ∂jfi ∂jζ

}
min. of f

≤
∫
Ω

∑
i,j

{
|∂jhi|2 + |∂jζ|2

}
+ 2Q

∫
Ω

D(η ◦ f) ·Dζ

= Dir(h̃,Ω) + 2Q

∫
Ω

{D(η ◦ f)−D(η ◦ h)} ·Dζ.(3.56)

Since η ◦f and η ◦h have the same trace on ∂Ω and ζ is harmonic, the last integral
in (3.56) vanishes. �

The second lemma characterizes the blow-ups of homogeneous functions and is
the starting point of the reduction argument used in the proof of Proposition 3.22.

Lemma 3.24 (Cylindrical blow-up). Let g : B1 → AQ(R
n) be an α-homogeneous

and Dir-minimizing function with Dir(g,B1) > 0 and set β = Iz,g(0). Suppose,
moreover, that g(z) = Q �0� for z = e1/2. Then, the tangent functions h to g at z
are β-homogeneous with Dir(h,B1) = 1 and satisfy:

(a) h(s e1) = Q �0� for every s ∈ R;

(b) h(x1, x2, . . . , xm) = ĥ(x2, . . . , xm), where ĥ : Rm−1 → AQ(R
n) is Dir-

minimizing on any bounded open subset of Rm−1.

Proof. The first part of the proof follows from Theorem 3.19, while (a) is
straightforward. We need only to verify (b). To simplify notations, we pose x′ =
(0, x2, . . . , xm): we show that h(x′) = h(s e1 + x′) for every s and x′. This is an
easy consequence of the homogeneity of both g and h. Recall that h is the local
uniform limit of gz,�k

for some ρk ↓ 0 and set Ck := Dir(g,B�k
(z))−1/2, β = Iz,g(0)
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and λk := 1
1−2�k s , where z = e1/2. Hence, we have

h(s e1 + x′)
hom. of h

= lim
k↑∞

Ck
gz,�k

(sλk e1 + λkx
′)

λβ
k

= lim
k↑∞

Ck
g (λk z + λk �k x

′)

λβ
k

hom. of g
= lim

�→0
Ck

λk
α gz,�k

(x′)

λβ
k

= h(x′),

where we used λkz + λk �k x
′ = z + sλk �k e1 + λk �k x

′ and limk↑∞ λk = 1.

The minimizing property of ĥ is a consequence of the Dir-minimality of h. It

suffices to show it on every ball B ⊂ R
m−1 for which ĥ|∂B ∈ W 1,2. To fix ideas,

assume B to be centered at 0 and to have radius R. Assume the existence of a
competitor h̃ ∈ W 1,2(B) such that Dir(h̃, B) ≤ D(ĥ, B)− γ and h̃|∂B = ĥ|∂B. We
now construct a competitor h′ for h on a cylinder CL = [−L,L]× BR. First of all
we define

h′(x1, x2, . . . , xn) = h̃(x2, . . . , xn) for |x1| ≤ L− 1.

It remains to “fill in” the two cylinders C1
L =]L− 1, L[×BR and C2

L =]−L,−(L−
1)[×BR. Let us consider the first cylinder. We need to define h′ in C1

L in such
a way that h′ = h on the lateral surface ]L − 1, L[×∂BR and on the upper face

{L} ×BR and h′ = h̃ on the lower face {L− 1} ×BR. Now, since the cylinder C1
L

is biLipschitz to a unit ball, recalling Corollary 2.16, this can be done with a W 1,2

map.
Denote by u and v the upper and lower “filling” maps in the case L = 1 By

the x1-invariance of our construction, the maps

uL(x1, . . . , xm) := u(x1 −L, . . . , xm) and vL(x1, . . . , xm) = u(x1 +L, . . . , xm)

can be taken as filling maps for any L ≥ 1. Therefore, we can estimate

Dir(h′, CL)−D(h,CL) ≤
(
Dir

(
h′, C1

L ∪ C2
L

)
−Dir

(
h,C1

L ∪ C2
L

))
− 2 (L− 1) γ

=: Λ− 2 (L− 1) γ,

where Λ is a constant independent of L. Therefore, for a sufficiently large L, we
have D(h′, CL) < D(h,CL) contradicting the minimality of h in CL. �

3.6.2. Proof of Proposition 3.22. With the help of these two lemmas we
conclude the proof of Proposition 3.22. First of all we notice that, by Lemma 3.23,
it suffices to consider Dir-minimizing function f such that η ◦ f ≡ 0. Under this
assumption, it follows that ΣQ,f = {x : f(x) = Q �0�}. Now we divide the proof
into two parts, being the case m = 2 slightly different from the others.

The planar case m = 2. We prove that, except for the case where all sheets
collapse, ΣQ,f consists of isolated points. Without loss of generality, let 0 ∈ ΣQ,f

and assume the existence of r0 > 0 such that Dir(f,Br) > 0 for every r ≤ r0
(note that, when we are not in this case, then f ≡ Q �0� in a neighborhood of 0).
Suppose by contradiction that 0 is not an isolated point in ΣQ,f , i.e. there exist
xk → 0 such that f(xk) = Q �0�. By Theorem 3.19, the blow-ups f|xk| converge
uniformly, up to a subsequence, to some homogeneous Dir-minimizing function g,
with Dir(g,B1) = 1 and η ◦ g ≡ 0. Moreover, since f(xk) are Q-multiplicity points,
we deduce that there exists w ∈ S

1 such that g(w) = Q �0�. Up to rotations, we
can assume that w = e1. Considering the blowup of g in the point e1/2, by Lemma

3.24, we find a new tangent function h with the property that h(0, x2) = ĥ(x2) for

some function ĥ : R → AQ which is Dir-minimizing on every interval. Moreover,
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since Dir(h,B1) = 1, clearly Dir
(
ĥ, I

)
> 0, where I = [−1, 1]. Note also that

η ◦ ĥ ≡ 0 and ĥ(0) = Q �0�. From the 1-d selection criterion in Proposition 1.5,
this is clearly a contradiction. Indeed, by a simple comparison argument, it is

easily seen that every Dir-minimizing 1-d function ĥ is an affine function of the

form ĥ(x) =
∑

i �Li(x)� with the property that either Li(x) 
= Lj(x) for every x or

Li(x) = Lj(x) for every x. Since ĥ(0) = Q �0�, we would conclude that ĥ = Q �L�

for some linear L. On the other hand, by η ◦ ĥ ≡ 0 we would conclude L = 0,

contradicting Dir(ĥ, I) > 0.
We conclude that, if x ∈ ΣQ,f , either x is isolated, or U ⊂ ΣQ,f for some

neighborhood of x. Since Ω is connected, we conclude that, either ΣQ,f consists of
isolated points, or ΣQ,f = Ω.

The case m ≥ 3. In this case we use the so-called Federer’s reduction argument
(following closely the exposition in Appendix A of [Sim83]). We denote by Ht the
Hausdorff t-dimensional measure and by Ht

∞ the Hausdorff pre-measure defined by

(3.57) Ht
∞(A) = inf

{∑
k∈N

diam(Ek)
t : A ⊂ ∪k∈NEk

}
.

We use this simple property of the Hausdorff pre-measures Ht
∞: if Kl are compact

sets converging to K in the sense of Hausdorff, then

(3.58) lim sup
l→+∞

Ht
∞(Kl) ≤ Ht

∞(K).

To prove (3.58), note first that the infimum on (3.57) can be taken over open
coverings. Next, given an open covering of K, use its compactness to find a finite
subcovering and the convergence of Kl to conclude that it covers Kl for l large
enough (see the proof of Theorem A.4 in [Sim83] for more details).

Step 1. Let t > 0. If Ht
∞ (∂ΣQ,f ∩ Ω) > 0, then there exists a function g ∈

W 1,2(B1,AQ) with the following properties:

(a1) g is a homogeneous Dir-minimizing function with Dir(g,B1) = 1;
(b1) η ◦ g ≡ 0;
(c1) Ht

∞ (ΣQ,g) > 0.

We note that Ht
∞-almost every point x ∈ ΣQ,f is a point of positive t density

(see Theorem 3.6 in [Sim83]), i.e.

lim sup
r→0

Ht
∞ (∂ΣQ,f ∩ Ω ∩Br(x))

rt
> 0.

So, since Ht
∞ (∂ΣQ,f ∩ Ω) > 0, from Theorem 3.19 we conclude the existence of

a point x ∈ ΣQ,f and a sequence of radii �k → 0 such that the blow-ups fx,2�k

converge uniformly to a function g satisfying (a1) and (b1), and

(3.59) lim sup
k→+∞

Ht
∞ (ΣQ,f ∩B�k

(x))

�kt
> 0.

From the uniform convergence of fx,2�k
to g, we deduce easily that, up to subse-

quence, the compact sets Kk = B 1
2
∩ ΣQ,fx,2	k

converge in the sense of Hausdorff

to a compact set K ⊆ ΣQ,g. So, from the semicontinuity property (3.58), we infer
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(c1),

Ht
∞(ΣQ,g) ≥ Ht

∞(K) ≥ lim sup
k→+∞

Ht
∞(Kk) ≥ lim sup

k→+∞
Ht

∞(B 1
2
∩ ΣQ,fx,2	k

)

= lim sup
k→+∞

Ht
∞ (ΣQ,f ∩B�k

(x))

�kt
(3.59)
> 0.

Step 2. Let t > 0 and g satisfying (a1)-(c1) of Step 1. Suppose, moreover, that
there exists 1 ≤ l ≤ m− 2, with l − 1 < t, such that

(3.60) g(x) = ĝ(xl, . . . , xm).

