
Chapter 1
h-principle and rigidity for C1,α isometric
embeddings

Sergio Conti, Camillo De Lellis and Ĺaszĺo Sźekelyhidi Jr.

Abstract In this paper we study the embedding of Riemannian manifoldsin low
codimension. The well-known result of Nash and Kuiper [21, 20] says that any short
embedding in codimension one can be uniformly approximatedby C1 isometric
embeddings. This statement clearly cannot be true forC2 embeddings in general,
due to the classical rigidity in the Weyl problem. In fact Borisov extended the latter
to embeddings of classC1,α with α > 2/3 in [3, 5]. On the other hand he announced
in [6] that the Nash-Kuiper statement can be extended to local C1,α embeddings with
α < (1+n+n2)−1, wheren is the dimension of the manifold, provided the metric
is analytic. Subsequently a proof of the 2-dimensional caseappeared in [7]. In this
paper we provide analytic proofs of all these statements, for general dimension and
general metric.

1.1 Introduction

Let Mn be a smooth compact manifold of dimensionn≥ 2, equipped with a Rieman-
nian metricg. An isometric immersion of(Mn,g) intoR

m is a mapu∈C1(Mn;Rm)
such that the induced metric agrees withg. In local coordinates this amounts to the
system

∂iu·∂ ju= gi j (1.1)
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consisting ofn(n+ 1)/2 equations inm unknowns. If in additionu is injective, it
is an isometric embedding. Assume for the moment thatg∈C∞. The two classical
theorems concerning the solvability of this system are:

(A) if m≥ (n+ 2)(n+ 3)/2, then any short embedding can be uniformly approxi-
mated by isometric embeddings of classC∞ (Nash [22], Gromov [16]);

(B) if m≥ n+1, then any short embedding can be uniformly approximated byiso-
metric embeddings of classC1 (Nash [21], Kuiper [20]).

Recall that a short embedding is an injective mapu : Mn → R
m such that the metric

induced onM by u is shorter thang. In coordinates this means that(∂iu·∂ ju)≤ (gi j )
in the sense of quadratic forms. Thus, (A) and (B) are not merely existence theorems,
they show that there exists a huge (essentiallyC0-dense) set of solutions. This type
of abundance of solutions is a central aspect of Gromov’sh-principle, for which the
isometric embedding problem is a primary example (see [16, 12]).

Naively, this type of flexibility could be expected for high codimension as in (A),
since then there are many more unknowns than equations in 1.1. The h-principle
for C1 isometric embeddings is on the other hand rather striking, especially when
compared to the classical rigidity result concerning the Weyl problem: if (S2,g) is a
compact Riemannian surface with positive Gauss curvature andu∈C2 is an isomet-
ric immersion intoR3, thenu is uniquely determined up to a rigid motion ([8, 17],
see also [30] for a thorough discussion). Thus it is clear that isometric immersions
have a completely different qualitative behaviour at low and high regularity (i.e.
below and aboveC2).

This qualitative difference is further highlighted by the following optimal map-
ping properties in the case whenm is allowed to be sufficiently high:

(C) if g∈Cl ,β with l +β > 2 andm is sufficiently large, then there exists a solution
u∈Cl ,β (Nash [22], Jacobowitz [18]);

(D) if g ∈ Cl ,β with 0 < l + β < 2 andm is sufficiently large, then there exists a
solutionu∈C1,α with α < (l +β )/2 (Källen [19]).

These results are optimal in the sense that in both cases there existsg∈Cl ,β to which
no solutionu has better regularity than stated.

The techniques are also different: whereas the proofs of (A)and (C) rely on the
Nash-Moser implicit function theorem, the proofs of (B) and(D) involve an iteration
technique called convex integration. This technique was developed by Gromov [15,
16] into a very powerful tool to prove theh-principle in a wide variety of geometric
problems (see also [12, 32]). In general the regularity of solutions obtained using
convex integration agrees with the highest derivatives appearing in the equations
(see [31]). Thus, an interesting question raised in [16] p219 is how one could extend
the methods to produce more regular solutions. Essentiallythe same question, in the
case of isometric embeddings, is also mentioned in [33] (seeProblem 27). For high
codimension this is resolved in (D).

Our primary aim in this paper is to consider the low codimension case, i.e. when
m= n+1. This range was first considered by Borisov. In [6] it was announced that
if g is analytic, then theh-principle holds for local isometric embeddingsu∈ C1,α
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for α < 1
1+n+n2 . A proof for the casen = 2 appeared in [7]. Our main result is to

provide a proof of theh-principle in this range forg which is not necessarily ana-
lytic and generaln≥ 2 (see Section 1.1.1 for precise statements). Moreover, at least
for l = 0 and sufficiently smallβ > 0, we recover the optimal mapping range cor-
responding to (D). Thus, there seems to be a direct trade-offbetween codimension
and regularity.

The novelty of our approach, compared to Borisov’s, is that only a finite number
of derivatives need to be controlled. This is achieved by introducing a smoothing
operator in the iteration step, analogous to the device of Nash used to overcome the
loss of derivative problem in [22]. A similar method was usedby Källen in [19]. See
Section 1.3 for an overview of the iteration procedure. In addition, the errors coming
from the smoothing operator are controlled by using certaincommutator estimates
on convolutions. These estimates are in Section 1.2.

Concerning rigidity in the Weyl problem, it is known from thework of Pogorelov
and Sabitov that

1. closedC1 surfaces with positive Gauss curvature and bounded extrinsic curvature
are convex (see [25]);

2. closed convex surfaces are rigid in the sense that isometric immersions are unique
up to rigid motion [24];

3. a convex surface with metricg∈Cl ,β with l ≥ 2,0< β < 1 and positive curvature
is of classCl ,β (see [25, 26]).

Thus, extending the rigidity in the Weyl problem toC1,α isometric immersions can
be reduced to showing that the image of the surface has bounded extrinsic curvature
(for definitions see Section 1.7). Using geometric arguments, in a series of papers [1,
2, 3, 4, 5] Borisov proved that forα > 2/3 the image of surfaces with positive Gauss
curvature has indeed bounded extrinsic curvature. Consequently, rigidity holds in
this range and in particular 2/3 is an upper bound on the range of Hölder exponents
that can be reached using convex integration.

Using the commutator estimates from Section 1.2, at the end of this paper (in
Section 1.7) we provide a short and self-consistent analytic proof of this result.

1.1.1 Theh–principle for small exponents

In this subsection we state our main existence results forC1,α isometric immersions.
One is of local nature, whereas the second is global. Note that for the local result
the exponent matches the one announced in [6]. In what follows, we denote by
sym+

n the cone of positive definite symmetricn× n matrices. Moreover, given an
immersionu : Mn → R

m, we denote byu♯e the pullback of the standard Euclidean
metric throughu, so that in local coordinates

(u♯e)i j = ∂iu·∂ ju.

Finally, let
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n∗ =
n(n+1)

2
.

Theorem 1 (Local existence).Let n∈ N and g0 ∈ sym+
n . There exists r> 0 such

that the following holds for any smooth bounded open setΩ ⊂ R
n and any Rie-

mannian metric g∈Cβ (Ω) with β > 0 and‖g−g0‖C0 ≤ r. There exists a constant
δ0 > 0 such that, if u∈C2(Ω ;Rn+1) andα satisfy

‖u♯e−g‖0 ≤ δ 2
0 and 0< α < min

{
1

1+2n∗
,

β
2

}

,

then there exists a map v∈C1,α(Ω ;Rn+1) with

v♯e = g and ‖v−u‖C1 ≤ C‖u♯e−g‖1/2
C0 .

Corollary 1 (Local h-principle). Let n,g0,Ω ,g,α be as in Theorem 1. Given any
short map u∈C1(Ω ;Rn+1) and anyε > 0 there exists an isometric immersion v∈
C1,α(Ω ;Rn+1) with ‖u−v‖C0 ≤ ε.

Theorem 2 (Global existence).Let Mn be a smooth, compact manifold with a Rie-
mannian metric g∈Cβ (M) and let m≥ n+1. There is a constantδ0 > 0 such that,
if u ∈C2(M;Rm) andα satisfy

‖u♯e−g‖C0 ≤ δ 2
0 and 0< α < min

{
1

1+2(n+1)n∗
,

β
2

}

,

then there exists a map v∈C1,α(M;Rm) with

v♯e = g and ‖v−u‖C1 ≤ C‖u♯e−g‖1/2
C0 .

Corollary 2 (Global h–principle). Let(Mn,g) andα be as in Theorem 2. Given any
short map u∈ C1(M;Rm) with m≥ n+1 and anyε > 0 there exists an isometric
immersion v∈C1,α(M;Rm) with ‖u−v‖C0 ≤ ε.

Remark 1.In both corollaries, ifu is an embedding, then there exists a correspond-
ing v which in addition is an embedding.

1.1.2 Rigidity for large exponents

The following is a crucial estimate on the metric pulled backby standard regular-
izations of a given map.

