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Abstract This short note is the announcement of a forthcoming work in which
we prove a first general boundary regularity result for area-minimizing currents in
higher codimension, without any geometric assumption on the boundary, except
that it is an embedded submanifold of a Riemannian manifold, with a mild amount
of smoothness (C3,a0 for a positive a0 suffices). Our theorem allows to answer a
question posed by Almgren at the end of his Big Regularity Paper. In this note we
discuss the ideas of the proof and we also announce a theorem which shows that the
boundary regularity is in general weaker that the interior regularity. Moreover we
remark an interesting elementary byproduct on boundary monotonicity formulae.

1 Introduction

Consider a smooth complete Riemannian manifold Σ of dimension m + n̄ and a
smooth closed oriented submanifold Γ ⊂ Σ of dimension m−1 which is a boundary
in integral homology. Since the pioneering work of Federer and Fleming (cf. [21])
we know that Γ bounds an integer rectifiable current T in Σ which minimizes the
mass among all integer rectifiable currents bounded by Γ .
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In general, consider an open U ⊂ Σ and a submanifold Γ ⊂ Σ which has no
boundary in U . If T is an integral current in U with ∂T U = JΓ K U we say that T
is mass-minimizing if

M(T +∂S)≥M(T )

for every integral current S in U .
Starting with the pioneering work of De Giorgi (see [8]) and thanks to the efforts

of several mathematicians in the sixties and the seventies (see [22, 9, 4, 30]), it is
known that, if Σ is of class C2,a0 for some a0 > 0, in codimension 1 (i.e., when n̄= 1)
and away from the boundary Γ , T is a smooth submanifold except for a relatively
closed set of Hausdorff dimension at most m− 7. Such set, which from now on
we will call interior singular set, is indeed (m− 7)-rectifiable (cf. [29]) and it has
been recently proved that it must have locally finite Hausdorff (m−7)-dimensional
measure (see [28]). In higher codimension, namely when n̄ = 2, Almgren proved in
a monumental work (known as Almgren’s Big Regularity Paper [5]) that, if Σ is of
class C5, then the interior singular set of T has Hausdorff dimension at most m−2.
In a series of papers (cf. [11, 13, 12, 14, 15]) the first author and Emanuele Spadaro
have revisited Almgren’s theory introducing several new ideas which simplify his
proof considerably. Furthermore, the first author together with Spadaro and Spolaor,
in [18, 19, 17, 16] applied these sets of ideas to establish a complete proof of Chang’s
interior regularity results for 2 dimensional mass-minimizing currents [7], showing
that in this case interior singular points are isolated.

Both in codimension one and in higher codimension the interior regularity theory
described above is, in terms of dimensional bounds for the singular set, optimal (cf.
[6] and [20]). In the case of boundary points the situation is instead much less satis-
factory. The first boundary regularity result is due to Allard who, in his Ph.D. thesis
(cf. [2]), proved that, if Σ = Rm+n̄ and Γ is lying on the boundary of a uniformly
convex set, then for every point p ∈ Γ there is a neighborhood W such that T W
is a classical oriented submanifold (counted with multiplicity 1) whose boundary
(in the usual sense of differential topology) is Γ ∩W . In his later paper [3] Allard
developed a more general boundary regularity theory from which he concluded the
above result as a simpler corollary.

When we drop the “convexity assumption” described above, the same conclusion
cannot be reached. Let for instance Γ be the union of two concentric circles γ1 and
γ2 which are contained in a given 2-dimensional plane π0 ⊂R2+n̄ and have the same
orientation. Then the area-minimizing current T in R2+n̄ which bounds Γ is unique
and it is the sum of the two disks bounded by γ1 and γ2 in π0, respectively. At every
point p which belongs to the inner circle the current T is “passing” through the
circle while the multiplicity jumps from 2 to 1. However it is natural to consider
such points as “regular”, motivating therefore the following definition.

Definition 1. A point x ∈ Γ is a regular point for T if there exist a neighborhood
W 3 x and a regular m-dimensional connected submanifold Σ0 ⊂W ∩Σ (without
boundary in W ) such that spt(T )∩W ⊂ Σ0. The set of such points will be denoted
by Regb(T ) and its complement in Γ will be denoted by Singb(T ).



