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1. INTRODUCTION

The aim of these notes is to give an account of some recent results about transport equa-
tions with variable BV coefficients, and their applications to a class of hyperbolic systems
of conservation laws in several space dimensions. Besides collecting results which are scat-
tered in the literature, it has been my intention to give a self-contained and more readable
reference, and to provide details, remarks, and connections barely mentioned in the original
papers.

1.1. The Keyfitz and Kranzer system. We start by considering the following system of
equations:

o + 3 0, (9" (ul)u) = 0
1)
u'(0,-) = u'(")
where u = (u!,...,u*) : R} x R™ — R* is the unknown vector map, @ = (u!,...,u") the
initial data, and ¢g® : R — R are given (sufficiently smooth) scalar functions. In one space
dimension (1) was first studied by Keyfitz and Kranzer in [34] and later on by several other
authors, as a prototypical example of a non-strict hyperbolic system, see for instance [28],
[29], [30], [31], and [35]. Indeed, in the 1-dimensional terminology, the hyperbolicity of (1)
degenerates at the origin (see for instance [22], Section 7.2).
However, the Keyfitz and Kranzer system has many features. In particular it can be
formally reduced to a scalar conservation law and a system of transport equations with
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variable coefficients. More precisely, if u is smooth and solves (1), then p := |u| solves

O+ Dy (pg(p)) = 0

p(0,-) = [ul(-),
and, if in addition |u| > 0, then 6 := wu/|u| solves

00+ g(p)- DO = 0

0(0,-) = wu/ful(-),

One can use this observation to produce solutions to (1). However, as it is well known, even
starting from extremely regular initial data, solutions of (2) develop singularities in finite
time, and one cannot hope to get better than BV regularity. Thus, in order to construct
solutions in the way described above, one has to face the problem of solving transport
equations

(3)

00(t,x) +b(t,x) - DO(t,x) = 0

_ (4)
0(0,z) = 0(x),

when b is quite irregular.

From now on, we will say that a distributional solution u of (1) is a renormalized entropy
solution if p := |u| solves, in the sense of Kruzkov, the scalar law (2) (see Definition 5.1 and
5.4).

1.2. Bressan’s compactness conjecture. In [17] Bressan showed that in 2 space dimen-
sions renormalized entropy solutions might lead to an ill posed Cauchy problem for bounded
initial data. However he conjectured that this does not happen when the absolute value of
the initial data are in BVj,.. In particular, in order to show the existence of renormalized
entropy solutions to (1) when [u| € L> N BV and |u|™! € L, he advanced the following

Conjecture 1.1 (Bressan’s compactness conjecture). Let b, : R, x R? — R™, n € N, be
smooth maps and denote by ®,, the solutions of the ODEs:

d

—&,(t,x) = b,(t,®,(t,x

S0u(t) = balt, Bt ) 5
®,(0,z) = x.

Assume that ||bpllco + ||Vn||zr is uniformly bounded and that the fluxes ®,, are nearly in-
compressible, i.e. that

C™ < det(V,®,(t,z)) < C for some constant C' > 0. (6)

1
loc*

Then the sequence {®,} is strongly precompact in L
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An affirmative answer to this conjecture leads immediately to the existence of renormalized
entropy solutions of (1) when C' > |a] > ¢ > 0 and u € BV. Indeed, assume that these
assumptions hold and consider the Kruzkov solution p of (2). It is well known that p € BV},
and C > p > ¢ > 0. Thus, g(p) is also BVj,. N L. Tt is not difficult to see that we can
approximate b := g(p) and p with two sequences {b,} and {p,} of smooth functions such
that

(1) ||bnllBv + ||bn]/eo is uniformly bounded;
(ii) C1 > pn > ¢ > 0 for some constant c;;
(iii) O¢pn + Dy - (bppy) = 0.

If we set § := /p, then we can solve

00, (t, ) + by(t,x) - Db, (t,x) = 0

_ (7)
0(0,z) = 0(x)

with the classical method of characteristics. If we let @, be as in (5), then the continuity
equations of (iii), condition (ii) and the standard maximum principle for transport equations
with smooth coefficients imply the existence of a constant C' such that (6) holds. At this
stage we could use Conjecture 1.1 to show that 6, converges locally strongly to a function
0 (up to subsequences). This strong convergence implies that u := #p is a renormalized
entropy solution.

1.3. Ambrosio’s renormalization Theorem. In the recent ground-breaking paper [2],
Ambrosio has shown well-posedness of

0f(t,x) +b(t,z) - DO(t,x) = 0

_ (8)
0(0,z) = 0(x),

under the assumptions that b € BV and D, - b is a bounded function.

The result of Ambrosio uses the theory of renormalized solutions, first introduced by
DiPerna and Lions in [27] (in that paper the authors proved, among other results, the well-
posedness of (8) under the assumptions b € L* N W't and D, - b € L™).

The core of Ambrosio’s well-posedness theorem is a new “renormalization lemma”. In
order to understand its content, consider first a smooth vector field B in @ C R? and a
smooth scalar function w such that B - Du = 0. For any smooth function 3 the classical
chain rule yields

B-D(B(u)) = B-[3'(w)Du] = 0.

Next assume that B € BV, that the divergence D - B is an absolutely continuous measure,
and that v € L*°. Then, the expression

D-(uB)—uD-B
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makes sense distributionally, and can be taken as a definition of B - Du. Ambrosio’s renor-
malization Theorem states that the conclusion

0 = B-D(3(u)) = D-(3(u)B) - B(w)D-B  V3eC'(R)
holds even under these much weaker assumptions.

Assume now that b € BV, D, -b € L' and u is a bounded weak solution of the transport
equation dyu + b - Du = 0 with initial data uw. More precisely, assume that

/000 /m u(t, z){yp(t, z) + b(t, x) - Dp(t, ) — [D, - b](t, x)p(t, )} dt dz

= —/mﬂ(x)go((),x) dx

for every smooth compactly supported test function ¢. Applying Ambrosio’s renormalization
Theorem to the field B = (1,b) : RT x R™ — R x R™, we infer that ((u) solves the
corresponding Cauchy problem with initial data 3(u) (actually a technical step is needed in
order to conclude that 3(u) has initial data 5(u); see Sections 3 and 4). If in addition we
have the bounds b € L™ and D, - b € L*, the equation satisfied by §(@) can be used (for
special choices of 3) to derive estimates and comparison principles, via standard Gronwall—
type arguments. These comparison principles are indeed enough to show uniqueness and
stability for weak solutions of (8).

A byproduct of the renormalization property is that solutions of (8) are stable even under
approximation of the coefficient b. In the DiPerna—Lions theory this is used to conclude
existence, stability, and compactness properties for the ODEs with coefficients b. Therefore
Ambrosio’s result can be used to infer that Bressan’s compactness Conjecture holds when
we replace the bound (6) with the stronger assumption

< D,-B<C. (9)

1.4. Well-posedness for the Keyfitz and Kranzer system. Though presently there is
no general proof of Bressan’s compactness conjecture, it is still possible to use Ambrosio’s
renormalization Theorem to show existence of renormalized entropy solutions when |u| €
BV,,.. The difference with respect to Bressan’s compactness conjecture is that in this specific
case one can take advantage of an additional information. Indeed, if p is a Kruzhkov solution
of the scalar law (2), then the coefficient b := g(p) has a solution of the continuity equation
which, besides being bounded from above and from below, also enjoys BV regularity. This
information is missing in the assumptions of Conjecture 1.1.

Basically Ambrosio’s renormalization lemma is powerful enough to provide a DiPerna—
Lions theory for transport equations with BV N L coefficients which possess a BV nonneg-
ative solution p of the continuity equation. As shown in [4], this yields well-posedness for the
Keyfitz and Kranzer system when [u| € BV}, N L™ (in particular it also allows to drop the
unnatural assumption |a| > ¢ > 0). More precisely, for every u with |u| € BV}, N L™ there
exists a unique renormalized entropy solution of (1). Moreover if a sequence of initial data
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U, converges to w and |||l + |||@n]l| By, is uniformly bounded, then the corresponding
renormalized entropy solutions converge.

This result raises the following natural question: Is system (1) well posed in BV? In other
words, when the whole initial data @ (and not only its absolute value |u|) is in BV, does the
renormalized entropy solution enjoy BV regularity? The answer to this question is no to a
large extent. More precisely, in [25] it has been shown that, in 3 space dimensions, for every
g which is not constant there exist bounded renormalized entropy solutions of (1) which are
not in BVj,. but have BV initial data. These examples can be produced by starting from
initial data which are arbitrarily close (both in L* and BV norm) to a constant different
from 0. Thus, the lack of BV regularity nor is a “large data” effect, neither is due to the
degeneracy of the hyperbolicity of the system at the origin. In 2 space dimensions similar
examples can be produced for a large class of fluxes g.

The same “irregularity” also holds for general entropy solutions. Indeed in [25] it is
shown that, when the convex hull of the essential image of & does not contain the origin,
any bounded admissible solution of (1) with BV regularity necessarily coincides with the
renormalized entropy solution.

1.5. Renormalization conjecture for nearly incompressible BV fields. Though we
can prove the wellposedness of (1) bypassing Conjecture 1.1, this conjecture remains a chal-
lenging and interesting open problem in the theory of transport equations with non-smooth
coefficients. Presently we are able to show it only under some technical assumptions (the
most general result concerning Bressan’s compactness Conjecture is contained in [10]). One
interesting case in which we are able to show Conjecture 1.1 is when we assume that the
singular part of the measure D, - b is concentrated on a set of codimension 1.

Our approach to Conjecture 1.1 is again through the theory of renormalized solutions a
la DiPerna-Lions. Indeed, though we drop the assumption D, - b € L', it is possible to
use nonnegative solutions of the continuity equation d;p + D, - (pb) = 0 to build a theory
of renormalized solutions. In this framework, in [4] we proposed a renormalization lemma
for “nearly incompressible BV coefficients” which is a natural generalization of Ambrosio’s
renormalization theorem. More precisely

Conjecture 1.2 (Renormalization Conjecture). Let Q C R? be an open set. Assume B €
BV N L*°(Q,RY) and p € L>®(Q) satisfy D - (pB) = 0 and p > C > 0. Then, for every
u € L>®(Q) such that D - (puB) = 0 and for every 3 € C', we have D - (pS3(u)B) = 0.

This conjectured chain rule leads naturally to investigate coupling between bounded func-
tions and measures. Recently, in [6] the authors have shown trace theorems and regularity
properties for p and wu, coming from the equations D - (pB) = 0 and D - (puB) = 0. In
particular, it turns out that p and u possess a suitably strong notion of trace on hypersur-
faces which are transversal to B. In [10] we combine these trace properties with Ambrosio’s
renormalization theorem to show Conjecture 8.2 when the singular part of the measure D- B
is concentrated on a set of codimension 1.
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In the general case, we decompose the measure D - B into the part which is absolutely
continuous with respect to the Lebesgue measure and the singular part, denoted respectively
by D®- B and D#- B. Further, we follow [24] and decompose D*- B into a “jump part” D’ B,
concentrated on a set of codimension 1, and a “Cantor part” D¢ - B (see Section 2 and [11]
for the details). It turns out that D? - B is concentrated on the set where the BV field B
has jump-singularities (the jump set Jg), whereas the measure D¢ - B is a singular measure
of “fractal type” which is “less singular” than D’ - B: More precisely, |D¢ - B|(X) = 0 for
every set Y of codimension 1 with finite Hausdorff measure. In this framework, the result
mentioned in the previous paragraph can be restated as

e Conjecture 1.2 has a positive answer when D¢- B = 0.

However, the results of [6] and [10] allow to handle a more general case. Indeed, one
can define a notion of “transversality” between the measure D¢ - B and the field B. In [6]
the authors showed that, when D°- B and B are transversal, p and u are approximately
continuous | D B|-almost everywhere. In [10] we prove a new renormalization result, showing
that Conjecture 1.2 holds whenever p and u are approximately continuous |D¢- B|-a.e.. Thus
we conclude that Conjecture 1.2 holds whenever D¢ - B and B are transversal.

Unfortunately it is possible to show BV fields for which D¢- B and B are not transversal
(see Section 9 and [10]). However it is not clear whether this can happen under the additional
hypothesis that B is nearly incompressible.

1.6. Plan of the paper. In Section 2 we collect facts about measure theory and BV func-
tions which will be relevant to our purposes, together with appropriate references on where
to find their proofs. In Section 3 we develop the DiPerna-Lions theory for nearly incom-
pressible fields. In Section 4 we prove Ambrosio’s renormalization theorem and in Section 5
we use this theorem and the DiPerna—Lions theory to address the existence, uniqueness and
stability of renormalized entropy solutions to the Keyfitz and Kranzer system. In Section 6
we show that the BV norm of renormalized entropy solutions blow up in a large number of
cases.

In the last three sections we address the most recent results on the Renormalization
Conjecture. Section 7 contains the trace properties and partial regularity of solutions to
transport equations proved in [6]. Section 8 follows [10] and shows Conjecture 1.2 under
the assumption that p and u are approximately continuous |D°- B|-a.e.. Finally, Section
9 contains an example of [10]: A planar BV vector field for which D¢- B and B are not
transversal.

Acknowledgements This research has been partially supported by the Swiss National
Foundation. Moreover, I wish to thank Alessio Figalli for pointing out many mistakes in the
first drafts of these notes.
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2. PRELIMINARIES

In this section we will collect some preliminary facts about measure theory and BV func-
tions. Most of them can be found in the monograph [11].

2.1. Notation. When 2 C R?, we will denote by id the identity map id : Q > z — € R?.
If z1,..., 74 is a standard system of coordinates on R? we denote by {e;}i=1..._q the standard
unit orthonormal vector fields such that © = >, z;e;. If A and B are k x n and n x m
matrices, A - B will denote the usual product (k x m) matrix, whereas A* will denote the
transpose of the matrix A. Vectors will usually be considered as n x 1 matrices and therefore,
if a and b are vectors, af - b is the usual scalar product. With a slight abuse of notation we
will simply write a - b, and similarly, if ¢ and b are vectors and A is a matrix, we will use
a-A-bin place of a’ - A -b.

Given a vector valued map B : 0 — RF and some system of coordinates on R¥, with
{€i}i=1...x orthonormal vectors, we will denote by B’ the scalar function given by e; - B.
Whereas the subscript B; will be always used to denote the element of a sequence {B;};en
of maps.

If E C R? then we denote by 1 the function given by

1p(z) = { 1 fxeF

0 otherwise.

Given x € R? and 7 > 0 we denote by B, () the ball of R? centered at x of radius . £4 de-
notes the Lebesgue d-dimensional measure, 2% denotes the usual Hausdorff k—dimensional
measure, and we set wq := Z%(B;(0)).

When p is a measure and A a p—measurable set, we denote by pL_ A the measure given by

pLA(B) = u(AnB).

In many case, we will deal with the Lebesgue measure .#? restricted on some measurable
set QO C R?. When it will be clear from the context, to simplify the notation we will use .#¢
in place of £ Q.

If 1 on A is a measure and f : A — B is a measurable function, then we denote by fuu
the usual push—forward of pu, that it is, the measure on B defined by

/ pdlfan] = / o(f() du(z)  for every ¢ € Cu(A).

When p is Radon (vector—valued) measure, |u| denotes its total variation measure. More-
over, if £ C Q is a Borel set and p a Radon measure on €2 such that |u|(2\ £) = 0, then we
say that p is concentrated on F

We say that n € C°(R?) is a standard kernel if [n = 1. Moreover, for any ¢ > 0 we
denote by 7. the function defined by 7.(z) := e 9n(x/e). If  is an open subset of R¢ and
f € LY(Q), then we denote by f 7. the function (f1q) * 7..
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If T € D'(Q), then we denote by (T, ) the value of T on the test function ¢ € C°(Q).
Moreover, if n is as above, we set

Txns(y) == (T,ns(- —y))

for every y € Q such that ns5(- — y) is compactly supported in Q. In particular, if Q CcC Q
and ¢ is sufficiently small, T" % 15 defines a distribution in D'(£2).

2.2. Measure theory. We now recall the following elementary results in Measure Theory
(see for instance Proposition 1.62(b) of [11]):

Proposition 2.1. Let {p,}, be a sequence of Radon measures on Q C R, which converge
weakly* to p and assume that |p,| converge weakly* to X. Then X\ > |u|. Moreover if E is a
compact set or a bounded open set such that \(OFE) = 0, then u,(E) — u(E).

Proposition 2.2. Let u be a Radon measure on 2, n € C*(RY) be a standard kernel
supported in the unit ball, and {ns}s the correspondmg standard family of mollifiers. Then,
for any Q CC Q, pxns converges weakly* to pu in Q and | * 5| converges weakly* to |u| in
Q.

Let i be a Radon R*-valued measure on €. By the Lebesgue decomposition theorem,
i has a unique decomposition into absolutely continuous part u® and singular part p® with
respect to Lebesgue measure .£¢. Further, by the Radon-Nikodym theorem there exists a
unique f € L (2, R*) such that p* = f.2°.
One can further decompose p® as follows:
Proposition 2.3 (Decomposition of the singular part). If |u®| vanishes on any % -
negligible set, then p® can be uniquely written as a sum u¢ -+ p? of two measures such that
(a) u(A) =0 for every Borel set A with ¥ 1(A) < +oo;
(b) pf = fA#1LJ, for some Borel set J, o-finite with respect to .
The proof of this Proposition is analogous to the proof of decomposition of derivatives of

BV functions (and indeed in this case the decompositions coincide), see Proposition 3.92 of
[11]. In this proof, the Borel set J, is defined as

Jy = {xEQ

, |ul(B(2))
llﬂrll%up s > O} . (10)
These measures will be called, respectively, jump part and Cantor part of the measure .
Sometimes we will use the notation u? for the measure u® + u¢ (here the superscript d stays
for “diffused”).

For B € Li.(Q,R*) we denote by DB = (D;B7);; the derivative in the sense of distribu-
tions of B, i.e. the R¥*?-valued distribution defined by

DB, ¢) = - [ B3P vpecr@, 1<i<d1<i<h,

When @ C R? and k = d, we denote by D - B the distribution Y, D;B". We have the
following
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Lemma 2.4. Let Q C R? and let B € L>(Q,R?) be such that D - B is a Radon measure.
Then D - B << %1,

Thanks to this lemma, for any bounded vector field B such that D- B is a Radon measure,
we can apply the decomposition of Definition 2.3 to D-B. Therefore we will denote by D*- B,
D¢- B, and D’ - B respectively the absolutely continuous part, Cantor part and jump part of
D- B. Moreover we will sometimes use D*- B for D¢- B+ D’- B and D?- B for D*- B+ D¢ B.

Proof of Lemma 2.4. We will show that |[D - B] (B,(z))| < ||B|lecwa_17%"* for every ball
B.(z) cC €. This implies the claim by a standard covering argument (see for instance
Theorem 2.56 of [11]). Therefore let x € Q be given and fix a smooth nonnegative kernel
n € C=(RY). Consider ji. := D-(Bx*n.) = (D-B)*n.. Then j.—*D- B on any set ! CC Q.
Note that for any fixed B,(z) CC € we have

lu=(B,(x))| =

D, - (Bx*n.)(z)dx
By (x)

/ Bxn.-v
OBr(x)

Define S |0, dist (x,09)[ as the set of radii p such that |D - B|(0B,(x)) > 0, which is at
most countable. Since p.—*D - B, for any r €]0, dist (xz,9Q)[ \\S we have

(D~ B) (Bu(e))| = lim le(Bo(a))| < |Bllocsoa 11"

< 1B # nellocwasr®™ < | Blloowair®

Moreover, since S is at most countable, for any r € S there exists {r,} C ]0,dist (x,0Q)[ \S
such that r, T p. Therefore

1D+ Bl (Bu(@))| = lim[[D- B) (B, (@) < [IBlwsarr®".
O

2.3. Approximate continuity and approximate jumps. The L!'-approzimate disconti-
nuity set Sp C Q of a locally summable B :  — R* and the Lebesque limit are defined as
follows: x ¢ Sp if and only if there exists z € R* satisfying

limr‘d/ |B(y) — z|dy = 0.
10 By (z)
The vector z, if it exists, is unique and denoted by B(m), the Lebesgue limit of B at x. It is
easy to check that the set Sp is Borel and that B is a Borel function in its domain (see §3.6
of [11] for details). By Lebesgue differentiation theorem the set Sp is Lebesgue negligible
and B= B Z%a.e. in Q\ Sg.

In a similar way one can define the L!'-approzimate jump set Jg C Sg, by requiring the
existence of a, b € R¥ with a # b and of a unit vector v such that

limr_d/ |B(y) — aldy =0, limr_d/ |B(y) — bl dy =0,
ri0 B (z,v) 710 By (z,v)
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where

Bt (z,v) :={y € B.(x): (y—x,v) >0},

(11)

B (z,v):={y € B.(z) : (y—x,v) <O0}.
The triplet (a,b,v), if it exists, is unique up to a permutation of a and b and a change of
sign of v, and denoted by (BT (z), B~ (z),v(x)), where B*(x) are called Lebesque one-sided
limits of B at x. It is easy to check that the set Jp is Borel and that B* and v can be chosen
to be Borel functions in their domain (see again §3.6 of [11] for details).

2.4. BV functions.

Definition 2.5 (BV functions). We say that B € L*($;R*) has bounded variation in €,
and we write B € BV (Q;R¥), if DB is representable by a R**?-valued measure, still denoted
by DB, with finite total variation in ).

It is a well known fact that for B € BV one has D;B’ << %! (for instance it follows
directly from Lemma 2.4 applied to the vector field U = B’¢;). Therefore we can apply the
decomposition of Section 2.1 to the measure DB and we will use the notation D*B, DB,
and D’ B, respectively for the absolutely continuous part, Cantor part, and jump part of
DB. Moreover we will denote by D*B and DB respectively the measures DB + D’ B and
DB + D°B.

Next we recall the fine properties of R¥-valued BV functions defined in an open set 2 C R¢.

First of all we need the definition of rectifiable sets.

Definition 2.6 (Countably #? -rectifiable sets). We say that ¥ C R? is countably 7% -
rectifiable if there exist (at most) countably many C' embedded hypersurfaces I'; C R such

that
Y (2 U FZ) = 0.

A Borel map v : ¥ — S is normal to ¥ if v(x) is normal to T'; for % 1—a.e. x € T;NY.

Denoting by ¢ ® £ the linear map from R?¢ to R* defined by v +— ((£,v), the following
structure theorem holds (see for instance Theorem 3.77 and Proposition 3.92 of [11]):

Theorem 2.7 (BV structure theorem). If B € BVioo(2, R¥), then 5#41(Sp\ Jg) = 0 and
Jg is a countably S —rectifiable set. Moreover

DB = (Bt —B7)@ua#* L Jp, (12)
and v 1s normal to 2.

As a corollary, since D*B and D°B are both concentrated on Q \ S B, we conclude that
|D*B| + |D°B| = |DB|-a.e. x is a Lebesgue point for B, with value B(x). The space of
functions of special bounded variation (denoted by SBV) is defined as follows:

Definition 2.8 (SBV). Let Q C R? be an open set. The space SBV (2, R™) is the set of
all w € BV (Q,R™) such that Du = 0.
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2.5. Caccioppoli sets and Coarea formula. We say that A C ) is a Caccioppoli set if
14 € BV(Q). Then, as a particular case of Theorem 2.7, we conclude that there exists a
rectifiable set F' such that:

e For 579 'a.e. x € I the Lebesgue limit of 1,4 is either 0 or 1;

e Every z € F is an approximate jump point for 14 such that 1} (z) =1, 1(x) = 0
and v is normal to F;

° Dj]_A = v,

F is called the reduced boundary of A and denoted by FA (see Section 3.5 of [11]). v
is called the approximate exterior unit normal to A. An additional important fact is that
D14 = D*14 = 0. More precisely we have (cp. with Theorem 3.59 of [11])

Theorem 2.9 (De Giorgi’s rectifiability Theorem). If A is a Caccioppoli set, then D1, =
Dily = v 10" A.

Thus, #1(A) = |D14|(Q) < co.

