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0. Introduction

This is a small set of notes, taken from the last lectures of a course given in Spring 2012
at the University of Zürich. The aim is to give a short, reader-friendly but nonetheless
detailed introduction to Allard’s interior regularity theory for stationary integral varifolds.
Allard’s results, which are 40 years old (see [2]), form a pillar of the theory of minimal
surfaces, which has been used a number of times in the literature, sometimes to reach really
spectacular geometric applications. On the other hand I know only one textbook which
reports them, Simon’s Lecture notes on geometric measure theory (see [13]). Because of lack
of time, I was not able to cover the material exposed in [13] in my course and I therefore
looked for a suitable reduction which would anyway allow me to prove the key results.
These lecture notes assume that the reader is familiar with some more advanced measure
theory (Hausdorff measures, covering arguments and density theorems, see Chapters 2,
4 and 6 of [9]), has a coarse knowledge of rectifiable sets (definition, area formula and
approximate tangents, see Chapter 4 of [5]) and knows a little about harmonic functions
(see e.g. [7]).

There is, however, a price to pay. At a first glance an obvious shortcoming is that
we restrict the theory to varifolds with bounded generalized mean curvature, whereas a
suitable integrability assumption is usually sufficient. This is not a major point, since we
cover stationary varifolds in smooth Riemannian manifolds (cf. Exercise 1.6). A second
drawback is that hypothesis (H2) in Allard’s ε-regularity Theorem 3.2 is redundant. Still,
the statement given here suffices to draw the two major conclusions of Allard’s theory. A
third disadvantage is that a few estimates coming into the proof of Theorem 3.2 are stated
in a fairly suboptimal form (the reader might compare, for instance, the crude estimates
of Proposition 5.1 to those of Theorem 20.2 of [13]). In spite of these drawbacks, I still
hope that these notes will give to the the reader not only a quick access to the most
relevant ideas, but also to several important technical points, thus simplifying his task if
he eventually explores the deeper results of the literature (see Section 8).

1. Integral and stationary varifolds

Definition 1.1. Let U ⊂ RN be an open set. An integral (or integer-rectifiable) varifold
V of dimension k in U is a pair (Γ, f), where Γ ⊂ U is a rectifiable set of dimension k and

1



2 CAMILLO DE LELLIS

f : Γ→ N \ {0} a Borel map. We can naturally associate to V the following measure:

µV (A) =

∫
Γ∩A

f dHk for any Borel set A.

The mass M(V ) of V is given by µV (U) and in what follows we will assume that it is finite.
If M is a closed Riemannian manifold embedded in RN , an integral varifold V in U ∩M

is an integral varifold V in U such that µV (U \M) = 0.

Remark 1.2. This definition is fairly different from Allard’s original one, which introduces
first general varifolds as a certain class of measures in the Grassmanian G(U) (see Definition
3.1 of [2]) and then identifies integral varifolds as an appropriate subset (cf. Section 3.5 of
[2]). Here we follow instead the approach of Chapter 4 of [13] ([13] reports also the theory
of general varifolds in the subsequent Chapter 8).

We next introduce the concepts of stationarity and generalized mean curvature (cf. Sec-
tion 16 of [13]; again the original paper of Allard defines these concepts for general varifolds,
cf. Section 4 of [2] and Section 39 of [13]). If Φ : U → W is a diffeomorphism and V = (Γ, f)
an integral varifold in U , we then define the pushforward Φ]V as (Φ(Γ), f ◦Φ−1). Obviously
Φ]V is an integral varifold in W . Given a vector field X ∈ C1

c (U,RN), the one-parameter
family of diffeomorphisms generated by X is Φt(x) = Φ(t, x) where Φ : R× U → U is the
unique solution of 

∂Φ
∂t

= X(Φ)

Φ(0, x) = x .

Definition 1.3. If V is a varifold in U and X ∈ C1
c (U,RN), then the first variation of V

along X is defined by

δV (X) =
d

dt

∣∣∣∣
t=0

M((Φt)]V ) , (1.1)

where Φt is the one-parameter family generated by X. V has bounded generalized mean
curvature if there exists a constant C ≥ 0 such that

|δV (X)| ≤ C

∫
|X|dµV for all X ∈ C1

c (U,RN). (1.2)

If the constant C in (1.2) can be set to 0 the varifold is called stationary. If M is a closed
Riemannian manifold embedded in RN and V an integral varifold in U ∩M , V is said to
be stationary in U ∩M if δV (X) = 0 for any vector field X ∈ C1

c (U) tangent to M .

By Proposition 1.5 below, the map X → δV (X) is linear. Therefore, the Riesz repre-
sentation theorem and the Radon-Nikodym Theorem yield the following corollary.

Corollary 1.4. If V is a varifold in U with bounded generalized mean curvature, then
there is a bounded Borel map H : U → RN such that

δV (X) = −
∫
X ·HdµV for all X ∈ C1

c (U,RN). (1.3)
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H will be called the generalized mean curvature of the varifold V and is defined up to sets
of µV -measure zero.

For these definitions to make sense we need to prove that the derivative in the right
hand side of (1.1) exists. This will be shown in the proposition below, where we also give
an integral formula for the first variation. In order to do so we introduce the following
notation. If π ⊂ RN is a k-dimensional plane and X ∈ C1(U,RN) a vector field, we set

divπX =
k∑
i=1

ei ·DeiX ,

where e1, . . . , ek is any orthonormal base of π. Recall also that, if Γ is a rectifiable k-
dimensional subset of RN , then Γ has an approximate tangent plane TxΓ at Hk–a.e. x ∈ Γ.

Proposition 1.5. Let V = (Γ, f) be an integral varifold in U ⊂ RN . Then the right hand
side of (1.1) is well defined and

δV (X) =

∫
divTxΓX dµV for all X ∈ C1

c (U,RN). (1.4)

Exercise 1.6. Consider a smooth closed Riemannian manifold M isometrically embedded
in RN , a bounded open U ⊂ RN and an integral varifold V stationary in U ∩M . Show
that V has bounded generalized mean curvature H and |H| ≤ C|AM | µV –a.e., where AM
denotes the second fundamental form of M and C is a dimensional constant.

Proof of Proposition 1.5. By the definition of rectifiability, there are countably many C1

embeddings Fi : Rk → RN and compact sets Ki ⊂ Rk such that

(a) Fi(Ki) ∩ Fj(Kj) = ∅ for every i 6= j
(b) Fi(Ki) ⊂ Γ for every i;
(c) {Fi(Ki)} covers Hk–a.a. Γ

(cf. Lemma 11.1 of [13]). By standard arguments in measure theory we can assume that f
is a constant fi on each Fi(Ki). Since Φt is a diffeomorphism of U onto itself, the properties
(a)-(b)-(c) hold even if we replace Fi with Φt ◦Fi and Γ with Φt(Γ). Therefore, by the area
formula (see Proposition 4.3 of [5]) we conclude

M((Φt)]V ) =
∑
i

fi

∫
Ki

|d(Φt ◦ Fi)|ye1 ∧ . . . ∧ d(Φt ◦ Fi)|yek| dy , (1.5)

where e1, . . . ek is an orthonormal base for Rk (here |v1 ∧ . . . ∧ vk| denotes the square root
of the determinant of the k × k matrix with coefficients vr · vs, r, s ∈ {1, . . . , k}). Fix a
point y ∈ Ki and set x = Fi(y) and recall that dFi|ye1, . . . , dFi|yek is a base for TxΓ for
Hk–a.e. x ∈ Fi(Ki). If v1, . . . , vk is an orthonormal base of TxΓ, by standard multilinear
algebra we have

|d(Φt ◦ Fi)|ye1 ∧ . . . ∧ d(Φt ◦ Fi)|yek| = |dΦt|xv1 ∧ . . . ∧ dΦt|xvk|︸ ︷︷ ︸
=:hx(t)

|dFi|ye1 ∧ . . . ∧ dFi|yek| .
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Using again the area formula and the fact that Φ0 is the identity we conclude:

1

t
(M((Φt)]V )−M(V )) =

∫
hx(t)− hx(0)

t
dµV (x) . (1.6)

Next recall that hx(t) =
√

detMx(t), where Mx(t) is the matrix with entries

(Mx(t))ij = 〈dΦt|xvi, dΦt|xvj〉 .

Differentiating in t we then compute

(M ′
x(t))ij = 〈Dvi(X ◦ Φt)(x), dΦt|xvj〉+ 〈dΦt|xvi, Dvj(X ◦ Φt)(x)〉 .

Thus |M ′
x(t)| ≤ C, where C is independent of x. So hx is differentiable and there is δ > 0

and C such that |hx(t)− hx(0)| ≤ Ct for all t ∈ [−δ, δ] and all x ∈ U . Therefore,

lim
t↓0

1

t
(M((Φt)]V )−M(V )) =

∫
h′x(0) dµV (x) .

