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Abstract Let � ⊂ R3 be a smooth compact connected surface without boundary.
Denote by A its second fundamental form and by Å the tensor A − (tr A/2)Id. In
[4] we proved that, if ‖Å‖L2(�) is small, then � is W 2,2-close to a round sphere.
In this note we show that, in addition, the metric of � is C0–close to the standard
metric of S2.

1 Introduction

Let � ⊂ R3 be a smooth surface. A point p of � is called umbilical if the principal
curvatures of � at p are equal and the surface � is called umbilical if every point
x ∈ � is umbilical. A classical theorem in differential geometry states that if �
is a compact connected umbilical surface without boundary, then � is a a round
sphere. In [2] we proved the following quantitative version. Here:

– Id denotes the identity (1, 1)-tensor and the (0, 2)-tensor naturally associated
to it;

– Å denotes the traceless part of A, i.e. the tensor A − tr A
2 Id;

– id : S2 ⊂ R3 → R3 is the standard isometric embedding of the round sphere.

Theorem 1 Let � ⊂ R3 denote a smooth compact connected surface without
boundary and for convenience normalize the area of � by ar(�) = 4π . Then

‖A − Id‖L2(�) ≤ C‖Å‖L2(�), (1)

The first author was supported by a grant of the Swiss National Science Foundation.

C.D. Lellis · S. Müller (B)
Max–Planck Institute for Mathematics in the Sciences, Inselstr. 22, D-04103 Leipzig, Germany
E-mail: sm@mis.mpg.de



284 C. De Lellis, S. Müller

where C is a universal constant. If in addition ‖Å‖2
L2(�)

≤ 4π , then there exists a
conformal parameterization ψ : S2 → � and a vector c� ∈ R3 such that

‖ψ − (c� + id)‖W 2,2(S2) ≤ C‖Å‖L2(�). (2)

Since ψ conformal, if we denote by g the metric of � and by σ the standard metric
on S2, then ψ#g = h2σ for some positive function h. Hence Theorem 1 gives

‖h − 1‖W 1,2(R2) ≤ C‖Å‖L2(S2). (3)

Therefore, by Sobolev embeddings, for every p < ∞ there exists a constant C p
such that

‖h − 1‖L p(S2) ≤ C p‖Å‖L2(S2),

From (3) we cannot get a similar estimate for ‖h−1‖L∞ . Nonetheless in this paper
we show that such an estimate holds.

Theorem 2 There exists a universal constant C with the following property. Let
� be any given compact connected surface of R3 without boundary, such that
ar(�) = 4π and ‖Å‖L2(�) ≤ 8π . Then the conformal parameterization ψ of
Theorem 1 enjoys the bound

‖h − 1‖C0(S2) ≤ C‖Å‖L2(�). (4)

We prove this estimate by suitably modifying techniques and ideas from [4]. There
the authors showed bounds for ‖h‖∞ when A ∈ L2, by proving suitable bounds
for detA in the Hardy space H1. These Hardy bounds were achieved through the
Rn theory of [1] after locally lifting the Gauss map N : � → S2 to a suitable map
M : � → S5. The same strategy can be implemented using S3–liftings. The core
of Theorem 2 consists in showing that when ‖Å‖L2 is small, these liftings can be
chosen W 1,2–close to suitable liftings of the identity map.

Estimate (4) is crucial to conclude that some geometric constants of � are
close to the corresponding ones of S2. For instance it implies that the spectrum of
the Laplace–Beltrami operator of � is close to that of S2. More precisely, given
a compact surface � without boundary, we denote by λi (�) the i-th eigenvalue
of the Laplace–Beltrami operator, with the following conventions: λ0(�) = 0 and
if a is an eigenvalue with multiplicity n, then it appears n times in the sequence
{λi (�)} (e.g. λ1(S2) = λ2(S2) = λ3(S2) = 2).

Corollary 1 For each i there exists a constant Ci with the following property.
Let � be any given compact connected surface of R3 without boundary, such that
ar(�) = 4π and ‖Å‖L2(�) ≤ 4π . Then

|λi (�) − λi (S2)| ≤ Ci‖Å‖L2(�). (5)

2 Hardy bounds

We denote by

– N the Gauss map on �;
– M the map M := N ◦ ψ ;
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– K� the Gauss curvature detd N ;
– K the function K := K� ◦ ψ ;
– ω the standard volume form on S2.

