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Abstract. We answer positively to [BDL22, Question 2.4] by building new examples of solutions to
the forced 3d-Navier-Stokes equations with vanishing viscosity, which exhibit anomalous dissipation and
which enjoy uniform bounds in the space L3

t C
1/3−ε
x , for any fixed ε > 0. Our construction combines ideas

of [BDL22] and [CCS22].

1. Introduction

The forced Navier–Stokes equations on the 3-dimensional torus T3 ≃ R3/Z3 are given by

∂tvν + vν · ∇vν + ∇pν = ν∆vν + Fν (NS)
div vν = 0,

where vν : [0, T ] × T3 → R3 is the velocity field, pν : [0, T ] × T3 → R is the pressure, ν > 0 is the viscosity
parameter and Fν : [0, T ] × T3 → R3 is a (divergence-free) force that may depend on ν. When ν = 0 the
Navier–Stokes equations (NS) reduce to the forced Euler equations

∂tv0 + v0 · ∇v0 + ∇p0 = F0 (E)
div v0 = 0.

We consider both the Navier–Stokes equations (NS) and the Euler equations (E) with a prescribed initial
datum vin which is independent of the viscosity parameter ν, namely

vν(0, ·) = vin . (1.1)

Following [BDL22] we study smooth solutions of (NS) (namely uν and Fν are both C∞), which enjoy
uniform in ν bounds for vν and Fν in appropriate function spaces X and Y . The purpose is to understand
which spaces X and Y allow for uν to display anomalous dissipation, more precisely whether

lim sup
ν↓0

ν

ˆ T

0

ˆ
T3

|∇vν |2 dx dt > 0 . (1.2)

We require that the space Y rules out anomalous dissipation for solutions of the forced linear Stokes
equations under the assumption supν ∥Fν∥Y < ∞, namely (1.2) would not hold if we eliminate the nonlinear
advective term vν · ∇vν from (NS) and we have uniform bounds for the body forces in the space Y . As it
is noticed in [BDL22, Section 2] the assumption

sup
ν

∥Fν∥L1+σ([0,1];Cσ(T3)) < ∞ (1.3)

for any positive σ > 0 is in fact sufficient.
In [BDL22] the first and fourth authors give examples of smooth solutions vν to (NS) for which:

(i) (1.3) holds (in fact with the stronger bound supν ∥Fν∥L∞
t (C1−ε) < ∞ for any given positive ε),

(ii) supν ∥vν∥L∞ < ∞,
(iii) and (1.2) is satisfied.
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In [BDL22, Section 2] the authors ask whether this type of behavior is still possible if the uniform L∞

bound (ii) is replaced by a uniform bound in some space X which is close to be “Onsager critical”. The
Onsager criticality refers to the famous remark by Onsager [Ons49] that if ∥v∥L∞(C1/3+ε) < ∞ and u

solves (E) with F = 0, then such solution u is energy conservative. After a first partial result by Eyink in
[Eyi94], the latter was rigorously proved by Constantin, E, and Titi in [CET94]. It is straightforward to
check that, using the arguments in [CET94], (1.3) and a uniform bound in ∥vν∥L3(C1/3+ε) is in fact enough
to rule out (1.2).

Onsager in [Ons49] stated also that the regularity class L∞
t (C1/3

x ) should in fact be critical, in particular
he conjectured the existence of solutions of (E) with F = 0 belonging to slightly lower regularity classes
of L∞

t (C1/3
x ) which do not conserve the kinetic energy. After a decade of work in the area which started

with [DLS09,DLS13], the Onsager conjecture was proved by Isett in [Ise18] (cf. also [BDLSJV17]) using
“convex intgeration methods”.

While Onsager’s conjecture was motivated by the zero-th law of Kolmogorov’s fully developed turbulence,
which roughly speaking states that (1.2) should be a “typical” phenomenon, it seems at the moment very
hard to show that at least some of the dissipative solutions of the unforced Euler equations found so far in
the literature can actually be approximated by a sequence of regular solutions to the unforced Navier-Stokes.
For this reason in [BDL22] the authors suggested to consider the forced versions of both equations. The
main result of this paper is to show that indeed (1.2) can be achieved for family of solutions {vν}ν which
enjoy a uniform bound in a space which is just below the Onsager-critical L3

t (C1/3
x ), while the corresponding

forces Fν also enjoy a bound like (1.3) which rules out (1.2) for solutions of the linear Stokes equations.

Theorem A (Anomalous dissipation). Let T = 1. For any α < 1/3 there exist σ > 0, a divergence-free
initial datum vin ∈ C∞(T3;R3) with

´
T3 vin = 0, and a family of forces {Fν}ν>0 ⊂ C∞([0, 1] × T3;R3)

satisfying (1.3) such that:
• for each ν > 0 there is a unique solution to (NS) with vν(0, ·) = vin(·) which satisfies

sup
ν∈[0,1]

(
∥vν∥L3([0,1];Cα(T3)) + ∥vν∥L∞([0,1]×T3)

)
< ∞ , (1.4)

• (1.2) holds.
Furthermore, we have that Fν → F0 in L1+σ((0, 1); Cσ(T3)) and vν → v0 in L2((0, 1) × T3) as ν → 0, and
in particular (v0, p0, F0) is a solution of (E).

Remark 1.1. In our construction all the dissipation occurs at the time T = 1, namely (1.2) fails at any T < 1.
In a forthcoming paper [DRI] De Rosa and Isett point out that this type of “instantaneous loss of energy”
cannot occur at a time T ∈ (0, 1) for solutions belonging to Lp([0, 1]; C

1/3−(T3)) for any p > 3. In another
forthcoming paper [JS] the authors exhibit a 4-dimensional example for which the loss of energy is “diffused
in time”. More precisely they prove the existence of unique solutions {vν}ν>0 of the 4d forced Navier–Stokes
equations with forces {Fν}ν>0 such that

• supν(∥uν∥L∞ + ∥Fν∥L∞
t (Cα

x )) < ∞ for some α > 0;
• for a suitable sequence νk ↓ 0 the dissipation µk(t) := νk

´
T4 |∇vνk

(t, x)|2dx converges weakly∗ to a
measure µ which has non-trivial absolutely continuous part.

Remark 1.2. If we only required that the forces {Fν}ν>0 were uniformly bounded in L1((0, 1); L∞(T3)),
then anomalous dissipation would be already possible for solutions of the forced heat equation. Indeed, for
any ν ∈ (0, 1) such that ν−1/2 ∈ N we can consider ϑν : [0, 1] × T3 → R defined as

ϑν(t, x) = (e−4π2t − 1) sin(2πν−1/2x),
and observe that it solves {

∂tϑν − ν∆ϑν = −4π2 sin(2πν−1/2x) =: Fν

ϑν(0, ·) ≡ 0.
(1.5)
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It is straightforward to check that ν
´ 1

0
´
T3 |∇ϑν(t, x)|2dxdt ≥ 1/4 for every ν ∈ (0, 1) as above. The latter

example can be easily modified to produce an analogous one for the linear Stokes equations.
Note that the crucial point is in the oscillations introduced by the sequence Fν . In particular, strong

convergence in L1
t L2

x of Fν would actually suffice to show that the unique solutions of (1.5) satisfy
ν
´ 1

0
´
T3 |∇ϑν(t, x)|2dxdt → 0.