Since (Mx(0))ij = δij we compute h′x(0) = 1
2
trM ′

x(0) =
∑

i vi ·DviX(x) = divTxΓX(x). �

2. The Monotonicity Formula and its consequences

The monotonicity formula is a key tool to derive first regularity results for objects which
are a weak version of minimal surfaces. The monotonicity formula for general varifolds
were derived first by Allard in Section 5 of [2] (cf. also Section 40 of [13]). Here we follow a
simpler approach for rectifiable varifolds, taken from Section 17 of [13] with minor technical
modifications. Having fixed ξ ∈ U ⊂ RN , we define r(x) := |x − ξ|. Next, if g : U → R
is differentiable and V = (Γ, f) an integral varifold in U , for Hk–a.e. x ∈ Γ we denote by
∇⊥g(x) the projection of the gradient ∇g on the space orthogonal to TxΓ.

Theorem 2.1 (Monotonicity Formula). Let V be an integral varifold of dimension k in U
with bounded generalized mean curvature H. Fix ξ ∈ U . For every 0 < σ < ρ < dist (ξ, ∂U)
we have the following Monotonicity Formula

µV (Bρ(ξ))

ρk
− µV (Bσ(ξ))

σk
=

∫
Bρ(ξ)

H

k
· (x− ξ)

(
1

m(r)k
− 1

ρk

)
dµV +

∫
Bρ(ξ)\Bσ(ξ)

|∇⊥r|2

rk
dµV ,

where m(r) = max{r, σ}. Hence the map ρ 7→ e‖H‖∞ρρ−kµV (Bρ(ξ)) is monotone increasing.

Proof. W.l.o.g. we assume ξ = 0. Fix a function γ ∈ C1
c ([0, 1[) such that γ ≡ 1 in a

neighborhood of 0. For any s ∈]0, dist(0, ∂U)[ we let Xs be the vector field Xs(x) = γ( |x|
s

)x.
Observe that Xs ∈ C1

c (U) and hence we can apply (1.3) and (1.4) to conclude∫
divTxΓXs dµV = −

∫
H ·Xs dµV . (2.1)
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Fix now a plane π = TxΓ. We choose an orthonormal frame e1, . . . , ek spanning π and
complete it to an orthonormal base of RN . We are then ready to compute

divπXs = kγ
(r
s

)
+

k∑
j=1

ej · x γ′
(r
s

) x · ej
|x|s

= kγ
(r
s

)
+
r

s
γ′
(r
s

) k∑
j=1

(
x · ej
|x|

)2

=kγ
(r
s

)
+
r

s
γ′
(r
s

)(
1−

N∑
j=k+1

(
x · ej
|x|

)2
)

= kγ
(r
s

)
+
r

s
γ′
(r
s

) (
1− |∇⊥r|2

)
. (2.2)

Insert (2.2) into (2.1), divide by sk+1 and integrate in s between σ and ρ:∫ ρ

σ

∫
RN

k

sk+1
γ

(
|x|
s

)
dµV (x) ds+

∫ ρ

σ

∫
RN

|x|
sk+2

γ′
(
|x|
s

)
(1− |∇⊥r|2)dµV (x) ds

=−
∫ ρ

σ

∫
RN

H · x
sk+1

γ

(
|x|
s

)
dµV (x) ds .

We then use Fubini’s Theorem and distribute the integrands to obtain:∫
RN

∫ ρ

σ

(
k

sk+1
γ

(
|x|
s

)
+
|x|
sk+2

γ′
(
|x|
s

))
ds dµV (2.3)

=

∫
RN
|∇⊥r|2

∫ ρ

σ

|x|
sk+2

γ′
(
|x|
s

)
ds dµV (x)−

∫
RN
H · x

∫ ρ

σ

1

sk+1
γ

(
|x|
s

)
ds dµV (x) . (2.4)

Observe that

−
∫ ρ

σ

(
k

sk+1
γ

(
|x|
s

)
+
|x|
sk+2

γ′
(
|x|
s

))
ds = ρ−kγ

(
|x|
ρ

)
− σ−kγ

(
|x|
σ

)
.

We can therefore rewrite (2.4) as

ρ−k
∫
γ

(
|x|
ρ

)
dµV (x)− σ−k

∫
γ

(
|x|
σ

)
dµV (x)−

∫
RN
H · x

∫ ρ

σ

s−k−1γ

(
|x|
s

)
ds dµV (x)

=

∫
RN
|∇⊥r|2

[
ρ−kγ

(
|x|
ρ

)
− σ−kγ

(
|x|
σ

)
+

∫ ρ

σ

k

sk+1
γ

(
|x|
s

)
ds

]
dµV (x) . (2.5)

We now test (2.5) with a sequence of nonnegative cut-off functions γ = γn which converge
to 1]−1,1[ from below. By the Dominated Convergence Theorem, we conclude that we can
insert γ = 1]0,1[ into (2.5). Hence, the Monotonicity Formula follows from∫ ρ

σ

k

sk+1
1]0,1[

(
|x|
s

)
ds = 1Bρ(x)

∫ ρ

max{|x|,σ}

k

sk+1
ds =

(
1

max{|x|, σ}k
− 1

ρk

)
1Bρ(x) .

Finally, define f(ρ) := ρ−kµV (Bρ). We use the Monotonicity Formula to bound trivially

f(ρ)− f(σ)

ρ− σ
≥ −‖H‖∞

k

∫
Bρ

|x|max{|x|, σ}−k − ρ−k

ρ− σ
dµV (x) ≥ −‖H‖∞

k
µV (Bρ)ρ

σ−k − ρ−k

ρ− σ
.
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Since ρ 7→ ρ−k is convex, setting ρ = σ + ε we conclude

f(σ + ε)− f(σ)

ε
≥ −µV (Bρ)‖H‖∞(σ + ε)σ−k−1 = −‖H‖∞f(σ + ε)

(σ + ε)k+1

σk+1
. (2.6)

If ψδ is a standard smooth nonnegative mollifier, we can first take the convolution of both
sides of (2.6) (as functions of σ) and then let ε ↓ 0 to conclude (f ∗ψδ)′+‖H‖∞(f ∗ψδ) ≥ 0.
Thus the function gδ(ρ) := e‖H‖∞ρf ∗ ψδ(ρ) is monotone increasing. Letting δ ↓ 0 we
conclude that ρ 7→ e‖H‖∞ρρ−kµV (Bρ) is also monotone increasing. �

The Monotonicity Formula has several important corollaries: the following proposition
can be understood as a first regularity result for varifolds with bounded mean curvature (in
what follows spt (µV ) denotes the support of the measure µ, i.e. the smallest (relatively)
closed set F ⊂ U such that µV (U \ F ) = 0).

Proposition 2.2. Let V = (Γ, f) be an integral varifold of dimension k in U with bounded
mean curvature. Then the limit

θV (x) := lim
ρ→0

µV (Bρ(x))

ωkρk

exists at every x ∈ U and coincides with f(x) for µV –a.e. x. Moreover

(i) θV is upper semicontinuous;
(ii) θV (x) ≥ 1 and µV (Bρ(x)) ≥ ωke

−‖H‖∞ρρk ∀x ∈ spt (µV ) and ∀ρ < dist(x, ∂U);
(iii) Hk(spt (µV ) \ Γ) = 0.

Proof. The existence of the limit is guaranteed by the monotonicity of e‖H‖∞ρρ−kµV (Bρ(x)).
Moreover, θV = f µV –a.e. by the standard Density Theorems for rectifiable sets and Radon
measures (see Theorem 2.12 and Conclusion (1) of Theorem 16.2 of [9]). Fix next x ∈ U
and ε > 0. Let 0 < 2ρ < dist(x, ∂U) be such that

e‖H‖∞r
µV (Br(x))

ωkrk
≤ θV (x) +

ε

2
∀r < 2ρ. (2.7)

If δ < ρ and |x− y| < δ, we then conclude

θV (y) ≤ e‖H‖∞ρ
µV (Bρ(y))

ωkρk
≤ e‖H‖∞(ρ+δ)µV (Bρ+δ(x))

ωkρk

(2.7)

≤
(

1 +
δ

ρ

)k (
θV (x) +

ε

2

)
. (2.8)

If δ is sufficiently small we infer θV (y) ≤ θV (x) + ε, which proves (i).
Since θV = f µV –a.e. and f is integer valued, the set {θV ≥ 1} has full µV measure.

Thus {θV ≥ 1} must be dense in spt (µV ) and so for every x ∈ spt (µV ) ∩ U the inequality
θV (x) ≥ 1 follows from the upper semicontinuity of θV . The remaining assertion in (ii)
is then a consequence of Theorem 2.1. Finally, by the classical Density Theorems (see
Theorem 6.2 of [9]) θV = 0 Hk–a.e. on U \ Γ and hence (iii) follows from (ii). �
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3. Allard’s ε-regularity Theorem and its consequences

From now on, given an integral varifold V = (Γ, θ) in U with bounded mean curvature,
we assume,w.l.o.g. , that Γ ∩ U = Γ and that θ(x) = θV (x) for every x ∈ U (this is not
completely consistent with Definition 1.1 because θ is not everywhere integer valued, but
a slight technical adjustment in Definition 1.1 would keep our notation consistent). To
state Allard’s Theorem we need to introduce the “principal parameter” of its smallness
assumption. Given two k-dimensional planes π1 and π2 in RN and the corresponding
orthogonal projections Pi : RN → RN onto πi, we denote by ‖π1−π2‖ the Hilbert-Schmidt
norm of P1 − P2.