In order to simplify the notation, for every 2-form α on S2 and every function
space H , we denote by ‖α‖H the number ‖ f ‖H , where f ω = α.

Then Theorem 2 follows from the following Hardy bound.

Proposition 1 There exist positive constants C and ε such that the following
holds. If M : S2 → S2 is a map such that ‖M − id‖W 1,2(S2) ≤ ε, then

‖M∗ω − ω‖H1(S2) ≤ C‖M − id‖W 1,2(S2). (6)

Proof (Proof of Theorem 2) Since h is a positive function there exists a unique
function u such that h = eu . Set

δ := ‖Å‖L2(�). (7)

From Proposition 3.2 of [2] we have that, under the assumptions of Theorem 2,
there exists a universal constant C1 such that

‖u‖C0 + ‖u‖W 2,1 ≤ C1. (8)

Thus it suffices to prove the existence of positive constants η and C2 such that

‖u‖C0 ≤ C2δ whenever δ < η. (9)

Thanks to Theorem 1 and to the bounds (8), there exists a universal constant C3
such that

‖M − id‖W 1,2(S2) ≤ C3δ . (10)

Let ε be the constant of Proposition 1 and δ < η = ε/C3. Then we have

‖M∗ω − ω‖H1(S2) ≤ C4‖M − id‖W 1,2(S2) ≤ C5δ . (11)

Note that K e2uω = M∗ω and hence (11) gives

‖K e2u − 1‖H1(S2) ≤ C5δ . (12)

Recall that u satisfies
−�S2u = K e2u − 1 . (13)

Since the only harmonic functions on S2 are the constants, the bound (12) and the
results of [3] imply that

‖u − c‖C0 ≤ C6δ for some constant c. (14)

The conformality of ψ gives 4π = ar(�) = ∫
S2 e2u and (8) implies

∣
∣e2(u−c) − 1

∣
∣ ≤ C7|u − c| ,

for some constant C7. Therefore we have

4π |e2c − 1| = e2c
∣
∣
∣
∣

∫

S2

(
e2(u−c) − 1

)
∣
∣
∣
∣ ≤ C7C64πδ.

Hence there is a constant C8 such that |c| ≤ C8δ. From this and (14) we get (9).

�
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The Hardy bound of Proposition 1 is proved by “locally” lifting the maps M
and id to maps into S3 via the Hopf fibration π : S2 → S3. The reason why we
cannot argue globally is that there is no such smooth lifting for the identity. Let
p ∈ S2 and denote by Dπ/2+1(p) the geodesic disk of S2 with center p and radius
π/2 + 1. Then in the next two sections we will prove the following proposition.

Proposition 2 (Hardy bound) Let  ∈ C∞(S2, S2) be a fixed map with (S2) ⊂
Dπ/2+1(p). There exist positive constants C and ε, depending only on ‖‖C2 ,
such that:

(HB) If M ∈ C∞(S2, S2) satisfies ‖M − ‖W 1,2(S2) ≤ ε, then

‖M∗ω − ∗ω‖H1(S2) ≤ C‖M − ‖W 1,2(S2) . (15)

Note that, since (S2) ⊂ Dπ/2+1(p), there exists a smooth lifting of 
through the Hopf fibration (see Proposition 3). This lifting exists under the weaker
assumption

∫
S2 ∗ω = 0. However, the stronger assumption (S2) ⊂ Dπ/2+1(p)

will be crucial later in order to prove some estimates on the lifting (compare with
the Second Step of the proof of Lemma 1).

From Proposition 2 one concludes Proposition 1 with a “cut and paste” proce-
dure.

Proof (Proof of Proposition 1) First of all we introduce some notation. We let p
be any point of S2 ⊂ R3. Then we let

D := Dπ/2+1/2(p) D̃ := Dπ/2+1(p).

We claim that if M is a smooth map and ‖M − id‖W 1,2(S2) is sufficiently small,
then there exist two maps M ′,  ′ : S2 → S2 such that:

– M ′ = M and  ′ = id on D;
–  ′(S2) ⊂ D̃;
– The following estimates hold for some universal constant C :

‖M ′ −  ′‖W 1,2(S2) ≤ C‖M − id‖W 1,2(S2) ‖ ′‖C2 ≤ C. (16)

This fact, combined with Proposition 2, yields the the existence of two positive
constants C and ε such that

‖M∗ω − ω‖H1(Dπ/2+1/2(p)) ≤ C‖M − id‖W 1,2(S2) (17)

for all p ∈ S2 and all M with ‖M − id‖W 1,2 < ε. Note that if p and q are two
antipodal points, then

Dπ/2+1/2(p) ∪ Dπ/2+1/2(q) = S2.