The following open question was also raised in [BDL22] and at present the methods of this work do not
seem strong enough to address it.

Open Question 1. Can Theorem A be shown for Leray solutions but replacing Fν with a ν-independent
force in the space L1((0, 2); L∞(T3))?

In view of Remark 1.2 even producing one such example with force in L1((0, 2); L2(T3)) seems interesting
and highly nontrivial.

1.1. Lack of selection principle and non-uniqueness. As in [CCS22], a byproduct of our techniques
is the lack of a selection principle under vanishing viscosity for bounded solutions of the three dimensional
forced Euler equations, if the force converges in the vanishing viscosity limit. We say that a weak solution
v ∈ L∞((0, T ); L2(T3)) of the forced Euler equations (E) is admissible ifˆ

T3
|v(x, t)|2dx ≤

ˆ
T3

|vin(x)|2dx + 2
ˆ
T3

F (x, t) · v(x, t)dx (1.6)

for a.e. t ∈ (0, T ).
We will show that the problem of uniqueness and vanishing viscosity selection in the class of admissible

solutions for (E) is related to having a solution in the space L1
t (W 1,∞

x ) (this is essentially the threshold
for classical “weak-strong” uniqueness results, see e.g. [Wie18, DRIS22]). In particular uniqueness and
selection both fail for solutions in L1((0, T ); Cα(T3)) for any α < 1.

Remark 1.3. The nonuniqueness of admissible solutions has been already shown in the class Cβ((0, T ) ×T3)
for β < 1/3 for the unforced Euler equations using the convex integration technique, cf. the aforementioned
papers [DLS09,DLS13, Ise18,BDLSJV17].

Theorem B (Nonuniqueness and lack of selection I). Let T = 2 and let α′ ∈ [0, 1) be given. Then there
are:

(a) σ > 0 and a family of smooth body forces Fν satisfying (1.3),
(b) a limit F0 such that Fν → F0 in L1+σ((0, 2); Cσ(T3)),
(c) a divergence-free initial datum vin ∈ C∞(T3) with

´
T2 vin = 0,

(d) and a family {vν}ν>0 of (unique) smooth solutions of (NS) and (1.1)
such that the following holds:

(i) supν∈[0,1] ∥vν∥L∞((0,2)×T3) ≤ 1;
(ii) {vν}ν>0 has at least two distinct limit points, as ν → 0, in the L∞ weak∗ topology, which are two

distinct bounded admissible solutions vcs
0 and vds

0 of (E) and (1.1);
(iii) furthermore, vcs

0 ∈ L1((0, 2); Cα′(T3)) ∩ L∞ satisfies the following energy balance

∥vcs
0 (t, ·)∥2

L2 = ∥vin∥2
L2 + 2

ˆ t

0

ˆ
T3

F0 · vcs
0 for a.e. t ∈ (0, 2), (1.7)

while vds
0 ∈ L∞ exhibits the strict dissipation

∥vds
0 (t, ·)∥2

L2 <
∥vin∥2

L2

2 + 2
ˆ t

0

ˆ
T3

F0 · vds
0 for any t ∈ [1, 2). (1.8)

If we give up the regularity of the conservative solution vcs
0 it is possible to show nonuniqueness and

lack of selection for much smoother forces.



4 ELIA BRUÈ, MARIA COLOMBO, GIANLUCA CRIPPA, CAMILLO DE LELLIS AND MASSIMO SORELLA

Theorem C (Nonuniqueness and lack of selection II). Let T = 2 and let α′ ∈ [0, 1) be given. Then there
are:

(a) a family {Fν}ν>0 of smooth forces and a limiting F0 such that Fν → F0 in Cα′((0, 2) × T3),
(b) a divergence-free initial datum vin ∈ C∞(T3) with

´
T3 vin = 0,

(c) and a family {vν}ν>0 of (unique) smooth solutions of (NS) and (1.1),
such that the following holds:

(i) supν∈[0,1] ∥vν∥L∞((0,2)×T3) ≤ 1;
(ii) {vν} has at least two distinct limit points, as ν → 0, in the L∞ weak∗ topology, which are two

distinct bounded admissible solutions vcs
0 and vds

0 of (E) and (1.1);
(iii) vcs

0 satisfies (1.7) while vds
0 satisfies (1.8).

Obviously the following are simple corollaries of the previous theorems.

Corollary 1.4 (Non uniqueness for the forced Euler equations I). Let α′ ∈ [0, 1) be given. There exist σ > 0,
a body force F0 ∈ L1+σ((0, 2); Cσ(T3)) and a divergence-free initial datum vin ∈ C∞(T3) such that the 3d
forced Euler equations (E)-(1.1) admit at least two distinct admissible bounded solutions. Furthermore, one
of which belongs L1((0, 2); Cα′(T3)).

Corollary 1.5 (Non uniqueness for the forced Euler equations II). Let α′ ∈ [0, 1) be given. There exist a
body force F0 ∈ Cα′((0, 2) × T3)) and a divergence-free initial datum vin ∈ C∞(T3) such that the 3d forced
Euler equations (E)-(1.1) admit at least two distinct admissible bounded solutions.

We remark that, with a totally different method, Vishik in [Vis18a,Vis18b] has produced nonunique-
ness examples for the incompressible Euler equations in R2 in vorticity formulation when the solutions
have vorticity in C([0, T ], L∞ ∩ Lp) for any fixed p < ∞, while the curl of the body force belongs to
L1+σ([0, T ], Lp) (cf. the lecture notes [ABC+21]). In particular, using classical Calderon-Zygmund esti-
mates, one can easily see that the velocities of these solutions belong to C([0, T ], W 1,p

loc ), while the body forces
belong to L1+σ([0, T ], W 1,p

loc ). In fact Vishik’s techniques have been successfully transposed to even show
nonuniqueness of Leray solutions of the forced Navier-Stokes equations at a fixed positive viscosity ν > 0,
see [ABC22].

While the nature of the nonuniqueness results in [Vis18a, Vis18b, ABC+21, ABC22] is quite different
from the constructions of this paper, they also strongly suggest that all the results of this section are likely
to hold for body forces {Fν} enjoying uniform bounds in L1([0, T ], W 1,p) and solutions of (NS) enjoying
uniform bounds in L∞([0, T ], W 1,p). They also suggest that the following question has likely a positive
answer.

Open Question 2. Can the lack of selection of Theorems B and C be shown with a ν-independent
force F ∈ L1((0, 2); L∞(T3)) replacing the family {Fν}ν>0 (and {vν}ν>0 a family of Leray solutions
of (NS)-(1.1))?

Acknowledgments. EB is supported by the Giorgio and Elena Petronio Fellowship at the Institute for
Advanced Study. MC and MS were supported by the SNSF Grant 182565 and by the Swiss State Secretariat
for Education, Research and lnnovation (SERI) under contract number M822.00034. GC has been partially
supported by the ERC Starting Grant 676675 FLIRT.

