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Abstract Schur’s lemma states that every Einstein manifold of dimension n ≥ 3 has con-
stant scalar curvature. In this short note we ask to what extent the scalar curvature is constant if
the traceless Ricci tensor is assumed to be small rather than identically zero. In particular, we
provide an optimal L2 estimate under suitable assumptions and show that these assumptions
cannot be removed.

Mathematics Subject Classification (2000) 53C21 · 53C24

1 Introduction

Schur’s lemma states that every Einstein manifold of dimension n ≥ 3 has constant scalar
curvature. Here (M, g) is defined to be Einstein if its traceless Ricci tensor

◦
Ric := Ric − R

n
g

is identically zero.
In this short note we ask to what extent the scalar curvature is constant if the traceless

Ricci tensor is assumed to be small rather than identically zero. As it is customary, we say
that M is a closed manifold if it is compact and without boundary.
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348 C. D. Lellis, P. M. Topping

Theorem 1.1 For any integer n ≥ 3, if (M, g) is a closed Riemannian manifold of dimension
n with nonnegative Ricci curvature, then∫

M

(
R − R

)2 ≤ 4n(n − 1)

(n − 2)2

∫

M

| ◦
Ric|2 (1.1)

where R is the average value of R over M. Moreover equality holds if and only if (M, g) is
Einstein.

Since ∣∣∣Ric − R
n g

∣∣∣2 = | ◦
Ric|2 + 1

n

(
R − R

)2
, (1.2)

we immediately get:

Corollary 1.2 Under the same conditions as in the theorem,
∫

M

∣∣∣Ric − R
n g

∣∣∣2 ≤ n2

(n − 2)2

∫

M

∣∣Ric − R
n g

∣∣2
, (1.3)

and equality holds if and only if (M, g) is Einstein.

These estimates are sharp in the following senses.
First, the constants are the best possible because if we were to reduce either constant the

inequalities would fail for certain small but high-frequency deformations of the round sphere
as we discuss in Sect. 3. Indeed, if g0 is the metric of the round sphere then we can take a
conformal deformation (1+ f )g0 where f is an eigenfunction of the Laplacian on the sphere
corresponding to a suitably large eigenvalue.

Second, the curvature condition Ric ≥ 0 cannot simply be dropped, as we discuss in
Sect. 4: For n ≥ 5, we show that any such inequality then fails even if we restrict M to be
diffeomorphic to the sphere. For example, we can find metrics g on Sn which make the ratio
of the left-hand side of (1.3) to the right-hand side of (1.3) arbitrarily large. If we are able to
prescribe the topology of M , then the same thing can be engineered even in dimension n = 3:
we can find manifolds (M3, g) which make the same ratio arbitrarily large. We leave open
the possibility that inequalities of this form may hold for n = 3 and n = 4 with constants
depending on the topology of M . We finally mention that Ge and Wang in [2] have followed
up on the first version of this paper by demonstrating that for four dimensional manifolds
our hypothesis can be weakened to nonnegative scalar curvature. This is surely not possible
for n ≥ 5 (as can be shown using constructions similar to the ones of Sect. 4), whereas the
case n = 3 is still open.

In the context of the sectional Schur’s lemma, two results which are somewhat related
to ours have appeared in [4] and [3]. However, of all known inequalities which generalise
a geometric rigidity statement, the closest one to our result seems to be the inequality of
Müller and the first author [1], which generalises the well-known assertion that the only
totally umbilic closed surfaces of the Euclidean three dimensional space are spheres. In fact
our method also gives that result with the sharp constant for hypersurfaces of any dimen-
sion with nonnegative Ricci curvature and the method can deal with more general Einstein
ambient manifolds; details will appear in [5]. As with the proof in this paper, our method in
that case has the advantage of being completely elementary, whereas the proof of [1] exploits
deep tools from partial differential equations and its only advantage is that it holds for general
smooth surfaces.
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Almost-Schur lemma 349

2 Proof of Theorem 1.1

2.1 Proof of (1.1)

Recall that the contracted second Bianchi identity tells us that δRic + 1
2 d R = 0 (where

(δRic) j := −∇i Ri j ) and hence that

δ
◦

Ric = −n − 2

2n
d R. (2.1)

Let f : M → R be the unique solution to
{

� f = R − R∫
M

f = 0. (2.2)