A second important tool of the theory of BV functions is the coarea formula. Before
stating it, we introduce the following notation. Assume that [a,b] > ¢ — p; is a map which
takes values on the space of RF-valued measures. We say that this map is weakly* measurable
if for every test function ¢ € C.(Q,R¥), the map ¢ — [ ¢ - du, is measurable. If [ |u|(Q) dt
is finite, then we denote by [y dt the measure p defined by

Jron (fr)o

Then we have (cp. with Theorem 3.40 of [11])

Theorem 2.10 (Coarea formula). Let u € BV (Q) be a scalar BV function. Fort > 0 we
set Q= {u >t} and for t < 0 we set Q = {u < t}. Then Q is a Caccioppoli set for
ZLra.e. t, t — Dlg, is a weakly" measurable, and [ |D1gq,|(2) dt < co. Moreover

Du = / D]_Qt—/ D]_Q_t (13)
0 0

|Du| = / ATQ,dt (14)

—00

2.6. The Volpert Chain rule. Next, note that, if B € BV (Q, R¥) and H € W1*°(R* R™),
then H o B € BV,.(Q2,R™). Indeed, let {B,}, be any sequence of smooth functions such
that B,, — B strongly in L! and

limsup/ |VB"(z)|dx < oo.
v

nToo
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Clearly, H o B,, — H o B strongly in L' and

lim sup /Q VIH - B,)(x)|dz = limsup /Q VH(B,(z)) - VB(x)| dx

nToo nToo

< ||VH||Oolimsup/ VB ()| de < oo.
nloo Q

Therefore D[H - B] is a Radon measure. In addition, if H € C', then the following chain
rule, first proved by Vol'pert, holds (see Theorem 3.96 of [11]).

Theorem 2.11. Let u € BV (Q,R¥) and H € CY(R¥,R™). Then,
D[Hou] = [VHod] - D' + {[H(u") — Hu )] @v}#""LJ,. (15)

Remark 2.12. In [7] the authors proved a suitable extension of Theorem 2.11 to H € W,
In what follows we will sometimes consider the measure D[H o u] for H which indeed are
Whoe but not C'. However we will not need the general result of [7), since in all the cases
considered in this paper we will be able to use some “ad hoc” considerations.

2.7. Alberti’s Rank—one Theorem. In [1] Alberti proved the following deep result:

Theorem 2.13 (Alberti’s rank one theorem). Let B € BViy.(Q, R¥). Then there exist Borel
functions &€ : Q0 — ST ¢ Q — S¥! such that

D*B = (®¢|D*B]. (16)

Clearly, if we replace D*B with DB in (16), this conclusion can be easily drawn from
Theorem 2.7. However, in order to prove the same for the full singular part of DB, many
new interesting ideas were introduced in [1] (see also [26] for a recent description of Alberti’s
proof).

3. DIPERNA—LIONS THEORY FOR NEARLY INCOMPRESSIBLE FLOWS

In this section we develop a theory a la DiPerna—Lions for transport equations and ordinary
differential equations, in which the usual assumption of boundedness of the divergence of
the coefficients is replaced by a control on the Jacobian (or by the existence of a solution of
the continuity equation which is bounded away from 0 and oco).

3.1. Lagrangian flows.
Definition 3.1. Let b € L*([0, 00[xR™ R™). A map ® : [0,00[xR™ — R™ is a reqular
Lagrangian flow for b if
(a) For £'-a.e. t we have |{x : ®(t,x) € A}| =0 for every Borel set A with |A] = 0;
(b) The following identity is valid in the sense of distributions
0y®(t,z) = b(t, P(t,x))

(17)
®(0,2) ==x.
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The identity (17) in the sense of distributions means that for every ¢ € C°(R x R™ R™)
we have

¥(0,x) - xdx +/ / O(t,z) - Opp(t,x) dtdx = —/ W(t,x) - b(t, ®(t, z)) dt dx .
R 0 o Jr a8)
Note that assumption (a) guarantees that b(t, ®(¢,x)) is well defined. More precisely, if
b(t,x) = b(t, ) for L™ ae. (t,x), then b(t, ®(t,x)) = b(t, d(t,z)) for L™ a.e. (t,z).
Moreover, it is easy to check that if ® is a regular Lagrangian flow and ¥(¢,x) = ®(¢, x)
for ™ lae. (t,z), then ¥ is as well a regular Lagrangian flow.
The following Lemma has a standard proof:

Lemma 3.2. Let ® be a reqular Lagrangian flow. Then, ®(-,2) € WE>([0, 00|) for L™ -a.e.
x and, if we denote by @, the Lipschitz function such that ®,(t) = ®(t,x) for L -a.e. t,
then:

. Llp (®2) < bl

0,(0) = .
. <I>’( ) = b(t, @, (t)) for L'-a.e. t.

As an easy corollary we get

Corollary 3.3. Let ® be a reqular Lagrangian flow. Then, for any Borel set A and £*~a.e.
T > 0 we have

/ B(T,x) — el de < [b]TIA. (19)
A

From now on we denote by pe the measure (id, ®) 2" L([0, co[xR™), that is the push
forward via the map (¢,z) — (¢, ®(t,x)) of the Lebesgue m + 1-dimensional measure on
[0, 0o[xR™. Thus,

/ Ot a) dpa(t ) = / O(t, Bt 2)) dL™ (¢, )
[0,00[xR™ [0,00[xR™

for every ¢ € C°(R x R™).
Having introduced pg, (a) is equivalent to

pe << LM (20)

Thus for every regular Lagrangian flow ® there exists a p € L}.([0,00[xR") such that
o = p $m+1

Definition 3.4. This p will be called the density of the flow ®, and by definition it satisfies
the following “change of variables” identity

/w(t,q)(t,x)) dtdr = /¢(t,x)p(t,x) dt dx (21)

for every test function v € L and with bounded support.
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The next proposition shows the connections between regular Lagrangian flows and solu-
tions of transport and continuity equations with coefficient b.

Proposition 3.5. Let ® be a reqular Lagrangian flow for a field b.

(i) Let ¢ € L=(R"™) and consider the measure y on [0, co[xT given by (id , ®)4((L™1),
that 1s

/go(t,x) du(t,z) = / o(t, ®(t, z))( () dt dw for every Borel set A.
A

Then there exists ¢ € L*([0, 00[xR™) such that u = (L™ . Moreover, ¢ satisfies
the following equation in the sense of distributions:

¢+ D, - (¢b) = 0
B (22)
C(()? ) = C.

(ii) Let p be the density of the flow ®. If u € L>®([0,T[xR™) and u € L*®(R™) satisfy
the identity

u(t, ®(t,z)) = u(x) for LM q.e. (t, 1), (23)
then the following equation holds in the sense of distributions

Oy(pu) + Dy - (upb) = 0
(24)
u(0,-)p(0,) = 7.
Thus, as a particular case of this proposition, we get the usual continuity equation satisfied
by the density p of flows of regular vector fields:

(25)
p(O,-) = 1.

Proof. First of all note that (ii) follows from (i). Indeed, let u and u be given as in (ii). Set
¢ :=u and ¢ := up. For every L* function with bounded support ¢ we have

/u(t,x)p(t,x)go(t,a:)dtdm = /u(t,@(t,x))cp(t,q)(t,x))dtdx
= /U(a:)gp(t, O(t,x))dtdx .

Thus, if 4 is defined as in (i), then (.Z™"! = u. Therefore (i) gives (22), from which we get
(24).
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We now come to the proof of (i). First of all set note that

() = ' [cnat o)) dtae

< HZHOO/lA(t,QJ(t,x))dtdx < HZHOO/Ap(t,x) dt dz

Since p € L', this means that p is absolutely continuous. Therefore there exists an L!
function ¢ such that u = (Z™. Now, let v» € C®(R x R™) be any given test function.
Our goal is to show that

_4) [ RnC(t,x)(atw(t,x)er(t,x).wa(t,x)) drdt = C(2)v(0,2) de . (26)

R

By definition, the left hand side of (26) is equal to

_ / ) [ /O (0 (t, B(t,2)) + Vaib(t, Bt 2) - b(t, B(t, 2))) dt] de. (27)

We conclude the proof by showing that, for any x for which the conclusion of Lemma 3.2
applies, we have

—(0,2) = /Ooo(at@/)(t, O(1)) + Varb(t, Du(t)) - (1)) dt

For such z the integral in ¢ in (27) is given by

/Ooo(atw(t, D,(1) + Vb (t, (1)) - PL(t)) dt .

Since @, is Lipschitz and 1 is a smooth function, ¢(-,®,(-)) is a Lipschitz function of t.
Therefore, ¥ (-, ®,(-)) and ®,(-) are both differentiable at #'-a.e. t, and the identity given
by the usual chain rule

001, (1)) + V1, 2:(0)) - B(0) = ({1, 2.4(1))

is valid for a.e. t. Moreover, note that

o (0, ®(0)) = (0, z);
o Y(T,9,(T)) =0 for T large enough, since n has bounded support.

Therefore we conclude

/Ooo(atw(t@(t,x))+wa(t,<1>(t,x))-b(t,@(t,:c))) dt = —(0,1). (28)
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3.2. Nearly incompressible fields and fields with the renormalization property.

Definition 3.6. We say that a field b € L>([0, co[xR™, R™) is nearly incompressible if there
exists a function p € L>([0,00[xR™) and a positive constant C' such that C~' < p < C and

Op+ Dy - (pb) = 0 (29)
in the sense of distributions.

The following lemma has a standard proof.

Lemma 3.7. If p is bounded and satisfies (29), then, after possibly modifying it on a set of
measure zero, [0,1] 3t +— p(t,-) € L™ is a weakly* continuous map

Remark 3.8. As a consequence of Lemma 3.7 we get the following useful fact. Given any
¢ € C(]0,00[) with [ ¢ =1, if we denote by {C.} the standard family of mollifiers generated
by C, then the functions

| et
0
converge weakly* in L to p(0,-).

Proof. We claim that
(Cl) For every ¢ € C°(R™) the functions

fE@) = / m% /t T+tp(s,a:)g0(x)dsdx

are uniformly continuous.

This claim implies the Lemma. Indeed, let ¢ € C°(R™). Then from (Cl) we conclude
that { fg to<r<1 is precompact in C([0, R]) for every R > 0. Let f denote any limit of a
subsequence {fl¥} with T}, | 0. Then we have

/f(tW(t) dt = /p(t,x)cp(a:)zﬁ(t) dt dx

for every ¢ € C°(R). Therefore we conclude that f! is converging (uniformly on compact
sets) to a unique f) € C([0,00]), as T'— 0.

It is clear that \fg(t)J < Ipllsollpllr and that f2 ., (t) = af2(t) + bf)(t). Therefore for
each t there exists a unique p; € L* such that

/pt(x)go(x) de = f)(t) for every ¢ € C°(R™).

Since C2°(R") is dense in L'(R"), the map ¢ +— p; is weakly* continuous. Moreover, for any
test function ¢ € C(R x R™) we have

/pt(x)w(t,x) dtdx = /p(t,a:)w(t,x) dtdx .
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It remains to show (Cl). Therefore, let ¢ € C2°(R") be any given test function. For every
0 < T <1 consider

t/T forte|0,T]
)1 for t € [T, 1]
xr(t) =9 94 fortell,2]
0 for ¢t > 2.
Set Yr(t, 7, x) := x7(T — t)p(z). It is not difficult to see that

/ p(7,2) (O (t, 7, 2) + b(T, ) - Voibr(t, 7, 1)) dr da

from which we get

0,

t+T t+2
— / / (1,2)p(x)drdr = / / (1,2)p(x) dedr

[ [ otrmbentc = 0%te) sy

From this identity we easily conclude that {fr}o<r<1 is uniformly continuous

U
Definition 3.9. We say that a pair b € L*(]0, oo[xR™,R™), p € L>*([0,00[xR™) have the

renormalization property if p satisfies (29) and the following property holds
(R) For every T > 0 and for every bounded u which solves

[ 0,(pu) + Dy - (upb) = 0
[up] (0,-) = p(0,-)u (30)
| [up (T',) = p(T,")a
v ( 0u(pv) + Dy - (vpb) = 0
[vp] (0,-) = p(0,-)u? (31)
| ol (T,) = p(T,-)a*.

In the previous definition p(0,-) and p(7),-) are the traces of p given by Lemma 3.7, and
the identity (30) means that for every test function ¢ € C2°(R x R™) we have

/[0 . p(t, z)u(t,z) (Opp(t, z) + b(t, z) - Vo(t, z)) dt d

/Rm (p(T, z)a(z) (T, z) — p(0, z)u(x)p(0, z)) dz .

The following proposition holds
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Proposition 3.10. Assume that (b, p) have the renormalization property. Then:
(GR) For every finite family of bounded solutions {u'};—1__ N of

Or(pu’) + D, - (uipb) = 0

[w'p] (0,-) = p(0, )T (32)

and any H € C(RY), v := H(u) solves
( 0,(pv) + D, - (vpb) = 0

[vp] (0,-) = p(0,-)H (1) (33)

| ol (T,-) = p(T,)H(a).

Proof. Note that the claim is always true when H is a linear function. Moreover, since
u'u? = ((u + u?)? — (u')? — (u?)?)/2, from the renormalization property (R) we conclude
that

(GR) holds for N = 2 and H (u',u?) = u'u?. (34)
Using inductively (34) we get that
(GR) holds whenever H is a polynomial. (35)

In order to prove the general case, let u and H be given as in the statement of the proposition.
By Stone-Weierstrass there exists a sequences of polynomials Hy : RY — R such that
H), — H uniformly on Bj . (0) € RY. From (35) we get

O (pHy(u)) + Dy - (Hi(u)pb) = 0

[H(u)p] (0,-) = p(0,-) Hi(u) (36)
[Hy(w)p] (T,-) = p(T,-)Hi(a) ,
and letting £ T co we conclude (33). O

Corollary 3.11. Let b a bounded nearly incompressible vector field with the renormalization
property, and assume that p is as in Definitions 3.6 and 3.9. If C is any other function such
that 0 < C71 < ¢ < C and 8, + D, - (¢b) =0, then (GR) also holds with ¢ in place of p.

This corollary justifies the following

Definition 3.12. We say that a bounded nearly incompressible vector field b has the renor-

malization property if there exists a p as in Definition 3.6 such that the pair (b, p) has the
renormalization property of Definition 3.9
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—1,..N be any given solutions of

Oy(Cu’) + D, - (u'¢b) =

[w'(](T,) = (T, )i
Next, let v"*! = (/p, " ( )/p(0,-), and 0" = ((T,-)/p(T,-). Then define
vii=u /U”Jrl T =T /U”Jrl and 0= 0 /U”Jrl Note that
O (pv') + D, - (v'pb) = 0
[v'p] (0,-) = p(0,)7* (38)
[UZC] (T7 ) C(T7 '){]Za

Given H € C(RY), we define H € C(RN*) by H(v) := o™ H (vl v™o™t). Since
(GR) holds, we conclude

O0(pH (v)) + Dy - (H(v)pb) = 0

p(0,-)H (v) (39)
| [f)] (1) = o111 (0).
On the other hand, from the definitions of v and H, we have
pH(v) = CH(u),  p(0,)H(®) = (0,-)H(@)  and  p(T,)H(0) = ((T,-)H(a)
O

3.3. Existence and uniqueness of solutions to transport equations

Proposition 3.13. Assume b is a bounded vector field and p is a nonnegative function which
satisfies (29). Then for every bounded u there exists a solution of

9 (pu) + Dy - (upb) = 0
(40)
[up] (0,-) = up.

Assume, moreover that the pair (b, p) has the renormalization property. If uy; and us solve

O(pu;) + Dy - (u;pb) = 0

(41)
[uip] (07 ) = ﬂip(()? ) )

and wy; > us, then pu; > pus.
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The following are easy corollaries of Proposition 3.13.

Corollary 3.14. Ifb is a bounded nearly incompressible vector field with the renormalization
property and p is as in Definition 3.6, then for every bounded u there exists a unique bounded
solution u of (40). Moreover, after possibly changing u on a set of measure zero, the map

t — u(t,-) is continuous in the strong topology of L},..

Corollary 3.15. Let ( € L®(R™). If b is a bounded nearly incompressible vector field with
the renormalization property, then there exists a unique bounded distributional solution ( of

O+ Dy - (Cb) = 0
B (42)
¢(0,-) = ¢.
Moreover, if ¢ is bounded away from zero, so is C.
This justifies the following

Definition 3.16. Let b be a bounded nearly incompressible vector field with the renormal-
1zation property. Then the density generated by b is the unique solution of

Op+ D, -(pb) = 0
(43)
p(0,) = 1.

Moreover note that, if ® is a regular Lagrangian flow for b, then the density of ® coincides
with the density generated by b.

The proof of the comparison principle of Proposition 3.13 is an easy consequence of the
following lemma.

Lemma 3.17. Let w € L*([0,T] x R™) and g € L*>([0,T] x R™,R™) be such that
ow—+ D, -g<0

and |g] < Cw. Then, for £'-a.e. T €]0,T], we have that
/ w(r,)dr < / w(zx) dz for every xop € R™ and R > 0. (45)
Br(wo) Brcr(20)
Proof. Let 7 €]0,T] be such that

1 T+e
lim—/ / lw(t,z) —w(r,z)|dedt = 0, (46)
T—€ K

el0 €

for every compact set K C R™. We will prove the statement of the lemma for any such 7.
Without loss of generality we assume o = 0. Let x. € C*°(R") be such that

Xe =1on[0,1], Xe=0on[l+e +oo[, and x.<O0.
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||

Define the test function ¢(¢,z) := x. <m

to C*°([0,7] x R™). Note that we can test (44) with ¢(t,2)1_1(t). Indeed let u be the
measure J,w + D, - g. Consider a standard family of nonnegative mollifiers £€° € C*(R) and
set (% 1= 1j_1, * £, Testing (44) with (¢, )(°(t) we get

/ wis, g)pls, y)ES(r — 5) ds dy — / T(y)p(0, ) dy

m

). Note that ¢ is nonnegative and belongs

= /C5[w8t90+g-vx<p] +/C‘$<pdu. (47)

Note that [ ¢°du < 0. Moreover, by (46) the integral

/ w(s,y)e(s, y)E (T — 5) ds dy

converge to [ (7, z)w(r,z)dr as § | 0. Hence, in the limit we get

/ (W +g-Vaop] > /w(T,I)w(T,x)dﬁf
[0,7]xR™ n

— /n (0, z)w(x) dz . (48)

We compute w(s, y)0ip(s, y) + g(s,y) - V(s y) as
N ( lyl ) { Clylw(s,y) LV 9(s, ) } ' (49)
R+C(r—s)) [(R+C(t—9))? |yl(R+C(r—5s))
Letting o := |y|/((R+ C(7 — s)), the expression in (49) becomes
xc(a) y
X" | A
R+ C(r—s) [ wary \y\]
For a <1 we have xL(a) = 0, whereas for a > 1 we have x.(a) < 0 and Cwa > |g|. Thus
we conclude that the integrand of the left hand side of (48) is nonpositive. Hence

[ (B utrmas < [ () wta.

Letting € | 0 we get (45). O

Proof of Proposition 3.13. Existence Let u € L*(R™) be given and consider a standard
family of mollifiers {7.} in R™ and a standard family of mollifiers (. in R, the latter generated
by a kernel ¢ € C°(]0,00[). Then consider the functions p. € C*(]0,00[xR™) and b. €
C*°(]0, 0o[xR™,R™) given by
(bp) * (n=Ce)

Pe

U = Uk, pe = e+ px(nC) and b, =

Note that
(i) b. is Lipschitz for every ¢;
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(i) [|belloo + ||elloo + ||Te||o is uniformly bounded;

(iii) be — b and p. — p strongly in Lj ;

(iv) Owpe + D; - (pebe) = 0 in the classical sense;

(v) pe(0,-) converges weakly* in L™ to p, see Lemma 3.7 and Remark 3.8.

Since b, is Lipschitz we can solve globally in time

0,0, (t,z) = b.(t, De(t,x))

¢.(0,z) = x.
Each ®_(¢,-) is a diffemorphism of R™. Thus, u. (¢, z) := u([®.(t, )] (z)) solves the equation
3tu€ + b€ . Vg;ug =0

ue(0,+) = Te.
Using the chain rule and (iv) we conclude that

at(uapa) + D, - (pebeua) =0
(50)
[péuf:‘] (07 ) - pa(ov ')Ha .

Due to (ii) we can extract a subsequence ¢, | 0 such that wu., converges weakly* in L™ to
some u € L*°. From (ii), (iii), and (v), we conclude that:

o u. p.,—*up and b, p., u., —*bpu in L>=(]0, co[xR™);

hd ugnpsn (07 .)A*U_p ln Loo(Rm)
Passing into the limit in the distributional formulation of (50) we conclude that u solves (40)
in the sense of distributions.

Comparison principle Let u; and u; be given as in the statement of the second part of
the proposition. We apply the renormalization property to v := (uy — uq)4 to get

O (pv) + D, - (pvb) = 0
(51)
[vp] (0,-) = 0.

Then we apply Lemma 3.17 with w = pv and g = pvb and we conclude that for #'-a.e. t
we have

/ p(t,x)v(t,z)de = 0.
Since v > 0 and p > 0, we conclude pv = 0, and hence pu; > pus. [

Proof of Corollary 3.14. The existence has been proved in the previous proposition. More-
over, from the comparison principle proved above, the uniqueness of solutions of (40) for b
and p as in the statement readily follows.

Next, recalling Lemma 3.7, up to changing their value on a set of measure zero, we have
that t — p(t,-) and ¢ — p(t, -)u(t, ) are weakly* continuous. Consider ¢ = pu?. Similarly,
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we conclude from Lemma 3.7 that there exists a ¢ such that ¢ = ¢ a.e. and ¢ — ((¢,-) is
weakly* continuous. Therefore, for every T' > 0, { solves

O+ Dy - (Cb) = 0
5(0’ ) = 6(07 )
CA(Tv ) = é(T7 )

in the sense of distributions. On the other hand, from the renormalization property we have

¢+ D, (Cb) = 0

CA(T> ) = p(T, ')[U(T’ )]2 :

Thus, we conclude that p(T,-)[u(T,-)]* = {(T,-) for every T and hence t — p(t,-)[u(t,-)]* is
weakly* continuous. For any 7 > 0 consider

p(r ) (ult, ) —ulr,)* = (7, )[ult, )] = 2[p(r, Ju(r, ) ult,-) + p(r, ) [u(r, )]

It follows that, for 7 — ¢, p(7, -)(u(t, ) —u(7,-))*—=*0 in L. Since p(7,-) > C > 0 for every
7, we conclude that u(7,-) — u(t,-) strongly in Lj,.. This proves that u — wu(t,-) is strongly
continuous in Lj,,. O

Corollary 3.15 follows trivially from Proposition 3.13

Remark 3.18. Clearly, the proof of the previous proposition can be used to solve transport
and continuity equations even when we drop one of the boundary conditions. Namely, under
the same assumptions, for every T' € R and every bounded u and w there exist unique
solutions to both the forward and the backward transport equations:

O(pu) + D, - (pub) = 0 in Joo, T x R™
(52)
lou] (T,-) = p(T,-)a

O (pu) + D, - (pub) = 0 in [T, co[xR"
(53)
[pu] (T’ ) = p(T, )U

3.4. Stability of solutions to transport equations. The uniqueness results proved in
the previous section have the following easy corollary.

Corollary 3.19. Let {b,} C L*>([0,00[xR™) be a sequence of vector fields converging

strongly in L}, to a bounded nearly incompressible vector field b with the renormalization
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property. Let (, be solutions of

B (54)
If ||Callso is uniformly bounded and (,—*C in L™, then (, converges weakly* in L™ to the
unique solution ¢ of

0C+ D, - (Cb) =0
B (55)
¢(0,) =¢
Proof. If ¢ is the weak* limit of any subsequence of {(,}, then ¢ solves (55). Since the

solution to such equation is unique, it follows that the whole sequence converges weakly* to
C. O

Corollary 3.20. Let {b,},b C L*([0, 00[xR™ R™), {G.}, ¢, {un},u C L®([0, 00[xR™) and
Dy P Uy U C L (R™) be such that

(a) ¢G>0, ¢TH G € L% and [[Gulloo + 1165 oo + [Tnllo is uniformly bounded;
(b) {bn} and b have the renormalization property and b, — b in L},.;
(d) u, and u solve

Oy (Cottn) + Dy - (Guunby) = 0

[Cnun] (07 ) - Cn(07 )ﬂn )
Oy(Cu) + D, - (Cub) = 0

[Cu] (07 ) = C(Ov ')H‘
If ¢,(0,)—*¢(0,+) in L*® and u, — @ in L;

ber then w, — w in L

loc*

Proof. From the comparison principle of Proposition 3.13 it follows that ||un|lcc < [|Tnl]oo-
Moreover, from Corollary 3.19 it follows that ¢,—*C.