Definition 3.1 (Excess). Let V be a k-dimensional integral varifold in U , Br(x) ⊂ U an
open ball and π a k-dimensional plane. The excess of V in Br(x) with respect to π is

E(V, π, x, r) := r−k
∫
Br(x)

‖TyΓ− π‖2 dµV (y) . (3.1)

The following is the main result of Allard’s regularity theory for stationary integral
varifolds. It corresponds essentially to the Regularity Theorem of Section 8 of [2] (cf. also
Theorem 23.1 of [13]).

Theorem 3.2 (Allard’s ε-regularity Theorem). For any positive integer k < N there are
positive constants α, ε and γ with the following property. Let V = (Γ, θ) be a k-dimensional
integral varifold with bounded mean curvature H in Br(x0) ⊂ RN such that:

(H1) µV (Br(x0)) < (ωk + ε)rk and ‖H‖∞ < εr−1;
(H2) There is a plane π such that E(V, π, x0, r) < ε.

Then Γ∩Bγr(x0) is a C1,α-submanifold of Bγr(x0) without boundary and θ ≡ 1 on Bγr(x0)∩
Γ.

We already pointed out the redundancy of (H2) (see Remark 5.4 for a thorough expla-
nation). Nonetheless, the version above is still powerful enough to prove the two main
conclusions of Allard’s interior regularity theory (cf. Section 8.1 of [2]).

Corollary 3.3. Let α be as in Theorem 3.2 and V = (Γ, θ) a k-dimensional integral
varifold with bounded mean curvature in U ⊂ RN . Then there is an open set W ⊂ U such
that Γ∩W is a C1,α submanifold of W without boundary and it is dense in Γ. If in addition
θ = Q µV –a.e. for some Q ∈ N \ {0}, then µV (Γ \W ) = 0.

Proof. We first prove the second statement. Observe that, under the assumption that
θ = Q µV –a.e., the varifold (V,Q−1θ) is also integral with bounded generalized mean
curvature H. Therefore it suffices to prove the statement when Q = 1. This however
follows from standard measure theoretic arguments: indeed, for µV –a.e. x0 ∈ Γ we have

1 = θ(x0) = lim
r↓0

µV (Br(x0))

ωkrk
and lim

r↓0
r−k

∫
Br(x0)

‖TxΓ− Tx0Γ‖2dµV (x) = 0 .

Thus, for any such x0 there is an r := rx0 > 0 such that (H1) and (H2) hold with π = Tx0Γ:
by Theorem 3.2 we then conclude that Γ ∩ Bγrx0

(x0) is a C1,α submanifold of Bγrx0
(x0)

without boundary. The open set W is then the union of all such balls.
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We next come to the first statement. Consider Γ and Γ as metric spaces, with the metric
induced by RN . Γ is complete and Γ an open subset of it: therefore Γ is a Baire space.
By the semicontinuity of θ, the sets Ci := {θ ≥ i} are closed. For each i ∈ N \ 0 we
denote by Di the interior of Ci in the topology of Γ and we define Ei := Di \ Ci+1 and
E :=

⋃
i≥1Ei. Fix x ∈ Γ \ E and let i ∈ N \ {0} be such that i ≤ θ(x) < i + 1. By

upper-semicontinuity, θ takes values in [1, i + 1[ in a neighborhood of x. If x ∈ Di, there
would then be a neighborhood where θ takes values in [i, i+ 1[ and hence x would belong
to Ei. We then conclude that x ∈ Ci \Di. Therefore Γ\E ⊂

⋃
iCi \Di. Since each Ci \Di

is a closed set with empty interior, it is meager. By the Baire Category Theorem E is a
dense open set. For each i let Ui ⊂ RN be an open set such that Ui ∩ Γ = Ei. Consider
the varifold Vi = (Γ ∩ Ui, θ|Ui). Vi is an integral varifold with bounded mean curvature in
Ui and θ|Ui = i µVi–a.e.. Thus, by the first part of the proof, there is an open set Wi ⊂ Ui
such that Γ∩Wi is a C1,α submanifold of Wi without boundary and µVi(Γ∩ (Ui \Wi)) = 0.
It follows that Γ∩Wi is dense in Γ∩Ui = Ei. If we set W :=

⋃
iWi we then conclude that

Γ ∩W is a C1,α submanifold of W without boundary and that Γ ∩W is dense in E. By
the density of E in Γ we conclude the proof. �

The rest of these notes will be dedicated to prove Theorem 3.2. The core of the argument
leads to an “excess-decay” Theorem which plays a pivotal role and we state immediately
(cf. Theorem 22.5 of [13]).

Theorem 3.4. Fix any positive integer k < N . There are constants 0 < η < 1
2

and ε0 > 0
such that the following holds. If V = (Γ, θ) satisfies the assumptions of Theorem 3.2 with
ε0 in place of ε and ‖H‖∞r ≤ E(V, π, x0, r), then there is a k-dimensional plane π̄ with

E(V, π̄, x0, ηr) ≤
1

2
E(V, π, x0, r) . (3.2)

The remaining pages are then organized as follows:

• In Section 4 we prove an inequality for the excess which is a direct analogue of the
Caccioppoli’s inequality for solutions of elliptic partial differential equations.
• In Section 5 we show that, under the assumptions of Theorem 3.2, the set Γ can

be well approximated by a Lipschitz graph. The proof given here is relatively short
compared to the one in [13], but we pay a high price in the accuracy of the estimates.
• In Section 6 we use the previous sections to prove Theorem 3.4.
• In Section 7 we use Theorem 3.4 and the Lipschitz approximation of Section 5 to

conclude the proof of Theorem 3.2.

4. The tilt-excess inequality

The first step towards the proof of Theorem 3.4 is the following inequality (cf. Lemma
8.13 of [2] and Lemma 22.2 of [13]).

Proposition 4.1 (Tilt-excess inequality). Let k < N be a positive integer. Then there
is a constant C such that the following inequality holds for every integral varifold V with
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bounded generalized mean curvature H in Br(x0) ⊂ RN and every k-dimensional plane π:

E(V, π, x0,
r
2
) ≤ C

rk+2

∫
Br(x0)

dist(y − x0, π)2 dµV (y) +
2k+1

rk−2

∫
Br(x0)

|H|2 dµV . (4.1)

To get an intuition of (4.1), consider V = (Γ, 1) and assume Γ is the graph of a function
f with small Lipschitz constant. The boundedness of H translates into a suitable elliptic
system of partial differential equations for f . The left hand side of (4.1) approximates
the Dirichlet energy of f and the first integral in the right hand side compares to the L2

norm of f . Therefore (4.1) can be interpreted as a Caccioppoli inequality (see for instance
[8]). Indeed the proof of (4.1) is achieved by testing (1.3) (the “weak form” of the elliptic
system) with a suitable vector field.

Before coming to this we point out some elementary computations which are essential
in the proof of (4.1) but will also be used a few more times later. First of all we introduce
some notation. Given a k-dimensional plane π, we denote by Pπ and P⊥π respectively the
orthogonal projection onto π and the one onto its orthogonal complement. Similarly, for
f ∈ C1(RN), ∇πf and ∇⊥π f will denote, respectively, Pπ ◦ ∇f and P⊥π ◦ ∇f . Finally, if
Φ ∈ C1(RN ,Rk), JπΦ will denote the absolute value of the Jacobian determinant of Φ|π.

Lemma 4.2. Consider two k-dimensional planes π and T in RN . Let X : RN → RN be
the vector field X(x) = P⊥π (x) and, having fixed an orthonormal base νk+1, . . . , νN of the
orthogonal complement of π, consider the functions fj(x) = x · νj. We then have

1

2
‖T − π‖2 = divTX =

N∑
i=k+1

|∇Tfi|2 . (4.2)

Moreover there is a positive constant C0, depending only on N and k, such that

|JTPπ − 1| ≤ C0‖T − π‖2 . (4.3)

Proof. Let ξ1, . . . , ξk be an orthonormal base of T and ek+1, . . . , eN an orthonormal base
of the orthogonal complement of T . Denote by 〈 : 〉 the standard inner product on
RN ⊗ RN . Observe that Pπ = Id −

∑
j νj ⊗ νj and that PT = Id −

∑
i ei ⊗ ei. Since

〈a⊗ b, v ⊗ w〉 = (a · v)(b · w), we compute

1

2
‖π − T‖2 =

1

2

〈 N∑
j=k+1

νj ⊗ νj −
N∑

i=k+1

ei ⊗ ei :
N∑

j=k+1

νj ⊗ νj −
N∑

i=k+1

ei ⊗ ei
〉

= (N − k)−
N∑

j=k+1

N∑
i=k+1

(νj · ei)2 =
N∑

j=k+1

(
1−

N∑
i=k+1

(νj · ei)2

)

=
N∑

j=k+1

k∑
i=1

(νj · ξi)2 =
N∑

j=k+1

|∇Tfj|2 (4.4)
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and
N∑

i=k+1

|∇Tfi|2 =
N∑

i=k+1

k∑
j=1

(ξj · νi)2 =
k∑
j=1

ξj ·
N∑

i=k+1

(ξj · νi)νi =
k∑
j=1

N∑
i=k+1

ξj ·
(
Dξjfiνi

)
=

k∑
j=1

ξj ·Dξj

N∑
i=k+1

fiνi =
k∑
j=1

ξj ·DξjX = divTX . (4.5)

Next, recall that JTPπ is the square root of the determinant of the matrix

Mij = Pπ(ξj) ·Pπ(ξi) = δij−P⊥π (ξj) ·ξi−ξj ·P⊥π (ξj)+P⊥π (ξj) ·P⊥π (ξi) =: δij+Aij+Aji+Bij .