Proposition 1 (Quadratic estimate).Let Ω ⊂ R
n be an open set, v∈C1,α(Ω ,Rm)

with v♯e∈C2 andϕ ∈C∞
c (R

n) a standard symmetric convolution kernel. Then, for
every compact set K⊂ Ω ,
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‖(v∗ϕℓ)
♯e−v♯e‖C1(K) = O(ℓ2α−1). (1.2)

In particular, fix a mapu and a kernelϕ satisfying the assumptions of the Propo-
sition withα > 1/2. Then the Christoffel symbols of(v∗ϕℓ)

♯econverge to those of
v♯e. This corresponds to the results of Borisov in [1, 2], and hints at the absence of
h–principle forC1, 1

2+ε immersions. Relying mainly on this estimate we can give a
fairly short proof of Borisov’s theorem:

Theorem 3.Let (M2,g) be a surface with C2 metric and positive Gauss curvature,
and let u∈C1,α(M2;R3) be an isometric immersion withα > 2/3. Then u(M) is a
surface of bounded extrinsic curvature.

This leads to the following corollaries, which follow from the work of Pogorelov
and Sabitov.

Corollary 3. Let (S2,g) be a closed surface with g∈C2 and positive Gauss curva-
ture, and let u∈C1,α(S2;R3) be an isometric immersion withα > 2/3. Then, u(S2)
is the boundary of a bounded convex set and any two such imagesare congruent. In
particular if the Gauss curvature is constant, then u(S2) is the boundary of a ball
Br(x).

Corollary 4. Let Ω ⊂ R
2 be open and g∈C2,β a metric onΩ with positive Gauss

curvature. Let u∈C1,α(Ω ;R3) be an isometric immersion withα > 2/3. Then u(Ω)
is C2,β and locally uniformly convex (that is, for every x∈ Ω there exists a neigh-
borhood V such that u(Ω)∩V is the graph of a C2,β function with positive definite
second derivative).

1.1.3 Connections to the Euler equations

There is an interesting analogy between isometric immersions in low codimension
(in particular the Weyl problem) and the incompressible Euler equations. In [10]
a method, which is very closely related to convex integration, was introduced to
construct highly irregular energy-dissipating solutionsof the Euler equations. Being
in conservation form, the ”expected” regularity space for convex integration for the
Euler equations should beC0. This is still beyond reach, and in [10] a weak version
of convex integration was applied instead, to produce solutions inL∞ (see also [11]
for a slightly better space) and, moreover, to show that a weak version of theh-
principle holds.

Nevertheless, just like for isometric immersions, for the Euler equations there
is particular interest to go beyondC0: in [23] L. Onsager, motivated by the phe-
nomenon of anomalous dissipation in turbulent flows, conjectured that there exist
weak solutions of the Euler equations of classCα with α < 1/3 which dissipate en-
ergy, whereas forα > 1/3 the energy is conserved. The latter was proved in [13, 9],
but on the construction of energy-dissipating weak solutions nothing is known be-
yondL∞ (for previous work see [27, 28, 29]). It should be mentioned that the critical
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exponent 1/3 is very natural - it agrees with the scaling of the energy cascade pre-
dicted by Kolmogorov’s theory of turbulence (see for instance [14]).

For the analogous problem for isometric immersions there does not seem to be
a universally accepted critical exponent (c.f. Problem 27 of [33]), even though 1/2
seems likely (c.f. section 1.1.2 and the discussion in [7]).In fact, the regularization
and the commutator estimates used in our proof of Proposition 1 and Theorem 3
have been inspired by (and are closely related to) the arguments of [9].

1.2 Estimates on convolutions: Proof of Proposition 1

As usual, we denote the norm on the Hölder spaceCk,α(Ω) by

‖ f‖k,α := sup
x∈Ω

∑
|a|≤k

|∂ a f (x)|+ sup
x,y∈Ω ,x6=y

∑
|a|=k

|∂ a f (x)−∂ a f (y)|
|x−y|α .

Herek= 0,1,2, . . . , a= (a1, . . . ,an) is a multi-index with|a|= a1+ · · ·+an andα ∈
[0,1[. For simplicity we will also use the abbreviation‖ f‖k = ‖ f‖k,0 and‖ f‖α =
‖ f‖0,α .

Recall the following interpolation inequalities for thesenorms:

‖ f‖k,α ≤C‖ f‖λ
k1,α1

‖ f‖1−λ
k2,α2

,

whereC depends on the various parameters, 0< λ < 1 and

k+α = λ (k1+α1)+(1−λ )(k2+α2).

The following estimates are well known and play a fundamental role in both the
constructions and the proof of rigidity.

Lemma 1. Letϕ ∈C∞
c (R

n) be symmetric and such that
∫

ϕ = 1. Then for any r,s≥ 0
andα ∈]0,1] we have

‖ f ∗ϕℓ‖r+s ≤Cℓ−s‖ f‖r , (1.3)

‖ f − f ∗ϕℓ‖r ≤Cℓ2‖ f‖r+2, (1.4)

‖( f g)∗ϕℓ− ( f ∗ϕℓ)(g∗ϕℓ)‖r ≤Cℓ2α−r‖ f‖α‖g‖α . (1.5)

Proof. For any multi-indicesa,b with |a|= r, |b|= swe have∂ a+b( f ∗ϕℓ) = ∂ a f ∗
∂ bϕℓ, hence

|∂ a+b( f ∗ϕℓ)| ≤Csℓ
−s‖ f‖r .

This proves 1.3.
Next, by considering the Taylor expansion off atx we see that

f (x−y)− f (x) = f ′(x)y+ rx(y),

where supx |rx(y)| ≤C|y|2‖ f‖2. Moreover, sinceϕ is symmetric,
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∫

ϕℓ(y)ydy = 0.

Thus,

| f − f ∗ϕℓ| =
∣
∣
∣
∣

∫

ϕℓ(y)( f (x−y)− f (x))dy

∣
∣
∣
∣

(1.6)

≤ C‖ f‖2

∫

ℓ−n
∣
∣
∣ϕ

(y
ℓ

)∣
∣
∣ |y|2dy = Cℓ2‖ f‖2 . (1.7)

This proves 1.4 for the caser = 0. To obtain the estimate for generalr, repeat the
same argument for the partial derivatives∂ a f with |a|= r.

For the proof of estimate 1.5 leta be any multi-index with|a|= r. By the product
rule

∂ a[ϕℓ ∗ ( f g)− (ϕℓ ∗ f )(ϕℓ ∗g)
]

(1.8)

= ∂ aϕℓ ∗ ( f g)− ∑
b≤a

(
a
b

)

(∂ bϕℓ ∗ f )(∂ a−bϕℓ ∗g) (1.9)

= ∂ aϕℓ ∗ ( f g)− (∂ aϕℓ ∗ f )(ϕℓ ∗g)+(ϕℓ ∗ f )(∂ aϕℓ ∗g) (1.10)

− ∑
0<b<a

(
a
b

)

[∂ bϕℓ ∗ ( f − f (x))][∂ a−bϕℓ ∗ (g−g(x))] (1.11)

= ∂ aϕℓ ∗ [( f − f (x))(g−g(x))] (1.12)

− ∑
b≤a

(
a
b

)

∂ bϕℓ ∗ ( f − f (x)) ·∂ a−bϕℓ ∗ (g−g(x)), (1.13)

where we have used the fact that

∂ aϕℓ ∗ f (x) =

{

f (x) if a= 0,

0 if a 6= 0.

Now observe that

|∂ aϕℓ ∗ [( f − f (x))(g−g(x))]| (1.14)

=

∣
∣
∣
∣

∫

∂ aϕℓ(y)( f (x−y)− f (x))(g(x−y)−g(x))dy

∣
∣
∣
∣

(1.15)

≤
∫

|∂ aϕℓ(y)||y|2αdy‖ f‖α‖g‖α = Cr ℓ
2α−r‖ f‖α‖g‖α . (1.16)

Similarly, all the terms in the sum overb obey the same estimate. This concludes
the proof of 1.5. ⊓⊔
Proof (of Proposition 1).Setg := v♯eandgℓ := (v∗ϕℓ)

♯e. We have

‖gℓi j −gi j‖1 ≤ ‖gℓi j −gi j ∗ϕℓ‖1+‖gi j ∗ϕℓ−gi j‖1 .

The first term can be written as
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‖gℓi j −gi j ∗ϕℓ‖1 =
∥
∥∂ jv∗ϕℓ ·∂iv∗ϕℓ− (∂ jv·∂iv)∗ϕℓ

∥
∥

1 , (1.17)

so that 1.5 applies, to yield the boundℓ2α−1‖v‖2
1,α . For the second term 1.4 gives

the boundℓ‖g‖2. Combining these two we obtain

‖gℓi j −gi j ‖k ≤ C(ℓ2α−1‖v‖2
1,α + ℓ‖g‖2) ,

from which 1.2 readily follows. ⊓⊔

1.3 h–principle: The general scheme

The general scheme of our construction follows the method ofNash and Kuiper [21,
20]. For convenience of the reader we sketch this scheme in this section. Assume
for simplicity thatg is smooth.