2. Strategy of the proof

We use the same strategy as in [BDL22,JY20a,JY20b] and consider a 2 + 1/2-dimensional Navier-Stokes
solution, for which the evolution decouples into a forced 2d-Navier-Stokes system and a scalar advection-
diffusion equation. The solution vν of the forced 2d-Navier-Stokes system is a suitable regularization of the
two-dimensional velocity field u : [0, 2] ×T2 → R2 constructed in [CCS22, Section 4], which is an alternating
shear flow, that is, for every t ∈ (0, 1) we have either u(t, x1, x2) = (W (t, x2), 0) or u(t, x1, x2) = (0, W (t, x1)).
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The third component of the 3d-Navier-Stokes solution solves an advection-diffusion equation and will exhibit
anomalous dissipation.

More precisely, we define the solution of the forced 3d-Navier-Stokes system and the initial condition as

vν =
(

uν

ϑ̃ν

)
, vin =

(
0

ϑin

)
,

where uν is a suitable regularization of u (to be defined in Section 4) and ϑ̃ν solves the advection-diffusion
equation with velocity field uν and initial datum ϑin, i.e.{

∂tϑ̃ν + uν · ∇ϑ̃ν = ν∆ϑ̃ν ,

ϑ̃ν(0, ·) = ϑin(·) .

Since uν is also an alternating shear flow (see Section 4, the nonlinear term uν · ∇uν vanishes identically
and therefore the velocity field vν solves the forced 3d-Navier-Stokes system with force

Fν =
(

∂tuν − ν∆uν

0

)
.

By suitably setting the parameters in the construction of u, we will verify that
vν ∈ L3((0, 1); Cα(T3)) , Fν ∈ L1+σ((0, 1); Cσ(T3)) uniformly in ν, (2.1)

for some σ > 0, where α < 1/3 is arbitrary. In order to show that vν exhibits anomalous dissipation, hence
concluding the proof of Theorem A, we employ [CCS22, Theorem A] to get

lim sup
ν↓0

2 ν

ˆ 1

0

ˆ
T3

|∇vν(s, x)|2 dx ds ≥ lim sup
ν↓0

2 ν

ˆ 1

0

ˆ
T3

|∇ϑ̃ν(s, x)|2 dx ds > 1/2 . (2.2)

To prove that the vanishing viscosity limit does not select a unique solution in the setting of Theorem B
and Theorem C we use the corresponding statement in [CCS22, Theorem B] which proves lack of selection
for solutions of the advection-diffusion equations with velocity field u. More precisely, we prove that the first
two components of vν (namely uν) strongly converge in L2((0, 2) × T3) to a unique limit whereas the last
component of vν (namely ϑ̃ν) for a suitable choice of a sequence of viscosity parameters {ν̃q}q∈N exhibits
anomalous dissipation (2.2) and for another suitable choice of a sequence of viscosity parameters {νq}q∈N
converges strongly in L2((0, 2)×T3) to a conservative solution (i.e. the limit satisfies the energy balance (1.7)
with the first two components of the velocity field).

3. Construction and main properties of the 2d velocity field

In this section we recall the main properties of the velocity field u : [0, 1] × T2 → R2 constructed
in [CCS22] and of the corresponding solution ϑν : [0, 1] × T2 → R of the advection-diffusion equation with
velocity field u. This velocity field will be used as a building block for the construction of solutions to the
forced 3d-Navier-Stokes equations in Theorems A, B and C.

3.1. Choice of the parameters. Let α ∈ (0, 1) and β ∈ [0, 1/3) such that α + 2β < 1. We consider
parameters ϵ, δ ∈ (0, 1/4) sufficiently small such that

1 − 2β(1 + 3ϵ(1 + δ))(1 + δ)
1 − δ

− α(1 + ϵδ)(1 + δ) − δ

8 > 0 , (3.1a)

3β(1 + 3ϵ(1 + δ))(1 + δ)
1 − δ

+ δ

8 < 1 , (3.1b)

ϵ ≤ δ3

50 . (3.1c)

Furthermore we introduce the parameter γ > 0 as

γ = 3β(1 + 3ϵ(1 + δ))(1 + δ)
1 − δ

+ δ

8 < 1 . (3.2)
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Given a0 ∈ (0, 1) such that

aϵδ2

0 + a
ϵδ/8
0 ≤ 1

20 , (3.3)

we define

aq+1 = a1+δ
q , λq = 1

2aq
. (3.4)

3.2. Construction of the velocity field. Let us begin by introducing some notation. For any f :
[0, 2] × T2 → R2 we denote by suppT (f) the temporal support of the function f , namely the projection on
the time interval [0, 2] of the support of f . The precise definition is

suppT (f) := {t ∈ [0, 2] : there exists x ∈ T2 such that f(t, x) ̸= 0} .

Given {Tq}q∈N∪{−1}, a decreasing sequence of non-negative numbers such that T−1 = 1 and Tq ↓ 0 as q → ∞,
we define the time intervals

Iq = [1 − Tq, 1 − Tq+1] , Jq = [1 + Tq+1, 1 + Tq] , for any q ∈ N ∪ {−1} .

The results below are taken from [CCS22].

Proposition 3.1. Let α, β, γ, ϵ, δ, and {aq}q∈N as above. Then there exist a decreasing sequence of times
{Tq}q∈N∪{−1} satisfying T−1 = 1 and Tq ↓ 0 as q → ∞, an initial datum ϑin ∈ C∞(T2) with

´
T2 ϑin = 0,

and a divergence-free velocity field u ∈ C∞
loc(((0, 2) \ {1}) × T2;R2), such that the following hold:

(1) (Reflection and shear flow) For any t ∈ (0, 2), u(t, ·) coincides either with an horizontal shear flow,
or with a vertical one. Moreover u(t, x) = −u(2 − t, x) for any t ∈ (1, 2) and x ∈ T2.

(2) (Time intervals) For any q ∈ N we have |Tq − Tq+1| ≤ 4aγ−γδ
q , and

suppT (u) ∩ (I−1 ∪ J−1) = ∅ , (3.5)
|suppT (u) ∩ (Iq ∪ Jq)| ≤ 6aγ

q . (3.6)

Moreover, u(t, ·) ≡ 0 for any t in a neighborhood of 1 − Tq and 1 + Tq.
(3) (Regularity of the velocity field) For any k ∈ N and ℓ ∈ N there exists a constant C > 0 such that

∥∂ℓ
t ∇ku∥L∞((Iq∪Jq)×T2) ≤ Ca1−γ

q a
−k(1+ϵδ)
q+1 a−ℓγ

q , (3.7)
for any q ∈ N.