Observe that |P⊥π (ξi)| = |P⊥π (ξi) − P⊥T (ξi)| ≤ C‖T − π‖. Thus ‖A‖ ≤ C‖T − π‖ and
‖B‖ ≤ ‖T − π‖2. Moreover,

Aij := ξi · P⊥π (ξj) =
k∑
i=1

ξi ·
N∑

l=k+1

(ξj · νl)νl = ξi ·DξjX .

Thus, the usual Taylor expansion of the determinant gives

detM = 1− 2trA+O(‖π − T‖2) = 1− 2divTX +O(‖π − T‖2) .

Next, since JTPπ ≥ 0 we have |JTπ − 1| ≤ |JTπ − 1|(JTπ + 1) = | detM − 1|. Combining
the inequalities above we then obtain (4.3). �

Proof of Proposition 4.1. By scaling and translating we can assume that x0 = 0 and r = 1.
Consider a smooth cut-off function ζ ∈ C∞c (B1) such that ζ ≡ 1 on B1/2. Let X be the
vector field of Lemma 4.2 and test (1.3) with ζ2X. We then conclude∫

ζ2divTyΓX dµV (y)
(1.3)
= −

∫
ζ2H ·X dµV −

∫
2ζX · ∇TyΓζ dµV . (4.6)

We next set T := TyΓ and use the notation of the proof of Lemma 4.2 to estimate

ζ|∇T ζ ·X| = ζ

∣∣∣∣∣
k∑
j=1

(∇ζ · ξj)(ξj ·X)

∣∣∣∣∣ ≤ ζ|∇ζ|
k∑
j=1

N∑
i=k+1

|fi||ξj · νi| ≤ Cζ|∇ζ||X|
N∑

i=k+1

|∇Tfi|

≤ C|∇ζ|2|X|2 +
1

4
ζ2

N∑
i=k+1

|∇Tfi|2
(4.2)
= C|∇ζ|2|X|2 +

1

4
ζ2divTX . (4.7)

Inserting (4.7) into (4.6), we then conclude

1

2

∫
ζ2divTyΓX dµV (y) ≤ 1

2

∫
B1

|H|2 dµV +
1

2

∫
ζ4|X|2 dµV + C

∫
B1

|∇ζ|2|X|2 . (4.8)

However, by (4.2),

E(V, π, 0, 1/2) ≤ 2k+1

∫
ζ2divTyΓX dµV (y) . (4.9)

Since |∇ζ| + |ζ| ≤ C and |X(x)| = dist(x, π), from (4.8) and (4.9) we easily conclude the
desired inequality. �
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5. The Lipschitz approximation

This is probably the most technical section of these notes. The aim is to prove the
following proposition, which shows that, when the excess and the generalized mean cur-
vatures are sufficiently small, most of the varifold can be covered with a single Lipschitz
graph with sufficiently small Lipschitz constant. This type of approximation was pioneered
by De Giorgi in [4]. A first proposition of this type for varifolds was proved by Allard in
Lemma 8.12 of [2] (cf. Theorem 20.2 of [13]). In what follows, if Ω is a subset of an affine
plane x0 + π and f : Ω→ π⊥, the graph of f , denoted by Γf , is the set {y+ f(y) : y ∈ Ω}.

Proposition 5.1 (Lipschitz Approximation). For any positive integer k < N there is a
constant C with the following property. For any `, β ∈]0, 1[ there are λ ∈]0, 1] (depending
only on `) and εL > 0 such that the following holds. If V = (Γ, θ) and π satisfy the
assuptions of Theorem 3.2 with εL in place of ε, then there is a map f : (π+x0)∩Br/8(x0)→
π⊥ such that

(i) The Lipschitz constant of f is less than ` and the graph of f (from now on denoted
by Γf) is contained in the βr-neighborhood of x0 + π;

(ii) θ ≡ 1 Hk–a.e. on Γ∩Br/8(x0), which is contained in the βr-neighborhood of x0 +π;
(iii) Γf contains the set G := {x ∈ Γ ∩Br/8(x0) : E(V, π, x, ρ) ≤ λ ∀ρ ∈]0, r/2[};
(iv) The following estimate holds

Hk (Γf \G) +Hk
(
(Γ ∩Br/8(x0)) \G

)
≤ Cλ−1E(V, π, x0, r)r

k + C‖H‖∞rk+1 . (5.1)

The proof of the Proposition is based on the following Lemma, which in turn is proved
using a blow-up argument based on Lemma 5.3.

Lemma 5.2. Let k < N be a positive integer. For any δ ∈]0, 1
2
[ there is a positive number

εH such that, if V satisfies the assumptions of Allard’s Theorem with εH in place of ε, then

(i) Γ ∩Br/2(x0) is contained in the δr-neighborhood of x0 + π;
(ii) µV (Bρ(x)) ≤ (ωk + δ)ρk for every x ∈ Br/4(x0) and any ρ ≤ r

2
.

From now on Hk A will denote the measure assigning to each Borel set B the value
Hk(A ∩B), whereas

∗
⇀ will denote the usual weak∗ convergence in the sense of measures.

Lemma 5.3. Let Vi = (Γi, θi) be a sequence of k-dimensional integral varifolds on B ⊂ RN

satisfying the assumptions of Theorem 3.2 with ε = ε(Vi) ↓ 0 for a given plane π. Then

µVi
∗
⇀Hk π in B1.

Remark 5.4. Lemma 5.3 can indeed be proved under the only assumption that (H1) in
Theorem 3.2 holds. The vanishing of the excess can then be drawn as a conclusion and thus
assumption (H2) in Theorem 3.2 is redundant. However this stronger version of Lemma
5.3 requires the theory of general varifolds and in particular the Compactness Theorem for
integral varifolds (see Thorem 6.4 of [2] and Theorem 42.7 of [13]).

Remark 5.5. Lemma 5.2 is a “poor-man” version of a more precise height bound (cf. the
proof of Theorem 20.2 of [13]) where δ and εH are related by δ2+2k = εH . This estimate
(first proved in the context of area-minimizing currents by Almgren, see for instance the
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appendix of [12]) is considerably more difficult to prove and these notes are considerably
shorter also because we avoid it. As a result the estimates of Proposition 5.1 are very crude
compared to the ones of Theorem 20.2 in [13].

5.1. Proof of Lemma 5.3. Fix ρ ∈]0, 1[, denote by Hi the generalized mean curvature
of Vi and apply the monotonicity formula to conclude that∫

B1\Bρ

|∇⊥r|2

rk
dµVi ≤ µVi(B1)− µVi(Bρ)

ρk
+ C‖Hi‖∞

≤ µVi(B1)− e−‖Hi‖∞ωkθi(0) + C‖Hi‖∞ ≤ µVi(B1)− e−‖Hi‖∞ωk + C‖Hi‖∞
i→∞→ 0.

Therefore∫
B1

|P⊥π (y)|2dµVi ≤ 2

∫
B1

|P⊥π (y)− P⊥TyΓ(y)|2dµVi(y) + 2

∫
B1

|P⊥TyΓ(y)|2dµVi(y)

≤ C

∫
B1

‖π − TyΓ‖2dµVi + C

∫
B1\Bρ

|∇⊥r|2

rk
dµVi + Cρ2µVi(Bρ) . (5.2)

Assume now that a subsequence, not relabeled, of {µVi} converges weakly∗ to some measure
µ and fix a nonnegative ϕ ∈ Cc(B1). We then conclude∫

|P⊥π (y)|2ϕ(y) dµ(y) = lim
i→∞

∫
|P⊥π (y)|2ϕ(y) dµVi(y)

(5.2)
= 0 .

Thus µ is supported in π. On the other hand, for any x ∈ B1 and any ρ < 1− |x| we have,
by the monotonicity formula,

µ(Bρ(x))

ρk
≤ lim inf

i→∞

µVi(Bρ(x))

ρk
≤ lim inf

i→∞

e‖Hi‖∞µVi(B1−|x|(x))

(1− |x|)k
≤ ωk

(1− |x|)k
.