Then, there exists a function h ∈ W 1,2(B1,AQ) with the following properties:

(a2) h is a homogeneous Dir-minimizing function with Dir(h,B1) = 1;
(b2) η ◦ h ≡ 0;
(c2) Ht

∞ (ΣQ,h) > 0;

(d2) h(x) = ĥ(xl+1, . . . , xm).

We notice that Ht
∞
(
R

l−1 × {0}
)
= 0, being t > l−1. So, since Ht

∞ (ΣQ,g) > 0,
we can find a point 0 
= x = (0, . . . , 0, xl, . . . , xm) ∈ ΣQ,g of positive density for
Ht

∞ ΣQ,g. By the same argument of Step 1, we can blow-up at x obtaining a
function h with properties (a2), (b2) and (c2). Moreover, using Lemma 3.24, one
immediately infers (d2).

Step 3. Conclusion: Federer’s reduction argument.
Let now t > m− 2 and suppose Ht (∂ΣQ,f ∩ Ω) > 0. Then, up to rotations, we

may apply Step 1 once and Step 2 repeatedly until we end up with a Dir-minimizing
function h with properties (a2)-(c2) and depending only on two variables, h(x) =

ĥ(x1, x2). This implies that ĥ is a planar Q-valued Dir-minimizing function such

that η ◦ ĥ ≡ 0, Dir(ĥ, B1) = 1 and Ht−m+2
(
ΣQ,ĥ

)
> 0. As shown in the proof

of the planar case, this is impossible, since t − m + 2 > 0 and the singularities
are at most countable. So, we deduce that Ht (∂ΣQ,f ∩ Ω) = 0 and hence either
ΣQ,f = ∂ΣQ,f ∩ Ω or ΣQ,f = Ω, thus concluding the proof.

3.6.3. Proof of Theorem 0.11. Let σ be as in (3.55). It is then clear that,
if x is a regular point, then σ is continuous at x.

On the other hand, let x be a point of continuity of σ and write f(x) =∑J
j=1 kj �Pj�, where Pi 
= Pj for i 
= j. Since the target of σ is discrete, it turns

out that σ ≡ J in a neighborhood U of x. Hence, by the continuity of f , in a

neighborhood V ⊂ U of x, there is a continuous decomposition f =
∑J

j=1{fj}
in kj-valued functions, with the property that fj(y) 
= fi(y) for every y ∈ V and
fj = kj �gj� for each j. Moreover, it is easy to check that each gj must necessarily
be a harmonic function, so that x is a regular point for f . Therefore, we conclude

(3.61) Σf = {x : σ is discontinuous at x}.
The continuity of f implies easily the lower semicontinuity of σ, which in turn

shows, through (3.61), that Σ is relatively closed.
In order to estimate the Hausdorff dimension of Σf , we argue by induction on

the number of values. For Q = 1 there is nothing to prove, since Dir-minimizing
R

n-valued functions are classical harmonic functions. Next, we assume that the
theorem holds for every Q∗-valued functions, with Q∗ < Q, and prove it for Q-
valued functions. If f = Q �ζ� with ζ harmonic, then Σf = ∅ and the proposition is
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proved. If this is not the case, we consider first ΣQ,f the set of points of multiplicity
Q: it is a subset of Σf and we know from Proposition 3.22 that it is a closed subset
of Ω with Hausdorff dimension at most m − 2 and at most countable if m = 2.
Then, we consider the open set Ω′ = Ω \ ΣQ,f . Thanks to the continuity of f , we
can find countable open balls Bk such that Ω′ = ∪kBk and f |Bk

can be decomposed
as the sum of two multiple-valued Dir-minimizing functions:

f |Bk
= �fk,Q1

� + �fk,Q2
� , with Q1 < Q, Q2 < Q,

and
supp (fk,Q1

(x)) ∩ supp (fk,Q2
(x)) = ∅ for every x ∈ Bk.

Clearly, it follows from this last condition that

Σf ∩Bk = Σfk,Q1
∪ Σfk,Q2

.

Moreover, fk,Q1
and fk,Q2

are both Dir-minimizing and, by inductive hypothesis,
Σfk,Q1

and Σfk,Q2
are closed subsets of Bk with Hausdorff dimension at most m−2.

We conclude that
Σf = ΣQ,f ∪

⋃
k∈N

(
Σfk,Q1

∪ Σfk,Q2

)
has Hausdorff dimension at most m− 2 and it is at most countable if m = 2.
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CHAPTER 4

Intrinsic theory

In this chapter we develop more systematically the metric theory of Q-valued
Sobolev functions. The aim is to provide a second proof of all the propositions and
lemmas in Section 2.2, independent of Almgren’s embedding and retraction ξ and
ρ. Some of the properties proved in this section are actually true for Sobolev spaces
taking values in fairly general metric targets, whereas some others do depend on
the specific structure of AQ(R

n).

4.1. Metric Sobolev spaces

To our knowledge, metric space-valued Sobolev-type spaces were considered for
the first time by Ambrosio in [Amb90] (in the particular case of BV mappings).
The same issue was then considered later by several other authors in connection
with different problems in geometry and analysis (see for instance [GS92], [KS93],
[Ser94], [Jos97], [JZ00], [CL01] and [HKST01a]). The definition adopted here
differs slightly from that of Ambrosio (see Definition 0.5) and was proposed later, for
general exponents, by Reshetnyak (see [Res97] and [Res04]). In fact, it turns out
that the two points of view are equivalent, as witnessed by the following proposition.

Proposition 4.1. Let Ω ⊂ R
n be open and bounded. A Q-valued function f

belongs to W 1,p(Ω,AQ) if and only if there exists a function ψ ∈ Lp(Ω,R+) such
that, for every Lipschitz function φ : AQ → R, the following two conclusions hold:

(a) φ ◦ f ∈ W 1,p(Ω);
(b) |D (φ ◦ f) (x)| ≤ Lip(φ) ψ(x) for almost every x ∈ Ω.

This fact was already remarked by Reshetnyak. The proof relies on the obser-
vation that Lipschitz maps with constant less than 1 can be written as suprema of
translated distances. This idea, already used in [Amb90], underlies in a certain
sense the embedding of separable metric spaces in �∞, a fact exploited first in the
pioneering work [Gro83] by Gromov (see also the works [AK00a], [AK00b] and
[HKST01b], where this idea has been used in various situations).

Proof. Since the distance function from a point is a Lipschitz map, with
Lipschitz constant 1, one implication is trivial. To prove the opposite, consider a

Sobolev Q-valued function f : we claim that (a) and (b) hold with ψ =
(∑

j ϕ
2
j

)1/2
,

where the ϕj ’s are the functions in Definition 0.5. Indeed, take a Lipschitz function
φ ∈ Lip(AQ). By treating separately the positive and the negative part of the
function, we can assume, without loss of generality, that φ ≥ 0. If {Ti}i∈N ⊂ AQ is
a dense subset and L = Lip(ϕ), it is a well known fact that φ(T ) = infi

{
φ(Ti) +

LG(Ti, T )
}
. Therefore,

(4.1) φ ◦ f = inf
i

{
φ(Ti) + LG(Ti, f)

}
=: inf

i
gi.

53
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Since f ∈ W 1,p(Ω,AQ), each gi ∈ W 1,p(Ω) and the inequality |D(φ◦f)| ≤ supi |Dgi|
holds a.e. On the other hand, |Dgi| = L |DG(f, Ti)| ≤ L

√∑
j ϕ

2
j a.e. This com-

pletes the proof. �

In the remaining sections of this chapter, we first prove the existence of |∂jf |
(as defined in the Introduction) and prove the explicit formula (0.2). Then, we
introduce a metric on W 1,p(Ω,AQ), making it a complete metric space. This part
of the theory is in fact valid under fairly general assumptions on the target space:
the interested reader will find suitable analogs in the aforementioned papers.

4.1.1. Representation formulas for |∂jf |.

Proposition 4.2. For every Sobolev Q-valued function f ∈ W 1,p(Ω,AQ), there
exist gj ∈ Lp, for j = 1, . . . ,m, with the following two properties:

(i) |∂jG(f, T )| ≤ gj a.e. for every T ∈ AQ;
(ii) if ϕj ∈ Lp is such that |∂jG(f, T )| ≤ ϕj for all T ∈ AQ, then gj ≤ ϕj a.e.

These functions are unique and will be denoted by |∂jf |. Moreover, chosen a count-
able dense subset {Ti}i∈N of AQ, they satisfy the equality (0.2).

Proof. The uniqueness of the functions gj is an obvious corollary of their
property (ii). It is enough to prove that gj = |∂jf | as defined in (0.2) satisfies
(i), because it obviously satisfies (ii). Let T ∈ AQ and {Tik} ⊆ {Ti} be such that
Tik → T . Then, G(f, Tik) → G(f, T ) in Lp and, hence, for every ψ ∈ C∞

c (Ω),
(4.2)∣∣∣∣
∫

∂jG(f, T ) ψ
∣∣∣∣ = lim

ik→+∞

∣∣∣∣
∫

G(f, Tik) ∂jψ

∣∣∣∣ = lim
ik→+∞

∣∣∣∣
∫

∂jG(f, Tik) ψ

∣∣∣∣ ≤
∫

gj |ψ|.

Since (4.2) holds for every ψ, we conclude |∂jG(f, T )| ≤ gj a.e. �

4.1.2. A metric on W 1,p(Ω,AQ). Given f and g ∈ W 1,p(Ω,AQ), define

(4.3) dW 1,p(f, g) = ‖G(f, g)‖Lp +

m∑
j=1

∥∥∥∥sup
i

∣∣∂jG(f, Ti)− ∂jG(g, Ti)
∣∣∥∥∥∥

Lp

.

