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Abstract. We consider an area-minimizing integral current T of codimension higher than
1 in a smooth Riemannian manifold Σ. We prove that T has a unique tangent cone, which

is a superposition of planes, at Hm−2-a.e. point in its support. In combination with

works of the first and third authors, we conclude that the singular set of T is countably
(m−2)-rectifiable. The techniques in the present work can be seen as a counterpart for area-

minimizers, in arbitrary codimension, to those developed by Simon ([29]) for multiplicity

one classes of minimal surfaces and Wickramasekera ([32]) for stable minimal hypersurfaces.
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1. Introduction and main results

Let T be an m-dimensional integral current in a complete smooth (m + n̄)-dimensional
Riemannian manifold Σ. We assume that T is area-minimizing in some (relatively) open
Ω ⊂ Σ, i.e.

M(T ) ≤ M(T + ∂S)

for any (m + 1)-dimensional integral current S supported in Ω. The (interior) regular set
Reg(T ) is the set of points p ∈ spt(T )∩Ω\spt(∂T ) for which there is an open ball B containing
p, a regular orientable minimal surface Λ ⊂ B without boundary in B, and an integer Q ∈ N
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such that T B = QJΛK. The (interior) singular set Sing(T ) is then given by the complement
in Ω ∩ spt (T ) of Reg(T ). This is the third of three papers (the others being [8, 9]) devoted to
proving the following theorem.

Theorem 1.1. Let T be an m-dimensional area-minimizing integral current in a C3,κ0 com-
plete Riemannian manifold of dimension m + n̄ ≥ m + 2, with κ0 > 0. Then, Sing(T ) is
(m− 2)-rectifiable and T has a unique tangent cone at Hm−2-a.e. q ∈ Sing(T ).

We refer to the first work [8] for the historical context and the motivation of our study, we
just recall here that the regularity of Sing(T ) given by Theorem 1.1 is close to optimal due to
the recent work [23], which shows that Sing(T ) can be precised to be any fractal subset of a
smooth oriented (m−2)-dimensional manifold. The only foreseeable improvement of Theorem
1.1 is to show that the (m − 2)-dimensional Hausdorff measure of Sing(T ) is locally finite in
spt(T ) \ spt(∂T ). We also recall that this is known in the special case m = 2 by [3] (cf. also
[14–16]) and that the statement about the uniqueness of tangent cones is covered, in that case,
by [31].

Recall that, following Almgren’s stratification theorem, we can subdivide Sing(T ) into the
disjoint union of

• the subset S(m−2)(T ) of points p at which any tangent cone to T has at most m − 2
linearly independent directions of translation invariance;

• the remaining set Sing(T ) \ S(m−2)(T ) of those singular points at which at least one
tangent cone is a flat plane (counted with some integer multiplicity Q ≥ 1).

Consistently with [8] we use the notation F(T ) for the latter set and we will call its elements flat
singular points. As a consequence of the general theory of Naber and Valtorta ([27]) it follows
that S(m−2)(T ) is (m − 2)-rectifiable, therefore the main novelty of our work is to establish
the rectifiability of F(T ). In fact the techniques of the present paper, which can be seen as
a counterpart in the higher codimension case (and for area-minimizing integral currents) of
the seminal works by L. Simon ([29]) and N. Wickramasekera ([32]), can be used to derive an
independent proof that S(m−2)(T ) is rectifiable. However the ideas in [26,27] are still a crucial
ingredient in [9].

By the constancy theorem, the density Θ(T, p) at any p ∈ F(T ) is a positive integer Q,
which moreover obeys Q > 1 by Allard’s Regularity Theorem. We can therefore stratify F(T )
as
⋃∞

Q=2 FQ(T ), where

FQ(T ) := {p ∈ F(T ) : Θ(T, p) = Q} .
According to [8] we can further subdivide each FQ(T ) by introducing a suitable function

F(T ) ∋ p 7→ I(T, p) ∈ [1,∞) .

Loosely speaking, I(T, p) detects the infinitesimal homogeneity of the “singular behavior of
T” around p. A good illustration of this number is given in [8, Example 1.2] in the case of
classical holomorphic curves of C2, which by Federer’s theorem are area-minimizing integral
2-dimensional currents in R4. Consider Λ := {(w− h(z))Q = zpk(z) : (z, w) ∈ C2} and require
that

• p > Q ≥ 2 are coprime integers;
• h and k are holomorphic functions;
• k(0) ̸= 0.

If T = JΛK in R4 ∼= C2, then I(T, 0) = p/Q. Given however the lack of precise information
about the singular behavior of a general m-dimensional area-minimizing integral current, the
actual definition of I(T, p) is rather involved: note for instance that we do not know that the
tangent cone to T at p ∈ F is unique, or even that all tangent cones are flat. In the papers
[8, 9], the first and third authors prove that:

Theorem 1.2. Let T be an m-dimensional area-minimizing integral current in a C3,κ0 com-
plete Riemannian manifold of dimension m + n̄ ≥ m + 2, with κ0 > 0. Then FQ,>1 :=
FQ(T ) ∩ {I(T, ·) > 1} is (m− 2)-rectifiable and the tangent cone is unique at every p ∈ FQ,>1.
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In the present paper, we handle the rectifiability question for the remaining part of FQ(T ),
as well as the Hm−2-a.e. uniqueness of tangent cone question in the remaining portion of the
singular set. More precisely, we prove the following:

Theorem 1.3. Let T be as in Theorem 1.2. The following holds:

(i) The set FQ,1(T ) := FQ(T ) ∩ {I(T, ·) = 1} is Hm−2-null;

(ii) T has a unique tangent cone at Hm−2-a.e. p ∈ S(m−2)(T ).

1.1. Comparison with the works of Krummel and Wickramasekera. While we were
completing this and the two works [8, 9] leading to our proof of Theorem 1.1, we have learned
that in the works [20–22], Krummel and Wickramasekera arrived independently at a program
that shows the same final result; we refer to the introduction of [8] for a more general comparison
between the two programs.

The present paper and [20] are in fact the two works which are most similar. Both [20] and
this paper rely in an essential way on an new height bound: we refer to Theorem 3.2 in the
first part of this paper for our precise statement. Indeed, the only difference between the two
bounds seems to be that ours is stated in the more general setting of an arbitrary ambient
manifold which satisfies some mild regularity assumptions, a setting which we believe can be
reached equally well in [20] at the price of some more technical work.

Building upon this height bound, both the present work and [20] rely in a fundamental way
on the estimates of [29], which are in turn used to perform a suitable blow-up analysis to prove
the decay theorem which is the subject of the second part of this work. To handle the situation
in which the current is very close to a plane, but much closer to a cone with m − 2 linearly
independent directions of translational invariance, both [20] and the present work also rely on
important ideas introduced by Wickramasekera in [32].

Finally, the ideas of [29] are also used in a substantial way in both papers to prove that the
flat singular points at which the sheets of the surface meet with order of contact 1, namely
FQ,1(T ), is Hm−2-negligible. The result achieved in [20,21] is in fact stronger: using our nota-
tion they actually show that FQ,<1+δ is Hm−2-negligible for a sufficiently small δ = δ(Q,m, n),
while FQ,≥1+δ is (relatively) closed in any ball Br(x) where the current is sufficiently close to
a multiplicity-Q flat plane.

While we do not pursue such a finer result here, we also believe with some additional work
we can deliver these very conclusions. In fact the closedness of FQ,≥1+δ is a consequence,
in [21], of the almost-monotonicity of the planar frequency function and a similar almost-
monotonicity holds also for the Almgren frequency function relative to the center manifolds
as used in [8, 9]. As for the fact that FQ,<1+δ is Hm−2-negligible, we believe that it can be
achieved with appropriate modifications of the arguments in the final part of this paper, given
that at these points all the coarse blow-ups will be homogeneous with degree d ∈ [1, 1 + δ],
and thus, for a sufficiently small δ, close to 1-homogeneous Dir-minimizers. Indeed, it is an
interesting question whether there is a frequency gap (depending on the number of values of
the Dirichlet minimizer) for Dirichlet minimizers. Namely, if there exists δ = δ(m,n,Q) > 0
such that any homogeneous Q-valued Dirichlet minimizer of degree α ∈ [1, 1 + δ) is in fact
homogeneous of degree 1. Such a result would then immediately imply that in fact the sets
FQ,1 and FQ,<1+δ coincide.

2. Preliminaries and notation

2.1. Notation. Throughout this work, C,C0, C1, . . . will denote constants which depend only
on m,n, n̄, Q. Constants depending on other parameters will typically be denoted by

C̄, C̄1, C̄2, . . . ,

with dependencies given. For q ∈ spt(T ), the currents Tq,r will denote the dilations (ιq,r)♯T ,

where ιq,r(x) :=
x−q
r . For p ∈ spt(T ), Br(p) denotes the open (m+ n)-dimensional Euclidean

ball of radius r centered at p, while Br(p, π) denotes the (open) m-dimensional disk Br(p)∩ π
of radius r centered at p in the m-dimensional plane π ⊂ Rm+n̄ passing through p. Cr(p, π)
denotes the (m + n)-dimensional cylinder Br(p, π) × π⊥ of radius r centered at p. We let
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pπ : Rm+n → π denote the orthogonal projection onto π, while p⊥
π denotes the orthogonal

projection onto π⊥. The plane π is omitted if clear from the context; if the center p is omitted,
then it is assumed to be the origin. For example, Cr := Cr(0, π) for r > 0 if the choice of
π is clear from the context. ∥T∥ denotes the mass measure induced by T , while ωm denotes
the m-dimensional Hausdorff measure of the m-dimensional unit disk B1(π). The Hausdorff
distance between two subsets A and B of Rm+n̄ will be denoted by dist(A,B).

The scalar product between vectors v, w ∈ Rm+n is denoted by v ·w and likewise for product
of matrices we will use A · B. | · | will denote the Euclidean norm of vectors and the Hilbert-
Schmidt norm of matrices. Hs will denote the Hausdorff s-dimensional measure, while in
the particular instance of subsets E of Rm we will use the shorthand |E| for their Lebesgue
measure. This convention will often also be used for the Hm measures of subsets E of affine
m-dimensional subspaces of Rm+n.

We collect here a table of additional symbols used repeatedly throughout the paper, for the
reader’s convenience.

r, ρ, s, t typically denote radii

i, j, k indices

α, β, π m-dimensional planes

ϖ (m+ n̄)-dimensional plane

ε, δ, η small numbers, with ε the smallest in hierarchy

γ, κ, µ exponents

ς, σ, τ,κ parameters

ϕ, θ, ϑ angles

φ,ψ, χ test functions

f, g, h, u, v, w functions, with f , u, v and w typically denoting multi-valued approximations

Ψ,Σ Ψ the parameterization of the ambient manifold Σ

Σp,r the rescaled manifold ιp,r(Σ)

S, T currents

p, q points in Rm+n

x, y, z, ξ, ζ variables (typically in m-dimensional subspaces of Rm+n)

p, p⊥ orthogonal projection, projection to orthogonal complement, respectively

1E indicator function of the set E

A the L∞ norm of the second fundamental form

Θ(T, p) the m-dimensional Hausdorff density of T at a point p;

Sing(T ),F(T ) singular sets of T , with F(T ) the flat singularities

FQ(T ) flat singularities of T where the density of T is Q

FQ,1(T ) points in F(T ) with I(T, ·) = 1

L, ℓ(L) L a cube, ℓ(L) half the side length

A,B linear maps

M balancing constant (c.f. Definition 8.4)

X vector field

S (m− 2)-invariant cones that are superpositions of m-planes

N natural number, typically denoting the number of planes in S

V spines of cones

P set of m-dimensional planes

C set of (m− 2)-invariant cones that are superpositions of m-planes

Ep(T,B) planar excess of T in the (m+ n)-dimensional ball B

Ê(T,S,B), Ê(S, T,B) one-sided L2 conical excess in B (T close to S, S close to T , resp.)

E(T,S,B) double-sided conical excess in B

Ba(V ) fixed tubular neighbourhood of radius a of the spine V being removed from B1

σ(S) minimal pairwise Hausdorff distance between the planes in S in B1

µ(S) maximal pairwise Hausdorff distance between the planes in S in B1

AQ(Rn) the space of Q-tuples of vectors in Rn (c.f. [10])
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Since our statements are local and invariant under dilations and translations, we will work
with the following underlying assumption throughout.

Assumption 2.1. m ≥ 3 and n ≥ n̄ ≥ 2 are integers. T is an m-dimensional integral current
in Σ∩B7

√
m with ∂T B7

√
m = 0, where Σ is an (m+n̄)-dimensional embedded submanifold of

Rm+n = Rm+n̄+l of class C3,κ0 with κ0 > 0. T is area-minimizing in Σ∩B7
√
m. Σ∩B7

√
m(p) is

the graph of a C3,κ0 function Ψp : TpΣ∩B7
√
m(p) → TpΣ

⊥ for every p ∈ Σ∩B7
√
m. Moreover

c(Σ) := sup
p∈Σ∩B7

√
m

∥DΨp∥C2,κ0 ≤ ε̄,

where ε̄ ≤ 1 is a small positive constant which will be specified later.

Following the notation of [8], we let AΣ denote the C0 norm of the second fundamental
form AΣ of Σ in B7

√
m. In particular, under Assumption 2.1, we have

AΣ := ∥AΣ∥C0(Σ∩B7
√

m) ≤ C0c(Σ) ≤ C0ε̄.

We will often drop the subscript as the underlying ambient manifold will mostly be clear from
the context.

We recall that the oriented tilt-excess of T in Cr(p, π0) relative to an m-dimensional oriented
plane π is defined by

E(T,Cr(p, π0), π) :=
1

2ωmrm

∫
Cr(p,π0)

|T⃗ (x)− π⃗(x)|2 d∥T∥(x),

while
E(T,Cr(p, π0)) := min

π⊂TpΣ
E(T,Cr(p, π0), π)

where the minimum is taken over all m-dimensional oriented planes π ⊂ TpΣ (identified with
their corresponding planes in Rn+m). The oriented tilt-excess of T in Br(p) relative to an m-
dimensional oriented plane π and the optimal oriented tilt-excess inBr(p), denoted respectively
by E(T,Br(p), π) and E(T,Br(p)), are defined analogously. The tilt-excess is morally a planar
L2 “gradient” excess. We will shortly also introduce a notion of planar L2 “height” excess.