Boundary regularity of mass-minimizing integral currents and a question of Almgren 3

By the Constancy Lemma, if x ∈ Γ is a regular point, if Σ0 is as in Definition 1
and if the neighborhood W is sufficiently small, then the following holds:

1. Γ ∩W is necessarily contained in Σ0 and divides it in two disjoint regular sub-
manifolds Σ

+
0 and Σ

−
0 of W with boundaries ±Γ ;

2. there is a positive Q ∈ N such that T W = Q
q

Σ
+
0

y
+(Q−1)

q
Σ
−
0

y
.

We define the density of such points p as Q− 1
2 and we denote it by Θ(T, p)=Q− 1

2 .
If the density is 1

2 then the point fulfills the conclusions of Allard’s boundary
regularity theorem and Σ0 is not uniquely determined: the interesting geometrical
object is Σ

+
0 and any smooth “extension” of it across Γ can be taken as Σ0. On the

other hand for Q ≥ 2 the local behavior of the current is similar to the example of
the two circles above: it is easy to see that Σ0 is uniquely determined and that it has
mean curvature zero.

When the codimension of the area-minimizing current is 1, Hardt and Simon
proved in [24] that the set of boundary singular points is empty, hence solving com-
pletely the boundary regularity problem when n̄ = 1 (although the paper [24] deals
only with the case Σ = Rm+n̄, its extension to a general Riemannian ambient man-
ifold should not cause real issues). In the case of general codimension and general
Γ , Allard’s theory implies the existence of (relatively few) boundary regular points
only in special ambient manifolds Σ : for instance when Σ = Rm+n̄ we can recover
the regularity of the “outermost” boundary points q ∈ Γ (i.e., those points q where
Γ touches the smallest closed ball which contains it, cf. [25]). According to the
existing literature, however, we cannot even exclude that the set of regular points
is empty when Σ is a closed Riemannian manifold. In the last remark of the last
section of his Big Regularity Paper, cf. [5, Section 5.23, p. 835], Almgren states the
following open problem, which is closely related to the discussion carried above.

Question 1 (Almgren). “I do not know if it is possible that the set of density 1
2 points

is empty when U = Σ and Γ is connected.”

The interest of Almgren in Question 1 is motivated by an important geometric
conclusion: in [5, Section 5.23] he shows that, if there is at least one density 1

2
point and Γ is connected, then spt(T ) is as well connected and the current T has
(therefore) multiplicity 1 almost everywhere. In other words the mass of T coincides
with the Hausdorff m-dimensional measure of its interior regular set.

In the forthcoming paper [10] we show the first general boundary regularity re-
sult in any codimension, which guarantees the density of boundary regular points
without any restriction (except for a mild regularity assumption on Γ and Σ : both
are assumed to be of class C3,a0 for some positive a0; note that such regularity as-
sumption for the ambient manifold coincides with the one of the interior regularity
theory as developed in the papers [11, 13, 12, 14, 15], whereas Almgren’s big reg-
ularity paper [5] assumes C5). As a corollary we answer Almgren’s question in full
generality showing: when U = Σ and Γ is connected, then there is always at least
one point of density 1

2 and the support of any minimizer is connected. In the next
section we will state the main results of [10], whereas in Section 3 we will give an
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account of their (quite long) proofs. Finally, in Section 4 we outline an interesting
side remark sparked by one of the key computations in [10]. The latter yields an al-
ternative proof of Allard’s boundary monotonicity formula under slightly different
assumptions: in particular it covers, at the same time, the Grüter-Jost monotonicity
formula for free boundary stationary varifolds.

2 Main theorems

Our main result in [10] is the following

Theorem 1. Consider a C3,a0 complete Riemannian submanifold Σ ⊂ Rm+n of di-
mension m+ n and an open set W ⊂ Rm+n. Let Γ ⊂ Σ ∩W be a C3,a0 oriented
submanifold without boundary in W ∩Σ and let T be an integral m-dimensional
mass-minimizing current in W ∩Σ with boundary ∂T W = JΓ K. Then Regb(T ) is
dense in Γ .

As a simple corollary of the theorem above, we conclude that Almgren’s Ques-
tion 1 has a positive answer.

Corollary 1. Let W = Rm+n and assume Σ ,Γ and T are as in Theorem 1. If Γ is
connected, then

1. Every point in Regb(T ) has density 1
2 ;

2. The support spt(T ) of the current T is connected;
3. The multiplicity of the current is 1 at H m-a.e. interior point, and so the mass of

the current coincides with H m(spt(T )).