The existence theorems are based on an iteration ofstages, and eachstagecon-
sists of severalsteps. The purpose of astageis to correct the errorg−u♯e. In order
to achieve this correction, the error is decomposed into a sum of primitive metrics
as

g−u♯e=
n∗

∑
k=1

a2
kνk⊗νk (locally)

g−u♯e= ∑
j

n∗

∑
k=1

(ψ ja j,k)
2ν j,k⊗ν j,k (globally)

The natural estimates associated with this decomposition are

‖ak‖0 ∼ ‖g−u♯e‖1/2
0 (1.18)

‖ak‖N+1 ∼ ‖u‖N+2 for N = 0,1,2, . . . . (1.19)

A stepthen involves adding one primitive metric. In other words the goal of astep
is the metric change

u♯e 7→ u♯e+a2ν ⊗ν .

Nash used spiralling perturbations (also known as the Nash twist) to achieve this;
for the codimension one case Kuiper replaced the spirals by corrugations. Using the
same ansatz (see formula 1.36) one easily checks that addition of a primitive metric
is possible with the following estimates (see Proposition 2):

C0-error in the metric∼ ‖g−u♯e‖0
1
K

increase ofC1-norm ofu ∼ ‖g−u♯e‖1/2
0

increase ofC2-norm ofu ∼ ‖u‖2 K
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for anyK ≥ 1. Observe that the first two of these estimates is essentially the same as
in [21, 20]. Furthermore, the third estimate is only valid modulo a loss of derivative
(see Remark 2).

The low codimension forces the steps to be performed serially. This is in contrast
with the method of K̈allen in [19], where the wholestagecan be performed in one
step due to the high codimension. Thus the number ofstepsin a stageequals the
number of primitive metrics in the above decomposition which interact. This equals
n∗ for the local construction and(n+1)n∗ for the global construction. To deal with
the loss of derivativeproblem we mollify the mapu at the start of every stage, in
a similar manner as is done in a Nash-Moser iteration. Because of the quadratic
estimate 1.5 in Lemma 1 there will be no additional error coming from the molli-
fication. Therefore, iterating the estimates for one step over a single stage (that is,
overN∗ steps) leads to

C0-error in the metric∼ ‖g−u♯e‖0
1
K

increase ofC1-norm ofu ∼ ‖g−u♯e‖1/2
0

increase ofC2-norm ofu ∼ ‖u‖2 KN∗

With these estimates, iterating over thestagesleads to exponential convergence of
the metric error, leading to a controlled growth of theC1 norm and an exponential
growth of theC2 norm of the map. In particular, interpolating between thesetwo
norms leads to convergence inC1,α for α < 1

1+2N∗
.

1.4 h–principle: Construction step

The main step of our construction is given by the following proposition.

Proposition 2 (Construction step).Let Ω ⊂ R
n, ν ∈ Sn−1 and N∈ N. Let u∈

CN+2(Ω ;Rn+1) and a∈ CN+1(Ω). Assume thatγ ≥ 1 and ℓ,δ ≤ 1 are constants
such that

1
γ

I ≤ u♯e ≤ γI in Ω , (1.20)

‖a‖0 ≤ δ , (1.21)

‖u‖k+2+‖a‖k+1 ≤ δℓ−(k+1) for k= 0,1, . . . ,N. (1.22)

Then, for any
λ ≥ ℓ−1 (1.23)

there exists v∈CN+1(Ω ;Rn+1) such that

∥
∥
∥v♯e− (u♯e+a2ν ⊗ν)

∥
∥
∥

0
≤C

δ 2

λℓ
(1.24)



10 Sergio Conti, Camillo De Lellis and Lászĺo Sźekelyhidi Jr.

and
‖u−v‖ j ≤C δ λ j−1 for j = 0,1, . . . ,N+1, (1.25)

where C is a constant depending only on n,N andγ.

Remark 2.Observe that if 1.25 would hold forj = N+2, then the conclusion of the
proposition would say essentially (withN = 0) that the equation

v♯e= u♯e+a2ν ⊗ν

admits approximate solutions inC2 with estimates

‖v♯e− (u♯e+a2ν ⊗ν)‖0 ≤ C δ 2 1
K
,

‖u−v‖2 ≤ C ‖u‖2K.

HereK = λℓ ≥ 1. The fact that 1.25 holds only forj ≤ N+1 amounts to a loss of
derivative in the estimate.

In the higher codimension case we need an additional technical assumption in
order to carry on the same result. As usual the oscillation oscu of a vector-valued
mapu is defined as supx,y |u(x)−u(y)|.

Proposition 3 (Step in higher codim.).Let m,n,N ∈ N with n,N ≥ 1 and m≥
n+1. Then there exist a constantη0 > 0 with the following property. LetΩ , g, a,
ν and u∈ C2+N(Ω ,Rm) satisfy the assumptions of Proposition 2 and assume in
additionosc∇u≤ η0. Then there exists a map v∈C1+N(Ω ,Rm) satisfying the same
conclusion as in Proposition 2.

1.4.1 Basic building block

In order to prove the Proposition we need the following lemma. The functionΓ will
be our corrugation.

Lemma 2. There existsδ∗ > 0 and a functionΓ ∈C∞([0,δ∗]×R;R2) with Γ (δ , t+
2π) = Γ (δ , t) and having the following properties:

|∂tΓ (s, t)+e1|2 = 1+s2 , (1.26)

|∂s∂ k
t Γ1(s, t)|+ |∂ k

t Γ (s, t)| ≤ Cks for k≥ 0. (1.27)

Proof. DefineH : R2 → R
2 asH(τ , t) = (cos(τ sint),sin(τ sint)). Then

∫ 2π

0
H2(τ , t)dt =

∫ 2π

0
sin(τ sint)dt =

∫ π

−π
sin(τ sint)dt = 0 (1.28)

by the symmetry of the sine function. Set
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J0(τ) :=
1

2π

∫ 2π

0
H1(τ , t)dt =

1
2π

∫ 2π

0
cos(τ sint)dt . (1.29)

Note thatJ0 ∈C∞(R) with J0(0) = 1, J′0(0) = 0 andJ′′(0)< 0. We claim that there
existsδ > 0 and a functionf ∈C∞(−δ ,δ ) such thatf (0) = 0 and

J0( f (s)) =
1√

1+s2
. (1.30)

This is a consequence of the implicit function theorem. To see this, set

F(s, r) = J0(r
1/2)− (1+s2)−1/2.

ThenF ∈ C∞(R2). Indeed, since the Taylor expansion of cosx contains only even
powers ofx, J0(r1/2) is obviously analytic. Moreover,

J0(r
1/2) =

1
2π

∫ 2π

0

(

1− r
2

sin2 t
)

dt+O(r2).

In particular∂rF(0,0) =−1/4. Since alsoF(0,0) = 0, the implicit funcion theorem
yieldsδ > 0 andg∈C∞(−δ ,δ ) such thatg(0) = 0 and

F(s,g(s)) = 0.

Next, observe that∂sF(0,0) = 0 and∂ 2
s F(0,0) = 1. Therefore

g′(0) = 0 andg′′(0) = 4.

This implies thatf (s) := g(s)1/2 is also a smooth function, with

f (0) = 0 and f ′(0) =
√

2,

thus proving our claim.
Having foundf ∈C∞(−δ ,δ ) with f (0) = 0 and 1.30, we finally set

Γ (s, t) :=
∫ t

0

[√

1+s2H( f (s), t ′)−e1

]

dt′ . (1.31)

By construction|∂tΓ (s, t)+e1|2 = 1+s2. Moreover

Γ (s, t +2π)−Γ (s, t) =

∫ t+2π

t

[√

1+s2H( f (s), t ′)−e1

]

dt′

=
√

1+s2
∫ 2π

0
H( f (s), t ′)dt′−2πe1

1.281.29
= 2πe1

[√

1+s2J0( f (s))−1
]

1.30
= 0.

Thus the functionΓ is 2π-periodic in the second argument.
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We now come to the estimates. Fixδ∗ < δ . ThenΓ ∈C([0,δ∗]×R;R2), and since
it is periodic in the second variable,Γ and all its partial derivatives are uniformly
bounded. Straightforward computations show that for anyk= 0,1, . . .

∂ k
t Γ (0, t) = 0 and∂s∂ k

t Γ1(0, t) = 0 for all t.

Hence, integrating ins, we conclude that

|∂ k
t Γ (s, t)| ≤ s‖∂s∂ k

t Γ ‖0 ,

|∂s∂ k
t Γ1(s, t)| ≤ s‖∂ 2

s ∂ k
t Γ1‖0,

which give the desired estimates.⊓⊔

1.4.2 Proof of Proposition 2

Throughout the proof the letterC will denote a constant, whose value might change
from line to line, but otherwise depends only onn,N andγ. Fix a choice of orthonor-
mal coordinates inRn. In these coordinates the pullback metric can be written as
(u♯e)i j = ∂iu·∂ ju or, denoting the matrix differential ofu by ∇u= (∂ jui)i j , as

u♯e= ∇uT∇u.

