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Abstract. In this paper we prove genus bounds for closed embedded minimal surfaces in a
closed 3-dimensional manifold constructed via min-max arguments. A stronger estimate was
announced by Pitts and Rubistein but to our knowledge its proof has never been published.
Our proof follows ideas of Simon and uses an extension of a famous result of Meeks, Simon
and Yau on the convergence of minimizing sequences of isotopic surfaces. This result is
proved in the second part of the paper.
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0. Introduction

0.1. Min–max surfaces. In [8] Tobias H. Colding and the second author started a survey
on constructing closed embedded minimal surfaces in a closed 3-dimensional manifold via
min–max arguments, including results of F. Smith, L. Simon, J. Pitts and H. Rubinstein.
This paper completes the survey by giving genus bounds for the final minmax surface.

The basic idea of min–max arguments over sweep-outs goes back to Birkhoff, who used
such a method to find simple closed geodesics on spheres. In particular when M2 is the
2-dimensional sphere we can find a 1–parameter family of curves starting and ending at a
point curve in such a way that the induced map F : S2 → S2 has nonzero degree. Birkhoff’s
argument (or the min-max argument) allows us to conclude that M has a nontrivial closed
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geodesic of length less than or equal to the length of the longest curve in the 1-parameter
family. A curve shortening argument gives that the geodesic obtained in this way is simple.

Following [8] we introduce a suitable generalized setting for sweepouts of 3–manifolds by
two–dimensional surfaces. From now on, M , Diff0 and Is will denote, respectively, a closed
3–dimensional Riemannian manifold, the identity component of the diffeomorphism group of
M , and the set of smooth isotopies. Thus Is consists of those maps ψ ∈ C∞([0, 1]×M,M)
such that ψ(0, ·) is the identity and ψ(t, ·) ∈ Diff0 for every t.

Definition 0.1. A family {Σt}t∈[0,1] of surfaces of M is said to be continuous if

(c1) H2(Σt) is a continuous function of t;
(c2) Σt → Σt0 in the Hausdorff topology whenever t→ t0.

A family {Σt}t∈[0,1] of subsets of M is said to be a generalized family of surfaces if there
are a finite subset T of [0, 1] and a finite set of points P in M such that

1. (c1) and (c2) hold;
2. Σt is a surface for every t 6∈ T ;
3. For t ∈ T , Σt is a surface in M \ P .

With a small abuse of notation, we shall use the word “surface” even for the sets Σt with
t ∈ T . To avoid confusion, families of surfaces will always be denoted by {Σt}. Thus, when
referring to a surface a subscript will denote a real parameter, whereas a superscript will
denote an integer as in a sequence.

Given a generalized family {Σt} we can generate new generalized families via the following
procedure. Take an arbitrary map ψ ∈ C∞([0, 1]×M,M) such that ψ(t, ·) ∈ Diff0 for each t
and define {Σ′

t} by Σ′
t = ψ(t,Σt). We will say that a set Λ of generalized families is saturated

if it is closed under this operation.

Remark 0.2. For technical reasons we require an additional property for any saturated set Λ
considered in this paper: the existence of some N = N(Λ) <∞ such that for any {Σt} ⊂ Λ,
the set P in Definition 0.1 consists of at most N points.

Given a family {Σt} ∈ Λ we denote by F({Σt}) the area of its maximal slice and by m0(Λ)
the infimum of F taken over all families of Λ; that is,

F({Σt}) = max
t∈[0,1]

H2(Σt) and (0.1)

m0(Λ) = inf
Λ

F = inf
{Σt}∈Λ

[

max
t∈[0,1]

H2(Σt)

]

. (0.2)

If limnF({Σt}n) = m0(Λ), then we say that the sequence of generalized families of surfaces
{{Σt}n} ⊂ Λ is a minimizing sequence. Assume {{Σt}n} is a minimizing sequence and let
{tn} be a sequence of parameters. If the areas of the slices {Σn

tn} converge to m0, i.e. if
H2(Σn

tn) → m0(Λ), then we say that {Σn
tn} is a min–max sequence.

An important point in the min–max construction is to find a saturated Λ with m0(Λ) > 0.
For instance, this can be done by using the following elementary proposition proven in the
Appendix of [8].

Proposition 0.3. Let M be a closed 3-manifold with a Riemannian metric and let {Σt} be
the level sets of a Morse function. The smallest saturated set Λ containing the family {Σt}
has m0(Λ) > 0.
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The paper [8] reports a proof of the following regularity result.

Theorem 0.4. [Simon–Smith] Let M be a closed 3-manifold with a Riemannian metric. For
any saturated Λ, there is a min–max sequence Σn

tn converging in the sense of varifolds to a
smooth embedded minimal surface Σ with area m0(Λ) (multiplicity is allowed).

0.2. Genus bounds. In this note we bound the topology of Σ under the assumption that
the t–dependence of {Σt} is smoother than just the continuity required in Definition 0.1.
This is the content of the next definition.

Definition 0.5. A generalized family {Σt} as in Definition 0.1 is said to be smooth if:

(s1) Σt varies smoothly in t on [0, 1] \ T ;
(s2) For t ∈ T , Στ → Σt smoothly in M \ P .

Here P and T are the sets of requirements 2. and 3. of Definition 0.1. We assume further
that Σt is orientable for any t 6∈ T .

Note that, if a set Λ consists of smooth generalized families, then the elements of its
saturation are still smooth generalized families. Therefore the saturated set considered in
Proposition 0.3 is smooth.

We next introduce some notation which will be consistently used during the proofs. We
decompose the surface Σ of Theorem 0.4 as

∑N
i=1 niΓ

i, where the Γi’s are the connected
components of Σ, counted without multiplicity, and ni ∈ N \ {0} for every i. We further
divide the components {Γi} into two sets: the orientable ones, denoted by O, and the non–
orientable ones, denoted by N . We are now ready to state the main theorem of this paper.

Theorem 0.6. Let Λ be a saturated set of smooth generalized families and Σ and Σn
tn the

surfaces produced in the proof of Theorem 0.4 given in [8]. Then

∑

Γi∈O

g(Γi) +
1

2

∑

Γi∈N

(g(Γi) − 1) ≤ g0 := lim inf
j↑∞

lim inf
τ→tj

g(Σj
τ ) . (0.3)

Remark 0.7. According to our definition, Σj
tj is not necessarily a smooth submanifold,

as tj could be one of the exceptional parameters of point 3. in Definition 0.1. However,

for each fixed j there is an η > 0 such that Σj
t is a smooth submanifold for every t ∈

]tj − η, tj[∪]tj , tj + η[. Hence the right hand side of (0.3) makes sense.

In fact the inequality (0.3) holds with g0 = lim infj g(Σj) for every limit Σ of a sequence
of surfaces Σj ’s that enjoy certain requirements of variational nature, i.e. that are almost
minimizing in sufficiently small annuli. The precise statement will be given in Theorem 1.6,
after introducing the suitable concepts.

As usual, when Γ is an orientable 2–dimensional connected surface, its genus g(Γ) is
defined as the number of handles that one has to attach to a sphere in order to get a surface
homeomorphic to Γ. When Γ is non–orientable and connected, g(Γ) is defined as the number
of cross caps that one has to attach to a sphere in order to get a surface homeomorphic to
Γ (therefore, if χ is the Euler characteristic of the surface, then

g(Γ) =

{
1
2
(2 − χ) if Γ ∈ N

2 − χ if Γ ∈ O
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see [12]). For surfaces with more than one connected component, the genus is simply the
sum of the genus of each connected component.

Our genus estimate (0.3) is weaker than the one announced by Pitts and Rubinstein in
[15], which reads as follows (cp. wih Theorem 1 and Theorem 2 in [15]):

∑

Γi∈O

nig(Γi) +
1

2

∑

Γi∈N

nig(Γi) ≤ g0 . (0.4)

In Section 10 a very elementary example shows that (0.4) is false for sequences of almost
minimizing surfaces (in fact even for sequences which are locally strictly minimizing). In
this case the correct estimate should be

∑

Γi∈O

nig(Γi) +
1

2

∑

Γi∈N

ni(g(Γi) − 1) ≤ g0 . (0.5)

Therefore, the improved estimate (0.4) can be proved only by exploiting an argument of
more global nature, using a more detailed analysis of the min–max construction.

The estimate (0.5) respects the rough intuition that the approximating surfaces Σj are,
after appropriate surgeries, isotopic to coverings of the surfaces Γi. For instance Γ can consist
of a single component that is a real projective space, and Σj might be the boundary of a
tubular neighborhood of Γ of size εj ↓ 0, i.e. a sphere. In this case Σj is a double cover of Γ.

Our proof uses the ideas of an unpublished argument of Simon, reported by Smith in [19]
to show the existence of an embedded minimal 2–sphere when M is a 3–sphere. These ideas
do not seem enough to show (0.4): its proof probably requires a much more careful analysis.
In Section 10 we discuss this issue.

Remark 0.8. The unpublished argument of Simon has been used also by Grüter and Jost
in [10]. The core of Simon’s argument is reported here with a technical simplification. We
then give a detailed proof of an auxiliary proposition which plays a fundamental role in the
argument. This part is, to our knowledge, new: neither Smith, nor Grüter and Jost provide
a proof of it. Smith suggests that the proposition can be proved by suitably modifying the
arguments of [13] and [4]. Though this is indeed the case, the strategy suggested by Smith
leads to a difficulty which we overcome with a different approach: see the discussion in Section
7. Moreover, [19] does not discuss the “convex–hull property” of Section 5, which is a basic
prerequisite to apply the boundary regularity theory of Allard in [3] (in fact we do not know
of any boundary regularity result in the minimal surface theory which does not pass through
some kind of convex hull property).

0.3. An example. We end this introduction with a brief discussion of how a sequence of
closed surface Σj could converge, in the sense of varifolds, to a smooth surface with higher
genus. This example is a model situation which must be ruled out by any proof of a genus
bound. First take a sphere in R3 and squeeze it in one direction towards a double copy of
a disk (recall that the convergence in the sense of varifolds does not take into account the
orientation). Next take the disk and wrap it to form a torus in the standard way. With a
standard diagonal argument we find a sequence of smooth embedded spheres in R3 which,
in the sense of varifolds, converges to a double copy of an embedded torus. See Figure 1
below.
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Figure 1. Failure of genus bounds under varifold convergence. A sequence
of embedded spheres converges to a double copy of a torus.

This example does not occur in min–max sequences for variational reasons. In particular,
it follows from the arguments of this paper that such a sequence does not have the almost
minimizing property in (sufficiently small) annuli discussed in Section 1.

0.4. Plan of the paper. Section 1 contains: some preliminaries on notational conventions,
a summary of the material of [8] used in this note and the most precise statement of the
genus bounds (Theorem 1.6). Section 2 gives an overview of the proof of Theorem 1.6. In
particular it reduces it to a statement on lifting of paths, which we call Simon’s Lifting
Lemma (see Proposition 2.1). Sections 3 and 4 contain a proof of Simon’s Lifting Lemma.
In Section 3 we state a suitable modification of a celebrated result of Meeks, Simon and Yau
(see [13]) in which we handle minimizing sequences of isotopic surfaces with boundaries (see
Proposition 3.2).

Sections 5, 6, 7, 8 and 9 show how to modify the theory of [13] and [4] in order to prove
Proposition 3.2. Section 5 discusses the convex–hull properties needed for the boundary
regularity. In Section 6 we introduce and prove the “squeezing lemmas” which allow to
pass from almost–minimizing sequences to minimizing sequences. Section 7 discusses the
γ–reduction and how one applies it to get the interior regularity. We also point out why the
γ–reduction cannot be applied directly to the surfaces of Proposition 3.2. Section 8 proves
the boundary regularity. Finally, section 9 handles the part of Proposition 3.2 involving
limits of connected components.

Section 10 discusses the subtleties of the stronger estimates (0.4) and (0.5).
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1. Preliminaries and statement of the result

1.1. Notation. Throughout this paper our notation will be consistent with the one of [8],
explained in Section 2 of that paper. For the reader’s convenience we recall some of these
conventions in the following table.

TxM the tangent space of M at x
TM the tangent bundle of M .
Inj (M) the injectivity radius of M .
H2 the 2–d Hausdorff measure in the metric space (M, d).
H2
e the 2–d Hausdorff measure in the euclidean space R3.

Bρ(x) open ball
Bρ(x) closed ball
∂Bρ(x) distance sphere of radius ρ in M .
diam(G) diameter of a subset G ⊂M .
d(G1, G2) the Hausdorff distance between the subsets

G1 and G2 of M .
D, Dρ the unit disk and the disk of radius ρ in R2.
B, Bρ the unit ball and the ball of radius ρ in R3.
expx the exponential map in M at x ∈M .
Is(U) smooth isotopies which leave M \ U fixed.
G2(U), G(U) grassmannian of (unoriented) 2–planes on U ⊂M .
An(x, τ, t) the open annulus Bt(x) \Bτ (x).
AN r(x) the set {An(x, τ, t) where 0 < τ < t < r}.
C∞(X, Y ) smooth maps from X to Y .
C∞
c (X, Y ) smooth maps with compact support from X

to the vector space Y .

1.2. Varifolds. We will need to recall some basic facts from the theory of varifolds; see for
instance chapter 4 and chapter 8 of [18] for further information. Varifolds are a convenient
way of generalizing surfaces to a category that has good compactness properties. An ad-
vantage of varifolds, over other generalizations (like currents), is that they do not allow for
cancellation of mass. This last property is fundamental for the min–max construction.

If U is an open subset of M , any finite nonnegative measure on the Grassmannian of
unoriented 2–planes on U is said to be a 2–varifold in U . The Grassmannian of 2–planes will
be denoted by G2(U) and the vector space of 2–varifolds is denoted by V2(U). Throughout
we will consider only 2–varifolds; thus we drop the 2.

We endow V(U) with the topology of the weak convergence in the sense of measures,
thus we say that a sequence V k of varifolds converge to a varifold V if for every function
ϕ ∈ Cc(G(U))

lim
k→∞

∫

ϕ(x, π) dV k(x, π) =

∫

ϕ(x, π) dV (x, π) .

Here π denotes a 2–plane of TxM . If U ′ ⊂ U and V ∈ V(U), then we denote by V U ′

the restriction of the measure V to G(U ′). Moreover, ‖V ‖ will be the unique measure on U
satisfying

∫

U

ϕ(x) d‖V ‖(x) =

∫

G(U)

ϕ(x) dV (x, π) ∀ϕ ∈ Cc(U) .
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The support of ‖V ‖, denoted by supp (‖V ‖), is the smallest closed set outside which ‖V ‖
vanishes identically. The number ‖V ‖(U) will be called the mass of V in U . When U is
clear from the context, we say briefly the mass of V .

Recall also that a 2–dimensional rectifiable set is a countable union of closed subsets of
C1 surfaces (modulo sets of H2–measure 0). Thus, if R ⊂ U is a 2–dimensional rectifiable
set and h : R→ R+ is a Borel function, then we can define a varifold V by

∫

G(U)

ϕ(x, π) dV (x, π) =

∫

R

h(x)ϕ(x, TxR) dH2(x) ∀ϕ ∈ Cc(G(U)) . (1.1)

Here TxR denotes the tangent plane to R in x. If h is integer–valued, then we say that V is
an integer rectifiable varifold. If Σ =

⋃
niΣi, then by slight abuse of notation we use Σ for

the varifold induced by Σ via (1.1).

