Chapter 1
h-principle and rigidity for C-¢ isometric
embeddings

Sergio Conti, Camillo De Lellis anddszb Szkelyhidi Jr.

Abstract In this paper we study the embedding of Riemannian manifioldew
codimension. The well-known result of Nash and Kuiper [Z],says that any short
embedding in codimension one can be uniformly approximate@! isometric
embeddings. This statement clearly cannot be truefoembeddings in general,
due to the classical rigidity in the Weyl problem. In fact Bow extended the latter
to embeddings of clagd™® with a > 2/3in [3, 5]. On the other hand he announced
in [6] that the Nash-Kuiper statement can be extended té @& embeddings with

a < (1+n+4n?)~1, wherenis the dimension of the manifold, provided the metric
is analytic. Subsequently a proof of the 2-dimensional eggeeared in [7]. In this
paper we provide analytic proofs of all these statementgdaeral dimension and
general metric.

1.1 Introduction

Let M" be a smooth compact manifold of dimensioh 2, equipped with a Rieman-
nian metricg. An isometric immersion ofM", g) into R™ is a mapu € C1(M™,R™)
such that the induced metric agrees wgjthn local coordinates this amounts to the
system

diu-d,-u:gi,- (1.1
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consisting ofn(n+1)/2 equations irm unknowns. If in additioru is injective, it
is an isometric embedding. Assume for the momentghaC*”. The two classical
theorems concerning the solvability of this system are:

(A) if m> (n+2)(n+3)/2, then any short embedding can be uniformly approxi-
mated by isometric embeddings of cl&s% (Nash [22], Gromov [16]);

(B) if m>n+ 1, then any short embedding can be uniformly approximateiddyy
metric embeddings of clag (Nash [21], Kuiper [20]).

Recall that a short embedding is an injective map" — R™ such that the metric
induced orM by uis shorter tham. In coordinates this means th@u- dju) < (gij)
in the sense of quadratic forms. Thus, (A) and (B) are not lpeséstence theorems,
they show that there exists a huge (essent@Mydense) set of solutions. This type
of abundance of solutions is a central aspect of Gromwysnciple, for which the
isometric embedding problem is a primary example (see [21, 1

Naively, this type of flexibility could be expected for highdimension as in (A),
since then there are many more unknowns than equations .imlelh-principle
for C1 isometric embeddings is on the other hand rather strikisgeeially when
compared to the classical rigidity result concerning theMyeoblem: if (%, g) is a
compact Riemannian surface with positive Gauss curvande a C? is an isomet-
ric immersion intoR3, thenu is uniquely determined up to a rigid motion ([8, 17],
see also [30] for a thorough discussion). Thus it is cleatr idmametric immersions
have a completely different qualitative behaviour at lovd dmgh regularity (i.e.
below and abov€?).

This qualitative difference is further highlighted by th@léwing optimal map-
ping properties in the case whanis allowed to be sufficiently high:

(C) if ge C"# with | + B > 2 andmis sufficiently large, then there exists a solution
u e C" (Nash [22], Jacobowitz [18]);

(D) if ge C'"B with 0 <1+ B < 2 andm is sufficiently large, then there exists a
solutionu € CH with a < (I + 3)/2 (Kallen [19]).

These results are optimal in the sense that in both casesdkistsy < C'# to which
no solutionu has better regularity than stated.

The techniques are also different: whereas the proofs o (#)(C) rely on the
Nash-Moser implicit function theorem, the proofs of (B) dBJ involve an iteration
technique called convex integration. This technique wasldped by Gromov [15,
16] into a very powerful tool to prove theprinciple in a wide variety of geometric
problems (see also [12, 32]). In general the regularity dditeins obtained using
convex integration agrees with the highest derivativessappg in the equations
(see [31]). Thus, an interesting question raised in [16Pd&how one could extend
the methods to produce more regular solutions. Essentiedlgame question, in the
case of isometric embeddings, is also mentioned in [33]Rseblem 27). For high
codimension this is resolved in (D).

Our primary aim in this paper is to consider the low codimensiase, i.e. when
m= n+ 1. This range was first considered by Borisov. In [6] it was@amted that
if gis analytic, then thé-principle holds for local isometric embeddings: C1-¢
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for a < —2—. A proof for the case = 2 appeared in [7]. Our main result is to

provide a proof of thér-principle in this range fog which is not necessarily ana-
lytic and generah > 2 (see Section 1.1.1 for precise statements). Moreovezaat |
for | = 0 and sufficiently smalB > 0, we recover the optimal mapping range cor-
responding to (D). Thus, there seems to be a direct tradeedffeen codimension
and regularity.

The novelty of our approach, compared to Borisov's, is timdy a finite number
of derivatives need to be controlled. This is achieved byothicing a smoothing
operator in the iteration step, analogous to the device shN@ed to overcome the
loss of derivative problem in [22]. A similar method was uggd<allen in [19]. See
Section 1.3 for an overview of the iteration procedure. Idith, the errors coming
from the smoothing operator are controlled by using cetaimmutator estimates
on convolutions. These estimates are in Section 1.2.

Concerning rigidity in the Weyl problem, it is known from ti®rk of Pogorelov
and Sabitov that

1. closedC! surfaces with positive Gauss curvature and bounded extinsvature
are convex (see [25]);

2. closed convex surfaces are rigid in the sense that isanmamersions are unique
up to rigid motion [24];

3. aconvex surface with metripe C"# with | > 2,0 < 8 < 1 and positive curvature
is of classC''B (see [25, 26]).

Thus, extending the rigidity in the Weyl problem@? isometric immersions can
be reduced to showing that the image of the surface has bdwxdiensic curvature
(for definitions see Section 1.7). Using geometric argusenta series of papers [1,
2, 3,4, 5] Borisov proved that far > 2/3 the image of surfaces with positive Gauss
curvature has indeed bounded extrinsic curvature. Coeselgurigidity holds in
this range and in particular/3 is an upper bound on the range dflder exponents
that can be reached using convex integration.

Using the commutator estimates from Section 1.2, at the énkisopaper (in
Section 1.7) we provide a short and self-consistent armgbytiof of this result.

1.1.1 Theh-principle for small exponents

In this subsection we state our main existence resul§¥8risometric immersions.
One is of local nature, whereas the second is global. Notefdhahe local result
the exponent matches the one announced in [6]. In what fe|lave denote by
sym; the cone of positive definite symmetric< n matrices. Moreover, given an
immersionu : M" — R™, we denote byfe the pullback of the standard Euclidean
metric throughu, so that in local coordinates

(uﬁe)ij = z?.u-ﬁju.

Finally, let
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n(n+1)
n, = .
2
Theorem 1 (Local existence)Let ne N and g € sym;;. There exists t> 0 such
that the following holds for any smooth bounded open(et R" and any Rie-

mannian metric g= CP (Q) with B > 0and||g— gollco < r. There exists a constant
& > 0 such that, if u= C2(Q;R"1) and o satisfy

. 1 B
lure—gllo < &5 and O<a<m|n{l+2n*,2},

then there exists a mapa/C%(Q; R"1) with
1/2
ve=g and |v—ulja < C||uﬁe—9\|cé .

Corollary 1 (Local h-principle). Let ngo, 2,9, a be as in Theorem 1. Given any
short map ue C}(Q;R"™1) and anye > 0 there exists an isometric immersiorev
CLI(Q;R™1) with ||u—V||co < €.