Therefore from (17) we would get

‖M∗ω − ω‖H1(S2) ≤ C ′‖M − id‖W 1,2(S2), (18)

which is the desired conclusion. It remains to prove the existence of the maps M ′
and  ′.
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First Step By Fubini’s Theorem, there exists a universal constant C with the fol-
lowing property: There exists ρ ∈ [π/2 + 1/2, π/2 + 3/4] such that

‖M − id‖W 1,2(∂ Dρ(p)) ≤ ‖M − id‖L2(∂ Dρ(p)) + ‖D(M − id)‖L2(∂ Dρ(p))

≤ C‖M − id‖W 1,2(S2) . (19)

Now let us fix radial coordinates θ, r on D̃. We define M̃, ̃ := D̃ → S2 as

M̃(θ, r) =
{

M(θ, r) if r < ρ

M(θ, π/2 + 3/4) if r ≥ ρ

̃(θ, r) =
{

id(θ, r) if r < ρ

id(θ, π/2 + 3/4) if r ≥ ρ .

Clearly ‖M̃ − ̃‖W 1,2(D̃)
≤ C‖M − id‖W 1,2(S2) for some universal constant C .

Second Step We claim the existence of positive constants ε and η with the follow-
ing property. If ‖M − id‖W 1,2(S2) ≤ ε , then there exists a point q ∈ S2 \ D̃ such
that

dist (q, M̃(∂ D̃)) + dist (q, ∂ D̃) ≥ η.

This claim will be proved later. Assuming it, we set ζ := min{1/8, η/2}. Using
such a point q we can construct a C2 map

R : [
π/2 + 3/4, π/2 + 1

] × {
S2 \ Dζ (q)

} → S2

such that:

– R(t, ·) maps D̃ into D̃ for every t ;
– R(π/2 + 1, ·) maps S2 \ Dζ (q) onto p;
– ‖R‖C2 is bounded by a universal constant depending only on ζ .

Given such an R we define the maps M ′,  ′ : D̃ → S2 as

M ′(θ, r) =
{

M̃(θ, r) if r < π + 3/4

R(r, M̃(θ, π/2 + 3/4)) if r ≥ π + 3/4

 ′(θ, r) =
{

̃(θ, r) if r < π + 3/4

R(r, ̃(θ, π/2 + 3/4)) if r ≥ π + 3/4.

Finally, we extend both  ′ and M ′ to S2 by setting  ′ = M ′ = p on S2 \ D̃.
Then M ′ and  ′ would satisfy all the requirements of the Lemma. Therefore, in
order to conclude the proof it suffices to show the existence of the point q .

Third Step For any regular value q̃ ∈ S2 \ M̃(∂ D̃) we define the degree
deg(q̃, M̃, D̃) in the usual way. It is a classical fact that deg is constant in the
connected component of S2 \ M̃(∂ D̃). Hence we extend it to S2 \ M̃(∂ D̃) by
continuity and we set

U0 := {
q̃ ∈ S2 : deg(q̃, M̃, D̃) = 0

}
.
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It turns out that U0 is an open set with boundary contained in the curve

γ = M̃(∂ D̃) = M(∂ D̃).

By (19) the length of γ is less than C + C‖M − id‖W 1,2(S2), for some universal
constant C .

Consider the open set U := U0\D̃. Clearly, {S2\[M̃(D̃)∪D̃]} ⊂ U . Moreover,
by construction we have M̃(D̃) ⊂ M(D̃). From the area formula it follows that

ar
(
M(D̃) \ D̃

) ≤ C‖M − id‖W 1,2(S2).

Therefore, there exist positive universal constants C1, C2, C3 such that, if ‖M −
id‖W 1,2(S2) ≤ C1 then U is an open set with the following properties:

– ∂U is contained in the union of two connected curves γ = M̃(∂ D̃) and γ̃ =
∂ D̃;

– ar(U ) ≥ C2 and len (γ ) + len (γ̃ ) ≤ C3.

