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Abstract

We show that entropy solutions to 1-dimensional scalar conservation laws for totally nonlinear
fluxes and for arbitrary measurable bounded data have a structure similar to the one of BV maps
without being always BV. The singular set—shock waves—of such solutions is contained in a
countable union of! curves andH! almost everywhere along these curves the solution has left
and right approximate limits. The entropy production is concentrated on the shock waves and can
be explicitly computed in terms of the approximate limits. The solution is approximately continuous
H* almost everywhere outside this union of curves.
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Résumé

Nous démontrons que les solutions entropiques des lois de conservations en une dimension
d’espace pour des flux «totalement non-linéaires» et pour des données intitiales mesurables et
bornées quelconques ont une structure semblable a celle d’applications BV sans pour autant étre
dans BV. L'ensemble singulier—les ondes de chocs—de telles solutions est porté par une union au
plus dénombrable de courbed et, H1-presque partout le long de ces courbes, la solution a une
limite approximative a droite et a gauche. La production d’entropie est concentrée le long de ces
ondes de choc et peut étre explicitement calculée au moyen de ces limites approximatives. Une telle
solution est par ailleurs approximativement contifttepresque partout en dehors de ces courbes.
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1. Introduction

Letu:R/ x R, be a bounded entropy solution & + d,[ f ()] = 0 and assumg is
strictly convex. Since the classical results of Lax and Oleinik, it is knowntlatocally a
BYV function, even when the initial datg0, -) are very irregular. We recall that a bounded
distributional solution ob;u + d,[ f (#)] = 0 is an entropy solution if and only if:

e 9 [q(u)] + dx[n(u)] is a nonpositive measure for every convex entropy—entropy flux
pair (¢, n), i.e., for every(¢, n) such thay is convex and’(r) = n'(t) f'(t) L1-a.e.

When f is not convex, the solution of the Cauchy problem:

Oru + O [f(”)] =0, 1
{ u(0,) = o), (1)

is BVioc if up € BVioc(R). But for less regularg, u is not, in general, a BV function.

In [19] the authors have introduced a kinetic formulation for (1) and, using velocity
averaging lemmas, they have proved thdbelongs always to some fractional Sobolev
spaceW*14, even ifug is not better tharl.* (the exponents andg depending on the
nonlinearity of the fluxf). We refer to the book [20] for an account of the rich literature
on kinetic formulations for conservation laws. See also [10] for some examples concerning
the optimal regularity of;.

However, the fractional Sobolev spac®*? with @« < 1 do not provide good
information on the “structure” of the singularities of the functien The meaning of
structure is explained by the following examples. Firstddte aC?® solution of (1) and
(1, q) aCl entropy—entropy flux pair. Then

T =9 [n] + 8:[q@)] = 0" @ue + (¢'@)ur = ¢ [ur + f'ux] =0.  (2)

Instead, le« be discontinuous butiecewiseC?. In particular, assume the existence of a
smooth 1-dimensional se, such that: is C1 on R? \ J, and has left and right traces
(denoted byu*) on J,. Then the distributior?” does not vanish any more, but it is a
measure concentrated dp. Indeed, if(1, s)/+/1+ s2 denotes the tangent th, andH1
denotes the 1D Hausdorff measure, then

(T, ¢)=

/[s[n(bﬁ) — )= [qgu™) —q)]

dHt. 3
1452 :|(p ®)

Jll
For BV solutions, the BV structure theorem and Vol'pert chain rule (see [3]) give a fairly

good understanding of what happens. Indeed they imply the existencectif@ableset
J,, such that

(i) u is approximately continuous outsidg and has left and right traces dp;
(ii) for every entropy—entropy flux pait, ¢) the distributionT is still given by (3).
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In this paper we prove that, under some regularity assumptions on th¢ flthe same
structure holds foeveryentropy solution:.

Theorem 1.1.Let f € C2(R,R) and {x | f”(x) = 0} be locally finite. Ifu is an entropy
solution of(1), then there is a rectifiabléD setJ c R? s.t.

(a) everyy ¢ J is a Lebesgue point far;

(b) u has right and left trace$t*-a.e. onJ;

(c) for any smooth entropy—entropy flux p&ir, ¢), the entropy production is concentrated
on J and can be computed “classically” as

Bt[n(u(t, x))] + 0y [q (u(t, x))]
_ shn@®) —n@ )] — g™ - AR
Newwre

Remark 1.2.We stress on the fact that such solutiarere not, in general, iBV . Indeed,

let f(v) = |v|?, with p > 2. Clearly, f satisfies all the assumptions above. Then, there
areentropy solutionso d;u + 9, |u|? = 0 such that: ¢ W,;.7 for anye > 1/(p — 1) (and
anygq); cp. [10, Proposition 3.4].

LJ. 4)

Remark 1.3.In view of the fact that: is anentropysolution, we actually expect that
is continuousoutside J,,. Indeed, this is known to be true for strictly convex fluxes
(see [7, Chapter XI]).

Much is known about the regularity of solutions to scalar conservation laws in one-
dimension and, after all, if the initial data are BV, the solution is BV. Indeed our interest
comes from a more general question in measure theory, which arises naturally in different
areas of PDE.

1.1. The general measure-theoretic question

Problem 1.4.Let £ ¢ CY(R¥, R") andu € L®(R", R¥). Assume thaie := div[® (1)] is
a Radon measure for evegye £.

(i)’ Does there exist a codimension 1 rectifiable getsuch thatu is approximately
continuous outsidd, and has left and right traces dp?

()" If the answer to (i)is yes andp, ¥ € £, can we relate the measunes, e, and the
pointwise information om by “chain-rule” formulas?

