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Abstract

Let Σ ⊂ R3 be a smooth compact connected surface without
boundary and denote by A its second fundamental form. We prove
the existence of a universal constant C such that

(1) inf
λ∈R

‖A− λId‖L2(Σ) ≤ C
∥∥A− tr A

2 Id
∥∥

L2(Σ)
.

Building on this, we also show that, if the right-hand side of (1)
is smaller than a geometric constant, Σ is W 2,2–close to a round
sphere.

1. Introduction

Let Σ ⊂ R3 be a smooth surface. A point p of Σ is called umbilical
if the principal curvatures of Σ at p are equal. A classical theorem in
differential geometry states that if Σ is connected and all points of Σ are
umbilical, then either Σ is a subset of a round sphere or it is a subset
of a plane. Thus, if Σ is a compact surface without boundary, then Σ
must be a round sphere and therefore, its second fundamental form is a
constant multiple of the identity.

In the literature, some quantitative versions of this classical rigidity
theorem are available. For instance, in [11], it is proved that if Σ is a
closed convex surface and the ratio of its principal curvatures are uni-
formly close to 1, then Σ is close to a round sphere (see page 493). In
[16], the author proves a similar result replacing the L∞ condition by
some integral versions of it. We refer to Chapter 6 of [12] for a survey
of this and other results on convex surfaces which are almost umbilical.
More recently, in their investigations on the gradient flow of the Will-
more functional, in [8], the authors show that, without any convexity
assumption, if

∥∥A− trA
2 Id

∥∥
L2 is sufficiently small, then Σ flows toward
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a round sphere (as usual, we denote by A the second fundamental form
of Σ).

The main theorem of this paper is the following. Here:
• Id denotes the identity (1, 1)–tensor and the (0, 2)–tensor naturally

associated to it;
• Å denotes the traceless part of A, i.e., the tensor A− trA

2 Id;
• id : S2 ⊂ R3 → R3 is the standard isometric embedding of the

round sphere.

Theorem 1.1. Let Σ ⊂ R3 denote a smooth compact connected sur-
face without boundary and for convenience normalize the area of Σ by
ar(Σ) = 4π. Then,

(2) ‖A− Id‖L2(Σ) ≤ C
∥∥Å∥∥

L2(Σ)
,

where C is a universal constant. If in addition
∥∥Å∥∥2

L2(Σ)
≤ 8π, then

there exists a conformal parameterization ψ : S2 → Σ and a vector
cΣ ∈ R3 such that

(3) ‖ψ − (cΣ + id)‖W 2,2(S2) ≤ C
∥∥Å∥∥

L2(Σ)
.

Note that (2) is a very natural estimate, since ‖Å‖L2(Σ) is scaling
invariant. Indeed (2) can be easily converted into the following scale–
invariant estimate

‖A− rΣId‖L2(Σ) ≤ C
∥∥Å∥∥

L2(Σ)
where rΣ =

√
ar(Σ)
4π .

In order to have the second estimate of Theorem 1.1, it is sufficient to
assume

∥∥Å∥∥2

L2 ≤ 16π − ε. In this case, C in (3) must be substituted by
C(ε), where C(ε) ↑ ∞ as ε ↓ 0.

Remark 1.2. Consider the conformal parameterization ψ of Theo-
rem 1.1. Let us denote by g the metric of Σ, and by σ the standard
metric on S2. For the conformal parameterization ψ : S2 → Σ, we have
ψ#g = h2σ, where the positive smooth function h is the conformal fac-
tor of g in the coordinates induced by ψ. Then, suitably generalizing
some arguments of [10], in [3] we prove that

(4) ‖h− 1‖C0 ≤ C ‖A− Id‖L2(Σ)

for some universal constant C.

In Section 7, we show that these estimates are optimal. More pre-
cisely, we construct a sequence of smooth connected compact surfaces
Σn without boundary such that
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• ∥∥Å∥∥
Lp → 0 for every p < 2;

• Σn converges to the union of two spheres with different radii.
The starting point for proving Theorem 1.1 is the following observa-

tion. Let us fix an orthonormal frame e1, e2 on Σ and denote by Aij
the quantities A(ei, ej) and by ∇Aijk the quantities [∇eiA] (ej , ek). The
Codazzi equations imply that ∇Aijk = ∇Ajik. Hence, the symmetry of
A gives that ∇A is a symmetric tensor. In view of this fact, straightfor-
ward algebraic computations give that ∇ei [A11 +A22] can be written
as a linear combination of ∇ej [A11 −A22] and ∇ej [A12] plus some error
terms of type A(∇ejek, el). Moreover, these error terms can be written
as non-linear expressions involving Å.

If Å were identically 0, then trA would be constant. Roughly speak-
ing, a control on Å gives some control on the oscillation of tr A =
A11 +A22. Thus, if Å is small in a C1 sense, then Σ would be close to a
round sphere. This remark was used in [7] to give a definition of center
of mass for isolated gravitating systems in General Relativity. In view
of our result, one should be able to weaken the hypotheses under which
Huisken–Yau’s construction is possible.

1.1. Structure of the proof. In our case, the difficulties in getting the
bound (2) are considerably increased by the weakness of the right-hand
side of (2) and the non-linearity of the error terms of type A(∇ejek, el).
The outline of our proof is the following.

• First, we show that, when
∥∥Å∥∥

L2 is sufficiently small, Σ is a sphere
and there exists a good parameterization by a conformal map
ψ : S2 → Σ. By “good”, we mean that, after a suitable rescaling,
the conformal factor h satisfies uniform L∞ and W 1,2 bounds (in-
dependent of Σ). In order to get these bounds, we derive Hardy
space estimates on the Gauss curvature, using some ideas of [10].
This is accomplished in Section 3.

• We then perform the computations outlined above in the coordi-
nate charts naturally induced by ψ. The control on ψ is sufficient
to get an L1 bound on the non-linear error terms. We use this
bound and the regularity theory for the Laplacian to prove the
existence of a universal constant C such that

(5) min
λ∈R

‖trA− λ‖L2,∞(Σ) ≤ C
∥∥Å∥∥

L2(Σ)
,

where L2,∞ is the weak Marcinkiewicz space (see Appendix B for
the precise definition). This estimate is proved in Proposition 4.1.

• In Section 5, we show that the weak estimate (5) can be improved
to the desired stronger estimate (2). This improvement heavily
relies on some algebraic computations which exploit the special
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structure of the tensor A. The proof uses Hardy space estimates
for skew–symmetric quantities and the duality between the Hardy
space H1 and BMO.

• In Section 6, we use (2) and the information derived in the previous
sections to prove the existence of a conformal parameterization ψ
which satisfies (3). The main difficulty here is due to the action
of the conformal group of S2. The existence of ψ is proved into
two steps: In the first one, we prove that there is a conformal
parameterization with conformal factor W 1,2–close to 1; In the
second step, we use the formalism of moving frames to show that
this map is W 2,2–close to a smooth isometric embedding of the
standard sphere.

2. Preliminaries

2.1. Notation. Throughout this paper, we will use the following nota-
tional conventions:

S2 standard sphere
Σ compact connected smooth surface in R3

without boundary
TpΣ, TΣ tangent space in p, tangent bundle
ar(Σ), g(Σ) area of Σ, genus of Σ
Dr(x), ∂Dr(x) distance disk and distance circle of radius

r and center x in 2d Riem. manifolds
D1, ∂D1 unit disk and unit circle in R2

g, σ Riemannian metric on Σ, standard metric
on S2

δij , A, N Kronecker symbol, second fundamental
form, Gauss map

tr B, detB, |B|, Id trace of B, determinant, Hilbert–Schmidt
norm, identity matrix

κ1, κ2, KG principal curvatures, Gaussian curvature
Deg (Γ,Σ, u) topological degree of the map u : Γ → Σ
Lp, H1(Ω) Lp spaces, Hardy space
∆Σ Laplace operator on the Riemannian

manifold Σ

Let ψ : Σ → Γ be an immersion and g a metric on Γ. Then, we denote
by ψ∗g the metric on Σ which is the pull back of g via ψ. That is

(ψ∗g)p(v,w) := gψ(p)(dψ(v), dψ(w)) for every v,w ∈ Tp(Σ).
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A system of coordinates on an open set U ⊂ Σ can be regarded as a
smooth diffeomorphism ψ : R2 ⊃ Ω → U . Hence, writing the metric in
these coordinates is equivalent to calculating the pull–back metric ψ∗g.

In the rest of this paper, we assume that Σ is compact, connected, and
without boundary. Moreover, we assume that ar(Σ) = 4π and we set

(6) δ2 :=
∫

Σ

∣∣Å∣∣2 .
We will make a frequent use of some elementary relations between dif-
ferential geometric quantities, in particular, the identities

(7)
∣∣Å∣∣2 = κ2

1 + κ2
2 − 2κ1κ2 = |A|2 − 2detA = |A|2 − 2KG,

combined with Gauss–Bonnet Theorem:

(8)
∫

Σ
|A|2 =

∫
Σ

∣∣Å∣∣2 + 2
∫

Σ
KG = δ2 + 2

∫
Σ
KG = δ2 + 8π(1 − g(Σ)).

Remark 2.1. Note that

‖A− Id‖2
L2 ≤ 2

∫
Σ
|A|2 + 2ar(Σ).

Since g(Σ) ≥ 0, by (8) for every c > 0 there exists C > 0 such that

‖A− Id‖L2(Σ) ≤ C
∥∥Å∥∥2

L2(Σ)
for every Σ with δ ≥ c.

Thus, it suffices to show (2) for δ sufficiently small.