Proposition 4.3.
(
W 1,p(Ω,AQ), dW 1,p

)
is a complete metric space and

(4.4) dW 1,p(fk, f) → 0 ⇒ |Dfk| Lp

→ |Df |.

Proof. The proof that dW 1,p is a metric is a simple computation left to the
reader; we prove its completeness. Let {fk}k∈N be a Cauchy sequence for dW 1,p .
Then, it is a Cauchy sequence in Lp(Ω,AQ). There exists, therefore, a function
f ∈ Lp(Ω,AQ) such that fk → f in Lp. We claim that f belongs to W 1,p(Ω,AQ)
and dW 1,p(fk, f) → 0. Since f ∈ W 1,p(Ω,AQ) if and only if dW 1,p(f, 0) < ∞, it is
clear that we need only to prove that dW 1,p(fk, f) → 0. This is a consequence of
the following simple observation:∥∥∥∥sup

i

∣∣∂jG(f, Ti)− ∂jG(fk, Ti)
∣∣∥∥∥∥

p

Lp

= sup
P∈P

∑
Es∈P

‖∂jG(f, Ts)− ∂jG(fk, Ts)‖pLp(Es)

≤ lim
l→+∞

dW 1,p(fl, fk)
p,(4.5)
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where P is the family of finite measurable partitions of Ω. Indeed, by (4.5),

lim
k→+∞

dW 1,p(fk, f)
(4.5)

≤ lim
k→+∞

[
‖G(f, fk)‖Lp +m lim

l→+∞
dW 1,p(fl, fk)

]
= 0.

We now come to (4.4). Assume dW 1,p(fk, f) → 0 and observe that∣∣|∂jfk| − |∂jfl|
∣∣ = ∣∣∣∣sup

i
|∂jG(fk, Ti)| − sup

i
|∂jG(fk, Ti)|

∣∣∣∣
≤ sup

i
|∂jG(fk, Ti)− ∂jG(fk, Ti)| .

Hence, one can infer
∥∥|∂jfk| − |∂jfl|

∥∥
Lp ≤ dW 1,p(fk, fl). This implies that |Dfk| is

a Cauchy sequence, from which the conclusion follows easily. �

4.2. Metric proofs of the main theorems I

We start now with the metric proofs of the results in Section 2.2.

4.2.1. Lipschitz approximation. In this subsection we prove a strengthened
version of Proposition 2.5. The proof uses, in the metric framework, a standard
truncation technique and the Lipschitz extension Theorem 1.7 (see, for instance,
6.6.3 in [EG92]). This last ingredient is a feature of AQ(R

n) and, in general,
the problem of whether or not general Sobolev mappings can be approximated
with Lipschitz ones is a very subtle issue already when the target is a smooth
Riemannian manifold (see for instance [SU82], [Bet91], [HL03] and [HR07]).
The truncation technique is, instead, valid in a much more general setting, see for
instance [HKST01b].

Proposition 4.4 (Lipschitz approximation). There exists a constant C =
C(m,Ω, Q) with the following property. For every f ∈ W 1,p(Ω,AQ) and every
λ > 0, there exists a Q-function fλ such that Lip (fλ) ≤ C λ,

(4.6) |Eλ| =
∣∣{x ∈ Ω : f(x) 
= fλ(x)

}∣∣ ≤ C‖|Df |‖pLp

λp

and dW 1,p(f, fλ) ≤ CdW 1,p(f,Q �0�). Moreover, dW 1,p(f, fλ) = o(1) and |Eλ| =
o(λ−p).

Proof. We consider the case 1 ≤ p < ∞ (p = ∞ is immediate) and we set

Ωλ =
{
x ∈ Ω : M(|Df |) ≤ λ

}
,

where M is the Maximal Function Operator (see [Ste93] for the definition). By
rescaling, we can assume ‖|Df |‖Lp = 1. As a consequence, we can also assume
λ ≥ C(m,Ω, Q), where C(m,Ω, Q) will be chosen later.

Notice that, for every T ∈ AQ and every j ∈ {1, . . . ,m},
M
(
|∂jG(f, T )|

)
≤ M(|Df |) ≤ λ in Ωλ.

By standard calculation (see, for example, 6.6.3 in [EG92]), we deduce that, for
every T , G(f, T ) is (C λ)-Lipschitz in Ωλ, with C = C(m). Therefore,

(4.7)
∣∣G(f(x), T )− G(f(y), T )

∣∣ ≤ C λ |x− y| ∀ x, y ∈ Ωλ and ∀ T ∈ AQ.

From (4.7), we get a Lipschitz estimate for f |Ωλ
by setting T = f(x). We can

therefore use Theorem 1.7 to extend f |Ωλ
to a Lipschitz function fλ with Lip(fλ) ≤

Cλ.
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The standard weak (p− p) estimate for maximal functions (see [Ste93]) yields

(4.8) |Ω \ Ωλ| ≤
C

λp

∫
Ω\Ωλ/2

|Df |p ≤ C

λp
o(1),

which implies (4.6) and |Eλ| = o(λ−p). Observe also that, from (4.8), it follows
that

(4.9)

∫
Ω\Ωλ

|Dfλ|p ≤ C

∫
Ω\Ωλ/2

|Df |p.

It remains to prove dW 1,p(f, fλ) ≤ CdW 1,p(f,Q �0�) and dW 1,p(fλ, f) → 0. By
(4.9), it suffices to show

‖G(fλ, Q �0�)‖Lp ≤ CdW 1,p(f,Q �0�) and ‖G(fλ, f)‖Lp → 0 .

We first choose the constant C(m,Ω, Q) ≤ λ so to guarantee that 2|Ωλ| ≥ |Ω|. Set
g := G(f,Q �0�), gλ := G(fλ, Q �0�) and h = g − gλ. Let h̄ be the average of h over
Ω and use the Poincaré inequality and the fact that h vanishes on Ωλ to conclude
that

|Ω|
2

|h̄|p ≤ |Ωλ||h̄|p ≤
∫

|h− h̄|p ≤ C‖Dh‖pLp

≤ C

∫
Ω\Ωλ

(|Df |p + |Dfλ|p) ≤ C

∫
Ω\Ωλ/2

|Df |p.

Therefore,

‖h‖pLp ≤ C

∫
Ω\Ωλ/2

|Df |p .

So, using the triangle inequality, we conclude that

‖G(fλ, Q �0�)‖Lp ≤ ‖G(f,Q �0�)‖Lp + C‖|Df |‖Lp ≤ CdW 1,p(f,Q �0�)

and

‖G(f, fλ)‖)Lp = ‖G(f,Q �0�)‖Lp(Ω\Ωλ) + ‖h‖Lp

≤ ‖G(f,Q �0�)‖Lp(Ω\Ωλ) + C‖|Df |‖Lp(Ω\Ωλ/2).(4.10)

Since |Ω \ Ωλ| ↓ 0, the right hand side of (4.10) converges to 0 as λ ↓ 0. �

4.2.2. Trace theory. Next, we show the existence of the trace of a Q-valued
Sobolev function as defined in Definition 0.7. Moreover, we prove that the space
of functions with given trace W 1,p

g (Ω,AQ) defined in (2.10) is closed under weak
convergence. A suitable trace theory can be build in a much more general setting
(see the aforementioned papers). Here, instead, we prefer to take advantage of
Proposition 4.4 to give a fairly short proof.

Proposition 4.5. Let f ∈ W 1,p(Ω,AQ). Then, there exists an unique g ∈
Lp(∂Ω,AQ) such that

(4.11) (ϕ ◦ f)|∂Ω = ϕ ◦ g for all ϕ ∈ Lip (AQ).

We denote g by f |∂Ω. Moreover, the following set is closed under weak convergence:

W 1,2
g (Ω,AQ) :=

{
f ∈ W 1,2(Ω,AQ) : f |∂Ω = g

}
.
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Proof. Consider a sequence of Lipschitz functions fk with dW 1,p(fk, f) → 0
(whose existence is ensured from Proposition 4.4). We claim that fk|∂Ω is a Cauchy
sequence in Lp(∂Ω,AQ). To see this, notice that, if {Ti}i∈N is a dense subset of
AQ,

G(fk, fl) = sup
i

|G(fk, Ti)− G(fl, Ti)| .

Moreover, recalling the classical estimate for the trace of a real-valued Sobolev
functions, ‖f |∂Ω‖Lp ≤ C ‖f‖W 1,p , we conclude that

‖G(fk, fl)‖pLp(∂Ω) ≤ C

∫
Ω

G(fk, fl)p +
∑
j

∫
Ω

|∂jG(fk, fl)|p

≤ C

∫
Ω

G(fk, fl)p +
∑
j

∫
Ω

sup
i

|∂jG(fk, Ti)− ∂jG(fl, Ti)|p

≤ C dW 1,p(fk, fl)
p,(4.12)

(where we used the identity |∂j (supi gi)| ≤ supi |∂jgi|, which holds true if there
exists an h ∈ Lp(Ω) with |gi|, |Dgi| ≤ h ∈ Lp(Ω)).

Let, therefore, g be the Lp-limit of fk. For every ϕ ∈ Lip(AQ), we clearly have
that (ϕ ◦ fk)|∂Ω → ϕ ◦ g in Lp. But, since ϕ ◦ fk → ϕ ◦ f in W 1,p(Ω), the limit of
(ϕ◦fk)|∂Ω is exactly (ϕ◦f)|∂Ω. This shows (4.11). We now come to the uniqueness.
Assume that g and ĝ satisfy (4.11). Then, G(g, Ti) = G (ĝ, Ti) almost everywhere
on ∂Ω and for every i. This implies

G (g, ĝ) = sup
i

|G(g, Ti)− G (ĝ, Ti)| = 0 a.e. on Ω,

i.e. g = ĝ a.e.
Finally, as for the last assertion of the proposition, note that fk⇀f in the sense

of Definition 2.9 if and only if ϕ◦fk⇀ϕ◦f for any Lipschitz function ϕ. Therefore,
the proof that the set W 1,2

g is closed is a direct consequence of the corresponding
fact for classical Sobolev spaces of real-valued functions. �

4.2.3. Sobolev embeddings. The following proposition is an obvious conse-
quence of the definition and holds under much more general assumptions.