Set 3, := Cyu, and Bn := (n(0, )u,. We conclude from Corollary 3.19 that (3, converges
weakly* in L* to the unique solution S of

Therefore, by Corollary 3.14, /¢ = u. Applying the renormalization property, we conclude
that v, := u? and v := u? solve

[Cnvn] (07 ) - Cn(07 )ﬂi )

(58)

(59)
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O(Cv) + Dy - (Cob) = 0

[€Cv] (0,) = ¢(0,-)*.
Therefore, applying the argument above we conclude that ¢,u?—*Cu® Note that
Gty — u)? = Guu2 + Guu? — 2Cunu —* Cu? + Cu® — 2¢uu = 0.

Since for some constant C' we have (, > C for every n, we conclude that (u, —u)*> — 0
strongly in L} O

loc*

In the same way we can prove the following more refined version of the previous corollary,
which will be used in studying the well-posedness for the Keyfitz and Kranzer system.

Corollary 3.21. Assume that

o The pairs {(bn, pn) }n, (b, p) have the renormalization property and p, > 0;
o (by,pn) — (b,p) in L}, and ||bylloo + ||pullec s uniformly bounded;
1

e The traces p,(0,-) — p(0,-) and w, — u strongly in L,,..

1
loc*

If uy,, u solve (56) and (57), then pyu, — pu strongly in L

Proof. From the Proof of Corollary 3.20 we conclude that p,(u, —u)* — 0 strongly in L},..

Since || pn||oo is uniformly bounded, we get that (p,u, —p,u)* — 0, and hence |ppu,—ppu| — 0
strongly in L} .. But |up, — pu| < ||u||s|pn — p| — 0 strongly in L;, ., and thus we finally get
|pnttn, — pu| — 0, which is the desired conclusion. O

3.5. Existence, uniqueness, and stability of regular Lagrangian flows. We will now
show existence, uniqueness, and stability of the regular Lagrangian flows using the stability
results for transport and continuity equations proved in the previous sections.

Theorem 3.22. Let b a bounded nearly incompressible vector field with the renormalization
property. Then there exists a unique reqular Lagrangian flow ® for b. Moreover, let b, be
a sequence of bounded nearly incompressible vector fields with the renormalization property
such that

1.

o ||byloo s uniformly bounded and b, — b strongly in L;,,;
e The densities p, generated by b, satisfy limsup, (||pnllc + |25 o) < 00.

Then the regular Lagrangian flows ®,, generated by b, converge in L;, . to .

Proof. Uniqueness Let ® and ¥ be two regular Lagrangian flows associated to the same
nearly incompressible vector field. For any ¢ € L*>°(R™) consider the bounded functions ¢
and ¢ given by

/QO(t,I)C(t,.I) dtdr = /go(t,@(t,x))?(x) dt dx
/ o(t, 2)C(t, x) dt de = / o(t, U(t, x))C(x) dt da .
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According to Proposition 3.5, ( and é solve both the same equation
8t§+ D, - (Cb) =0

When b has the renormalization property we can apply Proposition 3.13 to conclude that

¢ = é . Therefore, when b has the renormalization property we conclude that, for any
compactly supported ¢ € L*(R x R™) and ¢ € L>*(R™), we have

/ ot B(t, 2))C(x) dt dy = / St Ut 2))C(x) di da

This easily implies that ¥ = ® £ qae..

Stability Next consider a sequence of b, — b as in the statement of the Proposition. Let
® and ®,, be regular Lagrangian flows generated by b and b,,. Fix again any ¢ € L* and
define ( as in the previous step and (, by

/ o(t,2)Ca(t,z) = / o(t, @, (t,2))C(x) dt dx .

Applying the comparison principle we get that ||(,||s is uniformly bounded, and from Corol-
lary 3.19 we conclude that (,—*(. Therefore we get that

/ ot B, (1, 2))C(x) dt dz — / ot ®(t, 2))C(x) dt da (61)

for every bounded ¢ and every ¢ which is bounded and has bounded support.

Note that, since ||b,||o is uniformly bounded, for every R > 0, ||, 1o (j0,r)xBr(0) 1
uniformly bounded. Therefore, if ¢ has bounded support, then (61) holds for every bounded
¢ which has support bounded in time. Thus, we can apply (61) with { = 1p,0) and
@(t,z) = 19 g(t)|z|* in order to get

/ 1@, (¢ 2)|2 dtdz — (1, 2)[2 dt do (62)
[0,R]x Br(0) [0,R] x Br(0)
Next, apply (61) with p(¢,2) = Lj g(t)y(t)x - v and = B1p,(). Then we conclude that
/ O, (t,x) - vy(t)(z) dt de — O(t,x) - vy(t) () dt de .
[0,R] x BR (0) [0,R]x BR (0)
By linearity, we conclude that
N N
/ S 0 (t 1) - v 1) Bw) dt d — S0t 1) - v (1)) di da
[0,R]xBr(0) ;,— [0,R]xBRr(0) ;,—;

for any choice of the bounded functions ;, ;, and v;. However, by a standard argument, we
can approximate ® strongly in L'([0, R] x Br(0)) with functions of type Zfil vy () Bi ().
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This gives

/ Bo(t, ) - B(t,2) dtdz — B (t, 2)[2 dt da (63)
[0,R]x BRr(0) [0,R]x Br(0)

Therefore, from (62) and (63) we get

lim |®,,(t,z) — ®(t,x)|*dtdx = 0.
nToo J10,R]x B (0)

From the arbitrariness of R we conclude that ®,, — ® in Llloc

Existence. Step 1: Regular Approximation We finally address the existence of a
regular Lagrangian flow. Fix two kernels xy € C2°(]0,00[) and ¢ € C*°(R™), let {x.}. and
{1:}< be the two standard families of mollifiers generated by x and 7, and set p.(t,z) :=
Xe(t)7e ().

Let p be the density generated by b and set p. := p * ¢, b. := b * p./p.. Note that

o ||b-]loo + || pelloo + Hp;lHoo is uniformly bounded;

e b.—band p. — pin L ;

e p.(t,-)—="p(t, ) in L>*(R™) for every t > 0.
For each ¢, b. is globally Lipschitz, and therefore we can apply the classical Cauchy Lipschitz
Theorem to get the unique regular Lagrangian flow ®. generated by b..

Note that ||®.|| (k) is uniformly bounded for every compact set K. Thus we can extract
a sequence {®,} = {P., } which locally converges weakly* to a map ®. We will show that
®,, converges strongly in L] . From this we easily conclude that ® is a regular Lagrangian

loc*
flow for b. From now on, in order to simplify the notation we will use b, p, for b., and p., .

Existence. Step 2: Strong convergence Note that each ®,(t,-) is a diffemorphism of
R™. Therefore we can define U, (¢, -) := [®,(¢,-)]"'. Fix T > 0 and solve the following ODE
backward in time:

Lpnt2) = bt An(t, 2))

dt

AT, z) = x.
Note that A, (t, ) = ®,(t, V,(T,-)). Thus, if we denote by J,(¢,-) the Jacobian of A,(t,-),
we get that 0 < C72 < J,(¢,-) < C?% Denote by [',(t,-) the inverse of A,(t,-) and
set Cu(t,x) = Jo(t,Tn(t,z)). Moreover, for every w € L”(Rm R™) define the function
wy(t, ) :=w(,(t, x)). Clearly we have

Oi(Cpwn) + Dy - (Guwn @ by) = 0 on [0, 7] x R™

Cown (T x) = @(x),

(the first line is just a shorthand notation for the equations 9;(¢,w’,) + D, - (¢,w!b,) = 0 for
i € {1,...,m}). We claim that the (,’s have a unique weak* limit. Indeed, assume that ¢

and ¢ are weak* limits of two convergent subsequences of (,’s. Then 0,( + D, - (b{) = 0 and
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¢+ D, - (bé) — 0. Moreover, both ¢ and ¢ have weak trace equal to 1 at ¢t = 7. Thus by
the backward uniqueness of Remark 3.18, we conclude that ( and p coincide with the unique

solution of
B+ D,-(Bb) =0  on|0,T] xR"

p(T,:) = 1.
Note that there exists a constant C' such that |[',(¢,z) — x| < C(T —t) for every ¢, x and
7. Fix r > 0 and choose R > 0 so large that R — C'T" > r. Let w be the vector valued map
r — x1p,0) (). Thus, for every t < T and every |z| < r, w,(t,x) is equal to the vector

[',(t,z). Thanks to Remark 3.18, w, converges strongly in L, the unique w solving

O(Pw)+ D, - (fw®b) =0 on [0, 7] x R™

[Bw] (0,-) = w.
Hence, by the arbitrariness of » we conclude that I',, converges to a unique I' strongly in
L}OC'

For each z, I',,(+, z) is a Lipschitz curve, with Lipschitz constant uniformly bounded. Thus
we infer that, for a.e. x, I',(-, ) converges uniformly to the curve I'(-,z) on [0,7]. Hence,
we conclude that, after possibly changing I' on a set of measure 0, for every ¢t > 0 the maps
[, (t,-) converge to I'(¢,-) in L, (R™).

Since I',(0,-) = ®,(T,-) we conclude that for every T there exists a ®(T,-) such that
®,,(T, -) converges to ®(T,-) in Lj,.(R™). Since ®,, is locally uniformly bounded, we conclude

loc

that @, converges to ® strongly in L} (R* x R™).

loc

Existence. Step 3: Near incompressibility Note that, by our construction, there
exists a constant C' such that, for every ¢ and every n,

ClL™ < @, (t, )L™ < CL™. (64)
Let ¢ € C.([0,00[xR™) be given. Then

/|g0(t,<1>n(t,x))|dxdt < O/\cp(t,y)|dydt < oo.

Up to extracting another subsequence, not relabeled, we can assume that ®,(t, z) — ®(t, )
for #™*1-a.e. (t,x). Thus, by the dominated convergence theorem:

lim [ ¢dus, = lim [ @(t,P,(t,x))dxdt

nfoo nloo

_ /gp(t,cb(t,x))dtdx — /cpduq>.

Therefore, from (64) we get C~1.2"™ ! < g < C L™ Therefore ® satisfies condition (a)
of Definition 3.1.

Existence. Step 4: Final ODE Next, we show that b,(t, ®,(t,x)) — b(t, ®(¢,x))
strongly in L}, from which (b) of Definition 3.1 follows. Let R be any given positive number.

loc)



30 CAMILLO DE LELLIS

Since [|by]|o0 < C, we have || D, || Lo (0, r[xBr0)) < (C+1)R. Thus, set b, := bn (0, R)x By 1) R (0)
and b := b110,R]x B(cs1yn(0)- Using Egorov’s and Lusin’s Theorems, for any given £ > 0 choose
by, b € C.(]0, 0o[xR™) such that

o [lbn = V[l + 16—l <

e b, — b uniformly.

Then, b, (t, ®,(t, ) — b(t, ®(t, x)) for L™ a.e. (¢, x). Thus,
lim sup [|bn (-, @ (-)) = b(-, @()l L1 (0, R)xBr(0)

nloo
= listup 167, (-5 @ () = V(- ()l L2 0. R1x Br(0)
< listup 1B (-, () = b @) 110, R1x Br(0)

tim sup (| (b = ¥,) (- @a())lls + 110 = ) ()12 )

nloo

= timsup ([[(bs — 8)( 2a(Dller + b~ ) 20l )

nloo
(64) . R
< Climsup (||by — O ||z2 + [|b = V[|r2) < Ce.
nfoo

By the arbitrariness of R and ¢, we get the desired convergence. This completes the proof. [

4. COMMUTATOR ESTIMATES AND AMBROSIO’S RENORMALIZATION THEOREM

In this section we study the following problem. Let Q C R? be an open set and B :  — R?
a bounded BV vector field. Assume w', ..., w* are L> functions which satisfy
D-(w'B) =0 distributionally in 2 for every 7,
(that is D - (w ® B) = 0) and let H € C*(R*). What are the properties of the distribution
D - (H(w)B)?
In particular, our final goal is to show the following theorem, which has been proved in
[10] by slightly adapting the ideas of [2]:

Theorem 4.1. Let B, 2, w and H be as above. Then, D - (H(w)B) is a Radon measure

and
LoH,
D -(Hw)B)— | H — ‘| D*-B| < C|D*-B 65
(H(u)B) ( (w) ;%iw)w) <cpB. ()
where the constant C' depends only on R := ||w|| and || H|c1(y0)) -

Our approach to this problem is to consider appropriate “commutators” and get estimates
for them. More precisely, fix a standard kernel 1 in R? supported in the ball B,(0) and let
{n:}es0 be the standard family of mollifiers generated by 7. Thus, for any distribution 7'
in Q the convolution 7T * p. is a well defined distribution in the open set Q. = {z € Q:
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dist (x,9Q) > er} in the usual way. Since w’* 7. — w’ converges strongly in L'(K) to w’
for any K CC €, we conclude D - (H(w * n5)B) converges in the sense of distributions to
D - (H(w)B) in every open set € CC ). Since w *ns is smooth, the usual chain rule applies
and we can compute

d
H
D - (H(w *ns)B) Z )D - (w' % 15 B)
oOH »
( (w *15)) avi(w*m)wz*m)D-B.
Moreover notice that (D - ( x 15 = 0. Thus we can write

d

D (H(wxn)B) = Z@H

D (w' xnsB) — (D - (w'B)) * 1]

1 oH .
+ (H(w*né) - av‘(w*ng)wz*n(g) D-B. (66)
i=1 '

Motivated by these computations we introduce the following terminology and notation.
Definition 4.2. For every fixed kernel n, we denote by Téi,n the commutators
Ty, = (D-(Bw')*ns— D - (Bw' *1ns). (67)

Moreover, the vector—valued distribution (Tﬁl,n’ . ,Tgfn) will be denoted by Ts,. When no
confusion can arise, we drop the n from Tgm and T,

Clearly, in our case the commutators Ts = D - (w® B) xns — D - ((w*ns) ® B) are equal to
—D - ((w#mns) ® B). Since w * n;s is smooth and B is a BV vector field, (w * ;) ® B is a BV
matrix—valued function. Thus T} is a vector valued measure. However this turns out to hold
even when we do not assume D - (w ® B) = 0: The commutators Ts are always measures,
for every BV vector field B and every L map w (see Proposition 4.6(a)).

Next, write D - B = D*- B+ D* - B, and from (66) get the inequality

D~(H(w*n5)B)—< (w * 15) Z )D“-B

< (Tl +CID* - B), (68)

where the constant C' depend on H and ||w||oo.

Comparing (65) and (68), it is clear that we might try to prove Theorem 4.1 by careful
analyzing the behavior of the commutators |T5,|. This is done in Proposition 4.6, with the
help of a technical Proposition 4.3 concerning difference quotients of BV functions, which
is proved in Subsection 4.1. The key commutator estimate of Proposition 4.6 is stated and
proved in 4.2. In Subsection 4.3 we state two lemmas. The first one is due to Bouchut and it
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was used in the first proof of the results of [2], in combination with the Rank—one Theorem
(see Theorem 2.13). The second lemma is a generalization of Bouchut’s one, suggested by
Alberti. This new lemma can replace the one by Bouchut and the Rank-one Theorem in
the proof of Theorem 4.1, yielding a much more transparent and self-contained argument.
In Subsection 4.4 we give both these proofs of Theorem 4.1.

4.1. Difference quotients of BV functions. In what follows, for BV vector fields B,
we denote, as usual, by DB their distributional derivative, which is a Radon measure. If
DB = M.%?+ D*B is the Radon-Nykodim decomposition of DB with respect to .£%, then
we denote M by VB.

Proposition 4.3. Let B € BVj,o(R% R™) and let z € RY. Then the difference quotients
B(xz + 0z) — B(z)
)

can be canonically written as By s(z)(x) + Bas(2)(x), where

(a) Bis(z) converges strongly in L. to VB -z as § | 0.

loc

(b) For any compact set K C R? we have

lim sup / |Bos(2)(@)| dx < |D°B-2|(K). (69)
slo - JK
(c) For every compact set K C R? we have
551}1p[/ }BL(;(Z)(%')} + ’Bg,g(z)(a:)’dx < |z||DB|(K) (70)
€l0e| JK

where K. := {z : dist (z, K) < e}.

Remark 4.4. The decomposition of the proof is canonical in the sense that we give an
explicit way of constructing By s and Bys from the measures D*B - z and D°B - z. One
important consequence of this explicit construction is the following linearity property: If
B!, B% € BVjoo(RY,R™), A\j, N € R, and z € RY, then

(MB' + XaB%)i5(2)(x) = MBjs(2)(x) + ABis(2)(x) - (71)
Proof. Let ey, ..., eq be orthonormal vectors in R?. In the corresponding system of coordi-
nates we use the notation = = (z1,...,24-1,24) = (2',24). Without loss of generality we

can assume that z = e4. Recall the following elementary fact: If 4 is a Radon measure on
R, then the functions

. tt+6 1 s
fis(t) = M = u*%(t) teR

satisfy
/ gl dt < p(Ky) (72)
K

for every compact set K C R, where Ks denotes the d—neighborhood of K.
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Consider the measure D.,B = DB - ¢4, and the vector-valued function VB - ¢4. Clearly
this function is the Radon-Nykodim derivative of D,,B with respect to £ and we denote
by D? B the singular measure D*B - eq = D, B — VB - e,.£".

We define

B , B 1 Tq+6 )
162, za) = ; VB -eq(;s)ds.
Tq

By Fubini’s Theorem and standard arguments on convolutions, we get that B; s — VB - ¢4
strongly in Lj,..
Next set

B(x',zq+06) — B2, x
Bg,g(‘I/,xg) = ( d ()5 ( d) — BL(;(ZE,,IC[) s

and, for 4 1-a.e. y € R¥"! define B, : R — R by B,(s) = B(y, s).
We recall the following slicing properties of BV functions (see Theorem 3.103, Theorem
3.107, and Theorem 3.108 of [11]):

(a) By € BVj,e(R,R™) for Z% 'a.e. y;
(b) If we let D*B, + B;£" be the Radon-Nykodim decomposition of DB,, then we have

VB(y,s)-ea = B,(s)  for Z%a.e. (y,s)
and
D) = [ IDBI(AN {(5) s € RY s

(c) By(s+0) — By(s) = DB,([s,s + 9]).

Therefore, for any § > 0 and for .Z9 '-a.e. y we have

B(y,vq+6) — B(y,zq) _ By(zq+90)— By(zq)  DBy([va, 24+ 9])
)

o o

—

= (BpL")s(xa) + (D*By)s(z4)
= Bis(y,xq) + (D*By)s(wq) for £1-a.e. xy.

Therefore

/ ’Bg,g‘ S / / ’(DsBy)(S([Ed)’ d.fEddy
K Ri=1 J{z4:(y,xq) €K}

< [ DB (e (i) € Ki}) dy
— DB eal(Ks) < [D*BI(KS). (73)

Letting ¢ | 0, this gives (69).
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Note moreover that

[ < [ ] (B2, ()| dwady
K R~ J{zq:(y,zq) €K}

< / VB - eq|(y, za) dy dzq
Ks
< [ IVBlyza) dydaa. (74)
Ks
Adding the bounds (73) and (74) we get (70) O

4.2. Commutator estimate. In this subsection we use the technical proposition proved
above in order to show the key commutator estimate which, together with Lemma 4.8 will
give Theorem 4.1. In order to state it we introduce the following notation.

Definition 4.5. For any n € C°(R?) and any matriz M we define

AM,7) = /R Vn(z)- M- 2| d=. (75)

Proposition 4.6 (Commutators estimate). Let B € BV N L>(Q,R?) and w € L*(Q, R¥).
Assume 1 is an even convolution kernel and denote by M the Borel matriz—valued measure
given by the Radon—Nykodim decomposition DB = M|DB|. Then:

(a) The commutators (67) are induced by measures and the total variation of these mea-
sures 18 uniformly bounded on any compact subset of €,

(b) Any weak® limit o of a subsequence of {|T5|}s10 as d | 0 is a singular measure which
satisfies the bound

oLA < Hw||Loo(A)(\DS - B| + A(M, n)\DsB\) for any open set A CC ). (76)

Proof. Let 6 > 0 be fixed and choose A > 0 such that the support of 7 is contained in B,(0).
Next, let A be any open set such that J\ < dist (A, 0). First of all, note that, in A, we
have

Ts = rs.2%—wxnsD- B, (77)

where 75 is an L' function which will be computed below. Note that the formula w*n; D - B
makes sense, because D - B is a measure and w % 7y is a continuous function.
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Indeed, fix a test function ¢ € C2°(A) and notice that

(T, ) = (D-((w'B)*ns),9) — (D - (w"*nsB), o)
= /Rd D, - (/}Rd w(y)B(y)ns(z —y) dy) o(x) dx + /Rd w' xnsB -V
= [, [ wt)BG) Tanste ~ ) dyole) do

— V(wi*na)-ng—/dwi*nagpd[D-B]
R

R4

- /Rd (/Rd w'(y)B(y) - Vans(z —y) dy) o(z) dx
+/Rd </Rd w'(y)Vyns(z —y) dy) - B(x) () dz — /Rd w* nspd[D - Bl

- /R (/R w'(y)(B(z) — B(y)) - Vyns(z — y) dy> o(z) dr — /]R w' x5 d[D - BJ.

This proves (77) with

(@) = [ B = B) - Ve —u) dy

_ _/Rdw(x+5y) {B(“é‘? m(C) -Vn(y)] dy. (78)

We denote by V - B the Radon-Nykodim derivative of the measure D - B with respect to
L4 thatis D-B = D*- B+V-B.%%. Thus, we have Ts = (rs—w*nsV - B).L—wx*nsD*- B,
and

IT5| = |rs —wxnsV - B|.Z% + |w ns||D* - BY. (79)

Using Proposition 4.3 we write r5 as ry 5 + 72,5, Where

nala) = = [ wlat 59)Bus)a) - Vo) dy

rala) = = [ e+ 59)Baslo)a) - Vato) dy
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Let o be the weak* limit of a subsequence of |Ts|, and fix a nonnegative ¢ € C.(A). Then
we get

/}Rd pdo < lirgl%up {/}Rd o(x)|r16(x) —w*ns(2) V - B(z)| da

4 /}Rd o(x) }7"275@)‘ dx
+ [ el (o)l a0 Bl | (50)

We now analyze the behavior of the three integrals above.

First Integral From Proposition 4.3(a) and (c), and from the strong L] . convergence of
w * N5 to w, it follows that

lgfgl » o(x)|r1s(x) —w*ns(z) V - B(x)| da

- [ ¢

Let B;;(x) be the components of VB(z). For every x € R? we then compute

/Rdw(%) [Vin(y) - VB(z) -yl dy = w(x) ZBm(m) /Rdam(y) y; dy

dz . (81)

- /R w(z) [Vn(y) - VB(z) -yl dy — w(x) V - B(z)

= o) Y Bula) [ 0wy = () V- B),

and therefore (81) vanishes.

