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ANOMALOUS DISSIPATION FOR THE FORCED 3D NAVIER-STOKES

EQUATIONS

ELIA BRUÈ, CAMILLO DE LELLIS

Abstract. In this paper, we consider the forced incompressible Navier-Stokes equations with
vanishing viscosity on the three-dimensional torus. We show that there are (classical) solutions
for which the dissipation rate of the kinetic energy is bounded away from zero, uniformly in the
viscosity parameter, while the body forces are uniformly bounded in some reasonable regularity
class.
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1. Introduction

In this paper we study the vanishing viscosity limit for the incompressible 3d Navier-Stokes
system namely we consider solutions uν : T3 × [0, 1] → R3 of the system







∂tu
ν + uν · ∇uν + ∇pν = ν∆uν + f ν , on T3 × [0, 1]

div uν = 0 ,

uν(·, 0) = uν
0 .

(NS)

In particular ν > 0 is the viscosity, uν is the velocity of the fluid, pν : T3 × [0, 1] → R is the
pressure, and f ν : T3 × [0, 1] → R3 is an external body force. We deal with classical solutions,
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2 ELIA BRUÈ, CAMILLO DE LELLIS

hence uν , pν and f ν will be assumed to be smooth throughout the paper and we also assume
that the initial data uν

0 satisfy a uniform L2 bound (in other words the total kinetic energy at
the initial time is bounded).

Since uν is divergence free, it is immediate to see that the kinetic energy decay is governed
by

d

dt

1

2
‖uν(·, t)‖2

L2 = −ν ‖∇uν(·, t)‖2
L2 +

ˆ

T3

f ν(x, t) · uν(x, t) dx . (1.1)

The first term appearing on the right-hand side is the total work of the force f ν , while the
second term is the energy dissipation rate due to the viscosity of the fluid.

A fundamental postulate of Kolmogorov’s 1941 theory of fully developed turbulence [K1, K2,
K3], called the zeroth law of turbulence, is that the anomalous dissipation of the kinetic energy
holds, namely the inequality

lim inf
ν→0

ν

ˆ T

0

‖∇uν(·, s)‖2
L2 ds > 0 (1.2)

is valid for finite times T , even when the force f ν excites only a finite number of Fourier
modes and the sequence of initial data uν

0 does not introduce itself microscopic scales. These
two assumptions can be described loosely as a uniform regularity of the forces f ν (uniform
in the parameter ν) and the absence of strong oscillations in the sequence uν

0 (for instance
precompactness of {uν

0}ν in the strong topology of L2(T3)).
Observe indeed that, if the sequence f ν becomes very irregular as ν ↓ 0, or if uν

0 converges
weakly but not strongly in L2, then even solutions of the linear Stokes equations (i.e. the
system obtained by dropping the nonlinear term in the first equation of (NS)) would exhibit
(1.2). Instead, Kolmogorov’s theory postulates that the creation of infinitely many scales and
the cascade of energy through them is due to the quadratic nonlinearity (uν · ∇)uν .

The zeroth law of turbulence is verified experimentally to an enormous degree [KIYIU, PKW,
S98], see also the recent review [V15], but to date, there are no known examples where it is
rigorously proved in the framework described above. In experiments and simulations [KIYIU,
PKW, S98, V15] the force term is assumed to be injecting energy at low frequencies, meaning
that f ν is concentrated in frequency on a certain ball {k ∈ Z3 : |k| ≤ λ}, uniformly in the
viscosity parameter ν.

Note however that, under the latter assumption, unless a certain amount of “irregularity”
is introduced at the level of the initial data uν

0, (1.2) can only hold if T is larger than the
first blow-up time of some suitable classical solution of the incompressible Euler equations.
Indeed, assume that f ν and uν

0 enjoy uniform bounds in some space of smooth functions and
hence converge, up to subsequences, to some sufficiently smooth u0, f . By classical results,
for some nontrivial finite interval [0, T0] there is a unique sufficiently smooth solution of the
incompressible Euler (for instance this holds for any space which embeds in C1,α for some α > 0,
cf. [MB]). It is then relatively simple to show that uν converges strongly in C([0, T ]; L2(T3)) to
u0 as long as on the interval [0, T ] the solution u0 stays Lipschitz. From this strong convergence,
it is then elementary to infer that (1.2) cannot hold (for the reader’s convenience we include
an elementary and short proof of these facts in the Appendix A).

The general principle is that the existence of a sufficiently regular solution of the incompress-
ible Euler ensures the strong convergence to it of any “reasonable” regularization of Euler and
in particular of Leray solutions of Navier-Stokes (see for instance the work [BDS] for a precise
formulation of this principle in rather general terms). In particular, proving (1.2) for sequences
uν

0 and f ν which satisfy good uniform bounds would settle, as a corollary, the blow-up problem
of incompressible Euler for force and initial data in a corresponding space of functions (on the
negative). To date, the remarkable recent work of Elgindi [E] is the only example of finite-time
blow-up (in R3) in a space of functions for which there is local well-posedness of classical solu-
tions of the incompressible Euler equations (C1,α for some positive exponent α). The problem
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of blow-up of classical solutions of Euler for more regular initial data and force (e.g. C2) is still
widely open.

Having established that (1.2) can only occur if a certain amount of regularity is lost in the
vanishing viscosity limit, in this note we focus our attention on sequences of solutions for which
the initial data uν

0 enjoys the best possible bounds, i.e. it is fixed and smooth, while some (but as
little as possible) irregularity is produced by the forcing terms f . Given that C1 is a borderline
regularity for local well-posedness of Euler, the above discussions suggest to investigate what
happens if we assume the bounds

sup
m

‖f νm‖C([0,1];Cα(T3)) < ∞ for all α ∈ (0, 1) , (1.3)

or the bounds

sup
m

‖f νm‖C([0,1];W 1,p(T3)) < ∞ for all p < ∞ , (1.4)

for some sequence νm ↓ 0.
The first main theorem of this note states that, under the assumption (1.3) it is possible to

rigorously show the occurrence of anomalous dissipation. The precise statement is given in the
following theorem.

Theorem 1.1. There exist νm ↓ 0, f νm ∈ C∞(T3 × [0, 1]) and uνm

0 ≡ u0 ∈ C∞(T3) such that
(1.3) holds and for which there is a unique smooth solution uνm ∈ C∞(T3 × [0, 1]) to (NS) with

lim inf
m→∞

νm

ˆ 1

0

ˆ

T3

|∇uνm(x, t)|2 dx dt > 0 . (1.5)

It is worth stressing that (1.3) (the weaker of the two) is strong enough to rule out the oc-
currence of anomalous dissipation when we drop the nonlinear term from (NS). More precisely,
if we consider the linear Stokes equations with a fixed smooth initial data u0 and a family of
forces f ν , we can use the Stokes semigroup P ν

t to represent the solution as

uν(x, t) = P ν
t u0(x) +

ˆ t

0

P ν
t−sf

ν(·, s)(x) ds (1.6)

and hence derive the uniform bound

ν

ˆ 1

0

‖∇uν(·, s)‖2
L2 ds ≤ ν‖∇u0‖2

L∞(T3×[0,1]) + ναC(α)‖f ν‖2
C([0,1];Cα(T3)) = O(να) . (1.7)

If we approach the threshold C1 on the Sobolev side, we cannot show (1.2) but we can prove
a rather strong form of enhanced dissipation.

Theorem 1.2. There exist νm ↓ 0, f νm ∈ C∞(T3 × [0, 1]), and uνm

0 ≡ u0 ∈ C∞(T3) such that
(1.4) holds and for which there is a unique smooth solution uνm ∈ C∞(T3 × [0, 1]) with the
property that

νm

ˆ 1

0

ˆ

T3

|∇uνm(x, t)|2 dx dt ≥ C exp{− log2/3(1/νm)} , (1.8)

for some constant C independent of m.