Proposition 4.6 (Sobolev Embeddings). The following embeddings hold:

(i) if p < m, then W 1,p(Ω,AQ) ⊂ Lq(Ω,AQ) for every q ∈ [1, p∗], where
p∗ = mp

m−p , and the inclusion is compact when q < p∗;

(ii) if p = m, then W 1,p(Ω,AQ) ⊂ Lq(Ω,AQ), for every q ∈ [1,+∞), with
compact inclusion.

Remark 4.7. In Proposition 2.11 we have also shown that

(iii) if p > m, then W 1,p(Ω,AQ) ⊂ C0,α(Ω,AQ), for α = 1− m
p , with compact

inclusion for α < 1− m
p .

It is not difficult to give an intrinsic proof of it. However, in the regularity theory
of Chapters 3 and 5, (iii) is used only in the case m = 1, which has already been
shown in Proposition 1.2.

Proof. Recall that f ∈ Lp(Ω,AQ) if and only if G(f, T ) ∈ Lp(Ω) for some
(and, hence, any) T . So, the inclusions in (i) and (ii) are a trivial corollary of



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

58 4. INTRINSIC THEORY

the usual Sobolev embeddings for real-valued functions, which in fact yields the
inequality

(4.13) ‖G(f,Q �0�)‖Lq(Ω) ≤ C(n,Ω, Q)dW 1,p(f,Q �0�) .

As for the compactness of the embeddings when q < p∗, consider a sequence
{fk}k∈N of Q-valued Sobolev functions with equibounded dW 1,p-distance from a
point:

dW 1,p(fk, Q �0�) = ‖G(fk, Q �0�)‖Lp +
∑
j

‖|∂jfk|‖Lp ≤ C < +∞.

For every l ∈ N, let fk,l be the function given by Proposition 4.4 choosing λ = l.
From the Ascoli–Arzelà Theorem and a diagonal argument, we find a subse-

quence (not relabeled) fk such that, for any fixed l, {fk,l}k is a Cauchy sequence
in C0. We now use this to show that fk is a Cauchy sequence in Lq. Indeed,

(4.14) ‖G(fk, fk′)‖Lq ≤ ‖G(fk, fk,l)‖Lq + ‖G(fk,l, fk′,l)‖Lq + ‖G(fk′,l, fk′)‖Lq .

We claim that the first and third terms are bounded by C l1/q−1/p∗
. It suffices

to show it for the first term. By Proposition 4.4, there is a constant C such that
dW 1,p(fk,l, Q �0�) ≤ C for every k and l. Therefore, we infer

‖G(fk, fk,l)‖qLq ≤ C

∫
{fk �=fk,l}

[
G(fk, Q �0�)q + G(fk,l, Q �0�)q

]
≤
(
‖G(fk, �0�)‖qLp∗ + ‖G(fk,l, �0�)‖qLp∗

)
|{fk 
= fk,l}|1−q/p∗

≤ Clq/p
∗−1,

where in the last line we have used (4.13) (in the critical case p∗) and the Hölder
inequality.

Let ε be a given positive number. Then we can choose l such that the first and
third term in (4.14) are both less than ε/3, independently of k. On the other hand,
since {fk,l}k is a Cauchy sequence in C0, there is an N such that ‖G(fk,l, fk′,l)‖Lq ≤
ε/3 for every k, k′ > N . Clearly, for k, k′ > N , we then have ‖G(fk, fk′)‖ ≤ ε. This
shows that {fk} is a Cauchy sequence in Lq and hence completes the proof of (i).
The compact inclusion in (ii) is analogous. �

4.2.4. Campanato–Morrey estimate. We conclude this section by giving
another proof of the Campanato–Morrey estimate in Proposition 2.14.

Proposition 4.8. Let f ∈ W 1,2(B1,AQ) and α ∈ (0, 1] be such that ∀δ ∈ (0, 1),∫
Br(x)

|Df |2 ≤ Aδr
m−2+2α for every x ∈ Bδ and a.e. r ∈]0, 1− |x|].

Then, for every 0 < δ < 1, there is a constant C = C(m,n,Q, δ) such that

(4.15) sup
x,y∈Bδ

G(f(x), f(y))
|x− y|α =: [f ]C0,α(Bδ)

≤ C
√
Aδ.

Proof. Let T ∈ AQ be given. Then,∫
Br

|DG(f, T )|2 ≤
∫
Br

|Df |2 ≤ A rm−2+2α for a.e. r ∈]0, 1].
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By the classical estimate (see 3.2 in [HL97]), G(f, T ) is α-Hölder with

sup
x,y∈Bδ

|G(f(x), T )− G(f(y), T )|
|x− y|α ≤ C

√
A,

where C is independent of T . This implies easily (4.15). �

4.3. Metric proofs of the main theorems II

We give in this section metric proofs of the two remaining results of Section
2.2: the Poincaré inequality in Proposition 2.12 and the interpolation Lemma 2.15.

4.3.1. Poincaré inequality.

Proposition 4.9 (Poincaré inequality). Let M be a connected bounded Lips-
chitz open set of a Riemannian manifold. Then, for every 1 ≤ p < m, there exists
a constant C = C(p,m, n,Q,M) with the following property: for every function
f ∈ W 1,p(M,AQ), there exists a point f ∈ AQ such that

(4.16)

(∫
M

G(f, f)p∗
) 1

p∗

≤ C

(∫
M

|Df |p
) 1

p

,

where p∗ = mp
m−p .

A proof of (a variant of) this Poincaré-type inequality appears already, for the
case p = 1 and a compact target, in the work of Ambrosio [Amb90]. Here we use,
however, a different approach, based on the existence of an isometric embedding
of AQ(R

n) into a separable Banach space. We then exploit the linear structure
of this larger space to take averages. This idea, which to our knowledge appeared
first in [HKST01b], works in a much more general framework, but, to keep our
presentation easy, we will use all the structural advantages of dealing with the
metric space AQ(R

n).
The key ingredients of the proof are the lemmas stated below. The first one

is an elementary fact, exploited first by Gromov in the context of metric geometry
(see [Gro83]) and used later to tackle many problems in analysis and geometry
on metric spaces (see [AK00a], [AK00b] and [HKST01b]). The second is an
extension of a standard estimate in the theory of Sobolev spaces. Both lemmas will
be proved at the end of the subsection.

Lemma 4.10. Let (X, d) be a complete separable metric space. Then, there is
an isometric embedding i : X → B into a separable Banach space.

Lemma 4.11. For every 1 ≤ p < m and r > 0, there exists a constant C =
C(p,m, n,Q) such that, for every f ∈ W 1,p(Br,AQ) ∩ Lip (Br,AQ) and every z ∈
Br,

(4.17)

∫
Br

G(f(x), f(z))pdx ≤ C rp+m−1

∫
Br

|Df |(x)p |x− z|1−m dx.

Proof of Proposition 4.9. Step 1. We first assume M = Br ⊂ R
m and f

Lipschitz. We regard f as a map taking values in the Banach space B of Lemma
4.10. SinceB is a Banach space, we can integrateB-valued functions on Riemannian
manifolds using the Bochner integral. Indeed, being f Lipschitz and B a separable
Banach space, in our case it is straightforward to check that f is integrable in the
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sense of Bochner (see [DU77]; in fact the theory of the Bochner integral can be
applied in much more general situations).

Consider therefore the average of f on M , which we denote by Sf . We will
show that

(4.18)

∫
Br

‖f − Sf‖pB ≤ Crp
∫
Br

|Df |p.

First note that, by the usual convexity of the Bochner integral,

‖f(x)− Sf‖B ≤ −
∫

‖f(z)− f(x)‖B dz = −
∫

G(f(z), f(x)) dz.

Hence, (4.18) is a direct consequence of Lemma 4.11:∫
Br

‖f(x)− Sf‖pB dx ≤
∫
Br

−
∫
Br

G(f(x), f(z))p dz dx

≤ C rp+m−1 −
∫
Br

∫
Br

|w − z|1−m|Df |(w)p dw dz

≤ C rp
∫
Br

|Df |(w)p dw.

Step 2. Assuming M = Br ⊂ R
m and f Lipschitz, we find a point f such that

(4.19)

∫
Br

G
(
f, f

)p ≤ Crp
∫
Br

|Df |p.

Consider, indeed, f ∈ AQ a point such that

(4.20) ‖Sf − f‖B = min
T∈AQ

‖Sf − T‖B.

Note that f exists because AQ is locally compact. Then, we have∫
Br

G
(
f, f

)p ≤ C

∫
Br

‖f − Sf‖pB +

∫
Br

‖Sf − f‖pB
(4.18), (4.20)

≤ C rp
∫
Br

|Df |p + C

∫
Br

‖Sf − f‖pB
(4.18)

≤ C rp
∫
Br

|Df |p.

