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Abstract Let © C R? be a smooth compact connected surface without boundary.
Denote by A its second fundamental form and by A the tensor A — (tr A/2)Id. In
[4] we proved that, if IA]l L2(x) 1s small, then ¥ is W22_close to a round sphere.
In this note we show that, in addition, the metric of X is C 0_¢lose to the standard
metric of S2.

1 Introduction

Let ¥ C R? be a smooth surface. A point p of ¥ is called umbilical if the principal
curvatures of ¥ at p are equal and the surface X is called umbilical if every point
x € X is umbilical. A classical theorem in differential geometry states that if X
is a compact connected umbilical surface without boundary, then ¥ is a a round
sphere. In [2] we proved the following quantitative version. Here:

— Id denotes the identity (1, 1)-tensor and the (0, 2)-tensor naturally associated
to it;

— A denotes the traceless part of A, i.e. the tensor A — %Id;

— id : 8 ¢ R? — R3 is the standard isometric embedding of the round sphere.

Theorem 1 Let  C R3 denote a smooth compact connected surface without
boundary and for convenience normalize the area of ¥ by ar(X) = 4. Then

[|A —Id“LZ(E) =< C”A”LZ(E)’ M
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where C is a universal constant. If in addition ”‘4”%2(2) < 4m, then there exists a

conformal parameterization ¥ : S*> — ¥ and a vector ¢x, € R such that
I — (e +id)lly22i2) < C||A°||L2(2)~ 2)

Since 1 conformal, if we denote by g the metric of ¥ and by ¢ the standard metric
on 82, then Y#g = ho for some positive function 4. Hence Theorem 1 gives

Ih = wizgey < ClAlL2s2)- 3)

Therefore, by Sobolev embeddings, for every p < oo there exists a constant C),
such that

Ih = 1rsy < Colldll 2,

From (3) we cannot get a similar estimate for |4 — 1| ;. Nonetheless in this paper
we show that such an estimate holds.

Theorem 2 There exists a universal constant C with the following property. Let
Y be any given compact connected surface of R without boundary, such that
ar(X) = 47 and ||A| 12(xy < 8. Then the conformal parameterization Y of
Theorem 1 enjoys the bound

I — o2y < C||A°||L2():)~ 4)
We prove this estimate by suitably modifying techniques and ideas from [4]. There
the authors showed bounds for ||4]|o when A € L?, by proving suitable bounds
for detA in the Hardy space H'. These Hardy bounds were achieved through the
R” theory of [1] after locally lifting the Gauss map N : ¥ — S to a suitable map
M : ¥ — S°. The same strategy can be implemented using S3—liftings. The core
of Theorem 2 consists in showing that when ||A]| 12 1s small, these liftings can be
chosen W !-2—close to suitable liftings of the identity map.

Estimate (4) is crucial to conclude that some geometric constants of X are
close to the corresponding ones of S%. For instance it implies that the spectrum of
the Laplace—Beltrami operator of X is close to that of S>. More precisely, given
a compact surface I' without boundary, we denote by A;(I") the i-th eigenvalue
of the Laplace—Beltrami operator, with the following conventions: 1o(I") = 0 and
if a is an eigenvalue with multiplicity n, then it appears n times in the sequence
{i(D)} (e.g. 11(S?) = 12(8%) = A3(SH) = 2).

Corollary 1 For each i there exists a constant C; with the following property.
Let 3 be any given compact connected surface of R® without boundary, such that
ar(X) = 4x and ||Al| 25y < 4. Then

i (2) = 2 (SP)] < CillAll2s)- )
2 Hardy bounds

We denote by

— N the Gauss map on X;
— M themap M := N o {;
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K's the Gauss curvature detd N ;
— K the function K := Ky o ;
w the standard volume form on S2.

In order to simplify the notation, for every 2-form a on S? and every function
space H, we denote by |«| z the number || f|| g, where fo = «.
Then Theorem 2 follows from the following Hardy bound.