2.2. Σ is a sphere. In the following lemma, we show that, when δ is
sufficiently small, Σ is a sphere. The proof uses well known elementary
facts of differential geometry of surfaces. We report it for the reader’s
convenience.

Lemma 2.2. If δ2 < 16π, then Σ is a sphere.

Proof. Set η := 16π − δ2 and note that

(9)
∫

Σ
|detA| ≤ 1

2

∫
Σ
|A|2 (8)

= 8π − η

2
+ 4π(1 − g(Σ)) < 4π(3 − g(Σ)).

Hence, g(Σ) is either 0, 1, or 2. Let N : Σ → S2 be the Gauss map,
which to every point x ∈ Σ associates the exterior unit normal to Σ in
x. Since A = dN , the area formula gives

(10)
∫

Σ
|detA| =

∫
S2

#N−1({ξ}) dξ.

Note that N is surjective. Indeed, let ξ ∈ S2 and consider the largest
real number a such that the set Ex := {x ∈ Σ : x · ξ = a} is not empty.
For any y ∈ Ex, we have N(x) = ξ.
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This implies that #N−1({ξ}) ≥ 1 and hence gives
∫ |detA| ≥ 4π,

which thanks to (9) rules out the possibility g(Σ) = 2. Moreover, if
g(Σ) = 1 (i.e., if Σ were a torus), the degree Deg (Σ,S2, N) would
necessarily be 0, which implies #N−1({ξ}) ≥ 2. Hence, (10) and (9)
rule out the possibility g(Σ) = 1. This gives g(Σ) = 0 and completes
the proof. q.e.d.

3. Existence of a good conformal parameterization

In this section, we show that, if δ is sufficiently small, then the surface
Σ has a conformal parameterization which enjoys good bounds.

Definition 3.1. Denote by σ the metric on the standard sphere S2

and by g the standard metric on Σ as submanifold of R3. If ψ : S2 → Σ
is conformal, then h denotes the unique function h : S2 → R+ with
h2σ = ψ∗g.

Proposition 3.2. Let δ2 < 8π and set η := 8π − δ2. Then, there
exists a constant C(η) and a conformal parameterization ψ : S2 → Σ
such that

(11) (C(η))−1 ≤ h ≤ C(η) ‖dh‖L2 ≤ C(η).

A classical theorem (see for example [9]) implies the existence of
conformal parameterizations ψ : S2 → Σ. However, we cannot hope to
have the bounds of Proposition 3.2 for all such ψ (due to the action of
the conformal group). The choice of a good ψ is based on the following
remark (cf. [10]). If h = eu, then

(12)
∫
S2

e2u = 4π − ∆S2u = Ke2u − 1,

where ∆S2 is the Laplace operator on S2 and K(x) = KΣ(ψ(x)). If we
can bound the norm of the right-hand side of (12) in the Hardy space
H1, then the proposition follows from the results of Fefferman and Stein
[6] (for the definition of H1 and for a precise statement of the result of
[6] needed here, see appendix A). Hence, it suffices to show the existence
of a constant C(η) and of a conformal ψ such that ‖Ke2u‖H1(S2) ≤ C(η).
To derive this estimate, we will use some ideas of [10] and the following
result of [2]:

Theorem 3.3. Let u ∈W 1,n(Rn,Rn). Then, there exists a constant
c (depending only on n) such that

(13) ‖det du‖H1(Rn) ≤ c‖du‖Ln .
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As already pointed out, in order to get the estimates (11), we have
to mod out the action of the conformal group of the sphere. This is
accomplished in the following

Lemma 3.4. Assume that δ2 < 8π and set η := 8π − δ2. Let x1, x2,
and x3 be standard coordinates on R3 and set S±

i := {±xi > 0} ∩ S2.
Then, there exists a conformal ψ : S2 → Σ such that

(14)
∫
ψ(Sj

i)
|A|2 = 8π − η

2
for all j ∈ {+,−} and every i ∈ {1, 2, 3}.

Proof. Thanks to Lemma 2.2, Σ is a sphere. Hence, equation (8)
implies ∫

Σ
|A|2 = 16π − η.

Denote by ei the vectors of the standard basis of R3 relative to the
system of coordinates xi. For each i, we denote by Si : S2 → C ∪ {∞}
the stereographic projection which maps ei to the origin and the equator
{xi = 0} ∩ S2 onto the unit circle {|z| = 1}. For each r > 0, we define
Or : C ∪ {∞} → C ∪ {∞} by Or(z) = rz. For every i ∈ {1, 2, 3}
and r > 0, we denote by F ir : S2 → S2 the conformal diffeomorphism
(Si)−1 ◦ Or ◦ Si.

Choose a conformal parameterization ϕ : S2 → Σ. Note that

lim
t↑∞

∫
ϕ(F 1

t (S+
1 ))

|A|2 =
∫

Σ
|A|2 and lim

t↓0

∫
ϕ(F 1

t (S+
1 ))

|A|2 = 0.

By continuity, there exists a t such that

(15)
∫
ϕ((F 1

t (S+
1 ))

|A|2 =
1
2

∫
Σ
|A|2 = 8π − η

2
.

Define ϕ1 := ϕ ◦ F 1
t and again note that for some τ , we have

(16)
∫
ϕ1(F 2

τ (S+
2 ))

|A|2 =
1
2

∫
Σ
|A|2 = 8π − η

2
.

Note that F 2
τ maps S+

1 onto itself. Thus, we have
∫
ϕ1(F 2

τ (S+
1 )) |A|2 =

8π − η/2. A similar choice of F 3
σ shows that ϕ ◦ F 1

t ◦ F 2
τ ◦ F 3

σ has the
desired properties. q.e.d.

Below, we adopt the following convention. Let α be a 2–form on Σ
(resp. on S2, on R2), let β be the standard volume form on Σ (resp. on
S2, on R2), and denote by f the function such that α = fβ. If H is any
function space, then we write ‖α‖H for ‖f‖H . When H = H1, i.e., the
first Hardy space, the maximal function of f will be sometimes called
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“maximal function of α” (here and in what follows, we assume to have
fixed a mollifier ζ and a finite atlas, see Appendix A).

Proof of Proposition 3.2. Fix ψ as in Lemma 3.4 and let N : Σ → S2

be the Gauss map. Set N ′ := N ◦ ψ and note that K ′ := Ke2u is the
Jacobian determinant of dN ′.

The proof of the H1 estimate is based on some arguments of Section 3
of [10]. We first fix some notation. We denote by ω the standard volume
form on S2. Then, K ′ω is the pull–back of ω via the map N ′, that is
K ′ω = (N ′)∗ω. Moreover, any disk Dρ(x) ⊂ S2 will be identified with a
disk Dρ′ = Dρ′(0) in the complex plane via the standard stereographic
projection which maps x onto 0.

We will show that there are constants r and C(η) with the following
property. For any x ∈ S2, there exists a map M : C → S2 such that

(i) M = N ′ on Dr′ (≈ Dr(x));
(ii) M is constant on C \ D(2r)′ ;
(iii)

∫
C
M∗ω = 0;

(iv) ‖M∗ω‖W−1,2 + ‖dM‖L2 ≤ C(η).

Step 1. From (i)–(iv) to the H1 bound.
We first prove that the existence ofM as the above gives an H1 bound

for (N ′)∗ω. We make the usual identification S2 = P 1(C) and denote by
π : C

2 ⊃ S3 → P 1(C) the Hopf fibration. Then, Proposition 3.4.3 of [10]
implies that M lifts to a map F : C → S3 ⊂ C

2 (that is M = π◦F ) with

(17) ‖dF‖L2 = ‖dM‖L2 + ‖M∗ω‖W−1,2.

Note that the existence of liftings is guaranteed by condition (iii) (see for
example [13], Chapter 8). If F1 and F2 denote the components of F in a
standard basis of C

2, then 2M∗ω = 2F ∗π∗ω = idF1 ∧dF 1 + idF2 ∧dF 2.
Writing Fj as F rei + iF imi , it is easy to see that idF1 ∧ dF 1 + idF2 ∧ dF 2

can be written as linear combination of forms of type df1 ∧ df2, where
df1, df2 ∈ L2(C) = L2(R2). Clearly, df1∧df2 = (det df)dx1∧dx2, where
x1, x2 are standard coordinates in R2. Hence, we can apply Theorem 3.3
to derive

‖M∗ω‖H1 ≤ C‖dF‖L2
(17)
= C‖dM‖L2 + ‖M∗ω‖W−1,2

(iv)

≤ C(η).

Let g be the maximal function of M∗ω (in the sense of equation (102)).
Then

(18) ‖g‖L1(Dr/2(x))
≤ ‖g‖L1(R2) = ‖M∗ω‖H1 ≤ C(η).

Let f be the maximal function of (N ′)∗ω. Since dN ′ ∈ L2, clearly,
det dN ′ ∈ L1 and hence, (N ′)∗ω ∈ L1. By the definition of maximal
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functions, we have

‖f‖L1(Dr/2(x))
≤ ‖g‖L1(Dr/2(x))

+ C‖(N ′)∗ω‖L1 ,

where the constant C depends only on r. Since S2 can be covered
with finitely many disks of radius r/2, we find that ‖(N ′)∗ω‖H1(S2) is
bounded by a constant depending on η and r.

Step 2. Construction of M and W−1,2 estimate.
We now come to the proof of the existence of constants r and C(η)

which satisfy (i)–(iv) above. We first construct an intermediate function
ζ : C → S2. The constant r is chosen so small that the disk D2r(x) is
contained in one of the half spheres S±

i of Lemma 3.4. Thus,

(19)
∫
D2r(x)

|det dN ′| ≤ 1
2

∫
S±

i

|dN ′|2 = 4π − η

4
.