We can give more specific versions of this quite general problem by simply assuming
more information on theig’s (i.e., that some are nonnegative measures, or that some
vanish): indeed, in many concrete examples we know more ahgut

Note that the classical structure theorem of BV functions is a positive answef to (i)
when€ is the class of linear mappinds: R* — R". In this case the information of (ifre
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summarized in the so-callgatecise representative af. Vol'pert chain-rule is a positive
answer to (i) when& containsthe linear mapd.. In this case, for any e C1, Vol'pert
chain-rule provides an explicit formula for di (x)] in terms of the measure>§u" and of
the precise representativef

Thus, Problem 1.4 can be considered as a nonlinear version of the theory of fine
properties of BV functions. Recently, some papers (see [4,8,9,18]) have given a positive
answer to (i) for many examples of classé€selated to PDE problems. To our knowledge
this article provides the first positive answer to’(ii) a case where there is no BV
regularity. Moreover, the answer to’(given in the papers cited above is not complete:
their results do not prove that outsidg the function is approximate continuous, but they
yield a milder property (cp. (ain Section 2.1 and (a) in Theorem 1.1). In the particular
case considered here, we are also able to fill this gap.

1.2. Applicationsto PDEs

The link with the theory of scalar conservation laws is transparent. In thisucése
an L entropy solution of (1) and is the set of convex entropy—entropy flux pairs
(n,q). This framework is available also for multi-dimensional scalar equations, where
Kruzkov’s theory provides existence and uniqueness of entropy solutions to the Cauchy
problem. Even for Z 2 systems in 1 spatial dimension, one can show, via compensated
compactness, the existence of glothaf entropy solutions for any bounded initial data
(this approach was pioneered in [13] in the system of isentropic gas dynamics; we refer
to [23] for the general treatment of 2 2 systems). However, except for some isolated
examples, nothing is known about the regularity and the structure of these solutions. In
this case an answer to Problem 1.4 would be much more relevant, since even when the
initial data are BV, there are no global-in-time BV estimates when starting from large
data. For small data, the recent remarkable work [5] give BV estimates when the entropy
solution achieved by compensated compactness is generated by the vanishing viscosity
limit.

Besides the area of conservation laws, there is another active field in which Problem 1.4
has interesting applications. In recent years, models arising from different areas of physics
(such as micromagnetism, liquid crystals, thin film-blistering) have raised the issues of
understanding the asymptotic behavior of certain second-order functionals of Ginzburg—
Landau type (see, for example, [1,11,14]). It turns out that'tHemit of these functionals
(i.e., the appropriate limiting variational problem) can be properly understood in classes of
functions which satisfy certain PDE’s and for which the divergence of certain nonlinear
guantities are Radon measures (see [2,12,15,21]). Indeed, the total variation of these
Radon measures is controlled by the limit functional. It turns out, however, that this
control does not give BV bounds and these classes of functions are strictly larger than BV
(see [2,10]).

In these variational problems the papers [4,8] provide, by giving a partial answe to (i)

a regularity theory for the functions in the domain of the conjecturdinits. A positive
answer to (ii), which is still lacking, would give nice formulas for the conjecturédimits
and, potentially, could lead to complete proofs of fheonvergence results (see [2,21]).
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1.3. Links to kinetic theory

Most of the PDE problems mentioned above enjoy a kinetic formulation (for the
variational cases this formulation was introduced by [16] and [22]). We give the kinetic
formulation for entropy solutions of (1) and we refer to the book [20] for an account of
the various kinetic formulations of the problems mentioned aboveulls an entropy
solution of (1) and assume (for simplicity) thatis nonnegative. Define the Maxwellian
xR, xR, xR, —Ras

+1 ifO0O<v<u(,x),
k] tv = .
X (@, 1,%) [ 0 otherwise.
Theny satisfies, in the sense of distributions, Kieeticequation:

o x + f/(v)axX = OyML, 5)

wherey is a Radon measure &, x R? . Moreover, if we set

v ifu>v,
u otherwise

K@w,u)= { (6)

we then haveu(v, ¢, x) = 8,[K (v, u(z, x))]+ 0, [ f (K (v, u(t, x))]. Thus, a characterization
of the measures

Uy = BI[K(v,u(t,x))] +8x[f(K(v,u(t,x)))] @)

is equivalent to characterize the r.h.s. of (5). Indeed, in all the cases where a kinetic
formulation is available, point (ii)of Problem 1.4 reduces essentially to prove that the
r.h.s. of the corresponding kinetic equation is concentrated on thé, s&¥e point out
that the problem of proving concentration estimates for the entropy measwees first
mentioned in [19] (cf. the first open question listed in [20, Section 1.13]).

Finally we remark that some technical lemmas proved in this paper yield new results
even in the kinetic theory. Indeed:

(1) Thanks to a regularity result of [6] we prove that foiin (5), 83u is a measure (see
Proposition 4.1). This information can be combined with suitable modifications of the
velocity averaging lemmas in [17] to improve the Sobolev regularity kfiown up to
now. However, we do not pursue this issue.

(2) In Section 6 we derive a new averaging lemma for solutions of the transport equation
(43). To our knowledge, this is the first example of an averaging lemma wheké no
bounds in the transported values are assumed.
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2. Outline of the proof
2.1. Previous results

From [9, Theorem 2.4 and Remark 2.5] of we know the existence of a rectifiable set
such that (b) of Theorem 1.1 holds and:

(@) Ineveryy ¢ J the mean oscillation af vanishes.
(c') For any smooth entropy—entropy flux pédir, ¢), the entropy production is given by
¢ + «, whereg is the right-hand side of (4) andsatisfies the following condition:

a(K)=0 forevery Borel seK with H(K) < occ. (8)

Hence, our tasks are to imprové)(and (¢) to the statements (a) and (c) of Theorem 1.1.
A crucial role will be played by the following theorem of [6].