From now on we will work with this notation.
Let

ξ = ∇u· (∇uT∇u)−1 ·ν , ζ = ∂1u∧∂2u∧·· ·∧∂nu. (1.32)

Because of 1.20 the vectorfieldsξ ,ζ are well-defined and satisfy

1
C

≤ |ξ (x)|, |ζ (x)| ≤C for x∈ Ω (1.33)

with someC≥ 1. Now let

ξ1 =
ξ
|ξ |2 , ξ2 =

ζ
|ξ ||ζ | , Ψ(x) = ξ1(x)⊗e1+ξ2(x)⊗e2,

and
ã= |ξ |a.

Then

∇uT Ψ =
1

|ξ |2 ν ⊗e1, ΨTΨ =
1

|ξ |2 I , (1.34)

and
‖Ψ‖ j ≤C‖u‖ j+1,
‖ã‖ j ≤C(‖a‖ j +‖a‖0‖u‖ j+1),

(1.35)
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for j = 0,1, . . . ,N+1. Finally, let

v(x) := u(x)+
1
λ

Ψ(x)Γ
(
ã(x),λx ·ν

)
, (1.36)

whereΓ = Γ (s, t) is the function constructed in Lemma 2.

Proof of 1.24.First we compute∇vT∇v. We have

∇v = ∇u+Ψ ·∂tΓ ⊗ν
︸ ︷︷ ︸

A

+λ−1Ψ ·∂sΓ ⊗∇ã
︸ ︷︷ ︸

E1

+λ−1 ∇Ψ ·Γ
︸ ︷︷ ︸

E2

. (1.37)

Using the notation sym(A) = (A+AT)/2 one has

∇vT∇v= ATA+2sym(ATE1+ATE2)+(E1+E2)
T(E1+E2). (1.38)

Using 1.34 and 1.26:

ATA= ∇uT∇u+
1

|ξ |2 (2∂tΓ1+ |∂tΓ |2)ν ⊗ν

= ∇uT∇u+
1

|ξ |2 ã2ν ⊗ν = ∇uT∇u+a2ν ⊗ν .
(1.39)

Next we estimate the error terms. First of all

ATE1 =
1
λ
(∇uTΨ)(∂sΓ ⊗∇ã)+

1
λ
(ν ⊗∂tΓ )(ΨTΨ)(∂sΓ ⊗∇ã)

=
1

λ |ξ |2 (∂sΓ1+∂tΓ ·∂sΓ )(ν ⊗∇ã).
(1.40)

Note that 1.27 together with 1.35 implies:

‖Γ ‖0, ‖∂tΓ ‖0, ‖∂sΓ1‖0 ≤ C‖a‖0.

Therefore

‖sym(ATE1)‖0 ≤
C
λ
‖a‖0‖ã‖1 ≤C

δ 2

λℓ
,

and similarly

‖sym(ATE2)‖0 ≤
C
λ
‖a‖0‖u‖2 ≤C

δ 2

λℓ
. (1.41)

Finally,

‖E1+E2‖0 ≤
C
λ
(‖ã‖1+‖a‖0‖u‖2)≤

C
λ
(‖a‖1+δ ‖u‖2)≤C

δ
λℓ

. (1.42)

In particular‖E1+E2‖0 ≤Cδ and hence

‖(E1+E2)
T(E1+E2)‖0 ≤C

δ 2

λℓ
. (1.43)
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Putting these estimates together we obtain 1.24 as required.

Proof of 1.25.In fact

‖u−v‖0 ≤Cδ
1
λ

is obvious, whereas the estimates forj = 1, . . . ,N will follow by interpolation, pro-
vided the casej = N+1 holds. Therefore, we now prove this case. A simple appli-
cation of the product rule and interpolation yields

‖v−u‖N+1 ≤
C
λ
(‖Ψ‖N+1‖Γ ‖0+‖Ψ‖0‖Γ ‖N+1)

≤ C
λ
(‖u‖N+2‖ã‖0+‖Γ ‖N+1) .

(1.44)

Denoting byD j
x any partial derivative in the variablesx1, . . . ,xn of order j, the chain

rule can be written symbolically as

DN+1
x Γ = ∑

i+ j≤N+1

(

∂ i
s∂ j

t Γ
)

λ j ∑
σ

Ci, j,σ (Dxã)
σ1(D2

xã)σ2 · · · · · (DN+1
x ã)σN+1,

where the inner sum is over allσ with

σ1+ · · ·+σN+1 = i,

σ1+2σ2+ · · ·+(N+1)σN+1+ j = N+1.

These relations can be checked by counting the order of differentiation. Therefore,
by using 1.21, 1.22 and 1.23

‖DN+1
x Γ ‖0 ≤C ∑

i+ j≤N+1

∥
∥
∥∂ i

s∂ j
t Γ

∥
∥
∥

0
λ jδ i ℓ−(N+1− j)

≤C ∑
i+ j≤N+1

∥
∥
∥∂ i

s∂ j
t Γ

∥
∥
∥

0
δ iλ N+1 ≤ Cδλ N+1.

(1.45)

In particular, since‖Γ ‖0 ≤ δ , we deduce that‖Γ ‖N+1 ≤Cδλ N+1. Therefore

‖v−u‖N+1 ≤ C
λ
(
δ‖u‖N+2+δλ N+1) ≤ Cδλ N . (1.46)

This concludes the proof of the proposition.

1.4.3 Proof of Proposition 3

The proof of Proposition 2 would carry over to this case if we can choose an ap-
propriate normal vector fieldζ as at the beginning of the proof of Proposition 2,
enjoying the estimate 1.33 with a fixed constant.
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To obtainζ (x) let T(x) be the tangent plane tou(Rn) at the pointu(x), i.e. the
plane generated by{∂1u, . . . ,∂nu}. Denote byπx the orthogonal projection ofRm

ontoT(x). Assuming that∇u has oscillation smaller thanη0, there exists a vector
w∈ Sn−1 such that|πxw| ≤ 1/2 for everyx∈ Ω . Hence, we can define

ζ (x) := w−πxw.

It is straightforward to see that this choice ofζ gives a map enjoying the same
estimates as theζ used in the proof of Proposition 2.

1.5 h–principle: stage

Proposition 4 (Stage, local).For all g0 ∈ sym+
n there exists0< r < 1 such that the

following holds for anyΩ ⊂ R
n and g∈Cβ (Ω) with ‖g−g0‖0 ≤ r. There exists a

δ0 > 0 such that, if K≥ 1 and u∈C2(Ω ,Rn+1) satisfies

‖u♯e−g‖0 ≤ δ 2 ≤ δ 2
0 and ‖u‖2 ≤ µ ,

then there exists v∈C2(Ω ,Rn+1) with

‖v♯e−g‖0 ≤ Cδ 2 ,

(
1
K
+δ β−2µ−β

)

(1.47)

‖v‖2 ≤ CµKn∗ , (1.48)

‖u−v‖1 ≤ Cδ . (1.49)

Here C is a constant depending only on n,g0,g andΩ .

The Proposition above is the basic stage of the iteration scheme which will prove
Theorem 1. A similar proposition, to be used in the proof of Theorem 2 will be
stated later.

1.5.1 Decomposing a metric into primitive metrics

Lemma 3. Let g0 ∈ sym+
n . Then there exists r> 0, vectorsν1, . . . ,νn∗ ∈ S

n−1 and
linear maps Lk : symn → R such that

g=
n∗

∑
k=1

Lk(g)νk⊗νk for every g∈ symn

and, moreover, Lk(g)≥ r for every k and every g∈ sym+
n with |g−g0| ≤ r.

Proof. Consider the setS:= {(ei +ej)⊗ (ei +ej), i ≤ j}, where{ei} is the standard
basis ofRn. Since the span ofScontains all matrices of the formei ⊗ej +ej ⊗ei ,
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clearly S generates symn. On the other handS consists ofn∗ matrices withn∗ =
dim(symn). SoS is a basis for symn. Let us relabel the vectorsei + ej (i ≤ j) as
f1, . . . , fn∗ , and let

h=
n∗

∑
k=1

fk⊗ fk.

Thenh ∈ sym+
n and hence there exists an invertible linear transformationL such

thatLhLT = g0. In particular, writingνk = L fk/|L fk| ∈ S
n−1, we have

g0 =
n∗

∑
k=1

L fk⊗L fk =
n∗

∑
k=1

|L fk|2νk⊗νk .

Note that the set{νk ⊗ νk} is also a basis for symn and therefore there exist lin-
ear mapsLk : symn → R such that∑Lk(A)νk ⊗ νk is the unique representation of
A∈ symn as linear combination ofνk⊗νk. In particular,Li(g0) = |L fk|2 > 0. The
existence ofr > 0 satisfying the claim of the lemma follows easily.⊓⊔

1.5.2 Proof of Proposition 4

Chooser > 0 andγ > 1 so that the statement of Lemma 3 holds withg0 and 2r, and
so that

1
γ

I ≤ h≤ γ for anyh∈ sym+
n with |h−g0|< 2r.