We also refer to [8, Section 3.1] for the notion of a coarse blow-up of T at p, which, roughly
speaking, under the assumption that r2A2 ≪ E(T,B6

√
mr(p)) ≪ 1 along a given family of

scales r, gives rise to a Dir-minimizing Q-valued function over B1(0, π0) for somem-dimensional
plane π0 as a subsequential normalized limit. The graph of this Dir-minimizer approximates the
rescaled current Tp,ρ in the domain C1(0, π0)∩B4 with a mass error which is o(E(T,B6

√
m)),

along with other related error estimates which are detailed in [8, Section 3.1] and [11]. We
additionally refer the reader to [8] for all other relevant notation and terminology relating to
coarse blow-ups.

The properties of FQ,1(T ) that will be most useful to us here are contained within the
following proposition, which is a consequence of the analysis in [8] (more precisely, see (9),
Proposition 4.1 and Corollary 4.3 therein).

Proposition 2.2. Let T , Σ and A be as in Assumption 2.1. For every p ∈ FQ,1(T ) and any
sequence rk ↓ 0 with the property that Ek := E(T,B6

√
mrk(p)) ↓ 0 the following holds:

(i) For Ak := AΣp,rk
we have limk→∞ E−1

k r2−2δ2
k A2

k = 0;

(ii) Any coarse blow-up f̄ generated by a subsequence of {rk} has positive Dirichlet energy,
is 1-homogeneous, and satisfies η ◦ f̄ ≡ 0.

2.2. Main decay theorem. To prove Theorem 1.1, we will show that a key excess decay
theorem holds under the assumption that T is much closer to a cone with exactly m − 2
directions of translation invariance than it is to any m-dimensional plane. Before coming to
the statement of this theorem, let us first introduce suitable notions of L2 height excess of T
relative to such cones. We begin by defining the cones of interest.

Definition 2.3. For every fixed integer Q ≥ 2 we denote by C (Q) those subsets of Rm+n which
are unions of N ≤ Q m-dimensional planes π1, . . . , πN satisfying the following properties:
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(i) πi ∩ πj is the same (m− 2)-dimensional plane V for every pair (i, j) with i < j;
(ii) Each plane πi is contained in the same (m+ n̄)-dimensional plane ϖ.

If p ∈ Σ, then C (Q, p) will denote the subset of C (Q) for which ϖ = TpΣ.
P and P(p) will denote the subset of those elements of C (Q) and C (Q, p) respectively which

consist of a single plane; namely, with N = 1. For S ∈ C (Q) \ P, the (m − 2)-dimensional
plane V described in (i) above is referred to as the spine of S and will often be denoted by
V (S).

We are now in a position to introduce the conical L2 height excess between T and elements
in C (Q).

Definition 2.4. Given a ball Br(q) ⊂ Rm+n and a cone S ∈ C (Q), we define the one-sided

conical L2 height excess of T relative to S in Br(q), denoted Ê(T,S,Br(q)), by

Ê(T,S,Br(q)) :=
1

rm+2

∫
Br(q)

dist2(p,S) d∥T∥(p).

At the risk of abusing notation, we further define the corresponding reverse one-sided excess
as

Ê(S, T,Br(q)) :=
1

rm+2

∫
Br(q)∩S\Bar(V (S))

dist2(x, spt (T )) dHm(x) ,

where a = a(m) is a dimensional constant, to be specified later. We subsequently define the
two-sided conical L2 height excess as

E(T,S,Br(q)) := Ê(T,S,Br(q)) + Ê(S, T,Br(q)) .

We finally introduce the planar L2 height excess which is given by

Ep(T,Br(q)) = min
π∈P(q)

Ê(T, π,Br(q)) .

Let us now state our main excess decay theorem. This is similar in spirit to the excess decay
theorem originally seen in [29, Lemma 1], however a crucial difference with the present setting
is that in [29, Lemma 1] there is a built-in multiplicity one assumption which in particular rules
out branch point singularities a priori. Our excess decay theorem in contrast is in a higher
multiplicity setting, and therefore is closer – and indeed our proof follows a similar pattern –
to the excess decay theorems first seen in [32, Section 13] (see also [19, Lemma 5.6 and Lemma
12.1] and [24, Theorem 2.1]).

Theorem 2.5 (Excess Decay Theorem). For every Q,m, n, n̄, and ς > 0, there are positive
constants ε0 = ε0(Q,m, n, n̄, ς) ≤ 1

2 , r0 = r0(Q,m, n, n̄, ς) ≤ 1
2 and C = C(Q,m, n, n̄) with the

following property. Assume that

(i) T and Σ are as in Assumption 2.1;
(ii) ∥T∥(B1) ≤ (Q+ 1

2 )ωm;
(iii) There is S ∈ C (Q, 0) \ P(0) such that

E(T,S,B1) ≤ ε20E
p(T,B1) (2.1)

and

Bε0(ξ) ∩ {p : Θ(T, p) ≥ Q} ≠ ∅ ∀ξ ∈ V (S) ∩B1/2 ; (2.2)

(iv) A2 ≤ ε20E(T,S′,B1) for any S′ ∈ C (Q, 0).

Then there is a S′ ∈ C (Q, 0) \ P(0) such that

(a) E(T,S′,Br0) ≤ ςE(T,S,B1)

(b)
E(T,S′,Br0)

Ep(T,Br0)
≤ 2ς

E(T,S,B1)

Ep(T,B1)

(c) dist2(S′ ∩B1,S ∩B1) ≤ CE(T,S,B1)

(d) dist2(V (S) ∩B1, V (S′) ∩B1) ≤ C
E(T,S,B1)

Ep(T,B1)
.
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2.3. Structure of the paper. The majority of this paper will be dedicated to the proof of
Theorem 2.5. We begin with a refined L2−L∞ height bound in Part 1, which will be a key tool
for the estimates in the remainder of the paper. However, we believe that this height bound is
of interest in itself, and would have a number of other applications.

Part 2 will contain the proof of the Excess Decay Theorem 2.5. The proof consists of
several key parts, modeled off the foundational works of Simon ([29]) and Wickramasekera
([32]); the reader familiar with these works will find many of the arguments in this part similar
in spirit to those seen in these, and we will make the effort to point out the similarities and
differences throughout the work to aid the reader. Section 7 contains some key results regarding
the relative positioning and angles between pairs of planes in cones in C (Q) \ P, followed by
Section 8, which introduces effective graphical approximations for T over such cones. In Section
9, we then use the preceding two sections to demonstrate that we may replace the initial cone
S in Theorem 2.5 with a balanced cone (cf. Definition 8.4). In Section 10 we reduce the
proof of Theorem 2.5 to an a priori much weaker decay statement, in particular one where we
can assume that the two-sided excess is much smaller than the minimal angle in the cone (as
opposed to the maximal angle, which is morally what (2.1) says). Section 11 is then dedicated
to the Simon estimates, including the non-concentration estimates, at the spine of the cone in
C (Q) \ P, after which, in Section 12 we demonstrate the excess decay conclusion at the level
of the linearized problem of multiple-valued Dirichlet minimizers. Part 2 is then concluded
with Section 13, in which we put together everything from the previous sections to conclude
the proof of Theorem 2.5.

In Part 3 we use Theorem 2.5 combined with a covering procedure, analogously to that done
by Simon ([29]), to prove Theorem 1.1.

Acknowledgments. C.D.L. and A.S. acknowledge the support of the National Science Foun-
dation through the grant FRG-1854147.

Part 1. L2 − L∞ Height Bound

The aim of this part is to prove a generalization of Allard’s tilt-excess and L∞ estimates
(see [1, Section 8]). Allard’s original work, in the context of stationary varifolds, bounds the
L∞ distance and L2 tilt excess from a single plane with the L2 distance to it. Here, we will
restrict ourselves to the much smaller class of area-minimizing currents, with the additional
benefit being that are able to control the L∞ distance and L2 tilt excess from a finite collection
of mutually disjoint planes by the L2 distance to the union of the planes.

3. Main statements

For the remainder of this part, we make the following additional assumption.

Assumption 3.1. T , Σ, and A are as in Assumption 2.1. For some oriented m-dimensional
plane π0 ⊂ Rm+n̄ passing through the origin and some positive integer Q, we have

(pπ0
)♯T C2(0, π0) = QJB2(π0)K ,

and ∥T∥(C2) ≤ (Q+ 1
2 )ωm2m.

The main result of this part is the following.

Theorem 3.2 (L∞ and tilt-excess estimates). For every 1 ≤ r < 2, Q, and N , there is
a positive constant C̄ = C̄(Q,m, n, n̄,N, r) > 0 with the following property. Suppose that
T , Σ, A and π0 are as in Assumption 3.1, let p1, . . . , pN ∈ π⊥

0 be distinct points, and set
π :=

⋃
i pi + π0. Let

E :=

∫
C2

dist2(p,π) d∥T∥(p) . (3.1)

Then
E(T,Cr, π0) ≤ C̄(E +A2) (3.2)

and, if E ≤ 1,
spt(T ) ∩Cr ⊂ {p : dist(p,π) ≤ C̄(E1/2 +A)} . (3.3)
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A translation followed by a simple scaling argument clearly gives corresponding estimates
when 0 is replaced by an arbitrary center and the scales r and 2 are replaced by two arbitrary
radii ρ < R. We additionally record the following consequence of Theorem 3.2, which will be
used frequently in the rest of the paper.

Corollary 3.3. For each pair of positive integers Q and N , there is a positive constant δ =
δ(Q,m, n, n̄,N) with the following properties. Assume that:

(i) T , Σ, and A are as in Assumption 2.1;
(ii) T is area-minimizing in Σ and for some positive r ≤ 1

4 and q ∈ spt(T ) ∩B1 we have

∂T C4r(q) = 0, (pπ0)♯T = QJB4r(q)K, and ∥T∥(C2r(q)) ≤ ωm(Q+ 1
2 )(2r)

m;
(iii) p1, . . . , pN ∈ Rm+n are distinct points with pπ0

(pi) = q and κ := min{|pi−pj | : i < j};
(iv) π1, . . . , πN are oriented planes passing through the origin with

τ := max
i

|πi − π0| ≤ δmin{1, r−1κ} ; (3.4)

(v) Upon setting π =
⋃

i(pi + πi), we have

(rA)2 + (2r)−m−2

∫
C2r(q)

dist2(p,π)d∥T∥ ≤ δ2 min{1, r−2κ2} . (3.5)

Then T Cr(q) =
∑N

i=1 Ti where

(a) Each Ti is an integral current with ∂Ti Cr(q) = 0;
(b) dist(q,π) = dist(q, pi + πi) for each q ∈ spt(Ti);
(c) (pπ0)♯Ti = QiJBr(q)K for some non-negative integer Qi.

3.1. Proof of Corollary 3.3. First of all, by scaling we can assume that r = 1 and up to
translation we can assume q = 0. We then introduce

E :=

∫
C2

dist2(p,π)d∥T∥(p) .

Next let π̄ :=
⋃

i(pi + π0) and observe that

Ē :=

∫
C2

dist2(p, π̄)d∥T∥(p) ≤ CE + Cτ2 ≤ Cδ2 min{1,κ2} ,

for a constant C = C(m,n, n̄, Q) which we stress is independent of δ and κ. Since we also
have A2 ≤ δ2κ2, we can apply Theorem 3.2 to conclude that

spt(T ) ∩C3/2 ⊂ {p : dist(p, π̄) ≤ C1δκ} ,
where C1 = C1(m,n, n̄, Q,N) is again independent of δ and κ. In particular if we choose
δ = δ(m,n, n̄, Q,N) > 0 so that C1δ < 1/4, we have

spt(T ) ∩C3/2 ⊂ {p : dist(p, π̄) < 4−1κ} .

Due to the definition of κ, {p : dist(p, π̄) < 4−1κ} consists of N disjoint open sets Ui := {p :
dist(p − pi, π0) < κ/4}. We then set Ti := T C3/2 ∩ Ui; clearly each Ti is integral, has no
boundary in C3/2, and

∑
i Ti = T C3/2. It follows also that the Ti’s have disjoint support

and so each of them is area-minimizing. If we further take δ < 1/8 such that C1δ < 1/8, we
can in addition ensure that for each point p ∈ Ui,

dist(p, pi + πi) ≤
κ
4
, (3.6)

dist(p, pj + πj) ≥
κ
2

∀j ̸= i . (3.7)

and thus (b) is certainly satisfied. Moreover, by [13, Lemma 1.6], observe that (pπ0
)♯Ti =

QiJB1K for some Qi ∈ Z; clearly we must have
∑

i Qi = Q. Again applying Theorem 3.2 we
have

E(T,C1, π0) ≤ Cδ2 .

In particular, if δ is chosen small enough, by [11, Theorem 2.4] we can ensure the existence
of a subset K ⊂ B1(π0) of positive measure with the property that for each x ∈ K, the slice
⟨T,pπ0

, x⟩ (see [28] for the definition and properties of the slicing map) given by
∑

j kjδξj for
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some finite collection of positive integers kj and points ξj(x) ∈ π⊥
0 . Fix any such point x and

observe that

⟨Ti,pπ0 , x⟩ =
∑
ξj∈Ui

kjδξj

while

Qi =
∑
ξj∈Ui

kj .

It follows immediately that Qi cannot be negative, which completes the proof. □

4. Preliminaries

In this section, we collect all the required preliminary results for the proof of Theorem 3.2.

4.1. Oriented and non-oriented tilt-excess. Given an m-dimensional plane π and a cylin-
der C = Cr(q, π), recall that the non-oriented tilt excess is given by

Eno(T,C) :=
1

2ωmrm

∫
C

|pT (x) − pπ|2 d∥T∥(x) , (4.1)

where T (x) denotes the (approximate) tangent plane to T at x. This is more generally defined
for integral varifolds and does not take into consideration the orientation of T and π, in contrast
with the oriented tilt excess E(T,C) defined previously.

It is obvious that |pα −pβ | ≤ C|α⃗− β⃗| for a geometric constant C = C(m,n) and for every
pair of oriented planes, so Eno(T,C) ≤ CE(T,C). On the other hand, the opposite inequality

is only true if |α⃗ − β⃗| is sufficiently small, for instance, if it is no larger than 1. In particular

α⃗ and β⃗ could be opposite orientations for the same linear subspace: in that case |α⃗− β⃗| = 2
while |pα − pβ | = 0.

Nonetheless, for area-minimizing currents as in Assumption 2.1, the nonoriented excess
controls the oriented excess. The idea of the argument is borrowed from [7, Theorem 16.1],
but we repeat it here for clarity. A simple scaling and translation argument, which is left to
the reader, gives a corresponding estimate on any pair of parallel concentric cylinders.

