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1. Introduction

The aim of these notes is to illustrate a proof of the following remarkable Theorem of
Alberti (first proved in [1]). Here, when µ is a Radon measure on Ω ⊂ R

n, we denote by µa

its absolutely continuous part (with respect to the Lebesgue measure L n), by µs := µ− µa

its singular part, and by |µ| its total variation measure. Clearly, |µ|a = |µa| and |µ|s = µs.
When µ = Du for some u ∈ BV (Ω,Rk), we will write Dsu and Dau. If ν is a nonnegative
measure, µ/ν will denote the Radon–Nykodim derivative of µ with respect to ν. Finally we
recall the polar decomposition of Radon measures, namely the identity µ = µ

|µ|
|µ|, which

implies that the vetor Borel map µ/|µ| has modulus 1 µ–a.e..

Theorem 1.1. Let u ∈ BV (Ω,Rk) for some open set Ω ⊂ R
n. Then rank (Du/|Du|(x)) = 1

for |Dsu|–a.e. x ∈ Ω.

We start by discussing what can be inferred from the “standard theory” of BV functions
without much effort. A first conclusion can be drawn from the BV Structure Theorem
(see Section 3.6, Theorem 3.77, and Proposition 3.92 of [3]) for which we first need some
terminology. Given an L1 function u we say that u is approximately continuous at x if there
exists ũ(x) ∈ R

k such that limr r
−n

∫

Br(x)
|u(y) − ũ(x)| dy = 0. We denote by Su the set of

points where u is not approximately continuous and we say that x ∈ Su is an approximate
jump point if there exists ν(x) ∈ Sn−1 and u±(x) ∈ R

k such that

lim
r↓0

1

rn

(
∫

B+
r (x)

|u(y)− u+(x)| dy +
∫

B−

r (x)

|u(y)− u−(x)| dy
)

= 0 ,

where B±
r (x) = {y ∈ Br(x) : ±(y − x) · ν(x) > 0}. The triple (ν(x), u+(x), u−(x)) is unique

up to a change of sign of ν(x) and a permutation of u+(x) and u−(x). The set of approximate
jump points is denoted by Ju.
Finally, we recall that an n − 1–dimensional rectifiable set R ⊂ R

n is a Borel set which
can be covered H n−1–almost all by a countable family of C1 (n− 1)–dimensional surfaces.
Here, H k denotes the k–dimensional Hausdorff measure.

Theorem 1.2 (Structure Theorem forBV functions). If Ω ⊂ R
n is open and u ∈ BV (Ω,Rk),

then Ju is a rectifiable (n− 1)–dimensional set, H n−1(Su \Ju) = |Du|(Su \Ju) = 0 and Dsu
can be decomposed as Dcu+Dju, where

• |Dcu|(E) = 0 for every Borel set E with H n−1(E) < ∞;
• Dju = (u+ − u−)⊗ νH n−1 Ju.

1
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Here and in what follows, given a measure µ and a Borel set E we denote by µ E the
measure given by µ E(A) = µ(E ∩ A). Following [5], we call Dcu and Dju respectively
Cantor part and Jump part of the measure Du. Thus, Theorem 1.2 implies the statement
of Theorem 1.1 when we replace |Dsu| with |Dju|.
A second fact that can be inferred from the “standard theory” of BV functions is the

following dimensional reduction:

Proposition 1.3. Theorem 1.1 holds if and only if it holds for Ω = B1(0) ⊂ R
2 and R

k = R
2.

This Proposition will be proved in Section 2. Thus, the key point of Theorem 1.1 is to
show that M has rank one |Dcu|–a.e. when u is a BV planar map. A first heuristic idea of
why this property indeed holds is given in Section 3. The key remark of that section is the
following lemma, which has a quite simple proof.

Lemma 1.4. Let Ω ⊂ R
2 be connected and u ∈ BV (Ω,R2) be such that Du/|Du| is a

constant matrix M of rank 2. Then, Du = cML 2 Ω for some c > 0.

Building on this Lemma and on a “blow–up” argument, we prove in Section 3 a particular
case of Theorem 1.1. However, this simple strategy cannot prove Theorem 1.1 in its full
generality (see Section 3, in particular Proposition 3.3). Alberti’s strategy relies on replacing
Lemma 1.4 with Lemma 1.5 below. From now on a set C ⊂ R

2 will be called a closed convex
cone if there exist e ∈ S1 and 0 < a < 1 such that C = C(e, a) := {x : x · e ≥ a|x|}.
Lemma 1.5. Let C1 and C2 be two closed convex cones such that C1∩C2 = (−C1)∩C2 = {0}.
Let Ω ⊂ R

2 be open and v1, v2 ∈ BV (Ω) be two scalar functions such that Dvi/|Dvi|(x) ∈ Ci

for |Dvi|–a.e. x. If µ ≥ 0 is a measure such that µ << |Dvi| for both i’s, then µ << L 2 Ω.

