As Marco Inversi and Luigi De Rosa pointed out to me, the identity (10) is not rigorously derived in the paper: the problem is that $\nabla(\varphi v)$ is not continuous (it is indeed not even bounded), while the $\lambda_{t}(d x)$ is a measure which is possibly singular. In particular φv is not an admissible test in the definition of measurevalued solution. In fact if we want to be literal we need $\varphi v \in C_{c}^{\infty}$ according to Definition 1 and while it is a simple exercise to show that we can also admit tests which are C_{c}^{1}, we are not allowed to use tests which just L^{p}, or L^{∞}. The way out is to in fact to test with a suitable regularization of v, in particular if we mollify in space and time with a standard kernel and denote by v_{ε} the mollified vector field, the map φv_{ε} becomes an admissible test. Observe that we can then write

$$
-\iint \chi^{\prime} \varphi \bar{\nu} \cdot v d x d t=\lim _{\varepsilon \downarrow 0}-\iint \chi^{\prime} \varphi \bar{\nu} \cdot v_{\varepsilon} d x d t
$$

We can next write

$$
\begin{align*}
-\iint \chi^{\prime} \varphi \bar{\nu} \cdot v_{\varepsilon} d x d t & =\iint-\partial_{t}\left(\chi \varphi v_{\varepsilon}\right) \cdot \bar{\nu}-\chi \varphi \bar{\nu} \cdot\left(\operatorname{div}(v \otimes v)_{\varepsilon}+\nabla p_{\varepsilon}\right) d x d t \\
= & \iint \chi \nabla\left(\varphi v_{\varepsilon}\right):\langle\nu, \xi \otimes \xi\rangle-\chi \varphi \bar{\nu} \cdot \operatorname{div}(v \otimes v)_{\varepsilon} d x d t \\
+ & \iint \chi \nabla\left(\varphi v_{\varepsilon}\right):\left\langle\nu^{\infty}, \theta \otimes \theta\right\rangle \lambda_{t}(d x) d t \tag{1}\\
- & -\iint \chi \varphi \bar{\nu} \cdot \nabla p_{\varepsilon} d x d t
\end{align*}
$$

We next symmetrize all the terms in $\nabla(\varphi v)$ (which leaves the identity invariant because they appear in Hilbert-Schmidt products with symmetric matrices) and achieve

$$
\begin{align*}
& -2 \iint \chi^{\prime} \varphi \bar{\nu} \cdot v_{\varepsilon} d x d t \\
& =\iint \chi\left[\nabla\left(\varphi v_{\varepsilon}\right)+\nabla\left(\varphi v_{\varepsilon}\right)^{T}\right]:\langle\nu, \xi \otimes \xi\rangle-\chi \varphi \bar{\nu} \cdot \operatorname{div}(v \otimes v)_{\varepsilon} d x d t \\
& \quad+\iint \chi\left[\nabla\left(\varphi v_{\varepsilon}\right)+\nabla\left(\varphi v_{\varepsilon}\right)^{T}\right]:\left\langle\nu^{\infty}, \theta \otimes \theta\right\rangle \lambda_{t}(d x) d t \tag{2}\\
& \quad-\iint \chi \varphi \bar{\nu} \cdot \nabla p_{\varepsilon} d x d t
\end{align*}
$$

We now let $\varepsilon \downarrow 0$ to conclude

$$
\begin{align*}
& -2 \iint \chi^{\prime} \varphi \bar{\nu} \cdot v d x d t \\
& \quad=\iint \chi\left[\nabla(\varphi v)+\nabla(\varphi v)^{T}\right]:\langle\nu, \xi \otimes \xi\rangle-\chi \varphi \bar{\nu} \cdot \operatorname{div}(v \otimes v) d x d t \\
& \quad+\lim _{\varepsilon \downarrow 0} \iint \chi\left[\nabla\left(\varphi v_{\varepsilon}\right)+\nabla\left(\varphi v_{\varepsilon}\right)^{T}\right]:\left\langle\nu^{\infty}, \theta \otimes \theta\right\rangle \lambda_{t}(d x) d t \tag{3}\\
& \quad-\iint \chi \varphi \bar{\nu} \cdot \nabla p d x d t
\end{align*}
$$

We now follow the remaining computations of the paper, namely we let $\varphi=\varphi_{k}$ where $0 \leq \varphi_{k} \leq 1, \varphi_{k} \equiv 1$ on $B_{k}(0)$. We just require additionally that $\left\|\varphi_{k}\right\|_{C^{0}} \leq$ $C k^{-1}$ and that the support of φ_{k} is contained in $B_{2 k}$, which can be easily achieved by making the support of the cut-off sufficiently large. In place of equation (13) of
the paper we then achieve

$$
\begin{align*}
\int_{0}^{T} \chi^{\prime}(t) F(t) d t & =\int_{0}^{T} \chi^{\prime}(t) E(t) d t+\frac{1}{2} \int_{0}^{T} \chi^{\prime} \int_{\mathbb{R}^{n}}|v|^{2} d x d t \\
& +\frac{1}{2} \iint \chi\left(\nabla v+\nabla v^{T}\right):\langle\nu,(\xi-v) \otimes(\xi-v)\rangle d x d t \\
& +\lim _{k \uparrow \infty} \lim _{\varepsilon \downarrow 0} \frac{1}{2} \underbrace{\iint \chi\left(\nabla\left(\varphi_{k} v_{\varepsilon}+\nabla\left(\varphi_{k} v_{\varepsilon}\right)^{T}\right):\left\langle\nu^{\infty}, \theta \otimes \theta\right\rangle \lambda_{t}(d x) d t\right.}_{=:(I)_{k, \varepsilon}} \tag{4}
\end{align*}
$$

We next estimate

$$
(I)_{k, \varepsilon} \leq \int_{0}^{T} \chi(t)\left\|\nabla\left(\varphi_{k} v_{\varepsilon}(t)\right)+\nabla\left(\varphi_{k} v_{\varepsilon}(t)\right)^{T}\right\|_{\infty} F(t) d t
$$

Observe that

$$
\begin{aligned}
\left\|\nabla\left(\varphi_{k} v_{\varepsilon}\right)+\nabla\left(\varphi_{k} v_{\varepsilon}\right)^{T}\right\|_{L_{t}^{1} L_{x}^{\infty}} & \leq\left\|\nabla v_{\varepsilon}+\nabla v_{\varepsilon}(t)\right\|_{L_{t}^{1} L_{x}^{\infty}}+\frac{2}{k}\left\|v_{\varepsilon}(t)\right\|_{L_{t} L_{x}^{\infty}} \\
& \leq\left\|\nabla v(t)+\nabla v(t)^{T}\right\|_{L_{t}^{1} L_{x}^{\infty}}+\frac{2}{k}\|v(t)\|_{L_{t}^{1} L_{x}^{\infty}}
\end{aligned}
$$

Next, as already observed in the paper, the bounds on v imply that $\|v(t)\|_{\infty} \leq$ $C\left\|\nabla v(t)+\nabla v(t)^{T}\right\|_{\infty}+C\|v(t)\|_{L^{2}}$, from we conclude that $\|v(t)\|_{\infty}$ is in fact an L^{1} function. In particular we can estimate

$$
\lim _{k \uparrow \infty} \lim _{\varepsilon \downarrow 0} \frac{1}{2}(I)_{k, \varepsilon} \leq \int_{0}^{T} \chi(t)\left\|\nabla v(t)+\nabla v(t)^{T}\right\|_{\infty} F(t) d t
$$

We have thus justified inequality (14) of the paper, which then yields the desired conclusion.