Moreover, extendu andg toR
n so that

‖u‖C2(Rn) ≤C‖u‖C2(Ω), ‖g‖Cβ (Rn) ≤C‖g‖Cβ (Ω).

The procedure of such an extension is well known, with the constantC depending
on n,β andΩ . In what follows, the various constants will be allowed to depend in
addition onr andγ.

Step 1. Mollification. We set

ℓ=
δ
µ
,

and let
ũ= u∗ϕℓ, g̃= g∗ϕℓ, (1.50)

whereϕ ∈C∞
c (B1(0)) is a symmetric nonnegative convolution kernel with

∫
ϕ = 1.

Lemma 1 implies

‖ũ−u‖1 ≤ C‖u‖2ℓ≤Cδ , (1.51)

‖g̃−g‖0 ≤ C‖g‖β ℓ
β , (1.52)

‖ũ‖k+2 ≤ C‖u‖2ℓ
−k ≤Cδℓ−(k+1), (1.53)
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and

‖ũ♯e− g̃‖k ≤ ‖ũ♯e− (u♯e)∗ϕℓ‖k+‖(u♯e)∗ϕℓ−g∗ϕℓ‖k

≤ C ℓ2−k‖u‖2
2 + C ℓ−k‖u♯e−g‖0 ≤ C δ 2ℓ−k,

(1.54)

wherek= 0,1, . . . ,n∗. Moreover, since the set{h∈ sym+
n : |h−g0| ≤ r} is convex,

g̃ also satisfies‖g̃−g0‖0 ≤ r.

Step 2. Rescaling.First of all, observe that

h̃ := g̃+
r

Cδ 2 (g̃− ũ♯e)

satisfies the condition|h̃(x)−g0| ≤ r
Cδ 2‖g̃− ũ♯e‖0+r ≤ 2r. Therefore, using Lemma

3 we have

(1+Cr−1δ 2)g̃− ũ♯e =
Cδ 2

r
h̃=

n∗

∑
i=1

ã2
i νi ⊗νi ,

whereãi(x) =
(

Cδ 2

r Li(h̃(x))
)1/2

. In particularãi is smooth and

‖ãi‖k ≤ Cδ
‖Li(h̃)‖k

‖Li(h̃)‖1/2
0

≤ Cδ‖h̃‖k

≤ Cδ
(

‖g̃‖k+
1

δ 2‖g̃− ũ♯e‖k

)

≤ Cδℓ−k

for k= 0,1,2, . . . ,n∗ (note that the first inequality is achieved through interpolation).
Let

u0 =
1

(1+Cr−1δ 2)1/2
ũ, ai =

1

(1+Cr−1δ 2)1/2
ãi .

Then we have

g̃− u♯0e =
n∗

∑
i=1

a2
i νi ⊗νi ,

with

‖ũ−u0‖1 ≤ Cδ , (1.55)

‖ai‖0 ≤ Cδ , (1.56)

‖u0‖k+2+‖ai‖k+1 ≤ Cδℓ−(k+1) , (1.57)

for k = 0,1, . . . ,n∗. Notice that the constants above depend also onk, but since we
will only use these estimates fork≤ n∗, this dependence can be suppressed.

Finally, using 1.54 we have‖u♯0e− g0‖0 ≤ r +Cδ 2, so thatγ−1I ≤ u♯0e≤ γI ,
providedδ0 is sufficiently small.

Step 3. Iterating one-dimensional oscillations.We now applyn∗ times succes-
sively Proposition 2, with
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ℓ j = ℓK− j , λ j = K j+1ℓ−1, Nj = n∗− j

for j = 0,1, . . . ,n∗. In other words we construct a sequence of immersionsu j such

that 1
γ I ≤ u♯je≤ γI and

‖u j‖k+2 ≤Cδℓ−(k+1)
j for k= 0,1, . . . ,Nj . (1.58)

To see that Proposition 2 is applicable, observe thatλ j = Kℓ−1
j . Therefore it suf-

fices to check inductively the validity of 1.58. This followseasily from 1.25. The
constants will depend onj, but this can again be suppressed becausej ≤ n∗.

In this way we obtain the functionsu1,u2, . . . ,un∗ with estimates

‖u j‖2 ≤Cδℓ−1K j ,

‖u♯j+1e− (u♯je+a2
j+1ν j+1⊗ν j+1)‖0 ≤ C

δ 2

λ jℓ j
=Cδ 2 1

K
,

and moreover
‖u j+1−u j‖1 ≤Cδ . (1.59)

Observe also that‖u♯je−g0‖0 ≤ r +Cδ 2, so that, providedδ0 is sufficiently small,

γ−1I ≤ u♯je≤ γI for all j.
Thusv := un∗ satisfies the estimates

‖v♯e− g̃‖0 ≤ Cδ 2 1
K
,

‖v‖2 ≤ Cµ Kn∗ ,

‖v−u0‖1 ≤ Cδ .

The estimates 1.47, 1.48 and 1.49 follow from the above combined with 1.51, 1.52
and 1.55.

1.5.3 Stage for general manifolds

GivenM as in Theorem 2 we fix a finite atlas ofM with chartsΩi and a correspond-
ing partition of unity{φi}, so that∑φi = 1 andφi ∈C∞

c (Ωi). Furthermore, on each
Ωi we fix a choice of coordinates.

Using the partition of unity we define the spaceCk(M). In particular, let

‖u‖k := ∑
i
‖φiu‖k.

Similarly, we define mollification onM via the partition of unity. In other words we
fix ϕ ∈C∞

c (B1(0)), and for a functionu onM we define



1 C1,α isometric embeddings 19

u∗ϕℓ := ∑
i
(φiu)∗ϕℓ . (1.60)

It is not difficult to check that the estimates in Lemma 1 continue to hold onM with
these definitions.

Next, let g be a metric onM as in Theorem 2. SinceM is compact andg is
continuous, there existsγ > 0 such that

1
γ

I ≤ g ≤ γI in M. (1.61)

Moreover, also by compactness, there existsr0 > 0 such that Lemma 3 holds with
r = 2r0 for anyg0 satisfying1

γ I ≤ g0 ≤ γI . Therefore there existsρ0 > 0 so that

U ⊂ Ωi for somei and oscUg< r0

wheneverU ⊂ M with diamU < ρ0.
(1.62)

Here oscUg is to be evaluated in the coordinates of the chartΩi .
In the following we will need coverings ofM with the following property:

Definition 1 (Minimal cover of M). For ρ > 0 a finite open coveringC of M is a
minimal cover of diameterρ if:

1. the diameter of eachU ∈ C is less thanρ ;
2. C can be subdivided inton+1 subfamiliesFi , each consisting of pairwise dis-

joint sets.

The existence of such coverings is a well-known fact. For theconvenience of the
reader we give a short proof at the end of this section.

We are now ready to state the iteration stage needed for the proof of Theorem 2.
Recall thatη0 > 0 is the constant from Proposition 3.

Proposition 5 (Stage, global).Let (Mn,g) be a smooth, compact Riemannian man-
ifold with g∈Cβ (M), and letC be a minimal cover of M of diameterρ < ρ0, where
ρ0 is as in 1.62. There existsδ0 > 0 such that, if K≥ 1 and u∈C2(M,Rm) satisfies

‖u♯e−g‖0 ≤ δ 2 < δ 2
0 , (1.63)

‖u‖2 ≤ µ , (1.64)

oscU ∇u ≤ η0/2 for all U ∈ C , (1.65)

then there exists v∈C2(M,Rm) with

‖v♯e−g‖0 ≤ Cδ 2
(

1
K
+δ β−2µ−β

)

, (1.66)

‖v‖2 ≤ Cµ K(n+1)n∗ , (1.67)

‖u−v‖1 ≤ Cδ . (1.68)

The constants C depend only(Mn,g) andC .
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1.5.4 Proof of Proposition 5

We proceed as in the proof of Proposition 4. Enumerate the covering asC =
{U j} j∈J, and for eachj choose a matrixg j ∈ sym+

n such that

|g(x)−g j | ≤ r0 for x∈U j .

Furthermore, fix a partition of unity{ψ j} for C in the sense thatψ j ∈C∞
c (U j) and

∑ j ψ2
j = 1 onM.

Step 1. Mollification. The mollification step is precisely as in Proposition 4. We
set

ℓ=
δ
µ
,

and let
ũ= u∗ϕℓ, g̃= g∗ϕℓ, (1.69)

where now the convolution is defined in 1.60 above. Then, as before,

‖ũ−u‖1 ≤ Cδ , (1.70)

‖g̃−g‖0 ≤ C‖g‖β ℓ
β , (1.71)

‖ũ‖k+2 ≤ Cδℓ−(k+1), (1.72)

‖ũ♯e− g̃‖k ≤ Cδ 2ℓ−k, (1.73)

for k= 0,1, . . . ,(n+1)n∗. In particular, for anyj ∈ J and anyx∈U j

|g̃(x)−g j | ≤ r0+Cℓβ ≤ r0+Cδ β
0 ≤ 3

2
r0

providedδ0 > 0 is sufficiently small.

