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Abstract

Building upon the techniques introduced in [15], for any θ < 1
10 we construct pe-

riodic weak solutions of the incompressible Euler equations which dissipate the total
kinetic energy and are Hölder-continuous with exponent θ. A famous conjecture of
Onsager states the existence of such dissipative solutions with any Hölder exponent
θ < 1

3 . Our theorem is the first result in this direction.
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1 Introduction

The Euler equations for the motion of an inviscid perfect fluid are{
∂tv + v · ∇v +∇p = 0

div v = 0
, (1.1)

where v(x, t) is the velocity vector and p(x, t) is the internal pressure. In this paper we
consider the equations in 3 dimensions and assume the domain to be periodic, i.e. the
3-dimensional torus T3 = S1 × S1 × S1. Multiplying (1.1) by v itself and integrating, we
obtain the formal energy balance

1

2

d

dt

∫
T3

|v(x, t)|2 dx = −
∫
T3

[((v · ∇)v) · v](x, t) dx.

If v is continuously differentiable in x, we can integrate the right hand side by parts and
conclude that ∫

T3

|v(x, t)|2 dx =

∫
T3

|v(x, 0)|2 dx for all t > 0. (1.2)
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On the other hand, in the context of 3-dimensional turbulence it is important to consider
weak solutions, where v and p are not necessarily differentiable. If (v, p) is merely con-
tinuous, one can define weak solutions (see e.g. [27, 24]) by integrating (1.1) over simply
connected subdomains U ⊂ T3 with C1 boundary, to obtain the identities∫

U

v(x, 0) dx =

∫
U

v(x, t) dx+

∫ t

0

∫
∂U

[v(v · ν) + pν](x, s) dA(x) ds∫
∂U

[v · ν](x, t) dA(x) =0

(1.3)

for all t. In these identities ν denotes the unit outward normal to U on ∂U and dA denotes
the usual area element. Indeed, the formulation (1.3) appears first in the derivation of the
Euler equations from Newton’s laws in continuum mechanics, and (1.1) is then deduced
from (1.3) for sufficiently regular (v, p). It is also easy to see that pairs of continuous
functions (v, p) satisfy (1.3) for all fluid elements U and all times t if and only if they
solve (1.1) in the ”modern” distributional sense (rewriting the first line as ∂tv + div (v ⊗
v) +∇p = 0).

For weak solutions, the energy conservation (1.2) might be violated, and indeed, this
possibility has been considered for a rather long time in the context of 3 dimensional
turbulence. In his famous note [26] about statistical hydrodynamics, Onsager considered
weak solutions satisfying the Hölder condition

|v(x, t)− v(x′, t)| ≤ C|x− x′|θ, (1.4)

where the constant C is independent of x, x′ ∈ T3 and t. He conjectured that

(a) Any weak solution v satisfying (1.4) with θ > 1
3

conserves the energy;

(b) For any θ < 1
3

there exist weak solutions v satisfying (1.4) which do not conserve
the energy.

This conjecture is also very closely related to Kolmogorov’s famous K41 theory [23]
for homogeneous isotropic turbulence in 3 dimensions. We refer the interested reader to
[19, 28, 18], see also Section 1.1 below.

Part (a) of the conjecture is by now fully resolved: it has first been considered by
Eyink in [17] following Onsager’s original calculations and proved by Constantin, E and
Titi in [10]. Slightly weaker assumptions on v (in Besov spaces) were subsequently shown
to be sufficient for energy conservation in [16, 6]. In contrast, until now part (b) of the
conjecture remained widely open. In this paper we address specifically this question by
proving the following theorem:

Theorem 1.1. Let e : [0, 1]→ R be a smooth positive function. For every θ < 1
10

there is
a pair (v, p) ∈ C(T3 × [0, 1]) with the following properties:
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• (v, p) solves the incompressible Euler equations in the sense (1.3);

• v satisfies (1.4);

• the energy satisfies

e(t) =

∫
T3

|v(x, t)|2 dx ∀t ∈ [0, 1] . (1.5)

This is the first result in the direction of part (b) of Onsager’s conjecture, where Hölder-
continuous solutions are constructed. Prior to this result, there have been several construc-
tions of weak solutions violating (1.2) in [29, 30, 31, 12, 13], but the solutions constructed
in these papers are not continuous. The ones of [29, 30] are just square summable func-
tions of time and space, whereas the example of [31] was the first to be in the energy
space and the constructions of [12, 13] gave bounded solutions. Recently, in [15] we have
constructed continuous weak solutions, but no Hölder exponent was given.

Remark 1.2. Since completion of this work, our technique for getting Hölder continuity
has been refined in [21] to improve the regularity exponent in Theorem 1.1 to θ < 1

5
, see

also the works [5], [4] and [3].

Remark 1.3. In fact our proof of Theorem 1.1 yields some further regularity properties
of the pair (v, p). First of all, our solutions v are Hölder-continuous in space and time, i.e.
there is a constant C such that

|v(x, t)− v(x′, t′)| ≤ C
(
|x− x′|θ + |t− t′|θ

)
for all pairs (x, t), (x′, t′) ∈ T3 × [0, 1].

From the equation ∆p = −div div (v ⊗ v) (after normalizing the pressure so that∫
p(x, t) dx = 0) and standard Schauder estimates one can easily derive Hölder regularity

in space for p as well, with Hölder exponent θ. A more careful estimate3 improves the
exponent to 2θ. It is interesting to observe that in fact our scheme produces pressures p
which have that very Hölder regularity in time and space, namely

|p(x, t)− p(x′, t′)| ≤ C
(
|x− x′|2θ + |t− t′|2θ

)
.

1.1 The energy spectrum

The energy spectrum E(λ) gives the decomposition of the total energy by wavenumber,
i.e. ∫

|v|2 dx =

∫ ∞
0

E(λ)dλ.

3personal communication with L. Silvestre
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One of the cornerstones of the K41 theory is the famous Kolmogorov spectrum

E(λ) ∼ ε
2/3λ−

5/3

for wave numbers λ in the inertial range for fully developed 3-dimensional turbulent
flows, where ε is the energy dissipation rate. For dissipative weak solutions of the Eu-
ler equations as conjectured by Onsager, this would be the expected energy spectrum for
all λ ∈ (λ0,∞).

Our construction, based on the scheme and the techniques introduced in [15], allows
for a rather precise analysis of the energy spectrum. In a nutshell the scheme can be
described as follows. We construct a sequence of (smooth) approximate solutions to the
Euler equations vk, where the error is measured by the (traceless part of the) Reynolds
stress tensor R̊k, cf. (2.1) and (3.5). The construction is explicitly given by a formula of
the form

vk+1(x, t) = vk(x, t) +W
(
vk(x, t), Rk(x, t);λkx, λkt

)
+ corrector. (1.6)

The corrector is to ensure that vk+1 remains divergence-free. The vector field W consists
of periodic Beltrami flows in the fast variables (at frequency λk), which are modulated in
amplitude and phase depending on vk and Rk. More specifically, the amplitude is deter-
mined by the error Rk from the previous step, so that

‖vk+1 − vk‖0 . δ
1/2
k , (1.7)

‖vk+1 − vk‖1 . δ
1/2
k λk, (1.8)

where δk = ‖R̊k‖C0 .
The frequencies λk are therefore the active modes in the Fourier spectrum of the ve-

locity field in the limit. Since the sequence λk diverges rather fast, it is natural to think
of (1.6) as iteratively defining the Littlewood-Paley pieces at frequency λk. Following [9]
we can then estimate the (Littlewood-Paley-) energy spectrum in the limit as

E(λk) ∼
〈|vk+1 − vk|2〉

λk

for the active modes λk, where 〈·〉 denotes the average over the space-time domain. Since
W is the superposition of finitely many Beltrami modes, we can estimate 〈|vk+1−vk|2〉 ∼
δk. Thus, both the regularity of the limit and its energy spectrum are determined by the
rates of convergence δk → 0 and λk →∞.

In [15] it was shown (cp. Proposition 2.2 and its proof) that W can be chosen so that

‖R̊k+1‖C0 ≤ C(vk, R̊k)λ
−γ
k (1.9)

for some fixed 0 < γ ≤ 1. By choosing the frequencies λk → ∞ sufficiently fast,
C0 convergence of this scheme follows easily. However, in order to obtain a rate on the
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divergence of λk we need to obtain an estimate on the error in (1.9) with an explicit
dependence on vk and R̊k. This is achieved in Proposition 8.1 and forms a key part of the
paper. Roughly speaking, our estimate has the form

‖R̊k+1‖C0 .
δ
1/2
k ‖vk‖C1

λγk
, (1.10)

with γ ∼ 1
2
. A first attempt (based on experience with the isometric embedding problem,

see below) at obtaining a rate on λk would then go as follows: in order to decrease the
error in (1.10) by a fixed factor K > 1 (i.e. δk+1 ≤ 1

K
δk), we choose λk accordingly, so

that
λγk ∼ K‖vk‖C1δ

−1/2
k . (1.11)

Using (1.8) we can then obtain an estimate on ‖vk+1‖C1 and iterate. However, it is easy to
see that this leads to super-exponential growth of λk whenever γ < 1. From this one can
only deduce the energy spectrum E(λ) ∼ λ−1 and no Hölder regularity.

Our solution to this problem is to force a double-exponential convergence of the
scheme, see Section 2. In this way the finite Hölder regularity in Theorem 1.1 as well
as the energy spectrum

E(λk) . λ
−(6/5−ε)
k (1.12)

can be achieved, see Remark 2.3. It is quite remarkable, and much akin to the Nash-
Moser iteration, that the more rapid (super-exponential) convergence of the scheme leads
to a better regularity in the limit.

An underlying physical intuition in the turbulence theory is that the flux in the energy
cascade should be controlled by local interactions, see [23, 26, 17, 6]. A consequence for
part (b) of Onsager’s conjecture is that in a dissipative solution the active modes, among
which the energy transfer takes place, should be (at most) exponentially distributed. In-
deed, Onsager explicitly states in [26] (cp. also [18]) that this should be the case.

For the scheme (1.6) in this paper the interpretation is that λk should increase at most
exponentially. As seen in the discussion above, this would only be possible with γ = 1 in
the estimate (1.10). On the other hand, it is also easy to see that with γ = 1 the estimate
indeed leads to Onsager’s critical 1

3
Hölder exponent as well as the Kolmogorov spec-

trum. Indeed, from (1.11) together with (1.10) and (1.8) we would obtain δk ∼ K−k and
λk ∼ K3/2k, leading to E(λk) ∼ λ

−5/3
k . Thus, our scheme provides yet another route to-

wards understanding the necessity of local interactions as well as towards the Kolmogorov
spectrum, albeit one that does not involve considerations on the energy cascade but is
rather based on the ansatz (1.6).

Onsager’s conjecture has also been considered on shell-models [22, 7, 8], whose
derivation is motivated by the intuition on locality of interactions. Roughly speaking,
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the Euler equations is considered in the Littlewood-Paley decomposition, but only near-
est neighbor interactions in frequency space are retained in the nonlinear term, leading to
an infinite system of coupled ODEs. The analogue of both part (a) and (b) of Onsager’s
conjecture has been proven in [7, 8], in the sense that the ODE system admits a unique
fixed point which exhibits a decay of (Fourier) modes consistent with the Kolmogorov
spectrum.