Using the Fubini–Tonelli Theorem, we can find a ρ ∈ ]r, 2r[ such that

(20)
∫
∂Dρ(x)

|dN ′|2 ≤ 4π
r
.

We identify Dρ(x) with Dρ′ ⊂ C (using the stereographic projection,
see the discussion above) and we define ζ : C → S2 by setting:

ζ = N ′ on Dρ′ and ζ(z) = N ′
(
ρ′ z|z|

)
on C \ Dρ′ .

Clearly, ζ satisfies (i). We now show that
(iv)′ ‖ζ∗ω‖W−1,2(Dρ′+1) and ‖dζ‖L2(Dρ′+1) are bounded by a constant

C(η).

The bound on ‖dζ‖L2(Dρ′+1) is given by the fact that ‖dN ′‖L2(S±
i ) is

uniformly bounded and by the choice (20). We retain

(21) ‖dζ‖L2(Dρ′+1) ≤ C(η).

We now come to the W−1,2 bound. Note that

ar(ζ(C)) ≤
∫
D2r(x)

|det dN ′| ≤ 4π − η

4
.

Thus, S2 \ ζ(C) has area at least η/4. This means that we can find a
closed set E ⊂ S2 \ ζ(C), with area η/8. Arguing as in the proof of
Proposition 3.5.5 of [10], we can find a 1–form αE on S2 \E such that

(22) ‖αE‖L∞(S2) ≤
C

ar(E)
and dαE = ω on S2 \E,
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where C is a universal constant. Using αE , one finds ζ∗ω = d(ζ∗αE).
Let ϕ ∈W 1,2(Dρ′+1). Then, since ζ takes values in S2 \ E, we have∫

Dρ′+1

ϕζ∗ω =
∫
∂Dρ′+1

ϕζ∗α−
∫
Dρ′+1

dϕ ∧ ζ∗α.

Recall that ζ|∂Dρ′+1
= N ′|∂Dρ′ . Thus, recalling that

∥∥ϕ∥∥
L2(∂Dρ′+1) ≤

C
∥∥ϕ∥∥

W 1,2(Dρ′+1), from (22), we get∣∣∣∣∣
∫
∂Dρ′+1

ϕζ∗α

∣∣∣∣∣ ≤ C

ar(E)

∥∥ϕ∥∥
L2(∂Dρ′+1)

∥∥dζ∥∥
L2(∂Dρ′+1)

(20)

≤ C(η)
∥∥ϕ∥∥

W 1,2(Dρ′+1).

Analogously,∣∣∣∣∣
∫
Dρ′+1

dϕ ∧ ζ∗α
∣∣∣∣∣ ≤ C

ar(E)

∥∥dϕ∥∥
L2(Dρ′+1)

∥∥dζ∥∥
L2(Dρ′+1)

(21)

≤ C
∥∥ϕ∥∥

W 1,2(Dρ′+1).

This establishes the W−1,2 bound of (iv)′.

Step 3. The existence of M .
In this step, we modify ζ so to reach (ii) and (iii), while keep-

ing (i) and upgrading (iv)′ to (iv). Consider the restriction of ζ to
Dρ′ and define for every regular value x ∈ S2 its degree deg(ζ, x).
Standard arguments give that deg(ζ, x) is constant on the connected
components of S2 \ ζ(∂Dρ′). Thus, by continuity, it can be extended to
an integer valued piecewise constant function on S2 \ ζ(∂Dρ′). Define

(23) U0 :=
{
x ∈ S2

∣∣ deg(ζ, x) = 0
}
.

Then, U0 is an open set contained in S2 \ζ(∂Dρ′). The idea is to choose
y ∈ U0 and to take a retraction R : [0, 1] × S2 \ {y} → S2 onto the
antipodal of y. Then, we define M = ζ on Dρ′ and on Dρ′+1 \ Dρ′

we put
M(z) = R

(
ρ′ + 1 − |z|, ζ(z)).

Since ζ(Dρ′+1 \ Dρ′) = ζ(∂Dρ′), we have U0 ∩ ζ(Dρ′+1 \ Dρ′) = ∅.
Thus, M is well defined. From the definition of (23), we clearly have
deg(C,S2,M) ≡ 0, and thus M satisfies (iii). Moreover, M |Dρ′ = ζ

and M |C\Dρ′+1
is constant; hence, M satisfies (i) and (ii). The only

difficulty is to choose y and the retraction R so as to achieve the
bound (iv).
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Clearly, U0 contains S2\ζ(C) and thus ar(U0) ≥ η. Moreover, U0 is an
open set bounded by a subset of the curve γ = ζ(∂D′

ρ) = N ′(∂Dρ(x)),
which, in view of (20) has bounded length. Thanks to Lemma C.1, there
exists a δ, depending on ar(U0) and length(γ), such that U0 contains a
ball Dδ(y). Thus, δ can be chosen bigger than a constant which depends
only on η.

Fix such a y and such a δ and define a C1 map R : [0, 1] × (S2 \
Dδ(y)) → S2 which retracts on the antipode y of y. This can be done
so that ‖R‖C1 depends only on η. Thus,

‖M∗ω‖W−1,2(C) ≤ C1(η)
∥∥ζ∗ω∥∥

W−1,2(Dρ′+2(0))
(iv)′

≤ C2(η).

An analogous estimate holds for ‖dM‖L2 . This gives (iv) and completes
the proof. q.e.d.

4. An L2,∞ estimate for (A−H Id)

In this section, we prove the following.

Proposition 4.1. There exists C > 0 such that, if

(24) ar(Σ) = 4π, and
∫

Σ

∣∣Å∣∣2 ≤ δ2,

then

(25)
∥∥∥∥A−

( ∫
Σ

tr A
2

)
Id
∥∥∥∥
L2,∞(Σ)

≤ Cδ.

For the definition and properties of the Marcinkiewicz space L2,∞,
we refer to Appendix B.

Proof. Below, we will prove the existence of a universal constant C
such that, for every Σ with δ2 ≤ 4π, there exist two conformal parame-
terizations ϕ+, ϕ− : D1 → Σ with the following properties:

(a) ϕ+(D1) ∪ ϕ−(D1) = Σ;
(b) ar(ϕ+(D1) ∩ ϕ−(D1)) ≥ C−1;
(c) ‖ tr A− λ±‖L2,∞(ϕ±(D1)) ≤ Cδ for some constants λ±.
We first show how this would give (25). Note that

C−1|λ+ − λ−|
(b)

≤
∫
ϕ+(D1)∩ϕ−(D1)

|λ+ − λ−|

≤
∫
ϕ+(D1)

| tr A− λ+| +
∫
ϕ−(D1)

| tr A− λ−|

≤ C1‖ tr A− λ+‖L2,∞(ϕ+(D1))
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+ C1‖ tr A− λ−‖L2,∞(ϕ−(D1))

(c)

≤ 2C1Cδ.

Hence, |λ+−λ−| ≤ 2C1C
2δ. This means that ‖ tr A−λ+‖L2,∞(Σ) ≤ C2δ,

where C2 is another universal constant. Let us set 2H :=
∫
Σ tr A. Then,

4π|2H − λ+| ≤
∫

Σ
| tr A− λ+| ≤ C1‖ tr A− λ+‖L2,∞(Σ) ≤ C3δ.

This gives ‖ tr A− 2H‖L2,∞(Ω) ≤ C4δ. Then,

‖A−HId‖L2,∞(Ω) ≤
(∫

Σ

∣∣Å∣∣2)1/2

+
√

2
∥∥ tr A

2 −H
∥∥
L2,∞(Ω)

≤ C6δ.

Subsections 4.1 and 4.2 are devoted to prove the existence of ϕ± as
above. To explain the underlying key idea, we have to set some notation.
Let ϕ : D1 → Σ be a conformal parameterization of ϕ(D1). We denote
by x1, x2 a system of orthonormal coordinates in R2. Thus, in these
conformal coordinates, the metric of Σ is given by h2δij . We denote by
ei ∈ TΣ the unit vectors 1

h
∂
∂xi

and we set Aij := A(ei, ej).
Set f := tr A, fd := A11−A22, and fm := 2A12. In Subsection 4.1, we

use the Codazzi–Mainardi equations to control ∇f in terms of fm, fd,
∇fm, and ∇fd (here, if w : Σ → R, then ∇w denotes the gradient of g
in the Riemannian manifold Σ; that is, for any vector field X : Σ → TΣ,
we have g(∇w,X) = dw(X)).

Potentially, this control will depend in a rather subtle way on the
conformal parameterization ϕ. This is not a surprise, since the functions
fd and fm depend on ϕ (whereas tr A depends only on the immersion
of Σ in R3). In Subsection 4.2, we use the results of Sections 2 and 3
in order to choose ϕ± which satisfy (a) and (b) and enjoy good bounds.
We then show that these bounds and the relation derived in Subsection
4.1 are sufficient to prove (c).