An elementary argument shows the existence of a positive constant η such that ev-
ery U satisfying the conditions above contains a disk of radius η (see for instance
Lemma C.1 of [2]). The center of this disk is the desired point q . 
�

3 Liftings through Hopf fibration

Denote by π : S3 ⊂ C
2 → S2 the Hopf fibration. Note that if we choose ε small

enough in Proposition 2, then we have
∣
∣
∣
∣

∫

S2
(M∗ω − ∗ω)

∣
∣
∣
∣ < 1 . (20)

From classical topological arguments we know that
∫

S2 M∗ω is an integer and
that

∫
S2 ∗ω = 0 (this last equality follows from the assumption (S2) ⊂ D̃).

Therefore
∫

S2 M∗ω = 0.
The condition

∫
S2 ∗ω = ∫

S2 M∗ω = 0 implies that the maps  and M are
homotopically trivial. Therefore there exist smooth maps �, F : S2 → S3 with
π ◦ � =  and π ◦ F = M . One main idea of [4] is that one can prove an Hardy
bound ‖M∗ω‖H1 by showing that the lifting  can be chosen with bounded W 1,2

norm. (In passing we remark that in the paper [4] the authors used liftings to S5;
however this is only a technical difference, mainly due to the fact that in [4] this
technique is applied to the case of 2–dimensional surfaces in Rn .) Therefore one
naturally expects that, if the liftings  and M can be chosen W 1,2–close, then one
gets the bound (15).

Proposition 3 Let  and M be as in Proposition 2. Then there exist two maps
�, F : S2 → S3 such that

–  = π ◦ �, M = π ◦ F;
– ‖�‖C1 ≤ C, ‖F − �‖W 1,2(S2) ≤ C‖M − ‖W 1,2(S2).

The constant C depends only on ‖‖C2 and not on M.
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Building on this proposition, the proof of Proposition 2 is a short argument.
However we set first a bit of notation. We fix coordinates on C

2 so that

S3 = {(z1, z2) ∈ C
2| |z1|2 + |z2|2 = 1}

S2 = {(z, t) ∈ C × R| |z|2 + t2 = 1} .

Then the Hopf fibration is given by π(z1, z2) = (2z1z2, |z1|2 − |z2|2). Note that
if p = (z1, z2) ∈ S3, then the fiber

Fp := {(w1, w2)| π(w1, w2) = π(z1, z2)} (21)

is given by {(eiθ z1, eiθ z2), θ ∈ R}.
Proof (Proof of Proposition 2) Let � and F be the liftings of Proposition 3. Using
the coordinates above we write � = (�1, �2) and F = (F1, F2). The following
identities can be easily checked:

2∗ω = 2�∗π∗ω = i(d�1 ∧ d�̄1 + d�2 ∧ d�̄2)

2M∗ω = 2F∗π∗ω = i(d F1 ∧ d F̄1 + d F2 ∧ d F̄2).
(22)

Note that

2(∗ω − M∗ω) = i{d�1 ∧ d(�̄1 − F̄1) + d(�1 − F1) ∧ d F̄1

+ d�2 ∧ d(�̄2 − F̄2) + d(�2 − F2) ∧ d F̄2}
Hence, using the results of [1] we get

‖∗ω − M∗ω‖H1(S2) ≤ C
(‖d F‖L2(S2) + ‖d�‖L2(S2)

)‖d F − d�‖L2(S2) .

Therefore the bounds satisfied by F and � yield the desired estimate. 
�
The rest of the paper is devoted to prove the existence of the liftings claimed

in Proposition 3. First we introduce a suitable norm on differentials of maps with
target in S3, see (24). This norm is invariant under the action of S3 on itself as Lie
group.

We recall that C
2 can be identified to the field of quaternions H. We denote by

× the multiplication between quaternions and we recall that the usual norm | · |
has the property that |a × b| = |a||b|. Hence, × naturally induces a Lie group
structure on S3 and the maps lw : S3 → S3 given by lw(a) = w×a are isometries
of S3. The same holds for the maps rw : S3 → S3 given by rw(a) = a × w.

Definition 1 Given a, b ∈ S3 and ξ ∈ TaS3 we denote by bξ the vector of Tb×aS3

given by dlb|a(ξ). In a similar way we define ξb as drb|a(ξ) ∈ Ta×bS3.