Second Integral From now on, ¢ is assumed to be so small that if supp ¢+ suppns C A.
Let us write DB = M|D*B|, set K; := {p >t} and write

/Rd o(x)|ros|(z)dx = /OOO B |ros(z)| dadt . (82)

Note that K, = () for t > ||p|/co =: T and K; C supp () =: I for ¢ > 0. On the other
hand [}, |ra,s(x)|dz is bounded by a constant C' independent of § by Proposition 4.3(c). This
means that the functions ¢ +— [, [ry5(x)|dz are bounded by the L' function ¢ +— C 1j97y(t).
Hence, by the Dominated Convergence Theorem

limsup/ o(x)|ros|(z)de < / {limsup/ ‘Tgvg(x)‘dl'} dt . (83)
Rd 0 K

510 510

Next, fix any compact set K, and consider

[l e < e [ [ (B @) Sawldrdy o
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By the bound (c) in Proposition 4.3, the function

y / Bos(o)(a) - V)| da (55)
is uniformly bounded for y € supp (). Hence, again by the Dominated Convergence Theo-
rem:

limsup/ |ras(z)|de < HwHLoo(A)/ {limsup/ | Ba.s(y n(y)\dx} dy.  (86)
510 K Rd 610
For any fixed y, use Remark 4.4 to get Bas(y)(x) - Vn(y) = [B - Vn(y)]2,s(y)(z). By Propo-
sition 4.3(b) we then conclude
fimsup [ frasta)lde < Julimeo [ DB Vo) yl(K) dy. (87)
slo - JK R
On the other hand
[D*(B - Vn(y)) - yl(K) = /K IV(y) - M(x) - y| d|D*Bl(x) . (88)

Using (86), (87), and (88), and exchanging the order of integration, we get

sy [ ros(olde < ol [ | [ 190000 sldy| dDBI@). (59)

510
Plugging (89) into (83), and recalling the definition of A(M,n), we get

lim sup / o@lrasl@) de < [wllima / / ) d|D*Bl(x) dt
610 R Ky
=l / o(@)A(M(x),n) d|D*B(x). (90)
Third Integral Finally, we have
i [ @l s m@ldD*Bl@) < ol [ @d-Bl@). o1
lO ]Rd ]Rd

Conclusion From (80), (81), (90), and (91) we get
[ edo < Jullimen [ ele)r0)m) DBl
R4 R4
Hullimey [ o)D" Bl(w) (92)

for every nonnegative ¢ € C.(A), which implies the desired estimate

ol A < wl[geoayA(M,n)|D*B| + [|[w|| ()| D - B .
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4.3. Bouchut’s Lemma and Alberti’s Lemma. The following lemma was first proved by
Bouchut in [15] and it was the starting point of Ambrosio’s original proof of his commutator
estimate (see [2]).

Lemma 4.7 (Bouchut). Let
K = {77 € C*(B1(0)) such that n > 0 is even, and fBl(O) n = 1} . (93)

If D C K is dense with respect to the strong W' topology, then for every &, x € R? we have
mfAx®&n) = [(&x)] = tr(x ®¢)|. (94)

However, Ambrosio’s original proof made use of the difficult Rank—one Theorem. Recently,
Alberti has proposed an elementary proof of the following generalization of Bouchut’s Lemma

Lemma 4.8 (Alberti). Let K be as in Lemma 4.7 and let M be a d x d matriz. Then
inf A(M,n) = [tr M|.
inf A(M,n) = [trM]| (95)

Proof of Lemma 4.7. Set M := x ® . Note that, since the map n € C°(B1(0)) — A(M,n)
is continuous with respect to the strong W'l topology, it is sufficient to prove that

inf A(M,n) = [tr M|, (96)

where K is the set in (93).

If d = 2 we can fix an orthonormal basis of coordinates z1, 23 in such a way that £ = (a, b)
and x = (0,¢). Consider the rectangle R. := [—¢/2,¢/2] x [-1/2,1/2] and consider the
kernel 7. := %1 r.- Let ¢ € K and denote by (s the family of mollifiers generated by (.
Clearly n. * (s € K for £ + ¢ small enough.

Denote by v = (11, 12) the unit normal to JR. and recall that

8(775 * Cﬁ)

i
im o

é*ﬂeﬁfl LOR. . (97)
610 £

in the sense of measures.
Thus, we can compute

A(ne
limsup A(M,n. x (5) < limsup/ (|az1| + [bza])]c| e * &) dz1dzs
610 510 R2 029
20c| [<* b
= 2l (\azl\ + u) dz, = |ac\E + |bc] .
€ —c/2 2 2

Note that bc = tr M. Thus, if we define the convolution kernels A 5 := 7. * (5 we get:

lim sup limsup A(M, n. * (5) < |tr M]. (98)
|0 410
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For d > 2 we consider a system of coordinates 1, xs, ..., 24 such that n = (a,b,0,...,0),
€ =1(0,¢,0,...,0) and we define the convolution kernels

Aes(@) = [ne * Gl (21, 22) - Ca3) - ... - C(za) -
Then (98) holds as well and we conclude that for any d we have
: < '
inf A(M,n) < |tr M|

On the other hand, for every n € K and every d x d matrix M, we have

In
A(M,n) > / (M y,Vn(y»' = ZMjk/ yi— ()| dy
B1(0) kg B1(0)  *k
= M [ Sty dy| = e, (99)
k.j B1(0)
This concludes the proof. O

The proof of the second Lemma follows mainly [3].

Proof of Lemma 4.8. As in the first proof, we note that it is sufficient to prove that
inf A(M,n) = |tr M|, (100)
neK

and that the lower bound inf,cx A(M,n) > |tr M| follows immediately from (99) (the argu-
ment leading to (99) does need the assumption M = x®¢). Therefore it remains to show the
upper bound. Again by the identity (M - z,Vn(z)) = div (M - zn(z)) — tr Mn(z), it suffices
to show that for every 71" > 0 there exists 7 € K such that
2
|div(M - zn(z))|dz < =. (101)
o T
Given a smooth nonnegative convolution kernel # with compact support, we claim that the
function

T
n(z) = %/ Oe™™M . 2) e M gt
0

has the required properties. Here ™ is the matrix

LM
>
=0

Thus e - 2 is just the solution of the ODE 4 = M -~ with initial condition v(0) = z, and

e "M i5 the determinant of e=*™. The usual change of variables yields

[naeriz = 4 [ [e@uet et za
= [ [eeonoacar, (102)
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for any integrable bounded ¢. Hence n.#? is the time average of the pushforward of the
measure 0.2¢ along the trajectories of ¥ = M -~. This is the point of view taken in [3] to
prove (101), for which we argue with the direct computations shown below.
Note that
1

T
div (M - zn(z)) = T/ div (M - 20(e™ . 2))e "M gt .
0

We compute
div (M - 20(e™™M . 2))e 1M
= trMO(e™™ . 2)e "M L (M -2, e7™M . VO . 2))e M

d
— _@ <e—ttrM) e(e—tM . Z) + <€—tM M -2 V«g(e—tM . Z)>€—ttrM
d —ttr M —tM d —tM —tM —ttr M
— —_— r N 0 T
a ) it VO 2) e
— _% (e—ttrM) 0( —tM Z o it (0 —tM Z)) e—ttrM — _% (e(e—tM . Z)e—ttrM) )

Thus

|div (M - zn(2))| dz = / d1V (M - 20(e™™ . z))e‘ttert‘ dz

_ /T/o % (0(e™ - z)e M) dt' dz

1 —TM Ttr M
_ /T e TUM _g(2)| dz

< (/ —T“Mder/Rd@(z)dz)
- ([ @d“/Rd @) = 7.

where in the last line we changed variables as in (102). This shows (101) and concludes the
proof. O

Rd

4.4. Proof of Theorem 4.1. We finally come to the Proof of Theorem 4.1

Proof of Theorem /.1. Let n be any smooth even convolution kernel. Set o5 := |T}|. From
Proposition 4.6 we know that the total variation of these measures is uniformly bounded.
Thus, recalling the computation of Section 4, and in particular (66), we conclude that D -
(H(w)B) is a measure. Next, set
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and let o be the weak* limit of any subsequence of the measures {os}. Then, from (68) we
get

la| < Co+C|D*-B. (103)

According to Proposition 4.6(b), this gives || << |D*B|, and thus we have |o| = g|D*B| for
some nonnegative Borel function g. Denote by M the Radon—Nykodim derivative of D°B
with respect to |D*B|. Then |D® - B| = tr M|D?*B|. Thus, from (68) and (76) we conclude

g(z) < C(|tr M(z)| + A(M(z),n)) for |D*B|-a.e. x. (104)

Note that (104) holds for any even convolution kernel n. Let K be as in Lemma 4.8 and
choose a countable set D C K which is dense in the W topology. Then

g(z) < C(|tr M(z)| +$2£A(M(x),n)) for |D*B|-a.e. x. (105)

Therefore, from Lemma 4.8 we conclude
g(x) < Cltr M(x)],

which implies |o| < C|D?- B|. Following the argument, one can readily check that C' depends
only on R := ||w||e and || H ||c1(Bx(0)- O

Remark 4.9. In this last step, the original proof of Ambrosio in [2] used Bouchut’s Lemma
and Alberti’s Rank—one Theorem 2.13. Indeed, by Theorem 2.13 there exists two Borel vector
valued maps x,& such that M(x) = x(x) ® {(z) for |D*B|-a.e. z. Therefore, using this
information one might rewrite (104) and (105) with

g(z) < C(Jtr M(z)] + Alx(z) @ £(x),m)) for |D*B|-a.e. . (106)
and
g(z) < C(Jtr M(z)| + 7%éllf)/\(x(yc) ® &(x),n)) for |D*Bl-a.e. x. (107)
From (107) it suffices to apply Lemma 4.7 to get
g9(z) < Cltr M(x)].

5. EXISTENCE, UNIQUENESS, AND STABILITY FOR THE KEYFITZ AND KRANZER SYSTEM
In this section we consider the Cauchy problem for the Keyfitz and Kranzer system
Opu' + 37 Op, (g (Juu’) = 0
a=l (108)
u'(0,) = w'()
Before stating the main theorem, we recall the notion of entropy solution of a scalar

conservation law and the classical theorem of Kruzhkov, which provides existence, stability
and uniqueness of entropy solutions to the Cauchy problem for scalar laws.
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Definition 5.1. Let g € W2 (R,R™). A pair (h,q) of functions h € W,o°(R,R), ¢

loc loc

VVliCoo (R,R™) is called an entropy—entropy flux pair relative to g if
= hyg L' —almost everywhere on R. (109)

If, in addition, h is a convex function, then we say that (h,q) is a convex entropy—entropy
flux pair. A weak solution p € L>(R} x R™) of

Op+ Dy - [g(p)] = 0

p(0,-) = p(-)

is called an entropy solution if O¢[h(p)] + Dy - [q(p)] < 0 in the sense of distributions for every
convez entropy—entropy flux pair (h,q).

(110)
0,-

In what follows, we say that p € L*(RT x R™) has a strong trace p at 0 if for every

bounded 2 C R™ we have
1
lim — p(t,z) —p(z)|dxdt = 0.
T10 T Jo, %0 | (@)l

Theorem 5.2 ([36] Kruzhkov). Let ¢ € WE°(R,R™) and 5 € L™. Then there eists
a unique entropy solution p of (110) with a strong trace at t = 0. If in addition p €
BVoe(R™), then, for every open set A CC R™ and for every T €10, 0], there exists an open

set A" CC R™ (whose diameter depends only on A, T, g and ||p||«) such that
lpllsvaorixay < lIpllsven - (111)

Often, in what follows we will use the terminology Kruzhkov solution for entropy solutions
of (110) with a strong trace at ¢ = 0.

Remark 5.3. In many cases the requirement that p has strong trace at 0 is not neces-
sary. Indeed, when g is sufficiently regular and satisfies suitable assumptions of genuine
nonlinearity, Vasseur proved in [39] that any entropy solution has a strong trace at 0.

We are now ready to introduce the particular class of weak solutions of (108) for which
we are able to prove existence, uniqueness, and continuous dependence with respect to the
initial data.

Definition 5.4. A weak solution u of (108) is called a renormalized entropy solution if |ul
15 an Kruzhkov solution of the scalar law

A + f) Oua (9%(p)p) = 0
a=1 (112)

p(0,-) = p()-

In the class of renormalized entropy solutions we have the following well-posedness theorem
for bounded initial data @ such that |[u| € BV,
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Theorem 5.5. Let g € Wl’w(R,Rk) and |u| € L® N BVj,.. Then there ezists a unique

loc )
renormalized entropy solution u of (108). If W is a sequence of initial data such that

(a) [@] < C for some constant C,
(b) for every bounded open set Q, there is a constant C () such that || |ﬂj|HBV(Q) < C(9Q),
(c) W — u strongly in L.,

1

loe 1O U.

then the corresponding renormalized entropy solutions converge strongly in L

The suggestion of using the terminology “renormalized entropy solutions” has been taken
from [32]. This terminology is more appropriate than the one of “entropy solutions” used in
8], because the usual notion of entropy (or admissible) solution of a hyperbolic system of
conservation laws does not coincide with the one of renormalized entropy solutions. Let us
recall the usual notion of entropy solution for systems (cp. Section 4.3 of [22]):

Definition 5.6. Let ' : R*¥ — R*¥ o =1,...,n, be Lipschitz and consider the system

8tu+za$a[F°‘(u)] =0 u:QCRY xR™ — R, (113)

a=1

A pair (H,Q) of functions H € VVZIOCOO(]R’“, R), Q € VVZIOCOO(]R’“, R™) is called a convex entropy—
entropy flux pair for the system (113) if H is convex and if DQ* = DH - DF*, for every
ae{l,...,m}.

A distributional solution w of (113) supplemented by the initial condition
uw(0,-) = u()

is called an entropy solution if for every convex entropy—entropy flux pair (H,Q) and for
every smooth test function b > 0,

/ / 0002 H(ult,2) + V(8 2) - Qult. )} dedz + [ 00, 2m(a(z) dz > 0,
>0 (114)
The (nonpositive) entropy production measure
OIH(w)] + D, - [Q)
will be denoted by pg.

The system of Keyfitz and Kranzer corresponds to the particular case F'(u) = u ® g(|ul).
We will later show that, under suitable assumptions on g, for every convex entropy H for
(108) there exists a convex function & : R¥ — R and a Lipschitz function H : S¥1 — R
such that

Hw) = h(jv]) + [v|H(v/|v])  for every v #0
(see Lemma 5.11 and compare with Lemma 1.1 of [32]).

Using this lemma we will show that if u is a renormalized entropy solution, then u is an
entropy solution in the sense of Definition 5.6.
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Proposition 5.7. Assume g € C* and L' ({s > 0:¢'(s) =0}) = 0. Then every renormal-
ized entropy solution of (108) is an entropy solution.

Actually we expect this statement to be true even if we drop the assumption Z*({s > 0 :
g'(s) = 0}) = 0. However Lemma 5.11 does not hold in general and therefore a more refined
approach is required.

Clearly, another natural question is whether the opposite inclusion
{entropy solutions} C {renorrnalized entropy solutions}

holds. It can be shown that, already in one space dimension, there exist entropy solutions of
(108) which are not renormalized entropy solutions (see for instance [22]). This is essentially
caused by the degeneration at the origin of the the hyperbolicity of the Keyfitz and Kranzer
system. However under appropriate assumptions on the initial data, it is reasonable to
expect that any entropy solution coincides with the unique renormalized entropy solution.
In particular we propose the following

Conjecture 5.8. Let u be a bounded entropy solution of (108) and denote by C' the closure
of the convex hull of its essential image. If 0 & C' or if it is an extremal point of C, then u
18 a renormalized entropy solution.

A partial answer to this Conjecture is given by the following
Proposition 5.9. Let [ € VVZIOCOO and w € L°(R™ R¥). Denote by C be the closure of the

convex hull of the essential image of u and assume that

(a) Fither 0 ¢ C or it is an extremal point of C;
(b) w is a bounded entropy solution of (108);
(c) ue BV(]0,T[xQ) for some T >0 and for some bounded open 2 C R™.

Then u is a renormalized entropy solution of (108) on |0, T[x€2.

5.1. Proof of Theorem 5.5. The proof of Theorem 5.5 follows from the theory of transport
equations for nearly incompressible fields via Ambrosio’s renormalization Theorem. More
precisely, the key point is the following

Lemma 5.10. Let p € L=([0, 0o[xR™),b € L>([0, oo[xR™ R™) be such that

e b,pe BV([0,T[xK) for every compact set K ;
e (29) holds, that is Oyp + D, - (pb) = 0;
b p(07 ) € B‘/loc'

Then the pair (b, p) has the renormalization property.

Proof. Recall that, from the trace properties of BV functions we have

1 T
i [ [ 1p(t.0) = p(0.2)| + bt.0) = 0. ) dwdt = 0



NOTES ON HYPERBOLIC SYSTEMS OF CONSERVATION LAWS AND TRANSPORT EQUATIONS 45

for every compact set K C R™. We define p € BVjoo(R™1), b € BV,.(R™1) by setting

. | p(0,z) ift<0 5 o0 ift <0
plt,z) = {p(t,x) ift>0 and b(T) =3y ) it 0.

Now, let u € L*([0,00[xR™) and @ € L*(R™) be such that

9 (pu) + Dy - (bpu) = 0
(115)
[pu] (0,-) = p(0,-)u
and define

. _ Joux) ift<0
ity z) = { u(t,z) ift>0.

Then 8,(pi) + D, - (pib) = 0 distributionally on R™. Thus, if we apply Theorem 4.1 to
B = (p,pb), & and H(v) = v?, since D - B = 0, we conclude that

8 (02p) + D, - (@%pb) = 0.

From Lemma 3.7 we have that, up to change pi? on a set of measure zero, the map t —

p(t, -)u?(t,-) is weakly continuous. Since for ¢t < 0 we have p(¢, -)u?(t,-) = p(0, -)u*(-) and for
t > 0 we have p(t,-)u(t,-) = p(t,-)u?(t,-) we conclude that p(0,-)u?(-) is the trace at ¢t = 0
of the function pu®. Thus we get

O (pu*) + D, - (bpu?) = 0
[ou?] (0,-) = p(0,-)u.
With an analogous argument one shows that if
[ 0,(pu) + Dy - (bpu) = 0
[pu] (0,-) = p(0,-)u (116)

L [pu] (T7> - p(T, )au

then v = u? solves
( 0,(pv) + D, - (bpv) = 0

. [IOU] (07) = p(O,-)ﬂQ

[ [p0(T,) = p(T, ).
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Proof of Theorem 5.5. Existence Let g and u be as in the statement. First of all, let p be
the Kruzhkov solution of

dp+ Dy - (pg(p)) = 0

p(0,-) = [al(-).
Then, Kruzhkov’s theory gives ||plloc < ||U|lo and p € BV([0,T[xK) for every compact
set. Since g is locally Lipschitz, g(p) € BV ([0,T[xK). Therefore, by Lemma 5.10, the pair
(b, p) := (g(p), p) has the renormalization property.
Next let # € L>®(R", S¥~1) be any function such that % = |u|f and apply Proposition 3.13
to get a bounded solution 6 of

9(pf) + D, - (0@ (pg(p))) = 0

[p0] (0, ) = 7(0,)8(:).

Consider the continuous function H : R¥ — [0, 00 given by H(v) := |v|. Applying Lemma
5.10 and Proposition 3.10 we conclude that

A (pl0]) + Dz - (plflg(p)) = 0

[plO1] (0,) = B(0,)[6()] = 5(0,).

Thus, from Proposition 3.13, it follows p|f| = p. Therefore, if we define u := pf, we have
|u| = p and hence

(117)

(118)

e |u| is a Kruzkov solution of (117);

e 1 solves
du+ Dy - (u@g(lul)) = 0

u(0,-) = w.

Uniqueness The uniqueness follows easily from the uniqueness of Kruzhkov solutions for
the Cauchy problem of scalar conservation laws and from Proposition 3.13.

Stability The stability follows directly from the stability of Kruzhkov solutions for scalar
conservation laws and from Corollary 3.21. O

5.2. Renormalized entropy solutions are entropy solutions. In this subsection we
prove Proposition 5.7. The key remark is the following lemma (see [32]):

Lemma 5.11. Assume g € C1([0,00[, R¥) and £1({s > 0: ¢/(s) = 0}) = 0. Consider the
map F'* € T/Vllofo(Rk,Rk) given by F*(u) = g*(Ju|)u. If (H,Q) is a convex entropy—entropy
fluz pair in the sense of Definition 5.6, then there exist a convex h € Wl’oo([O, oo[) and an

7 loc
H € WbH(S*=1) such that
H(u) = h(|u|) + |u|ﬁ(u/|u|) for any u # 0.
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In order to simplify the notation, in what follows, if H : S*! — R is a bounded function,
we extend the function

R\ {0} 2 u — |u|H(u/lu]) € R
by defining as 0 its value at 0. Clearly this extension is Lipschitz whenever H is Lipschitz.

Remark 5.12. Note that at least the assumption that {g’' = 0} has empty interior is needed
in order to conclude Lemma 5.11. Indeed, assume |a,b[C {¢g' = 0}. Then g is constantly
equal to some vector v on that interval. Consider any conver function H € C*(R¥) with the
following properties

o« H=00n{0< o] < (a+1b)/2]},

e H(v) = |v] on {veRF: |v] > b},

and let () be given by

* Q(v) = H(v)y for 0 < [v] <b;

o Q(v) = [v[f([v]) for [v] = b.
Then (H,Q) is a convex entropy—entropy flux pair, but H is not necessarily of the form
h(lul) + ulH(u/|ul).

Nonetheless we expect that the conclusion of Proposition 5.7 holds in general. Indeed, if
g =0 on [a,b] and u is a solution of (108) such that a < |u| < b, then u solves k decou-
pled transport equations with constant coefficients. Thus u is trivially an entropy solution.
However, a more refined analysis would be needed if the range of |u| contains both intervals
where g' vanishes and intervals where g’ # 0.

Lemma 5.11 easily implies Proposition 5.7.

Proof of Proposition 5.7. Let g be as in the proposition, let u be any renormalized entropy
solution and let H, @ be an entropy—entropy flux pair. We apply Lemma 5.11 to get H(u) =
h(|u|) + |ulH(u/|u|), where h is convex and H is Lipschitz. Let ¢ € W1®(R) be such
that ¢(0) = Q(0) and ¢'(r) = A'(r)g’'(r)r + W' (r)g(r). Then it follows easily that Q(u) =
q(|u]) + |ulg(Ju)) H(u/|u]). Let ¢ € C(] — 0o, 00[xR™) be any test function. Since |ul is a
Kruzkov solution of

o+ Dy - (g(p)p) = 0

we have

[ | o) hiute ) + .0t - affute e+ [ w0 () d= > 0.
(119)
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Moreover, from the renormalization property applied to 8 we must have

u(t, 7)
/M/m [ul(t, (‘ G )) [00b(t,2) + Vaab(t,2) - g(lult, 2)|)] dtdz  (120)

+ [ (0, 2) [a(z )]H( () ) dz = 0. (121)

R el
Summing (119) and (121) we conclude (114). This completes the proof. O

Proof of Lemma 5.11. If g, H, and @) satisfy the assumptions of the Lemma, then @ is a
Lipschitz function and the identity

VQ*(v) = VH(v) - V(g*(Jv])|v]) (122)
is valid for Z*a.e. v € R*\ {0}.
Now consider a smooth system of coordinates w1, ...,w,_1 on S¥~! and let wi, ..., wp_1,7

be polar coordinates on R \ {0}. It is not difficult to see that (122) becomes
0, Q%(r,w) = g“(r)0,, H(r,w)
(123)
0,Q%(r,w) = ((g°)(r)r +9°(r))0,H (r,w)
(in other words, wy,...,wk_1,7 is a coordinate system of Riemann invariants for the Keyfitz

and Kranzer system).
These identities hold pointwise a.e. and hence (since ) and H are Lipschitz) in the sense

of distributions. Therefore, from 97, Q* = 02 Qo‘ we conclude
O (g% (r)0,,H(r,w)) = 0, {((g") (r)r+g*(r)0.H(r,w))}. (124)
Recall that H is convex, and hence its second derlvatlves are measures. Thus
0 (g* (1), H (r,w)) = (9°)'(r)0u, H(r,w) + g*(r)02, H , (125)

where the product ¢*(r)97, H makes sense because ¢*(r) is continuous.
For the same reason, since 97, H is a measure and (¢*)'(r) is continuous, a standard
smoothing argument justiﬁes

0w { (%) ()r + g% ()0, H (r,w)) } = (g°(r) + (¢°)'(r)r) 07, H (126)
Comparing (124) with (125) and (126), we get
(9%) (r) 0w, H (r,w) + g ()07, H = (9°(r) + (¢°) (r)r) 0y, H

and hence
(9% (r)(roZ,,H — 9,,H) = 0. (127)
If we set p(r) :== > [(ga)'(r)|, we obtain
p(r)(rd2, H — 0, H) = 0. (128)

We claim that, since Z'({r : p(r) = 0}) = 0, we have
ro, H—0,H = 0  distributionally on R*\ {0}. (129)



NOTES ON HYPERBOLIC SYSTEMS OF CONSERVATION LAWS AND TRANSPORT EQUATIONS 49

Indeed, consider the measures p := rd,,,H and o := p — 9, H and let Q C R?*\ {0} be
the open set {z € R¥\ {0} : |p(]z])] = 0}. Then o = 0 on Q. Hence it suffices to show
| (R?\ ©2) = 0. Since Z*(R*\ ({0} UQ)) =0 and 9,, << £*, it suffices to show

ul(R*\ ({0} UQ)) = 0.