Note in particular that, in the latter case, the energy dissipation rate per unit mass decreases
slower than any power law, namely for any θ > 0 there is C = C(θ) such that

νm

ˆ 1

0

ˆ

T3

|∇uνm(x, t)|2 dx dt ≥ Cνθ
m . (1.9)

In the next section, we discuss related open problems and possible lines of research, while
in section 3 we outline the main ideas of the arguments which take advantage of results and
techniques from the previous works [ACM16, DEIJ19, JY21].
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2. Further comments

Theorems 1.1 and 1.2 raise a series of interesting questions.

Question 2.1. Is it possible to make the sequence f νm independent of the viscosity parameter
νm?

In the latter case we mean that f νm would be equal to a single f ∈
⋂

α<1 Cα: for finite positive
viscosity νm > 0 we could then expect to have Cα solutions, a degree of regularity which is
enough to consider the solutions “classical”, given the regularity theory for the incompressible
Navier-Stokes in three dimensions.

Question 2.2. Is it possible to make the sequence of forces f νm independent of time?

The above questions are interesting even in higher space dimensions. In fact we suspect that
a positive answer to Question 2.1 on T3 would give a positive answer to Question 2.2 on T4.

As it will be clear from the arguments in the next sections, the solutions uνm provided
by the proofs in Theorem 1.1 and Theorem 1.2 converge both to very regular solutions of
incompressible Euler with a smooth limiting force f on the open interval [0, 1). More precisely
in the case of Theorem 1.1 there exists u ∈ C∞(T3 × [0, 1)) ∩ L∞(T3 × [0, 1]), solution to the
forced Euler equations

{

∂tu + u · ∇u + ∇p = f ,
div u = 0

(2.1)

such that uνm → u weakly in L2(T2 × [0, 1]), as m → ∞. Up to subsequences we can always
assume the strong convergence f νm → f in C([0, 1]; Cα(T3)) for all α ∈ (0, 1). The anomalous
dissipation proved in Theorem 1.1, and the energy balance (1.1), imply that u violates the
energy equality at time t = 1:

‖u(·, 1)‖2
L2 < ‖u(·, 0)‖2

L2 +

ˆ 1

0

ˆ

T3

f(x, s) · u(x, s) dx ds . (2.2)

However, the energy equality is satisfied for all smaller times. In particular there is a “sudden
drop” in the kinetic energy at time t = 1. For this reason, it is natural to ask the following
question.

Question 2.3. Is it possible to produce a sequence uνm as in Theorem 1.1 which converges to
a weak solution u of the forced Euler equation (2.1) for which t 7→ ‖u(·, t)‖L2 is continuous on
[0, 1] and

‖u(·, 1)‖2
L2 < ‖u(·, 0)‖2

L2 +

ˆ 1

0

ˆ

T3

f(x, s) · u(x, s) dx ds . (2.3)

We remark in passing that for the example given in our proof of Theorem 1.2, the convergence
uνm → u is strong in Lp(T3) for any p < ∞, while u ∈ C∞(T3 × [0, 1)) ∩ L∞(T3 × [0, 1]), and
moreover it is possible to show that the limiting u does satisfy the energy balance

‖u(·, t)‖2
L2 = ‖u(·, 0)‖2

L2 +

ˆ t

0

ˆ

T3

f(x, s) · u(x, s) dx ds (2.4)

for any time t, including t = 1.

Coming back to the anomalous dissipation, it is tempting to introduce an analog of the
famous Onsager conjecture, cf. [O], proved by Isett in [I], for the forced Euler equations. First
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of all it is not difficult to see that the proof given in [CET] by Constantin, E, and Titi of the
positive part of the Onsager conjecture implies in fact that the conservation of energy

‖u(·, t)‖2
L2 = ‖u(·, 0)‖2

L2 +

ˆ 1

0

ˆ

T3

f(x, s) · u(x, s) dx ds (2.5)

holds for weak solutions of (2.1) under the assumptions that

(a) u ∈ Lp([0, 1]; Cα) for some α > 1
3

and some p ≥ 3;

(b) f ∈ Lp′

([0, 1]; C−α)1 for the dual exponent p′ = p−1
p

.

On the other hand, such a weak assumption as (b) is not compatible with the energy class
u ∈ L∞([0, 1]; L2(T3)). A natural replacement would be f ∈ L1([0, 1]; L2(T3)).

The Onsager conjecture has been proved using “convex integration” techniques (introduced
in the context in [DS1, DS2]) and it is clear that most of the dissipative solutions produced
by these methods cannot arise as vanishing viscosity limits of Leray solutions of Navier-Stokes
(the remarkable paper [BV] shows however that in a vast majority of cases they are vanishing
viscosity limits of weak (or Oseen) solutions of Navier-Stokes). Even showing that some solution
produced by convex integration is the limit of a classical vanishing viscosity approximation is
a widely open problem. Producing examples for the forced Euler and Navier-Stokes which
validate the Onsager threshold might be a more tractable problem.

Question 2.4. Let α be any positive number smaller than 1
3
. Is it possible to produce a

sequence νm ↓ 0 and two sequences uνm and f νm of smooth solutions of (NS) with the following
properties:

(1) supm ‖uνm‖L3([0,1];Cα) < ∞;
(2) supm ‖f νm‖L1+ε([0,1];Cε) < ∞, for some ε > 0;
(3) (1.2) holds.

Given the uniform estimates (1) and (2) it is a simple exercise to show that, up to sub-
sequences, uνm and f νm would then converge to a pair u and f solving (2.1) in the sense of
distributions. If α > 1

3
, an argument analogous to the one presented in [DE19] shows that uνm

does not display anomalous dissipation.
Under assumption (2) complemented with f νm → f in L1+ε([0, 1]; Cε(T3)) and supm ‖uνm

0 ‖Cε <
∞, it is possible to see that the corresponding solutions to the linear Stokes equations do not
exhibit anomalous dissipation. Indeed, Duhamel’s identity gives a uniform C([0, 1]; Cε(T3))
bound on the solutions uνm, an Aubin-Lions’ type lemma gives the strong convergence of the
latter in C([0, 1]; L2(T3)) to a solution u ∈ C([0, 1]; L2(T3)) satisfying the energy equality

‖u(·, t)‖2
L2 = ‖u0‖

2
L2 +

ˆ t

0

ˆ

f(x, s) · u(x, s) dx ds . (2.6)

3. Strategy of the proof

Our construction is achieved in the framework of (2 + 1
2
)-dimensional flows, where the evo-

lution reduces to a 2d-NS system coupled with a scalar advection-diffusion equation. This
framework has already been considered in the study of anomalous dissipation by Jeong and
Yoneda in [JY21, JY22].

1Here we denote by C−α(T3) the linear space of distributions T which is the dual of Cα(T3), i.e. those
distributions T which satisfy the linear inequality |T (φ)| ≤ C‖φ‖α for any test φ ∈ C∞(T3). Given the latter
estimate the action of such distribution can be extended in a unique way to any test φ ∈ Cα(T3). By a slight
abuse of notation we keep writing

´

T φ instead of T (φ).
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3.1. The (2 + 1
2
)-dimensional flow. We consider (uν, pν , f ν), solutions to (NS) admitting the

following structure:

uν(x, t) = (vν(x1, x2, t), θν(x1, x2, t))

pν(x, t) = (qν(x1, x2, t), 0)

f ν(x, t) = (gν(x1, x2, t), 0)

(3.1)

where (x1, x2, x3) = x ∈ T3, vν , gν : T2 ×[0, 1] → R2 are vector fields, and θν , qν : T2 ×[0, 1] → R

are scalars. It turns out that the structure (3.1) is conserved along the (NS) evolution, hence
we have the system:







∂tv
ν + vν · ∇vν + ∇qν = ν∆vν + gν

div vν = 0

∂tθ
ν + vν · ∇θν = ν∆θν .

((2 + 1
2
)-NS)

As for the initial conditions, they will be ν-independent and therefore we will set them to be

vν(x1, x2, 0) = v0(x1, x2) (3.2)

θν(x1, x2, 0) = θ0(x1, x2) , (3.3)

where θ0 and v0 are, respectively, a smooth scalar function and a smooth 2-dimensional vector
field on T2.

We will now state more precise versions of Theorem 1.1 and Theorem 1.2.