4.1. Key calculation. Let ϕ, ei, Aij , f , fd, and fm be as above. When
w is a function, Deiw denotes the Lie derivative of w with respect to ei,
whereas we will use the notations ∂xiw and wi for ∂

∂xi
[w◦ϕ] = D ∂

∂xi

w =

hDeiw.
If X is a vector field on Σ, then we denote by ∇eiX the covariant

derivative of X with respect to ei. For every (2, 0)–tensor B on Σ, ∇B
denotes the usual (3, 0)–tensor given by

∇B(X,Y,Z) := DX(B(Y,Z)) −B (∇XY,Z) −B (Y,∇XZ) .
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We set ∇Bijk = ∇B(ei, ej , ek) and recall the Codazzi–Mainardi equa-
tions:

(26) ∇Aijk = ∇Ajik.
To compute ∇f , recall that ∇f = (De1f) e1 + (De2f) e2. Straightfor-
ward calculations give

De1f = De1(A11 +A22)

= ∇A111 + ∇A122 + 2A(∇e1e1, e1) + 2A(∇e1e2, e2),

De1fd = De1(A11 −A22)

= ∇A111 −∇A122 + 2A(∇e1e1, e1) − 2A(∇e1e2, e2),
De2fm = 2De2A12

= 2∇A212 + 2A(∇e2e1, e2) + 2A(e1,∇e2e2).

Thus, De1f = De1fd +De2fm + 2R̃1, where

(27) R̃1 = 2A(∇e1e2, e2) −A(∇e2e1, e2) −A(e1,∇e2e2).

We set hi := hDe1h = D ∂
∂xi

h. Straightforward computations give:

∇e1e1 = −h2

h2
e2 ∇e2e1 =

h1

h2
e2(28)

∇e1e2 =
h2

h2
e1 ∇e2e2 = −h1

h2
e1.(29)

Plugging these relations into (27), we get

(30) R̃1 :=
2h2

h2
A12 +

h1

h2
(A11 −A22) =

h2

h2
fm +

h1

h2
fd.

A similar computation for De2f yields De2f = −De2fd +De1fm + 2R̃2,
where R̃2 is given by an expression similar to the one of (30). Recall
that hi = D ∂

∂xi

f = ∂xif . Hence,

(31)
{
∂x1f = ∂x1fd + ∂x2fm + 2hR̃1

∂x2f = −∂x2fd + ∂x1fm + 2hR̃2.

Denote by R the vector

(32) R := (R1, R2) := (2hR̃1, 2hR̃2),

by divER the “Euclidean” divergence ∂x1R1 + ∂x2R2 and by ∆Ef the
“Euclidean laplacian” ∂2

x1
f + ∂2

x2
f . Then,

(33) ∆Ef = ∂2
x1
fd − ∂2

x2
fd + 2∂x1∂x2fm + divER.
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4.2. Choice of ϕ±. Thanks to Lemma 2.2 and Proposition 3.2, Σ is a
sphere and there exist a universal constant C and a conformal parame-
terization ψ : S2 → Σ such that

(34) ψ∗g = h
2
σ C−1 ≤ h ≤ C ‖dh‖L2 ≤ C.

Clearly, there exist a universal constant C1 and two conformal parame-
terizations ϕ1, ϕ2 : R2 → S2 such that

(a′) ϕ1(D1) ∪ ϕ2(D1) = S2;
(b′) ar(ϕ1(D1) ∩ ϕ2(D1)) ≥ 1;
(c′) ‖ϕi‖C0(K) +‖ϕi‖C1(K)+‖ϕi‖C2(K) ≤ C1(K) for every compact set

K.

Let us define ϕ+ := ψ◦ϕ1 and ϕ− := ψ◦ϕ2. Clearly, ϕ± are conformal
and for some universal constant C, they satisfy (a) and (b). It remains
to show (c). Without loss of generality, we show it for ϕ = ϕ+. We
fix a system of orthonormal coordinates x1, x2 in R2 ⊃ D1 and we
adopt the notation of Subsection 4.1. Thus, in this system of conformal
coordinates, the metric g on Σ is given by h2δij . Set f := tr A as in
Subsection 4.1.

Our goal is to bound ‖f − λ‖L2,∞(ϕ(D1)) for some λ ∈ R. Since the
conformal factor enjoys L∞ estimates from above and from below, this
is equivalent to show that ‖f − λ‖L2,∞(D1) ≤ Cδ. Thus, from now on
we work in the Euclidean disk D1: in order to achieve our estimate, we
use equation (33).

First estimate. Let us denote by ŵ the Fourier transform of w and
by w̌ the inverse Fourier transform. Moreover, let ξ be the frequency
variables. Recall that since ϕ : R2 → S2, the functions f , fm and
fd are defined everywhere on R2. Let ζ be a smooth cut–off function
supported on D3/2 and such that ϕ = 1 on D1. Define f ′ as

f1 :=
(ξ21 − ξ22)

|ξ|2 ζ̂fd + 2
ξ1ξ2
|ξ|2 ζ̂fm f ′ := f̌1.

By Plancherel theorem, there exists a constant C (which depends on
the cut–off function ϕ) such that

‖f ′‖L2 ≤ C
(‖fd‖L2(D2) + ‖fm‖L2(D2)

) ≤ C1δ.

Moreover, on the set D3/2, we have

(35) ∆Ef
′ = ∂2

x1
fd − ∂2

x2
fd + 2∂x1∂x2fm.
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Second estimate. Let K(x) = 1
2π log(|x|) be the fundamental solution

of the Laplacian in R2 and set f ′′ = K ∗ divE R. Thus, f ′′ = (∂x1K) ∗
R1 + (∂x2K) ∗R2. Recall the definition of R in (32). By (30), we have

R1 = +
h2

h
fm +

h1

h
fd.

Hence, the estimate (34) gives that ‖R1‖L1 ≤ Cδ. An analogous esti-
mate holds for R2. The locality of convolution, Lemma B.1 and Lemma
B.2 give that ‖f ′′‖L2,∞(D2) ≤ Cδ. Moreover,

(36) ∆Ef
′′ = divR.

Third estimate. Let α := f −f ′′−f ′. Then, thanks to (33), (35), and
(36), α is harmonic on D3/2. Moreover, the relations (31) give{

∂x1α = ∂x1fd + ∂x2fm +R1 − ∂x1(f
′ + f ′′)

∂x2α = −∂x2fd + ∂x1fm +R2 − ∂x2(f
′ + f ′′) .

Let ||| · |||D3/2
be a norm which is controlled by both the L1(D3/2)

norm and the W−1,2
0 (D3/2) norm. Then, the various estimates give

that |||∇α|||D3/2
≤ Cδ. Since α is harmonic and D1 ⊂⊂ D3/2, there is a

universal constant C1 such that ‖∇α‖L∞ ≤ C1δ. Thus, for some λ > 0
and for some universal constant C2, we have ‖α − λ‖L∞(D1) ≤ C2δ.
Since f = f ′ + f ′′ + α, we get

‖f − λ‖L2,∞(D1) ≤ C3‖f ′‖L2(D1) + C4‖f ′′‖L2,∞(D1)(37)

+ C5‖α− λ‖L∞(D1) ≤ C6δ.

5. Proof of the L2 estimate for A− Id

In the previous section, we have achieved the following: If we define
2H :=

∫
Σ tr A, then ‖A − HId‖L2,∞ ≤ Cδ. The goal of this section is

to use this information to prove

(38)
∫

Σ
|A− Id|2 ≤ Cδ2.

In order to do this, we will show that |1−H
2| ≤ Cδ2. This is sufficient

to get (38). Indeed

| tr A− 2H|2 = κ2
1 + κ2

2 + 4H2 + 2κ1κ2 − 4Hκ1 − 4Hκ2(39)

= |κ1 − κ2|2 + 4H2 − 4H tr A+ 4detA.
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Integrating (39) and taking into account
∫
Σ detA = 4π = ar(Σ) and∫

Σ tr A = 2Har(Σ), we have∫
Σ
| tr A− 2HId|2 =

1
2

∫
Σ

∣∣Å∣∣2 + 16π(1 −H
2).

Thus, |1 − H
2| ≤ Cδ2 would imply

∫
Σ |A − HId|2 ≤ Cδ2. Moreover,

for δ small enough, |1 − H
2| ≤ Cδ2 implies (1 − H)2 ≤ Cδ2. Since

|A− Id|2 ≤ 2|A−HId|2 + 2(1 −H)2, this would give (38).
For later purposes, we collect the inequality

(40) ‖A−HId‖2
L2 ≤ Cδ2 + C1|1 −H

2|,
which is a direct consequence of the computations above. Moreover, we
will make use of the following generalization of Wente’s estimate:

Lemma 5.1. Let α, β, γ ∈ C∞(S2). Then, there exists a universal
constant C such that

(41)
∫
S2

αdβ ∧ dγ ≤ C‖dα‖L2,∞‖dβ‖L2‖dγ‖L2 .

Proof. In local charts, thanks to Theorem 3.3, we have the H1 esti-
mate

‖dβ ∧ dγ‖H1(D1) ≤ C‖dβ‖L2(D1)‖dγ‖L2(D1)

in the Euclidean disk D1. A finite covering of S2 with smooth coordinate
patches yields

‖dβ ∧ dγ‖H1(S2) ≤ C‖dβ‖L2(S2)‖dγ‖L2(S2)

Denote by α the average of α on S2. Recalling that
∫
dβ∧dγ = 0, we get∫

S2

αdβ ∧ dγ =
∫
S2

(α− α) dβ ∧ dγ.

Thus, the duality between H1 and BMO (see Theorem A.6 and Corol-
lary A.7) gives

(42)
∫
S2

α dβ ∧ dγ ≤ C|α|BMO‖dβ‖L2‖dγ‖L2 .

Thanks to Lemma B.3, we have |α|BMO ≤ C‖dα‖L2,∞ . q.e.d.
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5.1. Setting. Using the Gauss–Bonnet formula and the identity 8πH =∫
Σ tr A, we get that

(43) 4π(1 −H
2) =

∫
Σ

detA−H

∫
Σ

tr A+H
2
∫

Σ
1.