In order to prove this identity, recall that p = 9,,(0,H) and that 0,H is a BV function,
because H is convex. Consider for every 7 > 0 the function o,(w) := 0,H(7,w). From the
slicing theory of BV functions, it follows that o, € BV (S*7!) for #1-a.e. 7 > 0 and that

ul = / 0,0 dr.
0

Thus, since Z1({7 : p(7) = 0}) = 0, we have |u|(R*\ ({0} UQ)) = 0, which concludes the
proof of (129).
Note that (129) can be rewritten as

r20, (awiH) =0
r

0w, H(r,w) = rih;(w)
for some locally bounded function ;. Let N be the north pole of S¥7! ie. the point
corresponding to (1,0,...,0) for some orthonormal system of coordinates on R¥ > Skt

Consider the restriction H|gi-1 of H on S¥1 and let H € C(SF!) be given by H(w) =
Hlgi-1(w) — H(N). Then 0,,(rH(w)) = ri¢;(w). Therefore

Dy (H (r,w) — rﬁ(w)) =0

and hence we get that

and hence H(r,w) — rH(w) = h(r) for some function h. Moreover, we have
h(r) = H(r,N)—rH(N) = H(r,N).

That is, h is given by the restriction of H to the half-line {(7,0,...,0) : 7 > 0}. Therefore
h is necessarily convex. U

5.3. Proof of Proposition 5.9.

Proof of Proposition 5.9. Let u and € be as in the statement. Define p := |u| and 7 := [q].
The goal is to show that p is an entropy solution of the scalar law

dp+ Dy -lglp)p] = 0
(130)

in |0, T[x €.
Actually it is sufficient to show that p is a weak solution of (130) in ]0,7'[x€2. Indeed,
note that for every h : R* — R which is convex and increasing, h(|u|) is a convex entropy



50 CAMILLO DE LELLIS

for the system (108) (the entropy flux is of the form ¢(|u|) for ¢ such that ¢ = h'¢’). Thus
we have

| [ o2 o )+ Voot 2) ot D vz |00 2)hp() d = 0, (131)

for every nonnegative smooth test function . Moreover, if p is a weak solution of (130)
in 0, T[XQ L a linear function L : R — R and Q : R — R™ the map given by Q =
(L(g"),...,L(g™)), then

[ 0 / [0t L(p(t. ) 49000, 2)-QUolt. N dtd+ | 00,9 dz = 0. (132)

for every test function ¢ € C°(] — T',T[x2). Given any convex function £ we can write it
as L + h, where L is an appropriate linear function and h is increasing on the half-line R*.
Thus, summing (131) and (132), we conclude that p satisfies the entropy inequality for £
and for every nonnegative ¢ € C2°(] — T, T[x£2), and hence that p is an entropy solution of
(130) in 10, T[x 2.

We now come to the proof that p is a weak solution of (130), which we split in several
steps.

Step 1
Recall that p is a weak solution of (130) in ]0, T'[x €2 if it satisfies the identity

/t O / plt,2) [0 2) + 9(p(t,2)) - V)] deds + [ w025 a = 0, (133

for every ¢ € C°(] — T, T[x€2).
Recall that ||u||py(axjo,rp is finite. Hence, we claim that thanks to the trace properties of
BV functions, in order to prove (133) it suffices to check that

the Radon measure w = O+ D, (pg(p)) vanishes on ]0, T[x€Q. (134)

Indeed, by a standard approximation argument we get the following estimate for every ¢ < 7"

/0/Q|u(7,z)—ﬂ(z)\dzd7 < /0 10,u] (0, 7[x Q) dr < t|9u) (J0, E[x ) .

From this we conclude

/ /\pT 2 2)|dzdr < t0pul(]0, t[xQ) . (135)

Fix ¢ € CX(] = T,T[xQ) and let {x;} € C°°([0,T]) be such that
o x;=1fort>2/i
o \; =0fort<1/i;
00 < \\ < 4i.
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Then, 1y; is compactly supported in |0, 7[x and from (134) we get
[ [ @t ow ) + o0 2) - Ve ) dzar
2/k
/ / Xi(T)p(T, 2)0(r, z)dzdr = 0. (136)
0 m

As i T oo, the first integral in (136) converges to

/OT /m o(7, 2) [aﬂﬁ(T, 2) 4 g(p(T, 2)) - Vaib(r, z)] dz dr .

Concerning the second integral, we recall that f 2/t

@ e 2 dzdr— [ B0, 2)d:
02/Z m m

2/i
= [ [ xptr it - a0, )] dedr

X; = 1 and we write:

IN

2/i
47J/ }p T, 2)(T, 2) — ﬁ(z)w(O,z)’ dr dz
< 47,\pHOO/22/ |[v(T,2) — Oz’dez—i-leWHoo/Ql/ (1.2) — p(0,2)| dr dz .

Note that, for i T oo, the first term tends to 0 because v is smooth. Thanks to (135) the
second term is bounded by

C|0yul (]0,2/i[x2) (137)

where C'is a constant independent of ¢, and 2 is a bounded set. Since |0;u| is Radon measure,
we conclude that the expression (137) tends to 0 for ¢ T co. Thus we conclude that

i [ [ ot dzar = [ a2,

Hence, passing into the limit in (136) we get (133). Therefore, we are left with the task of
proving (134).

Step 2

We wish to use the entropy inequalities and to apply Theorem 2.11 to conclude that u is
supported on the jump set (or shock set) J,. However this is not possible since the function
lu| is not C' in the origin (compare with Remark 2.12). We approximate this function
uniformly with smooth C! convex functions of the form h,,(|u|). Clearly, also these functions
are entropies for the system of Keyfitz and Kranzer and their entropy fluxes are of the form
¢n(|u|) for some functions g, (t) which converge uniformly to ¢f(t).
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Let v : J, — R™ be a Borel vector field and ¢ : J, — R be a nonnegative Borel function
such that (¢,v)/+/¢? + |v|? is normal to J, s#™—a.e.. Then, the chain rule of Vol'pert gives
that

at[hn(p)] + Dy - [Qn(p)]
= () 2| (1) = Al D)+ (gl ]) = aulu])) - v] £ L,
Passing to the limit in n we get:
b= @+ W) 2 (| = )+ (gt ]) — Lo ) o] 27, (138)
Thus, we must prove that
(C+g(u)-v)ut| = (C+g(lu]) v)|u] HM—a.e. on J,. (139)
In what follows, for the sake of simplicity, we will drop the “7™—a.e.”.
Since u is a weak solution of (108), when F'(v) := g(|v|)®v is C' we can apply Theorem 2.11
to get
(g(ju™]) v+ Qu = (g(ju]) - v+ )u. (140)
In order to derive (140) when 0 is a singularity for DF we approximate F' with F,, :=
g(hp(u)) ® u. Then we get
o+ D, - (Fy(u)) = D+ DF,(i)- D%
+ [(u+ —u” )+ (F(u) = F(u™)) - u] AL, (141)

Clearly the left hand side converges to 0 = dyu + D, - (F'(u)). Moreover the second term of
the right hand side converges to

(o) v+ € = (ol )+ | L,

in the sense of measures.

Note that the approximations F, can be chosen in such a way that DF,, are locally
uniformly bounded. In this case, let o be any weak* limit of any subsequence of DF}, (1) D%u.
Since |DF, - D%| < C|D%|, this weak* limit satisfies 0 << |D%/]. On the other hand,
passing into the limit in (141) we get

0 =0+ [(g(\uﬂ) v+ Qut = (9(lu]) - v+ C)u’] AT,
Since |D%u|(J,) = 0, we conclude that (140) holds s#™-a.e. on J,.
From (140) we get
lg(ju™]) - v +¢llut] = [g(lu™]) - v+ flu] (142)

If |u™| (or |u~|) vanishes, (139) follows trivially. Hence, after setting p* := |u®| we restrict
our attention to the subset of J, given by G := {p* # 0 # p~}. On this set we define
6% := u*/p* and we note that (140) becomes

[(g(p*)-v+Q)]p*0" = [(9p7)-v+C)]p 0~ (143)
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Since % € S*~! we conclude that, either 07 = 6=, or 6+ = —0~. In the next step we will
prove that, if D is the closure of the convex hull of the essential image of uljr{xrm, then
either 0 € D, or 0 is an extremal point of D. This rules out the alternative 67 = —0~.
Therefore we conclude that 67 = 6~ on G, from which (139) easily follows.

Step 3

In order to complete the proof it remains to show that, if D denotes the closure of the
convex hull of the essential image of U|]07T[><Rm, then either the origin is not contained in D,
or it is an extremal point of D. Recalling (a), this property is true for the closure C' of the
convex hull of the essential image of w. Choose &, ..., &, unit vectors of R* such that

C C {z|z-& <0 forevery i}

and 0 is an extremal point of {x\ x - & < Ofor every z} We will show that the essential
image of u is contained in {z|z - & < 0} for every i.
Fix ¢ and denote by H : R¥ — R, Q : R¥ — R™ the functions

O = { L, D Q) = S(DH),

Note that (H,Q) is a convex entropy—entropy flux pair. Clearly H(u) = 0 and thus the
boundary term in the entropy inequality (114) disappears. Thus, if we set w := H(u) and
b:= Q(u) we get that

ow+D,-b <0

w(0,:) = 0.
Note that there exists a constant C' such that |b|] < Cw. Therefore we can apply Lemma
3.17 to conclude w = 0. This completes the proof. O

6. BLow—uP OF THE BV NORM FOR THE KEYFITZ AND KRANZER SYSTEM

In one space dimension, the fundamental result of Glimm (see [22]) gives the existence of
BV entropy solutions for (108) if one starts with initial data which have sufficiently small
total variation. Moreover, from Proposition 5.9 we get that, when the convex hull of the
essential image of the initial data @ does not contain the origin (or the origin is an extremal
point of it), such solution is the unique renormalized entropy solution.

Hence it is natural to ask whether renormalized entropy solutions u of (108) enjoy BV
regularity when the whole initial datum @ (and not only its modulus) belongs to BV. In
analogy with the one-dimensional case, one could ask if such regularity holds at least for
small times and when % is close to a constant different from 0, in both the L*> and the BV
norms. We will show that this is not the case. More precisely we will show that

Theorem 6.1. Let k > 2, m >3, g€ C} and let ¢ € RF\ {0} such that ¢'(|c|) # 0. Then

loc
there exists a sequence of initial data U, : R™ — R* such that

o |[@, — cllpv@m) + [T — clls — 0 forn T oo;
e U, =c on R™\ Bg(0) for some R > 0 independent of n;
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o Ifu, is any bounded entropy solution of (108) with initial data w,, then there exists
r >0 (independent of n) such that ||u,|| Bvo,r(xB.(0)) = 00 for every positive T'.

When m = 2 the same statement holds if in addition we assume that g"(|c|) is parallel to
g'(le]) (or vanishes).

We remark that the system of Keyfitz and Kranzer, in contrast to general hyperbolic
systems of conservation laws, has remarkably many features. Indeed consider the system of
conservation laws

ou+D,-[Flu)] =0 u:QCRxR™ = RF, (144)

where F' : R¥ — RF*™ i5 a C! function. In what follows we will use the notation F =
(F1,...,F™), where each I is a map from R* to R*. The Keyfitz and Kranzer system
corresponds to the choice F'(v) = v ® g(|v]), where g € C*(R,R™). (Note that in this case
the requirement F' € C' implies ¢/(0) = 0. However, in the rest of the forthcoming sections
we will not impose this condition, since it is not needed in any of the proofs.) Therefore
the Keyfitz and Kranzer system falls into the category of symmetric systems of conservation
laws, i.e. the systems (144) for which DF*(v) is a symmetric matrix for every i and for every
v € RF

It is known, by a result of Rauch based on a previous paper of Brenner for linear hyperbolic
systems (see [16] and [37]), that certain type of BV—estimates (and L? estimates for p # 2)
fail for all the systems (144) which do not satisfy the commutator conditions

DF'(v)- DF'(v) = DFi(v)-DF'(v)  for every v € R, (145)

When m = 2, it was proved in [23] that (145) is also sufficient to get L? estimates for every
p < 2 and, under additional conditions, also for p = oc.

Note that the Keyfitz and Kranzer system does satisfy Rauch’s commutator condition
(145). Moreover we remark that when (145) does not hold, Rauch’s result implies that
estimates of a certain kind are not available, but it does not exclude BV regularity.

6.1. Preliminary lemmas. In this section we collect some facts which will be used in the
proof of Theorem 6.1.

Riemann Problem for scalar laws Let us consider the Cauchy problem

Oip + Dy - [h(p)] = 0
p: Rt xR™ — R, (146)

where h : R — R™ is of class C3. Fix 3,7, a € R, set € := max{|a — 3|, |a —~|}, and choose

) = {ﬁ for x,, <0

CC | v forz, >0.
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Consider the entropy solution p of (146). It is easy to see that p depends only on ¢ and z,,.
For each T" > 0 define:

§ = max{wy|p(T, - xm) = 3} (147)
¢ := min {xm\p(T, ) = ’y} ) (148)
Then the following lemma has an elementary proof:

Lemma 6.2. Let T > 0 and o € R be given. For any real o and 3, set e, &, and ( as above.
If we denote by (h™) and (h™)" the m~th components of the vector—valued functions h' and
h", then there exist constants C' and 0 (depending only on h) such that

max {|£ — T(h™) ()], |¢ = T(h™) ()|} < 2[(W™)"(a)|e + Ce fore <4§. (149)

Regular lagrangian flows Let u be a renormalized entropy solution of (108). Assume that
the initial data @ is bounded away from the origin, i.e. that || > ¢ > 0. Then, from the
maximum principle for scalar conservation laws, it turns out that the renormalized entropy
solution u is bounded away from zero as well, i.e. that |u| > ¢ > 0. Hence the angular parts
0 :=u/[u|, 0 := u/|u| are well defined and solve the transport equation (118).

Let @ be the unique regular lagrangian flow given by Theorem 3.22:

20(s,x) = g(p(s, B(s,x)))

®0,z) = =z

(150)

Then the following holds

Proposition 6.3. There exists a locally bounded map ¥ : RT x R™ — R™ such that
O(s,U(s,x)) = U(s,®(s,2)) = for L™ —a.e. (s,z). Moreover 0(t,x) = 0(V(t,z)).

Proof. Let {f,} € C* be a uniformly bounded sequence such that f, — g(p) in Lj,. and
{pn} C C* a sequence of positive functions such that

e |97 loo + [l pnlloe is uniformly bounded;

® p, — p and pn(07 ) - 10(07 ) in Llloc§

® Oipn+ D, - (pnfn) =0.
These approximating sequences can be constructed as in the in the proof of the existence
part of Theorem 3.22 (in particular see Step 1). Let ®,, be the solutions of the ODEs

%Cbn(& 'T) = fn(s, q)n(s, :B))

®,(0,z) = x.

Then for some constant C' we have C~! < det V,®,, < C. Thus, if we let ¥, : Rt xR™ — R™
be such that W(t, ®(t,z)) = (¢, x), then {||W¥,||Lo(jo,r1x )} for every T > 0 and every compact
set K C R™.

(151)
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From Theorem 3.22, ®,, converges to ® strongly in L}, .. Moreover, from the proof of the

stability property of Theorem 3.22, it follows easily that W,, — W strongly in L; . to some
bounded map ¥. From these convergence and from the bounds

C!' < detV,®, < C C' < detV,¥, < C,

it is easy to conclude that (¢, ®(t,z)) = (¢, U(t,x)) =  for L™ ae. (t,2).

Set 0(t, ) := 0(¥(t,x)), then, for £™-a.e. z, the function (-, ®(-, c)) is constant. There-
fore, by Proposition 3.5, we get that 6 solves (118). From Corollary 3.14 we conclude that
6=0. O

Proposition 6.4. For £™—a.e. x we have that:

(a) ®(-,x) is Lipschitz (and hence it is differentiable in t for £1-a.e. t);
(b) (t,®(t,x)) is a point of approzimate continuity of p for L1-a.e. t;
(c) L&(t,z) = g(p(t, ®(t,z)) for L -a.e. t.

Proof. Step 1 Consider again two sequences of smooth maps { f,,}, {p,} as in the proof of the
previous proposition. Denote by ®,, the solutions of (151) and set J,, := det(V,®,). From
Liouville’s Theorem it follows that 0,.J,, + div (f,J,) = 0. Since J,(0,-) = 1, the maximum
principle of Proposition 3.13 applied to the continuity equation d,w + div (f,w) = 0 yields
that C~1p, < J, < Cp,, and hence C~2 < J, < C%

Recall that ®,, — ® strongly in L} .. Since for every x the curves ®, (-, z) are uniformly
Lipschitz, we conclude that ®(-,z) is a Lipschitz curve for £™-a.e. x. This gives (a).

Step 2 Next, fix a ¢t and a subsequence (not relabeled) of ®,,(¢, -) which converges to ®(t, -)
in L], (R™) (such a subsequence exists for Z'-a.e. t). Let E C R™ be an open set. It is not

loc

difficult to show that
L(D(t,)HE)) < limsup L7 (Du(t, ) (E)) < C2L™(E). (152)

nloo
Hence, for #'a.e. t, this bound holds for every open set £. This property gives that for
Lloae. t, D(t,-)"! maps sets of measure zero into sets of measure zero. Thus (b) follows
from the fact that p is almost everywhere approximately continuous.

Step 3 The strong convergence of ®,, implies that, if h, € C(R x R™) converges locally
uniformly to h € C(R x R™), then h,(-, ®,) converges to h(-, ®) strongly in L},.. If h,, — h
strongly in L] . and it is uniformly bounded, applying Egorov’s theorem we find a closed set
F such that h,, converges locally uniformly to h on E and Z™ (R x R™\ E) is as small as
desired. Recall that ®,, is locally uniformly bounded. From Step 2 it follows that h,(-, ®,)

converges strongly to h(-, ®).
Step 4 Since ®,, solves (151) we have

B (t7) = x+/0 £o(r, @ (. 7)) dr (153)
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Applying Step 3 to h, = f, and h = g(p) we get a subsequence (not relabeled) of {®,}
such that f,(-, ®,) converges to g(p(-, P)) pointwise a.e. on R x R™. From the dominated
convergence theorem we get

b(t,r) = :U—l—/o g(p(r, ®(1,2)))dr for L™ -ae. (¢, ).

From this identity we easily conclude (c). O

6.2. Proof of Theorem 6.1. Theorem 6.1 is a corollary of Proposition 5.9 and of the
following

Proposition 6.5. Let k > 2, m > 3, and g € C} .. Then, for every ¢ € R¥\ {0} such that

g (|c]) # 0, there exists a sequence of initial data T, : R™ — R¥ such that
o |[@, — cllpv@m) + [T — ¢l — 0 forn T oo;
e U, =c on R™\ Bg(0) for some R > 0 independent of n;
o [f u, denotes the unique renormalized entropy solution of (108) with u,(0,-) = U,
then there exists v > 0 such that u,(t,-) ¢ BV (B.(0)) for every n and for every
t €0, 1].
When m = 2 the same statement holds if in addition g"(|c|) is parallel to ¢'(|c|) or ¢"(|¢c|) = 0.

Proof of Theorem 6.1. Let w, be the initial data of Proposition 6.5 and let » > 0 be such
that the corresponding renormalized entropy solutions u,(t,-) are not in BV (B,(0)) for any
t €]0,1[. Let u, be any other entropy solution of (108) with the same initial data. For
any any ¢ > ||,||e, We apply the argument of Step 3 of the proof of Proposition 5.9 to
the entropy h(|u|) := (Ju| — ¢)1jy>c. It turns out that A(|u]) = 0, from which we conclude
| tnllco < ||Tn|loo. Hence , is uniformly bounded.

Fix T €]0,1] and let v > 0 be the supremum of the nonnegative R’s such that u, €
BV (]0, T[xBg(0)). We want to bound « with a constant times r. From Proposition 5.9 we

get that 4, is a renormalized entropy solution on |0, 7[xB,(0). Therefore p, := |u,| is a
Kruzkov solution of
Otpn+ Dy - (Png(pn)) = 0 on |0, T[x B,(0)

From the finite speed of propagation of scalar conservation laws, it follows that there exists
positive constants 77 and ~; such that p, = p,, on ]0,71[xB,,(0). Moreover, we can choose

m=ze Tz (154)

where the constant ¢ > 0 depends only on ||, ||« on g.
Set 0,, = U, /pn and 6,, = u,/p,, with the convention that 6,, = 0 where p,, = 0 and 6,, =0
where p, = 0. Then 6,, and 6,, solve both the transport equation

at(pnw) + DCB ’ (png(pn)w) =0 in ]07 TI[XB%(O)

[onw] (0,-) = @y
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Thus, by the renormalization property, we get that w = |6,, — én| solves

Oi(pnw) + Dy - (png(pn)w) = 0 in |0, Tl[XB’Yl(O)

[onw] (0,-) = 0.

From Lemma 3.17, we conclude that there exists two positive constants v < v; and T, < T
such that w = 0 on |0, 73[x B,,(0), and that we can choose

Y2 > dm T, > T, (155)

where ¢ depends only on ||p,]lco < [[Un|lo and g.

Since ||y ||oo is uniformly bounded, the constants ¢ and ¢ in (154) and (155) can be chosen
independently of n. Recall that w, ¢ BV(]0,T3[xB,.(0)). This implies the desired bound
v < ccr. Indeed, if such a bound did not hold, then we would have ~, > r and hence u,, = 4,
on |0, T5[x B,(0). This would imply w, € BV]0, T5[x B, (0)m, which is a contradiction. [

In the next section we will give a proof of Proposition 6.5. But first we consider the special
case of system (108) when g = (f,0,...,0), that is

Opu+ Oy [f(Jul)u] = 0
(156)
u(0,-) = ug.

The following is a corollary of Proposition 6.5

Proposition 6.6. Let k > 2, m > 2 and c € R*\ {0} be such that f'(|c|) # 0. Then there
exists a sequence of initial data U, : R™ — R* such that
o |[@, — cllpv@m) + [[Tm — clloc — 0 for n T oo;
e U, =c on R™\ Bg(0) for some R > 0 independent of n;
o [f u, denotes the unique renormalized entropy solution of (156) with u,(0,-) = U,
then there exists v > 0 such that u,(t,-) & BVie(B.(0)) for every n and for every
t €0, 1].

Roughly speaking, the proof of Proposition 6.5 is based on the following remark: When
m = 3 we can choose initial data, close to a constant, in such a way that the behavior of the
renormalized entropy solutions of (108) is close to the behavior of solutions of (156). This
seems to be no longer true for m = 2, unless ¢”(|c|) is parallel to ¢'(|c|) (or ¢"(|¢|) = 0). Due
to this remark, we choose to give a quick self-contained proof of Proposition 6.6.

Remark 6.7. Concerning the behavior of wu,, for large times, in the case of Proposition 6.6
one can construct initial data w, such that u,(t,-) € BV, for any positive time t > 0. In
the case of Proposition 6.5 it is difficult to track what happens for large times, since in order
to carry on our proof we need that the rarefaction waves generated by |u,| do not interact.

Proof of Proposition 6.6. In the following, for any real number «, we denote by [a] the largest
integer which is less than or equal to a.
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For the sake of simplicity we prove the proposition when m = 2, f'(|c|) = 1, and f(|c|) = 0.
Only minor adjustments are needed to handle the general case. To simplify the notation, on

R? we will use the coordinates (z,y) in place of (z1,z3).
Let {m;} be a sequence of positive even numbers such that

Zmﬂ_i < 0.
i

Let 6 > 0 be so small that:

e f is injective on [|c| — 26, |¢| 4+ 20];
o [—6,0] < f([le] — 20, |c| +26)).