1.3. Pushforward, first variation, monotonicity formula. If V is a varifold induced
by a surface Σ ⊂ U and ψ : U → U ′ a diffeomorphism, then we let ψ#V ∈ V(U ′) be the
varifold induced by the surface ψ(Σ). The definition of ψ#V can be naturally extended to
any V ∈ V(U) by

∫

ϕ(y, σ) d(ψ#V )(y, σ) =

∫

Jψ(x, π)ϕ(ψ(x), dψx(π)) dV (x, π) ;

where Jψ(x, π) denotes the Jacobian determinant (i.e. the area element) of the differential
dψx restricted to the plane π; cf. equation (39.1) of [18].

Given a smooth vector field χ, let ψ be the isotopy generated by χ, i.e. with ∂ψ
∂t

= χ(ψ).
The first variation of V with respect to χ is defined as

[δV ](χ) =
d

dt
(‖ψ(t, ·)#V ‖)

∣
∣
∣
∣
t=0

;

cf. sections 16 and 39 of [18]. When Σ is a smooth surface we recover the classical definition
of first variation of a surface:

[δΣ](χ) =

∫

Σ

divΣχ dH2 =
d

dt
(H2(ψ(t,Σ)))

∣
∣
∣
∣
t=0

.

If [δV ](χ) = 0 for every χ ∈ C∞
c (U, TU), then V is said to be stationary in U . Thus

stationary varifolds are natural generalizations of minimal surfaces.
Stationary varifolds in Euclidean spaces satisfy the monotonicity formula (see sections 17

and 40 of [18]):

For every x the function f(ρ) =
‖V ‖(Bρ(x))

πρ2
is non–decreasing. (1.2)

When V is a stationary varifold in a Riemannian manifold a similar formula with an error
term holds. Namely, there exists a constant C(r) ≥ 1 such that

f(s) ≤ C(r)f(ρ) whenever 0 < s < ρ < r. (1.3)

Moreover, the constant C(r) approaches 1 as r ↓ 0. This property allows us to define the
density of a stationary varifold V at x, by

θ(x, V ) = lim
r↓0

‖V ‖(Br(x))

πr2
.
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Thus θ(x, V ) corresponds to the upper density θ∗2 of the measure ‖V ‖ as defined in section
3 of [18].

1.4. Curvature estimates for stable minimal surfaces. In many of the proofs we will
use Schoen’s curvature estimate (see [17]) for stable minimal surfaces. Recall that this
estimate asserts that, if U ⊂⊂ M , then there exists a universal constant, C(U), such that
for every stable minimal surface Σ ⊂ U with ∂Σ ⊂ ∂U and second fundamental form A

|A|2(x) ≤ C(U)

d2(x, ∂U)
∀x ∈ Σ . (1.4)

In fact, what we will use is not the actual curvature estimate, rather it is the following
consequence of it:

If {Σn} is a sequence of stable minimal surfaces in U , then a

subsequence converges to a stable minimal surface Σ∞ . (1.5)

1.5. Almost minimizing min–max sequences. Next, we assume that Λ is a fixed satu-
rated set and we begin by recalling the building blocks of the proof of Theorem 0.4. First
of all, in [8], following ideas of Pitts and Almgren (see [14] and [5]), the authors reported a
proof of the following proposition (cp. with Proposition 3.1 in [8]).

Proposition 1.1. There exists a minimizing sequence {{Σt}n} ⊂ Λ such that every min–
max sequence {Σn

tn} clusters to stationary varifolds.

It is well–known that stationary varifolds are not, in general, smooth minimal surfaces.
The regularity theory of Theorem 0.4 relies on the definition of almost minimizing sequence,
a concept introduced by Pitts in [14] and based on ideas of Almgren (see [5]). Roughly
speaking a surface Σ is almost minimizing if any path of surfaces {Σt}t∈[0,1] starting at Σ
and such that Σ1 has small area (compared to Σ) must necessarily pass through a surface
with large area. Our actual definition, following Smith and Simon, is in fact more restrictive:
we will require the property above only for families {Σt} given by smooth isotopies.

Definition 1.2. Given ε > 0, an open set U ⊂M3, and a surface Σ, we say that Σ is ε–a.m.
in U if there does not exist any isotopy ψ supported in U such that

H2(ψ(t,Σ)) ≤ H2(Σ) + ε/8 for all t; (1.6)

H2(ψ(1,Σ)) ≤ H2(Σ) − ε. (1.7)

Using a combinatorial argument due to Almgren and exploited by Pitts in [14], the second
step of [8] was to show Proposition 1.4 below.

Remark 1.3. In fact, the statement of Proposition 1.4 does not coincide exactly with the
corresponding Proposition 5.1 of [8]. However, it is easy to see that Proposition 5.3 of [8]
yields the slightly small precise statement given below.

Proposition 1.4. There exists a function r : M → R+ and a min–max sequence Σj = Σj
tj

such that:

• in every annulus An centered at x and with outer radius at most r(x), Σj is 1/j–a.m.
provided j is large enough;

• In any such annulus, Σj is smooth when j is sufficiently large;
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• Σj converges to a stationary varifold V in M , as j ↑ ∞.

The following Theorem completed the proof of Theorem 0.4 (cp. with Theorem 7.1 in [8]).

Theorem 1.5. Let {Σj} be a sequence of surfaces in M and assume the existence of a
function r : M → R+ such that the conclusions of Proposition 1.4 hold. Then V is a smooth
minimal surface.

The proof of this Theorem draws heavily on a fundamental result of Meeks, Simon and
Yau ([13]). A suitable version of it plays a fundamental role also in this paper and since the
modifications of the ideas of [13] needed in our case are complicated, we will discuss them
later in detail. From now on, in order to simplify our notation, a sequence {Σj} satisfying
the conclusions of Proposition 1.4 will be simply called almost minimizing in sufficiently
small annuli.

1.6. Statement of the result. Our genus estimate is valid, in general, for limits of se-
quences of surfaces which are almost minimizing in sufficiently small annuli.

Theorem 1.6. Let Σj = Σj
tj be a sequence which is a.m. in sufficiently small annuli. Let

V =
∑

i niΓ
i be the varifold limit of {Σj}, where Γi are as in Theorem 0.6. Then

∑

Γi∈O

g(Γi) +
1

2

∑

Γi∈N

(g(Γi) − 1) ≤ lim inf
j↑∞

lim inf
τ→tj

g(Σj
τ ) . (1.8)

2. Overview of the proof

In this section we give an overview of the proof of Theorem 1.6. Therefore we fix a min–
max sequence Σj = Σj

tj as in Theorem 1.6 and we let
∑

i niΓ
i be its varifold limit. Consider

the smooth surface Γ = ∪iΓi and let ε0 > 0 be so small that there exists a smooth retraction
of the tubular neighborhood T2ε0Γ onto Γ. This means that, for every δ < 2ε0,

• TδΓ
i are smooth open sets with pairwise disjoint closures;

• if Γi is orientable, then TδΓ
i is diffeomorphic to Γi×] − 1, 1[;

• if Γi is non–orientable, then the boundary of TδΓ
i is an orientable double cover of Γi.

2.1. Simon’s Lifting Lemma. The following Proposition is the core of the genus bounds.
Similar statements have been already used in the literature (see for instance [10] and [9]).
We recall that the surface Σj might not be everywhere regular, and we denote by Pj its set
of singular points (possibly empty).

Proposition 2.1 (Simon’s Lifting Lemma). Let γ be a closed simple curve on Γi and let
ε ≤ ε0 be positive. Then, for j large enough, there is a positive n ≤ ni and a closed curve γ̃j

on Σj ∩ TεΓi \ Pj which is homotopic to nγ in TεΓ
i.

Simon’s lifting Lemma implies directly the genus bounds if we use the characterization of
homology groups through integer rectifiable currents and some more geometric measure the-
ory. However, we choose to conclude the proof in a more elementary way, using Proposition
2.3 below.
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2.2. Surgery. The idea is that, for j large enough, one can modify any {Σj
t} sufficiently

close to Σj = Σj
tj through surgery to a new surface Σ̃j

t such that

• the new surface lies in a tubular neighborhood of Γ;
• it coincides with the old surface in a yet smaller tubular neighborhood.

The surjeries that we will use in this paper are of two kind: we are allowed to

• remove a small cylinder and replace it by two disks (as in Fig. 2);
• discard a connected component.

We give below the precise definition.

removing a
cylinder

adding two
disks

Figure 2. Cutting away a neck

Definition 2.2. Let Σ and Σ̃ be two closed smooth embedded surfaces. We say that Σ̃ is
obtained from Σ by cutting away a neck if:

• Σ \ Σ̃ is homeomorphic to S1×]0, 1[;
• Σ̃ \ Σ is homeomorphic to the disjoint union of two open disks;

• Σ̃∆Σ is a contractible sphere.

We say that Σ̃ is obtained from Σ through surgery if there is a finite number of surfaces
Σ0 = Σ,Σ1, . . . ,ΣN = Σ̃ such that each Σk is

• either isotopic to the union of some connected components of Σk−1;
• or obtained from Σk−1 by cutting away a neck.

Clearly, if Σ̃ is obtained from Σ through surgery, then g(Σ̃) ≤ g(Σ). We are now ready to
state our next Proposition.

Proposition 2.3. Let ε ≤ ε0 be positive. For each j sufficiently large and for t sufficiently
close to tj, we can find a surface Σ̃j

t obtained from Σj
t through surgery and satisfying the

following properties:

• Σ̃j
t is contained in T2εΓ;

• Σ̃j
t ∩ TεΓ = Σj

t ∩ TεΓ.
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2.3. Proof of Theorem 1.6. Proposition 2.3 and Proposition 2.1 allow us to conclude
the proof of Theorem 1.6. We only need the following standard fact for the first integral
homology group of a smooth closed connected surface (see Sections 4.2 and 4.5 of [12]).

Lemma 2.4. Let Γ be a connected closed 2–dimensional surface with genus g. If Γ is
orientable, then H1(Γ) = Z

2g. If Γ is non–orientable, then H1(Γ) = Z
g−1 × Z2.

The proof of Proposition 2.3 is given below, at the end of this section. The rest of the
paper is then dedicated to prove Simon’s Lifting Lemma. We now come to the proof of
Theorem 1.6.

Proof of Theorem 1.6. Define mi = g(Γi) if i is orientable and (g(Γi)− 1)/2 if not. Our aim
is to show that ∑

i

mi ≤ lim inf
j↑∞

lim inf
t→tj

g(Σj
t) . (2.1)

By Lemma 2.4, for each Γi there are 2mi curves γi,1, . . . , γi,2mi with the following property:

(Hom) If k1, . . . , k2mi
are integers such that k1γ

i,1 + . . . + k2mi
γi,2mi is homologically trivial

in Γi, then kl = 0 for every l.

Since ε < ε0/2, T2εΓ
i can be retracted smoothly on Γi. Hence:

(Hom’) If k1, . . . , k2mi
are integers such that k1γ

i,1 + . . . + k2mi
γi,2mi is homologically trivial

in T2εΓ
i, then kl = 0 for every l.

Next, fix ε < ε0 and let N be sufficiently large so that, for each j ≥ N , Simon’s Lifting
Lemma applies to each curve γi,l. We require, moreover, that N is large enough so that
Proposition 2.3 applies to every j > N .

Choose next any j > N and consider the curves γ̃i,l lying in TεΓ ∩ Σj given by Simon’s
Lifting Lemma. Such surfaces are therefore homotopic to ni,lγ

i,l in TεΓ
i, where each ni,l is

a positive integer. Moreover, for each t sufficiently close to tj consider the surface Σ̃j
t given

by Proposition 2.3. The surface Σ̃j
t decomposes into the finite number of components (not

necessarily connected) Σ̃j
t ∩ T2εΓ

i. Each such surface is orientable and
∑

i

g(Σ̃j
t ∩ T2εΓ

i) = g(Σ̃j
t) ≤ g(Σj

t) . (2.2)

We claim that

mi ≤ lim inf
t→tj

g(Σ̃j
t ∩ T2εΓ

i) , (2.3)

which clearly would conclude the proof.
Since Σj

t converges smoothly to Σj outside Pj , we conclude that Σ̃j
t ∩ TεΓ

i converges
smoothly to Σj ∩ TεΓi outside Pj. Since each γi,l does not intersect Pj, it follows that, for t

large enough, there exist curves γ̂i,l contained in Σ̃j
t ∩ TεΓi and homotopic to γ̃i,l in TεΓ

i.

Summarizing:

(i) Each γ̃i,l is homotopic to ni,lγ
i,l in T2εΓ

i for some positive integer ni,l;

(ii) Each γ̃i,l is contained in Σ̃j
t ∩ T2εΓ

i;

(iii) Σ̃j
t ∩ T2εΓ

i is a closed surface;
(iv) If c1γ

i,1 + . . . + c2mi
γi,2mi is homologically trivial in T2εΓ

i and the cl’s are integers,
then they are all 0.
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These statements imply that:

(Hom”) If c1γ̃
i,1+ . . .+c2mi

γ̃i,2mi is homologically trivial in Σ̃j
t ∩T2εΓ

i and the cl’s are integers,
then they are all 0.

From Lemma 2.4, we conclude again that g(Σ̃j
t ∩ T2εΓ

i) ≥ mi. �

2.4. Proof of Proposition 2.3. Consider the set Ω = T2εΓ \ TεΓ. Since Σj converges, in
the sense of varifolds, to Γ, we have

lim
j↑∞

lim sup
t→tj

H2(Σj
t ∩ Ω) = 0 . (2.4)

Let η > 0 be a positive number to be fixed later and consider N such that

lim sup
t→tj

H2(Σj
t ∩ Ω) < η/2 for each j ≥ N . (2.5)

Fix j ≥ N and let δj > 0 be such that

H2(Σj
t ∩ Ω) < η if |tj − t| < δj . (2.6)

For each σ ∈]ε, 2ε[ consider ∆σ := ∂ (TσΓ), i.e. the boundary of the tubular neighborhood
TσΓ. The surfaces ∆σ are a smooth foliation of Ω \ Γ and therefore, by the coarea formula

∫ 2ε

ε

Length(Σj
t ∩ ∆σ) dσ ≤ CH2(Σj

t ∩ Ω) < Cη (2.7)

where C is a constant independent of t and j. Therefore,

Length(Σj
t ∩ ∆σ) <

2Cη

ε
(2.8)

holds for a set of σ’s with measure at least ε/2.
By Sard’s Lemma we can fix a σ such that (2.7) holds and Σj

t intersects ∆t transversally.
For positive constants λ and C, independent of j and t, the following holds:

(B) For any s ∈]0, 2ε[, any simple closed curve γ lying on ∆s with Length(γ) ≤ λ bounds
an embedded disk D ⊂ ∆s with diam(D) ≤ CLength(γ).

Assume that 2Cη/ε < λ. By construction, Σj
t ∩ ∆σ is a finite collection of simple curves.