Proposition 4.1. For every 1 ≤ r < 2 there is a constant C̄ = C̄(Q,m, n, n̄, 2− r) such that,
if T , Σ and A are as in Assumption 3.1, then

E(T,Cr) ≤ C̄(Eno(T,C2) +A2) . (4.2)

Proof. Since E(T,Cr) ≤ 1
ωmrm ∥T∥(Cr), we can without loss of generality assume that

Eno(T,C2) +A2 ≤ δ

for some fixed constant δ, as long as in the end we choose δ = δ(Q,m, n, n̄, 2− r) > 0.
Moreover, for any η > 0, if δ is chosen to be sufficiently small depending on η, we can also

assume without loss of generality that E(T,C1+r/2) ≤ η for another fixed constant η: indeed,
arguing by contradiction, if this were not true for some η > 0, we could find a sequence of δk ↓ 0
and a sequence of Tk with Eno(Tk,C2) ≤ δk ↓ 0 yet E(Tk,C1+r/2) > η for all k. If the supports
of the currents are equibounded, then this would give that the Tk converge, locally in mass in
C2, to a union of planes which are parallel to π0 (counted with a suitable multiplicity), which
in turn would imply E(Tk,C1+r/2) → 0, giving the desired contradiction. If the supports are
not equibounded, one can resort to the height bound [13, Theorem A.1] to decompose each

Tk into a disjoint finite sum of area-minimizing currents T j
k , each of which have equibounded

supports (after translation). One can then argue as above for T j
k , for each j.

We thus assume

Λ0 := E(T,C1+r/2) +A2 ≤ η , (4.3)

for some η whose choice will be given later (depending only on Q,m, n, n̄, 2 − r). We also
assume

A2 ≤ E(T,C1+r/2) , (4.4)

otherwise the estimate we are looking for is trivially true. In particular Λ0 ≤ 2E(T,C1+r/2).
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Set r0 := 1 + r
2 . Recalling Almgren’s strong Lipschitz approximation ([11, Theorem 1.4]),

provided η is sufficiently small (depending on Q,m, n, n̄, 2 − r), there is a set K ⊂ Br0/4(π0)

and a Lipschitz Q-valued map f : Br0/4 → AQ(π
⊥
0 ) such that

• ∥T∥((Br0/4 \K)× π⊥
0 ) ≤ CΛ1+2γ

0 ;

• Lip (f) ≤ CΛ2γ
0 ;

• Gf (K × π⊥
0 ) = T (K × π⊥

0 ).

γ and C are fixed positive constants depending on Q,m, n, n̄. At the price of making C larger,
we can achieve the same estimates with Br0−CΛ2γ

0
in place of Br0/4; this is achieved with a

simple covering argument, applying the Lipschitz approximation theorem in a collection of

CΛ−mβ
0 cylinders whose cross-sections are disks in π0 of radius Λβ

0 which cover Br0−CΛγ
0
, for a

suitable choice of β = β(γ,m) (for a detailed argument, see [7, Proposition 16.2]).
Moreover, if we assume that η is small enough, by halving the exponents 2γ to γ we can

assume that the constant C in all the above estimates (including in the radius of Br0−CΛ2γ
0
) is at

most 1
4 . More precisely, for that fixed C = C(Q,m, n, n̄) we have CΛ2γ

0 = CΛγ
0 ·Λ

γ
0 ≤ (Cηγ)Λγ

0 ,

so if we choose η small enough so that Cηγ/2 ≤ 1/4, we guarantee this.
We now set

r1 := r0 − Λγ
0 .

Summarizing we have an approximation on Br1 , which we still denote by f , such that

• ∥T∥((Br1 \K)× π⊥
0 ) ≤ 1

4Λ
1+γ
0 ;

• Lip (f) ≤ Λγ
0 ;

• Gf (K × π⊥
0 ) = T (K × π⊥

0 ).

If η is small enough (which guarantees smallness of Lip(f), and hence comparability between
the oriented and non-oriented tilt-excess of Gf ), we can estimate

E(Gf (K × π⊥
0 ),Cr1) ≤ CEno(Gf (K × π⊥

0 ),Cr1) ≤ CEno(T,C2)

so that, in particular

E(T,Cr1) ≤ CEno(T,C2) +
1

2
Λ1+γ
0 .

If Λ1+γ
0 ≤ E(T,Cr1) we are then done, provided that r1 > r, which may be achieved by taking

η sufficiently small. Otherwise we must have

E(T,Cr1) ≤ Λ1+γ
0 .

We now iterate the above argument, inductively setting

rk := rk−1 − Λγ
k−1 (4.5)

Λk := E(T,Crk) ≤ Λ1+γ
k−1 . (4.6)

We stop at a certain step if we have the desired estimate and rk ≥ r.

Since Λk ≤ Λ
(1+γ)k

0 ≤ η(1+γ)k and r0−r > 0, provided that η is small enough, the inequality
rk ≥ r is always guaranteed, no matter how large k is. Therefore, if the procedure never stops,
we conclude that E(T,Cr) = 0. But of course in this case the sought-after inequality is trivially
true. This completes the proof. □

4.2. The case N = 1. Observe that the difficulty of Theorem 3.2 lies in the case when
N ≥ 2. Indeed, when Q is arbitrary and N = 1, the L2 tilt-excess estimate (3.2) is an
immediate consequence of the work of Allard in [1] (see also [5, Proposition 4.1]), combined
with Proposition 4.1. Regarding the L∞ estimate (3.3), this is also contained within [1] when
the ambient space is Euclidean (and thus A = 0). More generally the general techniques
in [1] would give a linear dependence of the estimate in A: to see that in our case this can
be improved to a quadratic the reader can consult, for instance, [30]. From now on we will
therefore assume the following.

Proposition 4.2. The conclusions of Theorem 3.2 holds for N = 1 (and Q arbitrary).
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4.3. Combinatorial lemmas. We will make use of the following combinatorial lemmas. The
first one is essentially a consequence of [10, Lemma 3.8], but since we need additional informa-
tion we provide a self-contained proof. All of the proofs are deferred to Appendix A.

Lemma 4.3. Fix any positive δ̄ ≤ 1
2 and a natural number N ≥ 2. There is a constant C̄ =

C̄(δ̄, N) with the following property. Given a set (of distinct points) P ⊂ Rn with cardinality
N , there is a subset P ′ ⊂ P of cardinality at least two such that:

(i) max{|q − p| : q, p ∈ P ′} ≤ C̄min{|q − p| : q, p ∈ P ′, q ̸= p};
(ii) dist(p, P ′) ≤ δ̄min{|q1 − q2| : q1, q2 ∈ P ′, q1 ̸= q2} for every p ∈ P ;
(iii) the points in P \ P ′ can be ordered as {p1, . . . , pJ} so that, setting P0 = P and Pj :=

P \ {p1, . . . , pj}, the following property holds:

dist(pj , Pj) = min{|p− q| : p, q ∈ Pj−1, p ̸= q} .

Lemma 4.4. Fix any 0 < δ ≤ 1
2 and ε > 0. Given a set (of distinct points) P ⊂ Rn with

cardinality N ≥ 2, we can find a nonempty subset P̃ ⊂ P such that

(i) dist(p, P̃ ) ≤ δ−1(1 + δ−1)N−2ε for every p ∈ P ;

(ii) Either P̃ is a singleton, or max{ε, dist(p, P̃ )} ≤ δmin
{
|q1 − q2| : q1, q2 ∈ P̃ , q1 ̸= q2

}
for any p ∈ P .

Lemma 4.5. Consider a set P = {p1, . . . , pN} ⊂ Rn of N ≥ 2 distinct points and set M :=
maxi,j{|pi − pj |}. Then we can decompose P = P1 ∪ P2 into two disjoint non-empty sets such
that

min{|p1 − p2| : p1 ∈ P1, p2 ∈ P2} ≥ M

2N−2
.

4.4. Well-separated case. Let us first demonstrate the validity of Theorem 3.2 under the
assumption that the planes in π are well-separated.

Lemma 4.6. For every 1 ≤ r̄ < 2 there is a constant σ1 = σ1(Q,m, n, n̄, 2 − r̄) > 0 with the
following property. Let T be as in Assumption 3.1, while p1, . . . , pN ∈ π⊥

0 are distinct points
and π :=

⋃
i pi + π0. Assume that

E ≤ σ1 min{H, 1}m+2 , (4.7)

where E is as in (3.1) and H := min{|pi − pj | : i ̸= j}. Then

spt (T ) ∩Cr̄ ⊂ {q : dist(q,π) ≤ H
4 }, (4.8)

and, in particular, all the conclusions of Theorem 3.2 hold.

First of all, observe that it suffices to prove (4.8) in order to conclude all the conclusions
of Theorem 3.2. Indeed, if we set Ti := T Cr̄ ∩ {q : dist(q, pi + π0) ≤ H

4 }, we obtain the
decomposition T Cr̄ = T1 + · · ·+ TN with

(i) ∂Ti Cr̄ = 0;
(ii) spt (Ti) ∩ spt (Tj) = ∅ for i ̸= j;
(iii) dist(q,π) = dist(q, pi + π0) for every q ∈ spt (Ti).

In particular, given r ∈ [1, 2), for r̄ ∈ (r, 2) the conclusions of Theorem 3.2 can be drawn by
using the case N = 1 applied to each Ti.

The proof of Lemma 4.6 is based on the following yet simpler lemma.

Lemma 4.7. For every 1 ≤ r̄ < 2 there is a constant σ2 = σ2(Q,m, n, n̄, 2 − r̄) > 0 with the
following property. Let T , π, E, and H be as in Lemma 4.6, but instead of (4.7) assume that

E ≤ σ2 and H ≥ 1 . (4.9)

Then (4.8) and all the conclusions of Theorem 3.2 hold in Cr̄.

Proof. Observe that since H ≥ 1, by Chebyshev’s inequality we have

∥T∥(Cr̄ ∩ {dist(·,π) ≥ H
8 }) ≤ 64σ2 .
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On the other hand, for ρ := min{2 − r̄, H
8 }, if spt (T ) ∩ {dist(·,π) ≥ H

4 } is not empty the
monotonicity formula would give

∥T∥(Cr̄ ∩ {dist(·,π) ≥ H
8 }) ≥ C−1ρm

for some dimensional constant C > 0, which yields a contradiction for a sufficiently small
choice of σ2. □

Proof of Lemma 4.6. Recall that we just need to prove (4.8). If H ≥ 1 the claim follows from
Lemma 4.7. If H ≤ 1, we just need to show that

spt(T ) ∩Cr̄H(q) ∩ {dist(·,π) > H
4 } = ∅

whenever the cylinder C2H(q) is contained in the original cylinder C2. But then it suffices to
consider the current Tq,H := (λq,H)♯T for the map λq,H(x) := x−q

H and to apply Lemma 4.7
to Tq,H and λq,H(π): the pair falls under the assumptions provided σ1 ≤ σ2, after an obvious
scaling argument. □

We record another two simple observations which will be useful in the sequel. They are
both proven in exactly the same way as Lemma 4.7.

Lemma 4.8. For every 1 ≤ r < 2, there is a constant σ3 = σ3(Q,m, n, n̄, 2− r) > 0 with the
following property. Let T and π be as in Lemma 4.7, but instead of (4.9) assume only that

E ≤ σ3 . (4.10)

Then spt (T ) ∩Cr ⊂ {x : dist(x,π) ≤ 1}.

Lemma 4.9. For every 1 ≤ r < 2, there is a constant σ̄ = σ̄(Q,m, n, n̄,N, 2 − r) > 0 such
that the following holds. Let T and π be as in Lemma 4.7, but instead of (4.9) assume that
M := maxi,j{|pi − pj |} ≥ 1 and

E ≤ σ̄M2 . (4.11)

Then spt (T ) ∩Cr ⊂ {x : dist(x,π) ≤ 2−NM}.

Combining Lemma 4.9 with the combinatorial Lemma 4.5, we get the following separation
lemma.

Lemma 4.10. Under the assumptions of Lemma 4.9, there is a decomposition π = π1 ∪ π2

and T Cr = T1 + T2 such that

(i) The sets π1,π2 are disjoint, non-empty, and unions of a subset of the planes in π;
(ii) ∂Ti Cr = 0 for i = 1, 2;
(iii) spt (T1) ∩ spt (T2) = ∅;
(iv) dist(q,π) = dist(q,πi) for every q ∈ spt (Ti) and each i = 1, 2.

Arguing as in the proof of Lemma 4.6, we can draw the following further conclusion.

Lemma 4.11. For every 1 ≤ r < 2, there is a constant σ̃ = σ̃(Q,m, n, n̄,N, 2 − r) > 0
such that the following holds. Let T and π be as in Lemma 4.6, but instead of (4.7), for
M := maxi,j{|pi − pj |} assume that

E ≤ σ̃min{M, 1}m+2 .

Then there is a decomposition π = π1 ∪ π2 and T Cr = T1 + T2, as in Lemma 4.10.

5. Proof of tilt-excess estimate

The aim of this section is to prove (3.2). This will be done independently to the proof of
L∞ estimate (3.3); we defer the latter to the next section. We begin with two “approximate”
estimates on the oriented tilt-excess.
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5.1. First lemma. In this lemma we derive a first approximate estimate.

Lemma 5.1. For every pair of radii 1 ≤ r < R ≤ 2 there are constants C̄ = C̄(Q,m, n, n̄, R−
r) > 0 and γ = γ(Q,m, n, n̄) > 0 such that the following holds. Let T , Σ and A be as in
Assumption 3.1, suppose that p1, . . . , pN ∈ π⊥

0 are distinct points, and let π :=
⋃

i pi + π0.
Assume that E is as in (3.1) and let H := min{|pi − pj | : i ̸= j}. Then

E(T,Cr) ≤ C̄(E +A2) + C̄

(
E

H2

)γ

E(T,CR) + C̄E(T,CR)
1+γ . (5.1)

Proof. We start by defining a suitable vector field X : Rm+n → π⊥
0 . In fact, we will actually

define X̄ : π⊥
0 → π⊥

0 , and then set X(x) := X̄(p⊥
π0
(x)). Firstly, define X̃ on the union of the

disks BH/4(pi, π
⊥
0 ) by taking X̃(y) := (y− pi) on each BH/4(pi, π

⊥
0 ). It is simple to check that

the Lipschitz constant of X̃ can be bounded by 3; indeed, if y1, y2 lie in disks BH/4(pi1 , π
⊥
0 )

and BH/4(pi2 , π
⊥
0 ) respectively, then

|pi1 − pi2 | ≤ |y1 − y2|+H/2 ≤ |y1 − y2|+ |pi1 − pi2 |/2 =⇒ |pi1 − pi2 | ≤ 2|y1 − y2|.
The desired Lipschitz bound of 3 follows immediately. We can thus use the Kirszbraun theorem
to extend X̃ to a vector field X̄ : π⊥

0 → π⊥
0 which has the same Lipschitz constant; this

determines X̄, and in turn determines X. In particular, we deduce that X has the following
properties:

(i) X takes values in π⊥
0 ;

(ii) |X(x)| ≤ 3 dist(x,π) and |∇vX(x)| ≤ 3|v|;
(iii) ∇vX = 0 for every v ∈ π0;
(iv) X(x) = p⊥

π0
(x− pi) if dist(x, pi + π0) ≤ H

4 .