(4) (Regularity of the solution) For any ν > 0 there exists a unique bounded solution ϑν : [0, 2]×T2 → R
of the advection-diffusion equation

∂tϑν + u · ∇ϑν = ν∆ϑν (3.8)

with initial datum ϑin. For ν = 0, the advection equation (i.e., (3.8) with ν = 0) with velocity field u
and initial datum ϑin has a unique bounded solution with the symmetry ϑ0(t, x) = ϑ0(2 − t, x) for
any t ∈ (1, 2) and x ∈ T2. The family of solutions {ϑν}ν∈[0,1] satisfies

sup
ν∈[0,1]

∥∇ϑν∥L∞(Iq×T2) ≤ ∥∇ϑin∥L∞a
−1−3ϵ(1+δ)
q+1 , for any q ∈ N.

(5) (Anomalous dissipation) For any q ∈ N we set

ν̃q = a
2− γ

1+δ +4ϵ
q . (3.9)

There exists m ∈ N such that the sequence {ϑν̃q
}q∈N satisfies

2 ν̃q

ˆ 1−Tq+tq

0

ˆ
T2

|∇ϑν̃q
|2 dx dt >

1
2 for any q ∈ mN, (3.10)

where t̄q ∈ (Tq+1, Tq) is a suitable intermediate time such that suppT (u) ∩ (1 − Tq, 1 − Tq + t̄q) = ∅.
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Proof. The velocity field with all the above properties is obtained from the one constructed in [CCS22,
Section 4] choosing p = p◦ = 1/3. Properties (1) and (2) are a direct consequence of the construction in
[CCS22, Section 4]. Property (3) is given in [CCS22, Remark 4.2]. Property (4) has been proved in [CCS22,
Section 8]. Property (5) has been proved in [CCS22, Section 7] and it is stated in [CCS22, Theorem A]. □

4. Solution of the forced 3d-Navier-Stokes and Euler equations

Let α, β, γ, ϵ, δ, and {aq}q∈N be as in Section 3.1. We employ the velocity field u and the initial
condition ϑin built in Proposition 3.1 to produce (vν , pν , Fν) a smooth solution to the forced 3d-Navier-Stokes
equations (NS)-(1.1).

For any q ∈ N, we introduce the closed set Kq = [0, 1 − Tq] ∪ [1 + Tq, 2] and define

uq(t, x) = u(t, x)1Kq
(t) . (4.1)

We observe that uq is smooth for any q ∈ N.
We consider the family of viscosity parameters ν̃q defined in (3.9). For any ν ∈ (0, a2

0) there exists q ∈ N
such that ν ∈ (ν̃q+1, ν̃q]. Let ϑ̃ν : [0, 2] × T3 → R be the unique smooth solution to the advection-diffusion
equation (3.8) with diffusion parameter ν, initial datum ϑin, and velocity field uq(t, x), i.e.

∂tϑ̃ν + uq · ∇ϑ̃ν = ν∆ϑ̃ν .

We define smooth functions Fν , vν : [0, 2] × T3 → R3 and pν : [0, 2] × T3 → R as

Fν(t, x) =
(

∂tuq(t, x) − ν∆uq(t, x)
0

)
vν(t, x) =

(
uq(t, x)
ϑ̃ν(t, x)

)
pν = 0 .

Finally, we set

vin =
(

0
ϑin

)
. (4.2)

Given Proposition 3.1, the following lemma is immediately checked.

Lemma 4.1. For any ν ∈ (0, a2
0), given Fν as above, (vν , pν) is the unique smooth solution to (NS) with

initial datum vin. Moreover, at any time t ∈ (0, 2) the velocity field vν is an alternating shear flow on the
first two components, i.e.

vν(t, x) =

w1
ν(t, x2)

0
∗

 or vν(t, x) =

 0
w2

ν(t, x1)
∗


for suitable one-dimensional functions wi

ν : [0, 2] × T → R, for i = 1, 2.

At least formally, we expect (vν , pν , Fν) to converge to a solution of the forced 3d-Euler equations (E)-
(1.1) when ν ↓ 0. We will prove in the next sections that this is the case under suitable assumptions and
that

F0(t, x) =
(

∂tu(t, x)
0

)
(4.3)

p0 = 0 . (4.4)

The following lemma immediately follows from the regularity of u in (0, 1) × T2 in Proposition 3.1.
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Lemma 4.2. Let u, ϑ0 be as in Proposition 3.1, and let F0 be as in (4.3). We have that
F0 ∈ C∞((0, 1) × T3) . (4.5)

Moreover,

v0(t, x) :=
(

u(t, x)
ϑ0(t, x)

)
, t ∈ (0, 1), x ∈ T3 , (4.6)

is the unique smooth solution to (E)-(1.1) in (0, 1) × T3 with initial datum (4.2).

Remark 4.3. We will see in the next sections that uniqueness for (E)-(1.1) may fail past time t = 1, where
the singularity of F0 appears.

5. Proof of Theorem A and Theorem B

Let α ∈ [0, 1/3) be fixed as in Theorem A and α′ ∈ [0, 1) be fixed as in Theorem B. Without loss of
generality and up to increasing α or α′, we can assume α′ = 3α. We fix β = α and choose the parameters ϵ, δ,
and {aq}q∈N as in Section 3.1. The parameter γ is then determined by (3.2). The viscosity parameter ν̃q

has been chosen in (3.9). Let (vν , pν , Fν) be the solution to (NS), with initial datum as in (4.2), built in
Section 4.

In order to prove Theorem A and Theorem B we need to show the following facts:
(i) There exists σ > 0 such that

sup
ν∈(0,a2

0)
∥vν∥L3([0,1];Cα(T3)) + ∥vν∥L∞([0,2]×T3) + ∥Fν∥L1+σ([0,2];Cσ(T3)) < ∞ . (5.1)

Moreover, Fν → F0 in L1+σ([0, 2]; Cσ(T3)).
(ii) Let v0 be as in Lemma 4.2. We have that vν → v0 in L2((0, 1) × T3) as ν → 0.
(iii) There exist vds

0 ∈ L∞([0, 2] × T3) solution to (E) with initial datum (4.2) and a sequence qk → ∞,
such that vν̃qk

→ vds
0 weakly in L2([0, 2] × T3). Moreover,

2 ν̃qk

ˆ 1

0

ˆ
T3

|∇vν̃qk
|2 dx dt > 1/2 for any k ∈ N. (5.2)

In particular vds
0 is an admissible dissipative solution of (E).

(iv) Set νq = a2−γ+δ+8ϵ
q . There exists vcs

0 ∈ L1((0, 2); Cα′(T3)), a conservative (admissible) solution
to (E) with initial datum (4.2), such that vνq

→ vcs
0 strongly in L2((0, 2) × T3) as q → ∞.

Proof of (i). From (3.7) and the maximum principle for the advection-diffusion equation (using that the
initial datum is bounded), we deduce that

sup
ν∈(0,a2

0)
∥vν∥L∞([0,2]×T3) < ∞ .