Theorem 2.1.There is a constar@ (depending orju |« and f) such that

Jonls e e < (1427 ©

Actually, the author in [6] gives an explicit proof of Theorem 2.1 whgfi’ = 0} < 2
and at the end of the paper remarks that this proof can be generalized to the case when the
set{f” = 0} is locally finite (cp. [6, Section 6]).

2.2. Strategy of the proof

We first establish some notation which will be used throughout the papeas # Radon
measure o2, thenvt andv~ denote its positive and negative part=t v — v7). ||v||
denotes the measure + v~ and|v|| r((s2) denotes the total variation ofon £2 (that is,
Ilv]|(£2)). B, (y) denotes the ball of radiuscentered ay.

Proof of (a). This is based on the following remark. Assume that at p@intxg) the
mean oscillation of: vanishes, but: is not approximate continuous. This implies that
the averages af on the balls of radius oscillates between two values< b asr | O.

By a Fubini—Tonelli argument, this oscillation will take place in most of the lines passing
through(ro, x0). A linear change of variables and Theorem 2.1 give that this oscillation
cannot take place if the lines are space-like. The detailed proof is given in Sectian 3.

Proof of (c). Everything boils down to show that the measwreon the r.h.s of (5) is
concentrated od.

Using Theorem 2.1, in Section 4 we prove tt@ﬁu is a measure. Denote hythe
nonnegative measure &% which is the(x, r)-marginal of the total variation cﬂ‘fu. Then
the estimate oafu allows to writeu asg (v, t, x)v, whereafg(- ,t,x)isameasurein for
v-a.e.(t, x) (see Lemma 5.1). Thus our claim is equivalent to show thatconcentrated
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on J. We argue by contradiction and assume th@?2 \ J) > 0. Take a “typical” point
which lies outside/ but which “sees” the measute(for the precise meaning compare
with the setA defined in Proposition 5.3). In what follows, this point will be calleake
pointand for simplicity we assume that it is the origin.

We look at the rescaled kinetic equations satisfied by the rescaled fungtions, x) :=
x (v, rt,rx), thatis,

s

dxr + £ () xr = 0y “7 (10)

Here theii” are the appropriate rescalings of the meagui@/e divide (10) by the quantity
ar = v(B,)/r, thus getting:

=0~ (11)

Xr o
ar v(By)

0%+ (),
(073

By (¢) of Section 2.1 it follows tha/ coincides (up ta-negligible sets) with the set of
pointsy, where

B,
Iimsupiv( ) >
rl0 r

0.

Thus, “typically” «, | 0 since our base point is out df

By an infinite version of Radon—Nykodim Theorem (see Proposition 5.3), the conver-
gent subsequences” are converging to a measure of the fogitv) £1 x v, Wherey™
is a nonnegative measure B3. This product structure is a consequence of a very general
fact and similar remarks have already been used in [4,8,9]. Note that, since the base point
is “typical” and sees the measurewe have thag (v) £ x v. is not the trivial measure.

Take an arbitraryI' € [—1,1] and consider the solutiomf of the free transport
equation:

{atxnf + f' @3l =0, 12)
Xilf(va Ta-x) = Xrn (Ua Ta'x)'

Define

Xi’n(vata-x) - X,{(U,t,x)
o,

F,(v,t,x):=

n

and note that they solve the transport equation:

o by + f/(v)aan =y,
{ F,(v,T,x)=0. (13)
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Formally, in the limit we get a distributioh which solves:

oL+ f/(v)axL = g/(U)Voo,
{ L, T,x)=0. (14)

The x,, (v, -) are rescalings of thg (v, -), which are the characteristic functions of the
sublevel sets af. Since our base point does not belongtstatement (a) of Theorem 1.1
applies and hence the rescalingsiodround the base point are converging to a constant
(recall that the base point is the origin and thus this constamtdy). Thus x,, (v, -) is

converging to the constant 1 if 8 v < u(0) and to the constant O otherwise. Tb@é,
being solutions of a free transport equation, take valy®,d}. Thus one could hope that
the distributionL satisfies the sign condition:

L<0 on]u(0),+oo[ xR? and L>0 on]0,u(0)[ x R? (15)

This may not be the case, sintds the limit F,, = (x, — x,{)/arn ande;, | 0. However,
recall the estimate oﬁfu. In a “typical point” this estimate translates into a uniform
estimate for the measur6§u’". This is used in Section 6 to prove an averaging lemma
(see Lemma 6.1) for the functio% . This lemma is, to our knowledge, new and provides
sufficiently strong information in order to derive (15). Then, playing with the arbitrariness
of T in (14), with (15) and with the condition,, > 0, we can prove that andv,, must
vanish identically. This gives a contradiction since we have fixed a typical point which
“sees” the measune (that is,v. cannot vanish identically).

3. From VMO to Lebesgue points
In this section we use Theorem 2.1 to show (a) in Theorem 1.1. Let usdiyd and

assumey € {t > 0}. For simplicity, assume that= (7, 0) and recall that is an entropy
solution in{t > 0}. Set

1
u = / u(t,x)dedx.

=
By (y)
From (&) we get that
|imi / lu(t,x) —i"|dtdx =0 (16)
ri0 772 ' .
By (y)

Thus we have to prove that:= liminf, g, = lim sup. ity =: b.
Step 1.Assume, by contradiction, that< b and fix the following conventions:

— If £ is a half-line starting ap andy1 # y2 € £, then we say thags > y2 if |y1| > |y2].
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— We parameterize the family of all half-linés using vectors oS! in the usual way.
Applying Fubini—Tonelli Theorem in polar coordinates, we get the following:

(Co) Lets > 0,N € Nbegivenands, I» C ]a, b[ be two given intervals. Then fétt-a.e.
¢, there exist &/ pointsys, ..., yay € £N Bs(y) with
() y1>y2>---> yan;
(i) all y;’s are Lebesgue points far and u(y2;) € I2, u(yzi+1) € Iy for every
ye{0,...N}.

