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EXISTENCE OF SOLUTIONS FOR A CLASS OF HYPERBOLICSYSTEMS OF CONSERVATION LAWS IN SEVERAL SPACEDIMENSIONSLUIGI AMBROSIO, CAMILLO DE LELLIS1. IntroductionIn a recent paper [3] Bressan has shown that the Cauchy problem for the system ofconservation laws 8>><>>: @tui + nP�=1 @x�(f�(juj)ui) = 0ui(0; �) = ui(�) (1)can be ill posed for suitable Lipschitz 
ux functions f and L1 initial data u which arebounded away from 0. His analysis is based on the scalar conservation law associated to (1)(formally giving the absolute value � of the solution u), namely8>><>>: @t� + nP�=1 @x��f�(�)�� = 0�(0; �) = �(�) (2)and on the analysis of the ODE _x(t) = f(�(t; x(t))), which formally gives, via the methodof characteristics, the angular part � = u=� of the solution. In the �nal part of his paperBressan points out that the Cauchy problem could be well posed for BV initial data, lookingfor suitable compactness properties of the Cauchy 
uxes associated to BV vector �elds, onthe same line of the theory developed for Sobolev spaces by DiPerna and Lions in [5].In a recent paper [1] the �rst author extended the Di Perna{Lions theory to BV vector�elds satisfying natural L1 bounds, as in [5], on the distributional divergence. The theorydeveloped in [1] is not directly applicable to the vector �eld f(�(t; x)) appearing in theCauchy problem (1) because its (spatial) divergence is formally given by�1� "�t + nX�=1 f�(�) � @x��# ;neither bounded nor absolutely continuous with respect to the Lebesgue measure in general.Lifting the ODE considered by Bressan to an higher dimensional one and using the specialstructure of the Cauchy problem (1), we are able however to reduce ourselves to the caseof divergence-free vector�elds, where the theory of [1] is fully applicable. Our approach isindeed based on the analysis of the autonomous ODE� _!(s); _�(s)� = ���!(s);�(s)� ; f���!(s);�(s)�� ��!(s);�(s)�� (3)1



2 LUIGI AMBROSIO, CAMILLO DE LELLISthat we use, through a reparameterization, to recover solutions of the ODE _x(t) = f (�(t; x(t)))(here � is extended to negative times considering the backward Cauchy problem (11) asso-ciated to (2)).In particular we give a positive anwer to Bressan's conjecture, obtaining in Theorem 2.6 ageneral existence result for bounded weak solutions of (1) assuming that f 2 W 1;1loc and thatu 2 L1 with juj � c > 0 L n-a.e. and juj 2 BVloc. By bounded weak solution we mean, asusual, a map u 2 L1(Rt �Rnx;Rk) such that for every test function ' 2 C1c (Rt �Rnx) andany i = 1; : : : ; k we haveZ 10 ZRnx  @t'+ nX�=1 f�(juj)@x�'! ui dx dt+ ZRnx '(0; x)ui(x) dx = 0 :The solution is built as follows: denote by (�x;t(s); !x;t(s)) the solution of the ODE (3)having (x; t) 2 Rn �R as initial data, provided by [1], and set	(t; x) := �x;t �!�1x;t (0)� :Our solution of (1) is de�ned byu(t; x) := �(t; x)� (	(t; x)) :This construction also provides entropy conditions for a quite rich family of entropy-entropy