In fact the above corollary is just a case of a more general “structural” result,
which is also a consequence of Theorem 1.

Theorem 2. Let W =Rm+n and assume Σ ,Γ and T are as in Theorem 1 and that Γ

is in addition compact. Denote by Γ1, . . . ,ΓN the connected components of Γ . Then

T =
N

∑
j=1

Q jTj , (1)

where:

(a) For every j = 1, . . . ,N, Tj is an integral current with ∂Tj = ∑
N
i=1 σi j JΓiK and

σi j ∈ {−1,0,1}.
(b) For every j = 1, . . . ,N, Tj is an area-minimizing current and Tj = H m Λ j,

where Λ1, . . . ,ΛN are the connected components of spt(T ) \ (Γ ∪ Singi(T )) =
Regi(T ).

(c) Each Γi is

a. either one-sided, which means that all coefficients σi j = 0 except for one j =
o(i) for which σio(i) = 1;
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b. or two-sided, which means that:
i. there is one j = p(i) such that σip(i) = 1,

ii. there is one j = n(i) such that σin(i) =−1,
iii. all other σi j = 0.

(d) If Γi is one-sided, then Qo(i) = 1 and all points in Γi∩RegbT have multiplicity 1
2 .

(e) If Γi is two-sided, then Qn(i) = Qp(i)−1, all points in Γi∩RegbT have multiplicity
Qp(i)− 1

2 and Tp(i)+Tn(i) is area minimizing.

Note that, as a simple consequence of Theorem 2 and the interior regularity the-
ory, we conclude that in every two-sided component Γi of the boundary Γ the bound-
ary singular points have dimension at most m−2.

In view of the interior regularity results, one might be tempted to conjecture that
Theorem 1 is very suboptimal and that the Hausdorff dimension of Singb(T ) is at
most m−2. Though currently we do not have an answer to this question, let us stress
that at the boundary some new phenomena arise. Indeed, in [10], we can prove the
following:

Theorem 3. There are a smooth closed simple curve Γ ⊂R4 and a mass minimizing
current T in R4 such that ∂T = JΓ K and Singb(T ) has an accumulation point.

In particular Chang’s result, namely the discreteness of interior singular points
for two dimensional mass minimizing currents, does not hold at the boundary. Ac-
tually the example can be modified in order to obtain also a sequence of interior
singular points accumulating towards the boundary, see [10].

3 The main steps to Theorem 1

In this section we outline the long road which is taken in [10] to prove Theorem 1.
We fix therefore Σ ,Γ and T as in Theorem 1.

3.1 Reduction to collapsed points

Recalling Allard’s monotonicity formula, we introduce at each boundary point p ∈
Γ the density Θ(T, p), namely the limit, as r ↓ 0, of the normalized mass ratio in
the ball Br(p) ⊂ Rm+n (in particular the normalization is chosen so that at regular
boundary points the density coincides with the one defined in the previous section).
Using a suitable variant of Almgren’s stratification theorem, we conclude first that,
except for a set of Hausdorff dimension at most m− 2, at any boundary point p
there is a tangent cone which is flat, namely which is contained in an m-dimensional
plane π ⊃ T0Γ . Secondly, using a classical upper Baire category argument, we show
that, for a dense subset of boundary points p, additionally to the existence of a flat
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tangent cone, there is a sufficiently small neighborhood U where the density Θ(T,q)
is bounded below, at any q ∈ Γ ∩U , by Θ(T, p). In particular the proof of Theorem
1 is reduced to the claim that any such point, which we call collapsed, is in fact
regular.

3.2 The “linear” theory

Assume next that 0 ∈Γ is a collapsed point and let Q− 1
2 be its density. By Allard’s

boundary regularity theory for stationary varifolds, we know a priori that 0 is a
regular point if Q= 1 and thus we can assume, without loss of generality, that Q≥ 2.
Fix a flat tangent cone to 0 and assume, up to rotations, that it is the plane π0 =Rm×
{0} and that T0Γ = {xm = 0}∩π0. Denote by π

±
0 the two half-planes π

±
0 = {±xm >

0}∩π0. Assume for the moment that, at suitably chosen small scales, the current T
is formed by Q sheets over π