This Lemma will be proved in Section 4. We want to stress here the analogies with Lemma
1.4. Set v = (v1, v2). By the polar factorization, the main assumption of Lemma 1.5 could be
restated as Dv/|Dv| belongs (|Dv|–almost everywhere) to a suitably small neighborhood of a
constant matrix M of rank 2. Moreover the last sentence is equivalent to |Dv| << L 2 Ω.
Thus, we can consider Lemma 1.4 as a rigidity result and Lemma 1.5 as its quantitative
counterpart.
Now consider u ∈ BV (Ω,R2) and the Borel set E := {x : rank (Du/|Du|(x)) = 2}.

Standard arguments show that E can be decomposed in countably many Borel pieces Ei

where Du/|Du| is very close to a single constant matrix Mi. Thus the relaxed assumption
of Lemma 1.5 suggests that we could use a “decomposition” approach, in contrast with the
“blow–up” argument which builds on the rigidity Lemma 1.4. More precisely, we will show
in Section 5 that the decomposition in Borel pieces Ei’s can be chosen so that:

• If we fix any i and set µ := |Du| Ei, then there are two BV scalar functions v1 and
v2 such that v1, v2 and µ satisfy the hypotheses of Lemma 1.5.

Clearly, the decomposition stated above and Lemma 1.5 show that µ is absolutely continuous,
i.e. they prove Theorem 1.1. The construction of the vi’s is the second key idea of Alberti’s
proof. The argument combines a simple geometric consideration on the level sets of the ui’s
together with a clever use of the coarea formula for BV scalar functions.
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Recently, Alberti, Csorniey and Preiss, (see [2]) have proposed a different proof of the
Rank–one Theorem. This new proof uses as well the coarea formula, but it avoids Lemma
1.5, and relies instead on a general covering result for Lebesgue–null sets of the plane. Let
us mention, in passing, that this last result has many other deep implications in real analysis
and geometric measure theory; see [2].

2. Dimensional reduction

Proof of Proposition 1.3. Assume that Theorem 1.1 holds for maps u ∈ BV (B1(0),R
2) with

B1(0) ⊂ R
2. Clearly, by translating and rescaling, we immediately conclude the Theorem

when u ∈ BV (B,R2) for any 2–dimensional ball B. The statement of Theorem 1.1 is trivially
true if Ω ⊂ R or if k = 1 Moreover, any open set Ω ⊂ R

n can be written as countable union
of balls. Hence it suffices to prove the Theorem when Ω is a ball of Rn, n ≥ 2, and k ≥ 2.

From n = 2 to n generic. Here we prove Theorem 1.1 for maps u ∈ BV (B,R2) whenever
B is an n–dimensional ball. We argue by contradiction and let u ∈ BV (B,R2) be such that
rank (Du/|Du|(x)) = 2 on some set E with |Dsu|(E) > 0. Set M = Du/|Du| and choose
coordinates x1, . . . , xn on B and u1, u2 on R

2. Clearly, M has n(n − 1)/2 different minors,
corresponding to the choice of coordinates xi, xj with 1 ≤ i < j ≤ n: We denote them by
M ij. If we set Eij := {x : rank (M ij(x)) = 2}, then E =

⋃

ij Eij, and hence |Dsu|(Eij) > 0
for some i and j. Without loss of generality we assume i = 1 and j = 2. Consider the matrix
valued measure (µ)lα = (∂xl

uα)lα with l, α = 1, 2. Then, rank (µ/|µ|(x)) = 2 for |µ|–a.e.
x ∈ E12 and |µs|(E12) > 0.
For any y ∈ R

n−2 we define By = {(x1, x2) ∈ R
2 : (x1, x2, y) ∈ B}. Clearly, By is either

empty or it is an open 2–dimensional ball. Moreover, we define

vy : By → R
2 by vy(x1, x2) = u(x1, x2, y) .

By the slicing theory of BV functions (see Theorem 3.103, Theorem 3.107, and Theorem
3.108 of [3]) we have:

(a) vy ∈ BV (By,R
2) for L n−2–a.e. y ∈ R

n−2;
(b) µ = Dvy ⊗ L n−2 and |µ| = |Dvy| ⊗ L n−2.