Consider Ω̃ := Tσ+δΓ \ Tσ−δΓ. For δ sufficiently small, Ω̃ ∩ Σj
t is a finite collection of

cylinders, with upper bases lying on ∆σ+δ and lower bases lying on ∆σ−δ. We “cut away”
this finite number of necks by removing Ω̃∩Σj

t and replacing them with the two disks lying
on ∆σ−δ∪∆σ+δ and enjoying the bound (B). For a suitable choice of η, the union of each neck
and of the corresponding two disks has sufficiently small diameter. This surface is therefore
a compressible sphere, which implies that the new surface Σ̂j

t is obtained from Σj
t through

surgery.
We can smooth it a little: the smoothed surface will still be obtained from Σj

t through

surgery and will not intersect ∆σ. Therefore Σ̃j
t := Σ̂j

t ∩ TσΓ is a closed surface and is

obtained from Σ̂j
t by dropping a finite number of connected components. �
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3. Proof of Proposition 2.1. Part I: Minimizing sequences of isotopic

surfaces

A key point in the proof of Simon’s Lifting Lemma is Proposition 3.2 below. Its proof,
postponed to later sections, relies on the techniques introduced by Almgren and Simon in
[4] and Meeks, Simon and Yau in [13]. Before stating the proposition we need to introduce
some notation.

3.1. Minimizing sequences of isotopic surfaces.

Definition 3.1. Let I be a class of isotopies of M and Σ ⊂M a smooth embedded surface.
If {ϕk} ⊂ I and

lim
k→∞

H2(ϕk(1,Σ)) = inf
ψ∈I

H2(ψ(1,Σ)) ,

then we say that ϕk(1,Σ) is a minimizing sequence for Problem (Σ, I).
If U is an open set of M , Σ a surface with ∂Σ ⊂ ∂U and j ∈ N an integer, then we define

Isj(U,Σ) :=
{
ψ ∈ Is(U)

∣
∣ H2(ψ(τ,Σ)) ≤ H2(Σ) + 1/(8j) ∀τ ∈ [0, 1]

}
. (3.1)

Proposition 3.2. Let U ⊂ M be an open ball with sufficiently small radius and consider
a smooth embedded surface Σ such that ∂Σ ⊂ ∂U is also smooth. Let ∆k := ϕk(1,Σ) be
a minimizing sequence for Problem (Σ, Isj(U,Σ)), converging to a stationary varifold V .
Then, V is a smooth minimal surface ∆ with smooth boundary ∂∆ = ∂Σ.

Moreover, if we form a new sequence ∆̃k by taking an arbitrary union of connected com-
ponents of ∆k, it converges, up to subsequences, to the union of some connected components
of ∆.

In fact, we believe that the proof of Proposition 3.2 could be modified to include any open
set U with smooth, uniformly convex boundary. However, such a statement would imply
several technical complications in Section 5 and hence goes beyond our scopes. Instead, the
following simpler statement can be proved directly with our arguments, though we do not
give the details.

Proposition 3.3. Let U ⊂ M be a uniformly convex open set with smooth boundary and
consider a smooth embedded surface Σ such that ∂Σ ⊂ ∂U is also smooth. Let ∆k := ϕk(1,Σ)
be a minimizing sequence for Problem (Σ, Is(U)), converging to a stationary varifold V .
Then, V is a smooth minimal surface ∆ with smooth boundary ∂∆ = ∂Σ.

Moreover, if we form a new sequence ∆̃k by taking an arbitrary union of connected com-
ponents of ∆k, it converges, up to subsequences, to the union of some connected components
of ∆.

3.2. Elementary remarks on minimizing surfaces. We end this section by collecting
some properties of minimizing sequences of isotopic surfaces which will be used often through-
out this paper. We start with two very elementary remarks.

Remark 3.4. If Σ is 1/j–a.m. in an open set U and Ũ is an open set contained in U , then
Σ is 1/j–a.m. in Ũ .

Remark 3.5. If Σ is 1/j–a.m. in U and ψ ∈ Isj(Σ, U) is such that H2(ψ(1,Σ)) ≤ H2(Σ),
then ψ(1,Σ) is 1/j–a.m. in U .
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Next we collect two lemmas. Their proofs are short and we include them below for the
reader’s convenience.

Lemma 3.6. Let Σj be 1/j–a.m. in annuli and r : M → R+ be the function of Theorem 1.5.
Assume U is an open set with closure contained in An(x, τ, σ), where σ < r(x). Let ψj ∈
Isj(Σj , U) be such that H2(ψj(1,Σj)) ≤ H2(Σ). Then ψj(1,Σj) is 1/j–a.m. in sufficiently
small annuli.

Proof. Recall the definition of 1/j–a.m. in sufficiently small annuli. This means that there
is a function r : M → R+ such that Σ is 1/j–a.m. on every annulus centered at y and with
outer radius smaller than r(y). Let An(x, τ, σ) be an annulus on which Σ is 1/j–a.m. and
U ⊂⊂ An(x, τ, σ). If y 6∈ Bσ(x), then dist(y, U) > 0. Set r1(y) := min{r(y), dist(y, U)}.
Then ψ(1,Σ) = Σ on every annulus with center y and radius smaller than r1(y), and therefore
it is 1/j–a.m. in it. If y = x, then the statement is obvious because of Remark 3.5. If
y ∈ Bσ(x) \ {x}, then there exists ρ(y), τ(y) such that U ∪ Bρ(y)(y) ⊂ An(x, τ(y), σ). By
Remarks 3.5 and 3.4, ψ(1,Σ) is 1/j–a.m. on every annulus centered at y and outer radius
smaller than ρ(y). �

Lemma 3.7. Let {Σj} be a sequence as in Theorem 1.5 and U and ψj be as in Lemma 3.6.
Assume moreover that U is contained in a convex set W . If Σj converges to a varifold V ,
then ψj(1,Σ

j) converges as well to V .

Proof of Lemma 3.7. By Theorem 1.5 V is a smooth minimal surface (multiplicity allowed).
By Lemma 3.6, ψj(1,Σ

j) is also 1/j–a.m. and again by Theorem 1.5 a subsequence (not
relabeled) converges to a varifold V ′ which is a smooth minimal surface. Since Σj = ψj(1,Σ

j)
outside W , V = V ′ outside W . Being W convex, it cannot contain any closed minimal
surface, and hence by standard unique continuation, V = V ′ in W as well. �

4. Proof of Proposition 2.1. Part II: Leaves

4.1. Step 1. Preliminaries. Let {Σj} be a sequence as in Theorem 1.6. We keep the
convention that Γ denotes the union of disjoint closed connected embedded minimal surfaces
Γi (with multiplicity 1) and that Σj converges, in the sense of varifolds, to V =

∑

i niΓ
i.

Finally, we fix a curve γ contained in Γ.
Let r : Γ → R+ be such that the three conclusions of Proposition 1.4 hold. Consider a

finite covering {Bρl
(xl)} of M with ρl < r(xl) and denote by C the set of the centers {xl}.

Next, up to extraction of subsequences, we assume that the set of singular points Pj ⊂ Σj

converges in the sense of Hausdorff to a finite set P (recall Remark 0.2) and we denote by
E the union of C and P . Recalling Remark 3.4, for each x ∈ M \ E there exists a ball B
centered at x such that:

• Σj ∩B is a smooth surface for j large enough;
• Σj is 1/j–a.m. in B for j large enough.

Deform γ to a smooth curve contained in Γ \ E and homotopic to γ in Γ. It suffices to
prove the claim of the Proposition for the new curve. By abuse of notation we continue to
denote it by γ. In what follows, we let ρ0 be any given positive number so small that:

• Tρ0(Γ) can be retracted on Γ;
• For every x ∈ Γ, Bρ0(x)∩Γ is a disk with diameter smaller than the injectivity radius

of Γ.
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For any positive ρ ≤ 2ρ0 sufficiently small, we can find a finite set of points x1, . . . , xN on
γ with the following properties (to avoid cumbersome notation we will use the convention
xN+1 = x1):

(C1) If we let [xk, xk+1] be the geodesic segment on Γ connecting xk and xk+1, then γ is
homotopic to

∑

k[xk, xk+1].
(C2) Bρ(xk+1) ∩ Bρ(xk) = ∅;
(C3) Bρ(xk) ∪ Bρ(xk+1) is contained in a ball Bk,k+1 of radius 3ρ;
(C4) In any ball Bk,k+1, Σj is 1/j–a.m. and smooth provided j is large enough;

see Figure 3. From now on we will consider j so large that (C4) holds for every k. The
constant ρ will be chosen (very small, but independent of j) only at the end of the proof.
The existence of the points xk is guaranteed by a simple compactness argument if ρ0 is a
sufficiently small number.

x1

x2

x3

x4

Bρ(x2)

B1,2
γ

Bρ(x1)

Figure 3. The points xl of (C1)-(C4).

4.2. Step 2. Leaves. In every Bρ(xk) consider a minimizing sequence Σj,l := ψl(1,Σ
j) for

Problem (Σj , Isj(Bρ(xk),Σ
j)). Using Proposition 3.2, extract a subsequence converging (in

Bρ(xk)) to a smooth minimal surface Γj,k with boundary ∂Γj,k = Σj ∩ Bρ(xk). This is a
stable minimal surface, and we claim that, as j ↑ ∞, Γj,k converges smoothly on every ball
B(1−θ)ρ(xk) (with θ < 1) to V . Indeed, this is a consequence of Schoen’s curvature estimates,
see Subsection 1.4.

By a diagonal argument, if {lj} grows sufficiently fast, Σj,lj ∩Bρ(xk) has the same limit as
Γj,k. On the other hand, for {lj} growing sufficiently fast, Lemmas 3.6 and 3.7 apply, giving
that Σj,lj converges to V .

Therefore, Γj,k converges smoothly to niΓ
i ∩ B(1−θ)ρ(xk) in B(1−θ)ρ(xk) for every positive

θ < 1. Therefore any connected component of Γj,k ∩ B(1−θ)ρ(xk) is eventually (for large j’s)
a disk (multiplicity allowed). The area of such a disk is, by the monotonicty formula for
minimal surfaces, at least c(1 − θ)2ρ2, where c is a constant depending only on M . From
now on we consider θ fixed, though its choice will be specified later.
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Up to extraction of subsequences, we can assume that for each connected component Σ̂j

of Σj , ψl(1, Σ̂
j) converges to a finite union of connected components of Γj,k. However, in

B(1−θ)ρ(xk),

• either their limit is zero;
• or the area of ψl(1, Σ̂

j) in B(1−θ)ρ(xk) is larger than c(1 − 2θ)2ρ2 for l large enough.

We repeat this argument for every k. Therefore, for any j sufficiently large, we define
the set L(j, k) whose elements are those connected components Σ̂j of Σj ∩Bρ(xk) such that

ψl(1, Σ̂
j) intersected with B(1−θ)ρ(xk) has area at least c(1 − 2θ)2ρ2.

Recall that Σj is converging to niΓ
i ∩ Bρ(xk) in Bρ(xk) in the sense of varifolds. There-

fore, the area of Σj is very close to niH2(Γi ∩ Bρ(xk)). On the other hand, by definition
H2(ψl(1,Σ

j) ∩ Bρ(xk)) is not larger. This gives a bound to the cardinality of L(j, k), inde-
pendent of j and k. Moreover, if ρ and θ are sufficiently small. the constants c and ε get so
close, respectively, to 1 and 0 that the cardinality of L(j, k) can be at most ni.

4.3. Step 3. Continuation of the leaves. We claim the following

Lemma 4.1 (Continuation of the leaves). If ρ is sufficiently small, then for every j suffi-

ciently large and for every element Λ of L(j, k) there is an element Λ̃ of L(j, k+1) such that
Λ and Λ̃ are contained in the same connected component of Σj ∩Bk,k+1.

The lemma is sufficient to conclude the proof of the Theorem. Indeed let {Λ1,Λ2, . . . ,Λk}
be the elements of L(j, 1). Choose a point y1 on Λ1 and then a point y2 lying on an element

Λ̃ of L(j, 2) such that Λ1∪ Λ̃ is contained in a connected component of Σj∩B1,2. We proceed
by induction and after N steps we get a point yN+1 in some Λk. After repeating at most
ni + 1 times this procedure, we find two points ylN+1 and yrN+1 belonging to the same Λs.
Without loss of generality we discard the first lN points and renumber the remaining ones
so that we start with y1 and end with ynN+1 = y1. Note that n ≤ ni. Each pair yk, yk+1 can
be joined with a path γk,k+1 lying on Σj and contained in a ball of radius 3ρ, and the same
can be done with a path γnN+1,1 joining ynN+1 and y1. Thus, if we let

γ̃ =
∑

k

γk,k+1 + γnN+1,1

we get a closed curve contained in Σj .
It is easy to show that the curve γ̃ is homotopic to nγ in ∪kBk,k+1. Indeed, for each sN+r

fix a path ηsN+r : [0, 1] → Bρ(xr) with ηsN+r(0) = ysN+r and ηsN+r(1) = xr. Next fix an
homotopy ζsN+r : [0, 1] × [0, 1] → Bk,k+1 with

• ζsN+r(0, ·) = γsN+r,sN+r+1,
• ζsN+r(1, ·) = [xr, xr+1],
• ζsN+r(·, 0) = ηiN+r(·)
• and ζsN+r(·, 1) = ηsN+r+1(·).

Joyning the ζk’s we easily achieve an homotopy between γ and γ̃. See Figure 4. If ρ is chosen
sufficiently small, then ∪kBk,k+1 is contained in a retractible tubular neighborhood of Γ and
does not intersect E.
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y1

ζ1 ”fills in”
here

η1

x1

Bρ(x1) Bρ(x2)

x2

η2

y2
γ̃

B1,2

γ

Figure 4. The homotopies ζ iN+r.

4.4. Step 4. Proof of the Continuation of the Leaves. Let us fix a ρ for which
Lemma 4.1 does not hold. Our goal is to show that for ρ sufficiently small, this leads to
a contradiction. Clearly, there is an integer k and a subsequence jl ↑ ∞ such that the
statement of the Lemma fails. Without loss of generality we can assume k = 1 and we set
x = x1, y = x2 and B1,2 = B. Moreover, by a slight abuse of notation we keep labeling Σjl

as Σj .
Consider the minimizing sequence of isotopies {ψl} for Problem (Σj , Isj(Bρ(x),Σ

j)) and
{φl} for Problem (Σj , Isj(Bρ(y),Σ

j)) fixed in Step 3. Since Bρ(x) ∩ Bρ(y) = ∅ and ψl and
φl leave, respectively, M \Bρ(y) and M \Bρ(x) fixed, we can combine the two isotopies in

Φl(t, z) :=

{
ψl(2t, z) for t ∈ [0, 1/2]
φl(2t− 1, z) for t ∈ [1/2, 1].

If we consider Σj,l = Φl(1,Σ
j), then Σj,l ∩ Bρ(x) = ψl(1,Σ

j) ∩ Bρ(x) and Σj,l ∩ Bρ(y) =
φl(1,Σ

j) ∩ Bρ(y). Moreover for a sufficiently large l, the surface Σj,l by Lemma 3.6 is 1/j–
a.m. in B and in sufficiently small annuli.

Arguing as in Step 2 (i.e. applying Theorem 1.5, Lemma 3.6 and Lemma 3.7), without
loss of generality we can assume that:

(i) Σj,l converges, as l ↑ ∞, to smooth minimal surfaces ∆j and Λj respectively in Bρ(x)
and Bρ(y);

(ii) ∆j and Λj converge, respectively, to niΓ
i ∩ Bρ(x) and niΓ

i ∩ Bρ(y);
(iii) For lj growing sufficiently fast, Σj,lj converges to the varifold V =

∑

i niΓ
i.