+
0 and Q−1 sheets over π

−
0 . By a simple linearization

argument such sheets must then be almost harmonic (in a suitable sense).
Having this picture in mind, it is natural to develop a theory of

(
Q− 1

2

)
-valued

functions minimizing the Dirichlet energy. In order to explain the latter object con-
sider the projection γ of Γ onto π0. On a sufficiently small disk Br(0)∩π0, γ divides
π0 into two regions. A Lipschitz

(
Q− 1

2

)
-valued map consists of:

1. a Lipschitz Q-valued map (in the sense of Almgren, cf. [11]) u+ on one side of γ

2. and a Lipschitz (Q−1)-valued map u− on the other side,

satisfying the compatibility condition that the union of their graphs form a current
whose boundary is the submanifold Γ itself. A

(
Q− 1

2

)
-map will then be called Dir-

minimizing if it minimizes the sum of the Dirichlet energies of the two “portions”
u+ and u− under the constraint that Γ and the boundary values on ∂ (Br(0)∩π0) are
both fixed.

The right counterpart of the “collapsed point situation” described above is the
assumption that all the 2Q−1 sheets meet at their common boundary Γ ; under such
assumption we say that the

(
Q− 1

2

)
Dir-minimizer has collapsed interface. We then

develop a suitable regularity theory for minimizers with collapsed interface. First of
all their Hölder continuity follows directly from the Ph.D. thesis of the third author,
cf. [26]. Secondly, the most important conclusion of our analysis is that a minimizer
can have collapsed interface only if it consists of a single harmonic sheet “passing
through” the boundary data, counted therefore with multiplicity Q on one side and
with multiplicity Q−1 on the other side.

The latter theorem is ultimately the deus ex machina of the entire argument lead-
ing to Theorem 1. The underlying reason for its validity is that a monotonicity for-
mula for a suitable variant of Almgren’s frequency function holds. Given the dis-
cussion of [27], such monotonicity can only be hoped in the collapsed situation and,
remarkably, this suffices to carry on our program.

The validity of the monotonicity formula is clear when the collapsed interface
is flat. However, when we have a curved boundary, a subtle yet important point
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becomes crucial: we cannot hope in general for the exact first variation identities
which led Almgren to his monotonicity formula, but we must replace them with
suitable inequalities. Moreover the latter can be achieved only if we adapt the fre-
quency function by integrating a suitable weight. We illustrate this idea in a simpler
setting in the next section.

3.3 First Lipschitz approximation

A first use of the linear theory is approximating the current with the graph of a
Lipschitz

(
Q− 1

2

)
-valued map around collapsed points. The approximation is then

shown to be almost Dir-minimizing. Our approximation algorithm is a suitable
adaptation of the one developed in [12] for interior points. In particular, after adding
an “artificial sheet”, we can directly use the Jerrard-Soner modified BV estimates of
[12] to give a rather accurate Lipschitz approximation: the subtle point is to engineer
the approximation so that it has collapsed interface.

3.4 Height bound and excess decay

The previous Lipschitz approximation, together with the linear regularity theory, is
used to establish a power-law decay of the excess à la De Giorgi in a neighborhood
of a collapsed point. The effect of such theorem is that the tangent cone is flat and
unique at every point p ∈ Γ in a sufficiently small neighborhood of the collapsed
point 0 ∈ Γ . Correspondingly, the plane π(p) which contains such tangent cone is
Hölder continuous in the variable p ∈ Γ and the current is contained in a suitable
horned neighborhood of the union of such π(p).

An essential ingredient of our argument is an accurate height bound in a neigh-
borhood of any collapsed point in terms of the spherical excess. The argument fol-
lows an important idea of Hardt and Simon in [24] and takes advantage of an ap-
propriate variant of Moser’s iteration on varifolds, due to Allard, combined with a
crucial use of the remainder in the monotonicity formula. The same argument has
been also used by Spolaor in a similar context in [31], where he combines it with
the decay of the energy for Dir-minimizers, cf. [31, Proposition 5.1 & Lemma 5.2].

3.5 Second Lipschitz approximation

The decay of the excess proved in the previous step is used then to improve the
accuracy of the Lipschitz approximation. In particular, by suitably decomposing the
domain of the approximating map in a Whitney-type cubical decomposition which
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refines towards the boundary, we can take advantage of the interior approximation
theorem of [12] on each cube and then patch the corresponding graphs together.