Although our Theorem 1.1 and the corresponding spectrum (1.12) falls short of the full
conjecture, it highlights an important feature of the Euler equations that cannot be seen on
such shell models: the critical 1

3
exponent of Onsager is not just the borderline between

energy conservation and dissipation in the sense of part (a) and (b) above. For exponents
θ < 1

3
one should expect an entirely different behavior of weak solutions altogether,

namely the type of non-uniqueness and flexibility that usually comes with the h-principle
of Gromov [20].

1.2 h-principle and convex integration

Our iterative scheme is ultimately based on the convex integration technique introduced
by Nash in [25] to produce C1 isometric embeddings of Riemannian manifolds in low
codimension, and vastly generalized by Gromov [20], although several modifications of
this technique are required (see the Introduction of [15]). Nevertheless, in line with other
results proved using a convex integration technique, our construction again adheres to
the usual features of the h-principle. In particular, as in [15] we are concerned in this
paper with the local aspects of the h-principle. For the Euler equations this means that we
only treat the case of a periodic space-time domain instead of an initial/boundary value
problem. Also, it should be emphasized that although in Theorem 1.1 the existence of
one solution is stated, the method of construction leads to an infinite number of solutions,
as indeed any instance of the h-principle does. We refer the reader to the survey [14] for
the type of (global) results that could be expected even in the current Hölder-continuous
setting.

It is of certain interest to notice that in the isometric embedding problem a phe-
nomenon entirely analogous to the Onsager’s conjecture occurs. Namely, if we consider
C1,α isometric embeddings in codimension 1, then it is possible to prove the h-principle
for sufficiently small exponents α, whereas one can show the absence of the h-principle
(and in fact even some rigidity statements) if the Hölder exponent is sufficiently large.
This phenomenon was first observed by Borisov (see [1] and [2]) and proved in greater
generality and with different techniques in [11]. In particular the proofs given in [11] of
both the h-principle and the rigidity statements share many similarities with the analogous
results for the Euler equations.
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The connection between the existence of dissipative weak solutions of Euler and the
convex integration techniques used to prove the h-principle in geometric problems (and
unexpected solutions to differential inclusions) was first observed in [12]. Since then these
techniques have been used successfully in other equations of fluid dynamics: we refer the
interested reader to the survey article [14].

1.3 Loss of derivatives and regularization

Finally, let us make a technical remark. Since the negative power of λ in estimate (1.9)
comes from a stationary-phase type argument (Proposition 4.4 in Section 4), the constant
C(vk, R̊k) will then depend on higher derivatives of vk (and of R̊k). In fact, with θ → 1

10

the number of derivatives m required in the estimates converges to∞. To overcome this
loss of derivative problem, we use the well-known device from the Nash-Moser iteration
to mollify vk and R̊k at some appropriate scale `k. Although we are chiefly interested in
derivative bounds in space, due to the nature of the equation such bounds are connected to
derivative bounds in time, necessitating a mollification in space and time. To simplify the
presentation we will therefore treat time also as a periodic variable and we will therefore
construct solutions on T3 × S1 rather than on T3 × [0, 1].

2 Iteration with double exponential decay

2.1 Notation in Hölder norms

In the following m = 0, 1, 2, . . . , α ∈ (0, 1), and β is a multiindex. We introduce the
usual (spatial) Hölder norms as follows. First of all, the supremum norm is denoted by
‖f‖0 := supT3 |f |. We define the Hölder seminorms as

[f ]m = max
|β|=m

‖Dβf‖0 ,

[f ]m+α = max
|β|=m

sup
x6=y

|Dβf(x)−Dβf(y)|
|x− y|α

.

The Hölder norms are then given by

‖f‖m =
m∑
j=0

[f ]j

‖f‖m+α = ‖f‖m + [f ]m+α.

For functions depending on space and time, we define spatial Hölder norms as

‖v‖r = sup
t
‖v(·, t)‖r ,
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whereas the Hölder norms in space and time will be denoted by ‖ · ‖Cr .
We also remark that we use the convention 0 ∈ N: therefore estimates stated for the

norms ‖ · ‖m with m ∈ N include the C0 norm as well.

2.2 The iterative scheme

We follow here [15] and introduce the Euler-Reynolds system (cp. with Definition 2.1
therein). We also establish the following common notation: if u is a 3 × 3 matrix with
entries uij , we let div u be the (column) vector field whose components are given by the
divergences of the rows of u, namely (div u)i =

∑
j ∂juij . We will mostly deal with

symmetric matrices, however we will in some place take divergences of nonsymmetric
ones and it is useful to notice that, according to our convention, if a and b are smooth
vector fields, then div (a⊗ b) = (b · ∇)a+ (div b)a.

Definition 2.1. Assume v, p, R̊ are C1 functions on T3 × S1 taking values, respectively,
in R3,R,S3×3

0 . We say that they solve the Euler-Reynolds system if ∂tv + div (v ⊗ v) +∇p = div R̊

div v = 0 .
(2.1)

The next proposition is the main building block of our construction: the proof of Theo-
rem 1.1 is achieved by applying it inductively to generate a suitable sequence of solutions
to (2.1) where the right hand side vanishes in the limit.

Proposition 2.2. Let e be a smooth positive function on S1. There exist positive constants
η,M depending on e with the following property.

Let δ ≤ 1 be any positive number and (v, p, R̊) a solution of the Euler-Reynolds system
(2.1) in T3 × S1 such that

3δ
4
e(t) ≤ e(t)−

∫
|v|2(x, t) dx ≤ 5δ

4
e(t) ∀t ∈ S1 , (2.2)

‖R̊‖0 ≤ ηδ (2.3)

and
D := max{1, ‖R̊‖C1 , ‖v‖C1} . (2.4)

For every δ̄ ≤ 1
2
δ

3
2 and every ε > 0 there exists a second triple (v1, p1, R̊1) which

solves as well the Euler-Reynolds system and satisfies the following estimates:

3δ̄
4
e(t) ≤ e(t)−

∫
|v1|2(x, t) dx ≤ 5δ̄

4
e(t) ∀t ∈ S1 , (2.5)

‖R̊1‖0 ≤ ηδ̄ , (2.6)
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‖v1 − v‖0 ≤M
√
δ , (2.7)

‖p1 − p‖0 ≤M2δ , (2.8)

and

max{‖v1‖C1 , ‖R̊1‖C1} ≤ Aδ
3
2

(
D

δ̄2

)1+ε

(2.9)

where the constant A depends on e, ε > 0 and ‖v‖0.

We next show how to conclude Theorem 1.1 from Proposition 2.2: the rest of the paper
is then devoted to prove the Proposition.

Proofs of Theorem 1.1. Let e be as in the statement, i.e. smooth and positive. Without loss
of generality we can assume that e is defined on R, with period 2π, and it is smooth and
positive on the entire real line.

Step 1. Fix any arbitrarily small number ε > 0 and let a, b ≥ 3
2

be numbers whose
choice will be specified later and will depend only on ε. We define (v0, p0, R̊0) to be
identically 0 and we apply Proposition 2.2 inductively with

δn = a−b
n

to produce a sequence (vn, pn, R̊n) of solutions of the Euler-Reynolds system and numbers
Dn satisfying the following requirements:

3δn
4
e(t) ≤ e(t)−

∫
|v1|2(x, t) dx ≤ 5δn

4
e(t) ∀t ∈ S1 , (2.10)

‖R̊n‖0 ≤ ηδn , (2.11)

‖vn − vn−1‖0 ≤M
√
δn−1 , (2.12)

‖pn − pn−1‖0 ≤M2δn−1 . (2.13)

Dn = max{1, ‖vn‖C1 , ‖R̊n‖C1} and δn+1 ≤
1

2
δ
3/2
n . (2.14)

Observe that with this choice of δn and since a, b ≥ 3
2
, (vn, pn) converges uniformly to a

continuous pair (v, p) and in particular

‖vn‖0 ≤M

∞∑
j=0

a−
1
2
bj ≤M

∞∑
j=0

(
3

2

)− 1
2( 3

2)
j

.

Therefore, ‖vn‖0 is bounded uniformly, with a constant depending only on e. By Propo-
sition 2.2 we have

Dn+1 ≤ Aδ
3
2
n

(
Dn

δ2
n+1

)1+ε

.
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Since A is depending only on e, ε and ‖vn‖0, which in turn can be estimated in terms of
e, we can assume that A depends only on ε and e.

We claim that, for a suitable choice of the constants a, b there is a third constant c > 1

for which we inductively have the inequality

Dn ≤ acb
n

.

Indeed, for n = 0 this is obvious. Assuming the bound for Dn, we obtain for Dn+1

Dn+1 ≤ A
a−

3
2
bnac(1+ε)bn

a−2(1+ε)bn+1 = Aa(− 3
2

+(1+ε)(c+2b))bn .

We impose ε < 1
4

and set

b =
3

2
and c =

3(1 + 2ε)

1− 2ε
+ ε.

This choice leads to

cb−
(
−3

2
+ (1 + ε)(c+ 2b)

)
=
ε

2
(1− 2ε) >

ε

4
.

Since bn ≥ 1, we conclude
Dn+1 ≤

(
Aa−ε/4

)
acb

n+1

Choosing a = A4/ε we conclude Dn+1 ≤ acb
n+1 .

Step 2. Consider now the sequence vn provided in the previous step. By (2.10), (2.11),
(2.12) and (2.13) we conclude that (vn, pn) converges uniformly to a solution (v, p) of
the Euler equations such that e(t) =

∫
|v|2(x, t)dx for every t ∈ S1. On the other hand,

observe that
‖vn+1 − vn‖0 ≤M

√
δn ≤Ma−

1
2
bn

and
‖vn+1 − vn‖C1 ≤ Dn +Dn+1 ≤ 2acb

n+1

.

Therefore

‖vn+1 − vn‖Cθ ≤ ‖vn+1 − vn‖1−θ
0 ‖vn+1 − vn‖θC1

≤ 2Ma(θcb− (1−θ)
2 )bn .

If
θ <

1

1 + 2cb
=

1− 2ε

10 + 19ε− 6ε2
,

then θcb− (1−θ)
2

< 0 and therefore {vn} is a Cauchy sequence on Cθ, which implies that
it converges in the Cθ norm.

We have shown that, for every ε < 1
4

and every θ < 1−2ε
10+19ε−6ε2

there is a pair (v, p) ∈
Cθ(T3×S1,R3)×C(T3×S1) as in Theorem 1.1. Letting ε ↓ 0 we obtain the conclusions
of Theorem 1.1 (and indeed even the Hölder regularity in time).
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Remark 2.3. Using the bounds on δn and Dn in the proof above, we can obtain an esti-
mate on the energy spectrum of v. First of all we observe (cp. Section 3) that in Fourier
space vn+1− vn is essentially supported in a frequency band around wavenumber λn. For
λn we then have the relation

‖vn+1 − vn‖C1 ∼ ‖vn+1 − vn‖C0 λn.

Therefore, Step 2 of the proof above implies

λn ∼ a(bc+
1
2

)bn ,

and consequently the energy spectrum satisfies

E(λn) ∼ δn
λn
∼ a−(

3
2

+bc)bn ∼ λ
− 3+2bc

1+2bc
n .

Plugging in the choice of b, c from Step 1 of the proof yields in the limit ε→ 0

E(λn) ∼ λ−
6/5

n .

2.3 Plan of the remaining sections

Except for Section 10, in which we prove the side Remark 1.3, the remaining sections are
all devoted to the proof of Proposition 2.2.

Section 3 contains the precise definition of the maps (v1, p1, R̊1) of Proposition 2.2.
The maps will depend upon various parameters, which will be specified only at the end.