Let Σ̂j be the connected component of Σj ∩Bρ(x) which contradicts Lemma 4.1. Denote by

Σ̃j the connected component of B ∩ Σj containing Σ̂j .
Now, by Proposition 3.2, Φl(1, Σ̃

j)∩Bρ(x) converges to a stable minimal surface ∆̃j ⊂ ∆j

and Φl(1, Σ̂
j) converges to a stable minimal surface ∆̂j ⊂ ∆̃j . Because of (ii) and of curvature

estimates (see Subsection 1.4), ∆̂j converges necessarily to rΓi∩Bρ(x) for some integer r ≥ 0.

Since Σ̂j ∈ L(j, 1), it follows that r ≥ 1. Similarly, Φl(1, Σ̃
j) ∩ Bρ(y) converges to a smooth
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minimal surface Λ̃j and Λ̃j converges to sΓi ∩ Bρ(y) for some integer s ≥ 0. Since Σ̃j does
not contain any element of L(j, 2), it follows necessarily s = 0.

Consider now the varifold W which is the limit in B of Σ̃j,lj = Φlj (1, Σ̃
j). Arguing again

as in Step 2 we choose {lj} growing so fast that W , which is the limit of Σ̃j,lj , coincides

with the limit of ∆̃j in Bρ(x) and with the limit of Λ̃j in Bρ(y). According to the discussion
above, V coincides then with rΓi ∩ Bρ(x) in Bρ(x) and vanishes in Bρ(y). Moreover

‖W‖ ≤ ‖V ‖ B = nH2 Γi ∩ B (4.1)

in the sense of varifolds. We recall here that ‖W‖ and ‖V ‖ B are nonnegative measures
defined in the following way:

∫

ϕ(x)d‖W‖(x) = lim
j↑∞

∫

Σ̃j,lj

ϕ (4.2)

and ∫

ϕ(x)d‖V ‖(x) = lim
j↑∞

∫

Σj,lj

ϕ (4.3)

for every ϕ ∈ Cc(B). Therefore (4.1) must be understood as a standard inequality between
measures, which is an effect of (4.2), (4.3) and the inclusion Σ̃j,lj ⊂ Σj,lj ∩B. An important
consequence of (4.1) is that

‖W‖(∂Bτ (w)) = 0 for every ball Bτ (w) ⊂ B. (4.4)

Next, consider the geodesic segment [x, y] joining x and y in Γi. For z ∈ [x, y], Bρ/2(z) ⊂ B.
Moreover,

the map z 7→ ‖W‖(Bρ/2(z)) is continuous in z, (4.5)

because of (4.1) and (4.4).
Since ‖W‖(Bρ/2(x)) ≥ H2(Γi ∩ Bρ/2(x)) and ‖W‖(Bρ/2(y)) = 0, by the continuity of the

map in (4.5), there exists z ∈ [x, y] such that

‖W‖(Bρ/2(z)) =
1

2
H2(Γi ∩ Bρ/2(z)) .

Since ‖W‖(∂Bρ/2(z)) = 0, we conclude (see Proposition 1.62(b) of [6]) that

lim
j↑∞

H2(Σ̃j,lj ∩ Bρ/2(z)) =
1

2
H2(Γi ∩ Bρ/2(z)) (4.6)

(see Figure 5).
On the other hand, since Σj,lj converges to V in the sense of varifolds and V = niΓ

i∩Bρ/2(z)
in Bρ/2(z), we conclude that

lim
j↑∞

H2((Σj,lj \ Σ̃j,lj ) ∩Bρ/2(z)) =

(

ni −
1

2

)

H2(Γi ∩ Bρ/2(z)) . (4.7)

If ρ is sufficiently small, Γi ∩Bρ/2(z) is close to a flat disk and Bρ/2(z) is close to a flat ball.
Using the coarea formula and Sard’s lemma, we can find a σ ∈]0, ρ/2[ and a subsequence

of {Σj,lj} (not relabeled) with the following properties:

(a) Σj,lj intersects ∂Bσ(z) transversally;

(b) Length(Σ̃j,lj ∩ ∂Bσ(z)) ≤ 2(1/2 + ε)πσ;
(c) Length((Σj,lj \ Σ̃j,lj) ∩ ∂Bσ(z)) ≤ 2((ni − 1/2) + ε)πσ;
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Γi

the segment [x, y]

‖W‖ ≥ Γi here

‖W‖ = 0 here

‖W‖ ≤ ‖V ‖ = niΓ
i everywhere

Figure 5. The varifold W .

(d) H2(Γi ∩ Bσ(z)) ≥ (1 − ε)πσ2.

Note that the geometric constant ε can be made as close to 0 as we want by choosing ρ
sufficiently small.

In order to simplify the notation, set Ωj = Σj,lj . Consider a minimizing sequence Ωj,s =
ϕs(1,Ω

j) for Problem (Ωj , Isj(Bσ(z),Ω
j)). By Proposition 3.2, Ωj,s∩Bσ(z) converges, up to

subsequences, to a minimal surface Ξj with boundary Ωj ∩ ∂Bσ(z). Moreover, using Lemma
3.7 and arguing as in the previous steps, we conclude that Ξj converges to niΓ

i ∩Bσ(z).
Next, set:

• Ω̃j = Σ̃j,lj ∩ Bσ(z), Ω̃j,s = ϕs(1, Ω̃
j);

• Ω̂j = (Σj,lj \ Σ̃j,lj) ∩ Bσ(z), Ω̂j,s = ϕs(1, Ω̂
j).

By Proposition 3.2, since Ω̃j and Ω̂j are unions of connected components of Ωj ∩ Bσ(z), we

can assume that Ω̃j,s and Ω̂j,s converge respectively to stable minimal surfaces Ξ̃j and Ξ̂j

with

∂Ξ̃j = Σ̃j,lj ∩ ∂Bσ(z) ∂Ξ̂j = (Σj,lj \ Σ̃j,lj) ∩ ∂Bσ(z) .

Hence, by (b) and (c), we have

Length(∂Ξ̃j) ≤ 2

(
1

2
+ ε

)

πσ Length(∂Ξ̂j) ≤ 2

(

ni −
1

2
+ ε

)

πσ . (4.8)

On the other hand, using the standard monotonicity estimate of Lemma 4.2 below, we
conclude that

H2(Ξ̂j) ≤
(

ni −
1

2
+ η

)

πσ2 (4.9)

H2(Ξ̃j) ≤
(

1

2
+ η

)

πσ2 . (4.10)
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As the constant ε in (d), η as well can be made arbitrarily small by choosing ρ suitably
small. We therefore choose ρ so small that

H2(Ξ̂j) ≤
(

ni −
3

8

)

πσ2 , (4.11)

H2(Ξ̃j) ≤ 5

8
πσ2 (4.12)

and

H2(Γi ∩ Bσ(z)) ≥
(

1 − 1

8ni

)

πσ2 . (4.13)

Now, by curvature estimates (see Subsection 1.4), we can assume that the stable minimal

surfaces Ξ̃j and Ξ̂j, are converging smoothly (on compact subsets of Bσ(z)) to stable minimal

surfaces Ξ̃ and Ξ̂. Since Ξj = Ξ̃j + Ξ̂j converges to niΓ
i ∩ Bσ(z), we conclude that Ξ̃ =

ñΓi ∩Bσ(z) and Ξ̂ = n̂Γi ∩Bσ(z), where ñ and n̂ are nonnegative integers with ñ+ n̂ = ni.
On the other hand, by (4.11), (4.12) and (4.13), we conclude

ñ

(

1 − 1

8ni

)

πσ2 = H2(Ξ̃) ≤ lim inf
j

H2(Ξ̃j) ≤ 5

8
πσ2 (4.14)

n̂

(

1 − 1

8ni

)

πσ2 = H2(Ξ̂) ≤ lim inf
j

H2(Ξ̂j) ≤
(

ni −
3

8

)

πσ2 . (4.15)

From (4.14) and (4.15) we conclude, respectively, ñ = 0 and n̂ ≤ ni − 1, which contradicts
ñ+ n̂ = ni.

4.5. A simple estimate. The following lemma is a standard fact in the theory of minimal
surfaces.

Lemma 4.2. There exist constants C and r0 > 0 (depending only on M) such that

H2(Σ) ≤
(

1

2
+ Cσ

)

σLength (∂Σ) (4.16)

for any σ < r0 and for any smooth minimal surface Σ with boundary ∂Σ ⊂ ∂Bσ(z).

Indeed, (4.16) follows from the usual computations leading to the monotonicty formula.
However, since we have not found a reference for (4.16) in the literature, we will sketch a
proof in Appendix A.

5. Proof of Proposition 3.2. Part I: Convex hull property

5.1. Preliminary definitions. Consider an open geodesic ball U = Bρ(ξ) with sufficiently
small radius ρ and a subset γ ⊂ ∂U consisting of finitely many disjoint smooth Jordan
curves.

Definition 5.1. We say that an open subset A ⊂ U meets ∂U in γ transversally if there
exists a positive angle θ0 such that:

(a) ∂A ∩ ∂U ⊂ γ.
(b) For every p ∈ ∂A∩ ∂U we choose coordinates (x, y, z) in such a way that the tangent

plane Tp of ∂U at p is the xy-plane and γ′(p) = (1, 0, 0). Then in this setting every
point q = (q1, q2, q3) ∈ A satisfies q3

q2
≥ tan(1

2
− θ0).
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Remark 5.2. Condition (b) of the above definition can be stated in the following geometric
way: there exixt two halfplanes π1 and π2 meeting at the line through p in direction γ′(p)
such that

• they form an angle θ0 with Tp;
• the set A is all contained in the wedge formed by π1 and π2;

see Figure 6.

γ

π2

p

θ0

π1Tp

Figure 6. For any p ∈ A ∩ ∂U , A is contained in a wedge delimited by two
halfplanes meeting at p transversally to the plane Tp.

In this section we will show the following lemma.

Lemma 5.3 (Convex hull property). Let V and Σ be as in Proposition 3.2. Then, there exists
a convex open set A ⊂ U which intersects U in ∂Σ transversally and such that supp (‖V ‖) ⊂
A.

Our starting point is the following elementary fact about convex hulls of smooth curves
lying in the euclidean two–sphere.

Proposition 5.4. If β ⊂ ∂B1 ⊂ R3 is the union of finitely many C2−Jordan curves, then
its convex hull meets B1 transversally in β.

The proof of this proposition follows from the regularity and the compactness of β and
from the fact that β is not self-intersecting. We leave its details to the reader.

5.2. Proof of Lemma 5.3. From now on, we consider γ = ∂Σ: this is the union of finitely
many disjoint smooth Jordan curves contained in ∂U . Recall that U is a geodesic ball Bρ(ξ).
Without loss of generality we assume that ρ is smaller than the injectivity radius.

Step 1 Consider the rescaled exponential coordinates induced by the chart f : Bρ(ξ) → B1

given by f(z) = (exp−1
ξ (z))/ρ. These coordinates will be denoted by (x1, x2, x3). We apply
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Proposition 5.4 and consider the convex hull B of β = f(∂Σ) in B1. According to our
definition, f−1(B) meets U transversally in γ.

We now let θ0 be a positive angle such that condition (b) in Definition 5.1 is fulfilled for
B. Next we fix a point x ∈ f(γ) and consider consider the halfplanes π1 and π2 delimiting
the wedge of condition (b). Without loss of generality, we can assume that the coordinates
are chosen so that π1 is given by

π1 = {(z1, z2, z3) : z3 ≤ a}
for some positive constant a. Condition (b) ensures that a ≤ a0 < 1 for some constant a0

inpendent of the point x ∈ f(γ).
For t ∈]0,∞[ denote by Ct the points Ct := {(0, 0,−t)} and by r(t) the positive real

numbers

r(t) :=
√

1 + t2 + 2at

We finally denote by Rt the closed balls

Rt := Br(t)(Ct) .
The centers Ct and the radii r(t) are chosen in such a way that the intersection of the sphere
∂Rt and ∂B1 is always the circle π1 ∩ ∂B1.

the foliation

St

x

π1

z3

a

r(t)

Ct

Figure 7. A planar cross-section of the foliation {St : t ∈]0,∞[}.

Note, moreover, that for t coverging to +∞, the ball Rt converges towards the region
{z3 ≤ a}. Therefore, the region {z3 > a} ∩ B1 is foliated with the caps

St := ∂Rt ∩ B1 for t ∈]0,∞[.

In Figure 7, we see a section of this foliation with the plane z2z3.
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We claim that, for some constant t0 > 0 independent of the choice of the point x ∈ f(γ),
the varifold V is supported in f−1(Rt0). A symmetric procedure can be followed starting
from the plane π2. In this way we find two off-centered balls and hence a corresponding
wedge Wx satisfying condition (b) of Definition 5.1 and containing the support of V ; see
Picture 8. Our claim that the constant t0 can be chosen independently of x and the bound
a ≤ a0 < 1 imply that the the planes delimiting the wedge Wx form an angle larger than
some fixed constant with the plane Tx tangent to ∂B1 at x. Therefore, the intersections of
all the wedges Wx, for x varying among the points of γ, yield the desired set A.

π1

The wedge Wxx

π2

Figure 8. A planar cross-section of the wedge Wx.

Step 2 We next want to show that the varifold V is supported in the closed ball f−1(Rt0).
For any t ∈ [0, t0[, denote by πt : U → f−1(Rt) the nearest point projection. If the radius
ρ0 of U and the parameter t0 are both sufficiently small, then πt is a well defined Lipschitz
map (because there exists a unique nearest point). Moreover, the Lipschitz constant of πt is
equal to 1 and, for t > 0, |∇πt| < 1 on U \ f−1(Rt). In fact the following lemma holds.

Lemma 5.5. Consider in the euclidean ball B1 a set U that is uniformly convex, with con-
stant c0. Then there is a ρ(c0) > 0 such that, if ρ0 ≤ ρ(c0), then the nearest point projec-

tion π on f(U) is a Lipschitz map with constant 1. Moreover, at every point P 6∈ f(U),
|∇π(P )| < 1.

The proof is elementary and we give it in Appendix B for the reader’s convenience. Next,
it is obvious that π0 is the identity map and that the map (t, x) 7→ πt(x) is smooth.

Assume now for a contradiction that V is not supported in f−1(Rt0). By Lemma 5.5, the
varifold (πt0)#V has, therefore, strictly less mass than the varifold V .

Next, consider a minimizing sequence ∆k as in the statement of proposition 3.2. Since
∂∆k = ∂Σ, the intersection of ∆k with ∂U is given by ∂Σ. On the other hand, by construction
∂Σ ⊂ f−1(Rt) and therefore, if we consider ∆k

t := (πt)#∆k we obtain a (continuous) one-
parameter family of currents with the properties that
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(i) ∂∆k
t = ∂Σ;

(ii) ∆k
0 = ∆0;

(iii) The mass of ∆k
t is less or equal than H2(∆k);

(iv) The mass of ∆k
t0

converges towards the mass of (πt0)#V and hence, for k large enough,
it is strictly smaller than the mass of V .