Proposition 1 There exist positive constants C and ¢ such that the following
holds. If M : 8* — §% is a map such that |M — id||y12s2) < €, then

IM*0 — ol gy, < CIM —idlly12s2)- (6)

Proof (Proof of Theorem 2) Since h is a positive function there exists a unique
function u such that 1 = e". Set

8 = |Al2s) ™

From Proposition 3.2 of [2] we have that, under the assumptions of Theorem 2,
there exists a universal constant C such that

lullco + Nully2a < Ci. (8)
Thus it suffices to prove the existence of positive constants 1 and C; such that
lullco < C26 wheneverd < 7. )

Thanks to Theorem 1 and to the bounds (8), there exists a universal constant C3
such that

IM —id|ly12g2y < C36. (10)
Let ¢ be the constant of Proposition 1 and § < n = ¢/C3. Then we have
IM*w — ol < CalM —id|lyr2 2y < Cs6. a1
Note that K e*@w = M*w and hence (11) gives
IKe*™ — 1l < Cs8. (12)
Recall that u satisfies
—Agu = Ke® — 1. (13)

Since the only harmonic functions on S? are the constants, the bound (12) and the
results of [3] imply that

lu —cllco < Cgé for some constant c. (14)
The conformality of y gives 47 = ar(¥) = st ¢ and (8) implies

2w—c) _

|e 1| < C7lu—cl,

for some constant C7. Therefore we have

dr|e® — 1| = &

/ i (279 — 1)‘ < C7Ce47s.
S

Hence there is a constant Cg such that |¢| < Cgé. From this and (14) we get (9).
O
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The Hardy bound of Proposition 1 is proved by “locally” lifting the maps M
and id to maps into S? via the Hopf fibration 7 : S — S>. The reason why we
cannot argue globally is that there is no such smooth lifting for the identity. Let
p € 8% and denote by D /2+1(p) the geodesic disk of S? with center p and radius
/2 4 1. Then in the next two sections we will prove the following proposition.

Proposition 2 (Hardy bound) Ler U € C®(S?, 8?) be a fixed map with W (S?) C
Dy j211(p). There exist positive constants C and ¢, depending only on ||V |2,
such that:

(HB) If M € C>(S?, 8?) satisfies |M — W ||y12s2) < €, then

IM*o — Wroly sy < CIM — Vi - (15)

Note that, since W(S?) C Dy /2+1(p), there exists a smooth lifting of ¥
through the Hopf fibration (see Proposition 3). This lifting exists under the weaker
assumption fSZ W*@w = 0. However, the stronger assumption W(S?) C Dy 2+1(p)
will be crucial later in order to prove some estimates on the lifting (compare with
the Second Step of the proof of Lemma 1).

From Proposition 2 one concludes Proposition 1 with a “cut and paste” proce-
dure.

Proof (Proof of Proposition 1) First of all we introduce some notation. We let p
be any point of S C R3. Then we let

D := Dx/3412(p) D := Dzpp41(p).
We claim that if M is a smooth map and ||[M — id||y12(s2) is sufficiently small,
then there exist two maps M’, ¥’ : 8> — 8? such that:

- M =Mand ¥ =idon D;
— W'($?) C D;
— The following estimates hold for some universal constant C:

IM' =Wy < CIM —idlyiag, (W2 < C. (16)

This fact, combined with Proposition 2, yields the the existence of two positive
constants C and ¢ such that

7/2+1/2(P)) =

forall p € S? and all M with |M — id|ly 12 < €. Note that if p and ¢ are two
antipodal points, then

Dy ja412(p) U Drjasip(q) = S
Therefore from (17) we would get

IM*0 — ol < C'IM —idlyi2g). (18)

which is the desired conclusion. It remains to prove the existence of the maps M’
and W',
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First Step By Fubini’s Theorem, there exists a universal constant C with the fol-
lowing property: There exists p € [7/2 4+ 1/2, w/2 + 3 /4] such that

IM —idlly 12D, = IM =idll 23D, (py) + 1DM = id)ll 25D, ()

Now let us fix radial coordinates 6, r on D. We define M , V=D S%as

e = [MED ifr <p
TTAAMO, w2434 ifr>p

- N id(9, r) ifr <p

ve.n = {id(e,n/2+3/4) ifr>p.