Theorem 3.1. There exist a sequence νm ↓ 0, gνm ∈ C∞(T2 × [0, 1]), and v0, θ0 ∈ C∞(T2)
satisfying the following properties:

(1) There exists g ∈
⋂

α∈(0,1) C([0, 1]; Cα(T2)), such that gνm → g in C([0, 1]; Cα(T2)) for
any α ∈ (0, 1).

(2) The smooth solution vνm, θm ∈ C∞(T2 × [0, 1]) to ((2 + 1
2
)-NS) displays anomalous

dissipation, i.e.

lim inf
m→∞

νm

ˆ 1

0

ˆ

T2

|∇θνm(x, t)|2 dx dt > 0 . (3.4)

We are able to show that the velocity fields vνm enjoys the same regularity of the body
force gνm. More precisely, vνm ∈ C([0, 1], Cα(T3)) for any α ∈ (0, 1), uniformly in m. In
particular, in the vanishing viscosity limit νm ↓ 0, the (2 + 1

2
)-structure is preserved and

u(x, t) = (v(x1, x2, t), θ(x1, x2, t)), where v ∈ C([0, 1], Cα(T3)), and θ ∈ L∞(T2 × [0, 1]).

Theorem 3.2. There exist a sequence νm ↓ 0, gνm ∈ C∞(T2 × [0, 1]), and v0, θ0 ∈ C∞(T2)
satisfying the following properties:

(1) There exists g ∈
⋂

p<∞ C([0, 1]; W 1,p(T2)), such that gνm → g in C([0, 1]; W 1,p(T2)) for
any p < ∞.

(2) The smooth solution vνm, θm ∈ C∞(T2 × [0, 1]) to ((2 + 1
2
)-NS) satisfies

νm

ˆ 1

0

ˆ

T2

|∇θνm(x, t)|2 dx dt ≥ C exp{− log3/2(1/νm)} for every m ∈ N , (3.5)

for some constant C independent of m.

Remark 3.3. In fact, for the specific sequence constructed in the proof of the above theorem we
are able to prove that vνm enjoys uniform in m bounds in the space C([0, 1], W 1,p(T3)) for any
p < ∞, uniformly in m. In particular, vνm falls in the framework of the DiPerna-Lions theory
[DPL89, A04], excluding the possibility of anomalous dissipation. More precisely, following
[BN19, Theorem 0.4] we get that the energy dissipation rate per unit mass must decrease at a
logarithmic rate, namely for every p ≥ 1 there is a constant C(p) such that

νm

ˆ 1

0

ˆ

T2

|∇θνm(x, t)|2 dx dt ≤ C(p) logp(1/νm) . (3.6)

The latter estimate shows that (3.5) cannot be meaningfully improved following our strategy.
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3.2. Quasi-self-similar evolution. The key idea of proof of Theorem 3.1 and Theorem 3.2
is to employ a quasi-self-similar evolution to produce, simultaneously, small scales in θνm and
a controlled body force gνm.

Let us consider (V (x, t), Θ(x, t)) solving the transport equation

∂tΘ + V · ∇Θ = 0 , in T2 × [0, 1] , (3.7)

and assume that Θ satisfies

Θ(x, 1) = Θ(5x, 0) , x ∈ T2 . (3.8)

Assume now for simplicity that we can find such a nontrivial pair V and Θ which are both
smooth. This is in fact a very strong assumption, to date we are not aware of any nontrivial
pair V and Θ with the latter property. If it were possible to show their existence we could
give a purely self-similar evolution which enjoys stronger regularity properties (where the self-
similarity must be understood as a “discrete self-similarity”, cf. (3.9) - (3.10)).

In the actual proof we thus resort to a quasi-self-similar evolution in the actual construction,
while for the sake of this discussion we stick to the purely self-similar setting. Starting from
(V, Θ) we could build a rapid self-similar evolution as

v(x, t) =
∑

n≥0

χ[tn,tn+1)(t)
1

5n

1

tn − tn+1

V

(

5nx,
t − tn

tn+1 − tn

)

(3.9)

θ(x, t) =
∑

n≥0

χ[tn,tn+1)(t)Θ

(

5nx,
t − tn

tn+1 − tn

)

(3.10)

where tn = 1−(n+1)−2 and χA denotes the indicator function of the set A. The key observation
is that (v, θ) solves the transport equation and

θ(x, t) ∼ Θ(5nx, 0) , when t ∈ (tn, tn+1) , (3.11)

hence, the transport evolution creates small scales very quickly: any Sobolev norm of θ blows
up at time t = 1. On the other hand, the velocity field v(x, t), when plugged into the non-linear
term of the Euler equations, produces a term of roughly the same size:

(v · ∇v)(x, t) =
∑

n≥0

χ[tn,tn+1)(t)
1

5n

1

(tn − tn+1)2
(V · ∇V )

(

5nx,
t − tn

tn+1 − tn

)

. (3.12)

This consideration suggests therefore the following construction. We first regularize v and θ by
stopping the evolution to time tm < 1, and mollifying the time variable. The resulting solution
to the transport equation (vm, θm) is smooth and close to (v, θ) when m is big enough. We then
define νm ≪ 1 such that vνm := vm, when plugged into the Euler equations, produces a force
term gm with roughly the same size of vm. We then solve the advection diffusion equation







∂tθ
νm + vνm · ∇θνm = νm∆θνn ,

θm(x, 0) = θ(x, 0) ∈ C∞(T2) ,
(3.13)

and use that θνm ∼ θm ∼ θ in certain regimes, hence the small scales of θ can be used to
produce anomalous dissipation.

4. Quasi-self-similar evolution for passive scalars

In this section we describe the construction of a family of smooth quasi-self-similar solutions
to the transport equation, first obtained in [ACM16]. They are a smooth replacement of purely
self-similar evolutions, which share several structural properties with the latter. In the sequel
we will employ the quasi self-similar family to build two different solutions to the forced 2d
Navier-Stokes equation. The first one produces anomalous dissipation as in Theorem 3.1, the
second one which is more regular, is used in the proof of Theorem 3.2.
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Let us begin by introducing some notation. For any λ ∈ N \ {0, 1} we denote by Q(λ) the
family of open squares in [0, 1]2 with sidelength λ−1 and vertices in λ−1Z2 ∩ [0, 1]2. For any
Q ∈ Q(λ) we let r(Q) ∈ Q be such that Q − r(Q) = (0, λ−1)2.

4.1. Building blocks. Let us fix an integer N > 1. We consider a family of velocity fields
V1(x, t), . . . , VN(x, t) and scalars Θ1(x, t), . . . , ΘN(x, t) satisfying the following properties for
any i = 1, . . . , N :

(i) Vi ∈ C∞([0, 1]2 × [0, 1];R2) is divergence free and tangent to the boundary ∂[0, 1]2;
(ii) Θi ∈ C∞([0, 1]2 × [0, 1]) is non-constant and satisfies the moment conditions

ˆ

(0,1)2

Θi(x, t) dx = 0

ˆ

(0,1)2

Θi(x, t)2 dx = 1

for every t ∈ [0, 1];
(iii) (Vi, Θi) is a solution to the transport equation, i.e.

∂tΘi + Vi · ∇Θi = 0 in [0, 1]2 × [0, 1] ; (4.1)

(iv) for every Q ∈ Q(5) there exists j = j(Q, i) ∈ {1, . . . , N} such that

Θi(x, 1) = Θj(5(x − r(Q)), 0) , for every x ∈ Q . (4.2)

In other words, Θi(·, 1) can be realized by patching together elements of the family {Θj(·, 0)}1≤j≤N

after rescaling them in space by a factor 5. This is a clear generalzation of the notion of self-
similar evolution where Θ(x, 1) = Θ(5x, 1) for x ∈ T2.

4.2. Quasi-self-similar family. Starting from a family of building blocks satisfying (i)-(iv),
and an extra compatibility condition, we build a smooth family of quasi-self-similar solutions
to the transport equation. The following result is taken from [ACM16, Section 8].