Theorem 2 (Global existence)Let M" be a smooth, compact manifold with a Rie-
mannian metric g C#(M) and let m> n+ 1. There is a constard, > 0 such that,
if u € C?>(M;R™ anda satisfy

_ 1 B
fa < 2 —_—, =
lve—gleo <&  and °<"<m'”{1+2(n+1)n*’2}’

then there exists a mapa/C1% (M; R™) with
ve=g and |v-ula < Cllie-gl’.

Corollary 2 (Global h—principle). Let(M",g) anda be as in Theorem 2. Given any
short map uc CY(M;R™) with m> n+ 1 and anye > 0 there exists an isometric
immersion ve C19(M; R™) with [|u—Vv||co < €.

Remark 1In both corollaries, iu is an embedding, then there exists a correspond-
ing v which in addition is an embedding.

1.1.2 Rigidity for large exponents

The following is a crucial estimate on the metric pulled bagkstandard regular-
izations of a given map.

Proposition 1 (Quadratic estimate).Let Q C R" be an open set, g C1%(Q,R™)
with Ve € C? and ¢ € C2(R") a standard symmetric convolution kernel. Then, for
every compact set K Q,
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(v d)e—Veleae) = O(ZY). (1.2)

In particular, fix a mau and a kernel satisfying the assumptions of the Propo-
sition with @ > 1/2. Then the Christoffel symbols ¢¥ x ¢,)*e converge to those of
Vfe. This corresponds to the results of Borisov in [1, 2], andshat the absence of
h—principle forCL3+¢ immersions. Relying mainly on this estimate we can give a
fairly short proof of Borisov’s theorem:

Theorem 3.Let (M?,g) be a surface with €metric and positive Gauss curvature,
and let ue C19(M?;R3) be an isometric immersion with > 2/3. Then M) is a
surface of bounded extrinsic curvature.

This leads to the following corollaries, which follow frore work of Pogorelov
and Sabitov.

Corollary 3. Let(S?,g) be a closed surface withgC? and positive Gauss curva-
ture, and let uz C19 (S R3) be an isometric immersion with > 2/3. Then, (<)

is the boundary of a bounded convex set and any two such iraagesngruent. In

particular if the Gauss curvature is constant, thef8?) is the boundary of a ball

B (x).

Corollary 4. Let Q ¢ R? be open and g C># a metric onQ with positive Gauss
curvature. Let .e C19(Q;R3) be an isometric immersion with > 2/3. Then Q)
is C2P and locally uniformly convex (that is, for everyexQ there exists a neigh-
borhood V such that(2) NV is the graph of a P function with positive definite
second derivative).

1.1.3 Connections to the Euler equations

There is an interesting analogy between isometric immessiio low codimension
(in particular the Weyl problem) and the incompressibleeEw@quations. In [10]

a method, which is very closely related to convex integratiwas introduced to
construct highly irregular energy-dissipating solutiofithe Euler equations. Being
in conservation form, the "expected” regularity space famex integration for the
Euler equations should I&2°. This is still beyond reach, and in [10] a weak version
of convex integration was applied instead, to produce goiatinL* (see also [11]
for a slightly better space) and, moreover, to show that ekweasion of theh-
principle holds.

Nevertheless, just like for isometric immersions, for thddE equations there
is particular interest to go beyor@’: in [23] L. Onsager, motivated by the phe-
nomenon of anomalous dissipation in turbulent flows, cdojed that there exist
weak solutions of the Euler equations of cl&@swith o < 1/3 which dissipate en-
ergy, whereas foor > 1/3 the energy is conserved. The latter was proved in [13, 9],
but on the construction of energy-dissipating weak sohginothing is known be-
yondL® (for previous work see [27, 28, 29]). It should be mentiortet the critical
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exponent 13 is very natural - it agrees with the scaling of the energyads pre-
dicted by Kolmogorov’s theory of turbulence (see for ins&fiL4]).

For the analogous problem for isometric immersions theesdwmt seem to be
a universally accepted critical exponent (c.f. Problem 2[B8]), even though 1/2
seems likely (c.f. section 1.1.2 and the discussion in [d]jact, the regularization
and the commutator estimates used in our proof of Propasitiand Theorem 3
have been inspired by (and are closely related to) the angtsnaé[9].

1.2 Estimates on convolutions: Proof of Proposition 1

As usual, we denote the norm on théltier spac€®(Q) by

02f (x) — 92f
k,a = Ssup Z \o”'af(x)| + sup | (X) (y)l )

If x—y[a
XeQ |4k XYEQ XAy | 4=k y

Herek=0,1,2,...,a=(ay,...,ay) isamulti-index withia| = a; + - - - +a, anda €
[0,1]. For simplicity we will also use the abbreviatidif ||k = || f||ko and || f||a =

[ fllo.a-
Recall the following interpolation inequalities for thesarms:

A 1-A
I fllka < Cll i a0 ll fllic

whereC depends on the various parameters; d < 1 and
kta=Ak+a1)+(1—A)(ke+ az).

The following estimates are well known and play a fundanlemte in both the
constructions and the proof of rigidity.

Lemma 1.Let¢ € CZ(R") be symmetric and such thA = 1. Then for any ;s> 0
anda €]0,1] we have

|1 f % @ellrrs <CCS|Ifr, (1.3)
[ —fxdolle <CE||f||r12, (1.4)
1(fg) * e — (Fx¢) (9% )llr < CE* | f|a |0l (1.5)

Proof. For any multi-indices, b with |a =, |b| = swe haved®*P(f x ¢,) = 92f «
d°¢,, hence
[0%0(f % )| < Csl 9| |-

This proves 1.3.
Next, by considering the Taylor expansionfotx we see that

f(x=y) = f(x) = ' ()y+rx(y),

where sup|r(y)| < Cly|?|| f|2. Moreover, sincep is symmetric,
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/¢e(y)ydy: 0.

Thus,
1= te0d = | [ 0n(tx-y)- f(x))dy\ .6
<Clffle [ ¢

This proves 1.4 for the cage= 0. To obtain the estimate for generalrepeat the
same argument for the partial derivativsf with |a] =r.

For the proof of estimate 1.5 latbe any multi-index witha| = r. By the product
rule

(3)|wi2ay = cAfl. @)

0%[dr+ (fg) — (¢ f)(de+0)] (1.8)
=9 (19)- 5 (5) @00 1@ 0050) 1.9)
— 0%y (10)— (0% + 1) (B Q)+ (dr+ 1)(0%hr+g)  (1.10)

S ) O e R TR CEEY
_ g1~ 1(0)(g— g0 (1.12)

bga( D) 0" (1 1) 0% 200+ (g 50%). (1.13)

where we have used the fact that

f(x) ifa=0,

aa‘m*f(x):{o if a+£ 0.