ux pairs, therefore it is natural to investigate whether these entropy conditions are su�-ciently strong to enforce uniqueness of solutions.We are not able to give here a de�nite answer to this problem, but a careful analysis ofour construction shows some necessary conditions for uniqueness which play also a role inthe stability problem with respect to approximation of the initial data (see Theorem 4.5).These conditions involve a family of measures �N built from the transport map 	 as follows:�N(A) := L n+1 �([0; N ]�Rn) \ 	�1(A)� for any Borel set A � Rn.We show in Proposition 4.4 that the absolute continuity with respect to L n of all measures�N is a necessary condition for uniqueness of entropy solutions. However, we are not presentlyable to show that this condition is su�cient, or to exhibit examples where this absolutecontinuity property fails.Acknowledgments Camillo De Lellis acknowledges partial support by the EU NetworkHyperbolic and kinetic equations HPRN-CT-2002-00282.2. Preliminaries and statement of the resultBefore stating the main theorem, we recall the notion of entropy solution of a scalarconservation law and the classical theorem of Kruzhkov, which provides existence, stabilityand uniqueness of entropy solutions to the Cauchy problem for scalar laws.De�nition 2.1. Let g 2 W 1;1loc (R;Rn). A pair (�; q) of functions � 2 W 1;1loc (R;R), q 2W 1;1loc (R;Rn) is called an entropy{entropy 
ux pair relative to g ifq0 = �0g0 L 1{almost everywhere on R. (4)



SYSTEMS OF CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS 3If, in addition, � is a convex function, then we say that (�; q) is a convex entropy{entropy
ux pair. A weak solution u 2 L1(R+t �Rnx) of8<: @tu+ divx[g(u)] = 0u(0; �) = u (5)is called an entropy solution if @t[�(u)]+divx[q(u)] � 0 in the sense of distributions for everyconvex entropy{entropy 
ux pair (�; q).Theorem 2.2 ([6] Kruzhkov). Let g 2 W 1;1loc (R;Rn) and u 2 L1. Then there exists aunique entropy solution u of (5). If in addition u 2 BVloc(Rn), then, for every open setA �� Rn and for every T 2 ]0;1[, there exists an open set A0 �� Rn (whose diameterdepends only on A, T , g and kuk1) such thatkukBV (]0;T [�A) � kukBV (A0) : (6)We recall now the notion of entropy{entropy 
ux pair for systems.De�nition 2.3. A pair of Lipschitz functions � : Rk ! R, q : Rk ! Rn is called anentropy{entropy 
ux pair for the system (1) if for every open set 
 � Rt�Rnx and for everyu 2 C1(
;Rk) which solves the system @tui +P� @x�(f�(juj)ui) = 0 pointwise, we have@t[�(u)] + divx[q(u)] = 0 on 
 in the sense of distributions. (7)We denote by R the set of all entropy{entropy 
ux pairs (�; q) such that � is convex and both� and q are radially symmetric (that is �(x) = �(y) and q(x) = q(y) whenever jxj = jyj).Remark 2.4. It is easy to check that the couple �(y) := jyj, q�(y) := f�(jyj)jyj is anentropy{entropy 
ux pair for the system (1). Moreover, if (E;Q) is an entropy{entropy 
uxpair for the scalar law @t�+divx[f(�)�] = 0, then �E(jyj); Q(jyj)� is an entropy{entropy 
uxpair for (1). We remark that all couples (�; q) 2 R can be generated with the procedureabove.In addition to the notion of entropy, we introduce that of companion radial system.De�nition 2.5. Assume that a map S 2 W 1;1loc (Rk;Rk) satis�es:� jS(y)j = jyj for every y 2 Rk;� S(y) = jyjS� yjyj� for every y 6= 0.Then we say that the system of equations8>><>>: @t[S(u)]i + nP�=1 @x��f�(juj)[S(u)]i� = 0�S(u(0; �))�i = [S(u(�))]i (8)is a companion radial system of (1).We are now in the position of stating the main theorem of this paper:Theorem 2.6. Let f 2 W 1;1loc (R;Rk) and u 2 L1. Assume that juj 2 BVloc(Rn) andjuj � c > 0 L n-a.e. Then there exists a bounded weak solution u of (1) such that