Section 4 contains some preliminaries on classical estimates for the Hölder norms of
products and compositions of functions, some classical Schauder estimates for the ellip-
tic operators involved in the construction and a ”stationary phase lemma” (Proposition
4.4) for the Hölder norms of highly oscillatory functions. This last lemma is also a quite
classical fact, but it plays a key role in our estimates.

In Section 5 we prove the key estimates on the main building blocks of the construc-
tion in terms of the relevant parameters: all these estimates are collected in the technical
Proposition 5.1.

The various tools introduced in the Sections 4 and 5 are then used in Section 6, 7 and
8 to derive the fundamental estimates on the Hölder norms of v1 and R̊1 in terms of the
relevant parameters. In particular:

• Section 6 contains the estimates on v1;

• Section 7 the estimate on the kinetic energy
∫
|v1|2;

• Section 8 the estimates on the Reynolds stress R̊1.

Finally, in Section 9 the estimates of the Sections 6, 7 and 8 are used to tune the
parameters and prove Proposition 2.2.
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3 Definition of the maps v1, p1 and R̊1

From now on we fix a triple (v, p, R̊) and numbers δ, δ̄, ε > 0 as in Proposition 2.2. As in
[15] the new velocity v1 is obtained by adding two perturbations, wo and wc:

v1 = v + wo + wc = v1 + w , (3.1)

where wc is a corrector to ensure that v1 is divergence-free. Thus, wc is defined as

wc := −Qwo (3.2)

where Q = Id− P and P is the Leray projection operator, see [15, Definition 4.1].

3.1 Conditions on the parameters

The main perturbation wo is a highly oscillatory function which depends on three param-
eters: a (small) length scale ` > 0 and (large) frequencies µ, λ such that

λ, µ,
λ

µ
∈ N.

In the subsequent sections we will assume the following inequalities:

µ ≥ δ−1 ≥ 1, `−1 ≥ D

ηδ
≥ 1, λ ≥ max

{
(µD)1+ω, `−(1+ω)

}
. (3.3)

Here ω := ε
2+ε

> 0 so that

1 + ε =
1 + ω

1− ω
.

Of course, at the very end, the proof of Proposition 2.2 will use a specific choice of the
parameters, which will be shown to respect the above conditions. However, at this stage
the choices in (3.3) seem rather arbitrary. We could leave the parameters completely free
and carry all the relevant estimates in general, but this would give much more complicated
and lengthy formulas in all of them. It turns out that the conditions (3.3) above greatly
simplifies many computations.

3.2 Definition of wo

In order to define wo we draw heavily upon the techniques introduced in [15].

• First of all we let r0 > 0, N, λ0 ∈ N, Λj ⊂ {k ∈ Z3 : |k| = λ0} and γ(j)
k ∈

C∞(Br0(Id)) be as in [15, Lemma 3.2].
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• Next we let Cj ⊂ Z3, j ∈ {1, . . . , 8} and the functions αk be as in [15, Section 4.1];
as in that section, we define the functions

φ
(j)
k,µ(v, τ) :=

∑
l∈Cj

αl(µv)e−i
k·l
µ
τ .

Next, we let χ ∈ C∞c (R3 × R) be a smooth standard nonnegative radial kernel supported
in [−1, 1]4 and we denote by

χ`(x, t) :=
1

`4
χ

(
x

`
,
t

`

)
the corresponding family of mollifiers. We define

v`(x, t) =

∫
T3×S1

v(x− y, t− s)χ`(y, s) dy ds

R̊`(x, t) =

∫
T3×S1

R̊(x− y, t− s)χ`(y, s) dy ds.

Similarly to [15, Section 4.1], we define the function

ρ`(t) :=
1

3(2π)3

(
e(t)(1− δ̄)−

∫
T3

|v`|2(x, t) dx

)
(3.4)

and the symmetric 3× 3 matrix field

R`(x, t) = ρ`(t)Id− R̊`(x, t) . (3.5)

Finally, wo is defined by

wo(x, t) :=
√
ρ`(t)

8∑
j=1

∑
k∈Λj

γ
(j)
k

(
R`(x, t)

ρ`(t)

)
φ

(j)
k,µ (v`(x, t), λt)Bke

iλk·x , (3.6)

where Bk ∈ C3 are vectors of unit length satisfying the assumptions of [15, Proposition
3.1]. Recall that the maps γ(j)

k are defined only in Br0(Id). The function wo is nonetheless
well defined: the fact that the arguments of γ(j)

k are contained in Br0(Id) will be ensured
by the choice of η in Section 3.3 below.

3.3 The constants η and M

We start by observing that, by standard estimates on convolutions

‖v`‖r + ‖R̊`‖r ≤ C(r)D`−r for any r ≥ 1, (3.7)

‖v` − v‖0 + ‖R̊` − R̊‖0 ≤ CD` , (3.8)
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where the first constant depends only on r and the second is universal. By writing
∣∣|v`|2−

|v|2
∣∣ ≤ |v − v`|2 + 2|v||v − v`| we deduce∫

T3

∣∣|v`|2 − |v|2∣∣ dx ≤ C(D`)2 + Ce(t)1/2D` (3.9)

≤ Cηδ
(

max
t
e(t)1/2 + 1

)
, (3.10)

where the last inequality follows from (3.3). This leads to the following lower bound on
ρ`:

ρ`(t) ≥
1

3(2π)3

(
e(t)

(
1− δ

2

)
−
∫
T3

|v|2 dx−
∫
T3

∣∣|v`|2 − |v|2∣∣ dx)
(3.10)
≥ 1

3(2π)3

(
δ

4
min
t
e(t)− Cηδ

(
max
t
e(t)1/2 + 1

))
(3.11)

We then choose 0 < η < 1 so that the quantity on the right hand side is greater than 2ηδ
r0

.
This is clearly possible with a choice of η only depending on e. In turn, this leads to∥∥∥∥R`

ρ`
− Id

∥∥∥∥
0

≤ ‖R̊`‖0

mint ρ`(t)
≤ r0

2
. (3.12)

Therefore wo in (3.6) is well-defined.

In an analogous way we estimate ρ` from above as

ρ`(t) ≤
1

3(2π)3

(
e(t)−

∫
T3

|v|2 dx+

∫
T3

∣∣|v`|2 − |v|2∣∣ dx)
≤ 1

3(2π)3

(
5δ

4
max
t
e(t) + Cδ

(
max
t
e(t)1/2 + 1

))
≤ Cδ

(
1 + max

t
e(t)
)
. (3.13)

Since |wo| can be estimated as

|wo(x, t)| ≤ C
√
ρ`(t) ,

we can choose the constant M , depending only on e, in such a way that

‖wo‖0 ≤
M

2

√
δ . (3.14)

This is essentially the major point in the definition of M : the remaining terms leading
to (2.7) and (2.8) will be shown to be negligible thanks to an appropriate choice of the
parameters λ, µ and `. We will therefore require that, in addition to (3.14), M ≥ 1
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3.4 The pressure p1
The pressure p1 differs slightly from the corresponding one chosen in [15]. It is given by

p1 = p− |wo|
2

2
− 2

3
〈v − v`, w〉 . (3.15)

Observe that, by (3.14), we have

‖p1 − p‖0 ≤
M2

4
δ + ‖v − v`‖0‖w‖0 . (3.16)

3.5 The Reynolds stress R̊1

The Reynolds stress R̊1 is defined by a slightly more complicated formula than the corre-
sponding one in [15, Section 4.5]. Recalling the operator R from [15, Definition 4.2] we
define R̊1 as

R̊1 = R[∂tw + div(w ⊗ v` + v` ⊗ w)]

+R[div(w ⊗ w + R̊` − |wo|
2

2
Id)]

+ [w ⊗ (v − v`) + (v − v`)⊗ w − 2〈(v−v`),w〉
3

Id]

+ [R̊` − R̊] .

(3.17)

The summands in the third and fourth line are obviously trace-free and symmetric. The
summands in the first and second line are symmetric and trace-free because of the prop-
erties of the operator R (cp. with [15, Lemma 4.3]). Moreover, the expressions to which
the operator R is applied have average 0. For the second line this is obvious because the
expression is the divergence of a matrix field. As for the first line, since w = Pwo, its
average is zero by the definition of the operator P . Therefore the average of ∂tw is also
zero. The remaining term is a divergence and hence its average equals 0.

We now check that the triple (v1, p1, R̊1) satisfies the Euler-Reynolds system. First of
all, recall that ∇g = div(gId) for any smooth function g and that divRF = F for any
smooth F with average 0. Since we already observed that the expressions to which R is
applied average to 0, we can compute

div R̊1 −∇p1 = ∂tw + div(w ⊗ w) + div(w ⊗ v + v ⊗ w)−∇p+ div R̊ .

But recalling that div R̊ = ∂tv + div (v ⊗ v) +∇p we also get

div R̊1 −∇p1 = ∂t(v + w) + div [w ⊗ w + v ⊗ v + w ⊗ v + v ⊗ w] .

Since v1 = v + w we then conclude the desired identity.
In order to complete the proof of Proposition 2.2 we need to show that the (minor)

estimates (2.7), (2.8) and the (major) estimates (2.5), (2.6), (2.9) hold: essentially all the
rest of the paper is devoted to prove them.
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3.6 Constants in the estimates

The rest of the paper is devoted to estimating several Hölder norms of the various func-
tions defined so far. The constants appearing in the estimates will always be denoted by
the letter C, which might be followed by an appropriate subscript. First of all, by this no-
tation we will throughout understand that the value may change from line to line. In order
to keep track of the quantities on which these constants depend, we will use subscripts to
make the following distinctions.

• C: without a subscript will denote universal constants;

• Ch: will denote constants in estimates concerning standard functional inequalities in
Hölder spaces Cr (such as (4.1), (4.2)). These constants depend only on the specific
norm used and therefore only on the parameter r ≥ 0: however we keep track of
this dependence because the number r will be chosen only at the end of the proof
of Proposition 2.2 and its value may be very large;

• Ce: throughout the rest paper the prescribed energy density e = e(t) of Theorem 1.1
and Proposition 2.2 will be assumed to be a fixed smooth function bounded below
and above by positive constants; several estimates depend on these bounds and the
related constants will be denoted by Ce;

• Cv: in addition to the dependence on e, there will be estimates which depend also
on the supremum norm of the velocity field ‖v‖0: such constants increase with ‖v‖0

(this explains the origin of the constant A in (2.9));

• Cs, Ce,s, Cv,s: will denote constants which are typically involved in Schauder es-
timates for Cm+α norms of elliptic operators, when m ∈ N and α ∈]0, 1[; these
constants not only depend on the specific norm used, but they also degenerate as
α ↓ 0 and α ↑ 1; the ones denoted by Ce,s and Cv,s depend also, respectively, upon
e and upon e and ‖v‖0.

Observe in any case that, no matter which subscript is used, such constants never
depend on the parameters µ, `, δ, λ and D; they are, however, allowed to depend on ω and
ε.

4 Preliminary Hölder estimates

In this section we collect several estimates which will be used throughout the rest of the
paper.
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We start with the following elementary inequalities:

[f ]s ≤ Ch
(
εr−s[f ]r + ε−s‖f‖0

)
(4.1)

for r ≥ s ≥ 0 and ε > 0, and

[fg]r ≤ Ch
(
[f ]r‖g‖0 + ‖f‖0[g]r

)
(4.2)

for any 1 ≥ r ≥ 0, where the constants depend only on r and s. From (4.1) with ε =

‖f‖1/r0 [f ]
−1/r
r we obtain the standard interpolation inequalities

[f ]s ≤ Ch‖f‖1−s/r
0 [f ]

s/r
r . (4.3)

Next we collect two classical estimates on the Hölder norms of compositions. These are
also standard, for instance in applications of the Nash-Moser iteration technique. For the
convenience of the reader we recall the short proof.