Now observe that

0%+ [(f = F(x))(g—9(x))]] (1.14)
=| [ oottty fo0) @) - gty (1.15)
< [10%09) iy Ayl lallgla = G I flallgle.  (1.16)

Similarly, all the terms in the sum ovérobey the same estimate. This concludes
the proof of 1.5. O

Proof (of Proposition 1)Setg := Ve andg’ := (v* ¢,)'e. We have
g — il < 119 — gij * Bell+ llgij * de — il

The first term can be written as
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0 — 0ij * dells = || 0V e - dv by — (Gjv- BV) = ¢y

» (1.17)

so that 1.5 applies, to yield the bouriéf ~*||v|Z ,. For the second term 1.4 gives
the bound’||g||2. Combining these two we obtain

g —gijllk < CE*HvITa +2lgll2).

from which 1.2 readily follows. O

1.3 h—principle: The general scheme

The general scheme of our construction follows the methdtbsh and Kuiper [21,
20]. For convenience of the reader we sketch this schemadrséttion. Assume
for simplicity thatg is smooth.

The existence theorems are based on an iteratictages and eaclstagecon-
sists of severasteps The purpose of atageis to correct the errog — u’e. In order
to achieve this correction, the error is decomposed intava agiuprimitive metrics
as

Ny
g-ue= Y agw@w (locally)
=1
Ny
g-uve=73 3 (Ya?vik®vjk (globally)
] k=1

The natural estimates associated with this decomposit®n a

1/2
lallo ~ [lg—uellg’ (1.18)
laxlingr ~ |lullny2  forN=0,1,2,.... (1.19)

A stepthen involves adding one primitive metric. In other worde tfoal of astep
is the metric change
ve — Ueravev.

Nash used spiralling perturbations (also known as the Naigt)tto achieve this;
for the codimension one case Kuiper replaced the spiral®bygations. Using the
same ansatz (see formula 1.36) one easily checks that@ddfta primitive metric
is possible with the following estimates (see Propositiin 2

. . 1
CPerror in the metric~ ||g— u‘elo <

increase o€-norm ofu ~ |g— uﬁellé/2

increase o€2-norm ofu ~ ||ul[2K
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for anyK > 1. Observe that the first two of these estimates is esserttigllsame as
in [21, 20]. Furthermore, the third estimate is only validduto a loss of derivative
(see Remark 2).

The low codimension forces the steps to be performed serfdils is in contrast
with the method of Kllen in [19], where the wholstagecan be performed in one
step due to the high codimension. Thus the numbestepsin a stageequals the
number of primitive metrics in the above decomposition Whiteract. This equals
n, for the local construction angh+ 1)n, for the global construction. To deal with
the loss of derivativeproblem we mollify the map at the start of every stage, in
a similar manner as is done in a Nash-Moser iteration. Becatithe quadratic
estimate 1.5 in Lemma 1 there will be no additional error aagrfrom the molli-
fication. Therefore, iterating the estimates for one stesr avsingle stage (that is,
overN, steps) leads to

. . 1
CPerror in the metric~ ||g— ue||o <

increase o€-norm ofu ~ |g— uﬁell(l)/2

increase o€2-norm ofu ~ ||ul|2 KN
With these estimates, iterating over ttagedeads to exponential convergence of
the metric error, leading to a controlled growth of tenorm and an exponential

growth of theC? norm of the map. In particular, interpolating between thiese
norms leads to convergence@h? for a < ﬁ

1.4 h—principle: Construction step

The main step of our construction is given by the followingpsition.

Proposition 2 (Construction step).Let Q C R", v € S!and Ne N. Let ue
CN+2(Q;R™1) and ac CN*1(Q). Assume thay > 1 and ¢,6 < 1 are constants
such that

%/I < Ue <yl inQ, (1.20)
lallo < 9, (1.21)
[Ullksz+ lalker < 80V fork=0,1,...,N. (1.22)
Then, for any
A>t (1.23)

there exists & CN*1(Q; R™1) such that

2

Hvﬁe—(ute+a2v®v)H0§C% (1.24)
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and '
lu—vl|; <CEAI™T forj=0,1,...,N+1, (1.25)

where C is a constant depending only afNrendy.

Remark 2 Observe that if 1.25 would hold fgr= N + 2, then the conclusion of the
proposition would say essentially (with= 0) that the equation

ve=ue+avav

admits approximate solutions @ with estimates

1
[Vie— (We+a?vev)|o < C 62?’

lu=vilz < Clull2K.

HereK = A/ > 1. The fact that 1.25 holds only fgr< N + 1 amounts to a loss of
derivative in the estimate.

In the higher codimension case we need an additional teehagsumption in
order to carry on the same result. As usual the oscillatiau @$ a vector-valued
mapu is defined as syg [u(x) — u(y)|.

Proposition 3 (Step in higher codim.).Let mn,N € N with N > 1 and m>

n+ 1. Then there exist a constang > 0 with the following property. LeQ, g, a,

v and ue C**N(Q,R™) satisfy the assumptions of Proposition 2 and assume in
additionoscu < no. Then there exists a mapaC*N(Q,R™) satisfying the same
conclusion as in Proposition 2.

1.4.1 Basic building block

In order to prove the Proposition we need the following lemriee function™ will
be our corrugation.

Lemma 2. There exists, > 0 and a function”™ € C*([0,5.] x R;R?) with I (5,t +
2m) = I (d,t) and having the following properties:

T (st) +ef” =1+, (1.26)
|0s0KT1(5,1)| + [95T (s,)] < Ces for k> 0. (1.27)

Proof. DefineH : R? — R? asH (1,t) = (cogTsint),sin(tsint)). Then

21T 21T Tl

sin(tsint)dt = / sin(tsint)dt = 0 (1.28)

J—=TT

Ha(T,t)dt = /

JO JO

by the symmetry of the sine function. Set
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2

1 1o
(1) = 5 [ H(rydt = Zr/o cogTsint)dt. (1.29)

Note thatly € C*(IR) with Jo(0) = 1, J;3(0) = 0 andJ”(0) < 0. We claim that there
existsd > 0 and a functiorf € C*(—9, d) such thatf (0) = 0 and

J(f(s) = @ (1.30)

This is a consequence of the implicit function theorem. Tothés, set

F(sr) =Jo(r¥/?) — (1472

ThenF € C*(RR?). Indeed, since the Taylor expansion of ka@®ntains only even
powers ofx, Jo(r'/2) is obviously analytic. Moreover,

Jo(rV/2) = %T/OZH (1~ Ssirt) dt+0(r2)

In particulard, F (0,0) = —1/4. Since alsd- (0,0) = 0, the implicit funcion theorem
yieldsd > 0 andg € C*(—9, 9) such thag(0) = 0 and

F(s,g(s)) =0.
Next, observe thadsF (0,0) = 0 anddZF (0,0) = 1. Therefore
d(0) =0 andg”(0) = 4.
This implies thatf (s) := g(s)%/? is also a smooth function, with
f(0) =0 andf’(0) = v/2,

thus proving our claim.
Having foundf € C*(—9,d) with f(0) =0 and 1.30, we finally set

F(st) = /0t [VITH(H(9)t) —er] o’ (1.31)
By constructiona " (s,t) +ey|? = 1+ <. Moreover
F(st+2m-r(st) = /tt+2n[mH(f(s),t’)—el}dt’
= VIS RS, df —ore
V2 o [V1+9(f(9) - 1] 20

Thus the functiorl is 2rr-periodic in the second argument.
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We now come to the estimates. Fix< 8. Thenl” € C([0, &.] x R;R?), and since
it is periodic in the second variabl&, and all its partial derivatives are uniformly
bounded. Straightforward computations show that forlasy0,1, ...