The diffeomorphisms lx allow to define an “intrinsic” notion of distance be-
tween vectors belonging to TaS3 and TbS3. This allows a natural way to compare
the differential of two distinct maps with target in S3.
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Definition 2 Given ξ ∈ TbS3, ζ ∈ TaS3 we denote by |ξ − ζ |L the nonnegative
real number

|a−1ξ − b−1η| = |(b × a−1)ξ − η| = |ξ − (a × b−1)ζ | ,
where, for vectors λ, µ ∈ TpS3, |λ − µ| denotes the usual Hilbert norm (that is,
the norm induced by the Riemann structure of S3 as submanifold of R4).

Given a riemannian manifold � and smooth maps F,� : � → S3, we define

|d F |p − d�|p|L := sup
|ξ |=1

|d F |p(ξ) − d�|p(ξ)|L (23)

|||d F − d�|||L2(�) :=
( ∫

�

|d F − d�|2L
)1/2

. (24)

The proof of Proposition 3 is based on two lemmas. The first one, Lemma 1, shows
the existence of liftings for which one can estimate the norm |||d F − d�|||L2(Dr )

as in (26). The second, Lemma 2, is a Poincare’ type inequality. With the help of
this inequality, one can absorb the second term of (26), provided r is smaller than
a universal constant. This gives an estimate of the form

|||d F − d�|||L2(Dr )
≤ C‖M − ‖W 1,2(S2) . (25)

The number of disks Dr needed to cover S2 is smaller than a universal constant.
Therefore we can bound |||d F −d�|||L2(S2). We then use again Lemma 2 to show

the existence of a new lifting F̃ such that

|||d F̃ − d�|||L2(S2) + ‖F̃ − �‖L2 ≤ C‖M − ‖W 1,2(S2) .

Finally it is not difficult to show that

‖F̃ − �‖W 1,2(S2) ≤ |||d F̃ − d�|||L2(S2) + ‖F − �‖L2 .

Lemma 1 Let M and  be as in Proposition 2 and choose ε sufficiently small so
that M is homotopically trivial. Then there exists a universal constant C and two
maps F,� : S2 → S3 such that:

–  = π ◦ �, M = π ◦ F and ‖�‖C1 ≤ C;
– For every disk Dr ⊂ S2 we have the estimate

|||d F − d�|||L2(Dr )
≤ C‖M −‖W 1,2(S2) +C min

θ
‖F − eiθ�‖L2(Dr )

(26)

Lemma 2 Let Dr be a geodesic disk of S3 and �, F : Dr → S3 two smooth
maps. Then

min
w∈S3

‖F − w × �‖L2(Dr )
≤ Cr |||d F − d�|||L2(Dr )

, (27)

for some universal constant C.

The proof of Lemma 1 is given in the next Section. Hereby we prove Lemma 2
and we show how to conclude Proposition 2.
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Proof (Proof of Lemma 2) Let G : Dr → S3 ⊂ H be given by G(p) = F(p) ×
�(p)−1. Using the notation of Definition 1 we write

dG p(ξ) = (d F |p(ξ))�(p)−1 − [F(p)�(p)−1](d�|p(ξ))�(p)−1 .

Since the multiplication from the right is an isometry, we get |ζb−ξb| = |ζ −ξ |
for every ξ ∈ TaS3, ζ ∈ TaS3. Hence

|dG|p(ξ)| = |d F |p(ξ) − [F(p)�(p)−1](d�|p(ξ))|. (28)

We remark that the right hand side of (28) is precisely the definition of |d F |p(ξ)−
d�|p(ξ)|L. Thus,

‖dG‖L2(Dr )
= |||d F − d�|||L2(Dr )

.

Hence, by the usual Poincaré inequality on Euclidean spaces, there exists w ∈
H = C

2 such that

‖G − w‖L2(Dr )
≤ Cr‖dG‖L2(Dr )

= Cr |||d F − d�|||L2(Dr )
.

Note that

πr2|1 − |w||| =
∫

Dr

||G| − |w|| ≤ ‖G − w‖L1(Dr )

≤ C1r‖G − w‖L2(Dr )
≤ C2r2|||d F − d�|||L2(Dr )

. (29)

Set w̃ := w/|w|. Then, by (29), we have |w̃ − w| = |1 − |w|| ≤ C3|||d F −
d�|||L2(Dr )

. Hence

‖G − w̃‖L2(Dr )
≤ C4r |w̃ −w|+C5‖w − G‖L2(Dr )

≤ C6r |||d F −d�|||L2(Dr )
.

(30)
Since w̃ ∈ S3, this gives the desired inequality.

Proof (Proof of Proposition 2) We start from the liftings F and � provided by
Lemma 1 and we break the proof into two steps.