Proposition 4.1. Let Ψ : Ω→ R and u : Rn → Ω be two smooth functions, with Ω ⊂ RN .
Then, for every m ∈ N \ {0} there is a constant Ch (depending only on m, N and n) such
that

[Ψ ◦ u]m ≤ Ch

m∑
i=1

[Ψ]i‖u‖i−1
0 [u]m (4.4)

[Ψ ◦ u]m ≤ Ch

m∑
i=1

[Ψ]i[u]
(i−1) m

m−1

1 [u]
m−i
m−1
m . (4.5)

Proof. Denoting by Dj any partial derivative of order j, the chain rule can be written
symbolically as

Dm(Ψ ◦ u) =
m∑
l=1

(DlΨ) ◦ u
∑
σ

Cl,σ(Du)σ1(D2u)σ2 . . . (Dmu)σm (4.6)

for some constants Cl,σ, where the inner sum is over σ = (σ1, . . . , σm) ∈ Nm such that

m∑
j=1

σj = l,

m∑
j=1

jσj = m.

From (4.3) we have

(a) [u]j ≤ Ch‖u‖
1− j

m
0 [u]

j
m
m for j ≥ 0;

(b) [u]j ≤ Ch[u]
1− j−1

m−1

1 [u]
j−1
m−1
m for j ≥ 1.

Then (4.4) and (4.5) follow from applying (a) and (b) to (4.6), respectively.



18 Camillo De Lellis, László Székelyhidi Jr.

4.1 Estimates on φ(j)k,µ
Recall that φ(j)

k,µ = φ
(j)
k,µ(v, τ) are defined on R3×S1 and they are smooth (here v is treated

as an independent variable). Because the τ -derivatives are not bounded in v, we introduce
the seminorms

[f ]m,R = max
|β|=m

‖Dβ
v f‖C0(BR(0)×S1)

and

[f ]m+α,R = max
|β|=m

sup
v 6=w∈BR(0),τ∈S1

|Dβ
v f(v, τ)−Dβ

v f(w, τ)|
|v − w|α

,

where Dβ
v denotes partial derivatives in the v variable with multiindex β = (β1, β2, β3).

Proposition 4.2. There are constants Ch depending only on m ∈ N and such that the
following estimates hold:[

φ
(j)
k,µ

]
m,R

+R−1
[
∂τφ

(j)
k,µ

]
m,R

+R−2
[
∂ττφ

(j)
k,µ

]
m,R
≤ Chµ

m (4.7)[
∂τφ

(j)
k,µ + i(k · v)φ

(j)
k,µ

]
m
≤ Chµ

m−1 (4.8)

R−1
[
∂τ

(
∂τφ

(j)
k,µ + i(k · v)φ

(j)
k,µ

)]
m,R
≤ Chµ

m−1 (4.9)

Proof. We recall briefly the definition of the maps φ(j)
k,µ from [15, Section 4.1]. First of all

we fix two constants c1 and c2 such that
√

3
2
< c1 < c2 < 1 and then ϕ ∈ C∞c (Bc2(0))

which is nonnegative and identically 1 on the ball Bc1(0). We then set

ψ(v) :=
∑
k∈Z3

(ϕ(v − k))2 and αk(v) :=
ϕ(v − k)√

ψ(v)
.

By the choice of c1 we easily conclude that ψ−
1
2 ∈ C∞. On the other hand it is also

obvious that ψ(v−k) = ψ(v). Thus there is a function α ∈ C∞c (B1(0)) such that αk(v) =

α(v − k).
We next consider the lattice Z3 ⊂ R3 and its quotient by (2Z)3 and we denote by Cj ,

j = 1, . . . , 8 the 8 equivalence classes of Z3/ ∼. Finally, in [15, Section 4.1] we set

φ
(j)
k (v, τ) :=

∑
l∈Cj

αl(µv)e−i(k·
l
µ

)τ . (4.10)

Observe that, for each fixed j, the functions {αl : l ∈ Cj} have pairwise disjoint supports.
Therefore the estimate [

φ
(j)
k,µ

]
m
≤ C[α]mµ

m ≤ Chµ
m

follows trivially. Next,

∂τφ
(j)
k (v, τ) :=

∑
l∈Cj

−i
(
k · l

µ

)
αl(µv)e−i(k·

l
µ

)τ .
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On the other hand, if |v| ≤ R, then αl(µv) = 0 for any l with |l| ≥ µR + 2: hence[
∂τφ

(j)
k

]
m,R
≤ |k|

(
R + 2µ−1

)
[ϕ]mµ

m ≤ ChRµ
m

(in principle the constant Ch depends on k, but on the other hand k ranges in ∪jΛj , which
is a finite set). A similar argument applies to ∂ττφ

(j)
k,µ and hence concludes the proof of

(4.7).

We finally compute

Dm
v

(
∂τφ

(j)
k,µ + i(k · v)φ

(j)
k,µ

)
=
∑
l∈Cj

ik ·
(
v − l

µ

)
µm[Dmα](µ(v − l))e−i(k·

l
µ

)τ

+ µm−1
∑
l∈Cj

ik ⊗ [Dm−1α](µ(v − l))e−i(k·
l
µ

)τ .

Recall however that α ∈ C∞c (B1(0)): thus |v − l
µ
| ≤ µ−1 if [Dmα](µ(v − l)) 6= 0. It

follows easily that[
∂τφ

(j)
k,µ + i(k · v)φ

(j)
k,µ

]
m
≤ Cµm−1 ([α]m + |k|[α]m−1) ≤ Chµ

m−1 ,

which proves (4.8). On the other hand, differentiating once more the identities in τ , (4.9)
follows from the same arguments used above for [∂τφ]m,R.

4.2 Schauder estimates for elliptic operators

We now recall some classical Schauder estimates for the various operators involved in the
construction. These estimates were already collected in [15, Proposition 5.1] and will be
used several times in what follows. We state them again for the readers convenience and
because of the convention on constants as set in Section 3.3, and refer to [15, Definitions
4.1, 4.2] for the precise definition of the operators P , Q andR.

Proposition 4.3. For any α ∈ (0, 1) and any m ∈ N there exists a constant Cs(m,α) so
that the following estimates hold:

‖Qv‖m+α ≤ Cs(m,α)‖v‖m+α (4.11)

‖Pv‖m+α ≤ Cs(m,α)‖v‖m+α (4.12)

‖Rv‖m+1+α ≤ Cs(m,α)‖v‖m+α (4.13)

‖R(divA)‖m+α ≤ Cs(m,α)‖A‖m+α (4.14)

‖RQ(divA)‖m+α ≤ Cs(m,α)‖A‖m+α . (4.15)
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4.3 Stationary phase lemma

Finally, we state a key ingredient of our construction, which yields estimates for highly
oscillatory functions. Though this proposition is also essentially contained in [15], it is
nowhere explicitly stated in this form. Since it will be used several more times and in a
more subtle way than in [15], it is useful to isolate it from the rest.

Proposition 4.4. Let k ∈ Z3 \ {0} and λ ≥ 1.
(i) For any a ∈ C∞(T3) and m ∈ N we have∣∣∣∣∫

T3

a(x)eiλk·x dx

∣∣∣∣ ≤ [a]m
λm

. (4.16)

(ii) Let k ∈ Z3 \ {0}. For a smooth vector field F ∈ C∞(T3;R3) let Fλ(x) :=

F (x)eiλk·x. Then we have

‖R(Fλ)‖α ≤
Cs
λ1−α‖F‖0 +

Cs
λm−α

[F ]m +
Cs
λm

[F ]m+α,

‖RQ(Fλ)‖α ≤
Cs
λ1−α‖F‖0 +

Cs
λm−α

[F ]m +
Cs
λm

[F ]m+α,

where Cs = Cs(m,α) (i.e. the constant does not depend on λ nor on k).

Proof. For j = 0, 1, . . . define

Aj(y, ξ) := −i

[
k

|k|2

(
i
k

|k|2
· ∇
)j
a(y)

]
eik·ξ ,

Bj(y, ξ) :=

[(
i
k

|k|2
· ∇
)j
a(y)

]
eik·ξ .

Direct calculation shows that

Bj(x, λx) =
1

λ
div
[
Aj(x, λx)

]
+

1

λ
Bj+1(x, λx).

In particular, for any m ∈ N

a(x)eiλk·x = B0(x, λx) =
1

λ

m−1∑
j=0

1

λj
div
[
Aj(x, λx)

]
+

1

λm
Bm(x, λx)

Integrating this over T3 and using that |k| ≥ 1 we obtain (4.16).
Next, using (4.1) and (4.2) we conclude

‖Aj(·, λ·)‖α ≤ C (λα[a]j + [a]j+α)

≤ Cλj+α
(
λ−m[a]m + ‖a‖0

)
for any j ≤ m− 1
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and similarly
‖Bm(·, λ·)‖α ≤ C (λα[a]m + [a]m+α) .

Applying the previous computations to each component of the vector field F we then get
the identity

F (x)eiλk·x = G0(x, λx) =
1

λ

m−1∑
j=0

1

λj
div
[
Hj(x, λx)

]
+

1

λm
Gm(x, λx)

where the Hj are matrix-valued functions (not necessarily symmetric) and Gm is a vector
field. Hj and Gm enjoy the same estimates of Aj and Bm respectively. Thus, using (4.13),
(4.14) and (4.16) we conclude

‖R(Fλ)‖α ≤ Cs

(
1

λ

m−1∑
j=0

1

λj
‖Hj(·, λ·)‖α +

1

λm
‖Gm(·, λ·)‖α

)

≤ Cs

(
1

λ1−α‖F‖0 +
1

λm−α
[F ]m +

1

λm
[F ]m+α

)
.

Finally, using (4.11), (4.13) and (4.15) we get

‖RQ(Fλ)‖α ≤ Cs

(
1

λ1−α‖F‖0 +
1

λm−α
[F ]m +

1

λm
[F ]m+α

)
as well.