Okr (0,t) =0 anddsd¥r1(0,t) =0  forallt.
Hence, integrating is, we conclude that

|GKT (s.t)] < s10s0{T [lo,
10:0{T1(s.t)| < s/10Z3T1lo.

which give the desired estimates

1.4.2 Proof of Proposition 2

Throughout the proof the lett€ will denote a constant, whose value might change
from line to line, but otherwise depends onlymiN andy. Fix a choice of orthonor-
mal coordinates iR". In these coordinates the pullback metric can be written as
(UPe)ij = du- d;u or, denoting the matrix differential afby Ou = (d;u')ij, as

ue= Ou'Ou.

From now on we will work with this notation.
Let
E=0u-(Ou'Ou)™t v, Z=0UAGUA---Adnu. (1.32)

Because of 1.20 the vectorfields¢ are well-defined and satisfy
1
ES\E(X)\,\Z(X)\gc forxe Q (1.33)

with someC > 1. Now let

G-rp B YW-aKoe N se,
and
a=|¢fa.
Then 1 1
T RRYe Ha -
and

[¥[lj < Cl|uflj+1,

~ 1.35
lal; < C(lal; + lallollull; 1), (1.35)
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for j=0,1,...,N+1. Finally, let

V(X) = u(x)—i—%l#(x)l'(é(x),)\x-v),

wherel” = I (s,t) is the function constructed in Lemma 2.

Proof of 1.24.First we computélv' Ov. We have

Ov=0u+Y¥ - ar @v+A1W.o @ Da+ A 109 T .

A E1 E>
Using the notation syf#) = (A+AT)/2 one has
OV Ov = ATA+2sym(ATE; + ATE;) + (E1 + E2) T (E1 + Ea).

Using 1.34 and 1.26:

ATA=DOu"Ou+ |€|2(2atr1+ ar ?vev

—DuTDu+Wa veov=0u"Outalvev.

Next we estimate the error terms. First of all

;xv®drwawx@r®Da

(Osl1+ ol -0s) (v 0Oa).

Na:i

A(mfwx@r®mm+

MW
Note that 1.27 together with 1.35 implies:

I Mlo, [[@T" o, l[9s1llo < C/laffo-

Therefore )
IsymATED o < *aloll <o
and similarly
ﬁWWNEﬂ%<‘Wﬂde<Cf€
Finally,

C 5
B2+ Ezflo < (Il + f[allofJull2) < Wﬂh+5HWh)SC;z

In particular||E; + Ez||jo < Cd and hence

2

0
||(E1+E2) (E1+E2)HO < C/\é

13

(1.36)

(1.37)

(1.38)

(1.39)

(1.40)

(1.41)

(1.42)

(1.43)
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Putting these estimates together we obtain 1.24 as required

Proof of 1.25.In fact 1
[lu—vljo < Cc‘ix

is obvious, whereas the estimates fet 1,...,N will follow by interpolation, pro-
vided the casé = N + 1 holds. Therefore, we now prove this case. A simple appli-
cation of the product rule and interpolation yields

C
Iv=uln+ < 5 ([®lns2 T llo+ [[#llollfIn-+1)
(1.44)

< = ([[ulln2ll8fo+ 1T IN+2) -

>0

Denoting byDi any partial derivative in the variables, . . ., x, of order j, the chain
rule can be written symbolically as

DQHlI_ _ Z‘ (aiisatl'r) Al zci7j7a(DX§)Ul(D)2(gl)Uz """ (D!:Hla)UNHa
i+j<N+1 g

where the inner sum is over afl with

o1+ +0Ny1 =1,
01+202+--+(N+1)ons1+j=N+1

These relations can be checked by counting the order oféiffeation. Therefore,
by using 1.21, 1.22 and 1.23

IDi*rfo<c 3 |
i+j<N+1

<C |
i+j<N+1

aiar HO A5l p-(N+1-))
(1.45)

aiar HO SANTL < CaANL,

In particular, sincé|l" || < &, we deduce thatl ||n.1 < COAN*L Therefore
C
V-uler < S (Blulnez+ 8A%Y) < car. (1.46)

This concludes the proof of the proposition.

1.4.3 Proof of Proposition 3

The proof of Proposition 2 would carry over to this case if vee choose an ap-
propriate normal vector field as at the beginning of the proof of Proposition 2,
enjoying the estimate 1.33 with a fixed constant.
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To obtain (x) let T(x) be the tangent plane 1R") at the pointu(x), i.e. the
plane generated bydu,...,d,u}. Denote byry the orthogonal projection dR™
onto T (x). Assuming thatJu has oscillation smaller thamo, there exists a vector
w € S such thafrsw| < 1/2 for everyx € Q. Hence, we can define

{(X) := w— TRW.

It is straightforward to see that this choice 6fgives a map enjoying the same
estimates as thé used in the proof of Proposition 2.

1.5 h—principle: stage

Proposition 4 (Stage, local)For all go € symj there exist® < r < 1 such that the
following holds for any2 C R" and ge CP(Q) with ||g— gollo < r. There exists a
& > O such that, if K> 1 and uc C?(Q,R"*?) satisfies

le—glo < 6 <&  and ul2 < u,

then there exists & C?(Q,R"1) with

1
Ve gllo < C&2, (K +6’3‘2u‘5> (1.47)
[V][2 < CuK™, (1.48)
[u—vi1 <Co. (1.49)

Here C is a constant depending only orgf g and Q.

The Proposition above is the basic stage of the iteratioeraehwhich will prove
Theorem 1. A similar proposition, to be used in the proof okdtem 2 will be
stated later.

1.5.1 Decomposing a metric into primitive metrics

Lemma 3. Let g € sym?. Then there exists ¥ 0, vectorsvy, ..., v, € S" ! and
linear maps k : sym, — R such that

Ny
g= Z Lk(g)vk®@ v for every ge sym,
K=1
and, moreover, L(g) > r for every k and every g sym! with |g—go| <.

Proof. Consider the se:= {(e +€j) @ (& +¢€j),i < j}, where{g } is the standard
basis ofR". Since the span o contains all matrices of the form @ ej +e; ® g,
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clearly S generates sym On the other han® consists ofn, matrices withn, =
dim(sym,). SoSis a basis for sym. Let us relabel the vectos +¢e; (i < j) as
f1,..., fn,, and let

Ny
h= fk® f.
&

Thenh € sym;; and hence there exists an invertible linear transformaticuich
thatLhL" = go. In particular, writingvk = L f,/|L fx| € S"%, we have

Ny Ny
G = Y Lhkalfi =} L fie* vk ® vk
k=1 k=1

Note that the sefvx ® v} is also a basis for symand therefore there exist lin-
ear mapdy : sym, — R such thaty Lx(A)vk ® vk is the unique representation of
A € sym,, as linear combination of ® vg. In particular,Li(go) = |Lfg|? > 0. The
existence of > 0 satisfying the claim of the lemma follows easilyx

1.5.2 Proof of Proposition 4

Choose > 0 andy > 1 so that the statement of Lemma 3 holds vggtand 2, and
so that

%/I <h<y  foranyhe sym; with |h—go| < 2r.
Moreover, extend andg to R" so that

[Ullc2(rny < CHU||C2(§), Hg”cB(Rn) SCHchB(ﬁ)-

The procedure of such an extension is well known, with thestaomtC depending
onn,B andQ. In what follows, the various constants will be allowed tgéed in
addition onr andy.