3.6 Left and right center manifolds

The previous approximation result is combined with a careful smoothing and patch-
ing argument to construct a “left” and a “right” center manifold M+ and M−. The
M± are C3,κ submanifolds of Σ with boundary Γ and they provide a good approx-
imation of the “average of the sheets” on both sides of Γ in a neighborhood of the
collapsed point 0 ∈ Γ . They can be glued together to form a C1,1 submanifold M
which “passes through Γ ”. Each portion has C3,κ estimates up to the boundary, but
we only know that the tangent spaces at the boundary coincide: we have a priori no
information on the higher derivatives. The construction algorithm follows closely
that of [14] for the interior, but some estimates must be carefully adapted in order to
ensure the needed boundary regularity.

The center manifolds are coupled with two suitable approximating maps N±.
The latter take values on the normal bundles of M± and provide an accurate ap-
proximation of the current T . Their construction is a minor variant of the one in
[14].

3.7 Monotonicity of the frequency function and final blow-up
argument

After constructing the center manifolds and the corresponding approximations we
use a suitable Taylor expansion of the area functional to show that the monotonicity
of the frequency function holds for the approximating maps N± as well.

We then complete the proof of Theorem 1: in particular we show that, if 0 were
a singular collapsed point, suitable rescalings of the approximating maps N± would
produce, in the limit, a

(
Q− 1

2

)
Dir-minimizer violating the linear regularity theory.

On the one hand the estimate on the frequency function plays a primary role in
showing that the limiting map is nontrivial. On the other hand the properties of the
center manifolds M± enter in a fundamental way in showing that the average of the
sheets of the limiting

(
Q− 1

2

)
map is zero on both sides.

4 Weighted monotonicity formulae

In this section we want to illustrate in a simple situation an idea which, in spite of
being elementary, plays a fundamental role in our proof of Theorem 1: boundary
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monotonicity formulae can be derived from the arguments of their interior counter-
parts provided we introduce a suitable weight.

Let Γ be an (m− 1)-dimensional submanifold of Rm+n. We consider an m-
dimensional varifold V in Rm+n \Γ and assume it is stationary in Rm+n \Γ . Allard
in [3] derived his famous monotonicity formula at the boundary under the additional
assumption that the density of V has a uniform positive lower bound. His proof con-
sists of two steps: he first derives a suitable representation for the first variation δV
of V along general vector fields of Rm+n, i.e., vector fields which might be nonzero
on Γ . He then follows the derivation of the interior monotonicity formula, i.e., he
tests the first variation along suitable radial vector fields. His proof needs the lower
density assumption in the first part and although the latter can be removed (cf. [1]),
the resulting argument is rather laborious.

We introduce here varifolds which are stationary along “tangent fields”:

Definition 2. Consider an m-dimensional varifold V in an open set U ⊂ Rm+n and
let Γ be a k-dimensional C1 submanifold of U . We say that V is stationary with
respect to vector fields tangent to Γ if

δV (χ) = 0 for all χ ∈C1
c (U,Rm+n) which are tangent to Γ . (2)

Clearly, when k = m− 1, the condition above is stronger than that used by Al-
lard in [3], where χ is assumed to vanish on Γ . On the other hand our condition
is the natural one satisfied by classical minimal surfaces with boundary Γ , since
the one-parameter family of isotopies generated by χ maps Γ onto itself. When
k > m− 1, the condition is the one satisfied by classical “free-boundary” minimal
surfaces, namely minimal surfaces with boundary contained in Γ and meeting it or-
thogonally. In the context of varifolds, the latter have been considered by Grüter and
Jost in [23], where the two authors derived also an analog of Allard’s monotonicity
formula. In this section we show how one can take advantage of a suitable distortion
of the Euclidean balls to give a (rather elementary) unified approach to monotonicity
formulae in both contexts.

Definition 3. Assume that 0 ∈ Γ . We say that the function d : Rm+n → R is a dis-
tortion of the distance function adapted to Γ if the following two conditions hold:

(a) d is of class C2 on Rm+n \{0} and D jd(x) = D j|x|+O(|x|1− j+α) for some fixed
α ∈ (0,1] and for j = 0,1,2;

(b) ∇d is tangent to Γ .

The following lemma is a simple consequence of the Tubular Neighborhood The-
orem and it is left to the reader.

Lemma 1. If Γ is of class C3 then there is a distortion of the distance function
adapted to Γ where the exponent α of Definition 3(a) can be taken to be 1.