Note that by regularizing X̄ via convolution, we can obtain a smooth vector field with the
same properties, except that (iv) will hold in a slightly smaller tubular neighborhood of π. We
will thus ignore the regularity issues and use X as a test in the first variation formula for T .

In order to simplify our notation we introduce the set

G :=

{
x ∈ C2 : dist(x,π) ≤ H

4

}
=
⋃
i

{
x ∈ C2 : dist(x, pi + π0) ≤

H

4

}
and write Gc for its complement in C2. Because of (iv), (see e.g. [5, Lemma 4.2]) we have

divT⃗ (x)X(x) =
1

2
|pπ0

− pT (x)|2 ∀x ∈ G ∩ spt (T ), (5.2)

while, because of (i), (iii), and the Lipschitz regularity of X,

|divT⃗ (x)X(x)| ≤ C|pπ0 − pT (x)|2 ∀x ∈ Gc ∩ spt (T ) . (5.3)

To see the latter, let e1, . . . , em be an orthonormal base of the tangent plane to T at x and
compute

|divT⃗ (x)X(x)| ≤
∑
i

|∇eiX(x) · ei|
(i)
=
∑
i

|∇eiX(x) · (ei − pπ0
(ei))|

(iii)
=
∑
i

|(∇eiX(x)−∇pπ0 (ei)
X(x)) · (ei − pπ0

(ei))|

≤
∑
i

|ei − pπ0(ei)||∇ei−pπ0 (ei)
X(x)|

(ii)

≤ 3
∑
i

|ei − pπ0(ei)|2 ≤ C|pT⃗ (x) − pπ0 |2 .

Let us now choose radii r1 < r2 so that r1 − r = r2 − r1 = R − r2 (i.e. r1 = (R + 2r)/3, r2 =
(2R+ r)/3). Let χ̃ : π0 → R be a smooth cut-off function which is identically 1 on Br1(0, π0),
vanishes outside B̄r2(0, π0), and satisfies |Dχ̃| ≤ 2/(r2 − r1). Extend χ̃ vertically to get a
function χ : Rm+n → R, namely χ(x) = χ̃(pπ0(x)). We now want to take χ2X as a test function
in the first variation formula for (the stationary varifold associated to) T ; since χ2X need not
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have compact support in the directions orthogonal to π, to justify this simply note that since χ
is supported in the cylinder C̄r2 , and since the support of T is compact on any cylinder which
is slightly smaller than C2, we can multiply χ2X by another test function which is translation
invariant in the π0 variables, is 1 in the ball of radius 2 sup{p⊥

π0
(x) : x ∈ spt∥T∥ ∩ C̄r2} in the

π⊥
0 variables, and vanishes outside the ball of radius 3 sup{p⊥

π0
(x) : x ∈ spt∥T∥ ∩ C̄r2}; this

then has compact support in all of C2 and agrees with χ2X on C2 ∩ spt(T ), therefore allowing
us to take χ2X as a test function. Hence, we have∫

C2

χ2divT⃗ (x)X(x)d∥T∥(x) =−
∫
C2

χ2X(x) · H⃗T (x) d∥T∥(x)

− 2

∫
C2

χ(x)∇T⃗ (x)χ(x) ·X(x) d∥T∥(x) ,

where H⃗T is the generalized mean curvature of T . Combining this with (5.2), (5.3), (ii), and

the fact that |H⃗T (x)| ≤ CA, we get∫
C2

χ2|pT (x) − pπ0 |2 d∥T∥(x) ≤ C

∫
Cr2

∩Gc

|pT (x) − pπ0 |2 d∥T∥(x)

+ C(E +A2) + 2

∣∣∣∣∫
C2

χ(x)∇T⃗ (x)χ(x) ·X(x) d∥T∥(x)
∣∣∣∣ .

Observe next that in light of (i), ∇T⃗χ · X = (∇T⃗χ − ∇π⃗0
χ) · X(x). We can thus estimate

further

2

∣∣∣∣∫
C2

χ(x)∇T⃗ (x)χ(x) ·X(x) d∥T∥(x)
∣∣∣∣ ≤ C

R− r

∫
Cr2

χ(x)|pπ0
− pT (x)||X(x)| d∥T∥(x)

≤ CE

(R− r)2
+

1

4

∫
C2

χ2(x)|pπ0
− pT (x)|2 d∥T∥(x),

where in the latter inequality we have used that ab ≤ a
2ε +

εb
2 for any two non-negative numbers

a and b and a suitably small choice of ε > 0, combined with (ii). In particular, we conclude
that

Eno(T,Cr1) ≤ C̄(E +A2) + C

∫
Cr2

∩Gc

|pT (x) − pπ0
|2 d∥T∥(x) ,

for C̄ now also dependent on R− r. When combined with Proposition 4.1, we arrive at

E(T,Cr) ≤ C̄(E +A2) + C

∫
Cr2

∩Gc

|pT (x) − pπ0
|2 d∥T∥(x) .

where again C̄ = C̄(Q,m, n, n̄, R − r) > 0 (we recall that r1 − r = (R − r)/3 here). We
now use (a scaled version of) Almgren’s estimate [11, Theorem 7.1] (the first version of this
estimate is in [2, Sections 3.24–3.26, Section 3.30(8)]), applied within Cr2 , with the choice
A = pπ0(Cr2 ∩Gc ∩ spt(T )) ≡ Br2(π0) ∩ pπ0(G

c ∩ spt(T )), to conclude that

E(T,Cr) ≤ C̄(E +A2) + C̄(E(T,CR) +A2)1+γ + C̄|A|γ(E(T,CR) +A2)

≤ C̄(E +A2) + C̄E(T,CR)
1+γ + C̄∥T∥(Gc ∩CR)

γE(T,CR) ,

where we have used that A ≤ 1 and |A| ≤ ∥T∥(Gc∩CR) (here, |A| denotes the measure of the
set A).

However, observe that dist(x,π) ≥ H
4 for all x ∈ Gc and thus by Chebyshev we get

∥T∥(Gc ∩CR) ≤
CE

H2
,

which concludes the proof. □
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5.2. Second lemma. Now, we iterate Lemma 5.1 to achieve a closer approximation of (3.2),
but under the additional assumption that the height excess of T relative to the family of planes
is much smaller than the minimal separation of the planes. We will remove this assumption in
the next section.

Proposition 5.2. For every pair of scales 1 ≤ r < r0 < 2, there are constants C̄ =
C̄(Q,m, n, n̄,N, r0 − r, 2 − r0) > 0 and σ4 = σ4(Q,m, n, n̄,N, r0 − r, 2 − r0) > 0 with the
following properties. Assume T , π and H are as Lemma 5.1. If in addition we have

E ≤ σ4 min{H2, 1} , (5.4)

then

E(T,Cr) ≤ C̄(E +A2) + C̄

(
E

H2

)
E(T,Cr0) . (5.5)

Proof. This estimate will be proved by a two-variable induction over Q and N . Our inductive
assumption is that

(IH) The estimate is valid for any pair Q′ ≤ Q and N ′ ≤ N with Q′ +N ′ < Q+N .

By Proposition 4.2, the case N = 1 and arbitrary Q is always valid. Moreover, due to (5.4),
we can assume without loss of generality that H ≤ 1, since otherwise we can apply Lemma
4.7, yielding the conclusions of Theorem 3.2 in Cr, which in particular trivially implies (5.5).

We can similarly assume that M := max{|pi − pj |} ≤ 1 and

E

Mm+2
≥ σ̃. (5.6)

Indeed, if M > 1 then we can apply Lemma 4.10 to decompose T into T1, T2 (as in the
statement of the lemma) and appeal to the induction assumption (IH). Note that the validity
of the hypothesis (5.4) remains unchanged under such a decomposition (as E can only decrease
while H can only increase). We can apply (IH) since if both T1, T2 ̸= 0, then necessarily
Θ(Ti, ·) ≤ Q − 1 (and so Q is decreased), while if, say, T2 = 0, then Q remains the same for
T1, but N decreases by at least 1. Thus, we may indeed assume that M ≤ 1. Given this, one
can additionally assume that (5.6) indeed holds via the same argument, except now invoking
Lemma 4.11 instead of Lemma 4.10.

Now observe that for every given πi ∈ π we can easily estimate∫
C2

dist2(x, πi) d∥T∥(x) ≤ 2M2 + 2E ;

Thus, using Proposition 4.2 (for any fixed plane πi ∈ π), we have for any 1 ≤ R < 2,

E(T,CR) ≤ C̄(2M2 + 2E +A2) . (5.7)

where C̄ also depends on 2−R. Under our current assumptions, the right-hand side of (5.7) will
be at most C̄, provided we take σ4 sufficiently small (depending only on allowed parameters).
In particular, combining this with (5.6), and the assumption H ≤ 1 (so E ≤ 1 also) gives

E(T,CR) ≤ C̄A2 + C̄E
2

m+2 ≤ C̃A2 + C̄

(
E

H2

) 2
m+2

,

where C̄ now also depends on σ̃. Now taking γ = γ(Q,m, n, n̄) > 0 as in Lemma 5.1, the above
bound clearly implies

E(T,CR)
γ ≤ C̄A2γ + C̄

(
E

H2

) 2γ
m+2

,

where now C̄ also depends on γ. Using Lemma 5.1 and (5.4) we now infer that for any
1 ≤ ρ < R < 2 we have

E(T,Cρ) ≤ C̄(E +A2) + C̃

[(
E

H2

) 2γ
m+2

+A2γ

]
E(T,CR) (5.8)

≤ C̄1(E +A2) + C̄1

(
σ

γ
m+2

4 +A
(m+3)γ
m+2

)( E

H2
+A2

) γ
m+2

E(T,CR)
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where C̄1 = C̄1C(Q,m, n, n̄, γ, σ̃, R − ρ, 2 − R). By selecting σ4 small enough we can ensure
that

C̄1σ
γ

m+2

4 ≤ 1

4
.

Next, if C̄1A
(m+3)γ
m+2 ≤ 1

4 we infer that

E(T,Cρ) ≤ C̄1(E +A2) +
1

2

(
E

H2
+A2

) γ
m+2

E(T,CR) . (5.9)

Otherwise, if C̄1A
(m+3)γ
m+2 ≥ 1

4 , we can estimate A2γ ≤ C̄2A
2 for some constant C̄2 with the

same dependencies as C̄1. Then, noting that (5.7) in particular gives that E(T,CR) ≤ C̄ (as
remarked previously), from (5.8) we have (with the same choice of σ4 mentioned previously)

E(T,Cρ) ≤ C̄3(E +A2) +
1

4

(
E

H2

) γ
m+2

E(T,CR)

with a worse constant C̄3 (with the same dependencies as C̄). We can therefore assume (5.9)
to be valid irrespective of the value of A.

We are now in a position to iterate (5.9). Fix the smallest natural number J = J(Q,m, n, n̄)

such that Jγ
m+2 ≥ 1 and apply (5.9) with ρ = ri, R = ri−1 for a sequence of radii ri, where

rJ = r, ri−1 = ri +
r0−r
J . This, in particular, fixes the size of the difference between radii used

in all the inequalities used above, and in particular it gives a uniform bound for the constants
above, hence fixing the choice of σ4 = σ4(Q,m, n, n̄, r0 − r, 2− r0) > 0.

If for some i we have (
E

H2
+A2

) γ
m+2

E(T,Cri−1
) ≤ E(T,Cri)

we then can absorb the second term in the right hand side of (5.9) into the left hand side to
conclude that

E(T,Cri) ≤ C̄(E +A2) .

Given that 1 ≤ r ≤ ri < 2 we achieve the desired estimate (5.5) in this case. Otherwise, we
must have

E(T,Cri) ≤
(

E

H2
+A2

) γ
m+2

E(T,Cri−1
)

for all i, which leads us to

E(T,Cr) = E(T,CrJ ) ≤
(

E

H2
+A2

) Jγ
m+2

E(T,Cr0) . (5.10)

Given that Jγ
m+2 ≥ 1 (so we may write Jγ

m+2 = 1+ γ̃ for some γ̃ ≥ 0), and since E
H2 ≤ σ4 ≤ 1, we

again arrive at the desired estimates (5.5) (using again that E(T,Cr0) ≤ C̄ from (5.7) to absorb
the A2 factor from the parenthesis into the first term on the right-hand side of (5.5)). □

5.3. Proof of the tilt-excess estimate. We are finally in a position to prove (3.2). The
goal is to exploit the combinatorial results in Section 4.3 to remove the hypothesis (5.4) in
Proposition 5.2 by possibly replacing π with a smaller, refined sub-collection of planes π̄, and
in turn conclude the tilt-excess estimate for π̄.

Let π :=
⋃

i(pi + π0) be as in the statement of Theorem 3.2. Fix a positive parameter
0 < δ ≤ 1/2 (whose choice will be determined later) and apply Lemma 4.4 to P = {p1, . . . , pN}
with this choice of δ and ε = E1/2, yielding a subset P̃ ⊂ P obeying the conclusions of Lemma
4.4. Let π̃ =

⋃
p̃∈P̃ (p̃+π0) ⊂ π be the corresponding union of parallel planes. By property (i)

of Lemma 4.4 we then have

Ẽ :=

∫
C2

dist2(q, π̃) d∥T∥(q) ≤ 2E + Cmax
i

dist(pi, P̃ )2 (5.11)

and hence

Ẽ ≤ C(1 + δ−2(1 + δ−1)2N−4)E . (5.12)
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If P̃ is a singleton, then we can apply Proposition 4.2 to T and π̄ to conclude (3.2) from (5.12),
since we are then in the case N = 1 of Theorem 3.2.