Theorem 4.1. There exist Vi and Θi satisfying (i)-(iv) with N = 6. They can be patched
together to form a quasi-self-similar evolution, i.e. a family {(ρn(x, t), vn(x, t)) : n ∈ N} of
smooth solutions to the transport equation in [0, 1]2 × [0, 1] with the following structure

ρn(x, t) =
∑

Q∈Q(2·5n)

χQ(x)Θi(Q)(2 · 5n(x − r(Q)), t) (4.3)

vn(x, t) =
∑

Q∈Q(2·5n)

χQ(x)
1

2 · 5n
Vi(Q)(2 · 5n(x − r(Q)), t) . (4.4)

Moreover, they satisfy the following properties for every n ∈ N:

(a) vn ∈ C∞([0, 1]2 × [0, 1];R2) is divergence free, and

‖∂k
t vn‖L∞([0,1];Cα(T2)) ≤ C(α, k) 5(α−1)n for every α ≥ 0 and k ∈ N ; (4.5)

(b) ρn ∈ C∞([0, 1]2 × [0, 1]),
ˆ

(0,1)2

ρn(x, t) dx = 0

ˆ

(0,1)2

|ρn(x, t)|2 dx = 1,

(for every t ∈ [0, 1] and every n) and there is a constant C such that

‖ρn(·, t)‖L∞ ≤ 10 (4.6)

‖∇ρn(·, t)‖L∞ ≤ C 5n (4.7)

‖ρn(·, t)‖Ḣ−1 ≤ C 5−n (4.8)

for every t ∈ [0, 1] and for every n;
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(c) there exists a compact set K ⊂ (0, 1)2 such that

supp vn(·, t) ∪ supp ρn(·, t) ⊂ K

for any n ∈ N and every t ∈ [0, 1];
(d) ρn(x, 1) = ρn+1(x, 0) for every n ∈ N

They main difficulty in the proof of Theorem 4.1 is to ensure that the quasi-self-similar family
(ρn, vn) is regular in space. Given any family of building blocks as in subsection 4.1, one can
always build a quasi-self-similar evolution through (4.3), by suitably choosing the indexes i(Q).
The problem is the presence of discontinuities along the boundaries of Q ∈ Q(2 · 5n). To get
around this, one has to carefully choose the family of building blocks and place them ensuring
that two adjacent blocks coincide in a neighborhood of the interface. This requires a delicate
combinatorial construction which is explained in detail in [ACM16, Section 8].

4.3. Quasi-self-similar velocity field and Euler equation. The following simple observa-
tion will be used several times throughout the paper. Let vn a quasi-self-similar velocity field
as in Theorem 4.1, if we plug it in the non-linear term of the Euler equations we get a body
force whose size is comparable to vn in any Hölder space Cα. More precisely, relying on (4.3)
and the fact that Vi(Q)(2 · 5n(x − r(Q)), t) is tangent to ∂Q we deduce

(vn · ∇vn)(x, t) =
∑

Q∈Q(2·5n)

χQ(x)
1

2 · 5n
Vi(Q) · ∇Vi(Q)(2 · 5n(x − r(Q)), t) . (4.9)

Hence, using that Vi(Q) and Vi(Q′) coincide in a neighborhood of ∂Q ∩ ∂Q′ when the latter is
not empty (cf. the discussion after Theorem 4.1), we deduce

‖∂k
t (vn · ∇vn)‖C([0,1];Cα(T2)) ≤ C(α, k)5−(1−α)n , (4.10)

for any α > 0 and k ∈ N.

5. Quasi-self-similar solutions to the forced 2d-NS: first construction

We employ the family of quasi-self-similar evolutions built in section 4 to produce a solution
to the 2d Navier-Stokes equations with a sufficiently regular body force. We will show in
section 6 that the associated advection-diffusion equation displays anomalous dissipation, hence
concluding the proof of Theorem 3.1.

Let us consider {(ρn, vn) : n ∈ N} as in Theorem 4.1. Thanks to (a) and (b) we can make
both ρn and vn 1-periodic, hence defined on the 2d-torus T2.

Given the sequence of times tn := 1 − (n + 1)−2 we define

ρ̃(x, t) :=
∑

n≥0

χ[tn,tn+1)(t)ρn

(

x,
t − tn

tn − tn+1

)

(5.1)

ṽ(x, t) :=
∑

n≥0

χ[tn,tn+1)(t)
1

tn+1 − tn
vn

(

x,
t − tn

tn − tn+1

)

. (5.2)

It turns out that (ρ̃, ṽ) solves the transport equation in T2 × [0, 1], and both ρ̃ and ṽ are smooth
in space for any t ∈ [0, 1). However, they are only piecewise smooth in time. To solve this
issue we apply the following standard trick. We consider a smooth non-decreasing function
η : [0, 1] → [0, 1] satisfying the following properties:

(1) η(tn) = tn for any n ∈ N;

(2) dk

dtk η(tn) = 0 for any n, k ∈ N, k ≥ 1;

(3) | dk

dtk η(t)|χ[tn,tn+1) ≤ C(k)n5k for any n, k ∈ N, and t ∈ [0, 1].

We then define

ρ(x, t) = ρ̃(η(t), x) (5.3)

v(x, t) = η′(t)ṽ(η(t), x) . (5.4)
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It is immediate to see that (ρ, v) solves the transport equation, and ∂k
t v ∈ L∞(T2 × [0, 1]) for

any k ∈ N.

5.1. 2d-NS with body force. Let us begin by smoothing out the vector field v(x, t) around
t = 1. For any integer m ≥ 2 we define

vm(x, t) :=
m∑

n=0

η′(t)χ[tn,tn+1)(η(t))
1

tn+1 − tn

vn

(

x,
η(t) − tn

tn+1 − tn

)

, (5.5)

and the viscosity parameter

νm := m105−2m . (5.6)

We then introduce the body force generated by vm in the Navier-Stokes equations:

gm := ∂tv
m + vm · ∇vm − νm∆vm . (5.7)

Lemma 5.1. Let νm and gm be as above. For any α ∈ (0, 1) there is a constant C(α) such that

‖gm‖C([0,1];Cα(T2)) ≤ C(α) . (5.8)

Moreover, gm → g in C([0, 1]; Cα(T2)) as m → ∞, where

g = ∂tv + v · ∇v (5.9)

is the body force generated by v in the Euler equations.

Proof. Let us begin by estimating ‖∂tv
m‖C([0,1];Cα(T2)). Thanks to (4.5), we have

‖∂tv(·, t)‖Cα(T2) ≤
∑

n≥0

|∂t(η
′(t)χ[tn,tn+1)(η(t)))|

1

tn+1 − tn

∥
∥
∥
∥
∥
vn

(

·,
η(t) − tn

tn − tn+1

)∥
∥
∥
∥
∥

Cα(T2)

(5.10)

+
∑

n≥0

|η′(t)|2χ[tn,tn+1)(η(t))
1

(tn+1 − tn)2

∥
∥
∥
∥
∥
∂tvn

(

·,
η(t) − tn

tn − tn+1

)∥
∥
∥
∥
∥

Cα(T2)

(5.11)

≤ C(α)
∑

n≥0

(∣
∣
∣∂t(η

′(t)χ[tn,tn+1)(η(t)))
∣
∣
∣+ |η′(t)|2χ[tn,tn+1)(η(t))

)

n65−n(1−α) . (5.12)

Notice that
∣
∣
∣∂t(η

′(t)χ[tn,tn+1)(η(t)))
∣
∣
∣ = |η′′(t)|χ[tn,tn+1)(η(t)) , (5.13)

since η′(tn) = 0 and η(tn) = tn. Moreover, from the property (3) of η we deduce

χ[tn,tn+1)(η(t))(|η′(t)|2 + |η′′(t)|) ≤ Cn10 , (5.14)

hence,

‖∂tv
m‖C([0,1];Cα(T2)) ≤ ‖∂tv‖C([0,1];Cα(T2)) ≤ C(α) . (5.15)

Moreover, it is clear from the previous estimate that

lim
m→∞

‖∂tv
m − ∂tv‖C([0,1];Cα(T2)) = 0 . (5.16)