Step 3. Now we consider the case of a generic f ∈ W 1,p(Br,AQ). From the
Lipschitz approximation Theorem 4.4, we find a sequence of Lipschitz functions fk
converging to f , dW 1,p(fk, f) → 0. Fix, now, an index k such that

(4.21)

∫
Br

G(fk, f)p ≤ rp
∫
Br

|Df |p and

∫
Br

|Dfk|p ≤ 2

∫
Br

|Df |p,

and set f = fk, with the fk found in the previous step. With this choice, we
conclude
(4.22)∫

Br

G
(
f, f

)p ≤ C

∫
Br

G(f, fk)p +
∫
Br

G
(
fk, fk

)p (4.19), (4.21)

≤ C rp
∫
Br

|Df |p.

Step 4. Using classical Sobolev embeddings, we prove (4.16) in the case of
M = Br. Indeed, since G(f, f) ∈ W 1,p(Br), we conclude

∥∥G(f, f)∥∥
Lp∗ ≤ C

∥∥G(f, f)∥∥
W 1,p

(4.22)

≤ C

(∫
Br

|Df |p
) 1

p

.
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Step 5. Finally, we drop the hypothesis of M being a ball. Using the compact-
ness and connectedness of M , we cover M by finitely many domains A1, . . . , AN

biLipschitz to a ball such that Ak ∩ ∪i<kAi 
= ∅. This reduces the proof of the
general statement to that in the case M = A∪B, where A and B are two domains
such that A ∩ B 
= ∅ and the Poincaré inequality is valid for both. Under these
assumptions, denoting by fA and fB two means for f over A and B, we estimate

G(fA, fB)p
∗
= −
∫
A∩B

G(fA, fB)p
∗ ≤ C −

∫
A

G(fA, f)p
∗
+ C −

∫
B

G(f, fB)p
∗

≤ C

(∫
M

|Df |p
) p∗

p

.

Therefore,

∫
A∪B

G(f, fA)p
∗ ≤

∫
A

G(f, fA)p
∗
+

∫
B

G(f, fA)p
∗

≤
∫
A

G(f, fA)p
∗
+ C

∫
B

G(f, fB)p
∗
+ C G(fA, fB)p

∗ |B|

≤ C

(∫
M

|Df |p
) p∗

p

.

�

Proof of Lemma 4.10. We choose a point x ∈ X and consider the Banach
space A := {f ∈ Lip(X,R) : f(x) = 0} with the norm ‖f‖A = Lip(f). Consider
the dual A′ and let i : X → A′ be the mapping that to each y ∈ X associates the
element [y] ∈ A′ given by the linear functional [y](f) = f(y). First of all we claim
that i is an isometry, which amounts to prove the following identity:

(4.23) d(z, y) = ‖[y]− [z]‖A′ = sup
f(x)=0,Lip(f)≤1

|f(y)− f(z)| ∀x, y ∈ X.

The inequality |f(y) − f(z)| ≤ d(y, z) follows from the fact that Lip(f) = 1. On
the other hand, consider the function f(w) := d(w, y) − d(y, x). Then f(x) = 0,
Lip(f) = 1 and |f(y)− f(z)| = d(y, z).

Next, let C be the subspace generated by finite linear combinations of elements
of i(X). Note that C is separable and contains i(X): its closure in A′ is the desired
separable Banach space B. �

Proof of Lemma 4.11. Fix z ∈ Br. Clearly the restriction of f to any seg-
ment [x, z] is Lipschitz. Using Rademacher, it is easy to justify the following in-
equality for a.e. x:

(4.24) G(f(x), f(z)) ≤ |x− z|
∫ 1

0

|Df |(z + t(x− z)) dt.
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Hence, one has∫
Br∩∂Bs(z)

G(f(x), f(z))p dx
(4.24)

≤
∫
Br∩∂Bs(z)

∫ 1

0

|x− z|p |Df |(z + t(x− z))p dt dx

≤ sp
∫ 1

0

∫
Br∩∂Bts(z)

t1−n|Df |(w)p dw dt

= sp+m−1

∫ 1

0

∫
Br∩∂Bts(z)

|w − z|1−m|Df |(w)p dw dt

≤ sp+m−2

∫
Br

|w − z|1−m|Df |(w)p dw.(4.25)

Integrating in s the inequality (4.25), we conclude (4.17),∫
Br

G(f(x), f(z))p dx ≤ C rp+m−1

∫
Br

|w − z|1−m|Df |(w)p dw.

�
4.3.2. Interpolation Lemma. We prove in this section Lemma 2.15 (the

statement below is, in fact, slightly simpler: Lemma 2.15 follows however from
elementary scaling arguments). In this case, the proof relies in an essential way
on the properties of AQ(R

n) and we believe that generalizations are possible only
under some structural assumptions on the metric target.

Lemma 4.12 (Interpolation Lemma). There exists a constant C = C(m,n,Q)
with the following property. For any g, g̃ ∈ W 1,2(∂B1,AQ), there is h ∈ W 1,2(B1 \
B1−ε,AQ) such that

h (x) = g(x), h ((1− ε) x) = g̃(x), for x ∈ ∂B1,

and

Dir(h,B1 \B1−ε) ≤ C

{
εDir(g, ∂B1) + εDir(g̃, ∂B1) + ε−1

∫
∂B1

G (g, g̃)2
}

.

Proof. For the sake of clarity, we divide the proof into two steps: in the first
one we prove the lemma in a simplified geometry (two parallel hyperplanes instead
of two concentric spheres); then, we adapt the construction to the case of interest.

Step 1. Interpolation between parallel planes. We let A = [−1, 1]m−1, B =
A× [0, ε] and consider two functions g, g̃ ∈ W 1,2(A,AQ). We then want to find a
function h : B → AQ such that

(4.26) h(x, 0) = g(x) and h(x, ε) = g̃(x);

(4.27) Dir(h,B) ≤ C

(
εDir(g,A) + εDir(g̃, A) + ε−1

∫
A

G(g, g̃)2
)
,

where the constant C depends only on m, n and Q.
For every k ∈ N+, set Ak = [−1− k−1, 1 + k−1]m−1, and decompose Ak in the

union of (k + 1)m−1 cubes {Ck,l}l=1,...,(k+1)m−1 with disjoint interiors, side length

equal to 2/k and faces parallel to the coordinate hyperplanes. We denote by xk,l

their centers. Therefore, Ck,l = xk,l +
[
− 1

k ,
1
k

]m−1
. Finally, we subdivide A into

the cubes {Dk,l}l=1,...,km−1 of side 2/k and having the points xk,l as vertices, (so
{Dk,l} is the decomposition “dual” to {Ck,l}; see Figure 2).
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Ck,l

Dk,l

xk,l

Figure 2. The cubes Ck,l and Dk,l.

On each Ck,l take a mean gk,l of g on Ck,l ∩A. On Ak we define the piecewise
constant functions gk which takes the constant value gk,l on each Ck,l:

gk ≡ gk,l in Ck,l, with

∫
Ck,l∩A

G(g, gk,l)2 ≤ C

k2

∫
Ck,l∩A

|Dg|2.

In an analogous way, we define g̃k from g̃ and denote by g̃k,l the corresponding
averages. Note that gk → g and g̃k → g̃ in L2(A,AQ).

We next define a Lipschitz function fk : B → AQ. We set fk(xk,l, 0) = ḡk,l and
fk(xk,l, ε) = g̃k,l. We then use Theorem 1.7 to extend fk on the 1-skeleton of the
cubical decomposition given by Dk,l × [0, ε]. We apply inductively Theorem 1.7 to
extend fk to the j-skeletons.

If Vk,l and Zk,l denote, respectively, the set of vertices of Dk,l×{0} and Dk,l×
{ε}, we then conclude that

(4.28) Lip(fk|Dk,l×{ε}) ≤ C Lip(fk|Zk,l
) and Lip(fk|Dk,l×{0}) ≤ C Lip(fk|Vk,l

).

Let (xk,i, 0) and (xk,j , 0) be two adjacent vertices in Vk,l. Then,

G(fk(xk,i, 0), fk(xk,j , 0))
2 = G(gk(xk,i), gk(xk,j))

2= −
∫
Ck,i∩Ck,j∩A

G(gk(xk,i), gk(xk,j))
2

≤ C −
∫
Ck,i∩A

G(gk,i, g)2 + C −
∫
Ck,j∩A

G(g, gk,j)2

≤ C

km+1

∫
Ck,i∪Ck,j

|Dg|2.(4.29)

In the same way, if (xk,i, ε) and (xk,j , ε) are two adjacent vertices in Zk,l, then

G(fk(xk,i, ε), fk(xk,j , ε))
2 ≤ C

km+1

∫
Ck,i∪Ck,j

|Dg̃|2.

Finally, for (xk,i, 0) and (xk,i, ε), we have

G
(
fk(xk,i, 0), fk(xk,i, ε)

)2
= G(gk,i, g̃k,i)2 ≤ −

∫
Ck,i∩A

G(gk, g̃k)2.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

64 4. INTRINSIC THEORY

Hence, if {Ck,α}α=1,...,2m−1 are all the cubes intersecting Dk,l, we conclude that the
Lipschitz constant of fk in Dk,l × [0, ε] is bounded in the following way:

Lip(fk|Dk,l×[0,ε])
2 ≤ C

km−1

∫
∪αCk,α

(
|Dg|2 + |Dg̃|2 + ε−2G(gk, g̃k)2

)
.

Observe that each Ck,α intersects at most N cubes Dk,l, for some dimensional
constant N . Thus, summing over l, we conclude

(4.30) Dir(fk, A× [0, ε]) ≤ C

(
ε

∫
A

|Dg|2 + ε

∫
A

|Dg̃|2 + ε−1

∫
A

G(gk, g̃k)2
)
.

Next, having fixed Dk,l, consider one of its vertices, say x′. By (4.28) and (4.29),
we conclude

max
y∈Dk,l

G(fk(y, 0), fk(x′, 0))2 ≤ C

km+1

∫
∪αCk,α

|Dg|2.