Therefore, if we fix a sufficiently large number k, we can assume that (iv) holds with a
gain in mass of a positive amount ε = 1/j. We can, moreover, assume that H2(∆k) ≤
H2(Σ) + 1/(8j). By an approximation procedure, it is possible to replace the family of
projections {πt}t∈[0,t0] with a smooth isotopy {ψt}t∈[0,1] with the following properties:

(v) ψ0 is the identity map and ψt|∂U is the identity map for every t ∈ [0, 1];
(vi) H2(∆k) ≤ H2(ψt(Σ)) + 1/(8j);
(vii) H2(ψ1(∆

k)) ≤ M((πt0)#V ) − 1/j.

This contradicts the 1/j–almost minimizing property of Σ.

In showing the existence of the family of isotopies ψt, a detail must be taken into account:
the map πt is smooth everywhere on U but on the circle f−1(Rt)∩∂U (which is the same circle
for every t!). We briefly indicate here a procedure to construct ψt, skipping the cumbersome
details.

We replace the sets {Rt} with a new family Rt which have the following properties:

• R0 = B1;
• Rt0 = Rt0 ;
• For t ∈ [0, t0] the boundaries ∂Rt are uniformly convex;
• ∂Rt ∩ ∂B1 = Rt ∩ ∂B1;
• The boundaries of ∂Rt are smooth for t ∈ [0, t0[ and form a smooth foliation of
B1(0) \Rt0 .

The properties of the new sets are illustrated in Figure 9

π1

∂Rt

∂Rt0

Figure 9. A planar cross-section of the new foliation.
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Since ∆k touches ∂U in ∂Σ transversally and ∂Σ ⊂ f−1(Rt) for every t, we conclude
the existence of a small δ such that ∆k ⊂ f−1(R2δ). Moreover, for δ sufficiently small, the
nearest point projection π̃t0−δ on f−1(Rt0−δ) is so close to πt0 that

M((π̃t0−δ)#∆k) ≤ M((πt0)#∆k) + ε/4 .

We then construct ψt in the following way. We fix a smooth increasing bijective function
τ : [0, 1] → [δ, t0 − δ],

• ψt is the identity on U \ Rδ and on Rτ(t);
• On Rδ \ Rτ(t) it is very close to the projection π̃τ(t) on Rτ(t).

In particular, for this last step, we fix for a smoooth function σ : [0, 1] × [0, 1] such that, for
each t, σ(t, ·) is a smooth bijection between [0, 1] and [δ, τ(t)] very close to the function which
is identically τ(t) on [0, 1]. Then, for s ∈ [0, 1], we define ψt on the surface ∂R(1−s)δ+sτ(t)

to be the nearest point projection on the surface ∂Rσ(t,s). So, ψt fixes the leave ∂Rδ but
moves most of the leaves between ∂Rδ and ∂Rτ(t) towards ∂Rτ(t). This completes the proof
of Lemma 5.3.

6. Proof of Proposition 3.2. Part II: Squeezing Lemma

In this section we prove the following Lemma.

Lemma 6.1 (Squeezing Lemma). Let {∆k} be as in Proposition 3.2, x ∈ U and β > 0 be
given. Then there exists an ε0 > 0 and a K ∈ N with the following property. If k ≥ K
and ϕ ∈ Is(Bε0(x) ∩ U) is such that H2(ϕ(1,∆k)) ≤ H2(∆k), then there exists a Φ ∈
Is(Bε0(x) ∩ U) such that

Φ(1, ·) = ϕ(1, ·) (6.1)

H2(Φ(t,∆k)) ≤ H2(∆k) + β for every t ∈ [0, 1]. (6.2)

If x is an interior point of U , this lemma reduces to Lemma 7.6 of [8]. When x is on the
boundary of U , one can argue in a similar way (cp. with Section 7.4 of [8]). Indeed, the
proof of Lemma 7.6 of [8] relies on the fact that, when ε is sufficiently small, the varifold V
is close to a cone. For interior points, this follows from the stationarity of the varifold V .
For points at the boundary this, thanks to a result of Allard (see [3]), is a consequence of
the stationarity of V and of the convex hull property of Lemma 5.3.

6.1. Tangent cones. Consider the varifold V of Proposition 3.2. Given a point x ∈ U and
a radius ρ > 0, consider the chart fx,ρ : Bρ(x) → B1 given by fx,ρ(y) = exp−1

x (y)/ρ. We then
consider the varifolds Vx,ρ := (fx,ρ)#V . Moreover, if λ > 0, we will denote by Oλ : R3 → R3

the rescaling Oλ(x) = x/λ.
If x ∈ U , the monotonicity formula and a compactness result (see Theorem 19.3 of [18])

imply that, for any ρj ↓ 0, there exists a subsequence, not relabeled, such that Vx,ρj
converges

to an integer rectifiable varifoldW supported in B1 with the property that (Oλ)#W B1(0) =
W for any λ < 1. The varifolds W which are limit of subsequences Vx,ρj

are called tangent
cones to V at x. The monotonicity formula implies that the mass of each W is a positive
constant θ(x, V ) independent of W (see again Theorem 19.3 of [18]).

If x ∈ ∂U , we fix coordinates y1, y2, y3 in R3 in such a way that fx,ρ(U ∩Bρ(x)) converges
to the half-ball B+

1 = B1 ∩ {y1 > 0}.
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Recalling Lemma 5.3, we can infer with the monotonicity formula of Allard for points at
the boundary (see 3.4 of [3]) that Vx,ρ = (fx,ρ)#V have equibounded mass. Therefore, if
ρj ↓ 0, a subsequence of Vx,ρj

, not relabeled, converges to a varifold W .
By Lemma 5.3, there is a positive angle θ0 such that, after a suitable change of coordinates,

W is supported in the set
{|y2| ≤ y1 tan θ0} .

Therefore supp (W ) ∩ {y1 = 0} = {(0, 0, t) : t ∈ [−1, 1]} =: ℓ. Applying the monotonocity
formula of 3.4 of [3], we conclude that

‖W‖(ℓ) = 0 (6.3)

and
‖W‖(Bρ(0)) = πθ(‖V ‖, x)ρ2 , (6.4)

where

θ(‖V ‖, x) = lim
r↓0

‖V ‖(Bρ(x))

πρ2

is independent of W . Being W the limit of a sequence Vx,ρj
with ρj ↓ 0, we conclude that

W is a stationary varifold.
Now, define the reflection map r : R3 → R3 given by r(z1, z2, z3) = (−z1,−z2, z3). By

(6.3), using the reflection principle of 3.2 of [3], the varifold W ′ := W + r#W is a stationary
varifold. By (6.4) and Corollary 2 of 5.1 in [2], we conclude that (Oλ)#W

′ B+
1 = W ′ for

every λ < 1. On the other hand, this implies (Oλ)#W B+
1 = W . Therefore W is a cone

and we will call it tangent cone to V at x.

6.2. A squeezing homotopy. Since for points in the interior the proof is already given
in [8], we assume that x ∈ ∂U . Moreover, the proof given here in this case can easily be
modified for x ∈ U . Therefore we next fix a small radius ε > 0 and consider an isotopy ϕ of
U ∩Bε(x) keeping the boundary fixed.

We start by fixing a small parameter δ > 0 which will be chosen at the end of the proof.
Next, we consider a diffeomorphism Gε between B+

ε = Bε∩{y1 > 0} and Bε(x)∩U . Consider
on B+

ε the standard Euclidean metric and denote the corresponding 2-dimensional Hausdorff
measure with H2

e . If ε is sufficiently small, then Gε can be chosen so that the Lipschitz
constants of Gε and G−1

ε are both smaller than 1 + ε. Then, for any surface ∆ ⊂ Bε(x)∩U ,

(1 − Cδ)H2(∆) ≤ H2
e(Gε(∆)) ≤ (1 + Cδ)H2(∆) , (6.5)

where C is a universal constant.
We want to construct an isotopy Λ ∈ Is(B+

ε ) such that Λ(1, ·) = Gε ◦ ϕ(1, G−1
ε (·)) and

(for k large enough)

H2
e(Λ(t, Gε(∆

k))) ≤ H2
e(Gε(∆

k))(1 + Cδ) + Cδ for every t ∈ [0, 1]. (6.6)

After finding Λ, Φ(t, ·) = G−1
ε ◦ Λ(t, Gε(·)) will be the desired map. Indeed Φ is an isotopy

of Bε(x) ∩ U which keeps a neighborhood of Bε(x) ∩ U fixed. It is easily checked that
Φ(1, ·) = ϕ(1, ·). Moreover, by (6.5) and (6.6), for k sufficiently large we have

H2(Φ(t,∆k)) ≤ (1 + Cδ)H2(∆k) + Cδ ∀t ∈ [0, 1] , (6.7)

for some constant C inpendent of δ and k. Since H2(∆k) is bounded by a constant indepen-
dent of δ and k, by choosing δ sufficiently small, we reach the claim of the Lemma.
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Next, we consider on B+
ε a one-parameter family of diffeomorphisms. First of all we

consider the continuous piecewise linear map α : [0, 1[→ [0, 1] defined in the following way:

• α(t, s) = s for (t+ 1)/2 ≤ s ≤ 1;
• α(t, s) = (1 − t)s for 0 ≤ s ≤ t;
• α(t, s) is linear on t ≤ s ≤ (t+ 1)/2.

So, each α(t, ·) is a biLipschitz homeomorphism of [0, 1] keeping a neighborhood of 1 fixed,
shrinking a portion of [0, 1] and uniformly stretching the rest. For t very close to 1, a large
portion of [0, 1] is shrinked into a very small neighborhood of 0, whereas a small portion
lying close to 1 is stretched to almost the whole interval.

Next, for any given t ∈ [0, 1[, let yt := ((1− t)ηε, 0, 0) where η is a small parameter which
will be fixed later. For any z ∈ B+

ε we consider the point πt(z) ∈ ∂B+
ε such that the segment

[yt, πt(z)] containing z. We then define Ψ(t, z) to be the point on the segment [yt, πt(z)] such
that

|yt − Ψ(t, z)| = α

(

t,
|yt − z|

|xt − πt(x)|

)

|yt − πt(z)| .

It turns out that Ψ(0, ·) is the identity map and, for fixed t, Ψ(t, ·) is a biLipschitz home-
omorphism of B+

ε keeping a neighborhood of ∂B+
ε fixed. Moreover, for t close to 1, Ψ(t, ·)

shrinks a large portion of B+
ε in a neighborhood of yt and stretches uniformly a layer close

to ∂Bε. See Figure 10.
We next consider the isotopy Ξ(t, ·) := G−1

ε ◦ Ψ(t, Gε(·)). It is easy to check that, if we
fix a ∆k and we let t ↑ 1, then the surfaces Ψ(1, Gε(∆

k)) converge to the cone with center 0
and base Gε(∆

k) ∩ ∂Bε.

πt(z)

xt

z

x

boundary of V

boundary of Ψ(t, V )

Figure 10. For t close to 1 the map Ψ(t, ·) shrinks homotethically a large
portion of B+

ε .

6.3. Fixing a tangent cone. By Subsection 6.1, we can find a sequence ρl ↓ 0 such that
Vx,ρl

converges to a tangent cone W . Our choice of the diffeomorphism Gρl
implies that

(Oρl
◦Gρl

)#V has the same varifold limit as Vx,ρl
.

Since ∆k converges to V in the sense of varifolds, by a standard diagonal argument, we
can find an increasing sequence of integers Kl such that:

(C) (Oρl
(Gρl

(∆kl)) converges in the varifold sense to W , whenever kl ≥ Kl.
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(C), the conical property of W and the coarea formula imply the following fact. For ρl
sufficiently small, and for k sufficiently large, there is an ε ∈]ρl/2, ρl[ such that:

H2
e

(
Ψ(t, Gε(∆

k) ∩ L)
)

≤ H2
e

(
Gε(∆

k) ∩ L
)

+ δ ∀t and all open L ⊂ B+
ε , (6.8)

where Ψ is the map constructed in the previous subsection. This estimate holds indepen-
dently of the small parameter η. Moreover, it fixes the choice of ε0 and K as in the statement
of the Lemma. K depends only on the parameter δ, which will be fixed later. ε might de-
pend on k ≥ K, but it is always larger than some fixed ρl, which will then be the ε0 of the
statement of the Lemma.

6.4. Construction of Λ. Consider next the isotopy ψ = Gε ◦ ϕ ◦G−1
ε . By definition, there

exists a compact set K such that ψ(t, z) = z for z ∈ B+
ε \K and every t. We now choose η

so small that K ⊂ {x : x1 > ηε}. Finally, consider T ∈]0, 1[ with T sufficiently close to 1.
We build the isotopy Λ in the following way:

• for t ∈ [0, 1/3] we set Λ(t, ·) = Ψ(3tT, ·);
• for t ∈ [1/3, 2/3] we set Λ(t, ·) = Ψ(3tT, ψ(3t− 1, ·));
• for t ∈ [2/3, 1] we set Λ(t, ·) = Ψ(3(1 − t)T, ψ(1, ·)).

If T is sufficiently large, then Λ satisfies (6.6). Indeed, for t ∈ [0, 1/3], (6.6) follows from
(6.8). Next, consider t ∈ [1/3, 2/3]. Since ψ(t, ·) moves only points of K, Λ(t, x) coincides
with Ψ(T, x) except for x in Ψ(T,K). However, Ψ(T, x) is homotethic to K with a very small
shrinking factor. Therefore, if T is chosen sufficiently large, H2

e(Λ(t, Gε(∆
k))) is arbitrarily

close to H2
e(Λ(1/3, Gε(∆

k))). Finally, for t ∈ [2/3, 1], Λ(t, x) = Ψ(3(1 − t)T, x) for x 6∈
Ψ(3(1 − t)T,K) and it is Ψ(3(1 − t)T, ψ(1, x)) otherwise. Therefore, Λ(t, Gε(∆

k)) differs
from Ψ(3(1− t)T,Gε(∆

k)) for a portion which is a rescaled version of Gε(ϕ(1,∆k) \Gε(∆
k).

Since by hypothesis H2(ϕ(1,∆k)) ≤ H2(∆k), we actually get

H2
e

(
Gε(ϕ(1,∆k)) \Gε(∆

k)
)

≤ (1 + Cδ)H2
e

(
Gε(∆

k) \Gε(ϕ(1,∆k))
)

and by the scaling properties of the euclidean Hausdorff measure we conclude (6.6) for
t ∈ [2/3, 1] as well.

Though Λ is only a path of biLipschitz homeomorphisms, it is easy to approximate it with
a smooth isotopy: it suffices indeed to smooth α|[0,T ]×[0,1], for instance mollifying it with a
standard kernel.

7. Proof of Proposition 3.2. Part III: γ–reduction

In this section we prove the following

Lemma 7.1 (Interior regularity). Let V be as in Proposition 3.2. Then ‖V ‖ = H2 ∆
where ∆ is a smooth stable minimal surface in U (multiplicity is allowed).

In fact the lemma follows from the interior version of the squeezing lemma and the following
proposition, applying the regularity theory of replacements as described in [8] (cp. with
Section 7 therein).