Fix now two intervalsli, I> C [a, b] such thatf’(I1) < ¢ < d < f'(I) (this is certainly
possible sincef” vanishes only in finitely many points). Note that, if forlarge enough
one of the?’s above were the axis, we would have a contradiction. Indeed, we would
haveT V(f'(u(T,-))) > N(d — c¢) and for largeN’s this would contradict (9). In the next
step we will modify this idea using half-linéswhich are close to the horizontal one.

Step 2.Let us make a linear change of coordinates by puttirgx — ¢z. In these new
coordinates the conservation law becomes:

O[u+ef@)]+ 0 [fw]=0.

Note that fore sufficiently small the functiog. (v) = v + ¢f (v) is invertible in the range
of u (the range of: is bounded). We define:

fe:1-C1,C1l—> R asf.(v) = f(g;1(v)).

andw, = u + ¢f (u), whereC1 is a suitable constant. Note that is a distributional
solution ofd; w, + 9¢[ fe (we)] = 0. Actually it is not difficult to see thab, is anentropy
solution. Moreover, the following straightforward computations show that the numbers of
zeros of f; and f are the same (cf. (17) below). Frofa(g.(v)) = f(v) andg,(v) =
1+ef'(v), we get:

o) =S @ A1
fe(g‘?(v))_l_'_gf/(v) _g|:1 1+8f/(v):|’
” f" () [’
o) _ . 17
f: (&) gw{a+www} A+ef' ()3 o

We are in the conditions of applying Theorem 2.1 with in place ofw and f, in place
of f. In order to simplify the notation, we will use the following conventionsif= R?
is any segment ang: R? — R, thenT V (g, S) is the total variation of the restriction gf
to S.

DefineS; as the segment joining= (7', 0) and the point +§(1, ¢)/+/1+ ¢2. Denote
by h, the functioni, (v) = f/(g:(v)). Apply Theorem 2.1 tav, and f; in place ofw and
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f and translate the BV estimate in the old coordingtes). It is immediate to check that
we get the following: There exists a const&hsuch that, ii§ ande are small enough, then

TV (he(u), S§) < K. (18)

Recallc, d, I1 and > defined in Step 1. Clearly, farsufficiently small we have:
he(I1) < k1 < k2 < he(12). (19)
Now chooseN large enough so thatA\2(k> — k1) > K and select so thatS;S contains

2N points y1, ..., y2y satisfying (i) and (ii) of (Co) in Step 1. Then we would have
TV (he(u(t, x)), S?) > 2N (k1 — k2) > K, which contradicts (18).

4, Estimate for 92p

Proposition 4.1.Letu and f be as in Theorerh.1and lety = (T, z) e R™ x R. There is
a constantC; (depending oflu ||, f andT) s.t.

1821]|(R, x Br/2(»)) < C1. (20)

Proof. Itis sufficient to prove (20) whem € BV)qc. Indeed, assume that (20) holds for BV
solutions and fix an entropy solutian Choose a sequen¢e,} C BV|oc(R) S.1.

Ve () > u(0,) inLige and v fleo < llutlloo.
Letu, be the entropy solution of

{ dun + [ f )] =0,

By the maximum principlel|u,[loo < [[Unlloo < ll#lloo. By the LY contraction principle
(see [7, Theorems 6.2.2 and 6.2.3}),€ BVioc(R2) andu, — u in L (RT x R). Thus

loc
32100 = 3y (3 xn + £/ (W) xn) — 82w in the sense of distributions.
Since||afun||(Rv x Br/2(y)) < C1, by semicontinuity of the total variation we get (20).

The caseu € BV|qc.
Foru € BV|qc, we prove (20) using Vol'pert chain rule. Denote byhe jump set of: and
by £ = (1, 5)/+/1+ s2 the tangent to/. Then Vol'pert chain rule implies:

|f'wh) - f’(u_)lHl

ax f' >
Jo.s '] > L L

L J. (22)

We calculateu using (7). VolI'pert chain rule gives = g(v, u™, u~, s)HL L J, with
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1
g, ut u”,s)= — {[f(K@t v) = f(Ku,v)]-s[Kw", v)— K@, v]}

Nl

Assume, for the sake of simplicity, that > x~. Then
h(s,ut,u",v):= [f(K(u+, v)) — f(K(u_, v))] — s[K(u"’, v)— K™, v)]
= [fu®) = f@) = s@" =]l ).
For eachr, x, consider the function
hi x(v) = h(s(t, x), u+(t, x),u (t,x), v).
Clearlyh; x € C?([u~, u*]). The Rankine—Hugoniot condition gives:

L_fuh - fa)

ut —u—
Henceh; (u™) = h; »(u™) = 0. Note that
2w =[n) () +h}  8,+ () — k)  ()8,~ (W) ]H L J.

Thus, setB = Br,2(y) and compute:

u+
18214 ] (R, x B) = / [/|h;{x(v)|dv+ |hy )]+ |h;’x(u)|:| dH(, x).
JNBrj2(y) “u~
(22)

To estimate (22), we split N B into two parts. Fixe so small that
{vi#v2, f"(v) = f"(v2) =0and|v;| < llulloo] = |v1—v2l>¢e (23)
and define the sets:
Jh={.x) e INB: [ut(t,x) —u™(t,x)| > e},
I ={@,x)eJNB: [ut(t,x)—u" (1, x)|<e}.