For any x ∈ Dk,l, gk(x) is equal to fk(x
′, 0) for some vertex x′ ∈ Dk,l. Thus, we

can estimate

(4.31)

∫
A

G(fk(x, 0), gk(x))2 dx ≤ C

k2

∫
A

|Dg|2.

Recalling that gk → g in L2, we conclude, therefore, that fk(·, 0) converges to g. A
similar conclusion can be inferred for fk(·, ε).

Finally, from (4.30) and (4.31), we conclude a uniform bound on ‖|fk|‖L2(B).

Using the compactness of the embedding W 1,2 ⊂ L2, we conclude the existence of
a subsequence converging strongly in L2 to a function h ∈ W 1,2(B). Obviously, h
satisfies (4.27). We now want to show that (4.26) holds.

Let δ ∈]0, ε[ and assume that fk(·, δ) → f(·, δ) in L2 (which in fact holds for
a.e. δ). Then, a standard argument shows that∫

A

G(f(x, δ), g(x))2 dx = lim
k↑∞

∫
A

G(fk(x, δ), gk(x))2 dx

≤ lim sup
k↑∞

δ‖|Dfk|‖2L2(B) ≤ Cδ.

Clearly, this implies that f(·, 0) = g. An analogous computation shows f(·, ε) = g̃.

Step 2. Interpolation between two spherical shells. In what follows, we denote
by D the closed (m− 1)-dimensional ball and assume that φ+ : D → ∂B1 ∩ {xm ≥
0} is a diffeomorphism. Define φ− : D → ∂B1 ∩ {xm ≤ 0} by simply setting
φ−(x) = −φ+(x). Next, let φ : A → D be a biLipschitz homeomorphism, where A
is the set in Step 1, and set

ϕ± = φ± ◦ φ, gk,± = g ◦ ϕ± and g̃k,± = g̃ ◦ ϕ±.

Consider the Lipschitz approximating functions constructed in Step 1, fk,+ : A ×
[0, ε] → AQ interpolating between gk,+ and g̃k,−.

Next, to construct fk,−, we use again the cell decomposition of Step 1. We fol-
low the same procedure to attribute the values fk,−(xk,l, 0) and fk,−(xk,l, ε) on the
vertices xk,l 
∈ ∂A. We instead set fk,−(xk,l, 0) = fk,+(xk,l, 0) and fk,−(xk,l, ε) =
fk,+(xk,l, ε) when xk,l ∈ ∂A. Finally, when using Theorem 1.7 as in Step 1, we take
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care to set fk,+ = fk,− on the skeletons lying in ∂A and we define

fk(x) =

{
fk,+(ϕ

−1
+ (x/|x|), 1− |x|) if xm ≥ 0

fk,−(ϕ
−1
− (x/|x|), 1− |x|) if xm ≤ 0 .

Then, fk is a Lipschitz map. We want to use the estimates of Step 1 in order
to conclude the existence of a sequence converging to a function h which satisfies
the requirements of the proposition. This is straightforward on {xm ≥ 0}. On
{xm ≤ 0} we just have to control the estimates of Step 1 for vertices lying on ∂A.
Fix a vertex xk,l ∈ ∂A.

In the procedure of Step 1, fk,−(xk,l, 0) and fk,−(xk,l, ε) are defined by taking

the averages hk,l and h̃k,l for g◦ϕ− and g̃◦ϕ− on the cell Ck,l∩A. In the procedure
specified above the values of fk,−(xk,l, 0) and fk,−(xk,l, ε) are given by the averages
of g ◦ ϕ+ and g̃ ◦ ϕ+, which we denote by gk,l and g̃k,l. However, we can estimate
the difference in the following way

|gk,l − hk,l| ≤
C

km+2

∫
Ek,l

|Dg|2,

where Ek,l is a suitable cell in ∂B1 containing ϕ+(Ck,l) and ϕ−(Ck,l). Since these
two cells have a face in common and ϕ± are biLipschitz homeomorphisms, we can
estimate the diameter of Ek,l with C/k (see Figure 3). Therefore the estimates
(4.30) and (4.31) proved in Step 1 hold with (possibly) worse constants. �

A
ϕ+

ϕ−
Ek,l

Figure 3. The maps ϕ± and the cells Ek,l.
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CHAPTER 5

The improved estimate of the singular set
in 2 dimensions

In this final part of the paper we prove Theorem 0.12. The first section gives
a more stringent description of 2-d tangent functions to Dir-minimizing functions.
The second section uses a comparison argument to show a certain rate of con-
vergence for the frequency function of f . This rate implies the uniqueness of the
tangent function. In Section 5.3, we use this uniqueness to get a better description
of a Dir-minimizing functions around a singular point: an induction argument on
Q yields finally Theorem 0.12.

Throughout the rest of the paper we use the notation introduced in Remark
3.11 and sometimes use (r, θ) in place of r eiθ.

5.1. Characterization of 2-d tangent Q-valued functions

In this section we analyze further Dir-minimizing functions f : D → AQ(R
n)

which are homogeneous, that is

(5.1) f(r, θ) = rα g(θ) for some α > 0.

Recall that, for T =
∑

i �Ti� we denote by η(T ) the center of mass Q−1
∑

i Ti.

Proposition 5.1. Let f : D → AQ(R
n) be a nontrivial, α-homogeneous func-

tion which is Dir-minimizing. Assume in addition that η ◦ f = 0. Then,

(a) α = n∗

Q∗ ∈ Q, with MCD(n∗, Q∗) = 1;

(b) there exist (R-)linear maps Lj : C → R
n and kj ∈ N such that

(5.2) f(x) = k0 �0� +

J∑
j=1

kj
∑

zQ∗=x

�
Lj · zn

∗
�
=: k0 �0� +

J∑
j=1

kj �fj(x)� .

J ≥ 1 and kj ≥ 1 for all j ≥ 1. If Q∗ > 1 or k0 > 0, each Lj is injective.
If Q∗ = 1, either J ≥ 2 or k0 > 0.

(c) For any i 
= j and any x 
= 0, the supports of fi(x) and fj(x) are disjoint.

Proof. Let f be a homogeneous Dir-minimizing Q-valued function. We de-
compose g = f |S1 into irreducible W 1,2 pieces as described in Proposition 1.5.

Hence, we can write g(x) = k0 �0� +
∑J

j=1 kj �gj(x)�, where

(i) k0 might vanish, while kj > 0 for every j > 0,
(ii) the gj ’s are all distinct, Qj-valued irreducibleW 1,2 maps such that gj(x) 
=

Qj �0� for some x ∈ S
1.

67
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By the characterization of irreducible pieces, there are W 1,2 maps γj : S1 → R
n

such that

(5.3) gj(x) =
∑

zQj=x

�γj(z)� .

Recalling (5.1), we extend γj to a function βj on the disk by setting βj(r, θ) =
rαQjγj(θ) and we conclude that

f(x) = k0 �0� +
J∑

j=1

∑
zQj=x

�βj(z)� =: k0 �0� +
J∑

j=1

kj �fj(x)� .

It follows that each fj is an α-homogeneous, Dir-minimizing function which
assumes values different from Q �0� somewhere. By Lemma 3.12, βj is neces-
sarily a Dir-minimizing R

n-valued function. Since βj is (αQj)-homogeneous, its
coordinates must be homogeneous harmonic polynomials. Moreover, βj does not
vanish identically. Therefore, we conclude that nj = αQj is a positive integer.
Thus, the components of each βj are linear combinations of the harmonic functions
(r, θ) �→ rnj cos(njθ) and (r, θ) �→ rnj sin(njθ). It follows that there are (nonzero)
R-linear maps Lj : C → R

n such that βj(z) = Lj · znj .
Next, let n∗ and Q∗ be the two positive integers determined by α = n∗/Q∗ and

MCD(n∗, Q∗) = 1. Since nj/Qj = α = n∗/Q∗, we necessarily have Qj = mjQ
∗ for

some integer mj =
nj

n∗ ≥ 1. Hence,

gj(x) =
∑

zmjQ
∗
=x

�
Lj · zmjn

∗
�
.

However, if mj > 1, then supp (gj) ≡ Q∗ 
= Qj , so that gj would not be irreducible.
Therefore, Qj = Q∗ for every j.

Next, since Dir(f,D) > 0, J ≥ 1. If Q∗ = 1, J = 1 and k0 = 0, then
f = Q �f1� and f1 is an R

n-valued function. But then f1 = η ◦f = 0, contradicting
Dir(f,D) > 0. Moreover, again using the irreducibility of gj , for all x ∈ S

1, the
points

Lj · zn
∗

with zQ
∗
= x

are all distinct. This implies that Lj is injective if Q∗ > 1. Indeed, assume by
contradiction that Lj · v = 0 for some v 
= 0. Without loss of generality, we can

assume that v = e1. Let x = eiθ/n
∗ ∈ S

1, with θ/Q∗ = π/2 − π/Q∗, and let us
consider the set

R := {zn∗ ∈ S
1 : zQ

∗
= x} = {ei(θ+2πk)/Q∗}.

Therefore w1 = eiθ/Q
∗
and w2 = ei(θ+2π)/Q∗

= eiπ−iθ/Q∗
are two distinct elements

of R. However, it is easy to see that w1 − w2 = 2 cos(θ/Q∗)e1. Therefore, Ljw1 =
Ljw2, which is a contradiction. This shows that Lj is injective.

Finally, we argue by contradiction for (c). If (c) were false, up to rotation of
the plane and relabeling of the gi’s, we assume that supp (g1(0)) and supp (g2(0))
have a point P in common. We can, then, choose the functions γ1 and γ2 of (5.3)
so that

γ1(0) = γ1(2π) = γ2(0) = γ2(2π) = P.