(157)

Then, for i sufficiently large, we define r; as the unique number in [—24, 26] such that f(|c|+
r;) = 27°. Notice that for i sufficiently large we have r; < 271, Set a = ¢/|c| and for every

i choose an a; € S¥! such that |a; —a =472
Let I; be the interval [27%, 27| and subdivide it in m; equal subintervals

12 o
(i ,2‘Z+‘7—{ jell, .. m.

m; m;

Il = {2—2' +
Next define the functions 9; : R — S*~1 as

vi(z,y) = {

a; ify € I; and [227] is odd
o otherwise

and the functions y; : R?> — R as

T ifyelf: for j even and x € [-M, M|
Xi(z,y) == § riy ify el for j odd and z € [-M, M]
0 otherwise .

Here M is a positive real number which will be chosen later. Finally we define

Pn = e+ 225 X
- Yi(z,y) ify € I; for some i > n and z € [-M, M]
On(z,y) = .
« otherwise |,
Up, = ﬁnén .

Figure 1 gives a picture of the partition of R? on which we based the definition of .

Clearly ||, — ¢||oo < |¢||an —a|+ 1. Hence, as n T oo we have ||@,, — ||« — 0. Moreover
notice that @, — c is supported on [—M, M] x [0,1]. From now on we assume that M will

be chosen large than 1.
In order to show that

Hﬂn — CHBV(]RQ) — O
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p,, 1s constant 0,, is constant
on these strips on these rectangles

Y Y

o T

FIGURE 1. Decomposition of the plane in open sets where p,, (resp. 6,,) is constant.

it is sufficient to show

17, — lelll Bv(—2a2mp)y — 0 (158)
10, — ol pv(—2nr20m2) — O (159)
Note that
17, = lelll Bv(-2mangzy < 4T, — cl|aoM? + 2M Z m;r; + (4M + 2)r,
>n
< Al — cllooM? +4M Y " m27 + (4M + 2)r,
>n

and since Y 27'm; is summable, we get (158). Moreover,
16r — allpy—anronpy < 4l0n — alloM?

+ 2M Y 272 2M Y [ (i 1) 7] + (AM 4 2)n

>n >n
and the summability of > i72 gives (159).
Now we let u,, be the unique renormalized solution of (156). Recall that p,, := |u,| is the

unique entropy solution of (117) with initial data p,,, which in our case is given by

Oipn + 0u(f(pn)pn) = 0

pn(07 ) = Pp -

Hence, if p,, did not depend on z, we would have p,(t,y,x) = p,(x,y). Since p,, is “trun-
cated”, this is not true. However, 5, (-,y) is constant on [—M, M] and by the finite speed of
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propagation of scalar laws it follows that p, (¢, z,vy) = p,(z,v) if (¢, z,y) belongs to the cone

{\/yQ—i-ix2 < C(M—t)} )

where ¢ is a constant which depends only on ||5,,||co. Thus, for every A > 1, we can choose
M large enough (but independent of n) so that

p(t,z,y) = py(z,y)  fort€0,1] and (z,y) € [-A, A] x [0,1] .
To find the angular part 0, (¢, z,y) := u,/|u,|(t,z,y) we use the fact that 6, is constant on
the curves @, (-, z), where ®,, solves the ODEs
#0n(s.2,y) = glpa(s, Culs, 2, y)))

®,(0,2,y) = (z,9)
in the sense of Propositions 6.3 and 6.4. Hence it follows that, for .#3-a.e. (7,z1,y;) there
is (xg,yo) € R? such that:

e The curve ®(-, zg,yo) is Lipschitz;

o O(7,20,90) = (¥1,91);
o O(-,x0,yp) solves (160) in the sense of Proposition 6.4.

(160)

Therefore every connected component of the intersection of the curve ®(-, xg, yo) with [0, 1] x
[—\, A] x [0,1] is a straight segment lying on a plane {y = const}. If (1,z1,y1) € [0,1]® C
[0,1] x [=A, A] x [0, 1], one of these segments contains (7, z1, ;) and hence its slope is given
by f(pn(T,21,91)). If we choose A large enough, the curve ®(-, zg, yo) remains “trapped” on
the plane {y = y; } for the whole time interval |0, 7[. Note that this choice of A depends only
on f and on the L*> norm of p,, which is uniformly bounded.

From now on, we assume that A (and hence M) have been chosen so to satisfy the require-
ment above. Recall that for Z3-a.e. (¢,z,y) € [0,1], we have p,(¢,z,y) = |c| + r; for some
i, and hence f(p,(t,7,y))) = 27% From the previous discussion we conclude the following
formulas, valid for #?-a.e. (t,z,y) € [0,1]*

o If 5, (z,y) = |c|, then 0,,(t,z,y) = O, (x,y);

o If 5, (7, y) = |c| + 7, then 0, (t, x,y) = O, (x — 127, y).
Hence, for j € {1,m; — 1}, i >mn,and [ € {1,...,2" — 1}, the function 6, (¢,-) jumps on the
segments

—i

) 2 ) )
Siil = {y = 27"+ ]— xe[l27 (1 +t)2l]} )

m;

See Figure 2.
The total amount of this jump is given by

Jy = / )(9n)+(t,x,y)— (Hn)_(t,x,y)’djfl(x) — 127y — ] = 12772
s

351,1
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0,(t,-) is constant on
these rectangles

\ >[j

2

| W
the segments S;;;

FIGURE 2. The function 6,(t,-) and the segments S, ;.

Thus
m;—120—1 . "
168, ) 5y oy = Z Z ZJ = 2(22—1)<mi—1>Ji > 5@%—1)@'—2. (161)
zn )= = 2>n zn

Clearly, since |u,|(t,-) € BVNL*> for every ¢ and it is bounded away from zero, it is sufficient
to show that 6,(,-) & BV([0,1]?) for any ¢ €]0, 1].

Recall that the bound (157) is the only condition required on the sequence of even numbers
{m;}. If we set m; = 2i%, then (157) is clearly satisfied, whereas (161) is infinite. O

6.3. Proof of Proposition 6.5.

Proof of Proposition 6.5. As in the proof of Proposition 6.6, for 5 € R we denote by [5] the
largest integer which is less than or equal to (.

The idea is to mimic the construction of Proposition 6.6. Hence we want to start with
piecewise constant initial moduli p,, which are constant along m — 1 orthogonal directions
e1,-..,en_1 and oscillate along the direction w orthogonal to each e;. The solution p,, of the
scalar law (117) will then be constant along the directions ey, ..., e,_1. Moreover, for small
times, this solution will consist of shocks and rarefaction waves which do not interact. We
will impose two requirements on this construction:

e We choose w and the sizes and heights of the oscillations in such a way that the
distinct shocks and rarefaction waves do not interact for times less than 1. Hence, in
this range of times, between each couple of nearby shock and rarefaction wave, there
will be a space-time strip on which p is constant (see Figure 3).

e We choose w in such a way that the trajectories of solutions of (150) are “trapped”
in the strips for a sufficiently long time.
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shocks rarefaction waves

/ \ \ Vo Vo
v v v [N R
\ \ \ Vv U

\ v v v Vo v
v v v v [ Va
v \ \ \ [
v \ \ Vo
\ \ \ [
\ v v [
| v v Vo
\ Vo
h \ \ \ Vo
\ \ \ \ Vo
v v v v [
v \ \ Vo
\ v \ v Vo
\ \ \ \
\ \ \ \

p is constant
on these strips (denoted later by S; ;)

W = I3

FIGURE 3. A (t,w)-slice of the evolution of p,.

Finally we choose initial data 6, which oscillate along a direction perpendicular to w, in
such a way that in the strip mentioned above 6,, reproduce the behavior of the construction
of Proposition 6.6.

These requirements translate into geometric conditions on w and into analytical ones on
the various parameters which govern the oscillations. When m > 3 and ¢ is not constant we
can always satisfy these conditions. When m = 2, we are able to do it only in some cases.

Since the construction is the same, we only present the proof when m > 3 and, without
loosing our generality, we assume m = 3. We denote by h the function given by h(p) = pg(p)
and by [ the positive real number |c|. Clearly there exists a unit vector w € R? such that

w-g(B) = w-N(P) (162)
w-g'(B) = 0 (163)
w-h"(B) = 0. (164)

Indeed, since W' (3) = g(B) + B4’ (B), (162) reduces to (163). Thus, the conditions above
reduce to find a unit vector w € R which is perpendicular to both the vectors ¢’(3) and
h"(3). We fix an orthonormal system of coordinates in R* in such a way that w = (0,0, 1).

Step 1 Construction of the modulus
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Let {0} be a sequence of vanishing positive real numbers such that > o, < oo and let
I; C R be the intervals

I = [0,04] I, = [Z UZ»,ZUZ»] )

i<l—1 i<l

Let m; be a strictly increasing sequence of even integers and divide every [; in m; equal
subintervals I/ for j € {1,...m}. Finally, let {a;} be a vanishing sequence of real numbers
and set

in [ B4a ifas e I for some even j
P, 2 25) 1= { B otherwise.

Then, let p be the entropy solution of the Cauchy problem
Op + divg[h(p)] = 0
| (165)
p(0,-) = p"
Clearly p is a function of ¢ and x3 only. Moreover, recalling that (h*)”(3) = 0, we can apply
Lemma 6.2 in order to get the following property.
(T) For every Cy > 0, there exists a Cy > 0 such that if
a]

2> Cha? 166
m = 24 , ( )

then every [ lj contains a subinterval Jlj such that
— The length of Jj is bigger than Ciaj;
— For every (t,£1,&2,&3) € [0,1] x R? x J we have
P(@ §1,62,83 + t(hg)/(ﬁ)) = p(O, 51752753) . (167)

For each couple j,1 we let \S; ; be the strip
Sij o= {(t,xl,xg,xg)} 0<t<1 and (z3—thy(B)) € Jlj}

Step 2 The flux generated by p.
Denote by Br C R3 the ball of radius R centered at the origin. It is easy to check that
there exists a constant C3 such that:

HpmHBV(BR) S O3R3 + C’;gfi2 (Z(ml + 1)|6Ll‘> . (168)

l

Hence, to insure that p € BV, it is sufficient to assume

> (mi+ Day] < 0. (169)
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Assuming that this condition is fulfilled, from the classical result of Kruzhkov we get the
existence of a constant M such that [|p|lsvoiixey < M| p™|Bv( Thus we can
consider the regular Lagrangian flow ¢ for the ODE

L0(s,) = glp(s,®(s,-)))

¢(0,2) =z

Brymt)*

(see Propositions 6.3 and 6.4). Fix any strip S;; as defined in Step 1. Clearly, for a.e. z,
every connected component of the intersection of the trajectory curve v, := {®(t, z)|t € R}
with the strip S ; is a straight segment. If j is even, then this segment is parallel to (1, g(5)),
otherwise it is parallel to (1, g(5+ @;)). Thus, if j is even and (¢, z) € S;;, then the portion
of trajectory

Tio = {®(s,&) for & such that ®(¢,£) = z and for s € [0,]}

is a straight segment contained in 5 ;.
Let us now turn to the case where j is odd. Note that

9B +a) = g(B) +g' (B + O(af). (170)
Thanks to the properties of w = (0,0, 1), we have that the segments of the form
{(tE+tg(B) +ag (P)[0<t <1 and (0,€) € Sy} (171)

are subsets of S; ;. Recall (T) of Step 1. From (170) and (171) it follows that, for C; in (T)
sufficiently large, there exists a subinterval K ; such that:

e The length of K is bigger than af;
e Ift €[0,1] and z3 — t¢'(5) € K, then the set

Tio = {®(s,&)|s€[0,f] and ®(t,€) =z}

is a straight segment contained in S ;.
From now on we fix a C; (and hence Cy) in such a way to ensure the existence of the segments
K ;.

Step 3 Construction of the angular part.

We recall that g5(5) = ¢'(8) - w = 0 and that g5(5) # 0. Since the construction of the
previous step is independent of the choice of the coordinates x; and x5, we can choose them
so that ¢'(8) = (0,C4,0), with Cy > 0. Choose the g;’s in such a way that

9B+ ar) — g2(B) = 27"

Then, clearly, there exists a constant C5 such that

—_— S a; §C527l. (172)
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Set n = (5 and let n; € S*~! be such that | — n| = [72. Then define

in _ [ m ifzs € I and [2'z,] is even
0% (@1, 22, m) = { n otherwise.

Set u™ := p"@". Let u be the renormalized entropy solution of

Oyu~+div ,[g(Ju))u] = 0
(173)

u(0,) = u™.
We denote by 0 the angular part u/|u|. According to Propositions 6.3 and 6.4, 6 is given by
the formula ‘

O(t,x) = 0" (¥(t,x)),
where U is a map such that ®(¢,U(t,z)) = U(t, ®(¢,z)) = z for L*ae. (t,z). In what
follows we denote by ®; ! the map W(t,-).

Step 4 Choice of parameters.

We will prove that, for an appropriate choice of the various parameters, u"* € BV,
whereas u(t,-) is not in BV}, for any ¢t €]0,1]. Recall that p = |u™| and p(t,-) = |ul(t, -)
are both in BV}, and that Cy 1 < p < Oy for some positive constant Cg. Thus our goal is to
choose the parameters o; and m; in such a way that 6" € BV}, and 0(t, ) & BV}, for every
t €]0,1]. Note that, for some constant C7,

. 2l
in 3 2 = -2
R —
10| pv (B < CiR*+ C7R <§ jl2m+§ 1 ) : (174)
l l

Hence, choosing 0; = 27! we conclude that §”* € BV (Bg) for every R > 0.
Now, we choose m; = 212, and since from (172) we have a; < C227!, we clearly fulfill the
condition (169), which is the only one we required on the sequence {m,;}. Thus we get
OL _ -29-l41
my
Since from (172) we have a < C5272, clearly (166) is fulfilled for any constant Cy, provided
[ is large enough. Thus, we get the existence of a constant Cg such that the segments K ;
of Step 2 exist for any [ > Cs.
Fix t €]0,1] and | > Cs. Recalling that 6(¢,z) = 6™(®,*(z)) and taking into account the
properties of ® proved in the Step 2, we conclude what follows

o If j € [1,my] is even and & ; belongs to the segment .J; ;, then

' 3 o if [2%(z — tg%(3))] is even
0(t, o1, 22,65+ tg°(0)) = { n  otherwise.

o If j € [1,my] is odd and & ; belongs to the segment K ;, then

. 3 o if [2Y(ze — tg*(B + @))] is even
Ot 21, 22,815+ 19°(8)) = { n  otherwise.
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Recall that go(3 + a;) — go(8) = 271, Thus, for any j € [1,m; — 1], we have

Ay = / |0(t, 21,22, &5 + tg*(B8)) — O(t, w1, 2, & 41 + tg°(8))| dawy das
(0,1]2

Thus,
-1 212 -1
Sy A=ty mlp =ty T = . (175)
1>Cs 1<j<m;—1 1>Cy 1>C%

Note that if 6(¢, -) were locally in BV, then 0,,0(t, -) would be a Radon measure. Denote by
o the total variation measure of 0,,60(¢,-) and by S;; the stripes
Sz,j = {(551,952,963)} (1751,372) € [07 1]2 and (553 - t93(ﬂ)) S [fl,jafl,jJrl]}-

Then A;; < p(S;). The S;; are pairwise disjoint and for R’ sufficiently large, they are all
contained in the ball Bg/. Thus, we would get

S Y A=Y Y &) < a0 <
>Cs 1<j<m;—1 >Cs 1<j<m;—1

which contradicts (175). Hence, we conclude that 0(¢,-) is not in BV (Bpg/) for any ¢ €]0, 1].

Step 5 Truncation of the construction and conclusion.
Next, define 4" : R® — R? as

" u™(xy, w9, x3) if z3 € I for some [ > n
n L ) 5
ty' (21, 02, 25) = { c otherwise.
Clearly [|42 — ¢|los + ||@" — ¢|| Bv () — 0 for every bounded open set Q@ C R*. Moreover, if
we denote by 4, the renormalized entropy solution of

Oyu~+div ,[g(|u))u] = 0

4 (176)
u(0, ) = Uy,
then 1,(t,-) € BV (Bg) for any t €]0,1]. Finally, let M > 0 and define
_ (g, g, 1) a4 xi+ai< M
Un(T1, 22, T3) 1= { c otherwise .
Let u,, be the renormalized entropy solution of
Oyu ~+ div [g(Ju))u] = 0
(177)

u(0,) = y.

For any M’ > 0, by the finite speed of propagation for scalar laws, if we choose M sufficiently
large, then |u,| = |4,| on [0, 1] x By(0). Using Lemma 3.17 and arguing as in the proof of
Theorem 6.1, we conclude that u,, = 4, on [0, 1] X Bgr/(0), provided M’ is chosen sufficiently
large. 0
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7. PARTIAL REGULARITY AND TRACE PROPERTIES OF SOLUTIONS TO TRANSPORT
EQUATIONS

In this chapter we will show two regularity properties of solutions to transport equations
proved in [6]. The first one is a trace property. Namely, if

e B is a bounded BV vector field and p a Radon measure,
e w is a bounded solution of the equation

D-(wB) = p, (178)
e and ¥ is a non—characteristic hypersurface for (178),
then w has a strong L' trace on .
More precisely

Theorem 7.1. Let B be a bounded BV wvector field in Q C R? and w an L™ function such
that D - (wB) is a Radon measure. Let 3 be an oriented C' hypersurface with normal v such
that v+ BY # 0 % —a.e. on ¥. Then for % 1 —a.e. x € X there exists w'(z) € R such
that

lim—/ w(y) — wt(z)|dy = 0. (179)
Bt (z,v)

Remark 7.2. In [6] the authors proved this result for the larger class of vector fields B of
bounded deformation. The proof of this stronger result is not substantially different but it
needs some adjustments, which go beyond the aims of these notes.

The second property concerns Lebesgue points of w. Before stating it let us introduce the
tangential set of a BV vector field.
Definition 7.3 (Tangential set of B). Let B € BVloS(Q,Rd), let |DB| denote the total
variation of its distributional derivative and denote by E the Borel set of points x € ) s.t.
e The following limit exists and is finite:
. DB(B,(z))
M(z) == lim ——~.
(z) rl0 |DB|(B,(x))
e The Lebesque limit B(x) exists.
We call tangential set of B the Borel set

E := {x € F such that M(z) - B(z) = 0} .
Theorem 7.4. Let B € BVi,o(Q,R?) and let w € LZ,(Q) be such that D - (Bw) is a locally

loc
finite Radon measure in Q2. Then |D°Bl|-a.e. point x ¢ E is a Lebesgue point for w, and

hence for any such x there exists w(x) such that
lim—n/ w(y) — w()|dy = 0. (180)
By ()

The proof of this Theorem relies on Theorem 7.1, on the Alberti’s Rank one Theorem 2.13
and on the coarea formula.
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7.1. Anzellotti’s weak trace for measure—divergence bounded vector fields. In this
section we recall some basic facts about the trace properties of vector fields whose divergence
is a measure (see [12], the unpublished work [14], [20], and finally [6]).

Thus, let U € L2, (2, RY) be such that its distributional divergence D-U is a measure with

locally finite variation in 2. The starting point is to define for every C! open set €' C 2 the
distribution Tr(U, oY) as

(Tr(U,00), ) = Vo -U —|—/ od [D - U] Vo € CX(9). (181)

It was proved in [12] that

Proposition 7.5. There ezists a unique g € LS. (2N OQY) such that

loc

(TU.09). ) = [ gpdr.
oY

Proof. Clearly, the support of the distribution Tr(U, 9€’) is contained in 0.
Next we claim that for any ¢ € C°(Q2) and any € > 0 there exists ¢. € C2°(Q2) such that
(i) pe — pe vanishes in a neighborhood of 9V

(i) [[elloo < llolloos
(i) ¢ =0o0n QL :={zx € Q :dist (z,00) > e};

(V) Jor IV@el < e+ foqlel-
Having such a ¢. we can easily estimate

[(Tr(U,0), )| = KTx(U,09), )| <

[ oD 0 4 101 [ 1964
194 94

< [ 1D U1 Wi ([ 1ol +2)
Q\QL oY
< lellelD - U@\ )+ [0lmer ([ 11+2)

Letting ¢ | 0 we get [(Tr(U,00),¢)| < [|Ullsoll¢llza0y- This estimate is valid for any
p € C(N) and therefore implies the claim of the Proposition.

It remains to prove the existence of the function ¢.. Using the fact that 09 is locally
the graph of a C'! function, we can find a family of open sets {2, }ren such that Q, CC Q,
Qn 19 and

limsup | D1g, |(RY) < |D1g|(RY).
hToo
Let ¢ € C®(Q) and € > 0 be given and consider h so large that Q. C Q. Let {ns}s50
be a standard family of mollifiers and choose § = 0(h) < dist (02, 0€2,) so small that

QL C {1q, *nsny = 1}. Set ¢ := Lq, * sy and @. = ¢(1 —(p). Clearly ¢, satisfies (i), (ii),
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and (iii). Therefore it remains to check that (iv) holds for h sufficiently large. Indeed, note
that

fimsup [ V6] < |D1e|(R).

Too

Since ¢, — 1q in L', for every open set A we get
lim inf/ V(| > |D1g|(A)

for every open set A. Therefore we conclude that the measures |V(|.Z¢ converges weakly*
to 1L 0CY. Hence we have

Vo] < / (1— )|Vl + / olIVe — / ol dAt .
Q QO Q! a9

This shows that (iv) holds for h sufficiently large, and thus completes the proof of the
Proposition. [l

By a slight abuse of notation, we denote the function g by Tr(U, 0') as well.

Remark 7.6. Clearly the notion of trace is local, that is, if A C 921 N0y is relatively open
and the outer normals of 0y and 0y coincide on X, then Tr(U,0Q;) = Tr(U, 0€2) on 3.

Given an oriented C' hypersurface X, we can always view it locally as the boundary of
an open set {); having vy as unit exterior normal. In this way, we can define the positive
trace Tr' (U, X)) as Tr(U, 09Q;) and the negative trace Tr™ (U, ) as —Tr(U, Qy \ Q1) where Q,
is any open set such that € CC Qo CC €. The locality property of Remark 7.6 gives that
both Tr~ (U, X)) and Tr* (U, X)) are well defined.

In order to extend the notion of trace to countably J#¢ !-rectifiable sets, we need a
stronger locality property: In [12] it was proved that

Proposition 7.7. If Q1,0 CC Q are two C' open sets, then
Tr(U,0Q) = Tr(U, 08s) A a.e. on 00 NON,, (182)
if the exterior unit normals coincide on 02y N 0€)s.

Here we follow the recent proof of [6].

Proof. Set p:=|D-U|LQ; UQs and E := 9Q; NQy, and denote by T; the L>(9€;) function
which gives the trace Tr(U, 0€;). Note thatfrom our assumptions it follows that u(E) = 0.
This implies that
(i) u(B,(z)) = o(r®=!) for 5% '~a.e. x € E (see for instance Theorem 2.53 of [11]);
(i) #? 'a.e. x € E is a Lebesgue point for 7 and T.

It suffices to show T} (z) = Ty(z) for any x satisfying both (i) and (ii).
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Thus, let = be any such point and fix a test function y € C°(B;(0)) with 0 < x < 1. Set
Xr(y) :== x((y — x)/r) for every positive 7. When r is small enough, we get supp (x,) C

and thus
o9 Q; Q;
Hence,
/ Tlxr—/ Too| < || Vx U - VXT-U+/xrd[D-U]—/ er[D-U]'.
o0 00 04 Qo Q1 Qo

Note that, since = is a Lebesgue point for both T;’s, for some constant C, (depending only

on x) we have
/ Ter _/ TQXT
8(21 BQQ

Moreover C, is positive if, for instance, y = 1 on By 5(0). Therefore it suffices to show that

lim =1
plO T

— O\|Ti(x) - To(w)]. (183)

li
pl0 Td

er : U' =0 (184)

and

wip-v)- [ xrdw-m\ 0 (185)

pl0 rd—1 0

to conclude that the RHS of (183) vanishes and T3 (z) = T3(x).
Since |Vx,| > C/r, we have

/ U-VXT—/ UV,
Q1 QQ

which shows (184).
On the other hand

[ xa-vi- [ xrd[D-U]' < ol D- U\ 2 U2\ 20) 1 B, ()

(B () = o(r™™),
which implies (185). O

< gzd((gl \ D U\ )N B(x) = o(rt ).