We may thus henceforth assume that P̃ consists of at least two distinct points. In this
case, property (ii) of Lemma 4.4 gives that E1/2 ≤ δH̃ and maxi dist(pi, P̃ ) ≤ δH̃, where

H̃ := min{|p̃− q̃| : p̃, q̃ ∈ P̃ , p̃ ̸= q̃}, and thus combining this with (5.11), we get

Ẽ ≤ Cδ2H̃2 , (5.13)

where the constant C = C(Q,m, n, n̄) is independent of δ.
Fix another constant 0 < δ̄ ≤ 1/2 (to be determined later). We now apply Lemma 4.3

with this δ̄ to further refine π̃, finding a second subset P∗ ⊂ P̃ with the properties listed in
Lemma 4.3. By property (i) of Lemma 4.3, if we denote by M∗ := max{|p− q| : p, q ∈ P ′} and
H∗ := min{|p′ − q′| : p′, q′ ∈ P ′, p′ ̸= q′}, we achieve that

M∗ ≤ C̄(δ̄, N)H∗ (5.14)

and, combining (ii) of Lemma 4.3 with (5.13), we have

E∗ :=

∫
C2

dist2(q,π∗) d∥T∥(q) ≤ 2Ẽ + Cδ̄2H2
∗ ≤ C(δ2 + δ̄2)H2

∗ , (5.15)

since H̃ ≤ H∗. Here, C = C(Q,m, n, n̄) is a new constant which we stress is indepen-
dent of δ̄, and π∗ :=

⋃
p∗∈P∗

(p∗ + π0) is the union of parallel planes corresponding to P∗.

Let J := #(P̃ \ P∗) and let Pj ⊂ P̃ be the collections of points given by property (iii) of

Lemma 4.3; in particular, P0 = P̃ , PJ = P∗. Define radii (rj)
J+2
j=0 by rJ+2 = 2, r0 = r,

and rj − rj−1 = 2−r
J+2 . We will apply various estimates on the tilt-excess between the radii

rj < rj−1; note that the parameter σ4 in Proposition 5.2 when applied at such scales obeys
σ4 = σ4

(
Q,m, n, n̄,N, (2−r)/(J+2)

)
and so is now fixed (independent of j). One should note

however that the dependence of σ4 in the radius variable, (2−r)/(J+2), only actually depends
on a lower bound on the radius, which here is (2−r)/N , meaning σ4 = σ4(Q,m, n, n̄,N, 2−r).
Recalling (5.13) and (5.15), we now choose δ and δ̄, depending only on Q,m, n, n̄, so that

E∗ ≤ σ4H
2
∗ and Ẽ ≤ σ4H̃

2 . (5.16)

We may further assume that H∗, H̃ ≤ 1, since otherwise we may apply Lemma 4.7 to reach
the desired conclusion. Having fixed all the parameters, we may henceforth treat all constants
depending on them as just C̄ = C̄(Q,m, n, n̄,N, 2− r).

Now, applying Proposition 4.2 (or, more precisely, the N = 1 case of (3.2)) to T with
r = rJ+1 and p+ π0 in place of π0 for any p ∈ P∗, we get

E(T,CrJ+1
) ≤ C̄(E∗ +M2

∗ +A2) ≤ C̃(E∗ +H2
∗ +A2)

using (5.14) in the last inequality (we stress that this is the only time we need to apply
Proposition 4.2, namely to P∗ = PJ as it is the only time we have comparability between the
maximum and minimum distances between the planes in πj , as defined below). If we now
apply Proposition 5.2 with π∗, rJ , rJ+1 in place of π, r, r0 respectively, we get

E(T,CrJ ) ≤ C̄(E∗ +A2) + C̄

(
E∗

H2
∗

)
E(T,CrJ+1

) ≤ C̄(E∗ +A2) + C̄

(
E∗

H2
∗

)
(E∗ +H2

∗ +A2)

≤ C̄(E∗ +A2) (5.17)

where in the last inequality we have used the inequality E∗ ≤ σ4H
2
∗ from (5.16).

Next, for j = 0, 1, . . . , J , define the collections πj :=
⋃

p∈Pj
(p + π0) of parallel planes

associated to the sets Pj ; we remark that PJ = P∗. For each such J set

Ej :=

∫
C2

dist2(q,πj) ∥T∥(q)

and
Hj := min{|p− q| : p, q ∈ Pj , p ̸= q} .

Now observe that, for each j = 0, 1, . . . , J , by property (iii) of Lemma 4.3, we have that

Ej ≤ 2Ej−1 + CH2
j−1. (5.18)
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Now combining (5.17), (5.18) with j = J , and the fact that E∗ = EJ , we have

E(T,CrJ ) ≤ C̄(EJ−1 +H2
J−1 +A2).

We now distinguish two possibilities. If EJ−1 ≤ σ4H
2
J−1, then we can apply Proposition 5.2

with πJ−1, rJ−1, rJ in place of π, r, r0 to get

E(T,CrJ−1
) ≤ C̄(EJ−1 +A2) + C̄

(
EJ−1

H2
J−1

)
E(T,CrJ ) ≤ C̄(EJ−1 +A2).

On the other hand, if the opposite inequality holds, namely H2
J−1 ≤ σ−1

4 EJ−1, then we can
estimate directly and see that

E(T,CrJ−1
) ≤ C̄E(T,CrJ ) ≤ C̄(EJ−1 +A2)

where we remark that we have used in the first inequality that r ≥ 1 here. So, we see that in
either situation, this inequality holds.

Now iterate this argument, namely the one beginning after (5.18), we see that we get

E(T,Crj ) ≤ C̄(Ej +A2)

for each j = J, J − 1, . . . , 0. In particular, taking j = 0, we get

E(T,Cr) ≤ C̄(E0 +A2).

However, since E0 = Ẽ and Ẽ ≤ CE from (5.12), we reach the desired conclusion. □

6. Proof of L∞ height bound

It remains to prove (3.3) of Theorem 3.2, which will be achieved by induction on N . As
already observed, if N = 1 we know that Theorem 3.2 holds (for all Q) by Proposition 4.2.
The core of the inductive argument is the following proposition.

Proposition 6.1. Fix N ≥ 2 and assume that, under the assumptions of Theorem 3.2, (3.3)
holds for any N ′ < N and any Q′ ≤ Q. Then it holds for N and Q.

Clearly once we have shown this, Theorem 3.2 follows by induction.

6.1. A decay lemma. The crucial ingredient for Proposition 6.1 is the following L2 height
excess decay, which crucially relies on the tilt-excess estimate (3.2) that we have already es-
tablished.

Lemma 6.2. There are constants ρ0 = ρ0(m,n,Q) > 0 and C = C(Q,m, n, n̄) > 0 such
that, for every fixed 0 < ρ ≤ ρ0, there are σ5 = σ5(Q,m, n, n̄,N, ρ) > 0 and 0 < β0 =
β0(Q,m, n, n̄) < 1 such that the following holds. Assume T , E, and π are as in Theorem 3.2
with P = {p1, . . . , pN} and that

E +A2 ≤ σ5. (6.1)

Then there is another set of points P ′ := {q1, . . . , qN ′} with N ′ ≤ Q such that:

(A) dist(qi, P ) ≤ C(E +A2)1/2 for each i;
(B) If we set π′ :=

⋃
(qi + π0), then∫
C2ρ

dist2(x,π′) d∥T∥(x) ≤ ρm+2β0(E +A2) . (6.2)

Remark 6.3. Note that we need not have N ′ ≤ N in the conclusion of Lemma 6.2; the number
of planes in the new collection π′ may increase.

Proof. As usual constants denoted by C will depend only upon Q,m, n, n̄ (their dependence
on N can be reduced to a dependence on Q given that N ∈ {1, . . . , Q}). Recall that we have
just shown the validity of the tilt-excess estimate (3.2), and thus (taking r = 1 in (3.2)), we
have

E := E(T,C1) ≤ C(E +A2) . (6.3)

By choosing σ5 = σ5(Q,m, n, n̄,N) > 0 sufficiently small, we can therefore ensure that both
E and A are as small as we wish. We now subdivide into two cases, depending on the relative
sizes of E and A.



FREQUENCY 1 FLAT SINGULAR POINTS AND Hm−2-A.E UNIQUENESS OF TANGENT CONES 19

Case 1: A3 ≤ E. Here we apply the strong Lipschitz approximation theorem [11, Theorem
2.4]. By translating, we may without loss of generality assume that the origin belongs to
spt (T ) (and hence to the manifold Σ), that π0 = Rm × {0} (by rotating) and that Ψ ≡ Ψ0 :
Rm+n̄ → Rn−n̄ is the map parametrizing Σ graphically over Rm+n̄ in C2, as in Assumption
2.1. By [11, Remark 2.5], we have the estimates

Ψ(0) = 0 and ∥DΨ∥C2 ≤ C(E1/2 +A) ; (6.4)

here, C = C(m,n, n̄). By [11, Theorem 2.4] there exists constants γ = γ(Q,m, n, n̄) > 0 and
ε = ε(Q,m, n, n̄) > 0 such that if E < ε (which can be guaranteed provided σ5 is sufficiently
small), then there is a multi-valued map u : B1/4(0, π0) → Rn̄ such that f = (u,Ψ(x, u)) (using
the notation of [11]) is a good approximation of T C1/4, in the following sense:

(i) Lip (f) ≤ C(E+A2)γ ≤ C(E +A2)γ ;
(ii) There is a closed set K ⊂ B1/4 of measure at least 1

2 |B1/4| such that Gf (K ×Rn) =
T (K × Rn) and

∥T∥((B1/4 \K)× Rn) ≤ C(E+A2)1+γ ≤ C(E +A2)1+γ ;

where C = C(Q,m, n, n̄). Notice that in the above estimates, we have used (6.3) to get the
improved control in terms of the L2 height excess. From the above properties, the estimate
[11, Theorem 2.4(2.6)] and (6.4) we also see that∫

B1/4

|Df |2 ≤ C

∫
K

|Df |2 + C(E+A2)1+γ ≤ CE+ C(E+A2)1+γ
(6.1)

≤ C(E+A2) . (6.5)

Moreover, for every fixed η, if E is sufficiently small (depending on η), by [11, Theorem 2.6]
there is a Dir-minimizing function v : B1/4 → AQ(Rn̄) such that, if we set g = (v,Ψ(x, v)),
then ∫

B1/4

G(f, g)2 ≤ ηE (6.6)∫
B1/4

|Dg|2 ≤
∫
B1/4

|Df |2 + ηE
(6.5)

≤ C(E+A2)
(6.3)

≤ C(E +A2) . (6.7)

Note that the condition A ≤ E
1
4+δ̄ in [11, Theorem 2.6] is satisfied, with δ̄ = 1/12 in this case,

since we are assuming A3 ≤ E.
Observe now that, by a simple Chebyshev argument, for at least half of the points x ∈

K ∩B1/8 we have the following property:

(a) if f(x) =
∑

i QiJfi(x)K (with fi(x) distinct), for each i there is a j(i) such that |fi(x)−
pj(i)| ≤ CE1/2 .

Hence, by another Chebyshev argument, combined with (6.6), we may find at least one such
point x ∈ K ∩B1/8 for which we have the corresponding property for g(x) (in fact, we can find
a set of positive measure on which this holds):

(b) if g(x) =
∑

i Q̃iJgi(x)K (with gi(x) distinct), for every i there is a j(i) such that

|gi(x)− pj(i)| ≤ CE1/2.

Now, combining (6.7) with the Hölder estimate [10, Theorem 3.9] for Dir-minimizing functions,
we also conclude an analogous estimate at 0:

(c) if gi(0) =
∑

i Q
∗
i Jgi(0)K (with gi(0) distinct), for every i there is a j(i) such that

|gi(0)− pj(i)| ≤ C(E1/2 +A)

Notice that since x ∈ B1/8, dist(x, ∂B1/4) ≥ C−1 and so the choice of δ in [10, Theorem 3.9]
only depends on n,m,Q). We now set qi := gi(0); obviously the number of distinct points qi
is at most Q. Clearly, by (c) above, this choice of qi obeys conclusion (A) of the lemma.

Observe that, by all the estimates carried over so far and by Lemma 4.8, for each ρ ≤ 1
8 and

some α = α(m,Q) ∈ ]0, 1[ we have∫
C2ρ

dist2(x,π′) d∥T∥(x)
(ii)

≤ C(E +A2)1+γ + C

∫
B2ρ

G(f(x), g(0))2 dx
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≤ Cσγ
5 (E +A2) + Cη(E +A2) + Cρm+2α(E +A2) ;

where Lemma 4.8 was used in the first inequality, while in the second inequality we use (6.1),
(6.6), the α-Hölder continuity of g from [10, Theorem 3.9], and (6.7).

Now choose β0 ∈ ]0, α/2], and choose ρ0 > 0 with Cρα0 ≤ 1
3 . Then choose η = η(ρ) such that

Cη ≤ 1
3ρ

m+2β0 . Then, given this choice of η, provided that we choose σ5 sufficiently small so

that our application of [11, Theorem 2.6] was valid with this η, and so that Cσγ
5 ≤ 1

3ρ
m+2β0 ,

the above estimate clearly then gives (B) of the lemma. This completes the proof of Case 1.

Case 2: In this case we have E ≤ A3. As in the previous case, using the same notation,
we introduce the Lipschitz approximation f = (u,Ψ(x, u)) on B1/4(0, π0). Observe that, since
the graph of f coincides with the current T on K × Rn ⊂ B1/4 × Rn, we again have the first
two inequalities of (6.5), only now we further estimate this as follows:∫

B1/4

|Df |2 ≤ CE+ C(E+A2)1+γ ≤ CA2+2γ ≤ Cσγ
5A

2 .

We then use the Poincaré inequality for Q-valued functions (see e.g. [10, Proposition 2.12 &
Proposition 4.9]) and Hölder’s inequality to find a point Y ∈ AQ such that

∫
B1/4

G(f, Y )2 ≤ C

(∫
B1/4

G(f, Y )2
∗

)2/2∗

≤ C

∫
B1/4

|Df |2 .

In particular we reach ∫
B1/4

G(f, Y )2 ≤ Cσγ
5A

2 . (6.8)

Write Y =
∑

i QiJqiK, where the qi are distinct, and set π′ :=
⋃

i(qi + π0). We then find that,
for every 0 < ρ ≤ 1

8 , by Lemma 4.8, (6.8), and (ii), we have∫
C2ρ

dist2(x,π′) d∥T∥(x) ≤ Cσγ
5A

2 + ∥T∥((B1/4 \K)× Rn) ≤ Cσγ
5A

2 .

In particular, for every fixed ρ, we may fix β0 to be an arbitrary positive dimensional constant
and choose σ5 small enough (dependent on β0) to guarantee that Cσγ

5 ≤ ρm+2β0∫
C2ρ

dist2(x,π′) d∥T∥(x) ≤ ρm+2β0A2 .