4 LUIGI AMBROSIO, CAMILLO DE LELLIS� u solves in the sense of distributions every companion radial system;� For any (�; q) 2 R the distribution @t[�(u)] + divx[q(u)] is a nonpositive measure.The main tool for proving this theorem is the following consequence of the theory devel-oped by the �rst author in [1] for ODEs _x = b(x) with BV coe�cients b having absolutelycontinuous and bounded divergence (extending the theory developed for Sobolev spaces in[5]). The theorem stated below is a particular case of this theory (as the conditions on thedivergence could be relaxed and also the non-autonomous case could be considered), but itis su�cient to our purposes.Theorem 2.7 ([1], Theorem 6.5). Assume b 2 BVloc \ L1(Rm;Rm) and div b = 0 in thesense of distributions. Then there exists a unique locally bounded map � : R �Rm ! Rmsuch that:(i) �(�; x) 2 W 1;1(R;Rm) and �(0; x) = x for L m{a.e. x 2 Rm.(ii) dds�(s; x) = b(�(s; x)) for L m+1{a.e. (s; x) 2 R �Rm.(iii) Let fbjg � W 1;1loc \ L1(Rm;Rm) with div bj = 0 and denote by �j the unique solutionsof 8<: _�j(t; x) = b(�j(t; x))�j(0; x) = x :If fkbjk1g is bounded and bj ! b in L1loc, thenlimj!1ZBR supt2[�T;T ] j�j(t; x)� �(t; x)j dx = 0 8R; T > 0:Using the terminology of [1], we say that this � is the regular lagrangian 
ow generatedby b. The regular Lagrangian 
ow � can also be characterized, as in [5], by conditions (a),(b) and replacing the stability property (c) by the following one: for any T > 0 and anybounded open set A � Rn there exists a constant C such that the measuresZRn '�t := ZA ' (�(t; x)) dx ' 2 Cc(Rn); t 2 [�T; T ]satisfy �t � CL n:Remark 2.8. An easy consequence of the previous theorem and of a diagonal argumentis the following stability property: assume that fbjg � BVloc, div bj = 0 in the sense ofdistributions, fkbjk1g is bounded and bj ! b in L1loc. Let �j be the regular lagrangian 
owsgenerated by bj and let � be the regular lagrangian 
ow generated by b. Thenlimj!1ZBR supt2[�T;T ] j�j(t; x)� �(t; x)j dx = 0 8R; T > 0:A further diagonal argument also provides a subsequence j(r) such that �j(r)(�; x) convergeto �(�; x) locally uniformly in R for L m-a.e. x 2 Rm.



SYSTEMS OF CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS 53. Proof of Theorem 2.6Before coming to the proof of Theorem 2.6 we need the following elementary lemma.Lemma 3.1. Let � be a �nite measure on Rn and let � : Rn ! Sk. Then there exists asequence of continuous maps �j : Rn ! Sk such that �j ! � in L1(�).Proof. Note that for some y 2 Sk, we have �(��1(y)) = 0. Fix such a y and take a smoothdi�emorphism ' : Sk n fyg ! Rk. Moreover, for every " > 0, denote by R" the mapR" : Sk ! Sk such that� R" is the identity on Sk nB"(y), where B"(y) is the geodesic ball of Sk centered on y.� R" maps radially B"(y) on the geodesic sphere @B"(y) (thus R" is not de�ned anddiscontinuous on y).The maps �" = R" � � are well de�ned because �(��1(y)) = 0. Moreover �" ! � in L1(�).For every " we can �nd a sequence of continuous maps f�";jgj such that �";j ! �" in L1(�).Indeed, consider the map ' � �". This map takes values in Rk, is bounded and in L1. Set asystem of standard coordinates x1; : : : xk. For each ['(�")]i, i 2 f1; : : : ; kg, standard measuretheory gives a sequence of continuous maps ~�";ji which converges to ['(�")]i in L1(�) andsuch that the sequence fk~�";ji k1gj is bounded. Thus ~�";j ! '(�") in L1(�) and the sequencefk~�";jk1g is bounded. Since '�1 is bounded and continuous, the maps �";j = '�1(~�";j) are allcontinuous and converge to �" in L1(�). A standard diagonal argument gives two sequences"r # 0, j("r) " 1 such that �"r;j("r) ! � in L1(�).Proof of Theorem 2.6. Throughout this proof, for every map u : 