Clearly M — \fJ||W1,2(5) < C|IM — id||y1.2(g2) for some universal constant C.

Second Step We claim the existence of positive constants ¢ and 1 with the follow-
ing property. If [|[M — id||y 1252y < €, then there exists a point g € S%\ D such
that

dist (¢, M(dD)) + dist (¢, dD) > n.

This claim will be proved later. Assuming it, we set ¢ := min{1/8, n/2}. Using
such a point ¢ we can construct a C2 map

R : [m/2+43/4,7/2+1] x {S*\ D ()} — §?
such that:

— R(¢t,-) maps D into D for every t;
— R(m/2+1,-) maps S? \ D¢ (g) onto p;
— |IR]|c2 is bounded by a universal constant depending only on ¢.

Given such an R we define the maps M’, W' : D — S? as

M@®,r) ifr <m+3/4

M@, r) = s
@ {R(r, MO, 7/2+3/4) ifr>n+3/4
U@, r) ifr <mw+3/4

"©,r) = 3
vie.n {R(r,\IJ(Q,n/2+3/4)) ifr > +3/4.

Finally, we extend both ¥’ and M’ to S? by setting W' = M’ = p on $? \ D.
Then M’ and W’ would satisfy all the requirements of the Lemma. Therefore, in
order to conclude the proof it suffices to show the existence of the point gq.

Third Step For any regular value § € S> \ M(dD) we define the degree
deg(§, M, D) in the usual way. It is a classical fact that deg is constant in the
connected component of 8> \ M (D). Hence we extend it to S2 \ M (D) by
continuity and we set

Up == {§e€S” : deg(g. M, D) = 0}.
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It turns out that Uy is an open set with boundary contained in the curve
y = M(D) = M (D).

By (19) the length of y is less than C + C||M — id||y1.2(s2), for some universal
constant C. _ o
Consider the open set U := Up\ D. Clearly, {S2\[M (D)UD]} C U.Moreover,

by construction we have M (ﬁ) C M (D). From the area formula it follows that
ar(M(D)\ D) < CIM —id|ly12s2),-

Therefore, there exist positive universal constants C, Ca, C3 such that, if |M —
id|ly12(s2) < Cy then U is an open set with the following properties:

— QU is contained in the union of two connected curves y = M(dD) and j =
aD;
—ar(U) > Crand len(y) +len(y) < Cs.
An elementary argument shows the existence of a positive constant 7 such that ev-

ery U satisfying the conditions above contains a disk of radius 7 (see for instance
Lemma C.1 of [2]). The center of this disk is the desired point ¢. O

3 Liftings through Hopf fibration

Denote by 7 : 83 ¢ C? — S? the Hopf fibration. Note that if we choose & small
enough in Proposition 2, then we have

/2(M*a)—\lf*a))‘ < 1. (20)
S

From classical topological arguments we know that fsz M*w is an integer and
that fs2 W*e = 0 (this last equality follows from the assumption W(S?) C D).
Therefore fs2 M*w = 0.

The condition fsz Uty = fSZ M*w = 0 implies that the maps ¥ and M are
homotopically trivial. Therefore there exist smooth maps ®, F : 8 — S3 with
mo® =Wandx o F = M. One main idea of [4] is that one can prove an Hardy
bound ||M* |41 by showing that the lifting W can be chosen with bounded W 1.2
norm. (In passing we remark that in the paper [4] the authors used liftings to S°;
however this is only a technical difference, mainly due to the fact that in [4] this
technique is applied to the case of 2—dimensional surfaces in R”.) Therefore one

naturally expects that, if the liftings W and M can be chosen W !-2—close, then one
gets the bound (15).

Proposition 3 Let W and M be as in Proposition 2. Then there exist two maps
@, F : S? — S3 such that

- V=modP M=mmofF;
— I1®ller < C,IF = Dllyiagy < CIM = Wiy

The constant C depends only on ||V || -2 and not on M.
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Building on this proposition, the proof of Proposition 2 is a short argument.
However we set first a bit of notation. We fix coordinates on C? so that

S ={(z1,22) € C}| |21 + |z2* = 1}
S?={(z,t) e Cx R| |z]* + > = 1}.