This proves conclusion (B) of the lemma, in this case.
We are left with proving the estimate (A). Recall that, in light of (ii), we have |B1/4 \K| ≤

1
2 |B1/4|, and hence, via a similar Chebyshev argument as in Case 1, now using (6.8), we may
estimate

dist2(qi, spt f(x)) ≤ CA2 ∀i ,

for all x in a subset K ′ ⊂ K whose measure is at least 1
4 |B1/4|. On the other hand, on at least

half of the set K ′ we also have by another Chebyshev argument

max
p∈spt f(x)

dist2(p,π) ≤ CE .

Therefore, choosing a point p ∈ sptf(x) for x in this latter set and using the triangle inequality
we get

dist2(qi,π) ≤ C(E +A2) ∀i ,

which proves (A) and thus completes Case 2, which also completes the proof. □
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6.2. Proof of Proposition 6.1. Having proved the L2 height excess decay lemma, we are
now in a position to prove the inductive step given in Proposition 6.1. Fix 1 ≤ r < 2 as in the
statement of Theorem 3.2 and set

M := max
i,j

{|pi − pj |} .

We will show the existence of a constant σ6 = σ6(Q,m, n, n̄,N, r) > 0 such that, if

E +A2 ≤ σ6M
2 , (6.9)

then there is decomposition π = π1 ∪ π2 and T C1+r/2 = T1 + T2 such that

(i) The sets π1,π2 are disjoint and nonempty;
(ii) ∂Ti C1+r/2 = 0;
(iii) spt (T1) ∩ spt (T2) = ∅;
(iv) dist(q,π) = dist(q,πi) for every q ∈ spt (Ti), for each i = 1, 2.

In particular, assuming such a decomposition, after rescaling 1 + r/2 to scale 2 we can apply
the inductive assumption to T1 and T2 (note that whilst we could have, e.g. T2 = 0, i.e. Q
remains fixed, however by (i) we then know that N strictly decreases) to conclude

spt(Ti) ∩Cr ⊂ {dist(·,πi) ≤ C̄(E(i) +A2)1/2}
where C̄ = C̄(Q,m, n, n̄,N, r) and

E(i) :=

∫
C1+r/2

dist2(x,πi) d∥Ti∥(x) .

Given that obviously E(1), E(2) ≤ CE, we would have reached the desired estimate (3.3),
provided that (6.9) holds. On the other hand, if the estimate (6.9) does not hold, i.e. M2 ≤
σ−1
6 (E +A2), we can take an arbitrary plane pi + π0 from π and conclude that∫

C2

dist2(x, pi + π0) d∥T∥(x) ≤ C̄(E +A2) .

It would then follow from the case N = 1 of Theorem 3.2, namely Proposition 4.2, that

spt (T ) ∩Cr ⊂ {dist(·, pi + π0) ≤ C̄(E +A2)1/2} ⊂ {dist(·,π) ≤ C̄(E +A2)1/2} ,
for any fixed plane pi + π0 ∈ π, proving (3.3).

We are thus left to prove the existence of the decomposition satisfying (i)-(iv) under the
assumption that (6.9) holds for a sufficiently small σ6. We first use the combinatorial Lemma
4.5 to decompose P ≡ {p1, . . . , pN} = P1 ∪ P2, and consequently π = π∗

1 ∪ π∗
2 for π∗

i =⋃
p∈Pi

(p+ π0), with the property that P1 and P2 are disjoint non-empty sets satisfying

sep (P1, P2) ≡ min{|p1 − p2| : p1 ∈ P1, p2 ∈ P2} ≥ M

2N−2
. (6.10)

Our claim is that the desired decomposition will be achieved with the latter choice. In light of
(6.10), this will follow immediately if we have that

spt (T ) ∩C1+r/2 ⊂ {x : dist(x,π) ≤ 2−NM} . (6.11)

Let us thus show that (6.11) indeed holds. Fix a point x ∈ B1+r/2(0, π0) and the scaling

factor 1 − r/2. Let T 0 be the rescaled current (ιx,1−r/2)♯T . Likewise, introduce the sets

π0 := ιx,1−r/2(π), Σ
0 = ιx,1−r/2(Σ), the shorthand notation A0 for the supremum norm of

the second fundamental form of Σ0, and

E0 :=

∫
C2

dist2(y,π0) d∥T 0∥(y) .

Observe that E0 ≤ (1− r/2)−m−2E, A2
0 = (1− r/2)2A2. Setting M0 := (1− r/2)−1M , since

1− r
2 ≤ 1 we see immediately that

E0 +A2
0 ≤ (1− r/2)−mσ6M

2
0 .

Let now σ̄ be the threshold of Lemma 4.9. We start by choosing σ6 small enough so that

σ7 := (1− r/2)−mσ6 ≤ σ̄ . (6.12)
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In particular, if M0 ≥ 1 we could apply Lemma 4.9 and achieve the estimate

spt (T 0) ∩C1 ⊂
{
dist(·,π0) ≤ 2−NM0

}
.

Given that this holds for every x ∈ B1+r/2(0, π0), it would then imply (6.11) and conclude the
proof.

Otherwise, if M0 < 1, we may fix ρ = ρ0 < 1, with ρ0 as in Lemma 6.2, and let σ5 be the
corresponding threshold from Lemma 6.2. We may further choose σ7 (as defined in (6.12))
small enough such that σ7 ≤ σ5. In particular, since M0 < 1, we can apply Lemma 6.2 to T 0

and π0. Denote by π′
0 the corresponding new group of planes and let

• T 1 = (ι0,ρ)♯T
0;

• Σ1 = ι0,ρ(Σ
0), with A1 the supremum norm of the second fundamental form of Σ1;

• π̄1 = ι0,ρ(π
′
0);

• M1 = ρ−1M0;
• Ē1 =

∫
C2

dist2(x, π̄1) d∥T 1∥(x).
Observe that from (6.2) we have the inequality (with β0 < 1 as in Lemma 6.2)

Ē1 +A2
1 ≤ ρ2β0−2(E0 +A2

0) ≤ ρ2β0−2σ7M
2
0 = ρ2β0σ7M

2
1 . (6.13)

As ρ < 1, we can thus keep iterating this procedure with the same ρ, and along the iteration
each π̄k consists of some number of planes, which could be larger than the initial numberN , but
it never exceeds Q. This in particular means that the parameter σ7 remains fixed, dependent
on only ρ, Q, N and dimensional constants. generating currents T j , ambient manifolds Σj ,
families of parallel planes π′

j and π̄j = ι0,ρ(π
′
j) until we reach the first index k such that

Mk = ρ−kM0 ≥ 1.

Let us now see how this iteration affects our original current T . Setting

Ēj :=

∫
C2

dist2(x, π̄j) d∥T j∥(x)

we may conclude, analogously to (6.13), that

Ēj +A2
j ≤ ρ2β0jσ7M

2
j .

Now define πj := ι0,ρj (π0) = ι0,ρj (ιx,(1−r/2)(π)) and set

Ej :=

∫
C2

dist2(x,πj) d∥T j∥(x) .

We wish to estimate Ej and the distance of the new family of planes π′
j from the one πj

obtained by rescaling π0. We therefore introduce

d(j) := max{dist(π,πj) : π ∈ π′
j}

Note that from (A) from Lemma 6.2 we have

d(0) ≤ C(E0 +A2
0)

1/2 ≤ Cσ
1/2
7 M0 .

Subsequently, using the triangle inequality (to estimate the distance from π1 to π̄1 and then
from π̄1 to π′

1)

d(1) ≤
(
Cσ

1/2
7 M0

)
ρ−1 + C(E1 +A2

1)
1/2 ≤ Cσ

1/2
7 M1(1 + ρβ)

where we have used our previous bounds and the fact M1 = ρ−1M0. Inductively, we achieve

d(j) ≤ Cσ
1/2
7 Mj

j∑
i=0

ρjβ ;

we stress that C is the same each time we apply the lemma and so it is constant in j. In
particular,

d(k) ≤ Cσ
1/2
7 Mk .

Since
Ek ≤ Cd(k)2 + CĒk ,
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we conclude that
Ek ≤ Cσ7M

2
k ,

where the constant C depends only on m,n, n̄, and Q. In particular, due to the fact that
Mk ≥ 1 by construction (and Mk is the maximal distance between the planes in πk), we may
choose σ7 smaller than a suitable geometric constant in order to apply Lemma 4.9, concluding
that

spt (T k) ∩C1 ⊂ {dist(·,πk) ≤ 2−NMk} .
Rescaling this information in the original system of coordinates gives

spt (T ) ∩Cρk(1−r/2)(x) ⊂ {dist(·,π) ≤ 2−NM} .
The arbitrariness of x ∈ B1+r/2(0, π0) gives then (6.11) and hence concludes the proof. □

The proof of Theorem 3.2 is therefore complete.

Part 2. Proof of the Main Excess Decay Theorem

In this part, we prove Theorem 2.5. The overall structure is as follows. In Section 7, we
begin with a few technical preliminaries regarding the relative positioning of planes, and some
combinatorial preliminaries which will be needed for the graphical parameterizations in the
following section. In Section 8, we set up efficient graphical parameterizations for T over bal-
anced cones in C (Q) (as defined in the preceding section), away from the spines of the cones
and when the two-sided excess of T relative to S is much smaller than the minimal angle of
the cone (such an assumption being used in this context is equivalent to that used by Wick-
ramasekera [32, Section 10, Hypothesis (⋆⋆)]). This construction heavily relies on the height
bound from Part 1, and given this our construction is a suitable adaptation of those seen in
the work of Simon ([29]) and Wickramasekera ([32]), with added technical complications from
working in arbitrary codimension and with area-minimizing currents. Section 9 is then dedi-
cated to showing that we may assume that the cone S in Theorem 2.5 is balanced, allowing
us to approximate T with a multi-valued graph over this cone away from its spine, as demon-
strated in the previous section. In Section 10 we reduce the proof of Theorem 2.5 to an a
priori much weaker weaker decay theorem which has a much stronger assumption on the size
of the L2 height excess of T relative to S; the idea is to use an excess decay statement with
multiple scales, analogous to that first seen in [32, Section 13]. In Section 11, we then show
the non-concentration of excess and the Simon estimates at the spine of the cone S; these are
the key estimates first used in Simon’s work ([29]) and then adapted to a degenerate setting,
as we similar face here, by Wickramasekera ([32, Section 10]). We then display the analogue
of Theorem 2.5 at the linearized level (for multi-valued Dir-minimizers) in Section 12. Finally,
in Section 13, we conclude with a blow-up procedure, collecting all the previous arguments
to yield a limiting Dir-minimizer that contradicts the results in Section 12 if we assume the
failure of Theorem 2.5.

7. Relative position of pairs of planes

We begin with some elementary results on the relative positions of pairs of planes. These will
be useful for results appearing later in this section regarding comparability of angle parameters
for cones in C (Q) and multi-valued Dir-minimizers formed from superpositions of linear maps.

We start with a simple lemma in linear algebra.

Lemma 7.1. Consider two m-dimensional linear subspaces α, β of RN and the two quadratic
forms Q1 : α → R, Q2 : β → R given by Q1(v) := dist2(v, β) and Q2(w) := dist2(w,α). Then:

(a) Q1 and Q2 have the same eigenvalues with the same multiplicities.
(b) For every orthonormal base v1, . . . , vm of eigenvectors of Q1 there is a corresponding

orthonormal base w1, . . . , wm of eigenvectors of Q2 with the property that

Q1(vi) = Q2(wi) = 1− (wi · vi)2 ,
and vi · wj = 0 for i ̸= j.

(c) If α ∩ β⊥ = {0} a choice of w1, . . . , wm is given by wi =
pβ(vi)
|pβ(vi)| .
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Before proving this, let us note that this lemma motivates the following definition:

Definition 7.2. Given two m-dimensional linear subspaces α, β of RN whose intersection has
dimension m − k, we order the k positive eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λk of Q1 as in Lemma
7.1, with the convention that the number of occurrences of the same real λ in the list equals
its multiplicity as eigenvalue of Q1. The Morgan angles of the pair α and β are the numbers
θi(α, β) := arcsin

√
λi for i = 1, . . . , k.

Of course we can define the Morgan angles between two intersecting affine planes of the
same dimension by simply translating an intersection point to the origin.

The following is then an immediate corollary of Lemma 7.1 and basic linear algebra:

Corollary 7.3. Suppose that α, β are two m-dimensional linear subspaces of RN . Denote by
V their (m− k)-dimensional intersection and let θ1 ≤ · · · ≤ θk be their Morgan angles. Then

|v| sin θ1 ≤ dist(v, β) ≤ |v| sin θk ∀v ∈ V ⊥ ∩ α , (7.1)

and
dist(α ∩B1, β ∩B1) = sup{dist(v, β) : v ∈ α ∩B1} = sin θk . (7.2)

Indeed, this simply follows because V ⊥ ∩ α is the eigenspace of the quadratic form Q1 =
dist2(·, β) spanned by those eigenvectors which have positive eigenvalues, combined with the
fact that the extremal eigenvalues of a quadratic form are realized through constrained opti-
mization over the unit sphere. Note that the first equality in (7.2) is simply due to the fact
that α and β are m-dimensional subspaces.

Proof of Lemma 7.1. We prove (b) and (a) at the same time. Moreover, since we give an
explicit construction for the vectors wi, the proof will also show (c). We start by observing
that

Q1(v) = |p⊥
β (v)|2 = v · (p⊥

β (v)) . (7.3)

Now pick an orthonormal basis {v1, . . . , vm} of α which diagonalizes Q1. Moreover, let us
remark that we can extend Q1 to a quadratic form Q̄1 on RN by setting it identically 0 on α⊥.
Q̄1 can be computed explicitly as

Q̄1(z) = z · (pα ◦ p⊥
β ◦ pα(z)) (7.4)

for a general z ∈ RN . In particular, each vi must be an eigenvector of the symmetric matrix
pα ◦ p⊥

β ◦ pα, which in turn implies that

pα(p
⊥
β (vi)) = λivi (7.5)

for some constant 0 ≤ λi ≤ 1. Observe, moreover, that in case λi = 1, then necessarily

p⊥
β (vi) = vi .

Without loss of generality let us order the vi to assume that 0 ≤ Q1(vi) ≤ Q1(vj) ≤ 1 for all
i ≤ j. Let us write k for the largest element of {1, . . . ,m} for which Q1(vk) < 1. Observe that

pβ(vj) = 0 for all j > k. For i ≤ k, define wi :=
pβ(vi)
|pβ(vi)| , and write W = span{w1, . . . , wk}.