! Rk we set � := juj and� := u=juj. Since we will consider only functions u which are bounded away from the origin,� is well de�ned. Moreover, we set � = juj and � = u=juj. In the �rst three steps we provethe theorem under the assumption that � is continuous. In the fourth step we pass to thegeneral case.First Step. Scalar equation.We de�ne the function � as the unique entropy solution of the Cauchy problem for thescalar conservation law 8>><>>: @t� + nP�=1 @x��f�(�)�� = 0�(0; �) = �(�) : (9)Thanks to Theorem 2.2, � 2 BVloc and satis�es the entropy inequality for every convexentropy{entropy 
ux pair (�; q) related to the scalar law (9). Moreover, by Remark 2.4, wehaveIf (E(jxj); Q(jxj)) 2 R, then (E;Q) is a convex entropy{entropy 
ux pair for (9). (10)For technical reasons, it will be convenient to extend � to a function de�ned on the wholeRt � Rnx (that is to de�ne � even for negative times). In order to do this we adopt thefollowing elementary procedure: we de�ne �� as the unique entropy solution of the Cauchy



6 LUIGI AMBROSIO, CAMILLO DE LELLISproblem 8>><>>: @t�� � nP�=1 @x��f�(��)��� = 0��(0; �) = �(�) : (11)Then, we extend � to R�t � Rnx setting �(t; x) = ��(�t; x). Theorem 2.2 implies that� 2 BVloc(Rt �Rnx). Moreover, it is immediate to check that@t� + nX�=1 @x�(f�(�)�) = 0 on Rt �Rnx (12)and that �jR+t �Rnx is the unique entropy solution of the Cauchy problem (9).Second Step. Smooth approximation of the transport equation.Let �" be a standard convolution kernel and de�ne �" := � � �" and g" := (f(�)�) � �".Since � � c > 0 L n-a.e. the same inequality is true everywhere for �". Then, let �" be theunique solution of the Cauchy problem for the transport equation8<: @t�" + g"�" � rx�" = 0�"(0; �) = �(�) : (13)Thus we have that �"@t�" + g" � rx�" = 0. Since @t�" +divxg" = [@t�+divx(f(�)�)] � �" = 0,we have @t(�"�") + divx(g"�") = 0 : (14)Clearly k�"k1 is uniformly bounded. Thus, there is subsequence f�"jg which convergesweakly� in L1 to a function �. Since (�"; g") ! (�; f(�)�) strongly in L1loc, we have that�"j�"j ! �� and g"j�"j ! f(�)�� in the sense of distributions. Hence, setting u = ��, thefunction u satis�es 8>><>>: @tu+ nP�=1 @x�(f�(�)u) = 0u(0; �) = �(�)�(�) (15)in the sense of distributions. Thus, if we could prove that j�j = 1 L n+1{a.e. on R+t �Rnx,the function u would be a solution of (1) in the sense of distributions. Moreover, in view of(10), it would satisfy the entropy inequality @t[�(u)] + divx[q(u)] � 0 for every (�; q) 2 R.Now, let S be as in De�nition 2.5. Since �", �" and g" are smooth, we have8<: @t[�"S(�")] + divx�g(�")S(�")� = 0�"S��"(0; �)� = �(�)S(�(�)) :



SYSTEMS OF CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS 7If j�j = 1 L n+1{a.e., we would have that �"j ! � strongly in L1loc and hence �"jS(�"j) !�S(�) in L1loc. By de�nition, �S(�) = S(��) = S(u). Thus u would satisfy8<: @t[S(u)] + divx�f(juj)S(u)� = 0S�u(0; �)� = S(u(�))Summarizing, the theorem would follow if we could prove that j�j = 1 L n+1{a.e. .Third Step. Strong convergence of �" when � 2 C(Rn).In this step we assume that � 2 C(Rn) and we prove that under this assumption �"(T; x)!�(T; x) forL n+1{a.e. (T; x) 2 R+t �Rnx. In view of the previous step, this proves the theoremwhen � is continuous.We start by de�ning the following autonomous system of ODEs:8>>>>>>><>>>>>>>:
dds�"x;y(s) = g"�!"x;y(s);�"x;y(s)�dds!"x;y(s) = �"�!"x;y(s);�"x;y(s)�!"x;y(0) = y 2 R; �"x;y(0) = x 2 Rn : (16)

We stress on the fact that we solve this system of ODEs for all times (that is, even when sis negative) thus �nding trajectories ��"x;y; !"x;y� : R ! Rn �R.Since �" � c the map !"x;y : R ! R is invertible with Lipschitz inverse. We de�ne �"x;y asthe inverse of !"x;y and we set �"x;T (t) := �"x;T (�"x;T (t)) :Clearlyddt�"x;T (t) = d�"x;Tds ��"x;T (t)�d�"x;Tdt (t)= g" �!"x;T��"x;T (t)�;�"x;T��"x;T (t)��( 1�" �!"x;T��"x;T (t)�;�"x;T��"x;T (t)��)= g"�t;�"x;T (t)��"�t;�"x;T (t)� :Moreover note that !"x;T (0) = T and hence �"x;T (T ) = 0. Note also that, since dds�"x;T > 0 and�"x;T (T ) = 0, then �"x;T (0) < 0: this is why we solved the ODEs (16) even for negative times.Thus �"x;T (T ) = �"x;T (�"x;T (T )) = �"x;T (0) = x. We conclude that the trajectory �"x;T (t) isthe unique solution of the Cauchy problem8<: ddt�"x;T (t) = g" �t;�"x;T (t)��" �t;�"x;T (t)��"x;T (T ) = x : (17)



8 LUIGI AMBROSIO, CAMILLO DE LELLISSince �" solves the Cauchy problem (13), we have that�"(T; x) = �"(0;�"x;T (0)) = ���"x;T (�"x;T (0))� : (18)Set g := f(�)� and consider the ODE8>>>>>><>>>>>>:
dds�x;y(s) = g�!x;y(s);�x;y(s)�dds!x;y(s) = ��!x;y(s);�x;y(s)�!x;y(0) = y; �x;y(0) = x : (19)Since the 
ux (�; g) 2 BVloc \ L1 is divergence free, we can apply Theorem 2.7 to obtainthe existence of a unique regular Lagrangian 
ow (�x;y; !x;y). Theorem 2.7 and Remark 2.8imply that possibly extracting a subsequence (not relabelled) from "j we have� For L n+1{a.e. (x; y), the maps �x;y : R ! Rn, !x;y : R ! R solve (19);� ForL n+1{a.e. (x; y), the maps (�"jx;y; !"jx;y) converge locally uniformly inR to (�x;y; !x;y)as n!1.Since dds!"x;y � c > 0, we conclude that �� dds�"x;y�� � 1c . Thus, for every (x; y), the family ofreal functions f�"x;yg" is precompact in the topology of locally uniform convergence. Recallthat for L n+1{a.e. (x; y) the functions !"jx;y converge locally uniformly to !x;y. Hence forL n+1{a.e. (x; y), �"jx;y converge uniformly to a Lipschitz map �x;y, which is the inverse of!x;y.Thus, for a.e. (x; T ) we have that �"jx;T (�"jx;T (0)) converge to �x;T (�x;T (0)). By the continu-ity of � and (18), we have that �"j(T; x)! �[�x;T (�x;T (0))] for L n+1{a.e. (T; x) 2 R+t �Rnx.This yields that the � constructed in the previous step is given by�(T; x) = � ��x;T ��x;T (0)�� (20)and hence takes its values in Sk�1 almost everywhere. This completes the proof of Theorem2.6 when � is continuous.Fourth Step. The general case � 2 L1.Now �x a general u satisfying the assumptions of the Theorem. De�ne the map 	 :R+t �Rnx ! Rn as 	(T; x) := �x;T ��x;T (0)� : (21)For every N 2 N , consider the measure �N de�ned on Rn in the following way: �N is thepushforward, via 	, of the Lebesgue measure L n+1 restricted to the set [0; N ]�Rnx. Notethat for every N there exists a constant C(N) such that j	(T; x) � xj � C(N) for everyT 2 [0; N ]. Thus the measure �N is locally �nite.We �x a map ~� in the equivalence class of � (our construction might be sensitive to thechoice of this representative, see the next section). By applying Lemma 3.1 to the map ~�and to the measure � := 1XR=1 2�R�BR  L n + 1XN=1 12N�N(BR)�N!