We may then compute
∫

M

(
R − R

)2 =
∫

M

(
R − R

)
� f = −

∫

M

〈d R, d f 〉

= 2n

n − 2

∫

M

〈δ ◦
Ric, d f 〉 = 2n

n − 2

∫

M

〈 ◦
Ric, Hess f 〉

= 2n

n − 2

∫

M

〈 ◦
Ric, Hess f − � f

n g〉

≤ 2n

n − 2
‖ ◦
Ric‖L2‖Hess f − � f

n g‖L2 . (2.3)

Now by integration by parts (i.e. the Bochner formula) we know that
∫

M

|Hess f |2 =
∫

M

(� f )2 −
∫

M

Ric(∇ f,∇ f ) (2.4)

and therefore ∫

M

|Hess f − � f
n g|2 =

∫

M

|Hess f |2 − 1

n
(� f )2

= n − 1

n

∫

M

(� f )2 −
∫

M

Ric(∇ f,∇ f )

= n − 1

n

∫

M

(R − R)2 −
∫

M

Ric(∇ f,∇ f ), (2.5)

and since the Ricci curvature is nonnegative, we have

‖Hess f − � f
n g‖L2 ≤

⎛
⎝n − 1

n

∫

M

(
R − R

)2

⎞
⎠

1
2

, (2.6)

which can be combined with (2.3) to give (1.1).
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350 C. D. Lellis, P. M. Topping

Remark 2.1 We note that the Ricci term which we throw away in the proof does not destroy
optimality because that term is ‘lower order’—i.e. only involves first derivatives—and is thus
insignificant for very high frequency f .

Remark 2.2 We only use the Ricci hypothesis in the proof in order to obtain the L2 estimate
∫

M

|Hess f |2 ≤
∫

M

(� f )2. (2.7)

Moreover, a slight adaptation of the proof would establish an L p version of our results on
any manifold supporting a Calderon-Zygmund inequality

∫

M

|Hess f |p ≤ C
∫

M

(� f )p. (2.8)

2.2 Equality

Obviously, if (M, g) is an Einstein manifold, then both sides of (1.1) vanish. Assume next
that we have equality in (1.1) for some (M, g). Then equality must hold in (2.3) and (2.6).
Equality holds in the latter inequality if Ric(∇ f,∇ f ) = 0 (see (2.5)) and since Ric ≥ 0,

Ric(∇ f, ·) = 0. (2.9)

Meanwhile, equality holds in (2.3) if and only if the two tensors
◦

Ric and Hess f − � f
n g

are linearly dependent. If one of them vanishes, then (2.3) implies that R is constant and
hence, since equality in (1.1) holds, that g is Einstein. Otherwise, there is μ > 0 such that

μ
◦

Ric = (Hess f − � f
n g). This, together with (2.9) and (2.1) implies that

− n − 1

n
d� f = δ

(
Hess f − � f

n
g

)
= μδ

◦
Ric = −μ

n − 2

2n
d R. (2.10)

Since � f = R − R̄, from (2.10) we conclude
(

n − 2

2n
μ − n − 1

n

)
d R = 0. (2.11)

Thus R is a constant (and hence g is Einstein) unless μ = 2n−2
n−2 . Assuming this is the case,

then

Hess f − � f

n
g = 2n − 2

n − 2

◦
Ric. (2.12)

Combining (2.9) with (2.12) and the identity � f = R − R̄ we infer

Hess f (∇ f, ·) − R − R̄

n
d f = − 2n − 2

(n − 2)n
R d f,

and we may rewrite this last identity as

∇ |∇ f |2
2

= −
[

R̄

n
+ R

n − 2

]
∇ f. (2.13)
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Almost-Schur lemma 351

Fix a point x0 ∈ M and let γ : [0,+∞[→ M be the solution of γ̇ (t) = −∇ f (γ (t)) with
γ (0) = x0. Consider α(t) = f (γ (t)). Then α′(t) = −|∇ f (γ (t))|2 and, by (2.13),

α′′(t) = −2

[
R̄

n
+ R

n − 2

]
|∇ f (γ (t))|2 ≤ 0.

Thus, α is a bounded nonincreasing concave function on [0,+∞[ and therefore it must be
constant. We conclude that −|∇ f (x0)|2 = α′(0) = 0. The arbitrariness of x0 implies that f
is constant which completes the proof.