Select any orthonormal basis {wk+1, . . . , wm} of W⊥ ∩ β. Since pβ(vj) = 0 for j > k, it is
obvious that W = pβ(α). In particular, it follows that wj ⊥ α for every j > k, and so for
j > k we have 1 = Q1(vj) = Q2(wj) and wj · vi = 0 for all i.

To handle the case j ≤ k, note that, if i ̸= j, then

vi · wj = |pβ(vj)|−1(vi · pβ(vj)) = −|pβ(vj)|−1(vi · p⊥
β (vj))

= −|pβ(vj)|−1(vi · pα(p
⊥
β (vj)))

(7.5)
= −λj |pβ(vj)|−1vi · vj = 0 .

Next consider v =
∑k

i=1 aivi and compute

Q1(v) = |p⊥
β (v)|2 = |v|2 − |pβ(v)|2

=
∑
i

a2i −

∣∣∣∣∣
k∑

i=1

(wi · v)wi

∣∣∣∣∣
2

=
∑
i

a2i −

∣∣∣∣∣
k∑

i=1

ai(wi · vi)wi

∣∣∣∣∣
2
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=
∑
i

a2i
(
1− (wi · vi)2

)
− 2

∑
i<j≤k

aiaj(wi · wj)(wi · vi)(wj · vj) .

Given that Q1(v) =
∑

i a
2
iQ1(vi) =

∑
i a

2
i (1− (vi · wi)

2) and the coefficients ai can be chosen
arbitrarily, we must then have

(wi · wj)(wi · vi)(wj · vj) = 0

for every 1 ≤ i < j ≤ k. In particular, since (wi · vi)(wj · vj) ̸= 0 when i < j ≤ k we
immediately infer that wi · wj = 0, hence concluding that w1, . . . , wm is an orthonormal basis
of β. Moreover, we have already seen that Q1(vi, vi) = 1− (vi · wi)

2.
Next, fix j ≤ k and observe that, by construction, wj is orthogonal to vℓ when ℓ > k. We

also already know that for i, j ≤ k, i ̸= j, that wj is orthogonal to vi. In particular, this gives
that pα(wj) = (vj · wj)vj for every j. Hence, given any w =

∑
i biwi ∈ β, we have

Q2(w) = |w|2 − |pα(w)|2 =
∑
i

µ2
i (1− (wi · vi)2).

This proves that Q1(vi) = Q2(wi) and that wi is an orthonormal basis of eigenvectors of Q2,
which completes the proof of (b) and also implies at the same time the statement (a). □

7.1. Rotating planes. In this section we use the material of the previous one to define “canon-
ical rotations” which map equidimensional linear subspaces onto each other. These objects are
not strictly necessary for our considerations, but they help streamlining some arguments.

Consider two linear subspaces α and β of Rm+n of the same dimension k and assume that

α ∩ β⊥ = {0} . (7.6)

We then define a canonical element R(α, β) ∈ O(Rm+n) mapping α onto β in the following
fashion. First of all consider the quadratic form Q(v) = dist2(v, β) on α introduced in the
previous section and let v1, . . . , vk be an orthonormal base which diagonalizes Q. Likewise
consider the quadratic form Q⊥ on α⊥ defined by dist2(v, β⊥) and let vk+1, . . . , vm+n be an

orthonormal base which diagonalizes Q⊥. We then define wi :=
pβ(vi)
|pβ(vi)| for 1 ≤ i ≤ k and

wi :=
p⊥

β (vi)

|p⊥
β (vi)|

for k + 1 ≤ i ≤ m + n. By Lemma 7.1, w1, . . . , wm+n is an orthonormal base

of Rm+n and if we define R(vi) = wi and extend R by linearity we clearly have an element of
O(Rm+n) with the property that O(α) = β.

The properties of this map is then given in the following

Lemma 7.4. Let α and β be two equidimensional linear subspaces such that α ∩ β⊥ = {0}.
Then

(a) R = R(α, β) is well-defined, i.e. its definition does not depend on the choice of the
diagonalizing orthonormal bases of Q and Q⊥;

(b) R is an element of SO(m+ n);
(c) R(α, β) = (R(β, α))−1 and R is the identity on α ∩ β and α⊥ ∩ β⊥; in particular

R(α, α) is the identity;
(d) R depends continuously on α and β.

Proof. Concerning (a), the only ambiguity in the definition stems from the fact that the vectors
v1, . . . , vm+n are not uniquely defined. Assume thus v′1, . . . v

′
m and v′m+1, . . . , v

′
m+n form two

other orthonormal bases of Q and Q⊥. Define w′
i accordingly. Moreover, without loss of

generality, assume that the eigenvalues are the same for vi and v′i. If the eigenvalues of Q
are all distinct and those of Q⊥ are also all distinct, then vi = ±v′i and hence wi = ±w′

i

and we see immediately that the definition of R does not depend on the choice of the bases.
Assume otherwise that there are some eigenvalues with higher multiplicity. To fix ideas assume
therefore that vj , . . . , vℓ form a base of a maximal eigenspace W for a fixed eigenvalue λ of Q.
Then v′j , . . . , v

′
ℓ is also a base of the same eigenspace. Note however that, by the very definition

of Q, |pβ(v)| =
√
1− λ|v| for every v ∈ W . In particular we see immediately that, computing

v′k as a linear combination
∑

j≤i≤ℓ aℓivi, then w′
k =

∑
j≤i≤ℓ aℓiwi. Therefore R is well defined

in this case as well.
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Concerning (b), observe that vi · wi > 0 for all i, and thus v1, . . . , vm+n and w1, . . . , wm+n

have the same orientation. Concerning (c) observe first that α ∩ β is the maximal eigenspace
of Q for the eigenvalue 0, while α⊥ ∩ β⊥ is the maximal eigenspace of Q for the eigenvalue
0. Thus v1, . . . , vm+n contains an orthonormal base of the former and an orthonormal base
for the latter and R is by definition the identity on these elements. Moreover, it turns out
that, by Lemma 7.1, when defining R(β, α), we can choose w1, . . . wk and wk+1, . . . , wm+n as
orthonormal bases diagonalizing dist2(·, α) and dist2(·, α⊥). But then Lemma 7.1(b) implies

that vi =
pα(wi)
|pα(wi)| for 1 ≤ i ≤ m+ n, from which it immediately follows that R(β, α) maps wi

in vi, and it is thus the inverse of R(α, β).
As for the continuous dependence, observe that if αk → α and βk → β and we fix

vk1 , . . . , v
k
m+n with vk1 , . . . , v

k
m diagonalizing dist2(·, βk) on αk and vkm+1, . . . , v

k
m+n diagonal-

izing dist2(·, β⊥
k ) on α⊥

k , then we can extract a subsequence for which vki converge to vi. It
follows immediately that the orthonormal vectors v1, . . . , vm diagonalize Q and vm+1, . . . , vm+n

diagonalize Q⊥. Hence the algorithm given to determine R(αk, βk) shows immediately that
the corresponding subsequence must converge to R(α, β). This completes the proof. □

7.2. Area-minimizers and Dir-minimizers. Of particular interest for us is the following
consequence of F. Morgan’s work [25, Theorem 2].

Lemma 7.5. Let S ⊂ Rm+n be the union of N distinct m-dimensional planes α1, . . . , αN with
the property that, for every i < j, αi ∩αj is the same (m− 2)-dimensional plane V . If T is an
m-dimensional integral area-minimizing current such that spt(T ) = S, then the (two) Morgan
angles of any pair αi, αj, i ̸= j, coincide.

This follows from [25], since Corollary 7.3 gives the equivalence of θ1 and θ2 with the angles
in [25] once the planes are oriented accordingly.

We complement this with the following counterpart for Dir-minimizers:

Proposition 7.6. Let m,n ≥ 2. There are positive absolute constants c1 and c2 depending on
n such that the following holds. Assume u : Rm → AQ(Rn) is a Dir-minimizing map such that
u(x) =

∑
i kiJLi(x)K for distinct linear maps Li : Rm → Rn and non-zero integers ki with the

property that maxi |Li| ≤ c1 and that, for every i < j, the kernel of Li−Lj is the same (m−2)-
dimensional subspace V of Rm while all Li vanish on V . Let πi be the m-dimensional planes
given by the graphs of the Li’s. Then, for every pair i < j the Morgan angles θk = θk(πi, πj),
k = 1, 2, satisfy the inequality θ2 ≤ c2θ1.

We stress here that as the subspace V in Proposition 7.6 has dimension m − 2, there are
exactly two Morgan angles for each pair of planes πi, πj , i ̸= j, which in the above are denoted
θ1(πi, πj), θ2(πi, πj), which by definition obey θ1(πi, πj) ≤ θ2(πi, πj). In particular, Proposition
7.6 tells us that they are comparable to each other, while Lemma 7.5 tells us in the case the
planes are area-minimizing, these two angles must in fact coincide. It is possible that this
stronger result could hold for Dir-minimizing unions of planes also, however we will not need
this here and so do not pursue this.

Proposition 7.6 will be derived from the following special case and some elementary linear
algebra.

Lemma 7.7. There is a geometric constant µ ≥ 1 with the following property. Let u : R2 →
A2(R2) be a Dir-minimizing map such that u(x) = JB(x)K+J−B(x)K for some linear B : R2 →
R2. Then B is quasiconformal, in the sense that

max{|B(x)| : |x| = 1} ≤ µmin{|B(x)| : |x| = 1} . (7.7)

Proof. Without loss of generality we can assume |B| = 1, otherwise normalize B to ensure
this. If the lemma were false, then there would be a sequence of Dir-minimizing maps uk(x) =
JBk(x)K + J−Bk(x)K, for some sequence Bk : R2 → R2 of linear maps with |Bk| = 1, for
which there is a sequence ek of unit vectors with B(ek) → 0. Extracting a subsequence, we
can assume that ek → e and that Bk → B. B is thus a linear map with |B| = 1, and so in
particular if we set u(x) := JB(x)K + J−B(x)K, then u does not vanish identically. However,
the line {λe : λ ∈ R} would be a line of singularities, while from [10, Proposition 3.20] we
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know that u is Dir-minimizing. In particular we would contradict Almgren’s partial regularity
theorem for Dir-minimizers, cf. [10, Theorem 0.11]. This contradiction proves the result. □

Given Lemma 7.7, the elementary linear algebra needed to prove Proposition 7.6 is the
following:

Lemma 7.8. There is a geometric constant c = c(n) > 0 with the following property. Consider
two linear maps L1, L2 : R2 → Rn with |Li| ≤ c(n) and rank (L1 − L2) = 2. If

σ1 = min{|B(e)| : |e| = 1} ≤ σ2 = max{|B(e)| : |e| = 1}

denote the two singular values of B = 1
2 (L1−L2), and π1, π2 are the two planes in R2+n given

by the graphs of L1 and L2 respectively, then

σ2

4
≤ θ2(π1, π2) ≤ 4σ2

σ1

4
≤ θ1(π1, π2) ≤ 4σ1

where θ1(π1, π2) ≤ θ2(π1, π2) are the Morgan angles of the planes π1, π2.

Proof. Let A := 1
2 (L1 + L2) and B := 1

2 (L1 − L2). Fix p ∈ ∂B1 ∩ π1. Since in particular

p ∈ π1, we may find x ∈ R2 such that p = (x, (A+B)(x)). Note that |x| ≤ 1 as |p| = 1. Since
(x, (A−B)(x)) ∈ π2 we clearly have

dist(p, π2) ≤ |2B(x)| ≤ 2max{|B(e)| : |e| = 1} . (7.8)

Next, let q ∈ π2 be the point of minimum distance in π2 from p and let ξ ∈ R2 be so that
q = (ξ, L2(ξ)) = (ξ, (A−B)(ξ)). Then,

dist2(p, π2) = |p− q|2 = |x− ξ|2 + |(A+B)(x)− (A−B)(ξ)|2 . (7.9)

Set η := x− ξ and rewrite the expression in (7.9) as

|η|2 + |(A+B)(η + ξ)− (A−B)(ξ)|2 = |η|2 + |2B(ξ) + (A+B)(η)|2.

Since η is the minimum point of the latter quadratic expression, we can differentiate it to find
that η obeys

2η + 4(A+B)TB(ξ) + 2(A+B)T (A+B)(η) = 0.

In turn, we can solve this as

η = −2(Id + (A+B)T (A+B))−1(A+B)T (B(ξ)) = −2(Id + LT
1 L1)

−1LT
1 (B(ξ)) .

Insert the latter in (7.9) to find

dist2(p, π2) = 4|(Id + LT
1 L1)

−1LT
1 (B(ξ))|2 + 4|

(
Id− L1(Id + LT

1 L1)
−1LT

1

)
(B(ξ))|2 . (7.10)

Observe now that the operator norm of (Id + LT
1 L1)

−1 is always at most 1: indeed, since
Id +LT

1 L1 is self-adjoint and its smallest eigenvalue is at least 1, its inverse is self-adjoint and
has positive eigenvalues no larger than 1. We can therefore estimate∣∣(Id− L1(Id + LT

1 L1)
−1LT

1

)
(B(ξ))

∣∣ ≥ |B(ξ)| − |L1|2|B(ξ)| .