(Here, when α is a measure on Y and y 7→ βy a weakly measurable map from Y into the
space M(X) of Radon measures on X, the symbol βy ⊗ α denotes the measure γ on X × Y
which satisfies

∫

X×Y

ϕ(x, y) dγ(x, y) =

∫

Y

∫

X

ϕ(x, y) dβy(x) dα(y)

for every ϕ ∈ Cc(X × Y ).)
(b) implies two things. First of all,

Dvy
|Dvy|

(x1, x2) =
µ

|µ|(x1, x2, y) for L n−2–a.e. y and |Dvy|–a.e. (x1, x2). (1)
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Second, if for every y we set Ey :=
{

(x1, x2) : (x1, x2, y) ∈ E
}

, then
∫

Rn−2

|Dvsy|(Ey)dL
n−2(y) = |µs|(E) > 0 . (2)

Thus, from (a), (1) and (2), we conclude that there exists a y such that vy ∈ BV (By,R
2),

|Dvsy|(Ey) > 0, and rank (Dvy/|Dvy|(x)) = 2 for |Dvy|–a.e. x ∈ Ey. Such vy contradicts our

assumption that Theorem 1.1 holds for maps u ∈ BV (By,R
2).

From k = 2 to k generic. Fix any u ∈ BV (B,Rk), with k ≥ 2 and B n–dimensional ball,
and choose coordinates u1, . . . , uk on R

k. For any pair of integers 1 ≤ i < j ≤ k, consider
the map uij := (ui, uj) ∈ BV (B,R2). If M = Du/|Du| and Mij is the corresponding 2 × n
minor, then Duij = Mij|Du|. Thus, by the previous step, rank (Mij(x)) ≤ 1 for |Dsuij|–a.e.
x, and hence for |Dsu|–a.e. x. Set

Eij :=
{

x : rank (Mij(x)) ≤ 1
}

and E :=
⋂

1≤i<j≤k

Eij .

Then, |Dsu|(Rn\E) = 0 and rank (M(x)) ≤ 1 for every x ∈ E. This concludes the proof. �

3. A blow–up argument leading to a partial result

We start this section by proving Lemma 1.4.

Proof of Lemma 1.4. We let M be the constant matrix Du/|Du| and µ = |Du|. By standard
arguments, it suffices to prove the Lemma when Ω is the unit ball B1(0). Denote by u1 and
u2 the two components of u. Then Dui = viµ, where v1, v2 ∈ R

2 are two linearly independent
vectors. Let {ϕε}ε>0 be a standard family of mollifiers supported in Bε(0) and consider the
mollifications ui ∗ ϕε in B1−ε(0). Notice that D(ui ∗ ϕε) = viµ ∗ ϕε, and hence ui ∗ ϕε is
constant on the direction orthogonal to vi. Therefore the density of the absolutely continuous
measure µ ∗ ϕε is a function fε which is constant along two linearly independent directions.
Thus, fε is constant. Letting ε ↓ 0 we complete the proof. �

This simple remark leads to a partial answer to Theorem 1.1, given in Proposition 3.2.

Definition 3.1. Let µ be a measure on Ω ⊂ R
2 and for any x in the support of µ and any

r ∈]0, dist (x, ∂Ω)[ consider the measures µx,r on B1(0) given by

µx,r(A) = µ(x+ rA)/|µ|(Br(x)) for any Borel set A ⊂ B1(0).

We say that a measure µ0 is tangent to µ at x if for some sequence rn ↓ 0 we have µx,rn⇀
∗µ0.

A nonnegative measure µ on Ω ⊂ R
2 is said to have only trivial blow–ups at x, if every

tangent measure to µ at x is of the form cL 2 B1(0). For u ∈ BV (Ω,R2) we denote by T
the set of points where |Dsu| has only trivial blow–ups.

This definition of tangent measure is very similar to that introduced by Preiss in the
fundamental paper [6]. We are now ready to state our

Proposition 3.2. Let u ∈ BV (Ω,R2). Then rank (Du/|Du|(x)) = 1 for |Dsu|–a.e. x 6∈ T .
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Proof. We argue by contradiction and assume that the Proposition is false for some u. Denote
by µ the measure |Dsu|. Then, by standard measure–theoretic arguments, it is possible to
find a point x 6∈ T and a sequence rn ↓ 0 such that the following properties hold:

(i) µx,rn⇀
∗µ0, and µ0 6= cL n B1(0);

(ii) ||Du| − µ|(Br(x)) = o(µ(Br(x)));
(iii) M = Du/|Du|(x) is a matrix of rank > 1 and

lim
r↓0

1

|Du|(Br(x))

∫

Br(x)

∣

∣Du/|Du|(y)−M
∣

∣ d|Du|(y) = 0 .

Let ur be the average of u on Br(x) and define the function ur ∈ BV (B1(0),R
2) as

ur(y) =
rn−1(u(x+ ry)− ur)

|Du|(Br(x))
.