Clearly there is & (¢) such that, ifiu™ —u~| > &, then

ut ut

/|h;jx(v)|dv+ |y @)] + |y ()] < C(s)/ s x| (v) dv. (24)

u
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Thus
[2i]| (R, x J') < C@llnl(R, x J') < C@Iul(R, x B). (25)

Fix (r,x) € J*. Sinceh}  (v) = — f"(v)/v/1+ 52, (23) implies thath] , changes sign at
most once irfu~, u™]. Recall that

hix(u™) =h;x(ut)=0
and that, since. > 0, we haveh, . > 0 on[u—,u™t]. All these conditions imply that

h! . <0on[u~,u"] (whichinturnimpliesf” > 0). Moreover, there existsiae [, u*]
such that; , (v) =0. Thus

Lt+ Lt+
J Il -t 1)+ )| <3 [ o)
u- u-

ut
_ 3 v 3@ — flw)
_«/1+s2/f (dv= V1its? ’ 20
(21) implies that
|21 (R, x 7*) <3[ac[f' @] ] (7% <3|a: [ ]| (B. 27)

Adding (25) and (27), we get:

|7l (R, x B) < C@InIR, x B) +3a:[ /' @)][(B).
The first part of the right-hand side is bounded by a constant depending orilly|laf
and f. The second part can be bounded using Theorem 2.1. This concludes the proof.
5. Blow—up of measures

Let u, u and y be as in Section 1.3. We denote byhe x, r-marginal of||8§u||, ie.,
the measure oM (R?) defined as

v(A) == || 32| (R, x A) for all Borel setsA C R?. (28)

Note that we can give a “pointwise”’—in meaning to the measuge. More precisely,
thanks to Eq. (7), the distribution,

[y = 8K (v, u(t,x)) + [ f (K (v, ut,1)))]. (29)
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is a measure for eaahand

/(p(v,t,x)du(v,t,x)=/|:/(p(v,t,x)duv(t,x)i| dv for all(peCc(R3). (30)

R R2
Lemma 5.1.There exists a bounded Borel functigrs.t. u (v, 7, x) = g(v, ¢, x)v and

for v-a.e.(r, x), 32g(-, t, x) is a measure oR, with [[92g(-, ¢, X)HM(R =1 (31)

Proof. Fix v > 0 and a ballB ¢ R2. Take a sequence of functiofis,} C C>(R), with
lenll,1 =1 and ¢, — 8, in the sense of distributions

Choose a sequence
(@} C CP(B) with @, 1 15 pointwise everywhere.

Using (30), (29) and the nonnegativity @f, we easily get:
o) = I lim [ 9 0)@ .2 du(w. 1.0 (32)
m?toontoo

Recall that||u]|« < 0o by assumption and that, = 0 for v ¢ [—||u]lso, [|#]loo]. ChoOSE
¥, such that)) = ¢, and ||y, || L) < 2||lulle. Then we have

‘/%(vwma,x)du(v,r,x)

= ‘/I/fn(v)q)m(t,x)d[ﬁgu](v,t,x)
< 2||ulloov(B). (33)
Combining (32) and (33), we conclude
po(B) < 2|ulloov(B).
By the arbitrariness oB and by Radon—-Nykodim Theorem,, = g, (¢, x)v for some

gv € LY(R?,v). We setg(v, 1, x) = g,(t, x), gettingu = g(v, ¢, x)v. Clearly, for every
bounded set,

ff|g(v,t,x)|dvdv(t,x)= lll(R x U) < oo.
U R

Thus the functiong; ,(v) := g(v,z,x) is in LY(R, LY for v-a.e. (r,x). Hence the
distributiong;, € D'(R,) is well defined (fon-almost every, x)) and

[wdstl= [we 0. g o) (34)

R2
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for every¥ ¢ C§°(R3). Sincev is ther, x marginal of||83/L||, standard theorems in the
disintegration of measures (see for instance [3]) imply the existence of atnfep>
(t,x) = & x € M(R) such that:

& xllmr)y=1 forv-a.e.(, x); (35)
‘/WqﬁukiffwaJN&AmeJﬂfmeWWWEC?m%. (36)
R2 R

Comparing (34) and (36), we get easily tRdt =& . forv-a.e.(t,x). O

We now want to study a particular class of rescalings of the measW/¢e first set a
bit of notation on tangent measures:

Definition 5.2. Let v € M(R?), u € M(R, x R?) andy € R?. We define the measures
v uY " as

A
v¥(A) = YO FrA) o all bounded Borel sets CcR?
v(Br(y))
A
uw"(C x A) = rC€ X y+ra) for all bounded Borel setd c R%, C Cc R,,.

w(R x Br(y))

The sets of tangent measurEsy, v) (respectivelyT (y, u)) are defined as the limits of
all sequences$v”"},, 0 (respectively{;.”"},, 0) which are convergent in the sense of
measures.