Proposition 7.2. Let U be an open ball with sufficiently small radius. If Λ is an embedded
surface with smooth boundary ∂Λ ⊂ ∂U and {Λk} is a minimizing sequence for Problem
(Λ, Is(U)) converging to a varifold W , then there exists a stable minimal surface Γ with
Γ \ Γ ⊂ ∂Λ and W = Γ in U .
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This Proposition has been claimed in [8] (cp. with Theorem 7.3 therein) and since nothing
on the behavior of W at the boundary is claimed, it follows from a straightforward modifica-
tion of the theory of γ-reduction of [13] (as asserted in [8]). This simple modification of the
γ−reduction is, as the original γ-reduction, a procedure to reduce through simple surgeries
the minimizing sequence Λk into a more suitable sequence.

In this section we also wish to explain why this argument cannot be directly applied neither
to the surfaces ∆k of Proposition 3.2 on the whole domain U (see Remark 7.6), nor to their
intersections with a smaller set U ′ (see Remark 7.7). In the first case, the obstruction comes
from the 1/j-a.m. property, which is not powerful enough to perform certain surgeries. In
the second case this obstruction could be removed by using the squeezing lemma, but an
extra difficulty pops out: the intersection ∆k ∩ ∂U ′ is, this time, not fixed and the topology
of ∆k ∩ U ′ is not controlled. These technical problems are responsible for most of the
complications in our proof.

7.1. Definition of the γ–reduction. In what follows, we assume that an open set U ⊂M
and a surface Λ in M with ∂Λ ⊂ ∂U are fixed. Moreover, we let C denote the collection of
all compact smooth 2-dimensional surfaces embedded in U with boundary equal to ∂Λ.

We next fix a positive number δ such that the conclusion of Lemma 1 in [13] holds and
consider γ < δ2/9. Following [13] we define the γ-reduction and the strong γ-reduction.

Definition 7.3. For Σ1,Σ2 ∈ C we write

Σ2

(γ,U)
≪ Σ1

and we say that Σ2 is a (γ, U)−reduction of Σ1, if the following conditions are satisfied:

(γ1) Σ2 is obtained from Σ1 through a surgery as described in Definition 2.2. Therefore:

– Σ1 \ Σ2 = A ⊂ U is diffeomorphic to the standard closed annulus An(x, 1/2, 1);

– Σ2 \ Σ1 = D1 ∪D2 ⊂ U with each Di diffeomorphic to D;
– There exists a set Y embedded in U , homeomorphic to B1 with ∂Y = A∪D1∪D2

and (Y \ ∂Y ) ∩ (Σ1 ∪ Σ2) = ∅. (See Picture 2).
(γ2) H2(A) + H2(D1) + H2(D2) < 2γ;
(γ3) If Γ is the connected component of Σ1 ∪U containing A, then for each component of

Γ \ A we have one of the following possibilities:
– either it is a disc of area ≥ δ2/2;
– or it is not simply connected.

Remark 7.4. The previous definition has another interesting consequence that the reader
could easily check: Σ ∈ C is (γ, U)−irreducible if and only if whenever ∆ is a disc with
∂∆ = ∆∩Σ and H2(∆) < γ, then there is a disc D ⊂ Σ with ∂D = ∂∆ and H2(D) < δ2/2.

A slightly weaker relation than
(γ,U)
≪ can be defined as follows. We consider Σ1,Σ2 ∈ C

and we say that Σ2 is a strong (γ, U)−reduction of Σ1, written Σ2

(γ,U)
< Σ1, if there exists an

isotopy ψ ∈ Is(U) such that

(s1) Σ2

(γ,U)
≪ ψ(Σ1);

(s2) Σ2 ∩ (M \ U) = Σ1 ∩ (M \ U);
(s3) H2(ψ(Σ1)△Σ1) < γ.
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We say that Σ ∈ C is strongly (γ, U)−irreducible if there is no Σ̃ ∈ C such that Σ̃
(γ,U)
< Σ.

Remark 7.5. Arguing as in [13] one can prove that, for every Λ′ ∈ C, there exist a constant
c ≥ 1 (depending on δ, g(Λ′) and H2(Λ′)) and a sequence of surfaces Σj, j = 1, ..., k, such
that

k ≤ c; (7.1)

Σj ∈ C; j = 1, ..., k; (7.2)

Σk

(γ,U)
< Σk−1

(γ,U)
< ...

(γ,U)
< Σ1 = Λ′ ; (7.3)

H2(Σk∆Λ′) ≤ 3cγ ; (7.4)

Σk is strongly (γ, U)−irreducible. (7.5)

Compare with Section 3 of [13] and in particular with (3.3), (3.4), (3.8) and (3.9) therein.

7.2. Proof of Proposition 7.2. Applying Lemma 5.3, we conclude that a susbsequence, not
relabeled, of Λk converges to a stationary varifold V in U such that U∩supp (V ) ⊂ ∂Λ. Next,
arguing as in Section 6.1, we conclude that ‖V ‖(∂Λ) = 0, and hence that ‖V ‖(∂U) = 0.
Arguing as in pages 364-365 of [13] (see (3.22)–(3.26) therein), we find a γ0 > 0 and a
sequence of γ0–strongly irreducible surfaces Σk with the following properties:

• Σk is obtained from Λk through a number of surgeries which can be bounded inde-
pendently of k;

• Σk converges, in the sense of varifolds, to V .

This allows to apply Theorem 2 and Section 5 of [13] to the surfaces Σk to conclude that
supp (V ) \ ∂U is a smooth embedded stable minimal surface.

Remark 7.6. This procedure cannot be applied if the minimality of the sequence Λk in Is(U)
were replaced by the minimality in Isj(U). In fact, the proof of Theorem 2 in [13] uses heavily
the minimality in Is(U) and we do not know how to overcome this issue.

7.3. Proof of Lemma 7.1. Let ∆k and V be as in Proposition 3.2 and in Lemma 7.1. Let
x ∈ U and consider a U ′ = Bε(x) ⊂ U as in Lemma 6.1. Applying Lemma 6.1 we can modify
∆k in Bε(x) getting a minimizing sequence {∆k,j}j for Is(Bε(x)). Applying Proposition 7.2,
we can assume that ∆k,j converges, as j ↑ ∞ to a varifold V ′

k which in Bε(x) is a stable
minimal surface Σk. By the curvature estimates for minimal surfaces (cp. also with the
Choi-Schoen compactness Theorem), we can assume that Σk converges to a stable smooth

minimal surface Σ∞. Extracting a diagonal subsequence ∆̃k := ∆k,j(k), we can assume that
∆̃k is still minimizing for problem Isj(U) and hence that it converges to a varifold V ′. V ′

coincides with Σ in Bε(x) and with V outside Bε(x) and hence it is a replacement according
to Definition 6.2 in [8] (see Section 7 therein). By Proposition 6.3 of [8], V coincides with a
smooth embedded minimal surface in U .

Remark 7.7. Note that the arguments of Section 3 of [13] cannot be applied directly to the

sequence ∆k. It is indeed possible to modify ∆k in Bε(x) =: U ′ to a strongly γ-irreducible ∆̃k.
However, the number of surgeries needed is controlled by H2(∆k ∩ Bε(x)) and g(∆k ∩ U ′).
Though the first quantity can be bounded independently of k, on the second quantity (i.e.
g(∆k ∩ U ′)) we do not have any a priori uniform bound.
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8. Proof of Proposition 3.2. Part IV: Boundary regularity.

In this section we conclude the proof of the first part of Propositions 3.2 and 3.3. More
precisely, we show that the surface ∆ of Lemma 7.1 is regular up to the boundary and its
boundary coincides with ∂Σ.

Lemma 8.1 (Boundary regularity). Let ∆ be as in Lemma 7.1. Then ∆ has a smooth
boundary and ∂∆ = ∂Σ.

As a corollary, we conclude that the multiplicity of ∆ is everywhere 1.

Corollary 8.2. There exist finitely many stable embedded connected disjoint minimal sur-
faces Γ1, . . . ,ΓN ⊂ U with disjoint smooth boundaries and with multiplicity 1 such that

∆ = Γ1 ∪ . . . ∪ ΓN and ∂∆ = ∂Γ1 ∪ . . . ∪ ∂ΓN . (8.1)

Proof. Lemmas 7.1 and 8.1 imply that ∆ is the union of finitely many disjoint connected
components Γ1 ∪ . . . ∪ ΓN contained in U and that either ∂Γi = 0 or ∂Γi is the union of
some connected components of ∂Σ. In this last case, the multiplicity of Γi is necessarily
1. On the other hand, ∂Γi = 0 cannot occur, otherwise Γi would be a smooth embedded
minimal surface without boundary contained in a convex ball of a Riemannian manifold,
contradicting the classical maximum principle. �

8.1. Tangent cones at the boundary. Consider now x ∈ supp ‖V ‖ ∩ ∂U . We follow
Subsection 6.1 and consider the chart fx,ρ : Bρ(x) → B1 given by fx,ρ(y) = exp−1

x (y)/ρ.
We then denote by Vx,ρ the varifolds (fx,ρ)#V . Moreover, if λ > 0, we will denote by
Oλ : R3 → R3 the rescaling Oλ(x) = x/λ.

Let next W be the limit of a subsequence Vx,ρj
. Again following the discussion of Subsec-

tion 6.1, we can choose a system of coordinates (y1, y2, y3) such that:

• W is integer rectifiable and supp (W ) is contained in the wedge

Wed := {(y1, y2, y3) : |y2| ≤ y1 tan θ0} ∩ B1(0) .

• supp (W ) containes the line ℓ = {(0, 0, t) : t ∈ [−1, 1]}, (which is the limit of the
curves fx,ρ(∂Σ ∩ Bρ(x))).

• If we denote by r : R3 → R3 the reflection given by r(z1, z2, z3) = (−z1,−z2, z3),
then r#W +W is a stationary cone.

By the Boundary regularity Theorem of Allard (see Section 4 of [3]), in order to show
regularity it suffices to prove that

(TC) Any W as above (i.e. any varifold limit of a subsequence (f ρn
x )#V with ρn ↓ 0) is a

half–disk of the form

Pθ := {(y1, y2, y3) : y1 > 0, y3 = y1 tan θ} ∩ B1(0) (8.2)

for some angle θ ∈] − π/2, π/2[.

In the rest of this section we aim, therefore, at proving (TC). As a first step we now show
that

W =
N∑

i=1

kiPθi
(8.3)
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where ki ≥ 1 are integers and θi are angles in [−θ0, θ0]. There are two possible ways of seeing
this. One way is to use the Classification of stationary integral varifolds proved by Allard
and Almgren in [1].

The second, which is perhaps simpler, is to observe that, on B+ the varifold W is actually
smooth. Indeed, by the interior regularity, V is a smooth minimal surface in Bρ(x) ∩ V
and it is stable, therefore, by Schoen’s curvature estimates, a subsequence of Vx,ρn

converges
smoothly in compact subsets of B+. It follows that W r := W + r#W coincides with a
smooth minimal surface outside on B1(0) \ ℓ. On the other hand W r is a cone and therefore
we conclude that ∂B1/2(0)∩W r\{(0, 0, 1/2), (0, 0,−1/2)} is a smooth 1-d manifold consisting
of arcs of great circles. Since supp (W ) ⊂ Wed , we conclude that in fact ∂B1/2(0) ∩W r \
{(0, 0, 1/2), (0, 0,−1/2)} consists of finitely many planes (mupltiplicity is allowed) passing
through ℓ. This proves (8.3).

8.2. Diagonal sequence. We are now left with the task of showing that N = 1 and k1 = 1.
We will, indeed, assume the contrary and derive a contradiction. In order to do so, we
consider a suitable diagonal sequence fx,ρn

(∆kn) converging, in the sense of varifolds, to W .
We can select ∆kn in such a way that the following minimality property holds:

(F) If Λ is any surface isotopic to ∆kn with an isotopy fixing ∂(U∩Bρn
(x)), then H2(Λ) ≥

H2(∆kn) − ρ3
n.

Indeed, we appply the Squeezing Lemma 6.1 with β = 1/(16j) and let n be so large that ρn
is smaller than the constant ε0 given by the Lemma. Since ∆k is 1/j–a.m. in U , we conclude
therefore that, if we set

Mk,n := inf{Φ(1,∆k) : Φ ∈ Is(U ∩ Bρn
(x))} ,

then

lim
k↑∞

H2(∆k ∩ Bρn
(x)) −Mn,k = 0 .

Therefore, having fixed ρn < ε0, we can choose kn so large that Mn,k ≥ H2(∆kn) − ρ3
n.

Next, it is convenient to introduce a slightly perturbed chart gρn
x which maps ∂U ∩Bρn

(x)
onto B1 ∩ {y1 = 0} and ∂Σ∩Bρn(x) onto ℓ. This can be done in such a way that fx,ρn

◦ g−1
x,ρn

and gx,ρn
◦ f−1

x,ρn
converge smoothly to the identity map as ρn ↓ 0.

Having set Γn = gx,ρn
(∆kn), we have that Γn converges to W in the sense of varifolds.

Moreover, our discussion implies that H2(∆kn ∩ Bρn
(x)) = ρ2

nH2
e(Γn) + O(ρ3

n). Therefore
we conclude from (F) that

(F’) Let mn be the minimum of H2
e(Λ) over all surfaces Λ isotopic to Γn with an isotopy

which fixes ∂(U ∩ B1). Then H2
e(Γn) −mn ↓ 0.

We next claim that

lim inf
n↓0

H1
e(Γn ∩ ∂Bσ) ≥ πσ

N∑

i=1

ki for every σ ∈]0, 1[. (8.4)

Indeed, using the squeezing homotopies of Section 6.2 it is easy to see that

H2
e(Γn) −mn ≥ H2

e(Γn ∩ Bσ) − σH1
e(Γn ∩ ∂Bσ)
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Letting n ↑ 0 and using (8.3) with the convergence of Γn to the varifold W we conclude

lim inf
n↑∞

(H2
e(Γn) −mn) ≥ σ

(

σπ
∑

i

ki − lim inf
n↓0

H1
e(Γn ∩ ∂Bσ)

)

.

Therefore, from (F’) we conclude (8.4).
We next claim the existence of a σ ∈ [1/2, 1[ and a subsequence n(j) such that Γn(j)∩∂Bσ

is a smooth 1-dimensional manifold with boundary (0, 0, σ) − (0, 0,−σ) and, at the same
time,

lim
j↑∞

H1
e(Γn(j) ∩ ∂Bσ) = πσ

N∑

i=1

ki (8.5)

and

lim
j↑∞

H1
e(Γn(j) ∩ ∂Bσ \K) = 0 for every compact K ⊂ B1 \

⋃

i Pθi
. (8.6)

In fact, let {Kl}l be an exhaustion of B1 \
⋃

i Pθi
by compact sets. Observe that, by the

convergence of Γn to W , we get

lim
n↑∞

(

H2
e(Γn ∩ B1 \ B1/2) +

∞∑

l=0

2−lH2
e(Γn \Kl ∩ (B1 \ B1/2))

)

=
π

8

∑

i

ki . (8.7)

Using the coarea formula, we conclude
∫ 1

1/2

σπ
∑

i

ki dσ ≥ lim
n↑∞

∫ 1

1/2

(

H1
e(Γn ∩ ∂Bσ) +

∑

l

2−lH1
e(Γn ∩ ∂Bσ \Kl)

)

dσ .