We denote by N : Σ → S2 ⊂ R3 the Gauss map. Fix a conformal map
ψ : S2 → Σ ⊂ R3 satisfying the requirements of Proposition 3.2 and a
conformal map ϕ : R2 ⊃ D1 → S2. Denote by

• Ψ : D1 → Σ ⊂ R3 the conformal map ψ ◦ ϕ;
• h̃2 and h2 the conformal factors of Ψ and ψ;
• M and N ′ the maps N ◦ Ψ and N ◦ ψ.

Fix an orthonormal system of coordinates y1, y2, y3 on R3 and an or-
thonormal system x1, x2 on D1. If a and b are two vectors of R3, then
a× b denotes the vector of R3 which is the standard vector product of
a and b.

5.2. Algebraic computations. As a first step, we give some formulae
for h̃2, h̃2(detdN) ◦ Ψ and h̃2(tr dN) ◦ Ψ.

First Computation. Since Ψ is conformal, we have

(44) det dΨ = |Ψ,x1 × Ψ,x2| ,
where Ψ,xi denotes the map ∂Ψ

∂xi
: D1 → R3. In equation (44), we make

a slight abuse of notation. Indeed
• On the left-hand side, we consider Ψ as a map taking values on

Σ. Thus, det dΨ has the usual meaning, since dΨp is a linear map
from TpR2 → TΨ(p)Σ.

• On the right-hand side, we consider Ψ as a map taking values on
R3.

We now fix the convention on the wedge product of vectors of R3 in
such a way that

(45) M · Ψ,x1 × Ψ,x2 = |Ψ,x1 × Ψ,x2| .
Hence, we can write

(46) h̃2 = M · Ψ,x1 × Ψ,x2.

Second Computation. The normal M is perpendicular to both M,x1

and M,x2. Moreover, the orientation convention which yields (45) gives

(47) det dM := M ·M,x1 ×M,x2 .

Similarly to (44), equation (47) must be understood in the following
way:
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• On the left-hand side, we consider M as a map taking values on
S2. Thus, det dM has the usual meaning;

• On the right-hand side, we consider M as a map taking values on
R3.

The discussion above gives the equality

(48) h̃2(det dN) ◦ Ψ = det dM = M ·M,x1 ×M,x2.

Third Computation. Note that M,xi = [dN ◦Ψ](Ψ,xi). Thus, thanks
to the conformality of Ψ, we have

(tr dN) ◦ Ψ =
[
dN ◦ Ψ

(
Ψ,x1

|Ψ,x1|
)]

· Ψ,x1

|Ψ,x1|
+
[
dN ◦ Ψ

(
Ψ,x2

|Ψ,x2|
)]

· Ψ,x2

|Ψ,x2|
=

1
h̃2

[M,x1 · Ψ,x1 +M,x2 · Ψ,x2] .

Since Ψ is conformal, we have

M,x1 · Ψ,x1 = M,x1 · (Ψ,x2 ×M) = M ·M,x1 × Ψ,x2.

Thus, we get

(49) h̃2(tr dN) ◦ Ψ = (M ·M,x1 × Ψ,x2 +M · Ψ,x1 ×M,x2) .

Combining (46), (48), and (49), we get∫
Ψ(D1)

(
detA−H tr A+H

2
)
ζ(50)

=
∫
D1

h̃2
(
(det dN) ◦ Ψ −H(tr dN) ◦ Ψ +H

2
)
ζ ◦ Ψ

=
∫
D1

(
M · (M −HΨ),x1 × (M −HΨ),x2

)
ζ ◦ Ψ,

for every ζ ∈ C∞
c (Ψ(D1)).

5.3. Skew–symmetric quantities. Consider two smooth maps α, β :
D1 → R3. Denote by αi, βi, i ∈ {1, 2, 3} the components of α and β
in a system of orthonormal coordinates of R3. Then, straightforward
computations give the following identity:

(51)
[
α · β,x1 × β,x2

]
dx1 ∧ dx2 =

3∑
i,j,k=1

εijkαi dβj ∧ dβk.
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where εijk is the totally antisymmetric tensor given by

εijk =

 1 if (i, j, k) is an even permutation of (1, 2, 3)
−1 if (i, j, k) is an odd permutation of (1, 2, 3)

0 otherwise.

Thus, equations (50) and (51) give∫
Ψ(D1)

(
detA−H tr A+H

2
)
ζ(52)

=
3∑

i,j,k=1

εijk

∫
D1

(
Mi d [(M −HΨ)j ] ∧ d [(M −HΨ)k]

)
ζ ◦ Ψ,

for every ζ ∈ C∞
c (Ψ(D1)). Since ϕ : D1 → ϕ(D1) ⊂ S2 is a diffeomor-

phism, we can use ϕ−1 to pull back the forms on the right-hand side of
(52) on ϕ(D1). Recalling that N ′ = M ◦ ϕ−1 and ψ = Ψ ◦ ϕ−1, we get

∫
ψ(ϕ(D1))

(
detA−H tr A+H

2
)
ζ

(53)

=
3∑

i,j,k=1

εijk

∫
ϕ(D1)

(
N ′
i d [(N ′ −Hψ)j ] ∧ d [(N ′ −Hψ)k]

)
ζ ◦ ψ.

Hence, thanks to the arbitrariness of the conformal map ϕ, the previous
equation gives that, for every ζ ∈ C∞(S2) which is supported in a set
of diameter strictly less than 4π, we have∫

ψ(S2)

(
detA−H tr A+H

2
)
ζ ◦ ψ−1(54)

=
3∑

i,j,k=1

εijk

∫
S2

(
N ′
i d [(N ′ −Hψ)j ] ∧ d [(N ′ −Hψ)k]

)
ζ.

A partition of unity on S2 gives∫
Σ

(
detA−H tr A+H

2
)

(55)

=
3∑

i,j,k=1

εijk

∫
S2

N ′
i d [(N ′ −Hψ)j ] ∧ d [(N ′ −Hψ)k].
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Integrating by parts, we can write∫
S2

N ′
i d [(N ′ −Hψ)j ] ∧ d [(N ′ −Hψ)k]

=
∫
S2

−(N ′ −Hψ)j dN ′
i ∧ d [(N ′ −Hψ)k].

5.4. Final estimates. Thanks to Lemma 5.1, we have∣∣∣∣∫
S2

[(N ′ −Hψ)j ] dN ′
i ∧ d [(N ′ −Hψ)k]

∣∣∣∣(56)

≤ ‖d(N ′ −Hψ)‖L2,∞‖dN ′‖L2‖d(N ′ −Hψ)‖L2 .

Thus, we conclude that∣∣∣∣∫
Σ
(detA−H tr A+H

2)
∣∣∣∣(57)

≤ C‖dN ′‖L2(S2)‖d(N ′ −Hψ)‖L2(S2)‖d(N ′ −Hψ)‖L2,∞(S2),

for some universal constant C. Since ψ is conformal and satisfies the
bounds given by Proposition 3.2, we have that there exist universal
constants C1, C2 such that

‖dN ′‖L2(S2) ≤ C1‖dN‖L2(Σ) ≤ C2

‖d(N ′ −Hψ)‖L2(S2) ≤ C1‖dN −HId‖L2(Σ)

‖d(N ′ −Hψ)‖L2,∞(S2) ≤ C1‖dN −HId‖L2,∞(Σ) ≤ C2δ.

Thus, taking into account (43) and (57), we get

(58) |1 −H
2| ≤ C3δ‖A −HId‖L2(Σ).

Recalling (40), we conclude

‖A−HId‖2
L2(Σ) ≤ Cδ2 + C4δ‖A −HId‖L2(Σ),

which, by Young’s inequality, yields

‖A−HId‖2
L2(Σ) ≤ Cδ2 +

C2
4δ

2

2
+

‖A−HId‖2
L2(Σ)

2
.

Hence,
‖A−HId‖2

L2(Σ) ≤ C5δ
2

and plugging this into (58), we get |1 − H
2| ≤ C6δ

2, which completes
the proof.
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6. Σ is W 2,2 close to a round sphere

To complete the proof of Theorem 1.1, it remains to show the estimate
(3), under the assumption that

∥∥Å∥∥2

L2 ≤ 8π. The difficulties in getting
a conformal ψ satisfying (3) are considerably increased by the action of
the conformal group of the sphere. In order to choose ψ, as a first step,
we impose the normalization conditions of Lemma 3.4 and we show that
these conditions imply that the conformal factor of ψ is W 1,2–close to 1
(see Subsection 6.1). In a second step, we prove that this, together with
the bound on ‖A− Id‖L2(Dρ) implies that ψ is W 2,2–close to a smooth
isometric embedding of S2 (see Subsections 6.2, and 6.3).

6.1. The conformal factor of ψ is close to 1. Fix ψ as in Lemma
3.4 and Proposition 3.2 and denote by h = eu its conformal factor. The
goal of this subsection is to show the existence of a universal constant
C such that

(59) ‖eu − 1‖W 1,2 + ‖u‖W 1,2 ≤ Cδ.

To do so, we first show that for δ ↓ 0, the map ψ must converge to
a conformal map, in fact a rigid motion in view of the normalizations.
Then, we use a linearization of the equation −∆S2u = Ke2u − 1 to get
the optimal estimate.

First, we gather all the information acquired in the previous sections
(see (12) and Proposition 3.2):

u satisfies −∆S2u = Ke2u − 1 and
∫
e2u = 4π(60)

‖u‖L∞ + ‖u‖W 1,2 ≤ C for some universal constant C(61)

Let S±
i be as in Lemma 3.4. Then,

∫
S±

i

|A|2e2u = 4π + δ2/2.(62) ∫
Σ
|A− Id|2 ≤ Cδ2(63)

Step 1. We begin by proving the following statement

Fix p <∞ and η > 0. If δ > 0 is(64)

sufficiently small, then ‖e2u − 1‖Lp + ‖u‖Lp ≤ η.