Hence the upper k-dimensional density of µ is finite, which in turn implies µ = θHk π for
some nonnegative Borel function θ. Fix a vector field X ∈ C1

c (B1) and consider∣∣∣∣∫
π

divπXθdHk

∣∣∣∣ = lim
i→∞

∣∣∣∣∫ divπX dµVi

∣∣∣∣
≤ lim inf

i→∞

{∣∣∣∣∫ divTΓiX dµVi

∣∣∣∣+ C‖DX‖∞
∫
‖TΓi − π‖ dµVi

}
≤ lim inf

i→∞
C
(
‖Hi‖∞‖X‖∞µVi(B1) + ‖DX‖∞E(Vi, π, 0, 1)1/2(µVi(B1))1/2

)
= 0 .

Let now z1, . . . , zk, y1, . . . , yN−k be a system of coordinates such that π = {y = 0} and
denote by Br the ball of Rk with radius r and centered at 0. The last equality implies∫

θ(z) divzY (z) dz = 0 for any vector field Y ∈ C1
c (B1,Rk). (5.3)

It is well known that (5.3) implies the constancy of θ: take for instance a standard mollifier
ϕδ and test (5.3) with vector fields of type Y ∗ ϕδ to conclude that the derivative of θ ∗ ϕδ
vanishes on B1−δ; letting δ ↓ 0 we then conclude that θ is a constant θ0. On the other
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hand, since µ(∂Bρ) = 0, we have θ0ωkρ
k = µ(Bρ) = limi→∞ µVi(Bρ). However, as already

observed, by the Monotonicity Formula, µVi(Bρ)→ ωkρ
k. Thus θ0 = 1.

Summarizing, any convergent subsequence of {µVi} converges to Hk π. By the weak∗

compactness of bounded closed convex sets in the space of measures, we conclude the
proof. �

5.2. Proof of Lemma 5.2. By scaling and translating we can assume x0 = 0 and r = 1.
By possibly rotating, if the proposition were false, then there would be a positive constant
δ < 1

2
, a plane π and a sequence of varifolds Vi = (Γi, θi) which satisfy the assumptions of

Lemma 5.3 and such that, for each i, one of the following two alternatives holds:

(A) there is a point xi ∈ Γi ∩B1/2 such that |P⊥π (xi)| ≥ δ;
(B) there is a point xi ∈ B1/4 and a radius ρi ∈]0, 1

2
[ such that µVi(Bρi(xi)) ≥ (ωk+δ)ρki .

By Lemma 5.3 we know that µVi
∗
⇀Hk π and w.l.o.g. we can assume that one of the two

alternatives holds for every i.
Case (A). W.l.o.g. we can assume that xi → x. Then x ∈ B1/2 and |P⊥π (x)| ≥ δ. Thus

Bδ(x) ⊂ B1 and Bδ(x) ∩ π = ∅. On the other hand, for i large enough, Bδ/2(xi) ⊂ Bδ(x).
Since Hk(∂Bδ(x) ∩ π) = 0, by the Monotonicity Formula we have

0 = Hk(π ∩Bδ(x)) = lim
i→∞

µVi(Bδ(x)) ≥ lim sup
i→∞

µVi(Bδ/2(xi)) ≥ ωk2
−kδk ,

which obviously is a contradiction.
Case (B). By the Monotonicity formula, µVi(B1/2(xi)) ≥ e−‖Hi‖∞/2(ωk+δ)2−k. W.l.o.g.

we can assume xi → x ∈ B1/4. Fix any radius r > 1
2

and observe that the ball of radius r

centered at x contains the balls B1/2(xi) for i large enough. Since Hk(π ∩ ∂Br(x)) = 0 we
then conclude

Hk(π ∩Br(x)) = lim
i→∞

µVi(Br(x)) ≥ lim
i→∞

µVi(B1/2(xi)) ≥ (ωk + δ)2−k .

Letting r ↓ 1
2

we then conclude Hk(π ∩B1/2(x)) ≥ (ωk + δ)2−k, which is impossible. �

5.3. Proof of Proposition 5.1. W.l.o.g. we assume x0 = 0 and r = 1. Moreover, to
simplify the notation we set E := E(V, π, 0, 1).

(C1) We start by choosing λ smaller than the εH given by Lemma 5.2 when we set

δ = (N−k)−
1
2 `

6
.

(C2) We then choose εL < λ so that it is also smaller than the εH given by Lemma 5.2

when we set δ := min{λ, (N − k)−
1
2β}.

Consider any point x ∈ Γ ∩ B1/8. By Lemma 5.2 and our choice (C2) of εL we have

µ(Br(x)) ≤ (ωk + λ)rk for any r < 1
2
. Letting r ↓ 0 we also conclude θ(x) ≤ (1 + λ

ωk
) < 2.

Since θ ∈ N \ {0} for Hk–a.e. x ∈ Γ, we conclude that θ = 1 Hk–a.e. on Γ ∩ B1/8.

Observe also that, again by our choice (C2) of εL, Γ∩B1/2 is contained in the (N −k)−
1
2β-

neighborhood of π. So this shows that conclusion (ii) is satisfied.
Assume next x ∈ G and pick a second point y ∈ G. Observe that |y−x| < 1

4
. Therefore

choose r > |y− x| so that 2r < min{1
2
, 3|x− y|}. Since 2r < 1

2
, by the choice of (C2) of εL
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we have µ(B2r(x)) ≤ (ωk + λ)(2r)k and since x ∈ G we also have E(V, π, x, 2r) < λ. So we
can apply Lemma 5.2 in B2r(x) and by our choice (C1) of λ this implies

|P⊥π (x)− P⊥π (y)| ≤ 3−1(N − k)−
1
2 ` r ≤ 1

2
|y − x| ,

because y ∈ Br(x). By the triangle inequality, |Pπ(x) − Pπ(y)| ≥ 1
2
|y − x|. This implies

that Pπ : G → π is an injective map. Thus, if we set D = Pπ(G), it turns out that G is

the graph of a function f : D → π⊥. Observe that ‖f‖∞ ≤ (N − k)−
1
2β and that

|f(v)− f(w)| = |P⊥π (v, f(v))− P⊥π (w, f(w))| ≤ 2−1(N − k)−
1
2 `|(v, f(v))− (w, f(w))|

≤ (N − k)−
1
2 `|Pπ(v, f(v))− Pπ(w, f(w))| = (N − k)−

1
2 `|v − w| .

Thus f : D → π⊥ has Lipschitz constant (N − k)−
1
2 `. Fix a system of orthonormal

coordinates on π⊥ and let f1, . . . , fN−k be the corresponding coordinate functions of f . We
can then extend each fj to B1/8 ∩ π preserving both the Lipschitz constant and the L∞

norm. The resulting extension of f will then have Lipschitz constant1 at most ` and L∞

norm at most β. Thus f satisfies conclusion (i).
On the other hand (iii) holds by construction. We therefore come to the estimate (5.1).

First of all, for each x ∈ F := (Γ \ G) ∩ B1/8 we choose a radius ρx < 1
2

such that
E(V, π, x, ρx) ≥ λ. By the 5r-Covering theorem we can find countably many pairwise
disjoint balls Bρi(xi) such that {B5ρi(xi)}i covers F and E(V, π, xi, ρi) ≥ λ. We can
therefore compute:

Hk(F ) ≤ 5kωk
∑
i

ρki ≤
5kωk
λ

∑
i

E(V, π, xi, ρi)ρ
k
i ≤ Cλ−1E . (5.4)

As for estimating F ′ := Γf \G observe that, by the Area Formula,

Hk(F ′) ≤ C
(
ωk8

−k −Hk(D)
)

= C
(
ωk8

−k −Hk(Pπ(G))
)
≤ C

(
ωk8

−k −
∫
G

JTΓPπ dHk

)
(4.3)

≤ C
(
ωk8

−k + CE −Hk(G)
)
≤ C

(
CE + ωk8

−k − µV (B1/8) +Hk(F )
)

(5.4)

≤ C

λ
E + C(ωk8

−k − µV (B1/8)) ≤ C

λ
E + Cωk8

−k (1− e−‖H‖∞/8) (5.5)

≤ C

λ
E + C‖H‖∞ , (5.6)

where in the last inequality of (5.5) we have used the Monotonicity formula. Finally, (5.6)
combined with (5.4) proves (5.1).

1We could also apply directly Kirszbraun’s extension theorem to f . However the proof of Kirszbraun’s
theorem is much more difficult than its elementary scalar counterpart, used here on each component of f .
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6. Proof of Theorem 3.4

We have almost all the ingredients to prove Theorem 3.4: we only need two additional
elementary lemmas about harmonic functions. Before coming to them, let us briefly explain
how all these tools will be combined in the proof of Theorem 3.4. We first choose ε0

sufficiently small so to have a Lipschitz approximation f with small Lipschitz constant,
provided by Proposition 5.1. Using Lemma 6.1 we will show that f is L2-close to a harmonic
function u (the heuristic explanation: if the graph of f were minimal, then f would solve
a system of PDEs which is a perturbation of the Laplacian, in particular ∆f would be
small in a suitable sense and the existence of a nearby harmonic function would follow
from standard arguments). In a much smaller ball the L2 norm of u is quite small (cf.
Lemma 6.2) and so we conclude that the L2 norm of f is small. This is then transformed
into a bound for the left hand side of (4.1): from (4.1), i.e. the Tilt-excess inequality, we
finally conclude (3.2).