5 Doubling the variables and corresponding estimates

It will be convenient to write wo as

wo(x, t) = W (x, t, λt, λx),

where

W (y, s, τ, ξ) :=
∑
|k|=λ0

ak(y, s, τ)Bke
ik·ξ (5.1)

=
√
ρ`(s)

8∑
j=1

∑
k∈Λj

γ
(j)
k

(
R`(y, s)

ρ`(s)

)
φ

(j)
k,µ (v`(y, s), τ)Bke

ik·ξ (5.2)

(cp. with [15, Section 6]). The following Proposition corresponds to [15, Proposition 6.1],
with an important difference: the estimates stated here keep track of not only the depen-
dence of the constants on the parameter µ, but also on the parameter ` and the functions v
and R̊ (as it can be easily observed, these estimates do not depend on p): more precisely
we will make explicit their dependence on δ andD (for the constants recall the convention
stated in Section 3.3). Observe that all the estimates claimed below are in space only!
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Proposition 5.1. (i) Let ak ∈ C∞(T3 × S1 × R) be given by (5.1). Then for any r ≥ 1

and any α ∈ [0, 1] we have the following estimates:

‖ak(·, s, τ)‖r ≤ Ce
√
δ
(
µrDr + µD`1−r) (5.3)

‖∂τak(·, s, τ)‖r + ‖∂ττak(·, s, τ)‖r ≤ Cv
√
δ
(
µrDr + µD`1−r) (5.4)

‖(∂τak + i(k · v`)ak)(·, s, τ)‖r ≤ Ce
√
δ
(
µr−1Dr +D`1−r) (5.5)

‖∂τ (∂τak + i(k · v`)ak)(·, s, τ)‖r ≤ Cv
√
δ
(
µr−1Dr +D`1−r) (5.6)

‖ak(·, s, τ)‖α ≤ Ce
√
δµαDα (5.7)

‖∂τak(·, s, τ)‖α + ‖∂ττak(·, s, τ)‖α ≤ Cv
√
δµαDα (5.8)

‖(∂τak + i(k · v`)ak)(·, s, τ)‖α ≤ Ce
√
δµα−1Dα (5.9)

‖∂τ (∂τak + i(k · v`)ak)(·, s, τ)‖α ≤ Cv
√
δµα−1Dα (5.10)

The following estimates hold for any r ≥ 0:

‖∂sak(·, s, τ)‖r ≤ Ce
√
δ
(
µr+1Dr+1 + µD`−r

)
(5.11)

‖∂sτak(·, s, τ)‖r ≤ Cv
√
δ
(
µr+1Dr+1 + µD`−r

)
(5.12)

‖∂ssak(·, s, τ)‖r ≤ Ce
√
δ
(
µr+2Dr+2 + µD`−1−r) (5.13)

‖∂s(∂τak + i(k · v`)ak)(·, s, τ)‖r ≤ Cv
√
δ
(
µrDr+1 + µD`−r

)
(5.14)

(ii) The matrix-function W ⊗W can be written as

(W ⊗W )(y, s, τ, ξ) = R`(y, s) +
∑

1≤|k|≤2λ0

Uk(y, s, τ)eik·ξ, (5.15)

where the coefficients Uk ∈ C∞(T3 × S1 × R;S3×3) satisfy

Ukk =
1

2
(trUk)k . (5.16)

Moreover, we have the following estimates for any r ≥ 1 and any α ∈ [0, 1]:

‖Uk(·, s, τ)‖r ≤ Ceδ
(
µrDr + µD`1−r) (5.17)

‖∂τUk(·, s, τ)‖r ≤ Cvδ
(
µrDr + µD`1−r) (5.18)

‖Uk(·, s, τ)‖α ≤ Ceδµ
αDα (5.19)

‖∂τUk(·, s, τ)‖α ≤ Cvδµ
αDα (5.20)

and the following estimate for any r ≥ 0:

‖∂sUk(·, s, τ)‖r ≤ Ceδ
(
µr+1Dr+1 + µD`−r

)
. (5.21)
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Proof. The arguments for (5.15) and (5.16) are analogous to those in the proof of [15,
Proposition 6.1]. Moreover, precisely as argued there, the estimates for the Uk terms fol-
low easily from the estimates for the ak coefficients, since each Uk is the sum of finitely
many terms of the form ak′ak′′ . Here we focus, therefore, on the estimates (5.3)-(5.14).

First of all observe that it suffices to prove the cases r ∈ N, since the remaining ones
can be obtained by interpolation. Recall now the formula for ak: if k ∈

⋃
j Λj , then

ak =
√
ρ`(s)γ

(j)
k

(
R`(y, s)

ρ`(s)

)
φ

(j)
k,µ (v`(y, s), τ) , (5.22)

otherwise ak vanishes identically.
Observe that the functions ak depend on the variables y, s and τ . We introduce the

notation J·Km for the Hölder seminorms in y and s

Jak(·, ·, τ)Km =
∑

j+|β|=m

∥∥∂jsDβ
yak
∥∥

0

and the notation |||ak(·, ·, τ)|||m for the Hölder norm in y and s:

|||ak(·, ·, τ)|||m =
m∑
i=0

Jak(·, ·, τ)Ki .

We next introduce the functions

Γ(y, s) = γ
(j)
k

(
R`(y, s)

ρ`(s)

)
and Φ(y, s, τ) = φ

(j)
k,µ (v`(y, s), τ)

and observe that
ak =

√
ρ` Γ Φ .

Recall that ‖ρl‖0 ≤ Ceδ by (3.13). Therefore the claimed estimate for r = α = 0 follows
trivially. Thus, we assume r ∈ N \ {0} and we focus on the estimates (5.3)-(5.6) and
(5.11)-(5.14).

Proof of the estimates (5.3), (5.11) and (5.13). Recalling (4.2), we estimate

|||ak|||r ≤ Ch‖
√
ρ`‖0‖Γ‖0JΦKr + Ch‖

√
ρ`‖0‖Φ‖0JΓKr + Ch‖Φ‖0‖Γ‖0J

√
ρ`Kr

≤ Ce

(√
δ (JΦKr + JΓKr) + J

√
ρ`Kr

)
. (5.23)

Next, by (3.7), for any j ≥ 1 we have [v`]j ≤ ChD`
1−j for every j ≥ 1. Applying (4.5)

in Proposition 4.1 and Proposition 4.2 we conclude

JΦKr ≤ Ch

r∑
i=1

[
φ

(j)
k,µ

]
i
[v`]

(i−1) r
r−1

1 [v`]
r−i
r−1
r ≤ Ch

r∑
i=1

[
φ

(j)
k,µ

]
i
Di`i−r

(4.7)
≤ Ch

r∑
i=1

Chµ
iDi`−r+i ≤ Ch

(
µrDr + µD`1−r) . (5.24)
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Applying (4.4) of Proposition 4.1 we also conclude

JΓKr ≤ Ch

r∑
i=1

[
γ

(j)
k

]
i

∥∥∥∥R`

ρ`

∥∥∥∥i−1

0

s
R`

ρ`

{

r

(5.25)

Now, by (3.12) we have ∥∥∥∥R`

ρ`

∥∥∥∥
0

≤ r0

2
+ 1 .

Moreover [γ
(j)
k ]r ≤ Ch: indeed recall that, because of our choice of η in Section 3.3,

the range of R`
ρ`

is contained in B r0
2

(Id), whereas the γ(j)
k are defined on the open ball

Br0(Id); since the γ(j)
k are smooth and finitely many, obviously we can bound their norms

uniformly on the range of the function R`
ρ`

.
Using these estimates in (5.25) we thus get

JΓKr ≤ Ch

s
R`

ρ`

{

r

(4.2)
≤ ‖ρ−1

` ‖0JR`Kr + ‖R`‖0Jρ−1
` Kr . (5.26)

Recall next that, by (3.11), ρ`(s) ≥ Ceδ for every s. Moreover, by (3.4), for r ≥ 1 we
have

∂rsρ`(s) =
1

3(2π)3

(
(1− δ̄)∂rse(s)−

r∑
j=0

(
r

j

)∫
T3

(
∂jsv` · ∂r−js v`

)
(x, s) dx

)
.

Thus, we conclude

[ρ`]r ≤ Ce + C‖v`‖C0
t L

2
x
[v`]r + Ch

r−1∑
j=1

[v`]j[v`]r−j

≤ Ce + Ce[v`]r + Ch

r−1∑
j=1

[v`]j[v`]r−j

(3.7)
≤ CeD`

1−r + ChD
2`r−2

(3.3)
≤ CeD`

1−r . (5.27)

Set Ψ(ζ) = ζ−1. On the domain [δ,∞[, we have the estimate [Ψ]i ≤ Chδ
−i−1. There-

fore, applying again (4.4) we conclude

Jρ−1
` Kr ≤ Ch

r∑
i=1

δ−i−1‖ρ`‖i−1
0 [ρ`]r ≤ Chδ

−2[ρ`]r ≤ Ceδ
−2D`r−1 . (5.28)

It follows from (5.26), (5.28) and (3.7) that

JΓKr ≤ Ceδ
−1D`r−1 . (5.29)

Next, set Ψ(ζ) = ζ
1
2 . In this case, on the domain [δ, Ceδ[ we have the estimates [Ψ]i ≤

Ceδ
1
2
−i. Thus, by (4.4) and (5.27):

J
√
ρ`Kr ≤ Ch

r∑
i=1

Ceδ
1
2
−i‖ρ`‖i−1

0 [ρ`]r ≤ Ceδ
− 1

2D`1−r . (5.30)
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Inserting (5.24), (5.29) and (5.30) into (5.23) we conclude

|||ak|||r ≤ Ceδ
− 1

2D`1−r + Ceδ
1
2µrDr + Ceδ

1
2µD`1−r .

Recall, however, that µ ≥ δ−1 and hence

|||ak|||r ≤ Ce
√
δ
(
µrDr + µD`1−r) .

From this we derive the claimed estimates for ‖ak‖r for any r ≥ 1 and for ‖∂sak‖r and
‖∂ssak‖r for any r ≥ 0.

Proof of the estimates (5.4) and (5.12). Differentiating in τ we obtain the identities

∂τak(·, ·, τ) =
√
ρ` Γ ∂τφ

(j)
k,µ(v`, τ)

∂ττak(·, ·, τ) =
√
ρ` Γ ∂ττφ

(j)
k,µ(v`, τ) .

Thus, arguing precisely as above, we achieve the desired estimates for the quantities
‖∂τak‖r, ‖∂τsak‖r and ‖∂ττak‖r. However, note that we use the estimate (4.7) with R :=

‖v‖0 and for [∂tφ
(j)
k,µ]m,R and [∂ττφ

(j)
k,µ]m,R. It turns out, therefore, that the constants in the

estimates (5.4) and (5.12) depend also on ‖v‖0.

Proof of the estimates (5.5), (5.6) and (5.14). Finally, we introduce the function

χ
(j)
k,µ(v, τ) := ∂τφ

(j)
k,µ + i(k · v)φ

(j)
k,µ

and χ(y, s, τ) = χ
(j)
k,µ(v`(y, s), τ). Then

∂τak + i(k · v`)ak =
√
ρ`χΓ .

Applying the same computations as above and using the estimates in Proposition 4.2 we
achieve the desired estimates for ‖∂τak + i(k · v`)ak‖r and ‖∂s(∂τak + i(k · v`)ak)‖r.
Finally,

∂τ (∂τak + i(k · v`)ak) =
√
ρ` Γ

[
∂τχ

(j)
k,µ

]
(v`, τ)

and hence the arguments above carry over to estimate also the quantity ‖∂τ (∂τak + i(k ·
v`)ak)‖r.

6 Estimates on wo, wc and v1

Proposition 6.1. Under assumption (3.3), the following estimates hold for any r ≥ 0

‖wo‖r ≤ Ce
√
δλr , (6.1)

‖∂two‖r ≤ Cv
√
δλr+1 (6.2)
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and the following for any r > 0:

‖wc‖r ≤ Ce
√
δDµλr−1 (6.3)

‖∂twc‖r ≤ Cv
√
δDµλr . (6.4)

In particular

‖w‖0 ≤ Ce
√
δ , (6.5)

‖w‖C1 ≤ Cv
√
δλ . (6.6)

Proof. First of all observe that it suffices to prove (6.1) when r = m ∈ N, since the
remaining inequalities can be obtained by interpolation. By writing

wo(x, t) =
∑
|k|=λ0

ak(x, t, λt)Bke
iλk·x =:

∑
|k|=λ0

ak(x, t, λt)Ωk(λx),

∂two(x, t) = λ
∑
|k|=λ0

∂τak(x, t, λt)Ωk(λx) +
∑
|k|=λ0

∂sak(x, t, λt)Ωk(λx),

from (4.2) we obtain

‖wo‖m ≤ Ch
∑
|k|=λ0

(‖Ωk‖0[ak]m + λm‖ak‖0[Ωk]m) ,

‖∂two‖m ≤ Chλ
∑
|k|=λ0

(‖Ωk‖0[∂τak]m + λm‖∂τak‖0[Ωk]m)

+ Ch
∑
|k|=λ0

(‖Ωk‖0[∂sak]m + λm‖∂sak‖0[Ωk]m) .