Since e2v is a locally Lipschitz function, thanks to (61), there exists a
constant C, independent of u, such that

(65)
∣∣e2u − 1

∣∣ ≤ C|u|.
Thus, we have ‖e2u − 1‖Lp ≤ C‖u‖Lp . Assume, by contradiction, that
(64) were false. Then, there exist η > 0 and sequences δn ↓ 0, {un} ⊂
C∞(S2) such that
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• eun are the conformal factors of the conformal diffeomorphisms
ψn : S2 → Σn ⊂ R3;

• (60), (61), (62), and (63) hold (with un, Kn, δn, Σn, and An in
place of u, K, δ, Σ, and A);

• ‖un‖Lp ≥ η > 0.
Thanks to these assumptions, ∆S2un is a bounded sequence in L1. Let
D(∆) be the set of functions f ∈ L1(S2) with zero average. Recall that
∆−1

S2 : D(∆) → W 1,q is a compact operator for every q < 2. Thus, a
subsequence of un, not relabeled, converges strongly in W 1,q to some
u∞. Equations (63) and (62) give that Kn−1 converges to 0 strongly in
L1. Since e2un is bounded and converges strongly in Lq to e2u∞ , by the
dominated convergence Theorem, we conclude that Kne

2un converges
strongly in L1 to e2u∞ . Passing to the limit in (60), (61), (62), and (63)
we get

(66) − ∆S2u∞ = e2u∞ − 1,

(67)
∫
S±

i

e2u∞ = 2π.

From [1], every solution of (66) is the logarithm of the conformal factor
of a conformal diffemorphism ψ̃ : S2 → S2. Thus, the normalization
condition (67) implies that u∞ = 0.

Step 2. Consider the space of functions S := {‖ζ‖∞ ≤ C}. Then, we
claim the existence of a universal constant C1 such that

(68) ‖ζ‖L2 ≤ C1

(
‖∆S2ζ + 2ζ‖L1 + max

i,j

∣∣∣∣∣
∫
Sj

i

e2ζ − 2π

∣∣∣∣∣
)

∀ζ ∈ S.

Indeed, set

(69) η := ‖∆S2ζ + 2ζ‖L1 + max
i,j

∣∣∣∣∣
∫
Sj

i

e2ζ − 2π

∣∣∣∣∣
and consider the space

K :=
{
ξ
∣∣ − ∆S2ξ = 2ξ

}
.

Note that, if we extend ξ to a 1–homogeneous function ξ on R3, we
get that ξ is harmonic in R3 \ {0}. Since ξ is bounded in every ball,
0 is a removable singularity and ξ is an entire harmonic function with
linear growth. By the Liouville Theorem, we conclude that ξ is a linear
function. Thus, K is the three–dimensional space given by the restriction
to S2 of linear functions of R3.
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For ζ ∈ S, we denote by Pζ the L2–projection of ζ on K and by P⊥ζ
the L2–projection on the orthogonal complement of K. Using Sobolev
embeddings, it is easy to check that

(70) ‖P⊥ζ‖L2 ≤ C2η.

Since K has finite dimension, we have

‖Pζ‖∞ ≤ ‖ζ‖∞
and thus, for some universal constant C3, we get

(71) ‖Pζ‖∞ + ‖P⊥ζ‖∞ ≤ C3 ∀ζ ∈ S.
Clearly,

(72)
∣∣∣e2ζ − e2Pζ

∣∣∣ =
∣∣∣e2Pζ∣∣∣ ∣∣∣e2P⊥ζ − 1

∣∣∣ (71)

≤ C3

∣∣∣e2P⊥ζ − 1
∣∣∣ .

Moreover, since the exponential is a locally Lipschitz function, the
bound (71) gives also

(73)
∫
S2

∣∣∣e2P⊥ζ − 1
∣∣∣ ≤ C4‖P⊥ζ‖L1 ≤ C5‖P⊥ζ‖L2

(70)

≤ C6η.

Thus, (69) and (73) give

(74)

∣∣∣∣∣
∫
S±

i

e2Pζ − 2π

∣∣∣∣∣ ≤ C7η.

Since Pζ is the restriction of a linear function, it is straightforward to
check that

‖Pζ‖L2 ≤ C8η,

for some universal constant C8. This completes the proof of (68).

Step 3. We rewrite the first identity of (60) as

(75) − ∆S2u− 2u =
(
e2u − 2u− 1

)
+ (K − 1)e2u.

Since ‖u‖∞ is bounded by a universal constant (see (61)), we have

(76)
∥∥e2u − 2u− 1

∥∥
L1 ≤ C1‖u‖2

L2

for some universal constant C1. Moreover,

‖(K − 1)e2u‖L1 = ‖detA− 1‖L1(Σ)(77)

≤ ‖det(A− Id)‖L1(Σ) + ‖ trA− 2‖L1

≤ ‖A− Id‖2
L2(Σ) + C2‖A− Id‖L2(Σ)

(63)

≤ Cδ,
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and similarly, from (61), (62), and (63), we get∣∣∣∣∣
∫
S±

i

e2u − 2π

∣∣∣∣∣ ≤ Cδ.

Hence, applying (68) and collecting all these inequalities, we get

(78) ‖u‖L2 ≤ C3‖u‖2
L2 + C4δ.

Thanks to the first step, when δ is sufficiently small, we have C3‖u‖L2 ≤
1/2. Plugging this into (78), we get

(79) ‖u‖L2 ≤ 2C4δ.

Step 4. We multiply by u the equation

−∆S2u = e2u − 1 + (K − 1)e2u

and we integrate by parts to get

(80)
∥∥∇S2u

∥∥2

L2 ≤
∫
S2

|u| ∣∣e2u − 1
∣∣+

∫
S2

|u||detA− 1|e2u

Notice that ∫
|u| ∣∣e2u − 1

∣∣ ≤ C1‖u‖2
L2 .

Moreover, |detA−1| ≤ |κ1 −1||κ2 −1|+ |κ1 +κ2−2|, and recalling that
‖u‖∞ is uniformly bounded, we get:

(81)
∫
S2

|u||detA− 1|e2u ≤ C2‖A− Id‖2
L2(Σ) +C3‖u‖L2‖A− Id‖L2(Σ).

Recalling (61), (63), and (79), we get

(82)
∥∥∇S2u

∥∥2

L2 ≤ C4δ
2,

which, together with (79), gives

(83)
∥∥u∥∥

W 1,2 ≤ C5δ.

Since ‖u‖∞ is bounded by a universal constant, the fact that the expo-
nential map is locally Lipschitz gives (59).

6.2. Cartan formalism. Let Dρ be a disk of S2 and let (e1, e2) be
an orthonormal frame on Dρ. We assume that this orthonormal frame
is generated by a conformal map ϕ : Dr → Dρ via the relations ei =
∂xiϕ/|∂xiϕ|. Moreover, we assume that ‖ϕ‖C1 is bounded by a universal
constant (which is certainly possible if, for instance, ρ ≤ π). We define
two maps Φ,Ψ : Dρ → SO(3) in the following way

(84) Φ := (e1, e2, e1 × e2).



NEARLY UMBILICAL SURFACES 99

(85) Ψ :=
(
e−udψ(e1), e−udψ(e2), e−2udψ(e1) × dψ(e2)

)
.

Note that e−2udψ(e1) × dψ(e2) = N ◦ ψ. Hereby, we fix a system of
coordinates in R3 and we regard the elements of SO(3) as matrices:
Thus, according to definition (84), for x ∈ Dρ, Φ(x) is the matrix which
has e1(x), e2(x), and e1(x)×e2(x) as row vectors. We endow SO(3) with
the operator norm and we denote by B ·F and by B−1 respectively the
matrix product of B and F , and the inverse of B.

We want to show that there exist constants ρ > 0 and C > 0 such
that

(86) min
R∈SO(3)

‖Φ −R · Ψ‖L2(Dρ) ≤ Cδ.

Note that the left-hand side of (86) is actually independent of the choice
of the frame. Thus, though the estimate is derived for the particular
frame of TDρ chosen above, we would conclude:

• Let (e1, e2) be any orthonormal frame and Φ, Ψ as in (84), (85).
Then (86) holds.

An easy covering argument would yield a constant C ′ such that, for
some R ∈ SO(3):

For every V and for every frame (e1, e2) on TV ,(87)

we have ‖Φ −R · Ψ‖L2(V ) ≤ C ′δ.

One basic property of moving frames (see for instance vol. 3 of [14]) is
the existence of unique 1–forms with values in skew–symmetric matrices
U and W such that

dΦ = Φ · U
dΨ = Ψ ·W.

Alternatively, U and W can be regarded as matrices of 1–forms on S2.
We define the norm of |Ux| (for x ∈ Dρ) as

|Ux| := sup
v∈TxS2,|v|=1

|Ux(v)|,

where |Ux(v)| is the operator norm of the matrix Ux(v) ∈ M
3×3.

We now come to the proof of (86). Consider Λ := Φ·Ψ−1 and compute

dΛ = dΦ · Ψ−1 − Φ · Ψ−1 · dΨ · Ψ−1

= Φ · U · Ψ−1 − Φ · Ψ−1 · Ψ ·W · Ψ−1 = Φ · (U −W ) · Ψ−1.

The following Lemma is a standard Poincaré inequality (for the reader’s
convenience, we report its proof in Appendix D):
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Lemma 6.1. There exists a universal constant C such that for some
R ∈ SO(3), we have

‖Λ −R‖L2(Dρ) ≤ Cρ‖dΛ‖L2(Dρ).