It follows that Dur = [Du]x,r, and hence |Dur|(B1(0)) = 1. Moreover, since the average of
ur is 0, the Poincaré inequality gives ‖ur‖L1 ≤ C. Thus, we can assume that a subsequence,
not relabeled, of {urn} converges to some u0 ∈ BV (B1(0),R

2) strongly in L1. Now, from (ii)
we get |Du|x,r − µx,r⇀

∗0 and from (iii) we conclude [Du]x,r −M |Du|x,r⇀∗0. Therefore, by
(i), Dur = [Du]x,r⇀

∗Mµ0. This implies Du0 = Mµ0, because urn converges to u0. Applying
Lemma 1.4 we conclude µ0 = cL 2 B1(0), which contradicts (i). �

Unfortunately, we cannot hope to prove Theorem 1.1 by showing that singular parts of
BV functions have necessarily non–trivial blow–ups. More precisely we have

Proposition 3.3. There exist BV maps u such that |Dsu|(T ) > 0.

Proof. The example 5.8(1) of [6] gives a nonnegative measure µ on a bounded interval I
which is singular and such that µx,r⇀

∗ 1
2
L 1 [−1, 1] for µ–a.e. x. Clearly, any primitive of

µ is a bounded BV function which satisfies the requirements of the Proposition. �

4. The fundamental lemma

Before coming to the proof of the Lemma, let us explain its basic ingredients. Assume
for the moment that the vi’s of the Lemma are regular, and that µ = fL 2 ≤ C|∇vi|.
Consider the map v = (v1, v2). Since the gradients ∇vi belong everywhere to the cones Ci

and C1∩C2 = (−C1)∩C2 = ∅, a simple algebraic consideration shows that det ∇v controls,
up to some constant depending on the Ci’s, the product |∇v1||∇v2|, and hence f 2. Thus we
can bound the L2 norm of f by the integral of det ∇v. A second key remark is that the
geometric constraints on the Ci’s imply that v is almost injective (more precisely, v would be
injective if ∇vi ∈ Ci \ {0}). Thus,

∫

det ∇v can be computed using the area formula. This
means that

∫

f 2 can be bound in terms, for instance, of the L∞ norm of v, but independently
of ∇v. In the proof below we will extend such a–priori estimate to the general case, using
truncations and a suitable regularization procedure.
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Remark 4.1. In the rest of these notes we will use extensively the following elementary
fact. Let C = C(e, a) = {x : x · e ≥ a|x|} be a closed convex cone, Ω ⊂ R

2 an open set
and v ∈ BV (Ω,R). Then, it follows easily from the polar decomposition of measures that
Dv/|Dv|(x) ∈ C for |Dv|–a.e. x if and only if ∂ev ≥ a|Dv|.

Proof of Lemma 1.5. We can assume without loss of generality that v1, v2 ∈ L∞. Indeed let
for every k ∈ N set vki = min(max(vi,−k), k) and Ek = {|v1| < k} ∩ {|v2| < k}. Then, by
the locality of |Dv| (see Remark 3.93 of [3]):

• vk1 , v
k
2 are bounded BV functions which satisfy the assumptions of the Lemma;

• µ(Ω \⋃k Ek) = 0 and µ Ek << |Dvi| Ek = |Dvki | Ek ≤ |Dvki |.
Therefore, if the Lemma holds for bounded BV functions, then we conclude that µ Ek <<
L 2 Ω, and hence that µ << L 2 Ω. In addition, since every open set Ω can be covered
by a countable family of convex subsets, we will assume that Ω is convex. Finally, we can
assume, without loss of generality, that µ ≤ N |Dvi| for some constant N . Indeed, for any
N > 0 let EN be the set of points x where the Radon–Nykodim derivatives µ/|Dvi|(x) ≤ N .
Then µ(R2 \⋃N EN) = 0 and µ EN ≤ N |Dvi|.
Let any such vi’s and Ω satisfy all these assumptions, and let C1 and C2 be the cones of

the Lemma. Recall that Ci = C(ei, ai) for some 1 > ai > 0 and ei ∈ S1. Given two vectors
z1, z2 ∈ R

2 we measure the angle θ(z1, z2) between z1 and z2 in counterclockwise direction.
By possibly exchanging the indices we can assume θ(e1, e2) < π. Then, the assumptions
C1 ∩ C2 = (−C1) ∩ C2 = {0} translate into the existence of a constant δ0 > 0 such that
δ0 ≤ θ(f1, f2) ≤ π − δ0 for every pair (f1, f2) ∈ C1 × C2. Therefore, for δ = sin δ0 > 0,

det(f1, f2) = |f1||f2| sin θ(f1, f2) ≥ δ|f1||f2| ∀(f1, f2) ∈ C1 × C2 . (3)

By Remark 4.1, ∂eivi ≥ ai|Dvi|. Set wi(x) = vi(x)+arctan(x · ei) and w = (w1, w2) and note
that

(a) ∂eiwi ≥ ai|Dwi|;
(b) [∂eiwi](Br(x)) > 0 for every ball Br(x) ⊂ Ω;
(c) µ ≤ N |Dvi| ≤ Na−1

i ∂eivi ≤ Na−1
i ∂eiwi.