Therefore, by Fatou’s Lemma, for a.e. σ ∈ [1/2, 1[ there is a subsequence n(j) such that

lim
j↑∞

(

H1
e(Γn ∩ ∂Bσ) +

∑

l

2−lH1
e(Γn ∩ ∂Bσ \Kl)

)

= πσ
∑

i

ki . (8.8)

Clearly, (8.4) and (8.8) imply (8.5) and (8.6). On the other hand, by Sard’s Theorem, for a.e.
σ ∈ [1/2, 1[ every surface ∂Bσ ∩ Γn is a smooth 1-dimensional submanifold with boundary
(0, 0, σ) − (0, 0,−σ).

8.3. Disks. From now on we fix the radius σ found above and we use Γn in place of Γn(i) (i.e.
we do not relabel the subsequence). Consider now the Jordan curves γn1 , . . . , γ

n
M(n) forming

Γn ∩ ∂B+
σ (by B+

σ we understand the half ball Bσ ∩ {y1 ≥ 0}).
Since ∂Γn ∩ {y1 = 0} is given by the segment ℓ, there is one curve, say γn1 , which contains

the segment ℓ. All the others, i.e. the curves γni with i ≥ 2 lie in ∂Bσ ∩ {y1 > 0}.
Next, for every γnl consider the number

κnl := inf{H2
e(D) : D is an embedded smooth disk bounding γnl } . (8.9)

We will split our proof into several steps.

(a) In the first step, we combine a simple desingularization procedure with the funda-
mental result of Almgren and Simon (see [4]), to show that

there are disjoint embedded smooth disks Dn
1 , . . .D

n
M(n) s.t.
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γni wth i ≥ 2

γn1
ℓ

Figure 11. The curves γni .

M(n)
∑

i=1

H2
e(D

n
i ) ≤

M(n)
∑

i=1

κni +
1

n
. (8.10)

A simple topological observation (see Lemma C.1 in the Appendix C) shows that,
for each fixed n, there exist isotopies Φl keeping ∂B+

σ fixed and such that Φl(Γn∩Bσ)
converges, in the sense of varifolds, to the union of the disks Dn

i . Combining (F’),
(8.10) and the convergence of Γn to the varifold W we then conclude

lim sup
n↑∞

M(n)
∑

i=1

κni = πσ2
∑

j

kj . (8.11)

(b) In the second step we will show the existence of a δ > 0 (independent of n) such that

κni ≤ σ

(
1

2
− δ

)

H1
e(γ

n
i ) for every i ≥ 2 and every n. (8.12)

A simple cone construction shows that

κn1 ≤ σ

2
H1
e(γ

n
1 ) . (8.13)

So, (8.5), (8.12) and (8.13) imply

lim
n↑∞

M(n)
∑

i=2

H1
e(γ

n
i ) = 0 and lim

n↑∞
H1
e(γ

n
1 ) = σ

∑

j

kj , (8.14)

which in turn give

lim
n↑∞

κn1 =
πσ2

2

∑

j

kj . (8.15)

(c) We next fix a parameterization βn1 : S1 → ∂B+
σ of γn1 with a multiple of the arc-length

and extract a further subsequence, not relabeled such that βn1 converges to a β∞. By
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(8.6), the image of β∞ is then contained in the union of the curves Pθl
∩ ∂B+

σ . We
will then show that

lim sup
n↓∞

κn1 =
πσ2

2
. (8.16)

(8.15) and (8.16) finally show that W consists of a single half-disk Pθ ∩ B+
1 , counted

once. This will therefore complete the proof.

8.4. Proof of (8.10). In this step we fix n and prove the claim (8.10). First of all, note that
each γni with i ≥ 2 is a smooth Jordan curve lying in ∂Bσ ∩ {y1 > 0}.

We recall the following result of Almgren and Simon (see [4]).

Theorem 8.3. For every curve γni with i ≥ 2 consider a sequence of smooth disks Dj with
H2
e(D

j) converging to κni . Then a subsequence, not relabeled, converges, in the sense of
varifolds, to an embedded smooth disk Dn

i ⊂ B+
σ bounding γni and such that H2

e(D
n
i ) = κni .

(The disk is smooth also at the boundary).

For each γni select therefore a disk Dn
i as in Theorem 8.3. We next claim that these disks

are all pairwise disjoint. Fix in fact two such disks. To simplify the notation we call them
D1 and D2 and assume they bound, respectively, the curves γ1 and γ2. Clearly, D1 divides
B+
σ into two connected components A and B and γ2 lies in one of them, say A. We will show

that D2 lies in A.
Assume by contradiction that D2 intersects D1. By perturbing D2 a little we modify it

to a new disk Ej such that H2
e(E

j) ≤ H2
e(D

2) + 1/j and Ej intersects D1 transversally in
finitely many smooth Jordan curves αm.

Each αm bounds a disk Fm in Ej . We call αm maximal if it is not contained in any
F l. Each maximal αm bounds also a disk Gm in D1. By the minimality of D1, clearly
H2
e(G

m) ≤ H2
e(F

m). We therefore consider the new disk Hj given by

D2 \
(

⋃

αm maximal

Fm

)

∪
⋃

αm maximal

Gm .

Clearly H2
e(H

j) ≤ H2
e(E

j) + 1/j. With a small perturbation we find a nearby smooth
embedded disk Kj which lies in A and has H2

e(K
j) ≤ H2

e(E
j) + 1/(2j). By letting j ↑ ∞

and applying Theorem 8.3, a subsequence of Kj converges to a smooth embedded minimal
disk D3 in the sense of varifolds. On the other hand, by choosing Kj sufficiently close to
Hj, we conclude that Hj converges as well to the same varifold. But then,

D2 \
(

⋃

αm maximal

Fm

)

⊂ D3

and hence D2∩D3 6= ∅. Since D3 lies on one side of D2 (i.e. in A) this violates the maximum
principle for minimal surfaces.

Having chosen Dn
2 , . . .D

n
M(n) as above, we now choose a smooth disk En

1 bounding γn1 and
with

H2
e(E

n
1 ) ≤ κn1 +

1

3n
.

In fact we cannot apply directly Theorem 8.3 since in this case the curve γn1 is not smooth
but has, in fact, two corners at the points (0, 0, σ) and (0, 0,−σ).
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γn1 lies in one connected component A of B+
σ . We now find a new smooth embedded disk

Dn
1 with

H2
e(D

n
1 ) ≤ κn1 +

1

n
and lying in the interior of A This suffices to prove (8.10).

Consider the disks D′
1, . . .D

′
l which, among the Dn

j with j ≥ 2, bound A. We first perturb
En

1 to a smooth embedded F n
1 which intersects all the D′

j. We then inductively modify En
1

to a new disk which does not intersect D′
j and looses at most 1/(3ln) in area. This is done

exactly with the procedure outlined above and since the distance between different D′
j ’s is

always positive, it is clear that while removing the intersections with D′
j we can do it in such

a way that we do not add intersections with D′
i for i < j.

8.5. Proof of (8.12). In this step we show the existence of a positive δ, independent of n
and j, such that

κnj ≤ σ

(
1

2
− δ

)

H1
e(γ

n
j ) ∀j ≥ 2, ∀n . (8.17)

Observe that for each γnj we can construct the cone with vertex the origin, which is topolog-

ically a disk and achieves area equal to σ
2
H1
e(γ

n
j ). On the other hand, this cone is clearly not

stationary, because γnj is not a circle, and therefore there is a disk diffeomorphic to the cone

with area strictly smaller than σ
2
H1
e(γ

n
j ). A small perturbation of this disk yields a smooth

embedded disk D bounding γnj such that

H2
e(D) <

σ

2
H1
e(γ

n
j ) . (8.18)

Therefore, it is clear that it suffices to prove (8.17) when n is large enough.
Next, by the isoperimetric inequality, there is a constant C such that, any curve γ in ∂Bσ

bounds, in Bσ, a disk D such that

H2
e(D) ≤ C

(
H1
e(γ)

)2
. (8.19)

Therefore, (8.17) is clear for every γnj with H1
e(γ

n
j ) ≤ σ/4C.

We conclude that the only way of violating (8.17) is to have a subsequence, not relabeled,
of curves γn := γnj(n) such that

• H1
e(γ

n) converges to some constant c0 > 0;
• κn := κnj(n) converges to c0/2.

Consider next the wedge Wed = {|y2| ≤ y1 tan θ0} containing the support of the varifold V .
If we enlarge this wedge slightly to

Wed ′ := {|y2| ≤ y1(tan θ0 + 1)} ,
we conclude, by (8.6), that

lim
n↑∞

H1
e(γ

n \ Wed ′) = 0 . (8.20)

Perturbing γn slightly we find a nearby smooth Jordan curve βn contained in ∂Bσ ∩Wed ′.
Consider next

µn := min{H2
e(D) : smooth embedded disk D bounding βn} . (8.21)
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Given a D bounding βn, it is possible to construct a D′ bounding γn with

H2
e(D

′) ≤ H2
e(D) + o(1).

Therefore, we conclude that

• H1
e(β

n) converges to c0 > 0;
• µn converges to σc0/2;
• βn is contained in Wed ′.

Consider next the projection of the curve α = Wed ′ ∩ Bσ on the plane π = y1y3. This
projection is an ellypse bounding a domain Ω in π. Clearly α is the graph of a function over
this ellypse. The function is Lipschitz (actually it is analytic except for the two points (0, σ)
and (0,−σ)) and we can therefore find a function f : Ω → R which minimizes the area of its
graph. This function is smooth up to the boundary except in the points (0, σ) and (0,−σ)
where, however, it is continuous. Therefore, the graph of f is an embedded disk.

We denote by Λ the graph of f . Λ is in fact the unique area-minimizing current spanning
α, by a well-known property of area–minimizing graphs. By the classical maximum principle,
Λ is contained in the wedge Wed ′ and does not contain the origin. Consider next the cone
Cn having vertex in 0 and βn as base. Clearly, this cone intersects Λ in a smooth Jordan
curve β̃n and hence there is a disk Dn in Λ bounding this curve. Moreover, we call En the
cone constructed on β̃n with vertex 0 (see Figure 12).

Λ

Dn

Cn

En

β̃n

βn

Figure 12. The minimal surface Λ, the cones Cn and En and the domain Dn.

Clearly,

lim inf
n↑∞

H1
e(β

n) > 0 . (8.22)

Consider next the current given by Dn ∪ (Cn \ En). These coverge, up to subsequences, to
some integer rectifiable current. Therefore, the disks Dn converge, in the sense of currents,
to a 2–dimensional current D supported in Λ. It is easy to check that D must be the current
represented by a domain of Λ, counted with multiplicity 1. Therefore

lim
n↑∞

H2
e(D

n) = H2
e(D) . (8.23)
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Similarly, En converges, up to subsequences, to a current E. By the minimizing property of
Λ, H2

e(D) < M(E), unless H2
e(D) = M(E) = 0, where M(E) denotes the mass of E.

So, if M(E) > 0, we then have

lim inf
n↑∞

H2
e(E

n) ≥ M(E) > H2
e(D) = lim

n↑∞
H2
e(D

n) .

If M(E) = 0, by (8.22), we conclude

lim inf
n↑∞

H2
e(E

n) > 0 = lim
n↑∞

H2
e(D

n) .

In both cases we conclude that the embedded disk Hn = (Cn \ En) ∪ Dn bounds βn and
satisfies

lim
n↑∞

H2
e(H

n) < lim
n↑∞

H2
e(C

n) =
σc0
2

= lim
n↑∞

µn . (8.24)

Therefore, there exists an n such that µn > H2
e(H

n). A small perturbation of Hn gives a
smooth embedded disk bounding βn with area strictly smaller than µn. This contradicts the
minimality of µn (see (8.21)) and hence proves our claim.

8.6. Proof of (8.16). In this final step we show (8.16). Our arguments are inspired by those
of Section 7 in [4].

Consider the curve γn1 . Again applying (8.6) we conclude that, for every compact set

K ⊂ B+

σ \
⋃

i

Pθi

we have

lim
n↑∞

H1
e(γ

n
1 \K) = 0 . (8.25)

Consider next the solid sector S := Wed ′∩Bσ. Clearly H2
e(∂S) = (3π−η)σ2, where η is a

positive constant. Clearly a curve contained in ∂S bounds always a disk with area at most
π(3

2
− η

2
)σ2. For large γn1 we can modify it to a new curve γ̃n contained in ∂S, and hence

find a smooth embedded disk bounding γ̃n with area at most π(3
2
− η

4
)σ2. This and (8.15)

implies that

πσ2

2

∑

i

ki = lim
n↑∞

κn1 <
3π

2
σ2 .

Therefore we conclude that
∑

i ki ≤ 2.

Extracting a subsequence, not relabeled, we can assume that γn1 converges to an integer
rectifiable current γ. The intersection of the support of γ with ∂Bσ \ {(0, 0, σ), (0, 0,−σ)
is then contained in the arcs αi := Pθi

∩ ∂Bσ. Therefore if we denote by [[αi]] the current
induced by αi then we have

γ ∂Bσ =
∑

i

hi[[αi]]

where the hi are integers.
On the other hand, γn1 Bσ is given by the segment ℓ. Therefore we conclude that

γ Bσ = [[ℓ]] .



GENUS BOUNDS FOR MINIMAL SURFACES ARISING FROM MIN-MAX CONSTRUCTION 39

It turns out that

γ = [[ℓ]] +
∑

i

hi[[αi]]

and of course
∑

i |hi| ≤
∑

i ki.
Since ∂γ = 0, we conclude that

0 = ∂[[l]] +
∑

i

hi∂[[αi]] = δP − δN +
∑

i

hi(δN − δP )

where N = (σ, 0, 0), P = (−σ, 0, 0) and δX denotes the Dirac measure in the point X. Hence
we conclude (

1 −
∑

i

hi

)

δP −
(

1 −
∑

i

hi

)

δN = 0

and therefore
∑

i hi = 1. This implies that
∑

i |hi| is odd. Since
∑

i |hi| ≤
∑

i ki ≤ 2, we
conclude

∑

i |hi| = 1.
Therefore, γ consists of the segment ℓ and an arc, say, α1. Clearly, γ bounds Pθ1, which

has area πσ2/2. Consider next the closed curve βn made by joining γn1 ∩ ∂Bσ and −α1.
These curves might have self–intersections, but they are close. Moreover, they have bounded
length and they converge, in the sense of currents, to the tivial current α1 − α1 = 0.

There are therefore domains Dn ⊂ B+
σ such that ∂Dn = βn and H2

e(D
n) ↓ 0. It is

not difficult to see that the union of the domains Dn and of Pθ1 gives embedded disks En

bounding γn1 and with area converging to πσ2/2 (see Figure 13). Approximating these disks
En with smooth embedded ones, we conclude that

lim
n↑∞

µn ≤ π

2
σ2 .

This shows that
∑

i ki ≤ 1. Hence the varifold W is either trivial or it consists of at most
one half-disk. Since it cannot be trivial by the considerations of Subsections 6.1 and 8.1, we
conclude that W consists in fact of exactly one half-disk.

γn1

Pθ1

α1

Figure 13. The curves γn1 and α1.
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9. Proof of Proposition 3.2. Part V: Convergence of connected

components

In this section we complete the proofs of Proposition 3.2 and Proposition 3.3. In particular,
building on Corollary 8.2, we show the following.

Lemma 9.1. Let Σ and ∆k be as in Proposition 3.2 (or as in Proposition 3.3) and consider
their varifold limit V . According to Lemma 7.1, Lemma 8.1 and Corollary 8.2, V is a smooth
stable minimal surface with boundary ∂∆ = ∂Σ and with multiplicity 1. Let Γ1, . . . ,ΓN be
the connected components of ∆.