Then the Hopf fibration is given by 7(z1, z2) = (22122, |z1|> — |22]?). Note that
if p = (21, z2) € S3, then the fiber

Fp == {(w1, wo)| w(wi, w2) = 7 (z1, 22)} (21)
is given by {(¢?z1, ¢!%2;), 0 € R}.

Proof (Proof of Proposition 2) Let ® and F be the liftings of Proposition 3. Using
the coordinates above we write ® = (®, ) and F = (Fy, F»). The following
identities can be easily checked:

2t = 20*1*w = i(dPy AdD| +dPy A dDs) @)
2M*w = 2F*n*w = i(dF) NdF) +dFy AdF).

Note that

2(WFw — M*w) = i{d® Ad(®) — F1) +d(®) — F1) AdF,
+d®y Ad(P2 — F2) +d(Py — Fp) AdF)

Hence, using the results of [1] we get

V0 — M*olps2y < C(IIdF 122y + 1d Pl 2s2)) [AF — dP |22y -

Therefore the bounds satisfied by F' and ® yield the desired estimate. O

The rest of the paper is devoted to prove the existence of the liftings claimed
in Proposition 3. First we introduce a suitable norm on differentials of maps with
target in S3, see (24). This norm is invariant under the action of $3 on itself as Lie
group.

We recall that C? can be identified to the field of quaternions H. We denote by
x the multiplication between quaternions and we recall that the usual norm | - |
has the property that |a x b| = |a||b|. Hence, x naturally induces a Lie group
structure on S and the maps [ : S — 83 given by /" (¢) = w X a are isometries
of 8. The same holds for the maps 7% : 83 — S3 given by r¥(a) = a x w.

Definition 1 Givena, b € S and & € T,S? we denote by b& the vector of ThyaS?
given by di”|,(£). In a similar way we define £b as dr”|,(§) € T,x»S>.

The diffeomorphisms /¥ allow to define an “intrinsic” notion of distance be-
tween vectors belonging to 7,8 and 7;,S>. This allows a natural way to compare
the differential of two distinct maps with target in S°.
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Definition 2 Given & € T3S, ¢ € T,S? we denote by |§ — |, the nonnegative
real number

la='e —b7'nl = (b xa HE—nl = & —(@xb )],

where, for vectors A, u € TpS3, A — | denotes the usual Hilbert norm (that is,

the norm induced by the Riemann structure of S* as submanifold of R*).
Given a riemannian manifold €2 and smooth maps F, ® : Q — S3, we define

ldF[p —d®|plc = élll_pl ldF[p() —d®|p(E)lc (23)

172
WldF —d®|l|,2q) = </;2|dF—d<I>|%> . (24)

The proof of Proposition 3 is based on two lemmas. The first one, Lemma 1, shows
the existence of liftings for which one can estimate the norm [[|dF — d®|||.2(p,)
as in (26). The second, Lemma 2, is a Poincare’ type inequality. With the help of
this inequality, one can absorb the second term of (26), provided r is smaller than
a universal constant. This gives an estimate of the form

IldF = d®lll2p,) < CIM = Wlyiaes, 25)

The number of disks D, needed to cover S is smaller than a universal constant.
Therefore we can bound |[|d F —d ®|[|2(s2). We then use again Lemma 2 to show

the existence of a new lifting F such that
WdF —d®||| 22 + IIF — @2 < CIUM = Wy -
Finally it is not difficult to show that

IF — @lly12s2) < [[ldF —d®|l 22 + IIF — @12

Lemma 1 Let M and \V be as in Proposition 2 and choose ¢ sufficiently small so
that M is homotopically trivial. Then there exists a universal constant C and two
maps F, ® : S?2 — S3 such that:

—V=nmo0d, M=nmoF and ||P||1 <C;
— For every disk D, C S* we have the estimate

ldF =d®lll 25,y < CIM =W lyizg) +C min IF — 0Dl p,, (26)

Lemma 2 Let D, be a geodesic disk of S* and ®, F : D, — S3 two smooth
maps. Then

min ||F — w X (D”L2(D,~) < Cr|||dF — dq)'“LZ(Dr) . (27)

weS3

for some universal constant C.