Step 1. Mollification. We set
,g =

S
”7
and let
=ux¢,, G=g=*d, (1.50)

where¢ € CZ(B1(0)) is a symmetric nonnegative convolution kernel wjth = 1.
Lemma 1 implies

[ —ull2 < Cllul]2£ < C9, (1.51)

16— gllo < Cligllg ¢*, (1.52)

G2 < Cllull2¢7* < Coe~*+), (1.53)
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and

[EFe— Gl < [[TFe— (U'e) x g+ [[(U'e) x b — g ik

(1.54)
< CNul3 + Cr¥ue—gllo < C&*K,

wherek=0,1,...,n,. Moreover, since the s¢h € sym/ : |h—go| <r} is convex,
§ also satisfie{§ — goljo <.

Step 2. RescalingFirst of all, observe that

~ ~ r
h.:g—l-@

satisfies the conditiofin(x) —go| < cszllG— {fello+r < 2r. Therefore, using Lemma

3 we have 5 .
(1+Cr15%)§— tfe = % h= Zﬁ,-zvi R Vi,
i=

~ 52 ~ 1/2 . ~ -
whered(x) = (C?Li(h(x))) . In particulara; is smooth and

. Li(h -
& < coIH Ol o5y,

L@

I )
< c5 (Iglic+ 551lg- el ) < car ¥

fork=0,1,2,...,n, (note that the first inequality is achieved through inteagioh).

Let
1 1

W= Trcrigoet ¥ T aicrige™

Then we have .
§— upe= Zafvi @i,
i=

with
|G —uol[x < C9, (1.55)
aillo < C9, (1.56)
[uollics2+ [aillicer < Coe~ kY (1.57)

fork=0,1,...,n*. Notice that the constants above depend alsk, dt since we
will only use these estimates fkr< n,, this dependence can be suppressed.

Finally, using 1.54 we havéuje — gollo < r +C32, so thaty 1l < ufe < yi,
provideddy is sufficiently small.

Step 3. Iterating one-dimensional oscillationsWe now applyn, times succes-
sively Proposition 2, with
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lj= K, Aj= Kitlg—1, Nj=n,—j

for j =0,1,...,n.. In other words we construct a sequence of immersigraich
that%,l < u’?eg yl and

luj sz < COE; Y

fork=0,1,...,N;. (1.58)
To see that Proposition 2 is applicable, observe Mat K¢, Therefore it suf-
fices to check inductively the validity of 1.58. This followeasily from 1.25. The
constants will depend ojy but this can again be suppressed because..

In this way we obtain the functiong, up, ..., un, with estimates

lujll2 < €& K,
2
i f 2 _ o ol
V1= (Ge+a,1vjsa @ visa)llo < O3 = CO*
and moreover
lujr1—uj1 < C8. (1.59)

Observe also thaﬁu?e— dollo < r +C&?, so that, providedy is sufficiently small,
y < u’}eg yl for all j.
Thusv := u,, satisfies the estimates

1
Ive—glo < C62R,
V]2 < CuK™,
[v—uo|1 < Co.

The estimates 1.47, 1.48 and 1.49 follow from the above coetbwith 1.51, 1.52
and 1.55.

1.5.3 Stage for general manifolds

GivenM as in Theorem 2 we fix a finite atlas f with chartsQ; and a correspond-
ing partition of unity{@}, so thaty @ =1 andg < CZ(Q;). Furthermore, on each
Q; we fix a choice of coordinates.

Using the partition of unity we define the spa@&M). In particular, let

Julk:= Y l@ul

Similarly, we define mollification oM via the partition of unity. In other words we
fix ¢ € CZ(B1(0)), and for a functioru on M we define
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(VES (IJ[ = Z((AU)*(M (160)
]
It is not difficult to check that the estimates in Lemma 1 coudi to hold orM with
these definitions.
Next, letg be a metric oM as in Theorem 2. Sinc®l is compact andy is
continuous, there exists> 0 such that

%Is;gg vl inM. (1.61)

Moreover, also by compactness, there exists 0 such that Lemma 3 holds with
r = 2rq for anygo satisfying%,l < go < yl. Therefore there exisig > 0 so that

U C Q; for somei and osgg < rg

1.62
whenevetd C M with diamU < po. ( )

Here osgg s to be evaluated in the coordinates of the clirt
In the following we will need coverings d¥l with the following property:

Definition 1 (Minimal cover of M). For p > 0 a finite open coverin@ of M is a
minimal cover of diametep if:

1. the diameter of eadb € ¢ is less tharp;
2. ¢ can be subdivided into+ 1 subfamilies%;, each consisting of pairwise dis-
joint sets.

The existence of such coverings is a well-known fact. Forcinavenience of the
reader we give a short proof at the end of this section.

We are now ready to state the iteration stage needed for tiué pf Theorem 2.
Recall thatno > 0 is the constant from Proposition 3.

Proposition 5 (Stage, global)Let (M",g) be a smooth, compact Riemannian man-
ifold with ge C#(M), and let# be a minimal cover of M of diametgr< po, where
po is as in 1.62. There existy > 0 such that, if K> 1 and uc C3(M,R™) satisfies

lue—gflo < &2 < &, (1.63)
[ull2 <, (1.64)
0osq Ou < np/2forallu € 7, (1.65)

then there exists & C?(M,R™) with

1
[Ve—glo < C&? (K +5B‘2u"3> , (1.66)
V|2 < CuK™HD™, (1.67)
[u—v[1 <CJ. (1.68)

The constants C depend orfM", g) and %’
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1.5.4 Proof of Proposition 5

We proceed as in the proof of Proposition 4. Enumerate theroay as% =
{U;}jea, and for eachj choose a matrig; € sym;| such that

|9(x) —gj| <ro for x € Uj.

Furthermore, fix a partition of unityy;} for ¢ in the sense thap; « CZ(U;) and
YW =1onM.

Step 1. Mollification. The mollification step is precisely as in Proposition 4. We

set
)
u
and let
G=ux¢,, G=gxd,, (1.69)

where now the convolution is defined in 1.60 above. Then, awde

[G—ull1 < Co, (1.70)
16— dllo < Cllgl|¢, (1.71)
Glkio < CE-HD), (1.72)
|Gfe— |k < CO*7X, (1.73)

fork=0,1,...,(n+1)n,. In particular, for anyj € J and anyx € U;
16(X) — gj| <ro+ClF <ro+C8 < gro

provideddy > 0 is sufficiently small.

Step 2. RescalingWe rescale the map analogously to Step 2 in Proposition 4.
Accordingly,

~ o~ ro . "'ﬁ
him G+ 5ogs (G- )
satisfies
lh(x) —gj| < r—OHQ— dello+ §ro < 2rginUj.
1= 2cs2 2°- !

Therefore, using Lemma 3 for eaghand introducing

1

U=—— 0
°” (1+cCryte2)2

we obtain (as in Proposition 4)

Ny
g-—ue= Zafjvid @i iny;
i=
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for some functions, ; € C*(U;) satisfying the estimates
8 j o) < cor-*&Vfor j e Jandk=0,1,...,(n+1)n,.