Lemma 6.1 (Harmonic approximation). Let k ∈ N\{0} and consider the ball Br(x) ⊂ Rk.
For any % > 0 there is εA > 0 with the following property. If a function f ∈ W 1,2(Br(x))
with

∫
|∇f |2 ≤ rk satisfies∣∣∣∣∫ ∇ϕ · ∇f ∣∣∣∣ ≤ εAr

k‖∇ϕ‖∞ ∀ϕ ∈ C1
c (Br(x)) (6.1)

then there is a harmonic function u on Br(x) with
∫
|∇u|2 ≤ rk such that∫

(f − u)2 ≤ %r2+k . (6.2)

Lemma 6.2. Let k ∈ N \ {0}. Then there is a constant C > 0 such that, if u is an
harmonic function in Br(x0) ⊂ Rk, then

sup
x∈Bρ(x0)

|u(x)− u(x0)−∇u(x0) · (x− x0)| ≤ Cρ2r−
k
2
−1‖Du‖L2(Br(x0)) ∀ρ ≤ r

2
. (6.3)

Proof of Lemma 6.1. W.l.o.g. we can assume x0 = 0 and r = 1. Denote by H the set of
harmonic functions on B1 with Dirichlet energy at most 1. If the lemma were false, then
there would be a % > 0 and a sequence of functions {fj} ⊂ W 1,2(B1) such that

lim
j→∞

sup
ϕ∈C1

c (B1),‖∇ϕ‖∞≤1

∣∣∣∣∫ ∇ϕ · ∇fj∣∣∣∣ = 0 (6.4)

and
∫
B1
|∇fj|2 ≤ 1, but

inf
u∈H

∫
(u− fj)2 ≥ % . (6.5)

Since both statements remain unchanged if we subtract a constant from fj, we can assume
that the average of fj vanishes. The Poincaré inequality implies that ‖fj‖W 1,2 is bounded
independently of j and by Rellich’s theorem we can assume that a subsequence, not rela-
beled, converges to u ∈ W 1,2 strongly in L2. By semicontinuity of the Dirichlet integral
we conclude that

∫
|∇u|2 ≤ 1. On the other hand, if we fix a test function ϕ ∈ C1

c (B1),
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passing into the limit in (6.4) we conclude
∫
∇ϕ · ∇u = 0. Therefore u is harmonic and

hence belongs to H . But then the fact that fj → u in L2 contradicts (6.5). �

Proof of Lemma 6.2. W.l.o.g. we assume r = 1. Fix ρ ≤ 1
2
. By the Taylor expansion:

sup
x∈Bρ
|u(x)− u(0)−∇u(0) · x| ≤ ρ2

2
‖D2u‖L∞(B1/2) .

On the other hand, Du is also harmonic and from the mean-value property we conclude
the standard estimate ‖D2u‖L∞(B1/2) ≤ C‖Du‖L2(B1). �

Proof of Theorem 3.4. W.l.o.g. we assume x0 = 0 and r = 1 and in order to simplify the
notation we denote E(V, π, 0, 1) by E.

Lipschitz approximation. We start by assuming that ε0 is smaller than the εL given
by Proposition 5.1 for some choice of positive numbers ` and β. ` will be specified soon,
whereas the value of β will be decided only at the end of the proof. Consider now the
Lipschitz approximation f : B1/8 ∩ π → π⊥ and the constant λ given by Proposition 5.1.
To simplify the notation, from now on we will denote by Br(x) the set Br(x) ∩ π. We
also assume that (y1, . . . , yk, z1, . . . , zN−k) are orthonormal coordinates on RN such that
π = {z = 0}. We therefore denote by fj the corresponding coordinate functions of the
map f . Fix a j ∈ {1, . . . , N − k} and denote by ej the unit vector (0, . . . , 0, 0, . . . , 1, . . . 0).
Let next ϕ ∈ C1

c (B1/16) and consider the vector field X(y, z) = ϕ(y)ej. Obviously X is
not compactly supported in B1/8. However recall that Γ ∩ B1/8 is supported in the β-
neighborhood of π. We assume that β is smaller than 1

16
. We can then multiply X by a

cut-off function in the variables z to make it compactly supported in B1/8 without changing
its values on Γ ∩ B1/16. Thus (recalling that by Proposition 5.1 the density θ is 1 µV –a.e.
on Γ ∩B1/8) we can use (1.3) and the estimates of Proposition 5.1 to conclude∣∣∣∣∣

∫
Γf

∇TxΓfϕ · ej dHk(x)

∣∣∣∣∣ ≤
∣∣∣∣∣
∫

Γf

∇TxΓfϕ · ej dHk(x)−
∫

Γ

∇TxΓϕ · ej dHk(x)

∣∣∣∣∣+ |δV (X)|

≤‖∇ϕ‖∞
(
Hk
(
(Γ \ Γf ) ∩B1/8

)
+Hk

(
(Γf \ Γ) ∩B1/8

))
+ ‖H‖∞Hk(Γ ∩B1/8)‖ϕ‖∞

≤
(
Cλ−1E + C‖H‖∞

)
‖∇ϕ‖∞ ≤ Cλ−1E‖∇ϕ‖∞ . (6.6)

(In the last inequality we have used the assumption ‖H‖∞ ≤ E). Next, let ξ1, . . . , ξk be
the standard basis vectors of π and denote by g the k × k matrix with the entries:

gij =

(
ξi +

N−k∑
l=1

∂yiflel

)
·

(
ξj +

N−k∑
m=1

∂yjfmem

)
=: vi · vj .

It follows easily that there is a constant C such that |gij − δij| ≤ C|Df |2. Thus, if ` is
smaller than some geometric constant, we can conclude the same estimate for the inverse
matrix, whose entries will be denoted by gij: |gij − δij| ≤ C|Df |2.
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The projection PTΓf is then given by the formula

PTΓf (w) =
∑
i,j

w · vi gijvj .

We easily compute

ej · vl = ∂ylfj ∇ϕ · vm = ∂ymϕ .

Therefore if we fix the point x = (w, f(w)),

PTxΓf (∇ϕ(w)) · ej =
∑
l,i

∂yifj(w)gil(w)∂ylϕ(w)

=
∑
l

∂ylfj(w)∂ylϕ(w) +O(|Df |3(w)|∇ϕ(w)|) . (6.7)

Next, we introduce the notation ∇̄ϕ = (∂y1ϕ, . . . , ∂ykϕ) and we call Jf the Jacobian

Jf(w) :=

√
1 + |Df(w)|2 +

∑
α,β

(Mα,β(w))2

where the last sum goes over all n × n minors Mαβ of Df with n ≥ 2. Recall the area
formula: ∫

Γf

∇TxΓfϕ · ej dHk(x) =

∫
B1/8

PTxΓf (∇ϕ(w)) · ejJf(w) dw . (6.8)

On the other hand a simple Taylor expansion gives |Jf(w)− 1| ≤ C|Df(w)|2. Combining
this last estimate with (6.6), (6.7) and (6.8) and recalling that spt (ϕ) ⊂ B1/16, we conclude∣∣∣∣∣

∫
B1/16
∇̄ϕ(w) · ∇̄fj(w) dw

∣∣∣∣∣ ≤ Cλ−1E‖∇̄ϕ‖∞ + C‖∇̄ϕ‖∞
∫
B1/16
|Df |2 . (6.9)

On the other hand observe that

‖π − TxΓf‖2 ≥ |Pπ(ej)− PTxΓ(ej)|2 = |PTxΓf (ej)|2 =

∣∣∣∣∣∑
l,m

∂ylfj(w)glm(w)vm(w)

∣∣∣∣∣
2

=

(∑
l,m

∂ylfj(w)glm(w)vm(w)

)
·

(∑
l′,m′

∂yl′fj(w)gl
′m′(w)vm′(w)

)
=

∑
l,m,l′,m′

∂ylfj(w)∂yl′fj(w)glm(w)gl
′m′(w)gm′m(w)

=
∑
l,m

∂ylfj(w)∂ymfj(w)glm(w)

= |∇fj(w)|2 +
∑
l,m

∂ylfj(w)∂yjfm(w)(glm(w)− δlm)

≥ |∇fj(w)|2(1− C|Df |2) . (6.10)
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Summing over j we conclude that, if the Lipschitz constant of f is smaller than a geometric
constant, then

2‖π − TxΓf‖2 ≥ |Df(w)|2 .
We now turn to (6.9): we first use use Proposition 5.1(iv) to conclude∣∣∣∣∣

∫
B1/16
∇̄ϕ(w) · ∇̄fj(w) dw

∣∣∣∣∣
≤ Cλ−1E‖∇̄ϕ‖∞ + C‖∇̄ϕ‖∞

∫
Pπ(G)

|Df(w)|2 dw .