The proof of Lemma 1 is given in the next Section. Hereby we prove Lemma 2
and we show how to conclude Proposition 2.



A CO estimate for nearly umbilical surfaces 291

Proof (Proof of Lemma 2) Let G : D, — S3 ¢ Hbe given by G(p) = F(p) x
®(p)~!. Using the notation of Definition 1 we write

dG (&) = (dF|,E)P(p)~" = [F(p)P(p)~'1dP|,(END(p)~" .

Since the multiplication from the right is an isometry, we get |b—&b| = |¢ —&]|
for every & € T,S%, ¢ € T,S>. Hence
[dG,&)| = |dF|,E) — [F(p)®(p)~'1(dP|,())I. (28)

We remark that the right hand side of (28) is precisely the definition of |[d F|,(§) —
d®|,(&)|z. Thus,

1dGll2p,y = lAF —d®lllp2p,) -

Hence, by the usual Poincaré inequality on Euclidean spaces, there exists w €
H = C2 such that

IG —wli2p,y = CrildGlzp,y = CrilldE —d®lllp2p,)-

Note that
2
zro|l — |wl|| =/ NG —= 1wl = IG —wlLip,
D,

< CrrllG —wllp2p,y < Cor?llldF —d®|ll 2p,y - (29)

Set w := w/|w|. Then, by (29), we have |w — w| = |1 — |w|| < C3l|||dF —
d®||lz2(p,)- Hence

A

||G—17)||L2(D,.) = C4”|ﬁ)—w|+C5||W—G||L2(D,.) C6”|||dF—ch|||L2(D,,)-

(30)

Since W € S?, this gives the desired inequality.

Proof (Proof of Proposition 2) We start from the liftings F' and ® provided by
Lemma 1 and we break the proof into two steps.

First Step In this step we show that

|||dF—ch”|L2(Dr) < CZHM—\IJ”‘,VLZ(Sz) if r < C], (31)

for some universal constant C1. Since S? is compact (31) implies
HdF —d®||lp2g2) < CIM — Vllyiag - (32)
Recall the Poincaré inequality proved in Lemma 2:

wWEDS”
Let w be a point where the minimum in the left hand side of (33) is attained and
let 6y be a point where f(0) = |w — ¢'?| attains its minimum. Recall that the
quaternionic multiplication by an element of S3 is an isometry of S3. Thus, for
every a € S3, the function f,(#) = |w x a — ¢'?q| attains its minimum in 6.
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It is not difficult to check that

rrgn|w X a— eigal < Cilr(w x a) — w(a)|,

for some universal constant C{. Moreover, recall that & is Lipschitz and call C;

its Lipschitz constant. Thus

lw x & =Dl 2p,) < Crllmw x ®) — 7(D)|| 12p,)
< Cillnr(w x ®) = (F)ll12(p,) + Cillm(F) = (P) | 12p,)
=CiCllw x @ = Fllp2py+CillM — ¥y12g2).

Combining (34) and (33) we get

rr}gin ||F—€i9¢||L2(Dr) =< C3V|||dF—dq’|||L2(D,~)+C4||M—‘IJ||Wl,2(52)-

Plugging (35) into (26) we get

lldF —d®ll 2p,y = CsIM — Wllyi2s2) + Cor[lldF —d Pl 2p,)-

Thus it is sufficient to choose » < (2C¢) ™! to get
|||dF — chH'Lz(Dr) S 2C7||M — \IJ”WLZ(SZ)'
This gives (31) and hence completes the proof of (32).

Second Step Conclusion
Let £ € T,S?, ¢ € TpS?. The following elementary inequality holds:

| —¢| < Clél|la—b|+Cle —¢lc.
Indeed, since the map
S =T8> (w,a,&) — wé e TwxaS® C C?
is Lipschitz on compact sets, we have
= xa gl < Cll—=bxa™'| = Cla—b| forlg] <1.
Thus, if we define £ = &/|£| we get
E—¢l <I(bxa HE—¢l+1(bxa s — &

=& —<¢le +IEIb x a™")E — €
<|E—<¢lg +CIEllb —al.