3 Second variation arguments

We will show that the constants in (1.1) and (1.3) are optimal. We do this by computing
the second variation formula of each side of the inequalities based at the round sphere of
dimension n ≥ 3. If the constant in either inequality were reduced at all, then we could find
small, high-frequency perturbations of the round sphere which violated both estimates.

Optimality of (1.1) and (1.3). First of all observe that, by (1.2), the optimality of one
inequality implies the optimality of the other. We next consider the standard sphere M =
(Sn, σ ) for which Ric = (n − 1)σ and R = n(n − 1), and deform it through a one-parameter
family of Riemannian manifolds Mt = (Sn, gt ) where gt = (1 + t f )σ . We assume that
f ∈ C∞(M) and

∫
M f = 0. Set

F(t) := C
∫

Mt

∣∣Ric − R
n g

∣∣2 −
∫

Mt

∣∣∣Ric − R̄
n g

∣∣∣2

= (C − 1)

∫
|Ric|2 − C

n

∫
R2 + 1

nV

(∫
R

)2

=: (C − 1)F1(t) − C

n
F2(t) + 1

n
F3(t) (3.1)

where V is the volume of Mt . We write dvol for the volume element. Straightforward calcu-
lations (see for instance Sect. 2.3.1 of [7]) give

∂t dvol|0 = n

2
f dvol (3.2)

d

dt
V

∣∣∣∣
0

= 0 (3.3)

∂t g
i j

∣∣∣
0

= − f σ i j (3.4)

∂t Rici j
∣∣
0 = −1

2

(
� f σi j + (n − 2) f;i j

)
(3.5)

∂t R|0 = −(n − 1)� f − (n − 1)n f (3.6)
d

dt

∫
R

∣∣∣∣
0

= 0. (3.7)

Note that F ′(0) = 0. We next show that, for any constant C < n2(n − 2)−2, there is a choice
of f such that F ′′(0) < 0. This will imply the optimality of (1.3) as desired.
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352 C. D. Lellis, P. M. Topping

We start by remarking that

F ′′
2 (0) = d

dt

(
2

∫
R ∂t R +

∫
R2 ∂t dvol

)

= 2n(n − 1)

∫
∂2

t R + 2
∫

(∂t R)2

+4n(n − 1)

∫
∂t R ∂t dvol + n(n − 1)

∫
R ∂2

t dvol

= 2n(n − 1)
d2

dt2

∫
R + 2

∫
(∂t R)2 − n2(n − 1)2 d2V

dt2 . (3.8)

Similarly,

F ′′
3 (0) = d

dt

(
− 1

V2

dV

dt

(∫
R

)2

+ 2

V

∫
R

d

dt

∫
R

)

= −n2(n − 1)2 d2V

dt2 − dV

dt

d

dt

(
1

V2

(∫
R

)2
)

︸ ︷︷ ︸
= 0 by (3.3)

+ d

dt

(
2

V

∫
R

)
d

dt

∫
R

︸ ︷︷ ︸
= 0 by (3.7)

+2n(n − 1)
d2

dt2

∫
R

= −n2(n − 1)2 d2V

dt2 + 2n(n − 1)
d2

dt2

∫
R. (3.9)

Finally we compute

F ′′
1 (0) =

∫
∂2

t |Ric|2 + 2
∫

∂t |Ric|2 ∂t dvol +
∫

|Ric|2 ∂2
t dvol. (3.10)

Note that

∂t |Ric|2∣∣0 = 2∂t Rici j Rickl g
ik g jl + 2Rici j Rickl∂t g

ik g jl

= 2(n − 1) ∂t R|0 (3.11)

and

∂2
t |Ric|2∣∣0 = 2∂t

[
∂t

(
Rici j g jl

)
Riciαgαl

]

= 2(n − 1) ∂2
t R

∣∣
0 + 2

[
∂t

(
Rici j g jl

)
∂t

(
Riclαgαi

)]

= 2(n − 1) ∂2
t R

∣∣
0 − 4(n − 1) f ∂t Rici jσ

i j

+2|∂t Ric|2 + 2n(n − 1)2 f 2. (3.12)

123

Author's personal copy



Almost-Schur lemma 353

Therefore, we conclude

F ′′
1 (0) = 2(n − 1)

∫
∂2

t R + 2
∫

|∂t Ric|2 − 4(n − 1)