First Step In this step we show that

|||d F − d�|||L2(Dr )
≤ C2‖M − ‖W 1,2(S2) if r ≤ C1, (31)

for some universal constant C1. Since S2 is compact (31) implies

|||d F − d�|||L2(S2) ≤ C‖M − ‖W 1,2(S2) . (32)

Recall the Poincaré inequality proved in Lemma 2:

min
w∈S3

‖F − w × �‖L2(Dr )
≤ Cr |||d F − d�|||L2(Dr )

(33)

Let w be a point where the minimum in the left hand side of (33) is attained and
let θ0 be a point where f (θ) = |w − eiθ | attains its minimum. Recall that the
quaternionic multiplication by an element of S3 is an isometry of S3. Thus, for
every a ∈ S3, the function fa(θ) = |w × a − eiθa| attains its minimum in θ0.
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It is not difficult to check that

min
θ

|w × a − eiθa| ≤ C1|π(w × a) − π(a)| ,

for some universal constant C1. Moreover, recall that π is Lipschitz and call C2
its Lipschitz constant. Thus

‖w × � − eiθ0�‖L2(Dr )
≤ C1‖π(w × �) − π(�)‖L2(Dr )

≤ C1‖π(w × �) − π(F)‖L2(Dr )
+ C1‖π(F) − π(�)‖L2(Dr )

≤ C1C2‖w × � − F‖L2(Dr )
+ C1‖M − ‖W 1,2(S2). (34)

Combining (34) and (33) we get

min
θ

‖F−eiθ�‖L2(Dr )
≤ C3r |||d F−d�|||L2(Dr )

+C4‖M−‖W 1,2(S2). (35)

Plugging (35) into (26) we get

|||d F − d�|||L2(Dr )
≤ C5‖M − ‖W 1,2(S2) + C6r |||d F − d�|||L2(Dr )

. (36)

Thus it is sufficient to choose r ≤ (2C6)
−1 to get

|||d F − d�|||L2(Dr )
≤ 2C7‖M − ‖W 1,2(S2). (37)

This gives (31) and hence completes the proof of (32).

Second Step Conclusion
Let ξ ∈ TaS3, ζ ∈ TbS3. The following elementary inequality holds:

|ξ − ζ | ≤ C |ξ |∣∣a − b
∣
∣ + C |ξ − ζ |L. (38)

Indeed, since the map

S3 × T S3 � (w, a, ξ) → wξ ∈ Tw×aS3 ⊂ C
2

is Lipschitz on compact sets, we have

|ξ − (b × a−1)ξ |L ≤ C |1 − b × a−1| = C |a − b| for |ξ | ≤ 1.

Thus, if we define ξ̃ = ξ/|ξ | we get

|ξ − ζ | ≤ |(b × a−1)ξ − ζ | + |(b × a−1)ξ − ξ |
= |ξ − ζ |L + |ξ ||(b × a−1)ξ̃ − ξ̃ |
≤ |ξ − ζ |L + C |ξ ||b − a|.

Let θ0 be a point where the expression

g(θ) = ‖eiθ F − �‖L2(S2)

attains its minimum. Set F̃ = eiθ0 F . Replacing Dr with S2 in (35) we get

‖F̃ − �‖L2(S2) ≤ C1|||d F − d�|||L2(S2) + C1‖M − ‖W 1,2(S2)

≤ C2‖M − ‖W 1,2(S2) (39)
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From (38) we get

|d F̃ − d�|2 ≤ 2|d F̃ − d�|2L + 2C2|d�|2|F̃ − �|2 .

Integrating this inequality we get

‖d F̃ − d�‖2
L2(S2)

≤ 2C2
∫

S2
|d�|2|F̃ − �|2 + |||d F − d�|||2L2(S2)

(32)≤ C3‖�‖2
C1‖F̃ − �‖2

L2 + C4‖M − ‖2
W 1,2(S2)

(39)≤ C5‖M − ‖2
W 1,2(S2)

. (40)

This concludes the proof.

4 Proof of Lemma 1

Recall the definition of Fp given in (21) and note that the vector tangent to Fp

in p = (z1, z2) is (i z1, i z2). Thus, we decompose TpS3 into two orthogonal sub-
spaces:

TFp = {t (i z1, i z2)| t ∈ R} TNp = {w ∈ TpS3| w · (i z1, i z2) = 0}, (41)

where the hermitian product (a1, a2) · (b1, b2) is given by Re (a1b̄1 + a2b̄2).