IN

Using the decomposition of a rectifiable set ¥ in pieces of C* hypersurfaces we can define
an orientation of ¥ and the normal traces of U on X as follows:

Definition 7.8. By the rectifiability property we can find countably many oriented C* hy-
persurfaces ¥; and pairwise disjoint Borel sets E; C ¥; N'Y such that 471 (3 \ U;E;) = 0;
then we define vs(z) equal to the classical normal to ¥; for any v € E;. Analogously, we
define

(U, %) :=TcHU, %), T (U,%) =T (U,%) A ae. on F;.
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The locality property of Proposition 7.7 ensures that this definition depends on the ori-
entation vy, as in the case of oriented C' hypersurfaces, but, up to S#% 1-negligible sets, it
does not depend on the choice of ¥; and F;.

7.2. Further properties of Anzellotti’s weak trace. In this section we follow [6] and
collect three important properties of the trace of bounded vector fields with measure diver-
gence.

Proposition 7.9 (Jump part of D -U). Let the divergence of U € L2 (2,RY) be a measure
with locally finite variation in Q). Then:

(a) |D-U|(E) =0 for any %' -negligible set E C ).
(b) If ¥ C Q is a C hypersurface then
D-ULY = (Tt'(U,8) — Tr (U, X)) 4L, (186)

Thanks to Proposition 7.9(a) it turns out that for any U € L (Q, RY) whose divergence

loc
is a locally finite measure in {2 there exist a Borel function f and a set J = Jp.;y such that

DI U = fo*LJpy. (187)

Proposition 7.10 (Fubini’s Theorem for traces). Let U be as above and let F € C*(Q).
Then

Tr(U,0{F >t})=U-v A" ae onQNO{F >t}

for L'-a.e. t € R, where v denotes the exterior unit normal to {F > t}.

Notice that the coarea formula gives #7471 ({F = t}N{|VF| = 0}) = 0 for Z*-a.e. t € R.
Therefore the theory of traces applies to the sets 3y = {F =t} for £1-ae. t € R.

Theorem 7.11 (Weak continuity of traces). Let U € L*®(Q,R%) be such that D - U is a
Radon measure and let f € C*(R41). Fort € R consider the surfaces

X = {x : a:d:t+f(;1:1,...,xd,1)}ﬂ9
and set
(1, ... g 1) = Tr(U,Et)(xl,...,xd_l,f(xl,...,xd_l)—i—t).

If D C R 4s an open set and I C R an interval such that Q' = {(2, f(z') + 1) : (2/,t) €
D x I} C Q, then for every ty € I we have cu—*ay, in L®(D) ast — t.

Proof of Proposition 7.9. Claim (a) has been proved in Lemma 2.4. Concerning claim (b),
by the locality of the statement it suffices to prove that, if A CC Q and F € C*(A) are such
that XN A={F =0} and VF # 0 on A, then

/ od[D U] = / o [Te(U, 0{F > 0}) + Te(U,0{F < 0})]  for every ¢ € C=(A).
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Note that

/E pdD-U] = /A pd[D - U] - /{F>0}‘0d[D'U]_ /{M} pd[D - U]

= —/V@-U—l—/ V@-U+/<,0Tr(U,8{F>O})
A {F>0} s
+/ Vgo-U+/90Tr(U, o{F < 0})
{F<0} by

- / Q[Tr(U,0{F > 0}) + Tr(U,0{F < 0})]¢.
O

Proof of Proposition 7.10. The statement of the Proposition is trivial if U is smooth. In the
general case we will prove it by approximation.

Indeed let U be a field as in the statement of the Proposition, choose a standard family of
mollifiers {7.}.~0 and set U, := U *n.. Recall that |D-U.|—*|D-U| in the sense of measures.
Note that the set S :={t:|D-U|(X;) = 0} is at most countable. A For ¢ & S we have

o Tr"(U,%;) = Tr™ (U, %;). by Proposition 7.9;
o (D -U)LF >t}—~*(D-U)L{F >t} and (D -U.)L{F < t}—~*(D-U)L{F < t} by
Proposition 2.1.
Therefore, from the Definition of trace it follows that

Te(U., 9{F > t}) — Te(U, 9{F > t})

in the sense of distributions for every t ¢ S.
Since U, is smooth, Tr(U,, 0{F > t}) = U. - 1, and therefore it suffices to prove that

e There exists a vanishing sequence {ej }reny C R such that
U, v—=U-v in L1(3))
for £l-ae. t.
Such a property holds for every “fast” converging subsequence {U,, }, i.e. such that

oo

Z HUEh — UHLI(Q) < .

h=1

Indeed for such a subsequence we can use the coarea formula to estimate
[0~ Vloesdt < Y [ 10 = Ul de
R w JR
< 3 [IVRI = U1 < [1Fller S0, = Ul < oo

h 79 h

Thus, for £'-a.e. t the series Y, ||U., — Ul|11(x,) must be finite, and this implies that for
any such ¢, U., — U strongly in L'(%;). d
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Proof of Theorem 7.11. Let p € C2°(D) be given and consider the function ¢ € C() given
by ¥ (x', z4) = @(2'). Tt is not difficult to see that ¥ can be extended to a function in C}(Q).

Next, set o(a’) := /1 + |V f(2')]? and for every ¢t > ¢, define the open set
Q = {(@, f(@")+7) : 2’ €D, 7€y, t[}.

In analogous way we define €2; for ¢t < t5. Then, using the definition of trace, we easily get

| )o@ aule') = (o) d

= /69 (Tr+(U, EQ(I)’(ﬁ(I) — Tl"i(U, Eto)(x)l/)(l’)) djfdil(x)

=, ViU — g #}d[D-U]‘ < IVl @i 1Uso 2] + [ @]oo | D - U(€2) -

Since the last expressions converge to 0 as t — ty, we get that

/Dcp(a:')a(a:’) (ozt(a:') — (a:')) di’ — 0

for every ¢ € C°(D). Since ||a¢|| is bounded by ||U]|«, we conclude that ayo converges
weakly* in L>*(D) to ay,0. Note that ¢ > 1, and hence a;—*ay,, which is the desired
conclusion. 0

7.3. Change of variables for traces. This section is devoted to prove the core result of
[6], namely the following “chain rule” for traces:

Theorem 7.12 (Change of variables for traces). Let B € BV N L>®(Q,RY) and w € L>(Q)
be such that D-(wB) is a Radon measure. If Q' CC ) is an open domain with a C* boundary
and h € C1(R¥), then

Tr(wB, o)

Tr(h(w)B,0Q') = h ( Tr(B,0)

) Tr(B, 0 A q.e. on OSY.

Here we use the convention that when Tr(B, 0 )(z) = 0, the expression

Tr(wB, o) (x)
( Tr(B, 0 )(x)

) Te(B, 09)(z)

is zero as well.

Remark 7.13. In [6] the authors proved the previous Theorem for the class of vector fields
B of bounded deformation (compare with Remark 7.2).

In order to prove the Theorem, we need the following renormalization lemma
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Lemma 7.14. Let B, w, and h be as above. Then D - (h(w)B) is a Radon measure and, if
R = ||w||c, then

D (hw)B)| < (VA= (a0 (ID - (wB)| + 2R|D* - B)

Oh
+ su h(v) — v'— (v D - B|.
(Ln b= 3w 5t]) -

Proof. Let {ns} be a family of standard mollifiers and set ws := w * 5, Ty := (D - (wB) *
ns — D - (wsB). Then we compute

D - h(ws) = A gﬁ (ws) (D . (Bwi)) * N5 + Z %(w(;)Tg

+ (h(wg) — gfl (wg)w§> D-B.

Using the commutator estimate of Proposition 4.6 and Lemma 4.8 we easily conclude (com-
pare with the proof of Theorem 4.1). O

Proof of Theorem 7.12. 1t is not restrictive to assume that the larger open set €2 is bounded
and it has a C'! boundary.

Step 1 Let Q" = Q\ (. In this step we prove that

Tr(wB,0Q")
Tr(B, 0Q)

under the assumption that the components of B and w are bounded and belong to the
Sobolev space WH(Q2”). Indeed, the identity is trivial if both w and B are continuous
up to the boundary, and the proof of the general case can be immediately achieved by a
density argument based on the strong continuity of the trace operator from WhH(Q") to
LY0Q", #411.0Q") (see for instance Theorem 3.88 of [11]).

Tr(h(w)B,0Y") = h ( ) Tr(B,0Q") A ae. on 09,

Step 2 In this step we prove the general case. Let us apply Gagliardo’s Theorem (see [33])
on the surjectivity of the trace operator from Wh! into L! to obtain a bounded vector field
By € WHH(Q"; R?) whose trace on 99 C 99" is equal to the trace of B, seen as a function
in BV (§Y). In particular Tr(B, 0€Y) = —Tr(B;,0Q"). Defining

o [ B@) ifre®
B(z) = { Bi(z) ifxe

it turns out that B € BV () and that
|DB|(69) = 0. (188)

Let us consider the function 6 := Tr(wB,d)/Tr(B,0) (set equal to 0 wherever the
denominator is 0) and let us prove that ||0||p@q) is less than ||w||pe(). Indeed, writing
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Q' as the 0-level set of a C'! function F with [VF| > 0 on Q' and {F =t} C Q' for ¢t >0
sufficiently small, by Proposition 7.10 we have

—||wl| g Tr(B,0{F > t}) < Tr(wB,0{F > t})
< lwllzee@nTe(B, 0{F > t})
A Lae. on {F =t} for L-a.e. t > 0 sufficiently small. Passing to the limit as ¢ | 0 and
using Theorem 7.11 we recover the same inequality on {F' = 0}, proving the boundedness of
6.

Now, still using Gagliardo’s theorem, we can find a bounded function w; € WhH(Q)"; R¥)
whose trace on 0 is given by 6, so that the normal trace of wy;B; on 09" is equal to
Tr(w;B,09) on the whole of 0§Y. Defining

oy Jw(x) ifxelY
(w) = { wi(x) ifz e,

by Proposition 7.9 we obtain
|D - (W'B)|(dY)=0 i=1,... k. (189)
Let us apply now Lemma 7.14 and (188), (189), to obtain that the divergence of the vector

field h()B is a measure with finite total variation in €2, whose restriction to 99 vanishes.
As a consequence, Proposition 7.9 gives

Tr (h(0)B,0Q) = Tr~(h(w)B,0) A" '-ae. on O (190)

(here, by a slight abuse of notation, we consider 9§’ as a C*! oriented surface whose orienting
normal coincides with the outer normal to 0€).

By applying (190), Step 1, and finally our choice of B; and w; the following chain of
equalities holds s#9 '-a.e. on 0Q:

Tr(h(w)B,0Q) = Trt(h(d)B,0) = Tr~ (h(w)B, )

Tr(w, By, 0" ,
= Tr(h(w;)B;,09Q") = h ( ff(fé’él : 50 )) Tr(By, 0Q")
B Tr(wB, oY) ,
= <—Tr(B, FI%D) ) Tr(B, 05Y).

O

7.4. Proof of Theorem 7.1. In this section we combine the change of variables for traces
with a blow—up argument in order to prove Theorem 7.1.

Proof. Let ¥ be as in the statement. Without loss of generality we can assume that ¥ is the
boundary of some open set € CC 2, and that the normal v to ¥ is the outer normal of €.
Arguing as in the proof of Theorem 7.12; we can build a vector field BeBVN L>(Q) and
a bounded function w such that

° w:wandézBonQ\Q’;

e |D-(wB)|(0) = |DBJ|(02) = 0.



NOTES ON HYPERBOLIC SYSTEMS OF CONSERVATION LAWS AND TRANSPORT EQUATIONS 77

Given any x € 00, note that
10 B ()

=0
rl0 Td

and thus it suffices to prove the claim for w and B. In order to simplify the notation, from
now on we will write w and B instead of w and B. Moreover, note that the change of
variables for traces implies that |D - (w?B)|(9') = 0.

Next, fix any x € J such that Tr(B,0Q')(z) - v # 0 and choose a system of coordinates
(1,...,Tq-1,24) = (2/,24) in such a way that v = (0,...,0,1).

From now on we simply write B(z) for Tr(B, 0 )(x) and for any r > 0 consider the d — 1
dimensional cube

C, = {37+ (Y155 ¥a-1,0) = Jyl < 7“} )
the d-dimensional parallelogram
Q, = {y +pB(x) : ye Cy,lp| < ’I“}

and the open set Q := Q, \ . We denote by 2« the volume of Q; (that is, a = |B(x) - v]).
Clearly, there exists constant C such that | B, (z,v)\ Q| = o(r?), and therefore it suffices
Tr(wB, o) (x)

to prove that
I 1 /
im —
r0 74 J ot @) B(z)

We will prove that this holds for any point  which satisfy the following requirements:
(a) z is a Lebesgue point for Tr(wB,dQ') and Tr(w?*B,d'), that is

lim 1 / DTr(wB, oY) (y) — Tr(wB, ) (x)|
OV NBr(x)

dy = 0. (191)

w\Yy) —

rlo rd=1
+|Tr(w’B, o) (y) — Tr(wZB,aQ/)(x)” dy = 0,

and it is a Lebesgue point for B, that is
iim = [ 1B~ B)ldy = 0,
By (x)

(b) B(x) - vTr(w?B,0Q) = [Tr(wB, 0Q)]%;

(c) [D - (wB)|(B,(x)) +|D - (w?B)|(B:(x)) = o(r*™").
Since these conditions are satisfied % 1-a.e. on the set 9"\ {Tr(B, ') = 0}, this claim
will prove the Theorem.

Step 1 Let = be any point which satisfies the conditions (a), (b), and (¢). In order to
simplify the notation, from now on we assume that x = 0. Let » > 0. Note that using a
simple Fubini-type argument we get the existence of an s(r) €]r, 2r[ such that

Q/ \M@—B®Ww§<%1/ IB(y) — B(0)| dy (192)
0Qs(r)

2r



78 CAMILLO DE LELLIS

where C' is a constant. Moreover, by Proposition 7.10, we can also assume that, if ¢ denotes

the outer unit normal to 8QS(T then

Tr(B,0Qy, ;= B-¢ and  Tr(wB,0Q),) = wB-( A" ae ondQ]

s(r)”

(193)
Denote by B? the component in direction (0,...,0,1) = v of B and, without loss of
generality, assume that B?(0) > 0. Moreover, note that o = |B(0) - v| = B%(0). We will
show that
lif(rjls(r)d/ w(y)BY(y)dy = aTr(wB,d9)(0) (194)
s Q+'r)
and
liﬁ)ls(r)_d/ w?(y)B(y) dy = a(Tr(wB,0)(0))2. (195)
" QY

s(r)

This will complete the proof, because

i s(r)— wla) Tr(wB, 0Q')(0)
st [ ot = S5 L
< 1}{51 s(r)™? /Qj ‘w(y)Bd(O) — Tr(wB,@Q’)(O)‘

— lims(r) /Q [w?()(B())* = Te(wB, 09)(0)w(y) B(y)] dy + [Tr(wB, o) (0)

r|0 +
s(r)

— lims(r)~" /Q w?(y) BYy) BY(0) dy — a[Tr(wB, 9)(0)]?

r|0 +
s(r)
= aBY0)Tr(w?B,0)(0) — a[Tr(wB, dY)(0)]> = 0.
Step 2 In this step we show (194). The proof of (195) is completely analogous and

therefore we omit it.
Denote by Dy, the top face of 0@* that is

Dyyy = {(yl, e Ya1,0) + s(r)B |y < S(’I“)} )

Then consider the test function ¢,(y) := s(r)B4(0) — y4 and apply the definition of weak
trace to get

- /Q w(y) By) dy — /Q ¢od(D- (wB)]+ [ o Tr(wB, 0Q%, ) d A

+ + +
s(r) s(r) (gs(r)\l)S(T)

Recall that for some constant C' we have Bg-1,.(0) C @, C Bg(0). Therefore the first
integral in the right hand side is o(s(r)?) by (c). Next, we split the surface 9QJ,, \ Dy(») into
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o' N QS(T) and L := 8Qj(r) \ (Ds(r) U 39/) Thus

1

) 1
G

wdey dy = limi/ o Tr(wB, GQ”
/Qj(r) WEw) rio (s(r))? 0N Q. (r) ( ) )

R T .
+17}E)1W GO /L erTr(wB, 00Q7,,) . (196)

Note that ¢, = B4(0)s(r) + o(s(r)) = as(r) + o(s(r)) on Qs N Q. Moreover, note that
ALY N Qsry) = s(r)T + o(s(r)?1). Thus, from (a) we conclude that

1 «@
limi/ o, Tr wB,@Q:'T = limi/ Tr wB,@Q:'T
G0 S, TP 0%0) T IR fang,, P %)
= oTr(wB,0)(0). (197)

Recall that our goal is to show (194). Thus, taking into account (196) and (197), it remains
to show that

1
lim —— / ©Tr(wB, Q7 ) = 0. 198)
B Tt J, P |
Note that
goTr(wB,aQ:r)‘ < C’S(T)/\Tr(wB,aQ:(r)ﬂ. (199)
Denote by ¢ the normal to JL and note that B(0) - = 0. Thus,
/ Te(B.0Q7,,) "2 / B¢ < / Bly) - BO)| 2 o(s(r)™). (200
On the other hand, by (193), |Tr(wB, Q)| < [[w]lee|Tr(B, 0Q,,)|, and hence (200) and
(199) give (198). O

7.5. Proof of Theorem 7.4. Given B € BV, the coarea formula and the Alberti’s Rank—
one Theorem induce a natural fibration of | D¢B| into codimension one rectifiable sets In this
section we use this property to show Theorem 7.4 from Theorem 7.1.

Proof. Let B',... B? be the components of B. Moreover, recall that B(x) denote the ap-
proximate limit of B at x whenever it exists.

Note that [D°B| < >, |DB"|. Therefore it suffices to prove (180) for |D°B'|-a.e. © & E.
According to Alberti’s rank-one theorem, there exist Borel functions ¢ : R? — RY and
¢ : R4 — R?such that D°B = £®(|D°B]. So it suffices to prove (180) for | D¢Bi|-a.e. x € F,
where F is the set of points 2 where the approximate limit of B exists and ¢(z) - B(x) = 0.

Recall that for #'-a.e. t, the set Q; := {B® > t} is a Caccioppoli set and therefore
D1g, = v, L0 Q,, where 0%(), is a rectifiable set an v, the approximate exterior unit
normal. From the coarea formula for BV functions (see Theorem 2.10), we have

/god|DBi| = // wd A dt .
Q R JO*Q
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Therefore, it suffices to prove (180) for points x in the set

F = U L NF.

{t : Q is a Caccioppoli set}

/cp-dDBl’ = // -y ddt.
Q R JO*Q

Thus, for #!-a.e. t, we have
(a) Clora(z) = v(x) for A 1-ae. .
Moreover, note that, for #!-a.e. t, we have
(b) Blosaunr(z) = Tr(B, )
Therefore, it suffices to prove the claim for every x € F’ which satisfies (a) and (b).

Next, note that if for s < t €, and €2; are both Caccioppoli sets and = € 0*Q, N 0*€Y,
then B! cannot have approximate limit at x. Therefore, the sets 9*Q; N F” are all disjoint,
and hence the set E of t’s such that |D - (wB)|(0* N F’) > 0 is at most countable. By the
coearea formula, we conclude that

|D.B| (U 8*Qt> = 0.
teE
We finally define the set F” C F’ of points = € 9*Q); with ¢ and = such that:
e The approximate limit B(x) of B at z exists and ((z) - B(x) = 0;
e (), is a Caccioppoli set and |D - (wB)|(0*Q; N F') = 0;
e v,(z) = ((x), and hence v(x) - B(z) = 0;

e B(z) =Tr"(B,0*Q)(x) (where we take v; as orienting normal for 9*();.
Summarizing what discussed so far, it suffices to prove (180) for ¢ -a.e. x € 0*Q, N F".
So fix a ¢ such that 9*Q; N F” # () and let {¥,}; be a countable family of C' surfaces
which cover 4 1-a.e. 9*Q;. If we denote by v; the unit normals to 3; we have v; = 1,
S ae. on X; N O*Qy. Thus it suffices to show (180) for #74 1-a.e. x € 3; N 9*Q, such

that v;(z) - Tr(B, X;)(z) # 0. From Theorem 7.1, for 7% 1-a.e. such x we have

Moreover, recall that

o-q.nr(z) for A qe. x.

1 Trt(wB, ;) (z)
lim — - 2 dy = 0 201
im - /Br(w w(y) T (B, ()| dy (201)
and
1 Tr (wB, Y
hm—d/ w(y) — - (SU . 24)(2) (a:)’ dy = 0. (202)
rl0 T B (z,v) Tr (B, E])

From the definition of F”, Tr"(B,%;)(z) = Tvr™ (B, %;)(x) = Tr"(B,0*Q)(z) = B(x) for
A ae. x € BN O*Qy. Moreover, since |D - (wB)|(X; N 9*Q;) = 0, from Proposition 7.9
we conclude Tr"(wB, ¥;)(z) = Tr (wB,%;)(z) for % ae. x € §*Q NY;. Therefore
(201) and (202) give the desired claim. O
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8. BRESSAN’S COMPACTNESS CONJECTURE AND THE RENORMALIZATION CONJECTURE
FOR NEARLY INCOMPRESSIBLE BV VECTOR FIELDS

In [17] Bressan proposed the following

Conjecture 8.1 (Bressan’s compactness conjecture). Let b, : R, x R — R™ be smooth
maps and denote by ®,, the solution of the ODFEs:

Lo t2) = bo(t, Dt )
dt (203)
®,(0,z) = x.
Assume that the flures ®,, are nearly incompressible, i.e. that for some constant C' we have
C™! < det(V,P,(t,2)) < C, (204)

and that ||by]|co + ||VbullLr is uniformly bounded. Then the sequence {®,} is strongly pre-

compact in L.

This conjecture was advanced in connection with the Keyfitz and Kranzer system, in
particular to provide the existence of suitable weak solutions. Though, as shown in Section
5, one can prove well-posedness for this system bypassing it, Conjecture 8.1 is an interesting
and challenging question. In this section we will show some recent partial results on it,
contained in [10].

First of all, we note that Bressan’s compactness Conjecture would follow from the following

Conjecture 8.2 (Renormalization Conjecture). Any nearly incompressible bounded BV vec-
tor field has the renormalization property of Definition 3.12.

Congecture 8.2 = Congecture 8.1. Let p, := (id, ®,)xL™"! be the density generated by
the flows ®@,,. From (204) it follows that Cy > p, > C’l_1 > 0 for some constant C; > 0.

From the BV compactness Theorem and the weak® compactness of L>, it suffices to prove
Conjecture 8.1 under the additional assumptions that b, — b strongly in L; . for some BV
vector field b and that p,—*p in L*™ for some bounded p. Note that

® O0,pn + Dy - (pubn) converge to d;p + D, - (pb) in the sense of distributions, and thus
Op+ Dy - (pb) = 0;
o p>Crh
e ||b]|co < 0.
Hence, b is a bounded nearly incompressible vector field, and if Conjecture 8.2 has an affir-
mative answer, then b has the renormalization property. In this case we can apply Theorem
3.22 to conclude that ®, converges strongly in L} . to the unique regular lagrangian flow

loc

generated by b. 0
The main result of [10] is the following

Theorem 8.3. Let b € BV N L®(RT x R™ R™) be a nearly incompressible vector field.
Consider the vector field B € BV (Rt x R™ R x R™) given by B := (1,b) and denote by
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E its tangential set (see Definition 7.3). If |Df, - B|(E) = |Dg - b|(E) = 0, then b has the
renormalization property.

More precisely, we will show

Proposition 8.4. Let @ C RY B € BV N L®(Q,RY) and p,w € L>®(Q) be such that
D - (pB) =D - (wpB) =0 and p > ¢ > 0. Denote by L the set of Lebesgque points of (p,w).
Then for every h € CY(R), the measure D - (ph(w)B) satisfies the bound |D - (ph(w)B)| <
C|D¢- B|L(2\ L) for some constant C.