We come to the main goal of this section.
Proposition 5.3.Letv, 1 andg be as in Lemma&.1. For everyy = (z, x) denote by, the
measuregy(v)c1 of M(R). Then there is a Borel set with v(R2 \ G) = 0 such that for
everyy € A the following holds

if v eT(y,v) then the product measug x v>®°isinT (y, u); (37)
if u*eT(y,u) then therein™ eT(y,v)suchthat u® =&, x v>. (38)

Remark 5.4.We stress on the fact that x v is a product, that is,
/(ﬂ(v)llf(t,X)d[Sy X v°°](v,t,X)=f<p(v) déy(v)/ilf(t,x)dvoo(t,X)-

Proof. First of all select a countable sép,} C C.(R) which is dense in the uniform
topology on compact subsets. We define the functions:

w(t,x) == lgrxllp1, wi (L, X) 2=/<pk(v)gz,x(v)dv-
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We define the set:
G = {y |y is av-Lebesgue point fow andwy, andw (y) # 0}.
Thanks to Lemma 5.1, we havéR2\ G) = 0. We prove only (37), the proof of (38) being

analogous. Fixy € G andv™ € T (y, v). Thus there exists a sequenge™ of rescaled
measures converging t6°. Let @ € C.(R?). Note that

/(pk(v)@(t,x)duy”"(v,t,x)=fa)k(t,x)@(t,x)dvy’r”(t,x) (39)

and that, since is v-Lebesgue point fod,
St f | (or (£, %) — 0k (1)) @ (2, )| ™" (2, x) = O,
|iTofwk(t,x)¢(t,x) v’ (@, x) (@, x) = IiTofwk(y)@(t,x) dv” "™ (z, x)

:/wk(y)¢(t,x) dv™>(t, x). (40)

Choose a subsequence{af} such thai”-"» has a limitu®°. Beingy av-Lebesgue point
for w, we have that

. w(Rx By, (y)
— -7 = 0. 41
wlo v B, () (41

Then (40) and (41) imply:

/(pk(v)dﬁ(t,x) du®(v,t, x) =/(pk(v) déy(v)/qﬁ(t,x) dv®°(z, x). (42)
Recall that{¢y} is dense inC.(R). Hence, (42) holds for every € C.(R) in place ofgy.
The arbitrariness ap and® gives (37). O
6. An averaging lemma

In this section we prove an averaging lemma which will be used in the proof of point
(c) of Theorem 1.1.

Lemma6.1.LetF,:R, x R, x R, — R be L! solutions of the transport equatians

{atFn'i_f/(U)aan:aU:unf (43)

F(v,0,x)=0.

Assume that
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e F,u/"=00n(R\L) x Rﬁx for some bounded intervdl,
e 32u" are all Radon measures
e [|32u™(R x U) is a bounded sequence for every bounded opeti s2R?.

Let] be an interval such thanhf; | f| > 0 and lety € C°(1). Then,

| Full ;1 is a bounded sequence for evéfye R?. (44)
LE . RxU)

The functionsg), (¢, x) := / ¥ (v)F, (v, t, x) dv are weakly

precompactirLy . (45)

6.1. Proof of thel.1 bound

In this subsection we prove (44). Choose ba#lls B’ c R2. Sinceafu" is a measure
andu” =0on(R\ L) x RZ_, it is immediate to check thd, " || (R x B’) is bounded.

X

The ball B’ will be chosen later.
By standard arguments (e.g., using convolution kerneis.i for everyn we can find
L functionsG, andg, satisfying the following conditions:

e For £l-a.e.v, the functionsG, (v, -), g, (v, ) € C*®°(R?) and satisfy the transport
equation:

;G + f/(v)axGn = &n;
{Gn(v, 0,x) =0 (46)

o |Fy = Gullpyrxpy < 1/nandlignll Lirxpy < 13up" (R x B') +1/n.
Sinceg;, (v, -) is smooth, we can explicitly compute:

t

G,,(v,t,x)=/gn(x+(t—t)f’(v),r, v) dr. 47)

0

Take the absolute value and integrateamdx. Recall thatf’ € C1(L) and thus is bounded
on L. Then there exists a constafitsuch that, if the balB’ is large enough, then

/|Gn(v, t,20)|drdx < Cf|uu" (v, )| 1, forvelL. (48)
B

Note also that the size @’ depends only on the size & and on sup|f’|. Integrating
(48) inv and recalling thaG, =0 onR \ L, we get||Gx |l ;1 rxp) < CllIdvitnll 2R 2 p)-
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6.2. Proof of the weak -precompactness

It remains to show thdtz, } is weakly precompact. Defing, andG,, as in Section 6.1.
Our claim reduces to the local wed@R precompactness of the functions

2,(t, x) :=/1/f(v)Gn(v,t,x)dv.
I

We restrict to a compact set B?, say a ballB. To show the wealt.1-precompactness of
£2, in B, itis sufficient to show that for every> 0 there exists > 0 such that

If E C B satisfiesC2(E) <38, then ITlm‘ / 2, <. (49)
nToo
E

Recall that the;,’s are supported i’ x R? for some bounded’. Thus, since the velocity
of propagation of the transport equation is bounded, we can truggasenoothly to 0
outside a compact set &2, without affecting the value of2,, in the ball B. Hence, we
assume that thg, are supported id x [—C, C]?, for some constart.

We splitE into thatE™ = EN{t > 0} andE~ = E N {t < 0}. Since the estimate is the
same, we only show the one fa@rt and for simplicity we drop the plus. Using (47), we
compute:

t
/Qn:// lE(t,x)/w(v)/gn(v,r,x—i—(r—t)f’(v)) dr dvdxdr.
A R2 R 0

We rewrite the integral as

ff/flE(t, ) 10.1@ Vv (v)ga (v, T,x+(t — t)f’(v)) dr dvdx dr.

We change variable by putting= x + (z —t) f/(v) and we get:

ff/flE(t’y+ (t =) f'())Ljo,1(T) ¥ (v)gn (v, T, y) dr dvdy dr.