If ∆̃k is an arbitrary union of connected components of ∆k which converges, in the sense
of varifolds, to a W , then W is given by Γi1 ∪ . . .∪ Γil for some 1 ≤ i1 < i2 < . . . < il ≤ N .

Proof. This lemma is indeed a simple consequence of some known facts in geometric measure
theory. Fix a sequence ∆̃k and a W as in the statement of the lemma. Note that ∂∆̃k ⊂
∂∆k = ∂Σ.

We can therefore apply the compactness of integer rectifiable currents and, after a further
extraction of subsequence, assume that the ∆̃k are converging, as currents, to an integer
rectifiable current T with boundary ∂T which is the limit of the boundaries ∂∆̃k. Since
these boundaries are all contained in ∂U , we conclude that ∂T is also contained in ∂U . It is
a known fact in geometric measure theory that

‖T‖ ≤ ‖W‖ . (9.1)

On the other hand,

‖W‖ ≤ ‖V ‖ ≤
∑

i

H2 Γi . (9.2)

So T is actually supported in the current given by the union of the currents induced by the
Γi’s, which we denote by [[Γi]]. Since ∂T and ∂Γi lie both on ∂U , a second standard fact in
geometric measure theory imply the existence of integers h1, . . . , hN such that

T =

N∑

i=1

hi[[Γi]]

Therefore,

‖T‖ =
∑

i

|hi|H2 Γi . (9.3)

Hence, (9.1), (9.2) and (9.3) give hi ∈ {−1, 0, 1}. On the other hand, since each ∂∆̃k is
the union of connected components of ∂Σ (with positive orientation), it turns out that ∂T
is the union of the currents induced by some connected components of ∂Σ, with positive
orientation. Moreover, since U is a sufficiently small ball, by the maximum principle each
surface Γi must have nontrivial boundary. Hence, we conclude that hi ∈ {0, 1}.

Arguing in the same way, we conclude that ∆k \ ∆̃k converge, as currents, to a current T ′,
and, as varifolds, to a varifold W ′ with the properties that

T ′ =
N∑

i=1

h′i[[Γi]] (9.4)

‖T ′‖ ≤ ‖W ′‖ (9.5)
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and h′i ∈ {0, 1}. Since W + W ′ = V , (and hence ‖W‖ + ‖W‖′ = ‖V ‖), we conclude that
h′′i = h′i + hi ∈ {0, 1}. On the other hand, ∆k converges, in the sense of currents, to T + T ′,
which is given by

T + T ′ =
∑

i

(hi + h′i)[[Γi]] . (9.6)

Moreover, since ∂∆k = ∂Σ,

[[∂Σ]] = ∂(T + T ′) =
∑

i

(hi + h′i)[[∂Γi]] . (9.7)

Since the ∂Γi are all nonzero, disjoint and contained in ∂Σ, we conclude that hi + h′i = 1 for
every i.

Summarizing, we conclude that ‖V ‖ = ‖W‖ + ‖W ′‖ ≥ ‖T‖ + ‖T ′‖ ≥ ‖T + T ′‖ = ‖V ‖.
This implies that ‖W‖ + ‖W ′‖ = ‖T‖ + ‖T ′‖ and hence that ‖W‖ = ‖T‖. Therefore

‖W‖ =
∑

i

hiH2 Γi

and since hi ∈ {0, 1}, this last claim concludes the proof. �

10. Considerations on (0.5) and (0.4)

10.1. Coverings. In this subsection we discuss why (0.5) seems ultimately the correct es-
timate. Fix a sequence {Σj

tj} which is 1/j–a.m. in suffciently small annuli and assume for
simplicity that each element is a smooth embedded surface and that the varifold limit is
given by

Γ =
∑

Γi∈O

niΓ
i +

∑

Γi∈N

niΓ
i .

Then, one expects that, after appropriate surgeries (which can only bring the genus down)
Σj
tj split into three groups.

• The first group consists of

m1 =
∑

Γi∈O

ni

surfaces, each isotopic to a Γi ∈ O;
• The second group consists of

m2 =
1

2

∑

Γi∈N

ni

surfaces, each isotopic to the boundary of a regular tubular neighborhood of Γi ∈ N ,
(which is a double cover of Γi);

• The sum of the areas of the the third group vahishes as j ↑ ∞.

As a consequence one would conclude that ni is even whenever Γi ∈ N and that (0.5) holds.

The type of convergence described above is exactly the one proved by Meeks, Simon and
Yau in [13] for sequences of surfaces which are minimizing in a given isotopy class. The key
ingredients of their proof is the γ–reduction and the techniques set forth by Almgren and
Simon in [4] to discuss sequences of minimizing disks. However, in their situation there is a
fundamental advantage: when the sequence {Σj} is minimizing in a given isotopy class, one
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can perform the γ–reduction “globally”, and conclude that, after a finite number of surgeries
which do not increase the genus, there is a constant σ > 0 with the following property:

• For any ball B with radius σ, each curve in ∂B ∩ Σj bounds a small disk in Σj .

In the case of min–max sequences, their weak 1/j–almost minimizing property on sub-
sets of the ambient manifold allows to perform the γ–reduction only to surfaces which are
appropriate local modifications of the Σj ’s, see the Squeezing Lemma of Section 6 and the
modified γ–reduction of Section 6. Unfortunately, the size of the open sets where this can
be done depends on j. In order to show that the picture above holds, it seems necessary to
work directly in open sets of a fixed size.

10.2. An example. In this section we show that (0.4) cannot hold for sequences which are
1/j–a.m.. Consider in particular the manifold M =] − 1, 1[×S2 with the standard product
metric. We parameterize S2 with {|ω| = 1 : ω ∈ R3}. Consider on M the orientation–
preserving diffeomorphism ϕ : (t, ω) 7→ (−t,−ω) and the equivalence relation x ∼ y if x = y
or x = ϕ(y). Let N = M/∼ be the quotient manifold, which is an oriented Riemannian
manifold, and consider the projection π : M → N , which is a local isometry. Clearly,
Γ := π({1}×S2) is an embedded 2–dimensional (real) projective plane. Consider a sequence
tj ↓ 1. Then, each Λj := {tj}×S2 is a totally geodesic surface inM and, therefore, Σj = π(Λj)
is totally geodesic as well. Let r be the injectivity radius of N and consider a smooth open
set U ⊂ N with diameter smaller than r such that ∂U intersects Σj transversally. Then
Σj ∩ U is the unique area–minimizing surface spanning ∂U ∩ Σj .

Hence, the sequence of surfaces {Σj} is 1/j–a.m. in sufficiently small annuli of N . Each
Σj is a smooth embedded minimal sphere and Σj converges, in the sense of varifolds, to 2Γ.
Since g(Σj) = 0 and g(Γ) = 1, the inequality

g(Γ) ≤ lim inf
j↑∞

g(Σj) ,

which corresponds to (0.4), fails in this case.

Appendix A. Proof of Lemma 4.2

Proof. Let Σ be a smooth minimal surface with ∂Σ ⊂ ∂Bσ(x), where σ < r0 and r0 is a
positive constant to be chosen later. We recall that, for every vector field X ∈ C1

c (Bσ(x)),
we have ∫

Bσ(x)

divΣX = 0 . (A.1)

We assume r0 < Inj (M) (the injectivity radius of M) and we use geodesic coordinates
centered at x. For every y ∈ Bσ(x) we denote by r(y) the geodesic distance between y and
x. Recall that r is Lipschitz on Bσ(x) and C∞ in Bσ(x) \ {x}, and that |∇r| = 1, where

|∇r| =
√

g(∇r,∇r).
We let γ ∈ C1([0, 1]) be a cut-off function, i.e. γ = 0 in a neighborhood of 1 and γ = 1

in a neighborhood of 0. We set X = γ(r)r∇r = γ(r)∇ |r|2

2
. Thus, X ∈ C∞

c (Bσ(x)) and from
(A.1) we compute

0 =

∫

Σ

γ(r) divΣ (r∇r) +

∫

Σ

r γ′(r)
∑

i

∂ei
r g(∇r, ei) , (A.2)
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where {e1, e2} is an orthonormal frame on TΣ. Clearly
∑

i

∂ei
r g(∇r, ei) =

∑

i

(∂ei
r)2 = |∇Σr|2 = |∇r|2 − |∇⊥r|2 = 1 − |∇⊥r|2 , (A.3)

where ∇⊥r denotes the projection of ∇r on the normal bundle to Σ. Moreover, let ∇e be
the euclidean connection in the geodesic coordinates and consider a 2-d plane π in TyM , for
y ∈ Bσ(x). Then

divπ (r(y)∇r(y))− diveπ (|y| ∇e|y|) = O(|y|) = O(σ) .

Since diveπ (|y| ∇e|y|) = 2, we conclude the existence of a constant C such that
∣
∣
∣
∣

∫

Σ

γ(r)divΣ(r∇r) − 2

∫

Σ

γ(r)

∣
∣
∣
∣
≤ C‖γ‖∞σH2(Σ ∩Bσ(x)) . (A.4)

Inserting (A.3) and (A.4) in (A.2), we conclude
∫

Σ

2 γ(r) +

∫

Σ

r γ′(r) =

∫

Σ

r γ′(r) |∇⊥r|2 + Err (A.5)

where, if we test with functions γ taking values in [0, 1], we have

|Err| ≤ CσH2(Σ ∩ Bσ(x)) . (A.6)

We test now (A.5) with functions taking values in [0, 1] and approximating the characteristic
functions of the interval [0, σ]. Following the computations of pages 83-84 of [18], we conclude

d

dρ

(
ρ−2H2(Σ ∩ Bρ(x))

)
∣
∣
∣
∣
ρ=σ

=
d

dρ

(
∫

Σ∩Bρ(x)

|∇⊥r|2
r2

)∣
∣
∣
∣
∣
ρ=σ

+ σ−3Err . (A.7)

Straightforward computations lead to

H2(Σ ∩ Bσ(x)) =
σ

2

d

dρ

(
H2(Σ ∩ Bρ(x))

)
∣
∣
∣
∣
ρ=σ

− σ3

2

d

dρ

(
∫

Σ∩Bρ(x)

|∇⊥r|2
r2

)∣
∣
∣
∣
∣
ρ=σ

︸ ︷︷ ︸

=(A)

+Err .

(A.8)
Moreover, by the coarea formula, we have

(A) =
σ

2

∫

∂Bσ(x)∩Σ

1

|∇Σr|
− σ3

2

∫

∂Bσ(x)∩Σ

|∇⊥r|2
σ2|∇Σr|

=
σ

2

∫

∂Σ

1 − |∇⊥r|2
|∇Σr|

=
σ

2

∫

∂Σ

|∇Σr| ≤ σ

2
Length (∂Σ) . (A.9)

Inserting (A.9) into (A.8), we conclude that

H2(Σ ∩ Bσ(x)) ≤ σ

2
Length (∂Σ) + |Err| , (A.10)

which, taking into account (A.6), becomes

(1 − Cσ)H2(Σ ∩ Bσ(x)) ≤ σ

2
Length (∂Σ) . (A.11)

So, for r0 < min{Inj (M), (2C)−1} we get (4.16). �
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Appendix B. Proof of Lemma 5.5

Proof. Let de(y) be the euclidean distance of y to U and d(y) the geodesic distance of y to

f(U). The function de is C2 and uniformly convex on the closure of B1 \ U . Therefore, if ε0

is sufficiently small, the function d is uniformly convex on the closure of Bε(x) \ f(U). Let

now y0 ∈ Bε(x) \ f(U). In order to find π(x) it suffices to follow the flow line of the ODE

ẏ = −∇d(y)/|∇d(y)|2, with initial condition y(0) = y0, until the line hits f(U). Thus, the

inequality |∇π(x)| < 1 follows from Lemma 1 of [7]. On the other hand, π(x) = x on f(U),
and therefore the map is Lipschitz with constant 1. �

Appendix C. A simple topological fact

We summarize the topological fact used in (a) of Section 8.3 in the following lemma.

Lemma C.1. Condider a smooth 2–dimensional surface Σ ⊂ B1 with smooth boundary
∂Σ ⊂ ∂B1. Let Γ ⊂ B1 is a smooth surface with ∂Γ = ∂Σ consisting of disjoint embedded
disks. Then there exists a smooth map Φ : [0, 1[×B1 → B1 such that

(i) Φ(0, ·) is the identity and Φ(t, ·) is a diffeomorphism for every t;
(ii) For every t there exists a neighborhood Ut of ∂B1 such that Φ(t, x) = x for every

x ∈ Ut;
(iii) Φ(t,Σ) converges to Γ in the sense of varifolds as t→ 1.

Proof. The proof consists of two steps. In the first one we show the existence of a surface Γ′

and of a map Ψ : [0, 1[×B1 → B1 such that

• ∂Γ′ = ∂Σ,
• Γ′ consists of disjoint embedded disks,
• Ψ satisfies (i) and (ii),
• Ψ(t,Σ) → Γ′ as t→ 1.

In the second we show the existence of a Ψ̃ : [0, 1[×B1 → B1 such that (i) and (ii) hold and

Ψ̃(t,Γ′) → Γ as t→ 1.
In order to complete the proof from these two steps, consider the map Φ̃(s, t, x) =

Ψ̃(t,Ψ(s, x)). Then, for every smooth g : [0, 1[→ [0, 1[ with g(0) = 0, the map Φ(t, x) =
Φ̃(g(t), t, x) satisfies (i) and (ii) of the Lemma. Next, for any fixed t, if s is sufficiently close

to 1, then Φ̃(s, t,Σ) is close, in the sense of varifolds, to Ψ̃(t,Γ′). This allows to find a
piecewise constant function h : [0, 1[→ [0, 1[ such that

lim
t→1

Φ̃(g(t), t,Σ) = Γ (in the sense of varifolds)

whenever g ≥ h in a neighborhood of 1. If we choose, therefore, a smooth g : [0, 1[→
[0, 1[ with g(0) = 0 and g ≥ h on [1/2, 1[, the map Φ(t, x) = Φ̃(g(t), t, x) satisfies all the
requirements of the lemma.

We now come to the existence of the maps Ψ and Ψ̃.

Existence of Ψ. Let G be the set of all surfaces Γ′ which can be obtained as limt→1 Ψ(t,Σ)
for maps Ψ satisfying (i) and (ii). It is easy to see that any Γ′ which is obtained from Σ
through surgery as in Definition 2.2 is contained in G. Let g0 be the smallest genus of a
surface contained in G. It is then a standard fact that g(Γ′) = g0 if and only if the surface
is incompressible. However, if this holds, then the first homotopy group of Γ′ is mapped
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injectively in the homotopy group of B1 (see for instance [11]). Therefore there is a Γ′ ∈ G
which consists of disjoint embedded disks and spheres. The embedded spheres can be further
removed, yielding a Γ′ ∈ G consisting only of disjoint embedded disks.

Existence of Ψ̃. Note that each connected component of B1 \ Γ′ (and of B1 \ Γ) is a,
piecewise smooth, embedded sphere. Therefore the claim can be easily proved by induction
from the case in which Γ and Γ′ consist both of a single embedded disk. This is, however, a
standard fact (see once again [11]). �
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