Let us now study the nonlinear term:

vm · ∇vm(x, t) =
m∑

n=0

|η′(t)|2χ[tn,tn+1)(η(t))
1

(tn+1 − tn)2
vn · ∇vn

(

x,
η(t) − tn

tn − tn+1

)

. (5.17)

Relying on (4.10), it follows that

‖vn · ∇vn‖C([0,1];Cα(T2)) ≤ C(α)5−(1−α)n , (5.18)

in particular,

‖vm · ∇vm‖C([0,1];Cα(T2)) ≤ C(α) , (5.19)

and

lim
m→∞

‖vm · ∇vm − v · ∇v‖C([0,1];Cα(T2)) = 0 . (5.20)
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Let us now deal with νm∆vm. Relying on (4.5) we find

νm‖∆vm(·, t)‖Cα(T2) ≤ νm

m∑

n=0

|η′(t)|χ[tn,tn+1)(η(t))
1

tn+1 − tn

∥
∥
∥
∥
∥
∆vn

(

·,
η(t) − tn

tn − tn+1

)∥
∥
∥
∥
∥

Cα(T2)

≤ C(α)νm

m∑

n=0

|η′(t)|χ[tn,tn+1)(η(t))
1

tn+1 − tn

5n(α+1)

≤ C(α)νmm105m(α+1)

≤ C(α)m205−m(1−α) .

(5.21)

The latter, together with (5.15) and (5.19) implies (5.8). The second conclusion follows building
upon (5.16), (5.20) and (5.21).

�

6. Anomalous dissipation

Let us consider the velocity field vm(x, t) defined in (5.5). We consider the problem
{

∂tθ
m + vm · ∇θm = νm∆θm ,

θm(x, 0) = ρ(x, 0) ,
(6.1)

where ρ(x, t) is the scalar built in (5.3), and νm := m105−2m as in (5.6).

Proposition 6.1. Let θm and vm be as above. Then,

lim inf
m→0

νm

ˆ 1

0

ˆ

T2

|∇θm(x, t)|2 dx dt > 0 . (6.2)

The proof of Proposition 6.1 follows closely [DEIJ19, Proposition 1.3]. Let us begin by
proving that ρ(x, t) is concentrated in frequency around C5n ∼ ‖∇ρ(·, t)‖L2(T2) when t ∈
[tn, tn+1).

Lemma 6.2. There exists Λ ∈ (0, 1) such that for any n ∈ N and t ∈ [tn, tn+1) the following
properties hold:

(i)
‖∇ρ(·, t)‖L2(T2) ≤ Λ−15n ; (6.3)

(ii)
‖P≤Λ5nρ(·, t)‖L2(T2) ≤ 10−10 , (6.4)

where P≤Λ5n denotes the Fourier projector on frequencies smaller than Λ5n.

Proof. Fix t ∈ [tn, tn+1). Recalling that

ρ(x, t) :=
∑

n≥0

χ[tn,tn+1)(η(t))ρn

(

x,
η(t) − tn

tn − tn+1

)

, (6.5)

we use the inequalities (4.6)-(4.8) in Theorem 4.1 to get

‖∇ρ(·, t)‖L2(T2) ≤ ‖∇ρ(·, t)‖L∞(T2) ≤

∥
∥
∥
∥
∥
∇ρn

(

·,
η(t) − tn

tn − tn+1

)∥
∥
∥
∥
∥

L∞(T2)

≤ C5n . (6.6)

Let us prove the second conclusion. It suffices to show that

‖P≤Λ5nρn (·, s)‖L2(T2) ≤ 10−10 for every s ∈ [0, 1], n ∈ N , (6.7)

provided Λ is sufficiently small. We rely once more on the inequalities (4.6)-(4.8) in Theorem 4.1:

‖P≤Λ5nρn (·, s)‖L2(T2) ≤ Λ5n‖ρn (·, s) ‖Ḣ−1(T2) ≤ CΛ . (6.8)

Being C independent on n and s ∈ (0, 1), our conclusion follows. �

Next we state a well-known vanishing viscosity estimate for passive scalars. We refer the
reader to [DEIJ19, Proposition 1.3] for its proof.
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Lemma 6.3. Fix ν > 0, v ∈ L1([0, 1]; W 1,∞(T2;R2), and θ0 ∈ L2(T2). It holds

sup
t≤1

‖θν(·, t) − θ0(·, t)‖2
L2 ≤

(

2ν

ˆ 1

0

‖∇θν(·, s)‖2
L2 ds

)1/2 (

2ν

ˆ 1

0

‖∇θ0(·, s)‖2
L2 ds

)1/2

, (6.9)

where θν solves the advection-diffusion equation






∂tθ
ν + v · ∇θν = ν∆θν ,

θν(x, 0) = θ0(x) ,
(6.10)

and θ0 solves the transport equation






∂tθ
0 + v · ∇θ0 = 0 ,

θ0(x, 0) = θ0(x) .
(6.11)

6.1. Proof of Proposition 6.1. Let us consider the auxiliary problem
{

∂tρ
m + vm · ∇ρm = 0 ,

ρm(x, 0) = ρ(x, 0) .
(6.12)

It turns out that

ρm(x, t) =







ρ(x, t) if t ≤ tm+1

ρ(x, tm+1) if t ∈ (tm+1, 1] .
(6.13)

An application of Lemma 6.3, together with (6.13), gives

sup
s≤t

‖ρm(·, s) − θm(·, s)‖2
L2(T2)

≤

(

2νm

ˆ t

0

ˆ

T2

|∇θm(x, s)|2 dx ds

)1/2 (

2νm

ˆ t

0

ˆ

T2

|∇ρm(x, s)|2 dx ds

)1/2

≤

(

2νm

ˆ 1

0

ˆ

T2

|∇θm(x, s)|2 dx ds

)1/2 (

2νm

ˆ t

0

ˆ

T2

|∇ρ(x, s)|2 dx ds

)1/2

,

(6.14)

for any t ≤ tm+1.
Let us now assume by contradiction that

lim inf
m→0

νm

ˆ 1

0

ˆ

T2

|∇θm(x, s)|2 dx ds = 0 . (6.15)

Then, for any δ ≤ 10−10 we can find an arbitrarily big m such that

2νm

ˆ 1

0

ˆ

T2

|∇θm(x, s)|2 dx ds ≤ δ2 . (6.16)

We claim that there exists t∗ ∈ (0, tm+1) such that

2νm

ˆ t∗

0

ˆ

T2

|∇ρ(x, s)|2 dx ds = 1 . (6.17)

Indeed, using the interpolation inequality ‖u‖2
L2 ≤ ‖u‖Ḣ1‖u‖Ḣ−1, and the inequalities (4.6)-(4.8)

in Theorem 4.1, we have

2νm

ˆ tm+1

0

ˆ

T2

|∇ρ(x, s)|2 dx ds ≥ 2νm

ˆ tm+1

tm

ˆ

T2

∣
∣
∣
∣
∣
∇ρn

(

x,
s − tm

tm+1 − tm

)∣
∣
∣
∣
∣

2

dx ds

≥ 2νm

ˆ tm+1

tm

‖ρn(·, 0)‖4
L2(T2)

∥
∥
∥
∥
∥
ρn

(

·,
s − tm

tm+1 − tm

)∥
∥
∥
∥
∥

−2

Ḣ−1(T2)

≥ Cνm52m

= Cm10

> 1 , when m is big enough.

(6.18)
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From (6.14) we deduce

sup
s≤t∗

‖ρ(·, s) − θm(·, s)‖2
L2(T2) = sup

s≤t∗

‖ρm(·, s) − θm(·, s)‖2
L2(T2) ≤ δ , (6.19)

We show that the latter, together with (6.17), contradicts (6.16).
Let k ≤ m such that tk < t∗ and t ∈ [tk, min{tk+1, t∗}]. From Lemma 6.2(i) we deduce

‖P>Λ5kθm(·, t)‖2
L2(T2)

= ‖θm(·, t)‖2
L2(T2) − ‖P≤Λ5kθm(·, t)‖2

L2(T2)

≥ ‖θm(·, t)‖2
L2(T2) − 2‖P≤Λ5k(ρ(·, t) − θm(·, t))‖2

L2(T2) − 2‖P≤Λ5kρ(·, t)‖2
L2(T2)

≥ ‖θm(·, t)‖2
L2(T2) − 2‖ρ(·, t) − θm(·, t)‖2

L2(T2) − 2 · 10−20

≥ ‖θm(·, t)‖2
L2(T2) − 2δ2 − 2 · 10−20 .