Step 2. Rescaling.We rescale the map analogously to Step 2 in Proposition 4.
Accordingly,

h̃ := g̃+
r0

2Cδ 2 (g̃− ũ♯e)

satisfies

|h̃(x)−g j | ≤
r0

2Cδ 2‖g̃− ũ♯e‖0+
3
2

r0 ≤ 2r0 in U j .

Therefore, using Lemma 3 for eachg j and introducing

u0 =
1

(1+Cr−1
0 δ 2)1/2

ũ

we obtain (as in Proposition 4)

g̃− u♯0e =
n∗

∑
i=1

a2
i, jνi, j ⊗νi, j in U j
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for some functionsai, j ∈C∞(U j) satisfying the estimates

‖ai, j‖Ck+1(U j )
≤Cδℓ−(k+1) for j ∈ J andk= 0,1, . . . ,(n+1)n∗.

In particular, using the partition of unity{ψ j} we obtain

g̃− u♯0e = ∑
j∈J

n∗

∑
i=1

(ψ jai, j)
2νi, j ⊗νi, j , (1.74)

with

‖u−u0‖1 ≤ Cδ , (1.75)

‖ψ jai, j‖0 ≤ Cδ , (1.76)

‖u0‖k+2+‖ψ jai, j‖k+1 ≤ Cδℓ−(k+1) (1.77)

for k= 0,1, . . . ,(n+1)n∗.

Step 3. Iterating one–dimensional oscillationsWe now argue as in the Step 3
of the proof of Proposition 4. However, there are two differences. First of all we
apply Proposition 3 in place of Proposition 2. This requiresan additional control of
the oscillation of∇u in eachU j . Second, the number of steps is(n+1)n∗. Indeed,
observe that 1.74 can be written as

g̃− u♯0e =
n+1

∑
σ=1

n∗

∑
i=1

∑
j∈Jσ

(ψ jai, j)
2νi, j ⊗νi, j , (1.78)

where the index setJ is decomposed asJ = J1∪ ·· · ∪ Jn+1 so thatU j ∈ Fσ if and
only if j ∈ Jσ . The point is that the sum inj consists of functions with disjoint
supports, and hence for this sum Proposition 3 can be performed in parallel, in one
step. Thus, the number of steps to be performed serially is the number of summands
in σ andi, which is precisely(n+1)n∗.

To deal with the restriction on the oscillation ofuk in each step, observe that
oscU j ∇u ≤ η0/2 by assumption, and clearly the same holds foru0. Also, at each
step we have the estimate‖uk+1 − uk‖1 ≤ Cδ ≤ Cδ0. Therefore, choosingδ0 > 0
sufficiently small (only depending on the constants and onη0), we ensure that the
condition remains satisfied inductively(n+1)n∗ times.

Thus, proceeding as in the proof of Proposition 4 we apply Proposition 3 succes-
sively withℓk = ℓK−k, λk = Kk+1ℓ−1, andNk = (n+1)n∗−k. In this way we obtain
a final mapv := u(n+1)n∗ such that

‖v♯e− g̃‖0 ≤ Cδ 2 1
K
,

‖v‖2 ≤ Cµ K(n+1)n∗ ,

‖v−u0‖1 ≤ Cδ .
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The above inequalities combined with 1.70, 1.71 and 1.75 imply the estimates 1.66,
1.67 and 1.68. This concludes the proof.

1.5.5 Existence of minimal covers

We fix a triangulationT of M with simplices having diameter smaller thanρ/3. We
let S0 be the vertices of the triangulation,S1 be the edges,Sk be thek–faces.F0 is
made by pairwise disjoint balls centered on the elements ofS0, with radius smaller
thanρ/2. We letM0 be the union of these balls. Next, for any elementσ ∈ S1, we
considerσ ′ = σ \M0. Theσ ′ are therefore pairwise disjoint compact sets and we let
F1 be a collection of pairwise disjoint neighborhoods ofσ ′, each with diameter less
thanρ . We defineM1 to be the union of the elements ofF1 andF0. We proceed
inductively. At the stepk, for everyk–dim. faceF ∈ Sk we defineF ′ = F \Ak−1.
Clearly, theF ′ are pairwise disjoint compact sets and hence we can find pairwise
disjoint neighborhoods of theF ′ with diameter smaller thanρ . Figure 1.1 below
shows the elements ofFi for a 2–d triangulation.

Clearly, the collectionF0 ∪ . . .∪Fn covers any simplex ofT, and hence is a
covering ofM.

F2

F1

F0

Fig. 1.1 The triangulationT and the covering for a 2–dimensional manifold.
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1.6 h–principle: iteration

1.6.1 Proof of Theorem 1

Let µ0,δ0 > 0 be such that

‖u♯e−g‖0 ≤ δ 2
0

‖u‖2 ≤ µ0.

Let alsoK ≥ 1. Later on we are going to adjust the parametersµ0 andK in order to
achieve the required convergence inC1,α . Applying Proposition 4 successively, we
obtain a sequence of mapsuk ∈C2(Ω ,Rn+1) such that

‖u♯ke−g‖0 ≤ δ 2
k

‖uk‖2 ≤ µk

‖uk+1−uk‖1 ≤ Cδk,

where

δ 2
k+1 = Cδ 2

k

(
1
K
+δ β−2

k µ−β
k

)

, (1.79)

µk+1 = CµkK
n∗ . (1.80)

SubstitutingK with max{C1/n∗K,K} we can absorbe the constant in 1.80 to achieve
µk+1 = µkKn∗ , at the price of getting a possibly worse constant in 1.79. Inparticular
µk = µ0Kkn∗ . Next, we show by induction that for any

a < min

{
1
2
,

βn∗
2−β

}

(1.81)

there exists a suitable initial choice ofK andµ0 so that

δk ≤ δ0K−ak.

The casek= 0 is obvious. Assuming the inequality to hold fork, we have

δ 2
k+1 ≤Cδ 2

0 K−2ak−1+Cδ β
0 µ−β

0 K−βk(a+n∗).

Thereforeδk+1 ≤ δ0K−a(k+1) provided

2C≤ K1−2a and 2C≤ µβ
0 δ 2−β

0 Kk[β (a+n∗)−2a]−2a.

By choosing firstK and thenµ0 ≥ ‖u‖2 sufficiently large, these two inequalities can
be satisfied for any givena in the range prescribed in 1.81. This proves our claim.

Next we show that for any
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α < min

{
1

1+2n∗
,

β
2

}

(1.82)

the parametersµ0 and K can be chosen so that the sequenceuk converges in
C1,α(Ω ;Rn+1). To this end observe that to anyα satisfying 1.82 there exists an
a satisfying 1.81 such that

α <
a

a+n∗
.

Then, choosingµ0 andK sufficiently large as above, we obtain a sequenceuk such
that

‖uk+1−uk‖1 ≤ Cδ0K−ak

‖uk+1−uk‖2 ≤ µk+1+µk ≤ 2µ0K(k+1)n∗ .

Therefore, by interpolation

‖uk+1−uk‖1,α ≤ ‖uk+1−uk‖1−α
1 ‖uk+1−uk‖α

2

≤ C̃K−[(1−α)a−αn∗]k.
(1.83)

Thus the sequence converges inC1,α to some limit mapv ∈ C1,α(Ω ;Rn+1). Since
δk → 0, the limit satisfiesv♯e= g in Ω .

Finally, choosingK so large thatK−a ≤ 1/2, we have

‖v−u‖1 ≤Cδ0∑
k

K−ak ≤ 2Cδ0.

1.6.2 Proof of Theorem 2

Recall from Section 1.5.3 that for the whole construction wework with a fixed atlas
{Ωi} of the manifoldM, and that to the given metricg∈Cβ (M) there exist constants
γ > 1 andρ0 > 0 such that 1.61 and 1.62 hold.

Sinceu ∈ C2(M;Rm) and there are a finite number of chartsΩi , there exists
ρ < ρ0 such that

oscU ∇u< η0/4 wheneverU ⊂ M with diamU < ρ .

Fix a minimal coverC of M with diameterρ and letµ0,δ0 > 0 be such that

‖u♯e−g‖0 ≤ δ 2
0

‖u‖2 ≤ µ0.

The iteration now proceeds with respect to this fixed cover, parallel to the proof
of Theorem 1. More precisely, arguing as in in Theorem 1, Proposition 5 yields a
sequenceuk ∈C2(M;Rm) with
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‖u♯ke−g‖0 ≤ δ 2
k

‖uk‖2 ≤ µ0Kk(n+1)n∗

‖uk+1−uk‖1 ≤ Cδk,

where

δ 2
k+1 =Cδ 2

k

(
1
K
+δ β−2

k K−βk(n+1)n∗
)

. (1.84)

The proof thatµ0 andK can be chosen so thatuk converges inC1,α for

α < min

{
1

1+2(n+1)n∗
,

β
2

}

(1.85)

follows entirely analogously. Recall that this argument yields in particular

δk ≤ δ0K−ak.