We then define ξ : D → R
n in the following way:

ξ(r, θ) =

{
r2αQ∗

γ1(2θ) if θ ∈ [0, π],

r2αQ∗
γ2(2θ) if θ ∈ [π, 2π].
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Then, it is immediate to verify that

(5.4) �f1(x)� + �f2(x)� =
∑

z2Q∗=x

�ξ(z)� .

Therefore, f can be decomposed as

f(x) =
∑

z2Q∗=x

�ξ(z)�+

⎧⎨
⎩k0�0� + (k1 − 1) �f1(x)� + (k2 − 1) �f2(x)� +

∑
j≥J

kj �fi(x)�

⎫⎬
⎭.

It turns out that the map in (5.4) is a Dir-minimizing function, and, hence, that ξ is
a (2αQ∗)-homogeneous Dir-minimizing function. Since 2αQ∗ = 2n∗ we conclude
the existence of a linear L : C → R

n such that

�f1(x)� + �f2(x)� =
∑

z2Q∗=x

�
L · z2n∗

�
= 2

∑
zQ∗=x

�
L · zn∗

�
.

Hence, for any x ∈ S
1, the cardinality of the support of �g1(x)� + �g2(x)� is at

most Q∗. Since each gi is irreducible, the cardinality of the support of �gi(x)� is
everywhere exactly Q∗. We conclude thus that g1(x) = g2(x) for every x, which is
a contradiction to assumption (ii) in our decomposition. Arguing analogously we
conclude that each Lj is injective when Q∗ = 1 and k0 > 0. �

5.2. Uniqueness of 2-d tangent functions

The key point of this section is the rate of convergence for the frequency func-
tion, as stated in Proposition 5.2. We use here the functions Hx,f , Dx,f and Ix,f
introduced in Definition 3.13 and drop the subscripts when f is clear from the
context and x = 0.

Proposition 5.2. Let f ∈ W 1,2(D,AQ) be Dir-minimizing, with Dir(f,D) > 0
and set α = I0,f (0) = I(0). Then, there exist constants γ > 0, C > 0, H0 > 0 and
D0 > 0 such that, for every 0 < r ≤ 1,

(5.5) 0 ≤ I(r)− α ≤ C rγ ,

(5.6) 0 ≤ H(r)

r2α+1
−H0 ≤ C rγ and 0 ≤ D(r)

r2α
−D0 ≤ C rγ .

The proof of this result follows computations similar to those of [Cha88]. A
simple corollary of (5.5) and (5.6) is the uniqueness of tangent functions.

Theorem 5.3. Let f : D → AQ(R
n) be a Dir-minimizing Q-valued functions,

with Dir(f,D) > 0 and f(0) = Q �0�. Then, there exists a unique tangent map g to
f at 0 (i.e. the maps f0,ρ defined in (3.51) converge locally uniformly to g).

In the first subsection we prove Theorem 5.3 assuming Proposition 5.2, which
will be then proved in the second subsection.
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5.2.1. Proof of Theorem 5.3. Set α = I0,f (0) and note that, by Theorem
3.19 and Proposition 5.2, α = D0/H0 > 0, where D0 and H0 are as in (5.6).
Without loss of generality, we might assume D0 = 1. So, by (5.6), recalling the
definition of blow-up f�, it follows that

(5.7) f�(r, θ) = �−αf(r �, θ) (1 +O(�γ/2)).

Our goal is to show the existence of a limit function (in the uniform topology) for
the blow-up f�. From (5.7), it is enough to show the existence of a uniform limit
for the functions h�(r, θ) = �αf�(r �, θ). Since h�(r, θ) = rαhr �(1, θ), it suffices to
prove the existence of a uniform limit for h�|S1 . On the other hand, the family of
functions {h�}�>0 is equi-Hölder (cp. with Theorem 3.19 and (5.6) in Proposition
5.2). Therefore, the existence of an uniform limit is equivalent to the existence of
an L2 limit.

So, we consider r/2 ≤ s ≤ r and estimate∫ 2π

0

G (hr, hs)
2 =

∫ 2π

0

G
(
f(r, θ)

rα
,
f(s, θ)

sα

)2

dθ ≤
∫ 2π

0

(∫ r

s

∣∣∣∣ ddt
(
f(t, θ)

tα

)∣∣∣∣ dt
)2

dθ

≤ (r − s)

∫ 2π

0

∫ r

s

∣∣∣∣ ddt
(
f(t, θ)

tα

)∣∣∣∣
2

dt dθ.(5.8)

This computation can be easily justified because r �→ f(r, θ) is a W 1,2 function for
a.e. θ. Using the chain rule in Proposition 1.12 and the variation formulas (3.6),
(3.7) in Proposition 3.2, we estimate (5.8) in the following way:∫ 2π

0

G (hr, hs)
2 ≤ (r − s)

∫ 2π

0

∫ r

s

∑
i

{
α2 |fi|2

t2α+2
+

|∂νfi|2
t2α

− 2α
〈∂νfi, fi〉
t2α+1

}

(3.6), (3.7)
= (r − s)

∫ r

s

{
α2 H(t)

t2α+3
+

D′(t)

2 t2α+1
− 2α

D(t)

t2α+2

}
dt

= (r − s)

∫ r

s

{
1

2t

(
D(t)

t2α

)′
+ α2 H(t)

2 t2α+3
− α

D(t)

t2α+2

}
dt

= (r − s)

∫ r

s

{
1

2t

(
D(t)

t2α

)′
+ α

H(t)

2 t2α+3

(
α− I0,f (t)

)}
dt

≤ (r − s)

∫ r

s

1

2t

(
D(t)

t2α

)′
dt = (r − s)

∫ r

s

1

2t

(
D(t)

t2α
−D0

)′
dt(5.9)

where the last inequality follows from the monotonicity of the frequency function,
which implies, in particular, that α ≤ I0,f (t) for every t. Integrating by parts the
last integral of (5.9), we get∫ 2π

0

G (hr, hs)
2 ≤ (r − s)

[
1

2 r

(
D(r)

r2α
−D0

)
− 1

2 s

(
D(s)

s2α
−D0

)]
+

+ (r − s)

∫ r

s

1

2t2

(
D(t)

t2α
−D0

)
.

Recalling that 0 ≤ D(r)/r2α −D0 ≤ Crγ and s = r/2 we estimate

(5.10)

∫ 2π

0

G (hr, hs)
2 ≤ C

r − s

s
rγ + (r − s)

∫ r

s

1

2t2−γ
≤ Crγ .
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Let now s ≤ r and choose L ∈ N such that r/2L+1 < s ≤ r/2L. Iterating (5.10),
we reach

‖G (hr, hs)‖L2 ≤
L−1∑
l=0

∥∥G (hr/2l , hr/2l+1

)∥∥
L2 +

∥∥G (hr/2L , hs

)∥∥
L2

≤
L∑

l=0

rγ/2(
2γ/2

)l ≤ C rγ/2.

This shows that h�|S1 is a Cauchy sequence in L2 and, hence, concludes the proof.

5.2.2. Proof of Proposition 5.2. The key of the proof is the following esti-
mate:

(5.11) I ′(r) ≥ 2

r
(α+ γ − I(r)) (I − α) .

We will prove (5.11) in a second step. First we show how to conclude the various
statements of the proposition.

Step 1. (5.11)=⇒ Proposition 5.2. Since I is monotone nondecreasing (as
proved in Theorem 3.15), there exists r0 > 0 such that α+γ− I(r) ≥ γ/2 for every
r ≤ r0. Therefore,

(5.12) I ′(r) ≥ γ

r
(I(r)− α) ∀ r ≤ r0.

Integrating the differential inequality (5.12), we get the desired conclusion:

I(r)− α ≤
(

r

r0

)γ

(I(r0)− α) = C rγ .

From the computation of H ′ in (3.46), we deduce easily that

(5.13)

(
H(r)

r

)′
=

2D(r)

r
.

This implies the following identity:(
log

H(r)

r2α+1

)′
=

(
log

H(r)

r
− log r2α

)′

=
r

H(r)

(
H(r)

r

)′
− 2α

r

(5.13)
=

2

r
(I(r)− α) ≥ 0.

(5.14)

So, in particular, we infer the monotonicity of log H(r)
r2α+1 and, hence, of H(r)

r2α+1 . We
can, therefore, integrate (5.14) and use (5.5) in order to achieve that, for 0 < s <
r ≤ 1 and for a suitable constant Cγ , the function

log
H(r)

r2α+1
− Cγ r

γ = log

(
H(r) e−Cγ rγ

r2α+1

)
is decreasing. So, we conclude the existence of the following limits:

lim
r→0

H(r) e−Cγ rγ

r2α+1
= lim

r→0

H(r)

r2α+1
= H0 > 0,

with the bounds, for r small enough,

H(r)

r2α+1
(1− C rγ) ≤ H(r) e−Cγ rγ

r2α+1
≤ H0 ≤ H(r)

r2α+1
.
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This easily concludes the first half of (5.6). The rest of (5.6) follows from the
following identity:

D(r)

r2α
−D0 = (I(r)− I0)

H(r)

r2α+1
+ I0

(
H(r)

r2α+1
−H0

)
.

Indeed, both addendum are positive and bounded by C rγ .

Step 2. Proof of (5.11). Recalling the computation in (3.47), (5.11) is equiva-
lent to

r D′(r)

H(r)
− 2 I(r)2

r
≥ 2

r

(
α+ γ − I(r)

)
(I(r)− α) ,

which, in turn, reduces to

(5.15) (2α+ γ)D(r) ≤ r D′(r)

2
+

α(α+ γ)H(r)

r
.