(6.20)

Moreover,

‖θm(·, t)‖2
L2(T2) = ‖θm(·, 0)‖2

L2(T2) − 2νm

ˆ t

0

ˆ

T2

|∇θm(x, s)|2 dx ds ≥ 1 − δ2 . (6.21)

All in all

‖P>Λ5kθm(·, t)‖2
L2(T2) ≥

1

2
, for any t ∈ [tk, min{tk+1, t∗}] . (6.22)

Let k∗ ≤ m be the biggest integer such that tk∗ ≤ t∗. From (6.22) and Lemma 6.2 we conclude

2νm

ˆ t∗

0

ˆ

T2

|∇θm(x, t)|2 dx dt ≥ 2νm

∑

k≤k∗

ˆ min{tk+1,t∗}

tk

ˆ

T2

|∇P>Λ5kθm(x, t)|2 dx dt

≥ 2νm

∑

k≤k∗

ˆ min{tk+1,t∗}

tk

1

2
Λ252k dt

≥ νmΛ3
∑

k≤k∗

ˆ min{tk+1,t∗}

tk

ˆ

T2

|∇ρ(x, t)|2 dx dt

≥ νmΛ3

ˆ t∗

0

ˆ

T2

|∇ρ(x, t)|2 dx dt ,

(6.23)

hence, from (6.17) we deduce

2νm

ˆ t∗

0

ˆ

T2

|∇θm(x, t)|2 dx dt ≥ Λ3 , (6.24)

which contradicts (6.16) provided we choose δ small enough.

6.2. Proof of Theorem 3.1. Let us set νm := m105−2m. We define vνm := vm where the latter
is defined in (5.5). We let θνm = θm be the solution to (6.1). Setting gνm := gm, from (5.7) we
deduce that

∂tv
νm + vνm · ∇vνm − νm∆vνm + gνm . (6.25)

Moreover, Lemma 5.1 ensures that Theorem 3.1(i) is satisfied. In order to show Theorem 3.2(ii)
we appeal to Proposition 6.1.

7. Quasi-self-similar solutions to the forced 2d-NS: second construction

In this section we build the solution to the 2d-NS with force that will be used in the proof of
Theorem 3.2. The construction is done in two steps: we first build a smooth quasi-self-similar
evolution in [0, 1]2 × R+ with exponential gradient growth. The latter is used as a building
block to construct a second solution to the transport equation with support concentrated on a
family of cubes with controlled size.

This construction was introduced in [ACM18] to provide an example of instantaneous loss
of regularity for scalars advected by Sobolev regular velocity fields. We briefly go through the
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entire construction, rather than taking it as a black box, because for the sake of our application
we need to keep track of fine estimates on the scalar and the velocity field.

7.1. Quasi-self-similar evolution and exponential mixing. Let us consider {(ρn, vn) :
n ∈ N} as in Theorem 4.1. We define

ρ̃(x, t) :=
∑

n≥0

χ[n,n+1)(η(t))ρn (x, η(t) − n) (7.1)

ṽ(x, t) :=
∑

n≥0

η′(t)χ[n,n+1)(η(t))vn(x, η(t) − n) , (7.2)

where η : R+ → R+ is a non-decreasing function satisfying

(1) η(n) = n for any n ∈ N;

(2) dk

dtk η(n) = 0 for any n, k ∈ N, k ≥ 1;

(3) | dk

dtk η(t)| ≤ C(k) for any t ∈ [0, 1].

As noticed in section 5, the introduction of η is necessary to smooth out the vector field with
respect to the time variable.

By relying on Theorem 4.1 it is immediate to show the following proposition, we refer the
reader to [ACM16, Theorem 6.7] and [ACM18, Theorem 6] for more details.

Proposition 7.1. The couple (ρ̃, ṽ) is a smooth solution to the transport equation in [0, 1]2×R+.
Moreover, there exists a constant C > 0 such that the following hold:

(1) ṽ(·, t) is divergence-free, and

‖ṽ(·, t)‖L∞ + ‖∇ṽ(·, t)‖L∞ ≤ C for any t ≥ 0; (7.3)

(2) ρ̃(·, t) has mean zero for any t ≥ 0, and

‖ρ̃(·, t)‖Ḣ−1 ≤ C5−t , ‖ρ̃(·, t)‖L2 = 1 , ‖∇ρ̃(·, t)‖L∞ ≤ C5t ; (7.4)

(3) there exists a compact set K ⊂ (0, 1) such that supp ṽ(·, t), supp ρ̃(·, t) ⊂ K for any
t ≥ 0.

We can interpret the estimate

‖ρ̃(·, t)‖Ḣ−1 ≤ C5−t , for every t ≥ 0 , (7.5)

by saying that ρ̃ undergoes an exponential mixing. A simple interpolation argument shows that
(7.5) implies exponential gradient growth,

‖∇ρ̃(·, t)‖L2 ≥
‖ρ̃(·, t)‖2

L2

‖ρ̃(·, t)‖Ḣ−1

≥ C−15t , (7.6)

which saturates the bound in (2). This feature is related to the quasi-self-similar structure of
the solution and will be key in what follows.

7.2. Scaling and iteration. Starting from (ρ̃, ṽ), we build (ρ, v), a new solution to the trans-
port equation displaying anomalous loss of regularity. The velocity field v belongs to the
Sobolev space W 1,p for any p > 1, and, when plugged into the Euler equations, produces a
body force with the same spatial regularity . The latter property will be fundamental for the
application to Theorem 1.2. The construction is taken from [ACM18] (see also [BN18c, BN19]
for other applications of the same idea).

For any n ∈ N, we consider the following parameters

λn :=
1

100
e−n , τn :=

1

n3
, γn := e−n2

, (7.7)

and a family of disjoint cubes

Qn = (−3λn, 3λn)2 + xn ⊂ (1/4, 3/4)2 . (7.8)
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We define

ṽn(x, t) :=
λn

τn

ṽ
(

x − xn

λn

,
t

τn

)

, (7.9)

ρ̃n(x, t) :=γnρ̃
(

x − xn

λn
,

t

τn

)

. (7.10)

and

v(x, t) :=
∑

n

ṽn(x, t) , ρ(x, t) :=
∑

n

ρ̃n(x, t) , (7.11)

Notice that v and ρ are compactly supported in (0, 1)2 uniformly in time. With a slight abuse
of notation we denote by (ρ, v) their 1-periodic extension. So, from now on the domain of
definition of v, ṽn, ρ, and ρ̃n will be the periodic box T2 of length one.

Remark 7.2. For any n ∈ N, we have

supp ṽn(·, t), supp ρ̃(·, t) ⊂ Bλn
(xn) for any t ≥ 0 . (7.12)

In particular, if n 6= m then the distance between the support of ṽn and ρ̃n is at least λm + λn.
The same consideration holds for the densities ρ̃n.

Lemma 7.3. There exists C > 0 such that the following estimates hold uniformly in n ∈ N

and t ≥ 0:

‖ρ̃n(·, t)‖Ḣ−1(T2) ≤ Cγnλ2
n5− t

τn , (7.13)

‖ρ̃n(·, t)‖L2(T2) = γnλn , (7.14)

‖∇ρ̃n(·, t)‖Lp(T2) ≤ Cγnλ
2

p
−1

n 5
t

τn , for any p ∈ [1, ∞] , (7.15)

‖∇vn(·, t)‖Lp(T2) ≤ C
λ

2

p
n

τn
for any p ∈ [1, ∞] , (7.16)

Moreover, ρ(·, 0) ∈ C∞(T2).