Let {ϕε} be a standard family of nonnegative mollifiers supported in Bε(0) and consider the
mollifications w ∗ ϕε in the open sets Ωε := {x ∈ Ω : dist (x, ∂Ω) > ε}. We claim that

(a’) ∇(wi ∗ ϕε)(x) ∈ Ci for any i and any x ∈ Ωε;
(b’) w ∗ ϕε : Ωε → R

2 is injective;
(c’) µ ∗ ϕε ≤ Na−1

i ∂ei(wi ∗ ϕε).

From (a) we get ∂ei(wi ∗ ϕε) ≥ ai|Dwi| ∗ ϕε ≥ ai|D(wi ∗ ϕε)|, which, by Remark 4.1 and the
smoothness of wi ∗ ϕε, implies (a’). (c’) follows from µ ≤ Na−1

i ∂eiwi. We now come to (b’).
Note that, by (b), ∂ei(wi ∗ ϕε) > 0. So ∇wi ∗ ϕε(x) 6= 0 for every x ∈ Ωε, and hence belongs
to Ci \ {0}. Let x 6= y ∈ Ωε, and set f := (x− y)/|x− y| We claim that, for some i,

|f · z| > 0 for all z ∈ Ci \ {0}. (4)
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Otherwise, there are z1 ∈ C1 and z2 ∈ C2 with |zi| = 1 and zi ⊥ f . Therefore, either z1 = z2
or z1 = −z2, contradicting C1 ∩ C2 = (−C1) ∩ C2 = {0}. Next, write

wi ∗ ϕε(y)− wi ∗ ϕε(x) =

∫ |y−x|

0

∇wi ∗ ϕε (x+ σf) · f dσ . (5)

Recall that∇wi∗ϕε (x+ σf) ∈ Ci\{0}. Moreover, since Ci\{0} is connected, (4) implies that
the integrand in (5) is either strictly positive, or strictly negative. In any case, wi ∗ ϕε(y) 6=
wi ∗ ϕε(x), which gives (b’).
We are now ready for the final step. (a’), (b’), (c’) and the area formula give

‖w1‖∞‖w2‖∞ ≥ ‖w1 ∗ ϕε‖∞‖w2 ∗ ϕε‖∞ ≥ L
2(w ∗ ϕε(Ωε))

(b′)
=

∫

Ωε

det(∇(w ∗ ϕε)(x)) dx

(a′)+(3)

≥ δ

∫

Ωε

|∇(w1 ∗ ϕε)(x)||∇(w2 ∗ ϕε)(x)| dx

≥ δ

∫

Ωε

[∂e1(w1 ∗ ϕε)](x) [∂e2(w2 ∗ ϕε)](x) dx

(c′)

≥ δN−2a1a2

∫

Ωε

(µ ∗ ϕε(x))
2 dx .

Hence, ‖µ ∗ ϕε‖2L2(Ωε)
≤ N2(a1a2δ)

−1‖w1‖∞‖w‖∞, which, letting ε ↓ 0, gives µ = fL 2 for

some f ∈ L2(Ω). �

5. Proof of Theorem 1.1 in the planar case

We will argue by contradiction, and hence in a different way with respect to what said
in the introduction. However, this is only to make the presentation more transparent: The
ideas presented in this section can be easily adapted to prove the general decomposition
property claimed at the end of the introduction.
So, let u = (u1, u2) ∈ BV (B,R2) where B is a 2–dimensional disk. Define

E :=
{

x : rank (Du/|Du|(x)) = 2
}

, (6)

and assume that |Dsu|(E) > 0. Without loss of generality, we can assume u ∈ L∞. Indeed,
for every k truncate u1 and u2 by setting uk

i = min{max{ui,−k}, k}, and define

uk := (uk
1, u

k
2) and Ek :=

{

x : rank (Duk/|Duk|(x)) = 2
}

.