In particular, using the partition of unitjty; } we obtain

Ny
& i 2
g—ue= (Wjaj)vi,j®Vij, (1.74)
with
lu—uol1 < Co, (1.75)
|Wjaijllo < C9, (1.76)
Uollk2+ | j 2 < Coe~*H (1.77)

fork=0,1,...,(n+1)n,.

Step 3. Iterating one—dimensional oscillation&Ve now argue as in the Step 3
of the proof of Proposition 4. However, there are two differes. First of all we
apply Proposition 3 in place of Proposition 2. This requaasadditional control of
the oscillation ofJu in eachU;. Second, the number of steps(is+ 1)n.. Indeed,
observe that 1.74 can be written as

n+1 n.

~ o a2y -
g—uge = (Yjai,j)Vi,j @ Vij, (1.78)
o U;i;jgo i8,j)7Vi,j @ Vi

where the index set is decomposed ab= J; U --UJny1 SO thatU; € % if and
only if j € J;. The point is that the sum iy consists of functions with disjoint
supports, and hence for this sum Proposition 3 can be pegfbrmparallel, in one
step. Thus, the number of steps to be performed seriallgiatimber of summands
in o andi, which is preciselyn+ 1)n,.

To deal with the restriction on the oscillation of in each step, observe that
0s@y; Uu < No/2 by assumption, and clearly the same holdsugrAlso, at each
step we have the estimafey, 1 — Ug||1 < Cd < Cd. Therefore, choosingy > 0
sufficiently small (only depending on the constants andjgn we ensure that the
condition remains satisfied inductivelg+ 1)n, times.

Thus, proceeding as in the proof of Proposition 4 we applp&sition 3 succes-
sively with , = /K=K, A, = Kk+1¢~1 ‘andNy = (n+ 1)n, — k. In this way we obtain
afinal mapv := U 1)n, Such that

1
IVie—glo < Co%,.

V]2 < CuK ™
||V— UOHl < Co.
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The above inequalities combined with 1.70, 1.71 and 1.7%yiithe estimates 1.66,
1.67 and 1.68. This concludes the proof.

1.5.5 Existence of minimal covers

We fix a triangulationT of M with simplices having diameter smaller thapi3. We
let S be the vertices of the triangulatio§, be the edgess be thek—faces.7 is
made by pairwise disjoint balls centered on the elemeng,ofith radius smaller
thanp/2. We letMg be the union of these balls. Next, for any elemert S;, we
considero’ = g\ Mg. Theo’ are therefore pairwise disjoint compact sets and we let
.71 be a collection of pairwise disjoint neighborhoodsifeach with diameter less
thanp. We defineM; to be the union of the elements gf; and.%. We proceed
inductively. At the stefk, for everyk—dim. faceF € S we defineF’ = F \ A, 1.
Clearly, theF’ are pairwise disjoint compact sets and hence we can find isairw
disjoint neighborhoods of the’ with diameter smaller thap. Figure 1.1 below
shows the elements cF; for a 2—d triangulation.

Clearly, the collection#y U ... U .%, covers any simplex of , and hence is a
covering ofM.

Fig. 1.1 The triangulationl and the covering for a 2—dimensional manifold.
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1.6 h—principle: iteration

1.6.1 Proof of Theorem 1

Let up, & > 0 be such that
le—glo < &
ull2 < Ho.

Let alsoK > 1. Later on we are going to adjust the parametgrandK in order to
achieve the required convergencgj%or . Applying Proposition 4 successively, we
obtain a sequence of maps< C?(Q,R™1) such that

lue—gllo < &2
lukll2 < pk
U1 — k1 < Cé,

where
1 o _
5.1 = CoF (K +80 %p, B) : (1.79)
i1 = CK™. (1.80)

Substituting< with max{C'/™K,K} we can absorbe the constant in 1.80 to achieve
U1 = UkK™, at the price of getting a possibly worse constant in 1.79almicular
U = HoKX™ . Next, we show by induction that for any

a< min{;, ZB_”*B} (1.81)

there exists a suitable initial choice Kfand g so that
O < &K,
The case& = 0 is obvious. Assuming the inequality to hold fgrwe have
2+1 < CégK—Zak—l+Céé3”0—l3K—Bk(a+n*>_
Therefored. 1 < &K 2K+ provided
2 < K122 and © < ugagfﬁKk[B(aJrn*)fZa]fZa.
By choosing firskK and therpp > ||ul|2 sufficiently large, these two inequalities can

be satisfied for any giveain the range prescribed in 1.81. This proves our claim.
Next we show that for any
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. 1 B
a< m|n{1+2n*,2} (1.82)

the parametergiy and K can be chosen so that the sequengeconverges in
CL9(Q;R"™1). To this end observe that to amy satisfying 1.82 there exists an

a satisfying 1.81 such that a

a-+n,’

Then, choosinglp andK sulfficiently large as above, we obtain a sequamncsuch
that

U1 — Ugfls < CaK 3

U1 — Uk]|2 < Hicr1 + i < 2K DM

Therefore, by interpolation

U1 — Ukl < [lUices — U7 U1 — Uk|S 183
<6K7[(1fcr)afun*]k- (1.83)

Thus the sequence convergeh® to some limit mapv € CH9(Q;R™1). Since
& — 0, the limit satisfiesfe=gin Q.
Finally, choosingK so large thak—2 < 1/2, we have

|w—mh30@ZK**gzn}

1.6.2 Proof of Theorem 2

Recall from Section 1.5.3 that for the whole constructionweek with a fixed atlas
{Q;} of the manifoldV, and that to the given metrige C? (M) there exist constants
y > 1 andpp > 0 such that 1.61 and 1.62 hold.

Sinceu € C?(M;R™) and there are a finite number of chafds, there exists
p < po such that

osgu< no/4 wheneved C M with diamU < p.

Fix a minimal covers” of M with diameterp and letup, & > 0 be such that
lufe—gllo < &
[ull2 < Ho.

The iteration now proceeds with respect to this fixed covaralfel to the proof
of Theorem 1. More precisely, arguing as in in Theorem 1, &sitjpn 5 yields a
sequencey € C?(M; R™) with
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luie—gllo < &
HUKHZ < uoKk(n+l)n*
U1 — Uk|l1 < Cé,

where 1
52, =Co? (K + csfzK—f’k(““)”*) : (1.84)

The proof thafup andK can be chosen so that converges ittt for

: 1 B
a <m|n{1+2(n+l)n*,2} (1.85)

follows entirely analogously. Recall that this argumemgs in particular
O < GoK 3

The only difference is that the estimates 1.63 and 1.65 reée fulfilled at each
stage. To this end note thgt < &y, so that 1.63 will hold at stadeif it holds at the
initial stage. Moreover,

k—1

osq Oug < osg Ou+ ZOZHUI-Hf ujlls < % +205oz K-al < No
i= ]

4C
1+ 4C,

so that 1.65 is fulfilled by provideddy is sufficiently small (depending only on
the various constants).

1.6.3 Proof of Corollaries 1 and 2

The corollaries are a direct consequence of the Nash-Kthperem combined with
Theorems 1 and 2 respectively. For simplicity, we allbivo be eitherQ for a
smooth bounded open sBtc R" or a compact Riemannian manifold of dimension
n, and assume thate CP(M) is satisfying either the assumptions of Theorem 1 or
those of Theorem 2. We then s® = min{(2n, +1)~1,3/2} in the first case, and
ao = min{(2(n+1)n, +1)~1, B/2} in the second.