Let us now check that
sup

ν∈(0,a2
0)

∥vν∥L3([0,1];Cα(T3)) < ∞ . (5.3)

This is a consequence of
u ∈ L3((0, 1); Cα(T3)) and sup

ν∈(0,a2
0)

∥ϑν∥L3((0,1);Cα(T2)) < ∞ (5.4)

that we now prove. Indeed, ϑ̃ν ≡ ϑν in [0, 1 − Tq] × T3 since uq ≡ u in [0, 1 − Tq] × T3, while ϑ̃ν(t, ·) solves
the heat equation for t ∈ [1 − Tq, 1], and the Hölder norm is nonincreasing for solutions of the heat equation.

Let us begin by proving the first property in (5.4). By (3.5) and (3.7) and by interpolation we have

∥u∥3
L3((0,1);Cα) =

∞∑
q=0

ˆ
Iq

∥u(s, ·)∥3
Cα(T2)ds ≤

∞∑
q=0

ˆ
Iq

∥u(s, ·)∥3(1−α)
L∞(T2)∥u(s, ·)∥3α

W 1,∞(T2)ds



ANOMALOUS DISSIPATION FOR ONSAGER’S SOLUTIONS 9

≤ C

∞∑
q=0

aγ
q a−3(1−α)(γ−1)

q a−3α(γ−1)
q a

−3α(1+ϵδ)
q+1

and the sum is finite if and only if
γ

3 + 1 − γ − α(1 + ϵδ)(1 + δ) > 0 ,

which holds thanks to the choice (3.2) and the condition (3.1a).
Let us show the second property in (5.4). Fix ν ∈ (0, a2

0) and correspondingly let q ∈ N such that
ν ∈ (ν̃q+1, ν̃q]. Thanks to property (4) of Proposition 3.1 and using α = β, we get

∥ϑν∥3
L3((0,1);Cα) =

∞∑
q=0

ˆ
Iq

∥ϑν(s, ·)∥3
Cβ ds ≤ C

∞∑
q=0

aγ−γδ
q a

−3(β+3βϵ(1+δ))
q+1

= C

∞∑
q=0

aγ−γδ−3(β+3βϵ(1+δ))(1+δ)
q

and the sum is finite and independent of ν since as a consequence of (3.2) we have
−γ(1 − δ) + 3(β + 3βϵ(1 + δ))(1 + δ) < 0 .

We finally prove that
Fν ∈ L1+σ((0, 2); Cσ(T3)) , uniformly in ν ∈ (0, a2

0) , (5.5)
for some σ > 0, and Fν → F0 in L1+σ((0, 2); Cσ(T3)) as ν → 0. To this aim, it is enough to show that
there exists C > 0 such that for any ν ∈ (ν̃q+1, ν̃q] we have

∥∂tu∥L1+σ((0,2);Cσ(T3)) ≤ C and ∥ν∆u∥L1+σ((Kq ;Cσ(T3)) ≤ Caϵ
q . (5.6)

and that
∥∂tu∥L1+σ(Kc

q ;Cσ(T3)) → 0 as q → ∞. (5.7)
For the first property in (5.6), thanks to (3.7) we have

∥∂tu∥1+σ
L1+σ((0,2);Cσ(T3)) ≤

∞∑
j=0

ˆ
Ij∪Jj

(
∥∂tu(s, ·)∥(1−σ)

L∞(T3)∥∂tu(s, ·)∥σ
W 1,∞(T3)

)1+σ

ds

≤ C

∞∑
j=0

ˆ
Ij∪Jj

(
a1−2γ

j a
−σ(1+ϵδ)
j+1

)1+σ

ds

≤ 4C

∞∑
j=0

aγ
j a

(1+σ)(1−2γ−σ(1+δ)(1+ϵδ))
j < ∞

where we used that 1 − γ > 0, and we choose σ > 0 sufficiently small such that γ + (1 + σ)(1 − 2γ − σ(1 +
δ)(1 + ϵδ)) > 0. Property (5.7) follows by noticing that

∥∂tu∥1+σ
L1+σ(Kc

q ;Cσ(T3)) ≤
∞∑

j=q

ˆ
Ij∪Jj

(
∥∂tu(s, ·)∥(1−σ)

L∞(T3)∥∂tu(s, ·)∥σ
C1(T3)

)1+σ

ds → 0 as q → ∞.

For the second property in (5.6), thanks to (3.7), we have

∥ν∆u∥1+σ
L1+σ(Kq ;Cσ(T3)) ≤ ν̃q

q−1∑
j=0

ˆ
Ij∪Jj

(
∥∆u(s, ·)∥1−σ

L∞(T3)∥∆u(s, ·)∥σ
W 1,∞(T3)

)1+σ

ds

≤ Ca
2− γ

1+δ +4ϵ
q

q−1∑
j=0

ˆ
Ij∪Jj

(
a1−γ

j a
−2(1+ϵδ)(1−σ)
j+1 a

−3(1+ϵδ)σ
j+1

)1+σ

ds
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≤ Ca
2− γ

1+δ +2ϵ
q

q−1∑
j=0

aγ
j

(
a−1−2δ−γ

j a
−σ(1+ϵδ)(1+δ)
j

)1+σ

≤ Cqa2ϵ
q a2+2δ−γ

q−1 aγ
q−1a

−(1+σ)(1+2δ+γ+σ(1+ϵδ)(1+δ))
q−1 ≤ Caϵ

q,

where we used that qaϵ
q ≤ 1, aj+1 = a1+δ

j , 1 − γ > 0 and we choose σ > 0 sufficiently small to guarantee
that 2 + 2δ − (1 + σ)(1 + 2δ + γ + σ(1 + ϵδ)(1 + δ)) > 0.
Proof of (ii). Recalling (4.1), it suffices to prove that ϑ̃ν → ϑ0 in L2((0, 1)×T3), as ν → 0. Fix ν ∈ (0, a2

0),
and let q ∈ N such that ν ∈ (ν̃q+1, ν̃q]. We employ a standard vanishing viscosity estimate. For
any 0 ≤ t ≤ 1 − Tq, we have that uq = u, hence

∂t(ϑ̃ν − ϑ0) + u · ∇(ϑ̃ν − ϑ0) = ν∆ϑ̃ν for any 0 ≤ t ≤ 1 − Tq.

We multiply the above equation by ϑ̃ν − ϑ0 and integrate in space-time to get

∥ϑ̃ν(t, ·) − ϑ0(t, ·)∥2
L2(T3) ≤ ν

∣∣∣∣ˆ t

0

ˆ
T3

∇ϑ̃ν(s, x) · ∇ϑ0(s, x)dxds

∣∣∣∣
≤
(

ν

ˆ t

0

ˆ
T3

∣∣∇ϑ̃ν(s, x)
∣∣2 dxds

)1/2(
ν

ˆ t

0

ˆ
T3

|∇ϑ0(s, x)|2 dxds

)1/2

.

We observe that by the energy equality

ν

ˆ t

0

ˆ
T3

∣∣∇ϑ̃ν(s, x)
∣∣2 dxds ≤ 1 for any t ∈ [0, 1] . (5.8)

Let us define t(ν) := 1 − Tk(q) ≤ 1 − Tq, where k(q) is the largest natural number satisfying

a
2− γ

1+δ
q exp

(
a2−2γ

k(q) a−2−2ϵδ
k(q)+1

)
≤ 1 .