We now integrate by parts imand get:

_////[/le(t’H(t_f)w) dw:|1]0,tl(1')

x [¥'(v)gn (v, T, y) + ¥ (©)ugn (v, T, y) | dr dudydr,
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wherey is the left endpoint of the intervdl The functions
On(v, 7, y) =¥ (Vg (v, T, y) + ¥ () gn (v, T, y)]

are supported in a compact dek [—C, C]. Thus we rewrite the integral as

/// |:/(/ 1E(t, y+ (@ — r)w) dw) Lyr.0(®) dt] ®, (v, 1,y)dydr dv.
]

Recall that tha. norm of the®,’s is bounded. Thus, if we define the functions:

C v
¥(v,t,y) = / f 1(r,y+ @ — 1) f'(w)) dwdr, (50)
Ty

we just need to prove that for amy> 0, there exists s.t.

L2E)<S = sup ¥, 7,y <e. (51)
(v,7,y)el x[-C,C]?

Since the set& and E + (0, y) have the same area, it suffices to show (51) whenO.
By changing coordinates with = ¢ — 7, this reduces to estimating:

C—t v

sup / / 1e(o + 7. 0f (w)) dw do. (52)
0 n

vel,te[-C,C]

Hence, it is sufficient to bound

2C v

Sup/flE(a~|—t,af’(w)) dw do.
0 n

vel

SinceE andE + (t, 0) have the same area, it suffices to bound

2C v

Sup//lE(o,af/(w)) dwdo. (53)
07

vel

Recall thatinf | f”| > « > 0. Thus we can change variable by putting o f'(w), getting:
2c

sup K*1/
wvinl

0

af'(v)

d
/ 1:(o, 2) =
o
of'(n)

do.
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We split E into two partsiE, := E N{oc <A} andE \ E;. Then

2C, of'(v) d 2C, of'(v) g
_ z _ z
K 1/ / 1EA(U,Z); do <« 1/ / 1{a<,\}(0,z); do
0 ‘of'(n) 0 ‘of'(n)
< A s 1 / _
< =supf'(v) — f'(n)| = C1r.
K verl
Whereas,
2C, of'(v) q £2(E)
_ z
K 1 1E\E~A(U,Z); do < o
0 ‘of'(m

Thus, for every > 0, we first choose so thatC1A < ¢/2 and then we choosesuch that
8/(kxr) < &/2. Clearly,L%(E) < & implies:

2C of'(v) q
z
SUDK*/ / 1g(0,z7)—do <,
vel o
0 of'(n)

which gives (51). This completes the proof.

7. Concentration—rectifiability

We now come to the proof of (c) of Theorem 1.1. Recall the definition of the (convex)
functionsK (v, -) :R — R™ given by (6). Define the set Kr as the paiig ¢) such that
there exist real numbeis, ..., v,, o1, ..., a, such that

n() =Y aiK@w.).  qgO)=> af(K@.").

i=1 i=1

It is not difficult to see that for any convex entropy—entropy flux pairg) there is a
sequencé(n;, gi)} C {Kr} such thaty; — n andg; — ¢ uniformly on compact sets. Thus
it is enough to prove that (c) holds for the entropie$tof}. By linearity, it is sufficient to
prove (c) for(K (v, -), f (K (v, -))) for eachv. Thanks to (€ of Section 2.1, it is sufficient
to show that eaclr, of (29) is concentrated osi. Recall that

Ix + f (W) x = .

Thanks to Lemma 5.1 (and to the continuityvirf K (v, -)), we only need to show that
is concentrated id, wherev is thex, r-marginal ofu (see Section 5).
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7.1. Setting and blow-up
We argue by contradiction using a blow-up argument. Aebe the set of Proposi-
tion 5.3. If v is not concentrated o, then there existg € A \ J such thatl'(y, u) # {0}.
From Theorem 1.1(a), we know that
y is a Lebesgue point far. (54)
Without loss of generality, assume that

y=0 and u(0) =1 (55)

So fix av™ e T'(0, v) which is nontrivial and a sequengg | 0 such thav® — v, in
the sense of measures. Thanks to Proposition 5.3,

u® converge tzo(v) L1 x v (1, x). (56)
Moreover, since by Lemma 5.3/ is a measure fow-a.e. A, without loosing our
generality we can assume thgtis a measure. Let us go back to the kinetic equatign
f' (), x = d,u. We make a radial change of coordinatest) — (r,t, r,x). We denote

by x, the functiony in the rescaled coordinates, that jg,(v, 7, x) := x (v, ryt, r,x) and
for simplicity we putu” = 1%, Then, we can rewrite the kinetic equation as

a2 4 a2 = o, (57)
oy, o

n

whereq,, are suitable constants.
7.2. Comparison with the free transport

Since g is a measure (and is supported on a compact ggtls BV. Hence,gj, is
continuous except for an (at most) countable set. Moregye# 0, otherwiseT (0, )
would be the trivial sef0}. Thus we can fix an intervdl such that

gu#0 onl. (58)

For the sake of simplicity, assume:

80<0 onlI=[né&landO0<n <& <1=u(0) (59)

(it is easy to see that in the other cases we can argue similarly). $iheanishes finitely
many times, we can assume

infl"|>0. (60)
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Finally, without loosing our generality, we can impose that
v is nontrivial in the ballB1(0), thatis v>°(B1(0)) > 0. (61)
Recall that they, are the characteristic functions of sublevel sets of rescalings of the
initial functionu. Thus, using Fubini—-Tonelli Theorem and the monotonicity of x,, we
have:

For almost every” < —1, x, (v, -) has a trace on the ling = T} for eachv. (62)

T will be chosen later so to fulfill appropriate requirements (see Section 7.3). We denote
by X,{ the solution of the free transport equation:

{ atXI{ + f/(v)axan =0, (63)
X! (0, T, %) = xa (v, T, x).