To prove (5.15), we exploit once again the harmonic competitor constructed in the
proof of the Hölder regularity for the planar case in Proposition 3.10. Let r > 0 be

a fixed radius and f(reiθ) = g(θ) =
∑J

j=1 �gj(θ)� be an irreducible decomposition

as in Proposition 1.5. For each irreducible gj , we find γj ∈ W 1,2(S1,Rn) and Qj

such that

gj(θ) =

Qj∑
i=1

�

γj

(
θ + 2πi

Qj

)	

.

We write now the different quantities in (5.15) in terms of the Fourier coefficients
of the γj ’s. To this aim, consider the Fourier expansions of the γj ’s,

γj(θ) =
aj,0
2

+

+∞∑
l=1

rl
{
aj,l cos(l θ) + bj,l sin(l θ)

}
,

and their harmonic extensions

ζj(�, θ) =
aj,0
2

+
+∞∑
l=1

�l
{
aj,l cos(l θ) + bj,l sin(l θ)

}
.

Recalling Lemma 3.12, we infer the following equalities:
(5.16)

D′(r) = 2
∑
j

Dir(gj , r S
1) =

∑
j

2Dir(γj , r S
1)

Qj
= 2π

∑
j

∑
l

r2l−1 l2

Qj

(
a2j,l + b2j,l

)
,

(5.17)

H(r) =
∑
j

∫
r S1

|gj |2 =
∑
j

Qj

∫
r S1

|γj |2 = π
∑
j

Qj

{
r a2j,0
2

+
∑
l

r2l+1
(
a2j,l + b2j,l

)}
.

Finally, using the minimality of f ,

(5.18) D(r) ≤
∑
j

Dir(ζj , Br) = π
∑
j

∑
l

r2l l
(
a2j,l + b2j,l

)
.

We deduce from (5.16), (5.17) and (5.18) that, to prove (5.15), it is enough to find
a γ such that

(2α+ γ) l ≤ l2

Qj
+ α (α+ γ)Qj , for every l ∈ N and every Qj ,
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which, in turn, is equivalent to

(5.19) γ Qj (l − αQj) ≤ (l − αQj)
2.

Note that the Qj ’s depend on r, the radius we fixed. However, they are always
natural numbers less or equal than Q. It is, hence, easy to verify that the following
γ satisfies (5.19):

(5.20) γ = min
1≤k≤Q

{
�αk�+ 1− αk

k

}
.

5.3. The singularities of 2-d Dir-minimizing functions are isolated

We are finally ready to prove Theorem 0.12.

Proof of Theorem 0.12. Our aim is to prove that, if f : Ω → AQ is Dir-
minimizing, then the singular points of f are isolated. The proof is by induction
on the number of values Q. The basic step of the induction procedure, Q = 1, is
clearly trivial, since Σf = ∅. Now, we assume that the claim is true for any Q′ < Q
and we will show that it holds for Q as well.

So, we fix f : R2 ⊃ Ω → AQ Dir-minimizing. Since the function f −Q �η ◦ f�
is still Dir-minimizing and has the same singular set as f (notations as in Lemma
3.23), it is not restrictive to assume η ◦ f ≡ 0.

Next, let ΣQ,f = {x : f(x) = Q �0�} and recall that, by the proof of Theorem
0.11, either ΣQ,f = Ω or ΣQ,f consists of isolated points. Assuming to be in the
latter case, on Ω \ ΣQ,f , we can locally decompose f as the sum of a Q1-valued
and a Q2-valued Dir-minimizing function with Q1, Q2 < Q. We can therefore use
the inductive hypothesis to conclude that the points of Σf \ ΣQ,f are isolated. It
remains to show that no x ∈ ΣQ,f is the limit of a sequence of points in Σf \ΣQ,f .

Fix x0 ∈ ΣQ,f . Without loss of generality, we may assume x0 = 0. Note that
0 ∈ ΣQ,f implies D(r) > 0 for every r such that Br ⊂ Ω. Let g be the tangent
function to f in 0 . By the characterization in Proposition 5.1, we have

g = k0 �0� +
J∑

j=1

kj �gj� =
∑
j

kj �gj� ,
1

where the gj ’s are Q∗-valued functions satisfying (a)-(c) of Proposition 5.1 (in
particular α = n∗/Q∗ is the frequency in 0). So, we are necessarily in one of the
following cases:

(i) max{k0, J − 1} > 0;
(ii) J = 1, k0 = 0 and k1 < Q.

If case (i) holds, we define

(5.21) di,j := min
x∈S1

dist
(
supp (gi(x)), supp (gj(x))

)
and ε = min

i �=j

di,j
4

.

By Proposition 5.1(c), we have ε > 0. From the uniform convergence of the blow-
ups to g, there exists r0 > 0 such that

(5.22) G (f(x), g(x)) ≤ ε |x|α for every |x| ≤ r0.

1Here we use the convention that the index j runs from 0 to J only if k0 > 0. Otherwise the
index runs from 1 to J .
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The choice of ε in (5.21) and (5.22) easily implies the existence of fj , with j ∈
{0, . . . , J}, such that f0 is a W 1,2 k0-valued function, each fj is a W 1,2 (kj Q

∗)-
valued function for j > 0, and

(5.23) f |Br0
=

J∑
j=0

�fj� .

It follows that each fj is a Dir-minimizing function. The sum (5.23) contains at
least two terms: so each fj take less than Q values and we can use our inductive
hypothesis to conclude that Σf ∩Br0 =

⋃
j Σfj ∩Br0 consists of isolated points.

If case (ii) holds, then k Q∗ = Q, with k < Q, and g is of the form

g(x) =
∑

zQ∗=x

k
�
L · zn∗

�
,

where L is injective. In this case, set

d(r) := min
zQ∗
1 =zQ∗

2 , z1 �=z2, |zi|=r1/Q∗
|L · zn∗

1 − L · zn∗

2 |.

Note that

d(r) = c rα and max
|x|=r

dist
(
supp (f(x)), supp (g(x))

)
= o(rα).

This implies the existence of r > 0 and ζ ∈ C(Br,Ak(R
n)) such that

f(x) =
∑

zQ∗=x

�ζ(z)� for |x| < r.

Set ρ = rQ
∗
. If x 
= Bρ \ 0 and σ < min{|x|, ρ − |x|}, then obviously ζ ∈

W 1,2(Bσ(x)). Thus, ζ ∈ W 1,2(Bρ \ Bσ) for every σ > 0. On the other hand, after
the same computations as in Lemma 3.12, it is easy to show that Dir(ζ, Bρ \Bσ) is
bounded independently of σ. We conclude that ζ ∈ W 1,2(Bρ \ {0}). This implies
that ζ ∈ W 1,2(Bρ) (see below) and hence we can apply the same arguments of
Lemma 3.12 to show that ζ is Dir-minimizing. Therefore, by inductive hypothe-
sis, Σζ consists of isolated points. So, ζ is necessarily regular in a punctured disk
Bσ(0) \ {0}, which implies the regularity of f in the punctured disk Bσ1/Q∗ \ {0}.

For the reader’s convenience, we give a short proof of the claim ζ ∈ W 1,2(Bρ).
This is in fact a consequence of the identity W 1,2(Bρ\{0}) = W 1,2(Bρ) for classical
Sobolev spaces, a byproduct of the fact that 2-capacity of a single point in the plain
is finite.

Indeed, we claim that, for every T ∈ Ak(R
n), the function hT := G(ζ, T )

belongs to W 1,2(Bρ). Fix a test function ϕ ∈ C∞
c (Bρ) and denote by Λi the

distributional derivative ∂xi
hT in Bρ \ {0}. For every σ ∈ (0, ρ) let ψσ ∈ C∞

c (Bσ)
be a cutoff function with the properties:

(i) 0 ≤ ψσ ≤ 1;
(ii) ‖Dψσ‖C0 ≤ Cσ−1, where C is a geometric constant independent of σ.
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Then, ∫
hT ∂xi

ϕ =

∫
hT ∂xi

(ϕψσ) +

∫
hT ∂xi

((1− ψσ)ϕ)

=

∫
Bσ

hT ∂xi
(ϕψσ)︸ ︷︷ ︸

(I)

−
∫

Λi((1− ψσ)ϕ)︸ ︷︷ ︸
(II)

.

Letting σ ↓ 0, (II) converges to
∫
Λiϕ. As for (I), we estimate it as follows:

|(I)| ≤ ‖∂xi
(ϕψσ)‖L2(Bσ) ‖hT ‖L2(Bσ).

By the absolute continuity of the integral, ‖hT ‖L2(Bσ) → 0 as σ ↓ 0. On the

other hand, we have the pointwise inequality |∂xi
(ϕψσ)| ≤ C(1 + σ−1). Therefore,

‖∂xi
(ϕψσ)‖L2(Bσ) is bounded independently of σ. This shows that (I) ↓ 0 and

hence we conclude the identity
∫
hT ∂xi

ϕ = −
∫
Λiϕ. Thus, Λ is the distributional

derivative of hT in Bρ. �
Remark 5.4. Theorem 0.12 is optimal. There are Dir-minimizing functions

for which the singular set is not empty. Any holomorphic varieties which can be
written as graph of a multi-valued function is Dir-minimizing. For example, the
function

D � z �→
�
z

1
2

�
+

�
−z

1
2

�
∈ A2(R

4),

whose graph is the complex variety V = {(z, w) ∈ C
2 : |z| < 1, w2 = z}, is an

example of a Dir-minimizing function with a singular point in the origin. A proof of
this result is contained in [Alm00]. The question will be addressed also in [Spa09].
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