When m = 0, we then use (5.7) to conclude (6.1) and (5.8) and (5.11) to conclude (6.2).
For m ≥ 1 we use, respectively, (5.3) and the estimates (5.4) and (5.11) to get:

‖wo‖m ≤ Ce
√
δ
(
µmDm + µD`1−m + λm

)
‖∂two‖m ≤ Cv

√
δ
(
λµmDm + λµD`1−m + λm+1

+ µm+1Dm+1 + µD`−m + λmµD
)

However, recall from (3.3) that λ ≥ (Dµ)1+ω ≥ Dµ and λ ≥ `−1. Thus (6.1) and (6.2)
follow easily.

As for the estimates on wc we argue as in [15, Lemma 6.2] and start with the observa-
tion that, since k ·Bk = 0,

wo(x, t) =
1

λ
∇×

∑
|k|=λ0

−iak(x, t, λt)
k ×Bk

|k|2
eiλx·k

+

+
1

λ

∑
|k|=λ0

i∇ak(x, t, λt)×
k ×Bk

|k|2
eiλx·k.
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Hence
wc(x, t) =

1

λ
Quc(x, t), (6.7)

where
uc(x, t) =

∑
|k|=λ0

i∇ak(x, t, λt)×
k ×Bk

|k|2
eiλx·k. (6.8)

The Schauder estimate (4.11) gives then

‖wc‖m+α ≤
Cs
λ
‖uc‖m+α (6.9)

for any m ∈ N and α ∈ (0, 1). We next wish to estimate ‖uc‖r. For integer m we can
argue as for the estimate of ‖wo‖ to get

‖uc‖m ≤ Ce ([ak]1λ
m + [ak]m+1) ≤ Ce

√
δ
(
µDλm + µD`−m

)
≤ Ce

√
δµDλm .

Hence, by interpolation, we reach the estimate ‖uc‖m+α ≤ Ce
√
δµDλm+α for any m,α.

Combining this with (6.9), for r > 0 which is not an integer we conclude ‖wc‖r ≤
Ce,s
√
δµDλr−1. On the other hand the corresponding estimates for any integer r > 0 can

then be reached by interpolation.
Similarly, for ∂twc we have

∂twc =
1

λ
Q∂tuc .

Differentiating (6.8) we achieve

∂tuc(x, t) = λ
∑
|k|=λ0

i∇∂τak(x, t, λt)×
k ×Bk

|k|2
eiλx·k

+
∑
|k|=λ0

i∇∂sak(x, t, λt)×
k ×Bk

|k|2
eiλx·k .

Using Proposition 5.1 and (3.3) we deduce, analogously to above

‖∂tuc‖r ≤ Cv
√
δµDλr+1 .

Using (6.9) once more we arrive at (6.3).

To obtain (6.5) and (6.6), recall that w = wo + wc. For any α > 0 we therefore have

‖w‖0 ≤ ‖wo‖0 + ‖wc‖α ≤ Ce
√
δ + Ce,s

√
δDµλα−1. (6.10)

We now use (6.10) with α = ω
1+ω

: since by (3.3) we have λ1−α = λ
1

1+ω ≥ Dµ, (6.5)
follows. In the same way

‖w‖C1 ≤ ‖wo‖1 + ‖∂two‖0 + ‖wc‖1+α + ‖∂twc‖α
≤ Cv

√
δλ+ Cv,s

√
δDµλα .

Again choosing α = ω
1+ω

and arguing as above we conclude (6.6).
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7 Estimate on the energy

Proposition 7.1. For any α ∈ (0, ω
1+ω

) there is a constant Cv,s, depending only on α, e
and ‖v‖0, such that, if the parameters satisfy (3.3), then∣∣∣∣e(t)(1− δ̄)− ∫ |v1|2(x, t) dx

∣∣∣∣ ≤ CeD`+ Cv,s
√
δµDλα−1 ∀t . (7.1)

Proof. We write

|v1|2 = |v|2 + |wo|2 + |wc|2 + 2wo · v + 2wo · wc + 2wc · v . (7.2)

Since ∣∣∣∣∫ wc · v
∣∣∣∣ ≤ ‖wc‖0‖v(·, t)‖L2 ≤

√
e(t)‖wc‖0 ,

integrating the identity (7.2) we then reach the inequality∣∣∣∣∫ (|v1|2 − |wo|2 − |v|2) dx

∣∣∣∣ ≤ Ce‖wc‖0(1 + ‖wc‖0 + ‖wo‖0) + 2

∣∣∣∣∫ wo · v
∣∣∣∣ .

By Proposition 6.1 we then have∣∣∣∣∫ (|v1|2 − |wo|2 − |v|2) dx

∣∣∣∣ ≤ Ce,s
√
δDµλα−1

(
1 + Ce

√
δDµλα−1 + Ce

√
δ
)

+ 2

∣∣∣∣∫ wo · v
∣∣∣∣

and hence, recalling that λ ≥ (Dµ)1+ω we reach∣∣∣∣∫ (|v1|2 − |wo|2 − |v|2) dx

∣∣∣∣ ≤ Ce,s
√
δDµλα−1 + 2

∣∣∣∣∫ wo · v
∣∣∣∣

Applying Proposition 4.4(i) and Proposition 5.1 we obtain∣∣∣∣∫ wo · v
∣∣∣∣ ≤ Ce

∑
k=|λ0|

[vak]1
λ
≤ Ce‖v‖0

√
δDµλ−1 + CeD

√
δλ−1 ,

and hence ∣∣∣∣∫ (|v1|2 − |wo|2 − |v|2)

∣∣∣∣ ≤ Cv,s
√
δDµλα−1 . (7.3)

Next, taking the trace of identity (5.15) in Proposition 5.1 we have

|W (y, s, τ, ξ)|2 = trR`(y, s) +
∑

1≤|k|≤2λ0

ck(y, s, τ)eik·ξ

for the coefficients ck = trUk. Recall that∫
T3

trR`(x, t) dx = 3(2π)3ρ`(t) = e(t)(1− δ̄)−
∫
T3

|v`|2 dx.
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Moreover, by Proposition 4.4(i) with m = 1 we have∣∣∣∣∫ (|wo|2(x, t)− trR`(x, t)) dx

∣∣∣∣ ≤ ∑
1≤|k|≤2λ0

∣∣∣∣∫ ck(x, t, λt)e
ik·λx dx

∣∣∣∣
≤ Cλ−1

∑
1≤|k|≤2λ0

[ck]1
(5.17)
≤ CeδDµλ

−1 . (7.4)

Thus we conclude∣∣∣∣∫ (|wo|2 + |v`|2
)
dx− e(t)(1− δ̄)

∣∣∣∣ ≤ CeδDµλ
−1 . (7.5)

Finally, recall from (3.9) that ∣∣∣∣∫ (|v|2 − |v`|2)

∣∣∣∣ ≤ CeD` . (7.6)

Putting (7.3), (7.5) and (7.6) together, we achieve (7.1).

8 Estimates on the Reynolds stress

Proposition 8.1. For every α ∈ (0, ω
1+ω

), there is a constant Cv,s, depending only on α,
ω, e and ‖v‖0, such that, if the conditions (3.3) are satisfied, then the following estimates
hold:

‖R̊1‖0 ≤ Cv,s

(
D`+

√
δDµλ2α−1 +

√
δµ−1λα

)
(8.1)

‖R̊1‖C1 ≤ Cv,sλ
(√

δD`+
√
δDµλ2α−1 +

√
δµ−1λα

)
. (8.2)

Proof. We split the Reynolds stress into seven parts:

R̊1 = R̊1
1 + R̊2

1 + R̊3
1 + R̊4

1 + R̊5
1 + R̊6

1 + R̊7
1

where

R̊1
1 = R̊` − R̊

R̊2
1 = [w ⊗ (v − v`) + (v − v`)⊗ w − 2〈(v−v`),w〉

3
Id]

R̊3
1 = R[div(wo ⊗ wo + R̊` − |wo|

2

2
Id)]

R̊4
1 = R∂twc

R̊5
1 = Rdiv((v` + w)⊗ wc + wc ⊗ (v` + w)− wc ⊗ wc)

R̊6
1 = Rdiv(v` ⊗ wo)

R̊7
1 = R[∂two + div(wo ⊗ v`)] = R[∂two + v` · ∇wo] .

In what follows we will estimate each term separately in the order given above.
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Step 1. Recalling (3.8):

‖R̊1
1‖0 ≤ CD` (8.3)

‖R̊1
1‖C1 ≤ 2D ≤ 2D

√
δµλ2α , (8.4)

where in the last inequality we have used (3.3).

Step 2. Again by (3.8) and (3.7):

‖v − v`‖0 ≤ CD`

‖v − v`‖C1 ≤ 2D .

Moreover, Proposition 6.1 gives

‖w‖0 ≤ Ce
√
δ

‖w‖C1 ≤ Cv
√
δλ .

Using this and (4.2) we conclude

‖R̊2
1‖0 ≤ Ce

√
δD` ≤ CeD` (8.5)

‖R̊2
1‖C1 ≤ Ce

√
δD + Cv

√
δλD` ≤ Cv

√
δλD` , (8.6)

where in the last inequality we have used (3.3).

Step 3. We next argue as in the proof of [15, Lemma 7.2]. Recall the formula (5.15)
from Proposition 5.1. Since ρ` is a function of t only, we can write R̊3

1 as

div (wo ⊗ wo−1
2
(|wo|2 − ρ`)Id + R̊`)

= div
(
wo ⊗ wo −R` − 1

2
(|wo|2 − trR`)Id

)
= div

 ∑
1≤|k|≤2λ0

(Uk − 1
2
(trUk)Id)(x, t, λt)eiλk·x


(5.16)
=

∑
1≤|k|≤2λ0

div y[Uk − 1
2
(trUk)Id](x, t, λt)eiλk·x . (8.7)

We can therefore apply Proposition 4.4 with

m =

⌊
1 + ω

ω

⌋
+ 1 (8.8)

and α ∈ (0, ω
1+ω

). Combining the corresponding estimates with Proposition 5.1 we get

‖R̊3
1‖0 ≤ Cs(m,α)

∑
1≤|k|≤2λ0

(
λα−1[Uk]1 + λα−m[Uk]m+1 + λ−m[Uk]m+1+α

)
≤ Cs(m,α)Ce

(
λα−1δµD + λα−mδ

(
µm+1Dm+1 + µD`−m

)
+ λ−mδ

(
µm+1+αDm+1+α + µD`−m−α

))
(3.3)
≤ Ce,sδµDλ

α−1 . (8.9)
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Observe that in the last inequality we have used (3.3): indeed, sincem ≥ 1+ω
ω

by (8.8),
we get

λ ≥ max
{
`−(1+ω), (µD)1+ω

}
≥ max

{
`−

m
m−1 , (µD)

m
m−1

}
. (8.10)

Next, differentiating (8.7) in space and using the same argument:

‖R̊3
1‖1 ≤ Ceλ‖R̊3

1‖0

+ Cs
∑

1≤|k|≤2λ0

(
λα−1[Uk]2 + λα−m[Uk]m+2 + λ−m[Uk]m+2+α

)
≤ Ce,sδµDλ

α.