Thus, since ρ ≤ π, there is a constant C such that

‖Λ −R‖L2(Dρ) ≤ C‖U −W‖L2(Dρ).

To complete the proof of (86), it is sufficient to show that there is a
universal constant C such that

(88) ‖U −W‖L2(Dρ) ≤ Cδ.

Let θ1, θ2 be the basis of the cotangent space T ∗M which is dual to
(e1, e2). Moreover, recall that

• ev is the conformal factor of ϕ : Dr → Dρ;
• x1, x2 is an orthonormal basis for Dr;
• ei = ∂xiϕ/|∂xiϕ| = e−v∂xiϕ.

Since the second fundamental form of the sphere is the identity, we have
(see e.g., p. 97 of Volume III of [14])

−W31 = W13 = A
(
e−udψ(e1), e−udψ(e1)

)
θ1

+A
(
e−udψ(e1), e−udψ(e2)

)
θ2

−W32 = W23 = A
(
e−udψ(e1), e−udψ(e2)

)
θ1

+A
(
e−udψ(e2), e−udψ(e2)

)
θ2

−U31 = U13 = θ1

−U32 = U23 = θ2.

Since ‖A− Id‖L2 ≤ Cδ, the previous equations give ‖Wi3 − Ui3‖ ≤ Cδ.
Thus, it only remains to show that ‖U12 −W12‖ ≤ Cδ. Recall that

W12(ej) = g
(∇Σ

e−udψ(ej )(e
−udψ(e2)), e−udψ(e1)

)
U12(ej) = θ1

(∇S2

ej
e2
)
,

where g is the Riemannian metric on Σ. Thus

U12 = e−v
{[
∂x2v

]
θ1 −

[
∂x1v

]
θ2

}
W12 = e−u◦ϕ−v

{[
∂x2

(
v + u ◦ ϕ)] θ1 − [

∂x1(v + u ◦ ϕ)] θ2}.
Recall that ‖ϕ‖C1 is bounded by a universal constant, that ‖e−u−1‖L2+
‖u‖W 1,2 ≤ Cδ and ‖u‖∞ ≤ C. Hence, we conclude that

‖U12 −W12‖L2(Dρ) ≤ Cδ.
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6.3. Conclusion. Let us compose ψ with the inverse of the rotation R
appearing in (87). By abuse of notation, we denote this map by ψ as
well. Then, the previous subsection shows the existence of constants C
and ρ such that:

• For every disk D of radius ρ in S2 there exists a conformal map ϕ
such that ‖ϕ‖C2 ≤ C and, if we define ei := ∂xiϕ/|∂xiϕ| and Φ, Ψ
as in (84), (85), then:

dΨ = Ψ ·W dΦ = Φ · U(89)

‖Ψ − Φ‖L2(D) ≤ Cδ ‖U −W‖L2(D) ≤ Cδ.

Hence, we easily get that

(90) ‖dΨ−dΦ‖L2(D) ≤ ‖Ψ · (U −W )‖L2(D) +‖(Φ−Ψ) ·U‖L2(D) ≤ Cδ,

where we have also used the fact that ‖U‖L∞ depends on ‖ϕ‖C1 , which
is bounded by a uniform constant (recall the choice of ϕ). Denote
by id : S2 → R3 the standard embedding of the round sphere in the
Euclidean space. Note that (89) gives that ‖dψ − d(id)‖L2(D) ≤ Cδ.
Thus, (since ρ is a fixed constant), by an easy covering argument, we
get ‖dψ − d(id)‖L2(S2) ≤ C1δ for some universal constant C1. By the
Poincaré inequality, there is a vector cΣ ∈ R3 such that

‖ψ − (cΣ + id)‖W 1,2(S2) ≤ C2δ.

It is not difficult to see that (90) and (89) give an estimate on the second
derivatives of ψ − (cΣ + id), yielding the desired bound

‖ψ − (cΣ + id)‖W 2,2(S2) ≤ C3δ.

Indeed fix a system coordinates on R3 and call ψk, idk the components
of ψ, id. Since ‖ϕ‖C2 is bounded by a universal constant, it is sufficient
to check

(91)
∥∥∥∂2

xixj
(ψk − idk)

∥∥∥
L2(D)

≤ C4δ.

Note that
∂xjψk =

∣∣∂xjϕ
∣∣ [dψ(ej)

]
k

= hΨjk

where Ψjk denotes the jk entry of the matrix Ψ and h is the conformal
factor of ϕ. Thus,

∂2
xixj

ψk =
(
h∂xih

)
Ψjk + h2 dΨjk(ei).

Analogously

∂2
xixj

idk =
(
h∂xi h

)
Φjk + h2 dΦjk(ei).

Hence, thanks to the uniform bounds on ‖h‖L∞ and ‖∂xjh‖L∞ , the
estimates (90) and (89) give (91).
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7. Optimality

In this section, we prove the optimality of Theorem 1.1.

Proposition 7.1. There exists a family of smooth connected compact
surfaces Σr ⊂ R3 without boundary such that:

C ≥ ar(Σr) ≥ c > 0 for every r(92)

lim
r↓0

∫
Σr

∣∣Å∣∣p = 0 for every p < 2(93)

Σr converges, in the Hausdorff topology,

to the union of two round spheres(94)

lim
r↓0

(
inf
λ

∫
Σr

|A− λId|p
)
> 0.(95)

Proof. The idea of the construction is the following. Let us take two
round spheres Σ1 and Σ2 of radii 1 and 1/2. Then, we can glue them
with a small hyperbolic neck Γ so that the integral

∫
Γ |A|p is as small

as we want. We now give the details of this construction. The estimate
of the quantity

∫
Γ |A|p will be simplified by using catenoid necks.

Detailed construction. Consider the family of curves {γr} known
as catenaries, i.e., the graphs of the functions fr : R → R given by

fr(x) := r cosh
(x
r

)
.

The surface generated by a revolution of γr around the x–axis is called
a catenoid and will be denoted by Γr. It is well known that catenoids
are minimal surfaces (see for instance page 202 of [4]). Thus, trA =
κ1 + κ2 = 0 everywhere on Γr.

Let x, y, z be a system of coordinates in R3 and assume that the
catenoid Γr is given by |(x, y)| = r cosh

(
z
r

)
. For every r > 0, we take:

• A round sphere of radius 1
2 centered at a point (0, 0, z1) with z1 > 0

and tangent to Γr in a circle γ1
r .

• A round sphere of radius 1 centered at a point (0, 0, z2) with z2 < 0
and tangent to Γr in a circle γ2

r .
Consider the closed surface Σr which is made of:
• The part of the sphere Σ1 lying above γ1 (which we denote by S2

r );
• The part of the sphere Σ2 lying below γ2 (which we denote by S1

r );
• The portion of catenoid lying between γ1 and γ2 (which we denote

by Tr).
See Fig. 1 below.

Step 1. Behavior of Σr for r ↓ 0.
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Σ2

Γr Σr
Tr

Σ1 S1
r

S2
r

Figure 1. Construction of the surface Σr.

The circles γir are given by

Γr ∩ {z = zi(r)}
and straightforward computations give that

z1(r) is the unique positive solution of cosh
(
z1(r)
r

)
=

1√
2r

z2(r) is the unique negative solution of cosh
(
z2(r)
r

)
=

1√
r
.

Hence, zi(r) ↓ 0 as r ↓ 0. Moreover, the radius of γ1
r is

√
r/2, whereas

the radius of γ2
r is

√
r. Hence, we conclude that

The surfaces S1
r and S2

r converge, respectively,

to a sphere S1∞ of radius 1/2 and to a sphere S2∞ of radius 1,(96)

which are tangent at (0, 0, 0).

The area of the neck Tr converges to 0.(97)

Step 2. Estimates.
We now prove that

(98) lim
r↓0

∫
Tr

∣∣Å∣∣p = 0.
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Since Tr is a portion of a minimal surface, tr A = 0 on Tr. Thus, (98)
is equivalent to

(99) lim
r↓0

∫
Tr

|A|p = 0.

Again, because of the minimal surface equation, 2detA = −|A|2 on Tr.
Thus, by Gauss–Bonnet Theorem:

(100) 8π =
∫

Σr

2detA =
∫
S1

r∪S2
r

2detA−
∫
Tr

|A|2.

Since S1
r and S2

r are both portions of round spheres, we have∫
S1

r∪S2
r

2detA ≤ 16π.

Thus,
∫
Tr

|A|2 ≤ 8π and, by Hölder inequality,

(101)
∫
Tr

|A|p ≤ (ar(Tr))
2−p
2

(∫
Tr

|A|2
)p

2 ≤ (8π)
p
2 (ar(Tr))

2−p
2 .

By (96), the inequality (101) yields (99). Thus:

• The bound (92) is trivially satisfied.
• Since S1

r and S2
r are subsets of round spheres, we have∫

Σr

∣∣Å∣∣p =
∫
Tr

∣∣Å∣∣p ,
and (93) follows from (98).

• Thanks to (97) and (99)

lim
r↓0

(
inf
λ

∫
Σr

|A− λId|p
)

= inf
λ

(∫
S1∞

|A− λId|p +
∫
S2∞

|A− λId|p
)

= inf
λ

[
2π

(
1
2
− λ

)2

+ 8π(1 − λ)2
]
> 0,

which gives (95).