Then, |Dsuk|(Ek) → |Dsu|(E) as k ↑ ∞.
Hence, from now on we assume that u ∈ BV ∩L∞. For each point x ∈ E, we set wi(x) :=

Dui/|Du|(x), which must be nonzero vectors. Thus, we can define ei(x) := wi(x)/|wi(x)|,
which is paralell to Dui/|Dui|(x) and pointing in the same directtion. Next, let

• Fk be the set of pairs (f1, f2) ∈ S1 × S1 which form an angle ≥ 1/k;
• Fk := {x ∈ E : (e1(x), e2(x)) ∈ Fk}.
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Since E =
⋃

k Fk, obviously |Dsu|(Fk) > 0 for some k. Fix any such k and for any (f1, f2) ∈
Fk and any ε > 0 define

F (f1, f2, ε) :=
{

x ∈ Fk : e1(x) ∈ C(f1, 1− ε) , e2(x) ∈ C(f2, 1− ε)
}

.

We claim that there exist (f1, f2) ∈ Fk such that |Dsu|(F (f1, f2, ε)) > 0 for every ε > 0.
Otherwise, by compactness of Fk, we can find N pairs (f j

1 , f
j
2 ) and N positive numbers

εj > 0 such that

Fk ⊂
N
⋃

j=1

C(f j
1 , 1− εj)× C(f j

2 , 1− εj)

and |Dsu|(F (f j
1 , f

j
2 , εj)) = 0. This would give |Dsu|(Fk) ≤

∑

j |Dsu|(F (f j
1 , f

j
2 , εj)) = 0.

Therefore, fix (f1, f2) ∈ Fk such that |Dsu|(F (f1, f2, ε)) > 0 for every positive ε. Note
that, since f1 and f2 are linearly independent, for ε sufficiently small the closed convex cones
Ci = C(fi, 1− ε) satisfy C1 ∩ C2 = (−C1) ∩ C2 = {0}. We choose such an ε and we define

F ′ :=

{

x :
Dui

|Dui|
(x) ∈ Ci for both i’s

}

. (7)

Theorem 1.1 is then implied by the following

Proposition 5.1. Let C = C(e, a) be a closed convex cone, v ∈ BV ∩ L∞(B,R) and

G :=

{

x :
Dv

|Dv|(x) ∈ C

}

. (8)

For any convex cone C ′ = C(e, a′) with a′ < a there exists w ∈ BV ∩ L∞(B,R) such that
|Dv| G << |Dw|, and

Dw

|Dw|(x) ∈ C ′ for |Dw|–a.e. x. (9)

Proof of Theorem 1.1. We recall that we argue by contradiction. The discussion above gives
a bounded BV map u : B → R

2 and two closed convex cones C1 and C2 such that

• C1 ∩ C2 = (−C1) ∩ C2 = {0};
• If E and F ′ are defined as in (6) and (7), then |Dsu|(E ∩ F ′) > 0.

Now, by definition of E, |Dsu| E << |Dui| for both i = 1, 2. Thus, if we set µ :=
|Dsu| (E ∩ F ′), then µ is a singular measure such that µ << |Dui| F ′ for both i = 1, 2.
Next choose two larger closed convex cones C ′

1 and C ′
2 so that C ′

1∩C ′
2 = (−C ′

1)∩C ′
2 = {0}.

Apply Proposition 5.1 to find v1 and v2 such that Dvi/|Dvi|(x) ∈ C ′
i for |Dvi|–a.e. x, and

|Dui| F ′ << |Dvi|. Thus, we have µ << |Dvi| for both i = 1, 2. Applying Lemma 1.5 we
conclude that µ is absolutely continuous, which is the desired contradiction. �

Therefore, we are left with the task of proving Proposition 5.1. A special case of this
Proposition is when v is the indicator function of a set (which therefore is a Caccioppoli set).
This case turns out to be an elementary geometric remark, but it is the key to prove the
Proposition in its full generality, via the coarea formula.
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Proof of Proposition 5.1 when v is the indicator function of a set A. Since v is a BV func-
tion, A is a Caccioppoli set. We denote by ∂∗A its reduced boundary (see Section 3.5
of [3] for the definition) and by η the approximate exterior unit normal to ∂∗A. Since
Dv = ηH 1 ∂∗A, the set G is given by {x ∈ ∂∗A : η(x) ∈ C}. Since ∂∗A is rectifiable (cp.
with Theorem 3.59 of [3]), G can be decomposed as G0 ∪

⋃∞
i=1 Gi, where:

• H 1(G0) = 0 and for i ≥ 1 each Gi is the subset of a C1 curve γi;
• η|Gi

coincides with the normal to the curve γi.