SYSTEMS OF CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS 9we �nd a sequence of continuous maps ~�j : Rn ! Sk�1 such that ~�j(x) ! ~�(x) in L1(�).Thus a subsequence (not relabeled) ~�j converges to ~� �{almost everywhere. This means that~�j(x)! � for L n+1{a.e. x and for �N{a.e. x for all N .Using the construction of the previous steps, we can �nd functions � : R+t �Rnx ! R and�j : R+t �Rnx ! Sk�1 such that � is the entropy solution of (9) and �j solves, in the senseof distributions, the Cauchy problem8>><>>: @t(��j) + nP�=1 @x��f�(�)��j� = 0 :��j(0; �) = �(�)~�j(�) : (22)Up to subsequences, (�j) converge weakly� in L1 to a map � which solves8>><>>: @t(��) + nP�=1 @x��f�(�)��� = 0 :��(0; �) = �(�)�(�) : (23)Arguing as in the second step, to complete the proof we only need to show that �(t; x) 2 Sk�1for L n+1{a.e. (t; x). Let G � Rnx be the setG := fx : ~�j(x)! ~�(x)g:Thanks to our assumptions, we have �N(Rn nG) = 0 for every N . This means thatfor L n+1{a.e. (T; x) we have 	(T; x) 2 G: (24)Since �j(T; x) = ~�j(	(T; x)), clearly�j(T; x)! ~�(	(T; x)) for every (T; x) such that 	(T; x) 2 G.Thanks to (24) we conclude that �j(T; x)! ~�(	(T; x)) forL n+1{a.e. (T; x). Since the weaklimit has to coincide with the pointwise limit, we obtain that �(T; x) = ~�(	(T; x)) 2 Sk�1for L n+1{a.e. (T; x) 2 R+t �Rnx. This completes the proof.4. Some remarks about uniqueness and stabilityIn analogy with the terminology of scalar conservation laws, we say that a weak solutionu 2 L1(R+ �Rnx;Rk) of (1) is an entropy solution if� u is a weak solution of any companion radial system;� @t[�(u)] + divx[q(u)] � 0 for any couple (�; q) 2 R.The following conjecture is quite natural:Conjecture 4.1. If u1 and u2 are two entropy solutions of the same Cauchy problem (1)then u1 = u2 L n+1{a.e. in R+t �Rnx.Notice that the entropy condition generated by pairs (�; q) 2 R ensures that ju1j = ju2j = �L n+1{a.e. and one can guess that the fact that u is a weak solution of all companion radialsystems should imply that the u1=� = u2=� L n+1{a.e.We will show in the next subsection how this conjecture is related to the map 	 de�nedby (21) and to the measures �N (see De�nition 4.2 below and the Fourth Step of Proof of



10 LUIGI AMBROSIO, CAMILLO DE LELLISTheorem 2.6). In the last subsection we will discuss the relations of these measures with thestability of entropy solutions.4.1. The transport map 	. Thanks to Theorem 2.7 and Remark 2.8 the map 	 2L1(R+t � Rn;Rn) de�ned on (21) only depends on the initial data � (and obviously onf) but it does not depend on the construction of the Third Step. In particular 	 does notdepend on the choice of the convolution kernel � and of the vanishing sequence f"jg. We call	 the transport map generated by the initial data � and we introduce the following notation:De�nition 4.2. Let 	 be as above and for every N 2 N de�ne the measure �N as the push{forward, via 	, of the Lebesgue measure L n+1 restricted to the set [0; N ]�Rn. A Borel setS is called a singular set for 	 if L n(S) = 0 and �N(S) > 0 for some N .Notice that if all measures �N are absolutely continuous with respect to L n there is nosingular set. Using the language just introduced, the construction of