The only difference is that the estimates 1.63 and 1.65 need to be fulfilled at each
stage. To this end note thatδk ≤ δ0, so that 1.63 will hold at stagek if it holds at the
initial stage. Moreover,

oscU ∇uk ≤ oscU ∇u+
k−1

∑
j=0

2‖u j+1−u j‖1 ≤
η0

4
+2Cδ0∑

j
K−a j ≤ η0

4
+4Cδ0,

so that 1.65 is fulfilled byuk providedδ0 is sufficiently small (depending only on
the various constants).

1.6.3 Proof of Corollaries 1 and 2

The corollaries are a direct consequence of the Nash-Kuipertheorem combined with
Theorems 1 and 2 respectively. For simplicity, we allowM to be eitherΩ for a
smooth bounded open setΩ ⊂R

n or a compact Riemannian manifold of dimension
n, and assume thatg∈Cβ (M) is satisfying either the assumptions of Theorem 1 or
those of Theorem 2. We then setα0 = min{(2n∗+1)−1,β/2} in the first case, and
α0 = min{(2(n+1)n∗+1)−1,β/2} in the second.

Let u ∈ C1(M;Rm) be a short map andε > 0. We may assume without loss of
generality thatε < δ0. Using the Nash-Kuiper theorem together with a standard
regularization, there existsu0 ∈C2(M;Rm) such that

‖u−u0‖1 ≤ ε/2,

‖u♯0e−g‖0 ≤
( ε

2C

)2
,
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whereC is the constant in Theorems 1 and 2 respectively. Then the theorem, applied
to u0, yields an isometric immersionv ∈ C1,α(M;Rm) for any α < α0, such that
‖v−u0‖1 ≤ ε/2, so that‖v−u‖1 ≤ ε. This proves the corollaries.

We now come to Remark 1. This follows immediately from the fact that the
Nash-Kuiper theorem also works for embeddings, and that theset of embeddings
of a compact manifold is an open set inC1(M;Rm). Indeed, ifu is an embedding,
the Nash-Kuiper theorem gives the existence of an embeddingu0 with the estimates
above. Ensuring in addition thatε is so small that any mapv ∈ C1(M;Rm) with
‖v−u‖1 ≤ ε is an embedding, we reach the required conclusion.

1.7 Rigidity: Proof of Theorem 3

1.7.1 Curvature and Brouwer degree

Let (M,g) be as in Theorem 3. As usual, we denote bydA the area element inM
and byκ the Gauss curvature of(M,g). Consider next aC2 isometric embedding
v : M →R

3. The unit normalN(p) tov(M) is the unique vector ofR3 such that, given
a positively oriented basise1,e2 for Tp(M), the triple(dvp(e1),dvp(e2),N(p)) is an
orthonormal positively oriented frame ofR3.

As it is well known, if dσ denotes the area element inS2, thenN♯dσ = κdA.
Therefore, for every open setV ⊂⊂ M and for everyf ∈C1(S2), the usual change
of variable formula yields

∫

V
f (N(x))κ(x)dA(x) =

∫

S2
f (y)deg(y,V,N)dσ(y), (1.86)

where deg(y,V,N) denotes the Brouwer degree of the mapN. Though the differ-
ential definition of deg makes sense only for regular values of N, it is a classical
observation that deg is constant on connected components ofS

2 \N(∂V). Thus it
has a unique continuous extension toS

2\N(∂V), which will be denoted as well by
deg.

Consider next an isometric embeddingv∈C1. In this caseN ∈C0. The Brouwer
degree deg(y,V,N) can still be defined and we recall the following well-known
theorem.

Theorem 4.Let N ∈ C(V,S2) and {Nk} ⊂ C∞(V,S2) be a sequence converging
uniformly to N. Let K⊂ S

2 \N(∂V) be a closed set. For any k sufficiently large,
deg(·,V,Nk)≡ deg(·,V,N) on K.

Thus deg(·,V,N) ∈ L1
loc(S

2\N(∂V)). A key step to the proof of Theorem 3 is to
show that formula 1.86 holds forv∈C1,α with α > 2/3.

Proposition 6. Let v∈C1,α(M,R3) be an isometric embedding withα > 2/3. Then
1.86 holds for every open set V⊂⊂ M diffeomorphic to a subset ofR2 and every
f ∈ L∞ with supp( f )⊂ S

2\N(∂V).
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In order to deal withN(∂V) we recall the following elementary fact.

Lemma 4. Let M andM̃ be2-dimensional Riemannian manifolds,β > 1
2 and N∈

C0,β (M,M̃). If E ⊂ M has Hausdorff dimension1, then the area of N(E) is 0.

The following is then a corollary of Proposition 6 and Lemma 4.

Corollary 5. Let (M,g) and v be as in Proposition 6, withκ ≥ 0. For any open
V ⊂⊂ M, deg(·,V,N) is a nonnegative L1 function and 1.86 holds for every f∈
L∞(S2\N(∂V)).

1.7.2 Proof of Proposition 6

By a standard approximation argument, it suffices to prove the statement whenf
is smooth. Under this additional assumption the proof is a direct consequence of
Theorem 4 and of the convergence result below, which is a consequence of Propo-
sition 1. SinceV is diffeomorphic to an open set of the euclidean plane, we can
consider global coordinatesx1,x2 on it. Fix a symmetric kernelϕ ∈ C∞

c (R
2), set

ϕε(x) = ε−2ϕ(x/ε) and letvε := (v1V) ∗ϕε (we consider here the convolution of
the two functions inR2 using the coordinatesx1,x2 and the corresponding Lebesgue
measure).

Proposition 7. Let v and vε be defined as above and denote by Nε , gε , Aε and κε

respectively, the normal to vε(M), the pull-back of the metric on vε(M), and the
corresponding area element and Gauss curvature. Then,

lim
ε↓0

∫

V
f (Nε)κε dAε =

∫

V
f (N)κ dA ∀ f ∈C∞

c (S
2\N(∂V)) . (1.87)

Proof. In coordinates, our aim is to show that

lim
ε↓0

∫

V
f (Nε(x))κε(x)(detgε(x))

1
2 dx =

∫

V
f (N(x))κ(x)(detg(x))

1
2 dx. (1.88)

We recall the formulas for the Christoffel symbols, the Riemann tensor and the
Gauss curvature inV, in the system of coordinates already fixed:

Γ i
jk =

1
2

gim(∂kg jm+∂ jgmk−∂mgk j
)
, (1.89)

Ril jk = glm
(
∂kΓ m

i j −∂ jΓ m
ik +Γ l

i j Γ m
kl −Γ l

ikΓ m
jl

)
, (1.90)

κ =
R1212

det(gi j )
. (1.91)

After obvious computations we conclude that

κ = (detg)−1(ci jkl ∂klgi j +di jklmn(g)∂kgi j ∂l gmn
)

(1.92)
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whereci jkl areconstantcoefficients and the functionsdi jklmn are smooth.
Proposition 1 implies that∂kgε

i j andgε
i j converge locally uniformly to∂kgi j and

gi j respectively. Moreover,Nε converges locally uniformly toN. Since there is a
compact set containingf (Nε) and f (N), we only need to show that

lim
ε↓0

∫

V
f (Nε(x))(detgε(x))−

1
2 ∂klg

ε
i j (x)dx

=

∫

V
f (N(x))(detg(x))−

1
2 ∂klgi j (x)dx. (1.93)

Denote byψε the functionf (Nε(x))(detgε(x))−
1
2 . Sincef (Nε) is smooth and com-

pactly supported inV we can integrate by parts to get
∫

V
ψε ∂klg

ε
i j =

∫

V
∂kψε ∂l g

ε
i j . (1.94)

Note that‖∂kψε‖ ≤Cεα−1 by obvious estimates on convolutions. Hence, 1.2 gives
∫

V
∂kψε (∂l g

ε
i j −∂l gi j

)
= O(ε3α−2) (1.95)

which converges to 0 becauseα > 3/2. Integrating again by parts, we get

lim
ε↓0

∫

V
f (Nε(x))(detgε(x))−

1
2 ∂klg

ε
i j (x)dx

= lim
ε↓0

∫

V
f (Nε(x))(detgε(x))−

1
2 ∂klgi j (x)dx.

Using the uniform convergence ofNε to N and ofgε to g we then conclude 1.93 and
hence the proof of the Proposition.⊓⊔

1.7.3 Proof of Lemma 4 and Corollary 5

Proof (of Lemma 4).By the definition of Hausdorff dimension, for everyε > 0 and
η > 1 there exists a covering ofE with closed setsEi such that

∑
i
(diam(Ei))

η ≤ ε . (1.96)

On the other hand, diam(g(Ei)) ≤C(diam(Ei))
β and hence the area|g(Ei)| can be

estimated withC(diam(Ei))
2β . Sinceβ > 1/2, we can pickη = 2β to conclude that

|g(E)| ≤ C∑
i
(diam(Ei))

η ≤ Cε .