Then we observe that G ⊂ Γ ∩ Γf and we thus infer from the previous discussion that
2‖π − TxΓ‖2 ≥ |Df(w)|2 for a.e. w ∈ Pπ(G). Hence∣∣∣∣∣

∫
B1/16
∇̄ϕ(w) · ∇̄fj(w) dw

∣∣∣∣∣
≤ Cλ−1E‖∇̄ϕ‖∞ + C‖∇̄ϕ‖∞

∫
G

‖π − TxΓ‖2dHk(x) ≤ Cλ−1E‖∇̄ϕ‖ .

` has now been chosen smaller than a geometric constant which allows to justify the
computations above. Therefore (cf. Proposition 5.1) λ is also fixed independently of β
(and of all the other parameters which will enter in the rest of the proof). We then record
the conclusion∣∣∣∣∣

∫
B1/16
∇̄ϕ(w) · ∇̄fj(w) dw

∣∣∣∣∣ ≤ C E‖∇̄ϕ‖∞ ∀ϕ ∈ C1
c (B1/16) . (6.11)

Moreover, observe that∫
B1/16
|∇̄fj(w)|2 dw ≤ C`2λ−1E +

∫
Pπ(G)

|∇̄fj(w)|2 dw ≤ CE . (6.12)

Harmonic approximation. Fix a positive number ϑ, whose choice will be specified
later and consider the εA given by Lemma 6.1 when choosing % = ϑ. We next let j ∈
{1, . . . , N −k} and define f̃j := c0E

− 1
2fj where the constant c0 is chosen so that, according

to (6.12),
∫
B1/16
|∇̄f̃j|2 ≤ 1. According to (6.11),∣∣∣∣∣

∫
B1/16
∇̄ϕ(y) · ∇̄f̃j(y) dy

∣∣∣∣∣ (6.11)

≤ C E
1
2‖∇̄ϕ‖∞ . (6.13)

Assuming ε0 ≤ (εA/C)2 we can then apply Lemma 6.1 to conclude the existence of an

harmonic function ũj : B1/16 → R with
∫
|∇̄ũj|2 ≤ 1 and

∫
(f̃j − ũj)

2 ≤ ϑ. Setting

uj := c−1
0 E

1
2 ũj we then conclude∫

B1/16
(fj − uj)2 ≤ CϑE . (6.14)
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Observe, in particular, that if we define the map u = (u1, . . . , uN−k) we then have

‖D̄u‖2
L2 ≤ CE . (6.15)

Height estimate. We denote by L : Rk → π⊥ the map L(y) =
∑

j(∇̄uj(0) · y)ej, by x0

the point (0, u(0)) and by π̄ the plane {
∑

i yiξi + L(y) : y ∈ Rk}. We next claim that

η−k−2

∫
B4η(x0)

dist(x− x0, π̄)2 dµV (x) ≤ Cη−k−2ϑE + Cβ2η−k−2 E + Cη2 E . (6.16)

We start by observing that, by the mean-value property for the harmonic functions uj:

dist(x0, π) = |u(0)| ≤ C‖u‖L1 ≤ C‖u− f‖L2 + C‖f‖L2 ≤ Cϑ
1
2 E

1
2 + Cβ , (6.17)

‖P⊥π − P⊥π̄ ‖ ≤ C
∑
j

|∇̄uj(0)| ≤ C‖u‖L1 ≤ Cϑ
1
2 E

1
2 + Cβ . (6.18)

For x ∈ Γ ∩B1/64 we can therefore estimate

dist(x−x0, π̄) = |P⊥π̄ (x−x0)|
(6.18)

≤ Cϑ
1
2 E

1
2 +Cβ +|P⊥π (x−x0)|

(6.17)

≤ Cϑ
1
2 E

1
2 +Cβ . (6.19)

We thus conclude∫
B4η(x0)\Γf

dist(x− x0, π̄)2 dµV (x) =

∫
(Γ\Γf )∩B4η(x0)

dist(x− x0, π̄)2 dHk(x)

≤ C(ϑ
1
2 E

1
2 + β)2 E . (6.20)

Observe finally that, if x = (y, f(y)) ∈ Γf , then dist(x − x0, π̄) ≤ |f(y) − u(0) − L(y)|.
Thus, by (6.14) we conclude∫

Γf∩B4η(x0)

dist(x− x0, π̄)2 dµV (x) ≤
∫
B4η
|f(y)− u(0)− L(y)|2 dy

(6.14)

≤ CϑE + 2

∫
B4η
|u(y)− u(0)− L(y)|2.

Recalling that L(y) = D̄u(0) · y, from (6.3) and (6.15) we infer

sup
y∈B4η

|u(y)− u(0)− L(y)|2 ≤ Cη4‖D̄u‖2
L2 ≤ Cη4E

Summarizing, we have achieved∫
Γf∩B4η(x0)

dist(x− x0, π̄)2 dµV (x) ≤ CϑE + Cηk+4E . (6.21)

(6.20) and (6.21) together imply (6.16).

Tilt-excess inequality and conclusion. Impose that ϑ and β satisfy

Cϑ
1
2 ≤ η

2
and Cβ ≤ η

2
, (6.22)
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where C is the constant of (6.17). We then conclude that Bη(0) ⊂ B2η(x0) and, combin-
ing(6.16) with Proposition 4.1, we infer

E(V, π̄, 0, η) ≤ 2kE(V, π̄, x0, 2η) ≤ Cη−k−2ϑE + Cβ2η−k−2 E + Cη2 E + Cη2E2 . (6.23)

Recall that the constant C in the last inequality does not depend on the parameters η, β, ϑ
and ε0. We choose η first in such a way that Cη2 = 1

8
. We then choose β and ϑ such that

Cη−k−2ϑ ≤ 1
8

and Cη−k−2β2 ≤ 1
8
. It is obvious that these last choices are compatible with

(6.22). Finally CηE2 ≤ CηE ≤ E
8

. Plugging these inequalities in (6.23) we then infer

E(V, π̄, 0, η) ≤ 1

2
E =

1

2
E(V, π, 0, 1) ,

which is indeed the desired conclusion. �

7. Proof of Theorem 3.2

The rough idea of the proof is as follows. First by a scaling argument we reduce to the
case x0 = 0 and r = 1. The parameter ε is chosen so small that Theorem 3.4 can be
applied to any point x ∈ B1/2 ∩ Γ. The very nature of the latter theorem implies that we
can iterate it to conclude a power-law decay for the excess. From Proposition 5.1 we then
conclude that Γ∩B1/4 is contained in the graph of a Lipschitz function f : π → π⊥. Using
the Monotonicity Formula we will show that, in a neighborhood of the origin Γ coincides
with the graph of f . Finally we will show that the decay of the excess translates into a
Morrey-type estimate for ∇f , concluding its C1,α regularity.

Proof. W.l.o.g. we assume x0 = 0 and r = 1.

Power-law decay of the excess. First let ε0 be the constant of Theorem 3.4 and
choose ε so small that Lemma 5.2 can be applied with δ = ε0. We thus know that
µ(Br(x)) ≤ (ωk + ε0)rk for every r < 1

2
and any x ∈ Γ ∩ B1/4. Having fixed such an x we

introduce the function

F (r) := E(r) + Λ‖H‖∞r := min
τ
E(V, τ, x, r) + Λ‖H‖∞r

where Λ = 4η−k. If F (r) < ε0, then by Theorem 3.4

• either ‖H‖∞r ≤ E(r) and so F (ηr) ≤ 1
2
E(r) + Ληr‖H‖∞ ≤ 1

2
F (r);

• or E(r) ≤ ‖H‖∞r, and so

F (ηr) ≤ (η−kΛ−1 + η)Λ‖H‖∞r ≤
3

4
Λ‖H‖∞r ≤

3

4
F (r) .

Summarizing: F (r) < ε0 ⇒ F (ηr) ≤ 3
4
F (r). In particular, F (ηr) < ε0 and we can iterate

the conclusion with ηr in place of r. Observe next that

F (1
2
) ≤ 2−kE(V, π, 0, 1) + 2−1Λ‖H‖∞ ≤ (2−k + 2−1Λ)ε .

Thus, if ε is sufficiently small, we can start from r = 1
2

and iterate the argument to infer

F (ηn 1
2
) ≤ C(3

4
)nε for any n ∈ N. Given any r < 1

2
, we let n = blogη(2r)c to conclude

E(r) ≤ η−kE(ηn 1
2
) ≤ η−kF (ηn 1

2
) ≤ C(3

4
)nε ≤ C(3

4
)logη(2r)−1ε ≤ Cr2αε , (7.1)
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where the constants C and α > 0 depend only on the dimensions of the varifold and of the
ambient euclidean space.