Let 6y be a point where the expression
g(®) = |e"F — @l 22
attains its minimum. Set F = ¢/% F Replacing D, with 87 in (35) we get

IF = @l 22 < CrllldF —d®lll 22 + CLlIM = Wl
S C2||M - \y||W].2(SZ)

(34)

(35)

(36)

(37

(38)

(39)
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From (38) we get
|dF —d®|* < 2|dF —d®|7 +2C*|d®*|F — .

Integrating this inequality we get

|dF —d®|?,

(8%

< 2c? /S [dOPIF — @ + [[|dF — d P[],

G2 2 7 2 2
<GPl IF = ®ll72 + CallM — Wil

D esim - v 40
5 C5|| ”WI,Z(SZ) . ( )

This concludes the proof.

4 Proof of Lemma 1

Recall the definition of F), given in (21) and note that the vector tangent to F),
in p = (z1,22) 1s (iz1, iz2). Thus, we decompose TpS3 into two orthogonal sub-
spaces:

TF, = {t(iz,izz)|t € R} TN, = {we T,,S3| w-(izy,izp) =0}, (41)
where the hermitian product (ay, a2) - (b1, b>) is given by Re (a1by + arby).
Definition 3 If ® : @ — S3 is a smooth map, we we write d® = d| P + dr®,
where

— d®|, () is the projection of d®|,(§) on T Fo(y),
— dr®|, (&) is the projection of d®|,(§) on T No(g).

Proof (Proof of Lemma 1)
First Step In this step we derive a preliminary estimate on || |dF| — |d®| || 12(82)

provided F and ® are chosen in a suitable way.
First of all fix any pair of liftings (¥, ®). It can be easily checked that |d> F| =

[dM| and |dy®| = |dWV|. Moreover, if we define the 1-form o := —izZ1dzy —
iZodzo, then we get

d\F = (iF,iF))F'a di® = (i®,id)P"a. (42)
Thus

/||d1F|—|d1<I>||2 = / |F*a — ®*al.
S? S?

We will show that the liftings F and & can be chosen so that
/ |Fra — d*a* = [M*o — Vo, .
S2

Indeed, fix a lifting F : 82 — S of M and set B = F*a. We can use the standard
Hodge decomposition to write

B = db + xdy
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where 6 and ¥ are smooth functions on S2. If we set F = ¢~/ F we get F*a =
sdy. We can make a similar choice for ® and note that since ¥ € C?, standard
linear theory for elliptic PDEs gives that our @ is in C'. Thus we get

F*a — ®*a = xdf for some function f.

This implies that
uézu”a——¢*aﬂ = |d*dflly 12 = |F'da — ®*dallf, ..  (43)

By (22) we have 2F*da = M*n*(idzy A dzy + idzy A dzy) = 2M*w and
2®*da = 2W*w. Thus, we conclude that
IdF|—1d®lllp2 < ldiF| = |di®lll2 + [ld2F | — |d2P| 12
= M*ow — Vol y-12+ [[[dM| — |dV]]| 2. (44)
Second Step In this step we show how to estimate ||M*w — ¥*w||y-1.2.

Recall that W (S?) C D, which is the geodesic disk Dy /241(p). Denote by n
the antipodal of p. From the area formula there exists a constant C| such that

ar(M(8%) N Dija(m) < CiIM = W|]2q0-

Therefore if |M — ‘I'”i%SZ) is sufficiently small, ar(D1/2(n) \ M(Sz)) > C, for

some positive constant C>. We claim the existence of a 1-form n such that:
- w=dn on D U M(S?);
~ il < &
— In(x) =n(y)| = Clx — y| forevery x, y € D;
where C is a universal constant.
We construct 7 in the following way. First, for every x € S? we take the form
ne € C®(S%\ {x}) N L'(S?) defined in 3.5.1 of [4]. This “canonical” form has a
singularity in x but satisfies dn, = w on 8%\ {x}.
Then we take a closed set £ C Dy2(n) \ M (S?) such that

1
ar(E) = Jar(Dija(n) \ M(S?)

and we define

1
= ar(E) /er b

Clearly dn = won D UM (8% c §? \ E. Moreover, 7 is smooth on the closure

of D. The estimate |||z~ < C(ar(E))~! can be proved as in 3.5.5 of [4]. Finally
we compute

IM*0w — W¥olly-122) = ld(M*n — ¥ )|ly-12

= sup /sod(M*n—\If*n)
lolly12=178?