Let u € CY(M;R™) be a short map ané > 0. We may assume without loss of
generality thate < &. Using the Nash-Kuiper theorem together with a standard
regularization, there existg € C2(M;R™) such that

lu—uoll1 < &/2,

Idbe—allo < (n)"
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whereC is the constant in Theorems 1 and 2 respectively. Then tloeehe applied
to up, yields an isometric immersion € Clﬁa(M;Rm) for any o < ap, such that
[Iv—uo|l1 < /2, so that|v—ul|1 < €. This proves the corollaries.

We now come to Remark 1. This follows immediately from thet fdnat the
Nash-Kuiper theorem also works for embeddings, and thas¢hef embeddings
of a compact manifold is an open set@GA(M; R™). Indeed, ifu is an embedding,
the Nash-Kuiper theorem gives the existence of an embedgingth the estimates
above. Ensuring in addition thatis so small that any map € C*(M;R™) with
|lv—u||1 < € is an embedding, we reach the required conclusion.

1.7 Rigidity: Proof of Theorem 3

1.7.1 Curvature and Brouwer degree

Let (M,g) be as in Theorem 3. As usual, we denoted#ythe area element i
and byk the Gauss curvature ¢M,g). Consider next £2 isometric embedding
v:M — R3. The unit normaN(p) tov(M) is the unique vector d&* such that, given
a positively oriented basis , e, for To(M), the triple(dvp(er),dvp(e2),N(p)) is an
orthonormal positively oriented frame Bf.

As it is well known, ifdo denotes the area elementSA, thenN*do = kdA
Therefore, for every open sétcc M and for everyf € C1(S?), the usual change
of variable formula yields

[ 1NGOK(0dA) = [ fy)degiyv.N)daty),  (1.86)
\ N

where dedy,V,N) denotes the Brouwer degree of the mépThough the differ-
ential definition of deg makes sense only for regular valdeN,at is a classical
observation that deg is constant on connected compone&\df (dV). Thus it
has a unique continuous extensiorstd, N(dV ), which will be denoted as well by
deg.

Consider next an isometric embedding C. In this caseN e C°. The Brouwer
degree degy,V,N) can still be defined and we recall the following well-known
theorem.

Theorem 4.Let N € C(V,S?) and {N¢} C C(V,S?) be a sequence converging
uniformly to N. Let KC S?\ N(dV) be a closed set. For any k sufficiently large,
deg(-,V,Ny) = deg(-,V,N) on K.

Thus ded-,V,N) € LL (S?\N(dV)). A key step to the proof of Theorem 3 is to

loc
show that formula 1.86 holds farc C1¢ with a > 2/3.

Proposition 6. Let ve C1% (M, R?) be an isometric embedding with> 2/3. Then
1.86 holds for every open set&¥c M diffeomorphic to a subset &2 and every
f € L* with supp(f) € S?\ N(aV).



1 CL% isometric embeddings 27

In order to deal witiN(dV) we recall the following elementary fact.

Lemma 4. Let M andM be 2-dimensional Riemannian manifold,>  and Ne
C%B(M,M). If E € M has Hausdorff dimensich then the area of KE) is 0.

The following is then a corollary of Proposition 6 and Lemma 4

Corollary 5. Let (M,g) and v be as in Proposition 6, witk > 0. For any open
V cc M, deg(-,V,N) is a nonnegative 1 function and 1.86 holds for every &
L=(S?\N(aV)).

1.7.2 Proof of Proposition 6

By a standard approximation argument, it suffices to proeestatement wheih

is smooth. Under this additional assumption the proof israatliconsequence of
Theorem 4 and of the convergence result below, which is aeszprence of Propo-
sition 1. SinceV is diffeomorphic to an open set of the euclidean plane, we can
consider global coordinateg,x, on it. Fix a symmetric kernep € C®(R?), set
de(X) = £72¢(x/€) and letv® := (vly) = ¢ (we consider here the convolution of
the two functions ifR? using the coordinates, x, and the corresponding Lebesgue
measure).

Proposition 7. Let v and ¥ be defined as above and denote by bf, A% and k¢
respectively, the normal tof M), the pull-back of the metric orf{M), and the
corresponding area element and Gauss curvature. Then,

lim [ f(N®)KEdAE :/f(N)KdA Vf e C2(S2\N(9V)). (1.87)
€10 v v

Proof. In coordinates, our aim is to show that

im F(NE(x))KE(X) (detg® (X)) dx = / F(N(X))k (x) (detg(x)) 2 dx.  (1.88)
el0JV JV

We recall the formulas for the Christoffel symbols, the Ré&m tensor and the
Gauss curvature M, in the system of coordinates already fixed:

: 1.
M = 59" (0Gjm + 9jGmk— Imcj) (1.89)
Rijk = Gim (G3" — 055+ T T — Mk, (1.90)
Ri212
- . 1.91
de(gi}) (1.91)

After obvious computations we conclude that

K = (detg) * (Ciji GGij + dijkimn(9) 3kGij O Gmn) (1.92)
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wherecij areconstantcoefficients and the functiorthjmn are smooth.

Proposition 1 implies tha&kgﬁ- andgﬁ converge locally uniformly t@g;; and
gij respectively. Moreovei® converges locally uniformly tdN. Since there is a
compact set containing(N¢) and f (N), we only need to show that

lim [ £(N(x))(detg® (x)) 2 dugfj (x) dx
el0 Jv

= [ F(NGo)(detg) 2 dugi (o ax. (1.93)

Denote byy? the functionf (Nf(x))(detgg(x))*%. Sincef (N¢) is smooth and com-
pactly supported iiv we can integrate by parts to get

| wroug; = [ awsags. (.94

v v

Note that||dc¢|| < Ce®~* by obvious estimates on convolutions. Hence, 1.2 gives
| 3 (ag; —ag) = o(e* (1.95)

which converges to 0 becauge> 3/2. Integrating again by parts, we get

lim | £(N€(x))(detg® (x)) "2 dgf, (x) dx
l0 Jv

= lim | f(N(x))(detg® (x))~2 dagij (X) dx.
l0 Jv

Using the uniform convergence NFf to N and ofg? to g we then conclude 1.93 and
hence the proof of the Proposition

1.7.3 Proof of Lemma 4 and Corollary 5

Proof (of Lemma 4)By the definition of Hausdorff dimension, for evegy> 0 and
n > 1 there exists a covering & with closed setg; such that

S (diam(E)))" < &. (1.96)

On the other hand, diafa(E;)) < C(diam(E;))? and hence the arég(E;)| can be
estimated witlC(diam(E;))%. SinceB > 1/2, we can picky = 2 to conclude that

9(E)| < CY (diam(E;))" < Ce.

The arbitrariness of implies|g(E)| =0. O
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Proof (of Corollary 5).First of all, we know from Proposition 6 that the formula
1.86 is valid for any open s&t which is diffeomorphic to an open set &, and
anyf € L® compactly supported if*\ N(dV). Sincek is nonnegative, we conclude
thatded-,N,V) > 0. Testing 1.86 with a sequence of compactly supported ifumet
fic T 1s2\n(gv) We derive that

[ deay.N.V)doty) = [ kdA < e,

which implies deg-,N,V) € L.