Definition 3 If � : � → S3 is a smooth map, we we write d� = d1� + d2�,
where

– d1�|q(ξ) is the projection of d�|q(ξ) on T F�(q),
– d2�|q(ξ) is the projection of d�|q(ξ) on T N�(q).

Proof (Proof of Lemma 1)
First Step In this step we derive a preliminary estimate on

∥
∥|d F | − |d�|∥∥L2(S2)

,
provided F and � are chosen in a suitable way.

First of all fix any pair of liftings (F, �). It can be easily checked that |d2 F | =
|d M| and |d2�| = |d|. Moreover, if we define the 1–form α := −i z̄1dz2 −
i z̄2dz2, then we get

d1 F = (i F1, i F2)F∗α d1� = (i�1, i�2)�
∗α. (42)

Thus ∫

S2
||d1 F | − |d1�||2 =

∫

S2
|F∗α − �∗α|2.

We will show that the liftings F and � can be chosen so that
∫

S2
|F∗α − �∗α|2 = ‖M∗ω − ∗ω‖2

W −1,2 .

Indeed, fix a lifting F̃ : S2 → S3 of M and set β = F̃∗α. We can use the standard
Hodge decomposition to write

β = dθ + ∗dψ
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where θ and ψ are smooth functions on S2. If we set F = e−iθ F̃ we get F∗α =
∗dψ . We can make a similar choice for � and note that since  ∈ C2, standard
linear theory for elliptic PDEs gives that our � is in C1. Thus we get

F∗α − �∗α = ∗d f for some function f .

This implies that
∫

S2
|F∗α − �∗α|2 = ‖d ∗ d f ‖2

W −1,2 = ‖F∗dα − �∗dα‖2
W −1,2 . (43)

By (22) we have 2F∗dα = M∗π∗(idz1 ∧ dz̄1 + idz2 ∧ dz̄2) = 2M∗ω and
2�∗dα = 2∗ω. Thus, we conclude that

‖|d F | − |d�|‖L2 ≤ ‖|d1 F | − |d1�|‖L2 + ‖|d2 F | − |d2�|‖L2

= ‖M∗ω − ∗ω‖W −1,2 + ‖|d M| − |d|‖L2 . (44)

Second Step In this step we show how to estimate ‖M∗ω − ∗ω‖W −1,2 .
Recall that (S2) ⊂ D̃, which is the geodesic disk Dπ/2+1(p). Denote by n

the antipodal of p. From the area formula there exists a constant C1 such that

ar(M(S2) ∩ D1/2(n)) ≤ C1‖M − ‖2
L2(S2)

.

Therefore if ‖M − ‖2
L2(S2)

is sufficiently small, ar(D1/2(n) \ M(S2)) ≥ C2 for
some positive constant C2. We claim the existence of a 1-form η such that:

– ω = dη on D̃ ∪ M(S2);
– ‖η‖L∞ ≤ C

C2
;

– |η(x) − η(y)| ≤ C |x − y| for every x, y ∈ D̃;

where C is a universal constant.
We construct η in the following way. First, for every x ∈ S2 we take the form

ηx ∈ C∞(S2 \ {x}) ∩ L1(S2) defined in 3.5.1 of [4]. This “canonical” form has a
singularity in x but satisfies dηx = ω on S2 \ {x}.

Then we take a closed set E ⊂ D1/2(n) \ M(S2) such that

ar(E) = 1

2
ar (D1/2(n) \ M(S2))

and we define

η := 1

ar(E)

∫

x∈E
ηx

Clearly dη = ω on D ∪ M(S2) ⊂ S2 \ E . Moreover, η is smooth on the closure
of D̃. The estimate ‖η‖L∞ ≤ C(ar(E))−1 can be proved as in 3.5.5 of [4]. Finally
we compute

‖M∗ω − ∗ω‖W −1,2(S2) = ‖d(M∗η − ∗η)‖W −1,2

= sup
‖ϕ‖W 1,2=1

∫

S2
ϕ d(M∗η − ∗η)

= sup
‖ϕ‖W 1,2=1

∫

S2
dϕ ∧ (M∗η − ∗η).
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Now, write η = f1dx1 + f2dx2 in some local coordinates and note that

∗( fi dxi ) − M∗( fi dxi ) = fi () di − fi (M) d Mi

= [ fi () − fi (M)]di + fi (M)d[i − Mi ]. (45)

Set Sb := {p|M(p) �∈ D̃} and Sg := S2 \ Sb. Then we have

|∗η − M∗η| ≤
{

C |d|∣∣ − M
∣
∣ + C |d − d M| on Sg

2C |d| + C |d − d M| on Sb.