Step 1 For each i we claim that there are Lipschitz open sets {Si,j}j∈N such that: the
exterior normal to ∂Si,j belongs H 1–a.e. to C ′ and {∂Si,j}j is a covering of Gi.
Recall that C ′ = C(e, a′), and choose coordinates x1, x2 in R

2 in such a way that e = (0, 1).
For any x ∈ Gi, the normal νi(x) belongs to C(e, a), and thus it is transversal to (1, 0). Since
γi is C

1, this implies that we can choose an open ball Bx centered at x such that γi ∩ Bx is
the graph {(x1, f(x1))} of a C1 function f : I → R, where I is some bounded open interval
of R. Moreover, by continuity of the normal νi, we can choose Bx so that νi(y) ∈ C ′ for
every y ∈ γi ∩ Bx.
Fix any such y. Note that the angle θ between e and νi(y) is equal to the angle between

(0, 1) and the tangent to γi at y. Since νi(y) ∈ C(e, a′), we conclude that

θ = arccos(νi(y) · e) ≤ arccos(1/a′) .

Thus |f ′| ≤ tan(arccos(1/a′)) ≤
√
a′2 − 1, and hence f is a Lipschitz function with constant

less than
√
a′2 − 1. It is an elementary well–known fact that f can be extended to a function

f̃ : R → R with the same Lipschitz constant. If we define Sx := {(x1, x2) : x2 < f̃(x1)},
then Sx is a Lipschitz open set, the normal to Sx belongs eveywhere to the cone C ′, and
∂Sx covers Bx ∩ γi. Since we can cover γi with a countable family of these balls Bx, the
corresponding Sx form the desired countable covering {Si,j}j

��
��
��
��

z

x
B+

Sx

B−

νi

B

γi

Bx

Figure 1. The set Sx and the ball Bx.
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Step 2 Consider the sets {Si,j}i,j . Their boundaries have all finite lengths, which we
denote by ℓi,j and they cover H 1–a.e. G. Let λi,j be a collection of positive numbers such
that

∑

i,j λi,j ≤ 1 and
∑

i,j λi,jℓi,j ≤ 1. Let w be the function
∑

i,j

λi,j1Si,j
.

First of all, ‖w‖∞ ≤ ∑

i,j λi,j ≤ 1. Second, w ∈ BV and |Dw| is the nonnegative measure
∑

i,j λi,jH
1 ∂Si,j . Thus, |Dv| G = H 1 G << |Dw|. Finally,

‖w‖BV = ‖w‖L1 + |Dw|(B) ≤ 2π +
∑

i,j

λi,jℓi,j ≤ 2π + 1 .

�

Proof of Proposition 5.1. Fix v, C, G and C ′ as in the statement, set c := ‖v‖∞ and for
every t ∈ [−c, c] consider the function vt := 1{v>t}. Then, it follows from the coarea formula
(see Theorem 3.40 of [3]) that:

(i) vt is a BV function for L 1–a.e. t, i.e. {v > t} is a Caccioppoli set, and we denote
by νt its exterior unit normal;

(ii) νt(x) = Dv/|Dv|(x) for L 1–a.e. t and H 1–a.e. x ∈ ∂∗{v > t};
(iii) |Dv| =

∫ c

−c
|Dvt| dL 1(t).

(Here, when α is a measure on Y and y 7→ βy a weakly measurable map from Y into the
space M(X) of Radon measures on X, the symbol

∫

βy dα(y) denotes the measure γ on X
which satisfies

∫

ϕ(x) dγ(x) =

∫

Y

∫

X

ϕ(x) dβy(x) dα(y)

for every ϕ ∈ Cc(X).)
Therefore, for L 1–a.e. t, vt, C, G, and C ′ satisfy the hypotheses of the Proposition. We

denote by wt the corresponding BV function given by the special case of this Proposition,
proved above. We will show below that wt can be selected in such a way that the map
t 7→ wt ∈ L∞ is weakly∗ measurable, i.e. that t 7→

∫

ϕwt is measurable for every ϕ ∈ L1(B).
Having a map with this property, we choose λ ∈ L1([−c, c]) such that λ > 0 and

∫ c

−c

λ(t)
(

‖wt‖∞ + ‖wt‖BV

)

dt < ∞ .

Assuming this fact, we set w(x) :=
∫ c

−c
λ(t)wt(x) dL

1(t). Then w is bounded, |Dw| is
a measure and |Dw| ≤

∫ c

−c
λ(t)|Dwt|dL 1(t), which is a finite measure. Therefore w ∈

BV ∩L∞. Next, recall that C ′ = C(e, a′) for some real a′ and some e ∈ S1. By Remark 4.1,
∂ewt ≥ a′|Dwt|. Thus ∂ewt is a nonnegative measure for L 1–a.e. t. From this we conclude

∂ew =

∫ c

−c

λ(t)∂ewtdL
1(t) ≥ a′

∫ c

−c

λ(t)|Dwt|dL 1(t) ≥ a′|Dw| ,
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which, by Remark 4.1, gives Dw/|Dw|(x) ∈ C ′ for |Dw|–a.e. x. Finally, |Dvt| G << |Dwt|,
from which we get

|Dv| G =

∫ c

−c

|Dvt| GdL 1(t) <<

∫ c

−c

λ(t)|Dwt|dL 1(t)

≤ a′
∫ c

−c

λ(t)∂ewtdL
1(t) = a′ ∂ew ≤ a′ |Dw| .