Next, consider & with smooth boundary. We decompose it into the union of
finitely many nonoverlapping Lipschitz open s&tdiffeomorphic to open sets of
the euclidean plane. Then

deg(y.N,V) = % deg(y,N,Vi)  foreveryy ¢ UN(dV).
I

On the other hand, by Lemma i4); N(dV;) is a negligible set, and hence we con-
clude the formula fo¥ from the previous step.

Finally, fix a generi¢/ and anf € L with supp(f) € S\ N(dV). Choose an
open se¥’ with smooth boundargV’ sufficiently close ta@dV. Then ded-,V,N)
and ded-,V’,N) coincide on the support of, whereas the support df(N(-)) is
contained inV’. From the formula folv’ and f we conclude then the validity of
the formula forV and f. Arguing again as above, we conclude that dey,V)
is summable and nonnegative and that the formula 1.86 holdarfyVV and any
f eL®(S?\N(aV)). O

1.7.4 Bounded extrinsic curvature. The proof of Theorem 3

We recall the notion of bounded extrinsic curvature f@'@mmersed surface (see
p. 590 of [25]).

Definition 2. Let Q C R? be open andi € C}(Q,R®) an immersion. The surface
u(Q) hasbounded extrinsic curvatuiiéthere is aC such that

_iN(Em <c (197)

for any finite collection{E; } of pairwise disjoint closed subsets @f
The proof of Theorem 3 follows now from Corollary 5.

Proof (of Theorem 3)The theorem follows easily from the claim:

deg(-,V;N) > Iywv)nav) for every operv C Q. (1.98)
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In fact, given disjoint closed seE, ..., Eyn, we can cover them with disjoint open
setsVy, ...V with smooth boundaries. By 1.98 and Corollary 5,

3 INE)\N@W)| < FINV\N@W) [ < 5 [ < [k (wo9)

On the other hand, by Lemma®(dV;)| = 0. Thus, 1.99 shows 1.97.

We now come to the proof of 1.98. Obviously dgg/,N) = 0 if y ¢ N(V).
Moreover, by Corollary 5, de@,V,N) > 0. Therefore, fixyo € N(V) \ N(dV) and
assume, by contradiction, that dgg,V,N) = 0. Consider a small open di§kcen-
tered a/o such thalN—1(D)NdV =0 and leW := N~1(D)NV. ThenN(dW) c dD
and N(W) c D. So, ded-,W,N) vanishes or§?\ D and is a constant integér
on D. On the other han# = deg(yo,W,N) = deg(yo,V,N) —deg(yo,V \W,N) =
—deg(yo,V \W,N). Sinceyp € N(V \ W), we concludeé = 0 and hence

0= /deg(y,W,N)dy: / KdA.
W

which is a contradiction beca¥é # 0 andk > 0. O

Corollary 3 follows from Theorem 3 and the results of Pogorddited in the
introduction. More precisely, by Theorem 9 on p650 [28F’) is a closed convex
surface, which by [24] is rigid.

Corollary 4 also follows from the results in [25] and [26]. Wever, we were
unable to find an exact reference for open surfaces, andfoheyéor the reader’s
convenience, we have included a proof in the appendix.

Appendix

Proof (of Corollary 4).
First of all, since the theorem is local, without loss of gatfiey we can assume
that:

1. Q =B (0), uec CY9(B(x)), g € C>F(B;(x)) anduis an embedding;
2. u(Q) has bounded extrinsic curvature.

Step 1. Density of regular points For any pointz € S? we letn(z) be the cardi-
nality of N=1(2). It is easy to see that, for a surface of bounded extrinsicature,
Js2n < oo (cp. with Theorem 3 of p. 590 in [25]). Therefore, the Bet= {n = o}
has measure zero. L& := N~%(S?\ E). Observe that

Q, is dense im. (1.100)
Otherwise there is a nontrivial smooth open ¢esuch thatN(V) C E. But then,

deg(-,V,N) = 0 for everyy ¢ N(V), and sinceN(V)| = [N(dV)| = 0, it follows
that ded-,V,N) =0 a.e.. By Corollary 5/, kK = 0, which contradictx > 0.
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Step 2. Convexity around regular points.Note next that, for every € Q, there
is a neighborhoot of x such thatN(y) # N(x) forally e U\ {x}, i.e.xis regular in
the sense of [25] p. 582. Recalling 1.98, dey,N) > 1y, 5y for everyV: therefore
the index of the mapl at every poink € Q; is at least 1. So, by the Lemma of page
594 in [25], any poink € Q; is an elliptic point relative to the mappinyg (that is,
there is a neighborhodd of x such that the tangent plameto u(Q) in x intersects
U Nu(Q) only inu(x); cp. with page 593 of [25]).

By the discussion of page 650 in [25],Q) has nonnegative extrinsic curvature
as defined in I1X.5 of [25]. Then, Lemma 2 of page 612 shows fhagvery elliptic
pointy € u(Q) there is a neighborhood whetgQ) is convex. This conclusion
applies, therefore, to anyc Q,. We next claim the existence of a const@niith
the following property. Sep(y) := C~tmin{1,dist(u(y),u(dQ)}. Then

u(Q) N By (y) is convex for ally € Q. (1.101)

Recall thatu is an embedding and hence digly),u(dQ)) > 0 for everyy € Q. By
1.100, 1.101 gives for any € Q there is a neighborhood wher¢Q) is convex.
This would complete the proof.

Step 3. Proof of 1.101First of all, sinceu is an embedding an¢l|c1.q is finite,
there is a constanty such that, for any poink, Be,(X) Nu(Q) is the graph of a
CL9 function with|| - || e« norm smaller than 1. In order to prove 1.101 we assume,
without loss of generality, that = 0 and that the tangent plane ®9Q) aty is
{xs = 0}. Denote by the projection o{xz = 0}. By [26] there is a constart > 0
(depending only of{g||czs, ||K|lco and ||k ~1||co) with the following property.

(Est) LetU be an open convex set such thathu(dQ) = 0, diam(U) < ¢g andU N
u(Q) is locally convex. Thetd Nu(Q) is the graph of a functiori : m(u(Q2)N
U) — Rwith || f||c212 <A~ tandD?f > Ald.

—/
NS
@

Fig. 1.2 The convex sets of typé x| —a,a] among which we choose the maximal dug.
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We now look for setd) as in (Est) with the additional property tHat=V x| —a, a|
andf|sy = a(see Figure 1.2). Létl,, be the maximal set of this form for which the
assumptions of (Est) hold. We claim that, eitdéh, Nu(dQ) # 0, or diamUy,) =
Co- By (Est), this claim easily implies 1.101. To prove the ©laassume by con-
tradiction that it is wrong and ldtyy, = Wi x| — am,am| be the maximal set. Let
y=0UnNu(Q). By the choice ofy, y is necessarily the cun@\y, x {a}. On the
other hand, by the estimates of (Est), it follows that evarygent plane ta(Q)

at a point ofy is transversal tgxs = 0}. So, for a sufficiently smalf > 0, the in-
tersection{xs = am+ £} Nu(Q) contains a curvg’ bounding a connected region
D C u(Q) which containsu(Q) NUp. By Theorem 8 of page 650 in [25]) is a
convex set. This easily shows thd} was not maximal. O
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