Note that the surfaces just constructed are C1 and piecewise C2.
However, they are all surfaces of revolution: The curves which generate
them are C1 and piecewise C∞, where the higher derivatives have four
points of jump discontinuity. Hence, a standard smoothing argument
yields a family of surfaces of revolution which are C∞ and satisfy all
the requirements of the Proposition. q.e.d.
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Appendix A. Hardy and BMO spaces

We recall here the definitions of Hardy and BMO spaces (see for
example [15], sections 1,2,3 and 4). We fix a ζ ∈ C∞

c (Rn) with
∫
ζ = 1

and we define ζε as ζε(x) = ε−nζ
(
x
ε

)
. Then, for every f ∈ L1

loc(R
n), we

define the maximal function Mζf as

(102) Mζf(x) := sup
r>0

|f ∗ ζr(x)|.

In a similar way, for M > 0, we define a local maximal function

MM
ζ f(x) := sup

M>r>0
|f ∗ ζr(x)|.

Definition A.1. The Hardy space H1(Rn) consists of the functions
f ∈ L1

loc(R
n) such that Mζf ∈ L1(Rn) for some ζ. Similarly, if Ω ⊂ Rn,

H1
loc(Ω) is the subset of L1

loc consisting of those functions f such that
MM
ζ f ∈ L1

loc for some ζ and some M .

Having fixed ζ, we can endow H1(Rn) with the norm ‖Mζf‖L1(Rn),
thus getting a Banach space (see [15]). Different choices of ζ induce
equivalent norms. Moreover, if f ∈ H1

loc(Ω) and Φ is a diffeomorphism
of Ω, then f ◦ Φ ∈ H1

loc(Ω). Hence, using a finite atlas of coordinate
patches, it is possible to define H1(Σ) for any compact Riemannian
manifold Σ. Similarly, after fixing a ζ, an M > 0, and a finite atlas,
one can define a local maximal function Mf for f ∈ H1(Σ) and a norm
‖f‖H1(Σ) := ‖Mf‖L1 . Different choices induce equivalent norms.

We recall the following celebrated result of [6]:

Theorem A.2. Let w ∈ H1(R2). Then, the equation ∆R2u = w
admits a continuous solution u0 : R2 → R which satisfies

‖∇2u0‖L1 + ‖du0‖L2 + ‖u0‖L∞ ≤ C‖w‖H1 ,

for some universal constant C.

Using a partition of unity and local coordinate patches, Theorem A.2
yields the following

Corollary A.3. Let w ∈ H1(S2). Then, the equation ∆S2u = w
admits a continuous solution u0 which satisfies

(103) ‖u0‖W 2,1(S2) + ‖du0‖L2(S2) + ‖u0‖L∞ ≤ C‖w‖H1(S2).

Remark A.4. Since harmonic functions on S2 are constant, the gen-
eral solution of ∆S2u = w can be written as u = u0 + c. Thus, the
normalization condition ∫

S2

e2u = 4π,
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yields an estimate like (103) also for u.

In Section 5, we use the duality between BMO and H1, due to Fef-
ferman.

Definition A.5. Let f ∈ L1
loc(R

n). We say that f ∈ BMO if

|f |BMO := sup
x∈Rn

sup
r>0

1
|Br(x)|

∫
Br(x)

|f − fx,r| is finite,

where fx,r denotes the average of f on Br(x). We can extend the
definition to compact surfaces by taking the second supremum among
disks of radius smaller than the diameter of Σ.

Theorem A.6. Let f,w ∈ C∞
c (Rn). Then,∣∣∣∣∫ fw

∣∣∣∣ ≤ Cζ‖f‖H1 |w|BMO,

where Cζ depends only on the kernel ζ ∈ C∞
c (Rn) which defines ‖f‖H1 =

‖Mζf‖L1

Again, using local charts and a partition of unity, we get

Corollary A.7. Let f,w ∈ C∞(S2). Then, there exists a constant C
(depending only on the choices involved in the definition of ‖f‖H1(S2))
such that ∣∣∣∣∫

S2

fw

∣∣∣∣ ≤ C‖f‖H1(S2)

[
|w|BMO(S2) +

∣∣∣∣ ∫
S2

w

∣∣∣∣] .
Appendix B. The space L2,∞

Given a measure space Ω with a σ–finite measure µ, the Marcinkiewicz
space L2,∞(Ω, µ) is defined as the set of functions{

f

∣∣∣∣there exists C > 0: µ
({f2 ≥ k}) ≤ C

k
for every k > 0

}
.

For every f ∈ L2,∞, it is natural to define

(104) |f |L2,∞ := inf
{
C : µ

({f2 ≥ k}) ≤ C

k
for every k > 0

}
.

| · | is not a norm. However, it is possible to define a norm ‖·‖L2,∞ which
endows L2,∞ of a Banach space structure and such that

(105)
1
k
‖ · ‖L2,∞ ≤ | · |L2,∞ ≤ k‖ · ‖L2,∞ ,

see e.g. Section 1.8 of [17]. For the Proof of Proposition 4.1, we need
the following two lemmas:
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Lemma B.1. If f ∈ L2,∞(Rn), w ∈ L1(Rn), then

(106) ‖f ∗ w‖L2,∞ ≤ ‖f‖L2,∞‖w‖L1 .

Lemma B.2. Let K be the fundamental solution of the Laplacian
in R2 given by K(x) = 1

2π log(|x|). Then, ∇K ∈ L2,∞(U) for every
bounded open set U ⊂ R2.

Lemma B.1 follows easily from the fact that ‖ · ‖L2,∞ is a norm, while
Lemma B.2 is obtained directly from the definition of | · |L2,∞ . Finally,
in the proof of Theorem 1.1, we need the following

Lemma B.3. Let u ∈ C∞(S2,R). Then, there exists a universal
constant C such that

|u|BMO(S2) ≤ C‖du‖L2,∞(S2).

Proof. Lemma B.3 follows from the Sobolev embedding W 1,1(S2) ↪→
L2(S2) and the fact that |u|R2 and |u|L2,∞(R2) are both invariant un-
der the rescalings x → rx. We recall the argument for the reader’s
convenience.

Using local charts, it suffices to prove

(107) |u|BMO(D1) ≤ C‖du‖L2,∞(D1)

where D1 is the Euclidean unit disk. Recall that

(108) |u|BMO(D1) := sup
y∈D1

[
sup

r<dist (y,∂D1)

1
ar(Dr(y))

∫
Dr(y)

|u− uy,r|
]
,

In view of the definition of |u|BMO(D1), it would be sufficient to prove

1
ar(Dr(y))

∫
Dr(y)

|u− uy,r| ≤ C‖du‖L2,∞(Dr(y)) for all r < 1.

By invariance under translations, we can assume y = 0. Moreover, we
can assume that r = 1. Indeed, define ur(x) := u(rx). Then,

1
ar(Dr)

∫
Dr

∣∣u− u0,r
∣∣ =

1
ar(D1)

∫
D1

∣∣ur − u0,1
r

∣∣
and

‖u‖L2,∞(Dr) ≤ k|u|L2,∞(Dr) = k|ur|L2,∞(D1) ≤ k2‖ur‖L2,∞(D1).

Thus, the proof reduces to the inequality∫
D1

∣∣u− u0,1
∣∣ ≤ C‖du‖L2,∞(D1).

Clearly, for some universal constant C, we have

‖du‖L1(D1) ≤ C‖du‖L2,∞(D1).
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Moreover, the Poincaré and Schwartz inequalities give

∫
D1

∣∣u− u0,1
∣∣ ≤ π1/2‖u− u0,1‖L2(D1)

≤ C1π
1/2‖du‖L1(D1) ≤ C1Cπ

1/2‖du‖L2,∞(D1).

This completes the proof. q.e.d.

Appendix C. Lemma on open sets

Lemma C.1. Let U ⊂ S2 be an open set and assume that ∂U ⊂ γ,
where γ is a closed curve. Then, there exists a constant δ > 0, depending
only on ar(U) and len (γ) such that U contains an open disk of radius
δ.

Proof. We argue by contradiction. Then, there exist a sequence of
open sets Un and a sequence of closed curves γn such that:

1) limn len (γn) = C1 > 0 and limn ar(Un) = C2 > 0;
2) For every δ > 0, there exists N such that, for every n > N , Un

does not contain any disk of radius δ.

Let us parameterize γn by arc–length. Then, there is a subsequence, not
relabeled, which converges uniformly to a Lipschitz curve γ∞. Hence,
up to subsequences, Un converges, in the Hausdorff topology, to a closed
set U∞ whose boundary is contained in γ∞. Due to 2., the set U∞ has
empty interior and thus ar(U∞) = ar(∂U∞) = 0. But 1. implies that
ar(U∞) = C2 > 0. This is the desired contradiction. q.e.d.

Appendix D. Poincaré inequality for SO(3)–valued maps

Here, we give a proof of Lemma 6.1. We embed SO(3) ⊂ M
3×3 = R9

and we set

Λ =
1

ar(Dρ)

∫
Dρ

Λ,

Since the operator norm on M
3×3 is equivalent to the Euclidean norm

on R9, the Poincaré inequality yields a constant C such that

‖Λ − Λ‖L2(Dρ) ≤ Cρ‖dΛ‖L2(Dρ).
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Note that

dist (Λ,SO(3))2 =
1

ar(Dρ)

∫
Dρ

dist (Λ, SO(3))2

≤ 1
ar(Dρ)

∫
Dρ

(|Λ − Λ| + dist (Λ, SO(3))
)2

=
1

ar(Dρ)
‖Λ − Λ‖2

L2(Dρ).

Thus, there exists a map R ∈ SO(3) such that

‖Λ −R‖L2(Dρ) ≤
√

2Cρ‖dΛ‖L2(Dρ).

empty
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