Thus w satisfies the requirements of the Proposition.

Proof of the existence of a measurable selection t 7→ wt. In order to show the
existence of such a selection, we will use a general Measurable Selection Theorem due to
Aumann (see Theorem III.2 in [4]). More precisely, consider the set S of functions z such
that z ∈ BV ∩ L∞ and Dz/|Dz|(x) ∈ C ′ for |Dz|–a.e. x. We endow S with the L∞ weak∗

topology.
Next, set Ft := {z ∈ S : |Dvt| G << |Dz|} if vt ∈ BV , and Ft = ∅ otherwise. In order

to apply Aumann’s Theorem we need that:

• S and [−c, c] are both locally compact and separable;
• The set F := {(t, u) : u ∈ Ft} ⊂ [−c, c]× S is a Borel set;
• Ft 6= ∅ for L 1–a.e. t.

This last condition has been already shown. Moreover, [−c, c] is compact and separable.
Thus it remains to show that S is locally compact and separable and that F is a Borel set.

S is locally compact and separable. For every N ∈ N consider the set SN := S ∩
{‖z‖∞ ≤ N}. Since on bounded sets the L∞ weak∗ topology is metrizable, clearly SN is
separable. Therefore, S is separable. We next show that SN is compact, which implies that
S is locally compact. Indeed consider any sequence {zn} ⊂ SN . By weak∗ compactness we
can assume that zn⇀

∗z for some z ∈ L∞: Our task is to show that z ∈ S. Recall that
that a′∂ezn ≥ |Dzn|. Thus {∂ezn} is a sequence of nonnegative measures which converge
distributionally to ∂ez. Therefore, these measures are uniformly bounded, i.e. ‖zn‖BV is
uniformly bounded. Thus Dzn⇀

∗Dz. Up to extraction of a subsequence we can assume
that |Dzn| converges in the sense of measures to some ν. Then,

|Dz| ≤ ν = w∗ lim
n

|Dzn| ≤ a′w∗ lim
n

∂ezn = a′∂ez .

This implies that z ∈ S.

F is a Borel set. Denote by M2 the set of R2–valued Radon measures on B and by M+

the set of nonnegative Radon measures. Define T : M+ ×M2 → R by

T (ν, µ) :=

∫

ν

|µ|(x) d|µ|(x) .

Note that ν << |µ| if and only if T (ν, µ) = ν(B). Thus,

F =
{

(t, z) ∈ [−c, c]× S : T (|Dvt| G,Dz) = |Dvt|(B ∩G)
}

.



12 CAMILLO DE LELLIS

Since the map t 7→ |Dvt| can be chosen Borel–measurable, in order to prove that F is a Borel
set it suffices to show that T is a Borel function.
First of all, note that

T (ν, µ) = sup
n∈N

∫

max

{

n,
ν

|µ|(x)
}

d|µ|(x) = sup
n∈N

n

∫

max

{

1,
ν/n

|µ| (x)
}

d|µ|(x) .

Therefore, it suffices to show that the map T̃ : M+ ×M2 → R given by

T̃ (α, µ) =

∫

max

{

1,
α

|µ|(x)
}

d|µ|(x)

is Borel measurable. Note that T̃ (α, µ) = inf
{

α(A) + |µ|(B \ A) : A ⊂ B is measurable
}

.
Therefore,

T̃ (α, µ) = inf
f∈Cc(B), 0<f<1

[
∫

(1− f) dα +

∫

f d|µ|
]

= inf
f∈Cc(B), 0<f<1

[

∫

(1− f) dα + sup
g∈Cc(B,R2),0≤|g|<f

∫

g · dµ
]

.

Let F1 be a countable dense subset of {f ∈ Cc(B) : 0 < f < 1} and F2 a countable dense
subset of Cc(B,R2). Then

T̃ (α, µ) = inf
f∈F1

sup
g∈F2, 0≤|g|<f

[
∫

(1− f) dα +

∫

g · dµ
]

. (10)

Since for each (f, g) ∈ F1 ×F2 the map

(α, µ) 7→
∫

(1− f) dα +

∫

g · dµ

is weakly∗ continuous, (10) implies that T̃ is a Borel function. �
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