Finally, differentiating (8.7) in time:

∂tdiv (wo ⊗ wo−1
2
(|wo|2 − ρ`)Id + R̊`)

=
∑

1≤|k|≤2λ0

div y[∂sUk − 1
2
(tr ∂sUk)Id](x, t, λt)eiλk·x

+ λ
∑

1≤|k|≤2λ0

div y[∂τUk − 1
2
(tr ∂τUk)Id](x, t, λt)eiλk·x .

Thus, applying the same argument as above,

‖∂tR̊3
1‖0 ≤ Cs

∑
1≤|k|≤2λ0

(
λα−1[∂sUk]1 + λα−m[∂sUk]m+1 + λ−m[∂sUk]m+1+α

)
+ Csλ

∑
1≤|k|≤2λ0

(
λα−1[∂τUk]1 + λα−m[∂τUk]m+1

+ λ−m[∂τUk]m+1+α

)
≤ Cv,s(µD + `−1 + λ)δµDλα−1

≤ Cv,sδµDλ
α .

Finally, putting these last two estimates together:

‖R̊3
1‖C1 ≤ ‖R̊3

1‖1 + ‖∂tR̊3
1‖0 ≤ Cv,sδµDλ

α . (8.11)

Step 4. In this case we argue as in [15, Lemma 7.3]. Differentiate in t the identity (6.7)
to get

∂twc = 1
λ
Q∂tuc ,

where

∂tuc(x, t) =λ
∑
|k|=λ0

i(∇∂τak)(x, t, λt)×
k ×Bk

|k|2
eiλx·k+

+
∑
|k|=λ0

i(∇∂sak)(x, t, λt)×
k ×Bk

|k|2
eiλx·k .
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Choose again m as in (8.8) and apply the Propositions 4.4 and 5.1 to get

‖R̊4
1‖0 ≤ Cs

∑
|k|=λ0

(
λα−1[∂τak]1 + λα−m[∂τak]m+1 + λ−m[∂τak]m+1+α

)
+
Cs
λ

∑
|k|=λ0

(
λα−1[∂sak]1 + λα−m[∂sak]m+1 + λ−m[∂sak]m+1+α

)
≤Cv(λ−1µD + λ−1`−1 + 1)

√
δµDλα−1 , (8.12)

where in the last inequality we have again used (8.10) for the two rightmost summands
in the corresponding parantheses (cp. with the argument given for (8.9) in the paragraph
right after). Using then (3.3) we conclude ‖R̊4

1‖ ≤ Cv
√
δµDλα−1.

Following the same strategy as in Step 3:

‖R̊4
1‖1 ≤ Ceλ‖R̊4

1‖0

+ Cs
∑
|k|=λ0

(
λα−1[∂τak]2 + λα−m[∂τak]m+2 + λ−m[∂τak]m+2+α

)
+
Cs
λ

∑
|k|=λ0

(
λα−1[∂sak]2 + λα−m[∂sak]m+2 + λ−m[∂sak]m+2+α

)
≤ Cv,s

√
δµDλα . (8.13)

Differentiating in time

‖∂tR̊4
1‖0

≤ Csλ
∑
|k|=λ0

(
λα−1[∂ττak]1 + λα−m[∂ττak]m+1 + λ−m[∂ττak]m+1+α

)
+ Cs

∑
|k|=λ0

(
λα−1[∂τsak]1 + λα−m[∂τsak]m+1 + λ−m[∂τsak]m+1+α

)
+
Cs
λ

∑
|k|=λ0

(
λα−1[∂ssak]1 + λα−m[∂ssak]m+1 + λ−m[∂ssak]m+1+α

)
≤ Cv,s

√
δµDλα . (8.14)

Putting (8.13) and (8.14) together we obtain

‖R̊4
1‖C1 ≤ Cv,s

√
δµDλα . (8.15)

Step 5. In this step we argue as in [15, Lemma 7.4]. We first estimate

‖(v` + w)⊗ wc+wc ⊗ (v` + w)− wc ⊗ wc‖α ≤
≤ C(‖v` + w‖0‖wc‖α + ‖v` + w‖α‖wc‖0 + ‖wc‖0‖wc‖α) .

≤ C‖wc‖α (‖v‖0 + ‖wo‖α + ‖wc‖α) .



Onsager’s conjecture 33

From Proposition 6.1 we then conclude

‖(v` + w)⊗ wc + wc ⊗ (v` + w)− wc ⊗ wc‖α ≤ Cv,s
√
δDµλ2α−1 .

By the Schauder estimate (4.14), we get

‖R̊5
1‖0 ≤ Cv,s

√
δDµλ2α−1. (8.16)

As for ‖R̊5
1‖1 the same argument yields

‖R̊5
1‖1 ≤ Cv,s

√
δDµλ2α .

Next we estimate

‖∂t((v` + w)⊗ wc + wc ⊗ (v` + w)− wc ⊗ wc)‖α
≤‖wc‖α (‖∂tv`‖α + ‖∂two‖α + ‖∂twc‖α) + ‖∂twc‖α (‖v`‖α + ‖wo‖α)

Observe that ‖∂tv`‖α ≤ Ch‖∂tv‖0`
−α ≤ ChD`

−α and ‖v`‖α ≤ Ch‖v‖0`
−α ≤ Ch

√
δ`−α.

Thus, recalling Proposition 6.1 we conclude

‖∂t((v` + w)⊗ wc + wc ⊗ (v` + w)− wc ⊗ wc)‖α
≤Ce,s

√
δDµλα−1

(
ChD`

−α + Cv
√
δλ1+α + Cv,s

√
δDµλα

)
+ Cv,sDµλ

α
(
Ch
√
δ`−α + Ce

√
δλα
)
≤ Cv,s

√
δDµλ2α , (8.17)

where in the last inequality we have used (3.3). Applying (4.14) we then achieve

‖R̊5
1‖C1 ≤ Cv,s

√
δDµλ2α . (8.18)

Step 6. In this step we argue as in [15, Lemma 7.5]. Since Bk · k = 0, we can write

div (v` ⊗ wo) = (wo · ∇)v` + (divwo)v`

=
∑
|k|=λ0

[ak(Bk · ∇)v` + v`(Bk · ∇)ak] e
iλk·x .

Choose m as in (8.8), apply Propositions 4.4 and 5.1 and use (8.10) to get

‖R̊6
1‖0 ≤ Cs

∑
|k|=λ0

λα−1 (‖ak‖0[v`]1 + ‖v`‖0[ak]1)

+ Cs
∑
|k|=λ0

λ−m+α (‖ak‖0[v`]m+1 + ‖v`‖0[ak]m+1)

+ Cs
∑
|k|=λ0

λ−m (‖ak‖0[v`]m+1+α + ‖v`‖0[ak]m+1+α)

≤ Cv,sλ
α−1
√
δ(D +Dµ) + Cv,sλ

−m+α
√
δ
(
D`−m +Dm+1µm+1

)
+ Cv,sλ

−m
√
δ
(
D`−m−α +Dm+1+αµm+1+α

)
≤ Cv,s

√
δDµλα−1 . (8.19)
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As in the Steps 3 and 4:

‖R̊6
1‖1 ≤ Ceλ‖R̊6

1‖0 + Cs
∑
|k|=λ0

λα−1 (‖ak‖0[v`]2 + ‖v`‖0[ak]2)

+ Cs
∑
|k|=λ0

λα−m (‖ak‖0[v`]m+2 + ‖v`‖0[ak]m+2)

+ Cs
∑
|k|=λ0

λ−m (‖ak‖0[v`]m+2+α + ‖v`‖0[ak]m+2+α)

≤ Cv,s
√
δDµλα . (8.20)

As for the time derivative, we can estimate

‖∂tR̊6
1‖0 ≤ (I) + (II) + (III) ,

where

(I) = Cs
∑
|k|=λ0

λα (‖∂τak‖0[v`]1 + ‖v`‖0[∂τak]1)

+ Cs
∑
|k|=λ0

λα−1 (‖∂sak‖0[v`]1 + ‖v`‖0[∂sak]1)

+ Cs
∑
|k|=λ0

λα−1 (‖ak‖0[∂tv`]1 + ‖∂tv`‖0[ak]1) , (8.21)

(II) = Cs
∑
|k|=λ0

λα+1−m (‖∂τak‖0[v`]m+1 + ‖v`‖0[∂τak]m+1)

+ Cs
∑
|k|=λ0

λα−m (‖∂sak‖0[v`]m+1 + ‖v`‖0[∂sak]m+1)

+ Cs
∑
|k|=λ0

λα−m (‖ak‖0[∂tv`]m+1 + ‖∂tv`‖0[ak]m+1) (8.22)

and

(III) = Cs
∑
|k|=λ0

λ1−m (‖∂τak‖0[v`]m+1+α + ‖v`‖0[∂τak]m+1+α)

+ Cs
∑
|k|=λ0

λ−m (‖∂sak‖0[v`]m+1+α + ‖v`‖0[∂sak]m+1+α)

+ Cs
∑
|k|=λ0

λ−m (‖ak‖0[∂tv`]m+1+α + ‖∂tv`‖0[ak]m+1+α) . (8.23)

Again using Proposition 5.1 and the conditions (3.3) we can see that

‖∂tR̊6
1‖0 ≤ Cv,s

√
δDµλα . (8.24)
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Thus,
‖R̊6

1‖C1 ≤ ‖R̊6
1‖1 + ‖∂tR̊6

1‖0 ≤ Cv,s
√
δDµλα . (8.25)

Step 7. Finally, to bound the last term we argue as in [15, Lemma 7.1]. We write

R̊7
1 = R(∂two + v` · ∇wo) = R̊8

1 + R̊9
1 + R̊10

1 ,

where

R̊8
1 := λR

∑
|k|=λ0

(∂τak + i(k · v`)ak)(x, t, λt)Bke
iλk·x


R̊9

1 := R

∑
|k|=λ0

(∂sak)(x, t, λt)Bke
iλk·x


R̊10

1 := R

∑
|k|=λ0

(v` · ∇yak)(x, t, λt)Bke
iλk·x

 .

The arguments of Step 6 have already shown

‖R̊10
1 ‖0 ≤ Cv,s

√
δDµλα−1 (8.26)

‖R̊10
1 ‖C1 ≤ Cv,s

√
δDµλα . (8.27)

As for R̊9
1, we apply Proposition 4.4 with m as in (8.8) to get

‖R̊9
1‖0 ≤ Cs

∑
|k|=λ0

(
λα−1‖∂sak‖0 + λ−m+α[∂sak]m + λ−m[∂sak]m+α

)
≤ Ce,s

√
δDµλα−1 . (8.28)

Analogously

‖R̊9
1‖1 ≤ Ceλ‖R̊9

1‖0

+ Cs
∑
|k|=λ0

(
λα−1[∂sak]1 + λ−m+α[∂sak]m+1 + λ−m[∂sak]m+1+α

)
≤ Ce,s

√
δDµλα (8.29)

and

‖∂tR̊9
1‖0 ≤ Cs

∑
|k|=λ0

(
λα−1‖∂ssak‖0 + λ−m+α[∂ssak]m + λ−m[∂ssak]m+α

)
+ Cs

∑
|k|=λ0

(
λα‖∂sτak‖0 + λ1−m+α[∂sτak]m + λ1−m[∂sτak]m+α

)
≤ Cv,s

√
δDµλα , (8.30)
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which in turn imply
‖R̊9

1‖C1 ≤ Cv,s
√
δDµλα . (8.31)

For the term R̊8
1 define the functions

bk(y, s, τ) := (∂τak + i(k · v`)ak)(y, s, τ) .