the proof of Theorem2.6 can be summarized in the followingTheorem 4.3. Let � 2 BVloc(Rn) with 0 < c � � � C and let � 2 L1(Rn;Sk�1).1. De�ne � as in the �rst step of the proof of Theorem 2.6. Denote by 	 be the transportmap generated by �.2. Let ~� : Rn ! Sk�1 be any Borel map such that ~� = � L n{a.e. on Rn.3. De�ne u 2 L1(R+t �Rnx) as u(t; x) = �(t; x)~��	(t; x)�.Then u is an entropy solution of8>><>>: @tu+ nP�=1 @x�(f�(juj)u) = 0u(0; �) = �(�)�(�) : (25)The following proposition shows that the absolute continuity of all measures �N is neces-sary for the validity of Conjecture 4.1.Proposition 4.4. If Conjecture 4.1 holds true, then for every � the transport map 	 gen-erated by � has no singular set. That is, the measures �N of De�nition 4.2 are all absolutelycontinuous with respect to L n.Proof. Assume that for some � as above the transport map 	 generated by � has a singularset S. Then, for every � 2 L1(Rn;Sk�1) we can �nd Borel maps ~�1; ~�2 : Rn ! Sk�1 suchthat� ~�1 = � = ~�2 on Rn n S.� ~�1(x) 6= ~�2(x) for every x 2 S.If we de�ne uj(t; x) = �(t; x)~�j�	(t; x)�, then both u1; u2 solve (25) by Theorem 4.3.Moreover u1(t; x) 6= u2(t; x) for every (t; x) 2 	�1(S). According to the de�nition of S, wehave L n+1 �	�1(S) \ [0; N ]�Rn� > 0for some N > 0.



SYSTEMS OF CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS 114.2. Stability. We have seen in the previous subsection that the absolute continuity of allmeasures �N is necessary for uniqueness. Here we show that the natural extension of thisproperty to the case when the initial data are given by a sequence of maps �j, namely theequi-integrability of the measures �jN associated to �j, leads to a stability result for thesolutions built as in Theorem 2.6.Let �; �j 2 BVloc \ L1(Rn), �; �j 2 L1(Rn;Sk�1) and assume that� 0 < c � �j � C for every j;� �j ! � in L1loc;� �j ! � in L1loc and supj k�jkBV (A) < +1 for any bounded open set A � Rn.Denote by 	, 	j the transport maps generated by �, �j. For any N; j 2 N denote by�jN (resp. �N) the measures which are the pushforward via 	j (resp. 	) of the Lebesguemeasure L n+1 restricted to the set [0; N ]�Rn. De�ne the maps �; �j 2 BVloc�Rt �Rnx� asin Theorem 4.3 (i.e. as constructed in the �rst Step of the proof of Theorem 2.6).We recall that a sequence of locally integrable functions gj is said to be locally equiinte-grable if for any R; " > 0 there exists � = �(R; ") > 0 such that RA jgjj dx < " for any Borelset A � BR with L n(A) < �.Theorem 4.5. De�neuj(t; x) := �j(t; x)�j�	j(t; x)�; u(t; x) := �(t; x)��	(t; x)�and assume that�jN = f jNL n and the sequence ff jNgj is locally equiintegrable for any N . (26)Then uj ! u strongly in L1loc.Proof. Theorem 4.3 gives that the maps uj, u satisfy8>><>>: @tuj + nP�=1 @x�(f�(jujj)uj) = 0uj(0; �) = �j(�)�j(�) 8>><>>: @tu+ nP�=1 @x�(f�(juj)u) = 0u(0; �) = �(�)�(�) :Fix an open set 
 �� R+t �Rnx. We will prove that(P) For every sequence fj(r)gr � N going to in�nity there exists a further subsequencefj(r(l))g such that uj(r(l)) converges to u in L1(
).This implies that the whole initial sequence fujg converges to u in L1(
). The arbitrarinessof 