We claim that

ν

ˆ t(ν)

0

ˆ
T3

|∇ϑ0(s, x)|2 dxds → 0 and t(ν) → 1 as ν → 0 . (5.9)

This follows by Grönwall inequality and (3.7), since

ν

ˆ t(ν)

0
∥∇ϑ0(s, ·)∥2

L∞(T3)ds ≤ ν∥∇ϑin(·)∥2
L∞(T3) exp

(ˆ t(ν)

0
∥∇u(s, ·)∥2

L∞

)
ds

≤ Ca
2− γ

1+δ +4ϵ
q a−2−2ϵδ

0 exp
(

a2−2γ
k(q) a−2−2ϵδ

k(q)+1

)
≤ Ca4ϵ

q a−2−2ϵδ
0 → 0

as q → ∞. Finally, t(ν) → 1 as ν → 0 follows by the fact that k(q) → ∞ as q → ∞.
Building upon (5.8), (5.9), and the fact that ϑ̃ν and ϑ0 are uniformly bounded by 1, we deduce

∥ϑ̃ν − ϑ0∥2
L2((0,1)×T3) ≤ ν

ˆ t(ν)

0
∥∇ϑ0(s, ·)∥2

L∞(T3)ds + C(1 − t(ν)) → 0 (5.10)

as q → ∞.
Proof of (iii). We observe that the sequence of solutions ϑν̃q

of the advection-diffusion equation with
diffusion parameter ν̃q, velocity field u, and initial datum ϑin satisfies

2 ν̃q

ˆ 1−Tq+t̄q

0
∥∇ϑν̃q (s, ·)∥2

L2 ds >
1
2 for any q ∈ mN, (5.11)

as a direct consequence of (5) in Proposition 3.1. Therefore ϑ̃ν̃q , the third component of vν̃q , satisfies (5.11)
as well since ϑν̃q

= ϑ̃ν̃q
in [0, 1 − Tq + t̄q].
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The first two components of vν strongly converge to u in L∞((0, 2)×T3) since ∥u∥L∞(Kc
q ×T3) ≤ 2a1−γ

q → 0
as q → ∞. It is simple to see that {ϑ̃ν̃q }q∈N admits limit points in the weak topology of L2((0, 2) ×T2) and
that any such limit point solves the transport equation with velocity field u and initial datum ϑin. Let us
fix a limit point and denote it by ϑds. It follows by (5.11) that ϑds is a dissipative solution of the transport
equation. We define

vds
0 (t, x) :=

(
u(t, x)

ϑds(t, x)

)
, t ∈ (0, 2), x ∈ T3 , (5.12)

and check that (vds
0 , p0, F0) with p0 = 0 solves (E). Indeed, since the first two components of vν̃q

strongly
converge to u in L∞((0, 2)×T3) and the last component converges weakly to ϑds, the quadratic term vν̃q

·∇vν̃q

converges in the sense of distributions to vds
0 · ∇vds

0 . It is straightforward to check that all the other terms
in the distributional formulation of (E) pass to the limit as ν̃q → 0. Finally the admissibility condition (1.6)
of vds

0 follows from the fact that it is a weak* limit in L∞ of admissible solutions vν with force Fν and the
forces Fν are strongly converging to F0 in L1.

Proof of (iv). Let νq = a2−γ+δ+8ϵ
q ∈ (ν̃q+1, ν̃q]. As before we have

vνq (t, x) =
(

u(t, x)1Kq
(t)

ϑ̃νq (t, x)

)
.

Recalling the proof of (iii), we only need to prove that the last component of vνq strongly converges in
L2((0, 2) × T3) to a velocity field vcs

0 ∈ L1((0, 2); Cα′(T3)) that conserves in time the spatial L2 norm and
the admissibility condition (1.6) will directly follow from the conservative property.

We show that ϑ̃νq
→ ϑ0 in L2((0, 2) × T3), where ϑ0 is the symmetric solution to the transport equation

in Proposition 3.1(4). To this aim, it is enough to show that ∥ϑ̃νq (t, ·) − ϑq(t, ·)∥L2(T2) → 0 as q → ∞ for
any t ∈ (0, 2), where ϑq is the unique solution of the transport equation with velocity field uq and initial
datum ϑin. Indeed, this will entail

∥ϑ̃νq − ϑ0∥L2([0,2]×T2) ≤ ∥ϑ̃νq − ϑq∥L2([0,2]×T2) + ∥ϑq − ϑ0∥L2([0,2]×T2) → 0 as q → ∞ ,

where the second term ∥ϑq − ϑ0∥L2((0,2)×T3) → 0 as q → ∞, thanks to ϑq(t, ·) = ϑ0(t, ·) for any t ∈
[1 − Tq, 1 + Tq]c, and the L∞ bound ∥ϑ0∥L∞((0,2)×T2) + ∥ϑq∥L∞((0,2)×T2) ≤ 2.

For any t ∈ (0, 2), using a standard energy estimate with the regularity bound (4) and the symmetry
property (1) from Proposition 3.1, we estimate

∥ϑ̃νq
(t, ·) − ϑq(t, ·)∥2

L2(T2)

≤2νq

∣∣∣∣ˆ t

0

ˆ
T2

∇ϑ̃νq (s, x) · ∇ϑq(s, x)dxds

∣∣∣∣
≤2
(

νq

ˆ t

0

ˆ
T2

|∇ϑq(s, x)|2dxds

)1/2

=2

νq

∞∑
j=q

ˆ
Ij∪Jj

ˆ
T2

|∇ϑq(s, x)|2dxds + νq

q−1∑
j=0

ˆ
Ij∪Jj

ˆ
T2

|∇ϑq(s, x)|2dxds

1/2

≤C

a2−γ+δ+8ϵ
q aγ

q a−2(1+3ϵ(1+δ))
q + a2−γ+δ+8ϵ

q

q−1∑
j=0

aγ
j a

−2(1+3ϵ(1+δ))
j+1

1/2

≤ Ca
1− γ

2 + δ
2 +4ϵ

q a
γ/2
q−1a−1−3ϵ(1+δ)

q ≤ Ca
δ
2 − δγ

2
q → 0 ,

as q → ∞, where we used γ < 1, aq = a1+δ
q−1, and δ ∈ (0, 1/8).
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We finally show that vcs
0 ∈ L1((0, 2); Cα′(T3)). Using (3.5) and (3.7) we deduce

∥u∥L1((0,2);Cα′ ) = 2
∞∑

q=1

ˆ
Iq

∥u(s, ·)∥Cα′ (T2)ds ≤ 2
∞∑

q=1

ˆ
Iq

∥u(s, ·)∥1−α′

L∞(T2)∥u(s, ·)∥α′

W 1,∞(T2)ds

≤ C

∞∑
q=0

aγ
q a1−γ

q a
−α′(1+ϵδ)
q+1 = C

∞∑
q=0

a1−α′(1+ϵδ)(1+δ)
q < ∞

recalling that α′ = 3α and α = β, and the last inequality holds thanks to the condition (3.1a), which
implies 1 − 3α(1 + ϵδ)(1 + δ) > 0. For the last component of vcs