The arbitrariness ofε implies|g(E)|= 0. ⊓⊔
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Proof (of Corollary 5).First of all, we know from Proposition 6 that the formula
1.86 is valid for any open setV which is diffeomorphic to an open set ofR2, and
any f ∈ L∞ compactly supported inS2\N(∂V). Sinceκ is nonnegative, we conclude
that deg(·,N,V)≥ 0. Testing 1.86 with a sequence of compactly supported functions
fk ↑ 1

S2\N(∂V) we derive that

∫

deg(y,N,V)dσ(y) =
∫

V
κ dA < ∞ ,

which implies deg(·,N,V) ∈ L1.

Next, consider aV with smooth boundary. We decompose it into the union of
finitely many nonoverlapping Lipschitz open setsVi diffeomorphic to open sets of
the euclidean plane. Then

deg(y,N,V) = ∑
i

deg(y,N,Vi) for everyy 6∈⋃
N(∂Vi).

On the other hand, by Lemma 4,
⋃

i N(∂Vi) is a negligible set, and hence we con-
clude the formula forV from the previous step.

Finally, fix a genericV and anf ∈ L∞ with supp( f ) ⊂ S
2 \N(∂V). Choose an

open setV ′ with smooth boundary∂V ′ sufficiently close to∂V. Then deg(·,V,N)
and deg(·,V ′,N) coincide on the support off , whereas the support off (N(·)) is
contained inV ′. From the formula forV ′ and f we conclude then the validity of
the formula forV and f . Arguing again as above, we conclude that deg(·,N,V)
is summable and nonnegative and that the formula 1.86 holds for anyV and any
f ∈ L∞(S2\N(∂V)). ⊓⊔

1.7.4 Bounded extrinsic curvature. The proof of Theorem 3

We recall the notion of bounded extrinsic curvature for aC1 immersed surface (see
p. 590 of [25]).

Definition 2. Let Ω ⊂ R
2 be open andu ∈ C1(Ω ,R3) an immersion. The surface

u(Ω) hasbounded extrinsic curvatureif there is aC such that

N

∑
i=1

|N(Ei)| ≤ C (1.97)

for any finite collection{Ei} of pairwise disjoint closed subsets ofΩ .

The proof of Theorem 3 follows now from Corollary 5.

Proof (of Theorem 3).The theorem follows easily from the claim:

deg(·,V,N) ≥ 1N(V)\N(∂V) for every openV ⊂ Ω . (1.98)
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In fact, given disjoint closed setsE1, . . . ,EN, we can cover them with disjoint open
setsV1, . . .VN with smooth boundaries. By 1.98 and Corollary 5,

∑
i
|N(Ei)\N(∂Vi)| ≤ ∑

i
|N(Vi)\N(∂Vi)| ≤ ∑

i

∫

Vi

κ ≤
∫

Ω
κ . (1.99)

On the other hand, by Lemma 4,|N(∂Vi)|= 0. Thus, 1.99 shows 1.97.

We now come to the proof of 1.98. Obviously deg(y,V,N) = 0 if y 6∈ N(V).
Moreover, by Corollary 5, deg(·,V,N) ≥ 0. Therefore, fixy0 ∈ N(V) \N(∂V) and
assume, by contradiction, that deg(y0,V,N) = 0. Consider a small open diskD cen-
tered aty0 such thatN−1(D)∩∂V = /0 and letW :=N−1(D)∩V. ThenN(∂W)⊂ ∂D
and N(W) ⊂ D. So, deg(·,W,N) vanishes onS2 \D and is a constant integerk
on D. On the other handk = deg(y0,W,N) = deg(y0,V,N)−deg(y0,V \W,N) =
−deg(y0,V \W,N). Sincey0 6∈ N(V \W), we concludek= 0 and hence

0 =
∫

deg(y,W,N)dy =
∫

W
κdA.

which is a contradiction becaseW 6= /0 andκ > 0. ⊓⊔
Corollary 3 follows from Theorem 3 and the results of Pogorelov cited in the

introduction. More precisely, by Theorem 9 on p650 [25],u(S2) is a closed convex
surface, which by [24] is rigid.

Corollary 4 also follows from the results in [25] and [26]. However, we were
unable to find an exact reference for open surfaces, and therefore, for the reader’s
convenience, we have included a proof in the appendix.

Appendix

Proof (of Corollary 4).
First of all, since the theorem is local, without loss of generality we can assume

that:

1. Ω = Br(0), u∈C1,α(Br(x)), g∈C2,β (Br(x)) andu is an embedding;
2. u(Ω) has bounded extrinsic curvature.

Step 1. Density of regular points.For any pointz∈ S
2 we letn(z) be the cardi-

nality of N−1(z). It is easy to see that, for a surface of bounded extrinsic curvature,
∫

S2 n< ∞ (cp. with Theorem 3 of p. 590 in [25]). Therefore, the setE := {n= ∞}
has measure zero. LetΩr := N−1(S2\E). Observe that

Ωr is dense inΩ . (1.100)

Otherwise there is a nontrivial smooth open setV such thatN(V) ⊂ E. But then,
deg(·,V,N) = 0 for everyy 6∈ N(V), and since|N(V)| = |N(∂V)| = 0, it follows
that deg(·,V,N) = 0 a.e.. By Corollary 5,

∫

V κ = 0, which contradictsκ > 0.
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Step 2. Convexity around regular points.Note next that, for everyx∈ Ωr there
is a neighborhoodU of x such thatN(y) 6=N(x) for all y∈U \{x}, i.e.x is regular in
the sense of [25] p. 582. Recalling 1.98, deg(·,V,N)≥ 1V\∂V for everyV: therefore
the index of the mapN at every pointx∈ Ωr is at least 1. So, by the Lemma of page
594 in [25], any pointx∈ Ωr is an elliptic point relative to the mappingN (that is,
there is a neighborhoodU of x such that the tangent planeπ to u(Ω) in x intersects
U ∩u(Ω) only in u(x); cp. with page 593 of [25]).

By the discussion of page 650 in [25],u(Ω) has nonnegative extrinsic curvature
as defined in IX.5 of [25]. Then, Lemma 2 of page 612 shows that,for every elliptic
point y ∈ u(Ω) there is a neighborhood whereu(Ω) is convex. This conclusion
applies, therefore, to anyy∈ Ωr . We next claim the existence of a constantC with
the following property. Setρ(y) :=C−1min{1,dist(u(y),u(∂Ω)}. Then

u(Ω)∩Bρ(y)(y) is convex for ally∈ Ωr . (1.101)

Recall thatu is an embedding and hence dist(u(y),u(∂Ω))> 0 for everyy∈ Ω . By
1.100, 1.101 gives for anyy ∈ Ω there is a neighborhood whereu(Ω) is convex.
This would complete the proof.

Step 3. Proof of 1.101.First of all, sinceu is an embedding and‖u‖C1,α is finite,
there is a constantc0 such that, for any pointx, Bc0(x)∩ u(Ω) is the graph of a
C1,α function with‖ ·‖C1,α norm smaller than 1. In order to prove 1.101 we assume,
without loss of generality, thaty = 0 and that the tangent plane tou(Ω) at y is
{x3 = 0}. Denote byπ the projection on{x3 = 0}. By [26] there is a constantλ > 0
(depending only on‖g‖C2,β , ‖κ‖C0 and‖κ−1‖C0) with the following property.

(Est) LetU be an open convex set such thatU ∩u(∂Ω) = /0, diam(U) ≤ c0 andU ∩
u(Ω) is locally convex. ThenU ∩u(Ω) is the graph of a functionf : π(u(Ω)∩
U)→ R with ‖ f‖C2,1/2 ≤ λ−1 andD2 f ≥ λ Id.

x3

y

V

Fig. 1.2 The convex sets of typeV×]−a,a[ among which we choose the maximal oneUm.
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We now look for setsU as in (Est) with the additional property thatU =V×]−a,a[
and f |∂V = a (see Figure 1.2). LetUm be the maximal set of this form for which the
assumptions of (Est) hold. We claim that, either∂Um∩u(∂Ω) 6= /0, or diam(Um) =
c0. By (Est), this claim easily implies 1.101. To prove the claim, assume by con-
tradiction that it is wrong and letUm = Wm×]− am,am[ be the maximal set. Let
γ = ∂Um∩u(Ω). By the choice ofc0, γ is necessarily the curve∂Wm×{a}. On the
other hand, by the estimates of (Est), it follows that every tangent plane tou(Ω)
at a point ofγ is transversal to{x3 = 0}. So, for a sufficiently smallε > 0, the in-
tersection{x3 = am+ ε}∩u(Ω) contains a curveγ ′ bounding a connected region
D ⊂ u(Ω) which containsu(Ω)∩Um. By Theorem 8 of page 650 in [25],D is a
convex set. This easily shows thatUm was not maximal. ⊓⊔
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