The main point of our discussion is then the argument given below for the fol-
lowing
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Theorem 4. Consider Γ and V as in Definition 2, assume that 0 ∈ Γ and that d is
a distorted distance function adapted to Γ . Let ϕ ∈ C1

c ([0,1)) be a nonincreasing
function which is constant in a neighborhood of the origin. If α is the exponent of
Definition 3(a), then there are positive constants C and ρ such that the following
inequality holds for every positive s < ρ

d
ds

[
eCsα

s−m
∫

ϕ

(
d(x)

s

)
d‖V‖(x)

]
≥ − eCsα

s−m−1
∫

ϕ
′
(

d(x)
s

) d(x)
s

∣∣∣∣Pπ⊥

(
∇d(x)
|∇d(x)|

)∣∣∣∣2 dV (x,π) (3)

(where Pτ denotes the orthogonal projection on the subspace τ).

Note that if we let ϕ converge to the indicator function of the interval [0,1) we
easily conclude that

s 7→Φ(s) := eCsα ‖V‖({d < s})
sm

is monotone nondecreasing: indeed, for ρ > s > r > 0, the difference Φ(s)−Φ(r)
controls the integral of a suitable nonnegative expression involving d and the projec-
tion of ∇d/|∇d| over π⊥. When d(x) = |x|, namely when Γ is flat, the exponential
weight disappears (i.e., the constant C might be taken to be 0), the inequality be-
comes an equality and (in the limit of ϕ ↑ 1[0,1)) we recover Allard’s identity

‖V‖(Bs(0))
ωmsm − ‖V‖(Br(0))

ωmrm =
∫

Bs(0)\Br(0)

|P
π⊥(x)|2

|x|m+2 d‖V‖(x) .

In particular, since d is asymptotic to |x|, all the conclusions which are usually de-
rived from Allard’s theorem (existence of the density and its upper semicontinuity,
conicity of the tangent varifolds, Federer’s reduction argument and Almgren’s strat-
ification) can be derived from Theorem 4 as well. Moreover, the argument given
below can be easily extended to cover the more general situation of varifolds with
mean curvature satisfying a suitable integrability condition.

Proof (of Theorem 4). Consider the vector field

Xs(x) = ϕ

(
d(x)

s

)
d(x)

∇d(x)
|∇d(x)|2

.

Xs is obviously C1 on Rm+n \{0} and moreover we have

DXs = ϕ

(
d
s

)[
∇d⊗∇d
|∇d|2

+
dD2d
|∇d|2

−2d
∇d
|∇d|4

⊗ (D2d·∇d)
]

+ϕ
′
(

d
s

)
d
s

∇d⊗∇d
|∇d|2

.
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From the above formula, using that ϕ is constant in a neighborhood of the origin
and Definition 3(a), we easily infer that (for every fixed s)

DXs(x) = ϕ

(
d(x)

s

)
Id +O(|x|α).

In particular Xs is C1, compactly supported in U (provided s is sufficiently small),
and tangent to Γ . Thus

0 = δV (Xs) =
∫

divπ Xs(p)dV (p,π) .

Fix next an orthonormal basis e1, . . . ,em of π and use Definition 3(a) to compute

divπ Xs =
m

∑
i=1

eT
i ·DX · ei = (m+O(sα))ϕ

(
d
s

)
+ϕ

′
(

d
s

)
d
s ∑

i

|∇d · ei|2

|∇d|2

= (m+O(sα))ϕ

(
d
s

)
+ϕ

′
(

d
s

)
d
s

(
1−
∣∣∣∣Pπ⊥

(
∇d
|∇d|

)∣∣∣∣2
)

.

Plugging the latter identity in the first variation condition we achieve the following
inequality for a sufficiently large constant C:∫ (

−mϕ

(
d(x)

s

)
−ϕ

′
(

d(x)
s

)
d(x)

s

)
d‖V‖(x)+Cαsα

∫
ϕ

(
d(x)

s

)
d‖V‖(x)

≥−
∫

ϕ
′
(

d(x)
s

)
d(x)

s

∣∣∣∣Pπ⊥

(
∇d(x)
|∇d(x)|

)∣∣∣∣2 dV (x,π) .

Multiplying both sides of the inequality by eCsα

s−m−1 we then conclude (3).
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