 gives the claim. We now come to the proof of (P). Thus let us �x any subsequencefuj(r)g and to simplify the notation let us drop the index r.Theorem 2.2 and the compactness of the embedding of BV in L1loc imply that �j ! �in L1loc. Using arguments similar to those of the Third Step, we can see that Theorem2.7 and Remark 2.8 imply that (possibly passing to a subsequence) 	j ! 	 in L1loc andpointwise L n+1 almost everywhere. Note that there exists a compact set K � Rn such that	(
);	j(
) � K (cf. Fourth Step of Proof of Theorem 2.6). Sincelimj!1ZRn 'd�jN = limj!1Z[0;N ]�Rn ' �	j dtdx = Z[0;N ]�Rn ' �	 dtdx = ZRn 'd�N



12 LUIGI AMBROSIO, CAMILLO DE LELLISfor any continuous function ' with compact support in Rn, we have the weak convergenceas measures of �jN to �N . As a consequence, the equiintegrability gives�N is absolutely continuous with respect to L n for any N . (27)By Egorov Theorem, there exists a sequence of compact sets fKig such that limiL n(K nKi) = 0 and the sequence f�jg is equicontinuous on every Ki and converges to � uniformlyon Ki. Condition (27) implies that limiL n+1(
 n 	�1(Ki)) = 0. For each i, consider asequence of compact sets fK lig such that� K li � 	�1(Ki);� limlL n+1�[	�1(Ki)] nK li� = 0;� 	j ! 	 uniformly on every K li .We will prove that for each i; l there exists a subsequence fujg, not relabeled, which convergesto u in L1(K li). A diagonal argument yields a subsequence fujg (again not relabeled) whichconverges strongly in L1(
).Since 	j ! 	 uniformly on K li and 	(K li) � 	�	�1(Ki)� = Ki, we have thatlimj!1L n�	j(K li) nKi� = 0 : (28)Assumption (26) and (28) imply thatlimj!1L n+1�K li n ��	j��1(Ki)�� = 0 : (29)Fix M 2 N and for each r let j(r) � r be such thatL n+1�K li n ��	j(r)��1(Ki)�� � 2�rM : (30)Thus if we de�ne the set K 0M := K li \ (\r h�	j(r)��1(Ki)i)we getL n+1(K li nK 0M) � 1M . We will show uj(r) ! u in L1(K 0M). Note that 	j(r)(K 0M) � Ki.Since� 	j(r) ! 	 uniformly on K 0M ,� �j(r) is equicontinuous on Ki,� �j(r) ! � uniformly on Ki,we conclude that uj(r) = �j(r) � 	j(r) converges uniformly to u = � � 	 on K 0M . Hence uj(r)converges to u in L1(K 0M). A diagonal argument yields a subsequence which converges to uin L1(K li). This completes the proof of (P) and hence the proof of the theorem.References[1] L.Ambrosio: Transport equation and Cauchy problem for BV vector �elds. Preprint, 2003 (availableat http://cvgmt.sns.it).[2] A.Bressan: Hyperbolic systems of conservation laws. The one dimensional Cauchy problem. OxfordUniversity Press, 2000.[3] A.Bressan: An ill posed Cauchy problem for a hyperbolic system in two space dimensions. Preprint,2003.



SYSTEMS OF CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS 13[4] C.Dafermos: Hyperbolic conservation laws in continuum physics. Springer-Verlag, Berlin, 1999.[5] R.DiPerna & P.L.Lions: Ordinary di�erential equations, transport theory and Sobolev spaces. Invent.Math., 98 (1989), 511{517.[6] S.Kruzhkov: First-order quasilinear equations with several space variables. Math. USSR Sbornik, 10(1970), 217{273.Luigi Ambrosio, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, ItalyE-mail address : l.ambrosio@sns.itCamillo De Lellis, Max{Planck Institute for Mathematics in the Sciences, Inselstr. 22,D-04103 Leipzig, GermanyE-mail address : delellis@mis.mpg.de