Inclusion in a Lipschitz graph. Fix x ∈ B1/4. Set π0 = π and for n ≥ 1 let πn be
a plane such that E(V, πn, x, 2

−n) = E(2−n). Recalling that µV (Br(x)) ≥ C−1rk for any
r < 1− |x| (Monotonicity Formula!), we conclude

‖πn − πn+1‖ ≤
1

µV (B2−n−1(x))

∫
B2−n−1 (x)

(‖πn − TyΓ‖+ ‖πn+1 − TyΓ‖) dµV (y)

≤ C(E(V, πn, x, 2
−n) + E(V, πn+1, x, 2

−n−1))1/2 ≤ C2−nαε1/2 . (7.2)

Summing this inequality from n = 0 to n = j − 1 we conclude ‖πj − π‖ ≤ Cε1/2, where C
is a dimensional constant. Thus, E(V, x, π, r) ≤ Cε for any x ∈ B1/4 ∩ Γ and any r ≤ 1

2
.

Fix next a constant ` < 1
2

(whose choice will be specified in the next step) and let λ and
εL be the corresponding constants given by Proposition 5.1. We assume ε to be smaller
than εL but also so small that the set G of Proposition 5.1 contains Γ ∩ B1/4. We then
conclude that Γ∩B1/4 is contained in the graph of a Lipschitz function f : B1/4 ∩ π → π⊥

with Lipschitz constant smaller than `.

Absence of “holes”. Consider the ball B1(0) ⊂ Rk, x ∈ ∂B1(0) and let 2ϑ be the value
Lk(B1(0) \B1(x)). Assume now that D = Pπ(Γ∩B1/4) does not contain B1/16 := B1/16 ∩π
and let w ∈ B1/16\D. Define r := inf{|w−z| : z ∈ D}. r < 1

16
because 0 ∈ D and thus any

infimizing sequence {zn} must be contained in B1/8. Up to extraction of a subsequence we

can then assume that zn → z ∈ B1/8. Recalling that the origin belongs to Γ we conclude
‖f‖∞ ≤ `. If ` is sufficiently small we conclude that xn = (zn, f(zn)) ∈ B3/16 and thus xn
converges x = (z, f(z)) ∈ Γ ∈ B3/16, where z ∈ B1/8. Observe that Γ ∩ Br(x) is contained
in the graph of f because r < 1

16
. In particular, considering that Br(w)∩D = ∅, using the

area formula we can estimate

µV (Br(x)) ≤
∫
Br(z)\Br(w)

Jf(u) du ≤ (ωk − 2ϑ)(1 + C`2)rk . (7.3)

We now specify the choice of ` so that (ωk − 2ϑ)(1 + C`2) = ωk − ϑ. Recall however that,
by the Monotonicity Formula, µV (Br(x)) ≥ ωkr

ke−‖H‖∞r ≥ ωkr
ke−ε. Thus, choosing ε

smaller than a specified dimensional constant, we reach a contradiction.

Morrey estimate for Df . So far we have concluded that Γ coincides with the graph
of f on the intersection of the cylinder B1/8 × π⊥ with the ball B1/4. For each z ∈ B1/16

and every r < 1
16

denote by πz,r the k-dimensional plane such that

E(V, πz,r, (z, f(z)), r) = min
τ
E(V, τ, (z, f(z)), r) ≤ Cεr2α .

Recalling that E(V, π, (z, f(z)), r) ≤ Cε, we conclude that ‖π − πz,r‖ ≤ Cε1/2. If ε is
sufficiently small, πz,r is the graph of a linear map Az,r : π → π⊥ with Hilbert-Schmidt
norm smaller than 1.

Consider now two linear maps A,B : π → π⊥ with |A|, |B| ≤ C` (where | · | denotes the
Hilbert-Schmidt norm), the k-dimensional planes τA and τB given by the corresponding
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graphs and PA and PB the orthogonal projections onto τA and τB. Observe that, if ` is
smaller than a geometric constant, then |PA(v)| ≤ 1

2
|v| for any v ∈ π⊥ (this follows easily

because if ` ↓ 0, then PA → Pπ). Fix an orthonormal base e1, . . . , ek of π and consider that

|A(ei)−B(ei)| = |(ei + A(ei))− (ei +B(ei))| = |PA(ei + A(ei))− PB(ei +B(ei))|
≤ |PA(ei)− PB(ei)|+ |PA(A(ei))− PB(A(ei))|+ |PB(A(ei)−B(ei)︸ ︷︷ ︸

∈π⊥

)|

≤ C‖τA − τB‖+ 1
2
|A(ei)−B(ei)| .

We then conclude that |A(ei) − B(ei)| ≤ C‖τA − τB‖ and thus, after summing over i, we
infer |A−B| ≤ C‖τA − τB‖.

From this discussion we derive, for r < 1
16

,∫
Br/2(z)

|Df(y)− Az,r|2 dy ≤
∫
Br/2(z)

|Df(y)− Az,r|2Jf(y) dy

≤ CrkE(V, πz,r, (z, f(z)), 2r) ≤ Crk+2α . (7.4)

Denoting by Df z,r the average of Df on Br(z) we then conclude∫
Br(z)
|Df(y)−Df z,r|2 dy = min

A

∫
Br(z)
|Df(y)− A|2 dy ≤ Crk+2α ∀r < 1

2
. (7.5)

Conclusion. It is well known that (7.5) implies the existence of g ∈ C0,α which coincides
with Df a.e. on B1/64. We briefly sketch here the argument (the reader may consult [8]
for more details). First of all, argue as in (7.2) to conclude

|Dfx,2−k −Dfx,2−k−1| ≤ C2−kα for all k > 5 and x ∈ B1/32. (7.6)

Hence the sequence of continuous functions x 7→ Dfx,2−k converges uniformly to a contin-
uous g with g = Df a.e. on B1/32. Next, summing (7.6) over different scales we infer

|Dfx,r −Dfx,ρ| ≤ C(max{r, ρ})α for all x ∈ B1/32 and all r, ρ < 1
32

. (7.7)

Observe that, if r = |x− y| and x, y ∈ B1/64, then

|Dfx,r −Df y,r|2 ≤ Cr−k
∫
Br(x)

|Df −Dfx,r|2 + Cr−k
∫
Br(y)

|Df −Df y,r|2 ≤ Cr2α . (7.8)

Combining (7.6) and (7.7) we conclude the existence of a dimensional constant such that

|Dfx,2−k −Df y,2−k | ≤ C
(

max{2−k, |x− y|}
)α
.

Thus, fixing x and y and letting k ↑ ∞ we conclude |g(x)− g(y)| ≤ C|x− y|α.
Finally, mollify f with a standard kernel to get f ∗ ϕη. We have D(f ∗ ϕη) = g ∗ ϕη

and therefore ‖f ∗ ϕη‖C1,α(B1/64) is bounded independently of η. Letting η go to 0 we then

conclude that f ∈ C1,α(B1/64). �
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8. Further readings

To deepen the knowledge on the regularity theory for stationary varifolds the two ref-
erences [2] and [13] are still the most fundamental sources. An open problem in the area
(perhaps the hardest) is to understand whether for stationary varifolds (i.e. when the first
variation vanishes) the regularity on a dense open set can be improved to an almost ev-
erywhere regularity without any assumption on the density. Such result is not possible for
varifolds with bounded generalized mean curvature, as it is shown by the Example 8.1(2)
of [2]: the question is, therefore, rather subtle.

Decay statements as Theorem 3.4 play a prominent role in the regularity theory of min-
imal surfaces and much more general results have been proved in the literature, especially
in recent times: see for instance [3], [11] and [10] (the latter paper contains an exhaustive
list of references). In many of these results one needs quite refined approximation theo-
rems, which use multiple-valued functions to overcome the difficulty posed by points of
high density surrounded by points of low density. In this context multiple valued functions
were first introduced by Almgren in his Big regularity paper [1]; a more accessible reference
for Almgren’s theory is [6].
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[6] C. De Lellis & E. Spadaro, Almgren’s Q-valued functions revisited. Memoirs of the AMS 211 no.

991m 2011.
[7] L. C. Evans, Partial Differential equations. Americal Mathematical Society, Providence 2010.
[8] D. Gilbarg & N. Trudinger, Elliptic partial differential equations of second order. Classics in

Mathematics. Springer-Verlag. Berlin 2001.
[9] P. Mattila, Geometry of sets and measures in Euclidean spaces. Cambridge University Press. Cam-

bridge 1995.
[10] U. Menne, Decay estimates for the quadratic tilt-excess of integral varifolds. Arch. Rat. Mech. Anal

204 1–83 2012.
[11] R. Schätzle, Quadratic tilt-excess decay and strong maximum principle for varifolds. Ann. Sc.

Norm. Super. Pisa Cl. Sci. (5) 3 171–231, 2004.
[12] R. Schoen and L. Simon, A new proof of the regularity theorem for rectifiable currents which

minimize parametric elliptic functionals. Indiana Univ. Math. J. 31 415–434 1982.
[13] L. Simon, Lectures on geometric measure theory. Proceedings of the Centre for Mathematical Analysis,

3. Australian National University. Canberra 1983.

Mathematik Institut der Universität Zürich
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