Proof. First we recall that ρ̃n has spatial mean zero, as a consequence of Proposition 7.1. The
second observation is that

‖ρ̃n(·, t)‖Ḣ−1(T2) ≤ 10‖ρ̃n(·, t)‖Ḣ−1(R2) , (7.17)

since the support of ρ̃(·, t) is contained in Bλn
(xn) ⊂ (1/4, 3/4)2 as a consequence of Remark 7.2

and (7.8). We now use the standard scaling properties of the Ḣ−1(R2) norm to obtain

‖ρ̃n(·, t)‖Ḣ−1(R2) =

∥
∥
∥
∥γnρ̃

(
· − xn

λn
,

t

τn

)∥
∥
∥
∥

Ḣ−1(R2)

= γnλ2
n

∥
∥
∥
∥ρ̃
(

·,
t

τn

)∥
∥
∥
∥

Ḣ−1(R2)

. (7.18)

The estimate (7.13) follows from Proposition 7.1(2).
The check (7.14), we use standard scaling properties of the L2 norm:

‖ρ̃n(·, t)‖L2(T2) =

∥
∥
∥
∥γnρ̃

(
· − xn

λn
,

t

τn

)∥
∥
∥
∥

L2(R2)

= γnλn‖ρ̃(·, 0)‖L2 = γnλn . (7.19)

To prove (7.15), we use the identity

Dkρ̃(x, t) = γnλ−k
n Dkρ̃

(
x − xn

λn
,

t

τn

)

(7.20)

with k = 1, the fact that the right hand side is supported in Bλn
(xn), and Proposition 7.1(2).

Let us pass to the proof of (7.16). Thanks to the identity

∇ṽn(x, t) =
1

τn

∇ṽ
(

x − xn

λn

,
t

τn

)

, (7.21)
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and Proposition 7.1(1) we get

‖ṽn(·, t)‖Lp(T2) =
1

τn

∥
∥
∥
∥∇ṽ

(
x − xn

λn
,

t

τn

)∥
∥
∥
∥

Lp(R2)

≤ C
λ

2

p
n

τn
. (7.22)

To estimate ‖ρ(·, 0)‖Ck , we employ (7.20), the fact that ρ̃ is smooth, and (7.7):

‖ρ(·, 0)‖Ck ≤
∑

n

‖ρ̃n(·, 0)‖Ck ≤ C
∑

n

γnλ−k
n < ∞ . (7.23)

This completes the proof �

7.3. 2d-NS with body force. Let (ρ, v) be as in the previous section. We smooth it out as
follows: For every m ≥ 1, define

vm(x, t) :=
m∑

n=0

ṽn(x, t) =
m∑

n=0

λn

τn

ṽ
(

x − xn

λn

,
t

τn

)

. (7.24)

ρm(x, t) :=
m∑

n=0

ρ̃n(x, t) =
m∑

n=0

γnρ̃
(

x − xn

λn
,

t

τn

)

. (7.25)

Notice that (ρm, vm) is a smooth solution to the incompressible transport equation in T2 × [0, 1].
We then introduce the viscosity parameter

νm := λ2
mτm5− 2

τm , (7.26)

and define the body force

gm := ∂tv
m + vm · ∇vm − νm∆vm . (7.27)

Lemma 7.4. For any p < ∞ there is a constant C(p) such that

‖gm‖C([0,1];W 1,p(T3)) ≤ C(p) . (7.28)

Moreover, gm → g in C([0, 1]; W 1,p(T3)) as m → ∞, where

g := ∂tv + v · ∇v (7.29)

is the body force generated by v in the Euler equations.

Proof. Notice that

gm(x, t) =
m∑

n=0

λn

τ 2
n

(∂tṽ + ṽ · ∇ṽ)
(

x − xn

λn
,

t

τn

)

+
νm

λnτn
∆ṽ

(
x − xn

λn
,

t

τn

)

(7.30)

Thanks to (7.1), we have the identities

(ṽ · ∇ṽ)
(

x − xn

λn

,
t

τn

)

=
∑

k≥0

|η′
(

t

τn

)

|2χ[k,k+1)

(

η
(

t

τn

))

(vk · ∇vk)
(

x − xn

λn

, η
(

t

τn

)

− k
)

.

(∂tṽ)
(

x − xn

λn

,
t

τn

)

=
∑

k≥0

∂s

(

η′ (s) χ[k,k+1) (η (s))
)

|s= t
τn

vk

(
x − xn

λn

, η
(

t

τn

)

− k
)

+
∑

k≥0

η′
(

t

τn

)

χ[k,k+1)

(

η
(

t

τn

))

η′
(

t

τn

)

(∂tvk)
(

x − xn

λn

, η
(

t

τn

)

− k
)

.

We use (4.10), and the fact that (vk · ∇vk)
(

x−xn

λn
, s
)

is supported in Bλn
(xn) for every s ≥ 0, to

get
∥
∥
∥
∥(ṽ · ∇ṽ)

(
· − xn

λn
,

t

τn

)∥
∥
∥
∥

p

W 1,p

≤ C(p)
∑

k≥0

χ[k,k+1)(η(t/τn))λ−p
n λ2

n = C(p)λ2−p
n , (7.31)

while Theorem 4.1(a) gives
∥
∥
∥
∥(∂tṽ)

(
· − xn

λn
,

t

τn

)∥
∥
∥
∥

p

W 1,p

≤ C(p)
∑

k≥0

χ[k,k+1)(η(t/τn))λ−p
n λ2

n = C(p)λ2−p
n . (7.32)
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We employ (7.1) once more to write

∆ṽ
(

x − xn

λn
,

t

τn

)

=
∑

k≥0

η′(t/τn)χ[k,k+1)(η(t/τn))(∆vk)
(

x − xn

λn
, η(t/τn) − k

)

, (7.33)

hence, Theorem 4.1(a) gives
∥
∥
∥
∥∆ṽ

(
· − xn

λn
,

t

τn

)∥
∥
∥
∥

p

W 1,p

≤ C(p)
∑

k≥0

χ[k,k+1)(η(t/τn))52kpλ2−p
n ≤ C(p)5

2t
τn

pλ2−p
n . (7.34)

Hence, collecting (7.32), (7.33), (7.34), and using (7.26), (7.7) we get

‖gm(·, t)‖p
W 1,p ≤ C(p)

m∑

n=0

(

λ2
n

τ 2p
n

+ λ2
n

(

νm

λ2
nτn

52 t
τn

)p)

≤ C(p)
m∑

n=0

λ2
n

τ 2p
n

+ C(p)
m∑

n=0

λ2
n ≤ C(p)

for any t ∈ [0, 1].
The convergence gm → g in C([0, 1]; W 1,p(T2)) follows from (7.7) and

‖g(·, t) − gm(·, t)‖W 1,p ≤ C(p)
∑

n>m

λ2
n

τ 2p
n

+ λ2
n , for any t ∈ [0, 1] . (7.35)

This completes the proof. �

Remark 7.5. It turns out that the velocity field vm enjoys the same regularity of gm. It is indeed
immediate to see from (7.16) that vm ∈ C([0, 1]; W 1,p), uniformly in m.

8. Enhanced dissipation

Let (ρm, vm), gm, and νm as in subsection 7.3. We define θm by solving
{

∂tθ
m + vm · ∇θm = νm∆θm ,

θm(x, 0) = ρ(x, 0) ,
(8.1)

where ρ(·, t) was defined in (7.11).

Proposition 8.1. There exists C > 0 such that

νm

ˆ 1

0

ˆ

T2

|∇θm(x, t)|2 dx dt ≥ Cγ4
mλ4

mτ 2
m , (8.2)

for any m ≥ 3.

Let us begin by proving that ρm(·, t) has a non-trivial amount of frequencies bigger than

γm5
t

τm , while its Lipschitz norm does not exceed 5
t

τm . Once again, this is related to the quasi-
self-similar structure of the solution.

Lemma 8.2. There exists κ > 0 such that the following hold for every m ≥ 3 and t ∈ [0, 1].