Thus we can estimate
∣
∣
∣
∣

∫

S2
dϕ ∧ (∗η − M∗η)

∣
∣
∣
∣

≤ C‖‖C1

∫

Sg
|dϕ|| − M| + 2C‖‖C1

∫

Sb
|dϕ| + C

∫

S2
|dϕ||d( − M)|

≤ C‖‖C1‖dϕ‖L2‖ − M‖L2 + 2C‖‖C1‖dϕ‖L2(ar(Sb))1/2

+ C‖dϕ‖L2‖d − d M‖L2 .

Recalling that ‖dϕ‖L2 ≤ ‖ϕ‖W 1,2 = 1 and that (ar(Sb))1/2 ≤ C‖ − M‖L2 , we
derive

‖M∗ω − ∗ω‖W −1,2 ≤ C1‖M − ‖W 1,2(S2). (46)

This, together with (44), gives

‖|d F | − |d�|‖L2 ≤ C2‖M − ‖W 1,2(S2). (47)

Moreover, for a later use, we remark that (46) and (43) give

‖F∗α − �∗α‖L2(S2) ≤ C3‖M − ‖W 1,2(S2). (48)

Third Step We now come to the proof of (26).
We begin with the following pointwise inequality:

|d F − d�|2L ≤ C2(|d F | + |d�|)2|F − �|2 + 4|d M − d�|2 + 4|F∗α − �∗α|2,
(49)

where α is the differential form −i z̄1dz2 − i z̄2dz2, which satisfies (42).
In order to prove (49), for every ξ ∈ TaS3, ζ ∈ TbS3 we define a distance

d(ξ, ζ ) in the following way. We write ξ = ξ̃ + tia and ζ = ζ̃ + τ ib, where
ξ̃ ∈ T Na, ζ̃ ∈ T Nb and t, τ ∈ R (see (41)). Then we set

d(ξ, η) :=
√

|dπa(ξ) − dπb(ζ )|2 + |τ − t |2.
Now, construct the function f : TaS3 × TbS3 → R given by

f (a, b, ξ, η) = ||ξ − η|L − d(ξ, η)|.
Note that both d and | · |L are locally Lipschitz in a, b, ξ , and ζ . Moreover

d(ξ, η) = |ξ − η| = |ξ − η|L for ξ, η ∈ TaS3,
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which translates into f (a, a, ξ, η) = 0. This condition and the locally Lipschitz
property of f gives the existence of a constant C such that:

f (a, b, ξ, η) ≤ C |a − b| for |ξ | + |η| ≤ 2. (50)

Given any ξ, η we define M := max{|ξ |, |ζ |} and ξ̂ := ξ/M , ζ̂ := ζ/M . Then we
can compute

|ξ − η|L = M|ξ̂ − ζ̂ |L ≤ Md(ξ̂ , ζ̂ ) + C M|a − b|
≤ d(ξ, η) + C(|ξ | + |η|)|a − b| . (51)

From this we easily get (49). Integrating (49) and recalling (48) we get the in-
equality

|||d F − d�|||2L2(Dr )

≤ C1

∫

Dr

(|d F | + |d�|)2|F − �|2 + C2‖M − ‖2
W 1,2(S2)

. (52)

Moreover, we have
∫

Dr

(|d F | + |d�|)2|F − �|2 ≤
∫

Dr

(8|d�|2 + 2
∣
∣|d F | − |d�|∣∣2

)|F − �|2

≤ 4‖|d F | − |d�|‖2
L2(Dr )

+ 8‖�‖2
C1‖F − �‖2

L2(Dr )

(47)≤ C3‖M − ‖2
W 1,2(S2)

+ C4‖F − �‖2
L2(Dr )

(53)

Plugging (53) into (52) we derive

|||d F − d�|||L2(Dr )
≤ C5‖M − ‖W 1,2(S2) + C6‖F − �‖L2(Dr )

. (54)

Given θ ∈ R, define �̃ = eiθ�. Then, clearly |d� − d�̃|L = 0. Note that �̃ is
a lifting of  and that all the estimates derived for � holds for �̃ as well. Hence
from (54) we get (26).
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