0 , namely ϑ0, we recall that

ϑ0(t, x) = ϑ0(2 − t, x) for any x ∈ T3 and t ∈ (1, 2] ,

and that it solves the transport equation (namely (3.8) with ν = 0) with velocity field u. Therefore, it is
sufficient to estimate ϑ0 in [0, 1] × T2. Using (4) in Proposition 3.1 we have

∥ϑ0∥L1((0,1);Cα′ ) =
∞∑

q=0

ˆ
Iq

∥ϑ0(s, ·)∥Cα′ ds ≤ 4∥∇ϑin∥L∞

∞∑
q=0

aγ−γδ
q a

−α′(1+3ϵ(1+δ))
q+1

= 4∥∇ϑin∥L∞

∞∑
q=0

aγ−γδ−α′(1+3α′ϵ(1+δ))(1+δ)
q < ∞

where the last estimate holds thanks to α = α′/3, (3.1a), (3.2), and ϵ < δ
16(1+δ)2 (a consequence of (3.1c)).

6. Proof of Theorem C

Let α′ ∈ [0, 1) be as in Theorem C. We fix α = α′ and β = 0 and we choose the parameters δ, ϵ, γ,
and {aq}q∈N as in Section 3.1. The parameters satisfy (3.1), (3.2), (3.3), and the further condition

1 − α′(1 + ϵδ)(1 + δ) − δ

4 > 0 (6.1)

which is compatible with all the other conditions. Let (vν , pν , Fν) be the solution to (NS), with initial
datum as in (4.2), built in Section 4.

In order to prove Theorem C we need to show the following facts:
(i) There holds

sup
ν∈(0,a2

0)
∥vν∥L∞([0,2]×T3) + ∥Fν∥Cα′ ((0,2)×T3) < ∞ .

Moreover, Fν → F0 in Cα′((0, 2) × T3).
(ii) There exist vds

0 ∈ L∞([0, 2] × T3) solution to (E) with initial datum (4.2) and a sequence qk → ∞,
such that vν̃qk

⇀ vds
0 weakly in L2([0, 2] × T3). Moreover,

2 ν̃qk

ˆ 1

0

ˆ
T3

|∇vν̃qk
|2 dx dt ≥ 1/2 for any qk. (6.2)

In particular vds
0 is an admissible dissipative solution of (E).

(iii) Set νq = a2+3ϵ
q . There exists vcs

0 ∈ L∞((0, 2) × T3), an (admissible) conservative solution to (E)
with initiald datum (4.2), such that vνq → vcs

0 in L2((0, 2) × T3).

Proof of (i). Since u is bounded, more precisely ∥u(t, ·)∥L∞((0,2)×T3) ≤ 2a1−γ
0 ≤ 1 and ∥ϑ̃ν∥L∞((0,2)×T3) ≤

∥ϑin∥L∞(T3) = 1 by the maximum principle, we have

∥vν∥L∞((0,2)×T3) ≤ 1 .
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Let us now show the uniform-in-viscosity regularity of Fν . If suffices to prove that there exists C > 0 such
that for any ν ∈ (ν̃q+1, ν̃q] we have

∥∂tu∥Cα′ ((0,2)×T3) ≤ C and ∥ν∆u∥Cα(Kq×T3) ≤ Caϵ
q . (6.3)

We estimate the first term. Thanks to (3.7) and the interpolation inequality, we have

∥∂tu∥Cα′ ((0,2)×T3) ≤ sup
j∈N

∥∂tu∥L∞(Ij ;Cα′ (T3)) + sup
j∈N

∥∂tu∥L∞(T3;W 1,∞(Ij))

≤ C

(
sup
j∈N

∥∂tu∥1−α′

L∞(Ij ;L∞(T3))∥∂tu∥α′

L∞(Ij ;W 1,∞(T3)) + sup
j∈N

a1−2γ
j

)
≤ C sup

j∈N
a1−2γ

j a
−α′(1+ϵδ)
j+1 + 1 < ∞

where we used (6.1) and γ = δ/8 < 1/2. This proves the first property in (6.3). In order to show the second
property in (6.3), we exploit (3.7) and tha fact that ν ∈ (ν̃q+1, ν̃q] to obtain

∥ν∆u∥Cα′ ((0,1−Tq)×T3)) ≤ ν̃q sup
j≤q−1

∥∆u∥Cα′ (Ij×T3)

≤ Ca
2− γ

1+δ +4ϵ
q sup

j≤q−1
(a1−γ

j a−2−2ϵδ
j+1 a

−α′(1+ϵδ)
j+1 + a1−γ

j a−2−2ϵδ
j+1 a−γ

j )

≤ Caϵ
qa

1−2γ−α′(1+ϵδ)(1+δ)
q−1 ≤ Caϵ

q ,

where we also used a2ϵ
q a−2ϵδ

q ≤ 1, (3.1a), and (6.1).
The convergence Fν → F0 in Cα′((0, 2) × T3) can be shown along the same lines, by observing

that ∥∂tu∥Cα′ (Kc
q ×T2) → 0 as q → ∞.

Proof of (ii). We argue exactly as in the proof of (iii) in Section 5. We first notice that

2 ν̃q

ˆ 1−Tq+t̄q

0
∥∇ϑ̃ν̃q (s, ·)∥2

L2 ds = 2 ν̃q

ˆ 1−Tq+t̄q

0
∥∇ϑν̃q (s, ·)∥2

L2 ds >
1
2 for any q ∈ mN,

as a direct consequence of (5) in Proposition 3.1. The first two components of vν strongly converge to u
in L∞((0, 2) × T3) while {ϑ̃ν̃q }q∈N admits a limit point ϑds in the weak topology of L2((0, 2) × T2) which
solves the transport equation with velocity field u and initial datum ϑin. Setting

vds
0 (t, x) :=

(
u(t, x)

ϑds(t, x)

)
, t ∈ (0, 2), x ∈ T3 , (6.4)

we can verify that (vds
0 , p0, F0) with p0 = 0 solves (E) and vds

0 is an admissible solution by arguing exactly
as in the proof of (iii) in Section 5.