= sup / do A (M*n — ¥*p).
S2

lelly12=1
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Now, write n = fidx| + f>dx; in some local coordinates and note that
W (fidx;) — M*(fidx;) = fi(¥)d¥; — fi(M)dM;
= [fi(V) — fi(M)]dV; + fi (M)d[V; — M;]. (45)
Set 8 := {p|M(p) & D} and S¢ := S2 \ S”. Then we have

- - CldV||W — M|+ C|ldV —dM| onS$
n— <
2C|dV| + C|ldV — dM| on S”.

Thus we can estimate
‘f do A (¥'n — M*n)‘
SZ

SCII‘IJIICI/S Idwll‘IJ—M|+2CII‘PIIc1/Sh |d<PI+C/S2 ldolld(¥ — M)
4

< Cl¥leilldel 21 — M2 +2C ¥l c1llde|l 2 (ar(S”)) /2
+Clldol2dY —dM ||, .
Recalling that ||dg||;2 < |l¢lly12 = 1 and that (ar(S?))!/? < C||W — M||;2, we

derive
IM*0w — V*olly-12 < Ci|IM — V1282 (46)

This, together with (44), gives
[dF|—1d®|ll2 < CallM — Wlly12e2). (47)
Moreover, for a later use, we remark that (46) and (43) give
IFfoa — ®*all 22y < C3IM — W]y (48)

Third Step We now come to the proof of (26).
We begin with the following pointwise inequality:

|dF —d®|% < Co(ldF|+1d®)2|F — > +4|dM — dD|* + 4| F*a — d*al?,
(49)
where « is the differential form —iz1dz, — iZodzp, which satisfies (42).
In order to prove (49), for every & € TaS~3, ¢ € T;,S3 we dgﬁne a distance
d(&, ¢) in the following way. We write § = & 4+ tia and ¢ = ¢ + tib, where
Ee€TNy;, ¢ eTNpandt, T € R (see (41)). Then we set

de,n) = \Jldm (&) — dmp@)P + |t — .
Now, construct the function f : T,S3 x T,S* — R given by

fla,b,§,m) = |§ —nlg—dE nl
Note that both d and | - |2 are locally Lipschitz in a, b, £, and ¢. Moreover

dE,m = 1E—nl = |§—nlg for&neTl,S,
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which translates into f(a, a, &, n) = 0. This condition and the locally Lipschitz
property of f gives the existence of a constant C such that:

fla,b,&n) = Cla—>b| for|§]+|n <2. (50)

Given any &, n we define M := max{|¢|, |¢|} and & := £/M,  := /M. Then we
can compute

& —nle=M|E -l < MdE, L)+ CMla — b
< d(&, n) +CUEl+InDla — b . (51)

From this we easily get (49). Integrating (49) and recalling (48) we get the in-
equality

IldF —do|lI75p
<C /D (dF|+|dDD*IF = @ + CollM = Wl 10, - (52)
Moreover, we have
2 2 2 2 2
/ (dF| + |d®*|F — @] sf @BldP* +2||dF| - [dD|[ )| F — ®|
D, D,
<A4ldF| = [d®7sp , + 8IPIZNF = DI7s
D s — w2 F — ®|? 53
< C3|| ”WI,Z(SZ) + C4” ||L2(Dr) ( )
Plugging (53) into (52) we derive
[lldF — dq>|||L2(D,,) < Cs|M — ‘IJ||W1,2(S2) +CellF — (D”L?(D,.) . (54)

Given 6 € R, define ® = ¢! ®. Then, clearly |[d® — d®|, = 0. Note that  is
a lifting of W and that all the estimates derived for ® holds for ® as well. Hence
from (54) we get (26).
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