We define the functions:

Xn(v, 1, x) — an(va t,x)
Opn

F,(v,t,x):=

and note that they solve the transport equation:

o Fy + f/(v)aan = Oyu",
{ F(,T,x)=0. (64)

7.3. Contradiction

In the next subsection we will prove that there is a subsequefgesuch that

OnI x R?, the F,(x)’s converge, in the sense of measures,

to a nonnegative. (65)

Here we show how (65) yields a contradiction. Fix a segmenh {t = T} and a line
¢={t=T'}.BothT, T’ anda will be chosen later. For eaah, consider the two adjacent
segments (sa¥,, andd,,) parallel to the vecto(l, f'(w)), starting at the endpoints af
and ending when they meét Finally, we denote by,, the segment of which, together
with ay,, by, andc,,, forms a parallelogran®,, (see Fig. 1).

Denote byn < & the two endpoints of and consider the three-dimensiorfal=
Uwem,s[ P,,. The seftS is bounded by the four plang¢s= T}, R x ¢, {v=n} and{v =&}

and by two ruled surfaceb; and I'>. We first choose a nonnegative functigre ci()
with the following properties:
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B (0)

 is constant

{t=T}

Fig. 1. The parallelogran®,, and the shape of (a typicap) on P,,. In the rectangular regiog grows from 0 to
a constant and depends only of f/(w)x.

¢ =0inaneighborhooddR x £ and is constantin aneigh. &f=T}; (66)
(0 + f'(w)dx)p <O everywhere ofS; (67)
¢>1 onl x B1(0). (68)
It is easy to construa “slice-by-slice”, i.e., constructing eaei(v, -) € C1(P,), provided

that:{r = T} and¢ = {r = T’} are sufficiently far fronB1(0) anda is sufficiently large; see
Fig. 1. This choice can be clearly made (recall thatA.e. —1 satisfies the trace condition

(62)).

Next, we choose a nonnegative functigpre C1(S) such that
v=0 onlyandl> and y¥ =1 onl x B1(0),
(3 + f'(w)dc)¥ =0 everywhere oiS.
Moreover, we fix a smooth nonnegative bump functjosupported o and equal to 1 on

some interval . Thus, the nonnegative functiah = ¢ ¢ € C1(S) satisfies the following
conditions:

(0 + f'(w)d)® <0 onS and (3 + f'(w)d)® =0 onds, (69)
@ =0 inaneighborhoodadfS\{r=T} and &=1 onL x B1(0). (70)
Finally, we claim thafl" can be chosen so that
v ({t=T}) =0. (72)
Since theT’s for which v*° ({r = T'}) are countably many, this is certainly possible.

Test (29) with the functio®. Since® vanishes on a neighborhood®s \ {t = T'} and
F, =0on{t =T}, we can integrate by parts and get:
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_/[(a, + £/ (0)8)D (v, £, X)| F (v, £, x) dw i
S

=f<1>(v,t,x) d(@,u™) (v, t, x). (72)

N

Since(d; 4+ f (v)d,)® vanishes in a neighborhood &§, thanks to (65), we can pass to the
limit in the left-hand side and we conclude that this limit is

/[—(at + f'()0,) @] dw (v, 1, x). (73)

S

Sincew is a nonnegative measure and the integrand in (73) is nonnegative, the number (73)
is nonnegative.

Note thatd, " converges, in the sense of measure} {o> = g6£1 x v°°. Moreover,
by (71),v>°({r = T}) = 0, whereasp vanishes in a neighborhood 68 \ {r = T'}. By
classical theorems on the weak convergence of measures, these conditions imply that the
right-hand side of (72) converges to

/ @ d[d,u™]. (74)

S

Recall that, because of (59),.> is a nonpositive measure ¢rand that, by (61), we have
dyu> (L x B1(0)) < O for every intervall. C I. For one such interval, we hade= 1 on
L x B1(0). Since® > 0, this implies that (74) is a negative number. By (72), (73) should
be equal to (74), which is a contradiction.
7.4. Fy converge to a nonnegative measurelor R?

It remains to show (65). Since (60) holds, we can apply Lemma 6.1 to get:

| Fy, ||L|1 RxU) is a bounded sequence for evéfrye R2. (75)
oC

Thanks to (75), we can extract a subsequence which is converging in the sense of measures
to a measure. Fix a nonnegativey € C2°(I). Again, thanks to Lemma 6.1, we have:

En(t,x):= / V¥ (v)F, (v, 1, x) dv are weakly precompact ihl (76)

loc*
We will show below that this implies:
If E is limit of a subsequence &,, then Z. >0. (77)

Note that (77) gives/ ¢ (v)¢(r,x)dw(v,2,x) > 0 for all nonnegative functions
YeCX),pe C§°(R2). By a standard density argument, we g"eb dw > 0 for every
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@ e C.(I x R?). This gives (65). We now come to the proof of (77). Recall the following
facts:

Fo= (ot — 11 ) fotn: (78)
xn (v, -) is the characteristic of the-sublevel of a suitable rescalingef (79)
X,{ is defined via (63); thus its range is contained@nl}; (80)
0 is a Lebesgue pointfor, I = [, £] and O< n < & < 1=u(0). (81)

Define the set
A= {x e R?| xu(n, 1,x) > 1}
and fix any compact seéf ¢ R?. (79) and (81) imply that
L2(K\ Ap) L0 forn 1 occ.

Moreover, (79) implies, (v, -) < xx(w, -) for every O< v < w. Hencey, (v,-) =10nA,
for everyv € I. This, together with (78) and (80), implies:

F,(v,t,x) >0 foreveryv e I and every(t, x) € A,.
Hence&, > 0 onA,,. Thanks to the weak!-precompactness ¢f,}, we have:
lim /|E,,(t, x)| drdx =0.
n
All

This impliesZ. > 0 for any Z, which is limit of a subsequence ¢£,,}.
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