Proof of (iii). The first two components of vνq strongly converge to u in L∞((0, 2) × T3). We claim
that ϑ̃νq

, the last component of vνq
, strongly converges in L2((0, 2) × T2) to ϑ0 (defined as in (4) of

Proposition 3.1). Setting

vcs
0 (t, x) :=

(
u(t, x)
ϑ0(t, x)

)
, t ∈ (0, 2), x ∈ T3 (6.5)

and observing that ∥ϑ0(t, ·)∥L2 = ∥ϑin∥L2 for any t ∈ (0, 2) \ {1}, Fνq
→ F0 in Cα′((0, 2) ×T3), and uq → u

in L2((0, 2) × T3), the claimed convergence suffices to conclude that vcs
0 is an (admissible) conservative

solution to (E).
We argue as in the proof of (iv) in Section 5. Denoting by ϑq : (0, 2) × T2 → R the unique solution to

the transport equation with velocity field uq and initial datum ϑin, we have

∥ϑ̃νq
− ϑ0∥L2([0,2]×T2) ≤ ∥ϑ̃νq

− ϑq∥L2([0,2]×T2) + ∥ϑq − ϑ0∥L2([0,2]×T2) . (6.6)
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We notice that ∥ϑq − ϑ0∥L2((0,2)×T3) → 0 as q → ∞, thanks to ϑq(t, x) = ϑ0(t, x) for any t ∈ Kq and any
x ∈ T3 (because of the symmetry of the velocity field u as in property (1) of Proposition 3.1) and to
the bound ∥ϑ0∥L∞((0,2)×T2) + ∥ϑq∥L∞((0,2)×T2) ≤ 2. For any t ∈ (0, 2), we estimate the first term in (6.6)
relying on the regularity bound (4) and the symmetry property (1) in Proposition 3.1. We have

∥ϑ̃νq
(t, ·) − ϑq(t, ·)∥2

L2(T2)

≤2νq

∣∣∣∣ˆ t

0

ˆ
T2

∇ϑ̃νq (s, x) · ∇ϑq(s, x)dxds

∣∣∣∣
≤2
(

νq

ˆ t

0

ˆ
T2

|∇ϑq(s, x)|2dxds

)1/2

=2

νq

∞∑
j=q

ˆ
Ij∪Jj

ˆ
T2

|∇ϑq(s, x)|2dxds + νq

q−1∑
j=0

ˆ
Ij∪Jj

ˆ
T2

|∇ϑq(s, x)|2dxds

1/2

≤C

a2+3ϵ
q aγ

q a−2(1+3ϵ(1+δ))
q + a2+3ϵ

q

q−1∑
j=0

aγ
j a

−2(1+3ϵ(1+δ))
j+1

1/2

≤C
(

a2+3ϵ
q aγ

q−1a−2(1+3ϵ(1+δ))
q

)1/2

≤Cqa
1+ 3ϵ

2
q aγ

q−1a−1−6ϵ
q ≤ Cqa

δ
32 − 9ϵ

2
q → 0

as q → ∞, where we used γ = δ/8, aq+1 = a1+δ
q , δ ∈ (0, 1/8), qa

δ/32
q ≤ 1,

∑
j≥q aγ

j ≤ 2aγ
q , and δ/8 > 9ϵ/2.

Therefore, vcs
0 satisfies (1.7).

7. Future extensions

In this section we focus on the problem of erasing the dependence of ν on the body force Fν , which will
be replaced just with F0.

We introduce the shorthand notation
τk = 1 − Tk Ik = [τk, τk+1] for any k ∈ N

Let u : [0, 2] × T2 → R2 be the the alternated shear flow constructed in [CCS22] which solves 2d Euler
equations with body force F0 = ∂tu with zero pressure and zero initial datum

∂tu + u · ∇u = F0 ,

noticing that u · ∇u = 0, thanks to the alternating shear flow property. Let fν : [0, 2] × T2 → R2 be the
solution to the heat equation with the body force F0 and zero initial datum, namely

∂tfν = ν∆fν + F0 .

We have the Duhamel formula

|fν(x, t) − u(x, t)| = |
ˆ t

0
(e−ν(t−s)∆F0)(x, s) − F0(x, s)ds| .

To estimate the previous quantity we introduce hν,k : Ik × T2 → R{
∂thν,k = ν∆hν,k + F0 , t ∈ Ik , x ∈ T2

hν,k(τk, ·) ≡ 0 .

and {
∂tgν,k = ν∆gν,k , t ∈ Ik , x ∈ T2

gν,k(τk, ·) = fν(τk, ·)
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for any k ∈ N.
Let us fix α ∈ [0, 1], using the linearity of the equation for fν for any k ∈ N and for any t ∈ Ik, we have

the following identity

∥fν(·, t) − u(·, t)∥Cα ≤ ∥gν,k(·, t)∥Cα + hν,k(·, t) −
ˆ t

τk

F0(·, t)dt∥Cα

= ∥gν,k∥L∞(Ik;Cα(T2)) +
ˆ τk+1

τk

∥e−ν(τk+1−s)∆F0)(·, s) − F0(·, s)∥Cα

≤ ∥gν,k∥L∞(Ik;Cα(T2)) +
ˆ τk+1

τk

(ν(τk+1 − s))1/2∥F0(·, s)∥C1+αds .

Therefore, we define the following quantities
Ak = ∥fν − u∥L∞(Ik;Cα(T2)

Bk = ∥gν,k∥L∞(Ik;Cα(T2))

Ck =
´ τk+1

τk
(ν(τk+1 − s))1/2∥F0(·, s)∥C1+αds

and the previous estimate reads as

Ak ≤ Bk + Ck . (7.1)

Observing that for any k ∈ N we have that u(·, τk) ≡ 0 and using that heat equation solutions have Cα

norm non-increasing, we deduce that

Bk ≤ ∥fν(τk, ·)∥Cα = ∥fν(τk, ·) − u(τk, ·)∥Cα ≤ Ak−1

therefore, thanks to (7.1), the sequence Ak satisfies

Ak ≤ Ak−1 + Ck ≤ Ak−2 + Ck−1 + Ck ≤ . . . ≤
k∑

j=0
Cj .

for any k ∈ N. Using (3.7) we finally conclude that

Aq−1 ≤
q−1∑
j=0

Cj = ν1/2
q−1∑
j=0

ˆ
Ij

(τj+1 − s)1/2∥F0(s, ·)∥C1+αds

≤ ν1/2
q−1∑
j=0

a
3γ/2
j a−γ

j a1−γ
j a

(−1−α)(1+ϵδ)
j+1 ≤ qν1/2a

1− γ
2 −(1+α)(1+ϵδ)(1+δ)

q−1

7.1. Leading order terms discussion. Redefining ν = νq = a
2− γ

1+δ +κ
q (this implies that we should

change the length interval where the anomalous dissipation is happening, namely in [τq, τq + a
γ

1+δ −κ
q ]),

where 0 ≤ κ < γ is a new variable. We observe that the leading part of the previous estimate is

a
1+ κ

2 − γ
2(1+δ)

q a
1− γ

2 −(1+α)
j .

Therefore we observe that, if we have κ > 0 (considering the leading terms)

∥fν − u∥L∞((0,τq);L∞) ∼ a
1+ κ

2 − γ
2(1+δ)

q a
− γ

2
q <<< a1−γ

q ∼ ∥u∥L∞(Ij×T2)

and

∥fν − u∥L∞((0,τq);C1) ∼ a
1+ κ

2 − γ
2(1+δ)

q a−2
q a

1− γ
2

q−1 ∼ a
κ
2
q a−γ−δ

q−1 <<< a−γ−δ
q−1 ∼ ∥u∥L∞((0,τq);C1)

and the last is small and going to zero when q → ∞ and in particular this quantity is much smaller than
∥u∥L1((0,1−Tq);C1(T2)) which explodes.
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