Using the same arguments as in the proof of Lemma 5.10, Theorem 8.3 follows from
Proposition 8.4 and Theorem 7.4.
These results naturally raise the following problem:

Question 8.5 (Divergence problem). Let B € BVio N L2 (2, RY). Under which conditions

the Cantor part of the divergence |D¢ - B| vanishes on the tangential set of B?

In Section 9 we will prove that indeed some condition is needed, namely we show a planar
BV vector field B such that |D°- B| does not vanish on the tangential set of Bsa. However
we do not know the answer to the following question. Note that in view of Theorem 8.3 a
positive answer would imply the Renormalization Conjecture:

Question 8.6. Let B € BV, N LS.(Q,RY) and let p € L=(Q) be such that p > C >0 and

loc

D - (pB) = 0. Is it true that |D° - B| vanishes on the tangential set of B ¢

8.1. Absolutely continuous and jump parts of the measure D - (ph(w)B). Let B,
p, and w be as in Proposition 8.4. Let ¢ be such that p < ¢ and define H : [¢, 00[xR by
H(r,u) := rh(u/r). Clearly H is C' and we can extend it to a C'' function of R?. Next set
v := pw. Then we have

D-(pB)=0  D-(B)=0  D-(ph(w)b) =D - (H(p,v)B).
and we can apply Theorem 4.1 in order to get

OH OH u 5
D-(H(p,v)B) = { H(p,v) = ==(p,v)p = m—(p,v)v | D*- B| < C|D*- BJ.
or ou
On the other hand, since the essential range of (p,v) is in [¢, 0o[xR, one immediately sees

that - -
H(p,l)) - W(/%U)p - %(1071])0 = 0.

Hence, we have concluded

Corollary 8.7. Let B, p, w, and h be as in Proposition 8.4. Then D - (ph(w)B) is a Radon
measure and there exists a constant C' such that |D - (ph(w)B)| < C|D* - B|.

We will next use the trace properties of divergence measure fields in order to show the
following
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Proposition 8.8. Let B, p, w, and h be as in Proposition 8.4. Then there exists a constant
C such that |D - (ph(w)B)| < C|D*- B].

Proof. Consider the jump set Jp of B, its approximate unit normal vand the approximate
left and right traces of B on Jg. Then |D?- B| = |(BT — B™)-v|2#¢ 'L Jg and, by Corollary
8.7,

|D - (ph(w)B)| < C|(BY —B™)-v|#"'LJg+ C|D°- B|. (205)
Now, let {¥;}; be a countable family of hypersurfaces such that B C U;%;. In order to
complete the proof it suffices to show that D - (ph(w)B)LY; = 0 for every i. Next, fix any
e > 0 such that ¢ < p a.e. and consider the function F. : (—=]Joo,—e] U [g,00[) x R — R
defined by F.(r,u) := h(u/r). Extend it to a C' function defined on all R?. Next set
H.(r,u) := rh(u/r). Then, recalling that D - (pB) = 0 and D - ((pw)B) = 0, we can use
Proposition 7.9 and Theorem 7.12 to get
[D - (Mw)pB)ILE = [D- (He(wp, p) B]LY
Trt(wpB,Y) Tr*(pB,Y)
{ ° ( T (B,Y) " Tr'(B,%)

(w9 em

) Tt (B, %) —

Now consider the set
Y= {x €Y Tr"(B,X)(z)=0 or Tr (B,X)(z) = O} :

Applying Theorem 7.12 to H = 1, we conclude that, up to s#? ! negligible sets,
¥ C %= {reX: Tt (pB,E)(z) =0 or Tr"(pB,X)(z) =0}.
Next note that, by Proposition 7.9,
0 =D-(pB)LE = [It*(pB,X) — Tr (pB,X)] A 'LE.
and
0 = D-(pwB)LY = [Trt(pwB,¥) — Tt (pwB,X)] £ 'LE.
Thus, we conclude that Tr™ (pB, X)) = Tr" (pB,Y) and trpluspwBY = Tr™ (pwB,Y) a.e. on
>.. Recall the definition of H.. Then:
e The expression
Trt (wpB,X) Trt(pB, %
E = HE r Swp Y ) , r +(p U ) ’]:‘I.‘f'(B7 E)
T (B,Y) " Tr"(B,Y)
H Tr (wpB,¥) Tr (pB,Y)
\ Tt (B,%) " Tr (B,Y)

) Tr= (B, )

vanishes 7% 1-a.e. on X.
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o #¥lae on Y. :={|Tt"(pB,X)| > e} we have |[Tr  (pB,X)| > ¢ and Tr" (B, %) #
0 # Tr™ (B, X). Thus we can compute

Trt (pwB, X Tr (pwB, %
B o= n (BB 2N g sy o (T B )N - sy
Tr~ (pB, %) Tr~ (pB, %)
Recalling that Tr*(pB,X) = Tr™ (pB,X) and Tr* (pwB,X) = Tr™ (pwB, X)), we con-
clude that E vanishes % 1 a.e. on X..
Therefore, by (206) we have

0 = [D-(ph(w)B)|L{z € L:0<|Tr"(pB,X)(z)] <e}.
Letting € | 0 we get D - (ph(w)B)LY = 0, which is the desired conclusion. O

8.2. Proof of Proposition 8.4 and concentration of commutators. In the previous
section we proved that, under the assumptions of Proposition 8.4, |D-(ph(w)B)| < C|D¢- B).
Here we will state a new commutator estimate and with the help of it we will complete the
proof of Proposition 8.4.

As in the previous section:

e We fix w, p, b and h as in Proposition 8.4;

e We let ¢ > 0 be such that ¢ < p a.e. and we define H : [¢,00[xR — R setting
H(r,u) :==rh(u/r);

e We extend H to a C! function on R2

Next we fix a nonnegative kernel n € C>°(R?) and consider the standard family of mollifiers
{n:}eso. If we set v := pw, then D - (ph(w)B) = D - (H(p,v)B) is the weak limit of

D (H(p*n.,vxn.)B)

[OH OH T
= _E(P*%,U*%)D(p*m)-B+%(p*n€,v*n5)D(v*n5)-B_
+H(p*n.,v*n.)D-B
[OH OH 1
= _E(P*%,U*ﬁs)l)-(p*nEB)%—%(p*ng,v*ne)D-(U*UEB)_
oH oOH
+ H(p*m,v*m—)—E(ﬂ*ne,v*m)p*nfr%(p*m,v*m)v*m D-B.

Next, note that the range of p * 7. is contained in [c, 00[. Thus, from the definition of H it
follows that it is a 1-homogeneous function on the range of (p * 7., v % €). This implies that

oH oH
E(ﬂ*m—,v*ne)p*nﬁ%(p*ne,v*m)v*m—H(p*ne,v*m-) = 0.

Recalling that D - ((pB) *n.) = D - ((vB) *1n.) = 0 we conclude that D - (H(p,v)B) is the
limit, in the distributional sense, of the expressions

OH OH
5y ¥, vx1) [ D~ (px1)e B) = D- (pB)snge] -~ (p#1je, viige) [D-(v4ne B) =D+ (vB)*n.] . (207)
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This discussion justifies the introduction of the following notation and terminology.

Definition 8.9. Let Q C RY, B € BV(Q,R?), z € L®(Q,R¥), and H € CY(R*). If {n.}.=0

15 a standard family of mollifiers, then we define the commutators
T: == (D-(2'B)) 1. — D - (2" *+n.B)
oH

T; = B, (z * 775)T§.

Note that the commutators T} coincide with the commutators T} of Definition 4.2. Re-
calling Proposition 4.6, we conclude that the distributions 7;' are measures with uniformly
bounded total variations. Then Proposition 8.4 follows from the following theorem, which
will be proved in the next section.

Theorem 8.10. Let 7§ be as in Definition 8.9 and consider the set L, of Lebesque points
of z. Then any weak* limit of T} is a measure v such that |v|(Q\ L,) = 0.

8.3. Proof of Theorem 8.10. Recalling the proof of Proposition 4.6, T} can be written as
ri#? — (28 xn;)D - B, where

ri(r) = /Rd 2 (2") [(B(x) — B(z")) - Vns(2' — a:)} dz’ . (208)

An important step towards the proof of Theorem 8.10 is the following representation
lemma.

Lemma 8.11 (Double averages lemma). Let & € L>*(Q2) and assume that its support is a
compact subset of Q. Then, for § sufficiently small, we have

[ o@ri@ar = 3 [ aj©anmie, (209

where the functions Aijl are given by the double average

A”l = / /Rd e 895] — 7Y (E+ (8 —T)y) dydrT. (210)

Proof. Fix ® € L*>°(Q) and with compact support contained in Q. Then, if § is sufficiently
small, AY' has compact support contained in Q. We now prove that AY' is a continuous
function. Taking into account that ® and z are bounded, it suffices to show that

0—¢
= [ [ ngrwet - msc+ G-y dyr
R4 :L‘J

is continuous for any ¢ €]0,0/2[. This claim can be proved as follows. First of all, without
loss of generality, we can assume that both z and ® are compactly supported. Next we
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take sequences {z,} and {®,} of continuous compactly supported functions such that ||z —
Zollze + |® — @,]|z2 | 0. If we set

d—e
= [ [ gt e - msie + 6 - dyar,
Rd xj
then each R, . is continuous. Moreover one can easily check that

|[Rie(€) = Re(§)] < Coe™ (@l rallz — zullzz + lznllz2]| @ — @llz2) -

Therefore R, . — R. uniformly, and we conclude that R. is continuous.

Now, fix B and § as in the statement of the lemma. We approximate B in L with a
sequence of smooth functions B, in such a way that D; B/ converge weakly* to DB’ on ).
Hence, we have that

R (z) = /Rd 2 (') [(Bn(z) — Bu(a')) - Vis(2' — )] do’

converge strongly in L{
function, we have

i . ijl - .
loc t0 75. Moreover, since A" is a continuous and compactly supported

lim [ AY'(€)d[D,Bi](¢ / A (©)d[DB)(E) .

n—~o0

Hence it is enough to prove the statement of the lemma for B,,, which are smooth functions.
Thus, we fix a smooth function B and compute

- / ri(2)®(z) do

= —/Rd CI)(I') /Rd ZZ(:L") [(B(I‘) — B(Z")) . VU&(QTI —I')} do' dx

— [ e@ete+ o) PTG dyae

i 1 [ OB’ on
— @ (3 - vor on.
/Rded (x)2'(x + (53/)5/0 lzj:yl Bz, (x + Ty)a%( y) dr dy dx

- Z/[ [ [ uiwee—rze+ 6 - avr] e ae

Since the measure %Z 4 is equal to D;B’, the claim of the lemma, follows. l

Proof of Theorem 8.10. We rewrite 7 as

0H
ou,;

OH

T} =
J aul

(z*ms)re L% — (z*ms) (2" xns) D - B. (211)
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We define the matrix—valued measures

a = DBLL,
B = DBL(Q\L,)

and the measures

v = [D-B]JLL,
A = [D-BJL(Q\L,).

Then we introduce the measures Si and R} given by the following linear functionals on
v € C.(Q):

S = 3 [ s diase)

/ ol >§f (== ms@) 2 * o) () 212)
(i) = Z/ a16,)(€)
-/, ¢<x>gZ (2w m(a)) 2 5 5(a) dA ), (213)
where
g7'(€) = ——/ /Rdylax] (£ —Ty)
aul- " (2 xms(€ = Ty))#HE + (6 — 7)) dydr (214)

This formula for ggj ! comes from the formulas for Af;j " of Lemma 8.11, where we choose as ®

the function

OH
o = goau

(z % ms) .

Hence, comparing (214) with (211) and (210), from Lemma 8.11 we conclude that 7} =
S5+ Rj. ' 4
Let Rf be any weak limit of a subsequence {R} }5, 0 and let Sj be any weak limit of a
subsequence (not relabeled) of {S; }. In what follows we will prove that
(i) By < [Al+ 15
(i) S; = 0.
Since |\| and || are concentrated on 2\ L., (i) and (ii) prove the Theorem.

Proof of () Let us fix a smooth function ¢ with |¢| < 1 and with support K CC Q. If
we define g5 as in (214), there exists a constant C', depending only on w and H, such that
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197" s < C. Hence, it follows that

[ears| < cl. {\m (Usupp <g§ﬂ>) + \A|<K>} . (215)

Moreover, it is easy to check that, if K. denotes the eneighborhood of K, then supp (gf;j l) C
Kss. Hence, passing into the limit in (215), we conclude that

' [ va;

From the arbitrariness of ¢ € C°(Q) it follows easily that RiLQ < C(|8] + |\|).

< Cllzllo (I K) +181(K))

Proof of (ii) By definition of L., z has Lebesgue limit Z(x) at every = € L,. Hence it
follows that

lim 2 % 7s(2) = Z(2) (216)

Fix ¢ and define ¢g¥' as in (214). We will show that for every £ € L. we have that

lim g7'(&) = g""(¢) (217)

where

§) = =P 5 O [ ugT

Integrating by parts we get

5 = PO EEHE) (219

gt = 0 for j # 1. (219)

Recall that g5 , @, 2xns, H(zxns), and VH (z*ns) are all uniformly bounded. Hence, letting
d | 0in (212), from (216), (217), (218), (219), and the dominated convergence theorem we
conclude that

Soed = 2 |, S () 2O #l€) dlaul©)
- gjjf (5(a)) #(2) o(@) dr(2)

Recalling that >, oy = >, DfB'LL, = D°- BL L, and v = D°- BL L,, we conclude that
(Si,p) = 0. The arbitrariness of ¢ gives (ii).



NOTES ON HYPERBOLIC SYSTEMS OF CONSERVATION LAWS AND TRANSPORT EQUATIONS 89

Hence, to finish the proof, it suffices to show (217). Recalling the smoothness of ¢ and
the fact that 7 is supported in the ball B;(0) we conclude that it suffices to show that

— 5// @sz(g—w» i€+ (6—T)y)
—2—5(2(5)) si(g)' dydr (220)

converges to 0. Then, we write

s = 5//31(0
5/ /31(0 au]
71/0 /Bl(o)]z*na(f—w)—5(6)}dyd7

+& /05/31(0)\2<5+<6—T>y>—z<5>}d5df

= 01{]51 + 02J52
where the constants C} and C5 depend only on &, z, and H. Note that

1 [° .
Bo= s ] e st dvar

LT L]

1)
Bo= gL et - 2©| v

_ 5/ Ld/ 2w msly) — }dy}dT

Hence, since Z(¢) is the Lebesgue limit of z at &, we conclude that J} + JZ2 — 0. This
completes the proof. O

'€+ (0 = 7)y)l dydr

o (2 (€ = 7)) = Zo (4(6)

'€+ (6 = T)y) — 2'(&)| dy dr

IN

and

9. TANGENTIAL SETS OF BV VECTOR FIELDS
In this section we will show the following

Proposition 9.1. There exists B € BV N L®(R? R?) such that |D¢- B|(E) > 0, where E
denotes the tangential set of B.
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As already explained in Section 8, this Proposition motivates Question 8.5 and in particular
Question 8.6. There are other natural conditions under which it would be interesting to
investigate the validity of |D¢- B|(E) = 0, such as

e B =Va & BV(Q) for some a € W,o™ (in this case D - B = Aa);
e B is a (semi)-monotone operator, that is

(B(y) = B(z),y —x) > Nz —y|> Vr,yeQ, (221)
e B is both curl-free and (semi)-monotone.
Proof of Proposition 9.1. We set @ = {(z,y) e R? : 1 <2 <2,0<y <z} We
construct a scalar function v € L> N BV () with the following properties:
(a) Dyu # 0;

(b) D,u+ D,(u?/2) is a pure jump measure, i.e. it is concentrated on the jump set .J,,.
Given such a function u, the field B = (1,u)1g meets the requirements of the proposition.
Indeed, let B = (1,u)1q be the precise representative of B. Due to (b) the Cantor part of
D,u+ D,(u?/2) vanishes. Hence using the chain rule of Vol’'pert we get

Déu+aDiu = 0. (222)
Denote by M (x) the Radon-Nikodym derivative DB/|DB|. Then we have

M -B|D°B| = D°B-B

(0 0 (1) _ 0 A
~ \ D Diu i)~ \ Dw+aDu )~ \ 0 )"

Hence we conclude that M(z) - B(x) = 0 for |D°B|-a.e. x, that is |[D°B| is concentrated on
the tangential set E of B. Therefore |D¢- B|(©2\ E) = 0. On the other hand, from (a) we
have D¢- B = Dju # 0. Hence we conclude |D°- B|(E) > 0.

We now come to the construction of the desired w. This is achieved as the limit of a
suitable sequence of functions wy.

Step 1 Construction of uy.
Consider the auxiliary 1-periodic function o : R — R defined by

op+z) =1—=x, 0<z<1, peZi.

We let v : [0, 1] — [0, 1] be the usual piecewise linear approximation of the Cantor ternary
function, that is vo(z) = z and, for k > 1,

t-1(32), 0<z<s,
’WC(Z): %7 %<Z§§7

5(14+ 7132 —2)), <z<1.

W
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Notice that
.(2) € {0, (g)k} (223)
and
e (2) = W (2)] < 52275, (224)

We set G :=]1,2[x]0, 1] and we define ¢} : G — R by

W=

or(z,2) = zz + Z4l_j0(4j_la:) (vj-1(2) —75(2)).

J=1

Note that ¢ is bounded. To describe more precisely the behavior of this function we
introduce the following sets: The strips

Sfo= J14+@G@—-14"" 1+ x R i=1,...,4!
and the vertical lines
VE = [ x R i=1,... 4" 1.

Then ¢, is Lipschitz on each rectangle S¥NG and it has jump discontinuities on the segments
Vik NG. Therefore ¢y, is a BV function and satisfies the identities D,y = DZ . + D2y and
Dypr = Dyjpi. Moreover, denoting by (0x¢x, dy¢r) the density of the absolutely continuous
part of the derivative, we get

Oppr(w,2) = 2+ (n(2) = 2) + (12(2) = 11(2)) + - + ((2) = 1-1(2))
= (2)- (225)
Clearly
0 < 4o ln) —470(Mx) < 3477,
Therefore, using also (223), on each rectangle S¥ N G we can estimate
Doz, 2) = x+o(z)— (o(z)—4 " o(4x)) ¥1(2)
— (47 'o(4z)—470(4%x)) Y5(z) — -
— (£ o r)—4 (4 ) v (2)
— 4 o (4w 4 (2)
> 2-3(47() + -+ 4T () 4 (2)

2z ()7) ()
s (@ )

Since
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3 3\’ 1
> 2 — — +... = —. 22
e = k (8 (8) ) ) (226)

Hence, since @i (x,-) maps [0, 1] onto [0, z], the function

we obtain

Op(z,y) = (z,0u(2,y))

maps each rectangle S¥ NG onto S¥ N, and it is bi-Lipschitz on each such rectangle. This
allows to define u by the implicit equation

uk(x,gok(x,z)) = v(2), (227)

and to conclude that 0 < w; < 1 and that w, is Lipschitz on each Sf N Q. Therefore
up € LN BV(Q), Dyuy, = Duy, + Diug and Dyuy, = Djuy,.

Step 2 BV bounds.

We prove in this step that |Dug|(€2) is uniformly bounded. This claim and the bound
| uk]lo < 1 allow to apply the BV compactness theorem to get a subsequence which converges
to a bounded BV function u, strongly in LP for every p < co. In Steps 3 and 4 we will then
complete the proof by showing that u satisfies both the requirements (a) and (b).

By differentiating (227) and using (225) we get the following identity for Z?-a.e. (z,z) €
SkENG:

Oug(z, pr(x, 2)) N Oug(z, pr(x, 2)) Opr(x, 2)

0 = ox oy ox
o auk(x>(10k(x7z)) auk(x7(10k(xa Z))
B Ox * oy W)

a ) ) a ) Y
- o), Ot A0 0, pu(a ).
x dy
Since @y, is bi-Lipschitz we get
Opug(x,y) + updyug(z,y) = 0 for #?-a.e. (v,y) € SFNQ. (228)

If 41z ¢ N the function u(z, ) is non decreasing. Therefore

2
Dyul(©Q) = Dyug(Q) = / (wnl, ) — up(2,0)) de = 1. (229)
1
From (228) we get
DUw(9) < Do) = 1. (230)
Therefore it remains to bound |Diuy|(Q2). This consists of

4k=1_1
D) = 3 [t~ ugldoe 231)

i=1 YV
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For each x of type 1 + i4'~* we compute
[t =l = [ et - w6 w)ldy
V; 0
1
= /\{y:uk(f,y)<t<uk(:r+,y)}|dt
0
1
+/ {y: wnlet,y) < t < e, y)} | dt
0
1
- / - unlay) < m(2) < wla™ y)H e dz
/|{y @ty y) < (2) < wles y) () de

- /m %) — oula )| Yule) dz

< Sup |90k‘( ) ) - on‘(x_vz”
ZE]Ol[
(224) ,
< —28 Ho@'a™) — o4 127)). (232)
Combining (231) and (232) we get
44’c -1 k
j 11—k + i—1 41—k, —
| Dug|(2) < 3 ; JZISJ o(4714 ) —o(4714175T))
A gk-1_1
- 328 PY (W) o)
4 o 1
- = 8—J4J—1 < 233

Step 3 Proof of (a).

We now fix a bounded BV function v and a subsequence of wu, not relabeled, which
converges to u strongly in L'. We claim that (a) holds. More precisely we will show that:

(C1) For Z'-a.e. z the function u(z,-) is a nonconstant BV function of one variable

which has no absolutely continuous part and no jump part.

(Cl) gives (a) by the slicing theory of BV functions, see Theorem 3.108 of [11].

In order to prove (Cl) we proceed as follows. By possibly extracting another subsequence
we assume that u, converges to u Z*-a.e. in Q. We then show (Cl) for every z such that:

o 4% & N for every k;
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e uy(x,y) converges to u(z,y) for L'-a.e. y.

Clearly #1-a.e. x meets these requirements.
Fix any such x. Note that x is never on the boundary of any strip S¥. Therefore we can
denote by ¢f the inverse of ¢i(z,-) and we can use (227) to write

ug(z,y) = (gr(y)) - (234)

Thanks to (226), the Lipschitz constant of gy is uniformly bounded. Therefore, after possibly
extracting a subsequence, we can assume that g, uniformly converge to a Lipschitz function
g. Since 7, uniformly converge to the Cantor ternary function v, we can pass into the limit
n (234) to conclude

u(z,y) = v(9(y))- (235)

Therefore u(z,-) is continuous, nondecreasing, nonconstant, and locally constant outside a
closed set of zero Lebesgue measure (¢~'(C), where C is the Cantor set). This proves (Cl).

Step 4 Proof of (b).
Let u be as in Step 3. From the construction of uy it follows that

Duy, + Dy(u}/2) = Diuy. (236)

After possibly extracting a subsequence we can assume that D7uy converges weakly* to a
measure . This gives

D,u+ D,(u*/2) = p. (237)

Therefore it suffices to prove that p is concentrated on a set of o—finite 1-dimensional Haus-
dorff measure. Indeed g is concentrated on the union of the countable family of segments
{V*}1:. In order to prove this claim it suffices to show the following tightness property: for
every € > 0 there exists N € N such that

4i=1—q
| D7y U U Vi < ¢ for every k. (238)
I>N =1
Note that
4i=1—1 4i=t—q
ol (U UV <X X [ -l
>N i=1 >N =1 Vi
Then the same computations leading to (232) and (233) give
4i=1—1 P 1
j ! —lyl-1
1Dl | U vl < 528 L = (239)
>N j=1 I=N

This concludes the proof. l
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Remark 9.2. The function u constructed in Proposition 9.1 solves Burgers’ equation with
a measure source

Do+ D, (u*/2) = p, (240)

and has nonvanishing Cantor part. On the other hand in [9] it has been proved that entropy
solutions to Burgers’ equation without source are SBV , i.e. the Cantor part of their deriva-
tive is trivial. It would be interesting to understand whether this gain of reqularity is due to
the entropy condition, or instead BV distributional solutions of (240) with pn = 0 are always
SBV.
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