∫
f ∂t Rici jσ

i j

+2n(n − 1)2
∫

f 2 + 4(n − 1)

∫
∂t R ∂t dvol

+(n − 1)

∫
R ∂2

t dvol

= 2(n − 1)
d2

dt2

∫
R + 2

∫
|∂t Ric|2 − 4(n − 1)

∫
f ∂t Rici jσ

i j

+2n(n − 1)2
∫

f 2 − n(n − 1)2 d2V

dt2 . (3.13)

Putting together (3.13), (3.8) and (3.9) we get

F ′′(0) = −2C

n

∫
(∂t R)2 + 2(C − 1)

∫
|∂t Ric|2

−4(C − 1)(n − 1)

∫
f ∂t Rici jσ

i j + 2(C − 1)n(n − 1)2
∫

f 2. (3.14)

Next, we have
∫

(∂t R)2 = (n − 1)2
(∫

(� f )2 − 2n
∫

|d f |2 + n2
∫

f 2
)

(3.15)
∫

f ∂t Rici jσ
i j = (n − 1)

∫
|d f |2 (3.16)

∫
|∂t Ric|2 = n

4

∫
(� f )2 + n − 2

2

∫
(� f )2 + (n − 2)2

4

∫
|D2 f |2

= n(n − 1)

4

∫
(� f )2 − (n − 2)2(n − 1)

4

∫
|d f |2 (3.17)

(where in the last line we used the Bochner formula (2.4)). Assume now that C = n2(n −
2)−2 − ε for some positive ε. Inserting (3.15), (3.16) and (3.17) into (3.14), we conclude

F ′′(0) ≤ −a(n)ε

∫
(� f )2 + b(n, ε)

∫
|d f |2 + c(n, ε)

∫
f 2 , (3.18)

where the constant a is strictly positive (since n ≥ 3). By choosing f to be an eigenfunction
of the Laplacian with sufficiently large eigenvalue, we then have F ′′(0) < 0 as desired. �

4 Counterexamples without the hypothesis Ric ≥ 0.

Our results assume we are working on a manifold of nonnegative Ricci curvature. We now
wish to ask when we have a hope of proving an inequality of the form

∫

M

(
R − R

)2 ≤ C
∫

M

| ◦
Ric|2 (4.1)

on more general manifolds (M, g).
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354 C. D. Lellis, P. M. Topping

Proposition 4.1 For any C < ∞ and integer n ≥ 5, there exists a metric g on the sphere
Sn such that (4.1) fails.

For smaller n, we know counterexamples only when the topology of M is allowed to
depend on C :

Proposition 4.2 For any C < ∞, there exists a closed 3-manifold (M, g) such that (4.1)
fails.

Proof (Proposition 4.1.) All we have to do is to connect two round spheres of radii 1

and 2, say, by a small neck. On the two spherical parts, the traceless Ricci tensor
◦

Ric is
zero. Therefore (for any C) we can make the right-hand side of (4.1) as small as desired for

n ≥ 5, since by scaling down the size of the neck, the integral of | ◦
Ric|2 over the neck will

also be scaled down to as small a value as we wish. Meanwhile, the different radii of the
spherical parts ensure that the scalar curvature R is different on each sphere, and thus the
left-hand side of (4.1) cannot be small. �
Proof (Proposition 4.2.) This construction is loosely related to the one above. The basic
building block is any hyperbolic (constant sectional curvature −1) 3-manifold (N , h) which
fibres over the circle. A result of Thurston implies that if S is a closed surface of genus at
least 2, then the 3-manifold arising by gluing the boundary components of [0, 1] × S using
a pseudo-Anosov diffeomorphism of the fibre S must admit a hyperbolic metric ([6]).

Let us write N m for the m-fold covering of N obtained by taking covers of the base circle,
and lift the metric h to a metric h̃ on N m . We also pick a point p in N and any one point p̃ in
each N m which projects to p under the covering. The idea then, for each m ∈ N, is to attach
one (N m, h̃) to another scaled copy (N m, 2h̃) via an m-independent neck attached to small
neighbourhoods of p̃ in each N m , to give a new manifold (M, g). With this construction,
the right-hand side of (4.1) is independent of m, but the left-hand side will increase without
bound as m → ∞ at an asymptotically linear rate. �
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