Applying Proposition 4.4 with m as in (8.8) then yields

‖R̊8
1‖0 ≤ Cs

∑
|k|=λ0

(
λα‖bk‖0 + λα+1−m[bk]m + λ1−m[bk]m+α

)
≤ Ce,s

√
δµ−1λα + Ce,s

√
δ
(
µm−1Dm +D`1−m)λα+1−m

+ Ce,s
√
δ
(
µm−1+αDm+α +D`1−m−α)λ1−m

≤ Ce,s
√
δµ−1λα , (8.32)

where we have used (5.5) and (5.9) in Proposition 5.1 to bound ‖bk‖0, [bk]m and [bk]m+α.
Similarly,

‖R̊8
1‖1 ≤ Ceλ‖R̊8

1‖0

+ Cs
∑
|k|=λ0

(
λα[bk]1 + λα+1−m[bk]m+1 + λ1−m[bk]m+1+α

)
≤ Ce,s

√
δµ−1λ1+α . (8.33)

Finally, differentiating R̊8
1 in time and using the same arguments:

‖∂tR̊8
1‖0 ≤ Csλ

∑
|k|=λ0

(
λα‖∂τbk‖0 + λα+1−m[∂τbk]m + λ1−m[∂τbk]m+α

)
+ Cs

∑
|k|=λ0

(
λα‖∂sbk‖0 + λα+1−m[∂sbk]m + λ1−m[∂sbk]m+α

)
≤ Cv,s

√
δµ−1λ1+α . (8.34)

Therefore
‖R̊8

1‖C1 ≤ Cv,s
√
δµ−1λ1+α . (8.35)

Summarizing

‖R̊7
1‖0 ≤ Cv,s

√
δ
(
Dµλα−1 + µ−1λα

)
(8.36)

‖R̊7
1‖C1 ≤ Cv,s

√
δ
(
Dµλα + µ−1λα+1

)
. (8.37)

Conclusion. From (8.3), (8.5), (8.9), (8.12), (8.16), (8.19) and (8.36), we conclude

‖R̊1‖0 ≤ Cv,s

(
D`+

√
δD`+ δDµλα−1 +

√
δDµλα−1

+
√
δDµλ2α−1 +

√
δµ−1λα

)
≤ Cv,s

(
D`+

√
δDµλ2α−1 +

√
δµ−1λα

)
. (8.38)
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From (8.4), (8.6), (8.11), (8.15), (8.18), (8.25) and (8.37), we conclude

‖R̊1‖C1 ≤ Cv,s

(
D +

√
δλD`+ δDµλα +

√
δDµλα

+
√
δDµλ2α +

√
δµ−1λ1+α

)
≤ Cv,s

(√
δD`λ+

√
δDµλ2α +

√
δDµ−1λα+1

)
. (8.39)

In the last inequality we have used (3.3) once more:
√
δµD ≥ Dδ−1/2 ≥ D.

9 Proof of Proposition 2.2

Step 1. We now specify the choice of the parameters, in the order in which they are
chosen. Recall that ε is a fixed positive number, given by the proposition. The exponent ω
has already been chosen according to

1 + ε =
1 + ω

1− ω
. (9.1)

Next we choose a suitable exponent α for which we can apply the Propositions 7.1 and
8.1. To be precise we set

α =
ω

2(1 + ω)
. (9.2)

The reason for these choices will become clear in the following. For the moment we just
observe that both α and ω depend only on ε and that α ∈ (0, ω

1+ω
), i.e. both Propositions

7.1 and 8.1 are applicable.
We next choose:

` =
1

Lv

δ̄

D
(9.3)

with Lv being a sufficiently large constant, which depends only on ‖v‖0 and e.
Next, we impose

µ2D = λ (9.4)

and

λ = Λv

(
Dδ

δ̄2

) 1
1−4α

= Λv

(
Dδ

δ̄2

) 1+ω
1−ω

= Λv

(
Dδ

δ̄2

)1+ε

, (9.5)

where Λv is a sufficiently large constant, which depends only on ‖v‖0. Concerning the
constants Lv and Λv we will see that they will be chosen in this order in Step 3 below.
Observe also that µ, λ and λ

µ
must be integers. However, this can be reached by imposing

the less stringent constraints
λ

2
≤ µ2D ≤ λ



38 Camillo De Lellis, László Székelyhidi Jr.

and

Λv

(
Dδ

δ̄2

)1+ε

≤ λ ≤ 2Λv

(
Dδ

δ̄2

)1+ε

,

provided Λv is larger than some universal constant. This would require just minor adjust-
ments in the rest of the argument.

Step 2. Compatibility conditions. We next check that all the conditions in (3.3) are
satisfied by our choice of the parameters.

First of all, since δ̄ ≤ δ, the inequality `−1 ≥ D
ηδ

is for sure achieved if we impose

Lv ≥ η−1 . (9.6)

Next, (9.5) and Λv ≥ 1 implies

µ =

√
λ

D
≥
√
δ

δ̄
≥ δ−1

because by assumption δ̄ ≤ δ
3
2 .

Also,
λ

(µD)1+ω

(9.4)
=

λ
1−ω
2

D
1+ω
2

(9.5)
= Λ

1−ω
2

v

(
δ

δ̄2

) 1+ω
2

.

Since ω < 1, Λv ≥ 1 and δ̄ ≤ δ, we conclude λ ≥ (µD)1+ω. Finally

λ`1+ω (9.3)&(9.5)
= Λv

(
Dδ

δ̄2

) 1+ω
1−ω (

L−1
v δ̄D−1

)1+ω
=

Λv

L1+ω
v

(
Dω δ

δ̄1+ω

) 1+ω
1−ω

.

Thus, by requiring
Λv ≥ L1+ω

v (9.7)

we satisfy λ ≥ `−(1+ω). Hence, all the requirements in (3.3) are satisfied provided that the
constants Lv and Λv are chosen to satisfy (9.6) and (9.7).

Step 3. C0 estimates. Having verified that α ∈ (0, ω
1+ω

) and that (3.3) holds, we can
apply the Propositions 6.1, 7.1 and 8.1. Proposition 8.1 implies

‖R̊1‖0 ≤ Cv

(
D`+

√
δD

1
2λ2α− 1

2 +
√
δD

1
2λα−

1
2

)
≤ Cv
Lv
δ̄ +

Cv

Λ
1+ε
2

v

δ̄ (9.8)

(since now the exponent α has been fixed, we can forget about the α-dependence of the
constants in the estimates of Proposition 7.1 and 8.1). Choosing first Lv and, then, Λv

sufficiently large, we can achieve the desired inequalities (9.6)-(9.7) together with

‖R̊1‖0 ≤ ηδ̄ .
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Next, using Proposition 7.1, it is also easy to check that, by this choice, (2.5) is satisfied
as well. Furthermore, recall that, by Proposition 6.1,

‖v1 − v‖0 = ‖w‖0 ≤ Ce
√
δ .

If we impose M to be larger than this particular constant Ce (which depends only on e),
we then achieve (2.7).

Finally, as already observed in (3.16),

‖p1 − p‖0 =
M2

4
δ + ‖v − v`‖0‖w‖0 .

Since ‖v − v`‖0 ≤ CD` ≤ Cδ̄ and ‖w‖0 ≤ Ce
√
δ, we easily conclude the inequality

(2.8). This completes the proof of all the conclusions of Proposition 2.2 except for the
estimate of max{‖v1‖C1 , ‖R̊1‖C1}.

Step 4. C1 estimates. By Proposition 8.1 and the choices specified above we also have

‖R̊1‖C1 ≤ δ̄λ

whereas Proposition 6.1 shows

‖v1‖C1 ≤ D + ‖w‖C1 ≤ D + Ce
√
δλ.

Thus, we conclude

max
{
‖v1‖C1 , ‖R̊1‖C1

}
≤ D + Ce

√
δλ ≤ D + Ce

√
δΛv

(
Dδ

δ̄2

)1+ε

≤ D + CeΛvδ
3
2

(
D

δ̄2

)1+ε

.

Since δ
3
2 ≥ δ̄2, we obtain

max
{
‖v1‖C1 , ‖R̊1‖C1

}
≤ 2CeΛvδ

3
2

(
D

δ̄2

)1+ε

.

Setting A = 2CeΛv, we conclude estimate (2.9).

10 Proof of Remark 1.3

Step 1. Estimate on the C1 norm. We claim that the proof of Proposition 2.2 yields also
the estimate

‖p1‖C1 ≤ ‖p‖C1 + Aδ2+ε

(
D

δ̄2

)1+ε

, (10.1)
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where, as in Proposition 2.2, A is a constant which depends only on e, ε > 0 and ‖v‖0.
Indeed, recall the formula for the pressure:

p1 = p− |wo|
2

2
− 〈v − v`, w〉 .

Therefore we estimate, using Proposition 6.1

‖p1‖C1 − ‖p‖C1 ≤ ‖wo‖0‖wo‖C1 + ‖w‖0‖v − v`‖C1 + ‖w‖C1‖v − v`‖0

≤ Ceδλ+ CeD
√
δ + CeD`

√
δλ .

As before, (3.3) implies λ ≥ µD ≥ Dδ−1 and D` ≤ δ. Therefore, we conclude

‖p1‖C1 ≤ ‖p‖C1 + Ceδλ ≤ ‖p‖C1 + CeΛvδ

(
Dδ

δ̄2

)1+ε

≤ ‖p‖C1 + Aδ2+ε

(
D

δ̄2

)1+ε

.

Step 2. Iteration. We now proceed as in the proof of Theorem 1.1. We construct the
sequence (pn, vn, R̊n) of solutions to the Euler-Reynolds system, starting from

(p0, v0, R̊0) = (0, 0, 0)

and applying Proposition 2.2 with δn = a−b
n . As in the proof of Theorem 1.1, we set

b =
3

2
, c =

3(1 + 2ε)

1− 2ε
+ ε

and choose a sufficiently large so to guarantee the inequality

Dn = max{‖vn‖C1 , ‖R̊n‖C1} ≤ acb
n

.

We then use (10.1) to conclude

‖pn+1‖C1 ≤ ‖pn‖C1 + Aa(1+2ε)(c+1)bn .

Since A depends only on ‖vn‖0 which turns out to be uniformly bounded, we can assume
that A does not depend on n. Therefore, if we choose a sufficiently large, we can then
write

‖pn+1‖C1 ≤ ‖pn‖C1 + a(1+3ε)(c+1)bn

Since p0 = 0, we inductively get the estimate

‖pn+1‖C1 ≤ (n+ 1)a(1+3ε)(c+1)bn ≤ a[(1+4ε)(c+1)]bn
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(again the last inequality is achieved choosing a sufficiently large). Summarizing, if we
set ϑ = (1 + 4ε)(c+ 1), we have

‖pn+1 − pn‖0 ≤ Ceδn ≤ Cea
−bn

‖pn+1 − pn‖C1 ≤ aϑb
n

Interpolating we get ‖pn+1 − pn‖C% ≤ Cea
(%(1+ϑ)−1)bn for every % ∈ (0, 1). Thus the

limiting pressure p belongs to C% for every

% <
1

1 + ϑ
=

1

1 + (1 + 4ε)(c+ 1)
.

As ε ↓ 0, we have c ↓ 3 and hence

1

1 + ϑ
↑ 1

5
.

Therefore, for every θ < 1
10

, if the ε in Proposition 2.2 is chosen sufficiently small,
we construct a pair (p, v) which satisfies the conclusion of Theorem 1.1 and belongs
to Cθ(T3 × S1,R3)× C2θ(T3 × S1).
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