(1) Set Λ := κγm5
t

τm , we have

‖P>Λρm(·, t)‖L2(T2) ≥
1

2
γmλm , (8.3)

where P>Λ is the Fourier projectors on frequencies bigger than Λ;

(2) ‖∇ρm(·, t)‖L∞(T2) ≤ C5
t

τm .

Proof. Let us prove (1). We estimate

‖P≤Λρm(·, t)‖L2(T2) ≤ ‖P≤Λ

m−1∑

n=0

ρ̃n(·, t)‖L2(T2) + ‖P≤Λρ̃m(·, t)‖L2(T2) (8.4)

≤ ‖
m−1∑

n=0

ρ̃n(·, t)‖L2(T2) + ‖P≤Λρ̃m(·, t)‖L2(T2) . (8.5)
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Thanks to (7.14), we get

‖ρm(·, t)‖2
L2(T2) =

m∑

n=0

γ2
nλ2

n = ‖
m−1∑

n=0

ρ̃n(·, t)‖2
L2(T2) + γ2

mλ2
m , (8.6)

while (7.13) gives

‖P≤Λρ̃m(·, t)‖L2(T2) ≤ Λ‖ρ̃m(·, t)‖Ḣ−1(T2) ≤ CΛγmλ2
m5− t

τm ≤
1

10
γ2

mλ2
m , (8.7)

up to choosing κ small enough. Collecting all the estimates above we deduce

‖P≤Λρm(·, t)‖L2(T2) ≤
√

‖ρm(·, t)‖2
L2(T2) − γ2

mλ2
m +

1

10
γ2

mλ2
m . (8.8)

By recalling that ‖ρm(·, t)‖2
L2(T2) =

∑m
n=0 γ2

nλ2
n ≤ 2, and (7.7), we get

‖P≤Λρm(·, t)‖2
L2(T2)

≤ ‖ρm(·, t)‖2
L2(T2) − γ2

mλ2
m +

1

100
γ4

mλ4
m +

1

5
γ2

mλ2
m

√

‖ρm(·, t)‖2
L2(T2) − γ2

mλ2
m

≤ ‖ρm(·, t)‖2
L2(T2) −

1

2
γ2

mλ2
m .

Let us now prove (2). We employ (7.15) and (7.7) to get

‖∇ρm(·, t)‖L∞(T2) ≤
m∑

n=0

‖∇ρ̃n(·, t)‖L∞(T2) ≤ C
m∑

n=0

γnλ−1
n 5

t
τn ≤ C5

t
τm . �

8.1. Proof of Proposition 8.1. Recall that
{

∂tρ
m + vm · ∇ρm = 0 ,

ρm(x, 0) = ρ(x, 0) ,
(8.9)

hence, from Lemma 6.3 we deduce

sup
t∈[0,1]

‖θm(·, t)−ρm(·, t)‖2
L2(T2) (8.10)

≤

(

2νm

ˆ 1

0

‖∇ρm(·, s)‖2
L2(T2) ds

)1/2 (

2νm

ˆ 1

0

‖∇θm(·, s)‖2
L2(T2) ds

)1/2

(8.11)

≤ Cτ 1/2
m λm

(

2νm

ˆ 1

0

‖∇θm(·, s)‖2
L2(T2) ds

)1/2

, (8.12)

where in the second inequality we used (7.26) and Lemma 8.2.

If we let Λ(t) := κγm5
t

τm be as in Lemma 8.2, we have

‖θm(·, t) − ρm(·, t)‖L2(T2) ≥ ‖P>Λ(t)(θ
m(·, t) − ρm(·, t))‖L2(T2)

≥ ‖P>Λ(t)ρ
m(·, t)‖L2(T2) − ‖P>Λ(t)θ

m(·, t)‖L2(T2)

≥
γmλm

2
−

1

Λ(t)
‖∇θm(·, t)‖L2(T2) .

Hence, for any t ∈ [0, 1] we conclude

γ2
mλ2

mΛ(t)2

4
≤ 2‖∇θm(·, t)‖2

L2(T2) + Cτ 1/2
m λmΛ(t)2

(

2νm

ˆ 1

0

‖∇θm(·, s)‖2
L2(T2) ds

)1/2

. (8.13)

We integrate (8.13) with respect to t ∈ (0, 1), and use the identities

νm = λ2
mτm5− 2

τm ,

ˆ 1

0

Λ(t)2 dt = Cγ2
mτm(5

2

τm − 1) , (8.14)
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to get

Cγ4
mλ4

mτ 2
m ≤ 2νm

ˆ 1

0

‖∇θm(·, s)‖2
L2(T2) ds + γ2

mλ4
mτ 5/2

m

(

2νm

ˆ 1

0

‖∇θm(·, s)‖2
L2(T2) ds

)1/2

,

from which the desired conclusion follows easily.

8.2. Proof of Theorem 3.2. Let us set νm := λ2
mτm5− 2

τm . We define vνm := vm and gνm := gm

as in subsection 7.3. We let θνm = θm be the solution to (8.1). We deduce that

∂tv
νm + vνm · ∇vνm − νm∆vνm + gνm . (8.15)

Moreover, Lemma 7.4 ensures that Theorem 3.2(i) is satisfied. In order to show Theorem 3.1
we employ Proposition 8.1 and (7.7), obtaining

νm

ˆ 1

0

ˆ

T2

|∇θm(x, t)|2 dx dt ≥ Ce−8m2

, νm ≤ e−2m3

, (8.16)

which clearly implies Theorem 3.2(ii).

Appendix A. Converge of Navier-Stokes to classical solutions of Euler

In this section, we show simple computation that allows to compare classical (Lipschitz
solutions) of forced Euler to classical solutions of Navier-Stokes. The computation can be
generalized to weaker notion of solutions of Navier-Stokes, namely distributional solutions that
satisfy a suitable form of the global energy inequality, but we leave the technical details to the
reader.

Lemma A.1. Let uν be a classical solution of (NS) and u be a Lipschitz solution of
{

∂tu + u · ∇u + ∇p = f
div u = 0

(A.1)

on the time interval [0, T ]. Then the following inequality is valid for every t ∈ [0, T ]:

d

dt

1

2

ˆ

|u − uν |2(x, t) dx

≤
(

‖∇u‖L∞ +
1

2

) ˆ

|u − uν |2(x, t) dx +
1

2

ˆ

|f − f ν |2(x, t) dx +
ν

4

ˆ

|∇u|2(x, t) dx . (A.2)

Clearly, from (A.2) one concludes immediately that, if ν ↓ 0, f ν → f in L1([0, T ]; L2), and
uν(·, 0) → u(·, 0) in L2, then uν → u in C([0, T ]; L2).

Proof. We first subtract the two equations to get

∂t(u
ν − u) = (−uν · ∇uν + u · ∇u)

︸ ︷︷ ︸

=:R

−∇(pν − p) + ν∆uν + (f ν − f) .

We then multiply by uν − u, integrate in space, and use the fact that uν − u is divergence free
to conclude

d

dt

1

2

ˆ

|u − uν |2(x, t) dx

=

ˆ

[R · (uν − u)](x, t) dx +

ˆ

(f ν − f) · (uν − u)(x, t) dx − ν

ˆ

[∇uν : (∇uν − ∇u)](x, t) dx,

where A : B is the Hilbert-Schmidt product. For the first integrand in the last line the following
is a very well-known fact which can be proved by elementary integration by parts:

ˆ

[R · (uν − u)](x, t) dx ≤ ‖∇u‖L∞

ˆ

|uν − u|2(x, t) dx .
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The second integrand can be bounded in an elementary way by
ˆ

(f ν − f) · (uν − u)(x, t) dx ≤
1

2

ˆ

|f ν − f |2(x, t) dx +
1

2

ˆ

|uν − u|2(x, t) dx .

As for the third integrand we can estimate it as

− ν

ˆ

[∇uν : (∇uν − ∇u)](x, t) dx

= − ν

ˆ

|∇(uν − u)|2(x, t) dx − ν

ˆ

[∇u : ∇(uν − u)](x, t) dx ≤
ν

4

ˆ

|∇u|2(x, t) dx .

Combining these facts together we easily conclude (A.2). �
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