In particular, if we choose the constant c sufficiently small, we conclude

dist2(p, π2) ≥
1

2
|B(ξ)|2 . (7.11)

But, again under the assumption that c is sufficiently small, and since |q| ≤ 1 (as dist(p, 0) = 1

and 0 ∈ π2), we have that |ξ| ≥
√
2
2 . Hence we get

dist(p, π2) ≥
1

2
min{|B(e)| : |e| = 1} . (7.12)

Combining (7.8) and (7.12) and recalling that σ2 = max{|B(e)| : |e| = 1} and σ1 = min{|B(e)| :
|e| = 1} are the two singular values of B, we conclude that

σ1

2
≤ min{dist(p, π2) : p ∈ ∂B1 ∩ π1} ≤ max{dist(p, π2) : p ∈ ∂B1 ∩ π1} ≤ 2σ2 . (7.13)
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Next let e ∈ R2 be a unit vector with |B(e)| = σ2 and consider v = (e, L1(e)) and v′ :=
v
|v| ∈ π1 ∩ ∂B1. Decreasing c further if necessary, we have

dist(v, π2) ≤
3
√
2

4
dist(v′, π2) ≤

3
√
2

4
max{dist(p, π2) : p ∈ ∂B1 ∩ π1} . (7.14)

Consider q = pπ2
(v) and let ξ ∈ R2 be such that (ξ, L2(ξ)) = q. Note that

|ξ − e| ≤ |v − q| ≤ |pπ2
− pπ1

||v| .
In particular |ξ − e| ≤ C(|L1| + |L2|) ≤ Cc. On the other hand, recall that we have the
inequality (7.11) but for v in place of p (since we did not use the fact that p ∈ ∂B1 to achieve
this). In particular, provided c is sufficiently small we can write

dist(v, π2) ≥
1√
2
|B(e)| − 1√

2
|B(e− ξ)| ≥ σ2√

2
(1− |ξ − e|) ≥ 3σ2

4
√
2
. (7.15)

We can now combine (7.14) and (7.15), yielding

σ2 ≤ 2max{dist(p, π2) : p ∈ ∂B1 ∩ π1} . (7.16)

In a similar fashion, fix now e such that |B(e)| = σ1 and consider v and v′ as above, for this
choice of e. Arguing analogously to (7.8), it follows that

min{dist(p, π2) : p ∈ π1 ∩ ∂B1} ≤ dist(v′, π2) ≤ dist(v, π2) ≤ 2|B(e)| , (7.17)

because (e, L2(e)) ∈ π2. In particular we deduce that

min{dist(p, π2) : p ∈ π1 ∩ ∂B1} ≤ 2σ1 . (7.18)

Summarizing, if we combine (7.13), (7.16), and (7.18), we arrive at

σ1

2
≤ min{dist(p, π2) : p ∈ π1 ∩ ∂B1} ≤ 2σ1 (7.19)

σ2

2
≤ max{dist(p, π2) : p ∈ π1 ∩ ∂B1} ≤ 2σ2 . (7.20)

Recall now that, since we are dealing with two-dimensional planes, the variational definition
of the eigenvalues of quadratic forms gives

θ1 = arcsin(min{dist(p, π2) : p ∈ ∂B1 ∩ π1})
θ2 = arcsin(max{dist(p, π2) : p ∈ ∂B1 ∩ π1}) .

On the other hand max{dist(p, π2) : p ∈ ∂B1 ∩ π1} is controlled by |L1| + |L2|, hence if we
choose the latter sufficiently small we get

1

2
min{dist(p, π2) : p ∈ ∂B1 ∩ π1} ≤ θ1 ≤ 2min{dist(p, π2) : p ∈ ∂B1 ∩ π1}

1

2
max{dist(p, π2) : p ∈ ∂B1 ∩ π1} ≤ θ2 ≤ 2max{dist(p, π2) : p ∈ ∂B1 ∩ π1}

Combining the latter inequalities with (7.19) and (7.20) we conclude the proof. □

We record the following corollary; it is not needed for now, but will be convenient for us to
use later on.

Corollary 7.9. There is a geometric constant c = c(n) > 0 with the following property.
Consider two linear maps L1, L2 : Rm → Rn with the property that ker (L1 − L2) is (m − 2)-
dimensional, let λ > 0, and denote by αi and βi the m-dimensional planes given by the graphs
of Li and λLi respectively, for i = 1, 2. If max{λ, 1}|Li| ≤ c(n), then

θ1(α1, α2)

θ2(α1, α2)
≤ 162

θ1(β1, β2)

θ2(β1, β2)
.

Proof. For i = 1, 2, letting σi and σ
(λ)
i denote the singular values of 1

2 (L1−L2) and
1
2 (λL1−λL2)

respectively, we have σ
(λ)
i = λσi, and so the inequality is an immediate corollary of Lemma

7.8. □
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We can now prove Proposition 7.6.

Proof of Proposition 7.6. First of all observe that, for every choice of i and j, the map v(x) =
JLi(x)K+ JLj(x)K is Dir-minimizing. It therefore suffices to prove the proposition when Q = 2
and we have two distinct linear maps L1 and L2.

Next consider the (m− 2)-dimensional subspace W which is the kernel of L1 − L2, and let
A = 1

2 (L1 + L2) and B = 1
2 (L1 − L2). Observe that since A is linear, the function

ṽ(x) := v(x)⊖A(x) ≡ JL1(x)−A(x)K + JL2(x)−A(x)K = JB(x)K + J−B(x)K

is also Dir-minimizing (see [10, Lemma 3.23]). Now, for any point z ∈ Rm, let us write
z = (x, y) ∈ W⊥ ×W . Since the image of B on W⊥ lies in a 2-dimensional subspace, and the
kernel of B is (m − 2)-dimensional, we may quotient out the kernel of B and consider it as a
function W⊥ → R2. As the domain of B is then a 2-dimensional subspace, we can then apply
Lemma 7.7 to conclude that (7.7) holds for B, and thus we can control the ratio of the two
singular values of B by a geometric constant, µ. But then observe that the two Morgan angles
of the planes π1 and π2 coincide with the Morgan angles of the 2-dimensional planes of R4

constructed above. We can therefore apply Lemma 7.8 to conclude the proof of Proposition
7.6. □

7.3. Separated regions, Alignment, and Shifting. Here we collect three lemmas of a
different flavor, which all have to do with the geometry of a collection of planes which all
intersect in a common (m − 2)-dimensional subspace; they will be used later on at different
stages, when proving Theorem 2.5.

The following lemma shows that, even in the absence of a comparison estimate between the
Morgan angles for a given finite collection of planes, it is possible to find a sizeable region of
one of the planes α where the minimum distance of a point in that region to the other planes
is comparable to the minimum of the Hausdorff distances of these planes to α.

Lemma 7.10 (Separated region). There is a constant 0 < c = c(m,N) < 1
2 with the following

property. Suppose that α, β1, . . . , βN are distinct m-dimensional subspaces of Rm+n. Then
there is a point ξ ∈ α ∩ ∂B1/2 with the property that

min
i

inf{dist(ζ, βi) : ζ ∈ Bc(ξ) ∩ α} ≥ cmin
i

dist(α ∩B1, βi ∩B1) . (7.21)

Proof. Following the notation of Lemma 7.1 and Definition 7.2, let us denote by Qi : α → R
the quadratic forms Qi(v) := dist2(v, βi) and let ei be an eigenvector corresponding to the
its maximal eigenvalue λi and hence also to the largest Morgan angle θi of the pair (α, βi).
Complete ei to an orthonormal basis which diagonalizes Qi. For any ζ ∈ α we thus have

dist2(ζ, βi) ≥ (ei · ζ)2λi = (ei · ζ)2 sin2(θi)

Recalling that, by Corollary 7.3, sin(θi) = dist(α ∩B1, βi ∩B1), we conclude that

dist(ζ, βi) ≥ |ei · ζ|dist(α ∩B1, βi ∩B1) .

Therefore, we just need to find a vector ξ ∈ ∂B1/2 ∩ α with the property that

|ζ · ei| ≥ c ∀i,∀ζ ∈ Bc(ξ) ∩ α

for c = c(m,N) to be determined. Given the elementary estimate

|ζ · ei| ≥ |ξ · ei| − c ,

for any such ζ and ξ, it therefore suffices to find ξ ∈ ∂B1/2 ∩ α such that

|ξ · ei| ≥ 2c ∀i .

Now for each i = 1, . . . , N , let Si := {v ∈ ∂B1/2 ∩ α : |v · ei| ≤ 2c} and observe that

Hm−1(Si) ≤ C(m)c for some constant C(m). In particular, Hm(
⋃

i Si) ≤ NC(m)c, and thus if
c = c(m,N) is chosen sufficiently small, ∂B1/2 \

⋃
i Si must have positive measure, and hence

it contains at least one point ξ which obeys the desired conditions. □

As an immediate corollary of Lemma 7.10 above we have the following.
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Corollary 7.11. Let α, β1, . . . , βN be a collection of m-dimensional distinct planes of Rm+n

and set S =
⋃

i βi. Then there is a constant C̄ = C̄(N,m) > 0 with

min
i

dist(α ∩B1, βi ∩B1) ≤ C̄ dist(α ∩B1,S ∩B1) .

The following lemma concerns itself with the alignment of spines of pairs of cones in C (Q),
cf. Definition 2.3, and will be of fundamental importance.

Lemma 7.12. For every M > 0 and natural numbers m, n, and Q, there is a constant
C̄ = C̄(M,m,n,Q) > 0 with the following property. Assume that

(i) S and S′ consist of 2 ≤ N,N ′ ≤ Q m-dimensional distinct planes α1, . . . , αN and
β1, . . . , βN ′ , respectively;

(ii) The intersection of every pair αi ̸= αj is a single (m− 2)-dimensional subspace V (S)
and the intersection of every pair βi ̸= βj is a single (m − 2)-dimensional subspace
V (S′);

(iii) For every pair αi ̸= αj the two Morgan angles θ1(αi, αj) ≤ θ2(αi, αj) satisfy θ2 ≤ Mθ1.

Then

dist(V (S) ∩B1, V (S′) ∩B1) ≤ C̄
dist(S ∩B1,S

′ ∩B1)

mini dist(S ∩B1, αi ∩B1)
. (7.22)

Proof. We may assume without loss of generality that the planes αi are ordered such that

dist(α1 ∩B1, α2 ∩B1) = max
i ̸=j

dist(αi ∩B1, αj ∩B1) ,

and observe that

min
i

dist(S ∩B1, αi ∩B1) ≤ dist(α1 ∩B1, α2 ∩B1) . (7.23)

On the other hand, because of Corollary 7.11 and since αi ⊂ S for all i, we can select βi and
βj such that

dist(α1 ∩B1, βi ∩B1) ≤ C̄ dist(S ∩B1,S
′ ∩B1) (7.24)

dist(α2 ∩B1, βj ∩B1) ≤ C̄ dist(S ∩B1,S
′ ∩B1) . (7.25)

To simplify our notation we use V and V ′ in place of V (S) and V (S′). Because of the condition
(iii) on the Morgan angles θk(α1, α2), using (7.1) and (7.2) we have

dist(w,α2) ≥ C̄−1 dist(α1 ∩B1, α2 ∩B1)|w − pV (w)| ∀w ∈ α1 . (7.26)

Fix now v′ ∈ V ′ ∩B1 and observe that, since v′ belongs to both βi and βj , due to (7.24) and
(7.25) we must have

|pα1(v
′)− v′| = dist(v′, α1) ≤ C̄ dist(S ∩B1,S

′ ∩B1)

|pα2
(v′)− v′| = dist(v′, α2) ≤ C̄ dist(S ∩B1,S

′ ∩B1) .

In particular, from the triangle inequality and the fact |pα2(v
′)| ≤ 1 one can then deduce

dist(pα1
(v′), α2) ≤ C̄ dist(S ∩B1,S

′ ∩B1) . (7.27)

Now, let w = pα1(v
′) and observe that

dist(v′, V ) ≤ |v′ − w|+ |w − pV (w)| ≤ C̄ dist(S ∩B1,S
′ ∩B1) + |w − pV (w)| , (7.28)

while, by (7.26) and (7.27),

|w − pV (w)| ≤ C̄
dist(w,α2)

dist(α1 ∩B1, α2 ∩B1)
≤ C̄

dist(S ∩B1,S
′ ∩B1)

dist(α1 ∩B1, α2 ∩B1)
. (7.29)

Thus, given (7.23) and dist(α1 ∩B1, α2 ∩B1) ≤ 1, (7.28) and (7.29) lead to

dist(v′, V ) ≤ C̄
dist(S ∩B1,S

′ ∩B1)

mini dist(S ∩B1, αi ∩B1)
.

Observe however that v′ is an arbitrary element of V ′ ∩B1, and we have thus reached

sup{dist(v′, V ) : v′ ∈ V ′ ∩B1)} ≤ C̄
dist(S ∩B1,S

′ ∩B1)

mini dist(S ∩B1, αi ∩B1)
.
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On the other hand, since V and V ′ have the same dimension, by Corollary 7.3 we infer that

sup{dist(v′, V ) : v′ ∈ V ′ ∩B1)} = dist(V ∩B1, V
′ ∩B1) ,

hence concluding the desired statement. □

Finally, the following lemma gives a lower bound for the distance of z to q + S for many
points z ∈ S. Before stating it we introduce some useful terminology.

Definition 7.13. A set Ω ⊂ Rm+n is said to be invariant under rotation around a linear
subspace V if R(Ω) = Ω for any rotation R of Rm+n which fixes V .

Lemma 7.14 (Shifting lemma). For every M ≥ 1 and every open set U ⊂ B1 that is invariant
under rotations around V , there is a constant C̄ = C̄(M,m,n,N,U) > 0 with the following
properties. Assume that S = α1 ∪ · · · ∪ αN satisfies (i), (ii), and (iii) in Lemma 7.12, let
q ∈ B1/2, and let µ(S) = maxi<j dist(αi∩B1, αj ∩B1). Then there is an index j ∈ {1, . . . , N}
and a subset Ω ⊂ αj ∩ U such that Hm(Ω) ≥ C̄−1 and

|p⊥
α1
(q)|+ µ(S)|pV ⊥∩α1

(q)| ≤ C̄ dist(z, q + S) ∀z ∈ Ω . (7.30)

Remark 7.15. Observe that Lemma 7.14 can be scaled. Under the assumption that Br

replaces B1, U0,r ≡ ι−1
0,r(U) replaces U , and q ∈ Br/2, we can conclude the existence of a

subset Ω ⊂ U0,r with measure larger than C̄−1rm with the property that (7.30) holds. Under
these assumptions the constant C̄ can be taken to be the same as the one in Lemma 7.14.

In order to prove Lemma 7.14, we will need the following elementary result.

Lemma 7.16. There is a dimensional constant C0 = C0(m,n) > 0 with the following property.
Let S, M , and q be as in Lemma 7.14. Then

|p⊥
α1
(q)|+ µ(S)|pV ⊥∩α1

(q)| ≤ C0M max
i

|p⊥
αi
(q)| . (7.31)

Proof. Let k be such that
|p⊥

αk
(q)| = max

i
|p⊥

αi
(q)| .

Thus, in particular, |p⊥
α1
(q)| ≤ |p⊥

αk
(q)|, and so it remains to show that

µ(S)|pV ⊥∩α1
(q)| ≤ C0M max

i
|p⊥

αi
(q)| . (7.32)

First of all pick j which maximizes dist(αj ∩B1, αk ∩B1), so that in particular

dist(αj ∩B1, αl ∩B1) ≤ dist(αj ∩B1, αk ∩B1) ∀l .
Thus, the triangle inequality yields

dist(αj ∩B1, αk ∩B1) ≥
1

2
µ(S) .

Next, recalling the definition of Morgan angles, observe that for every w ∈ αj ∩ V ⊥ we have
(using the above line, assumption (iii) in Lemma 7.12 and (7.2))

µ(S)|w| ≤ C0M |p⊥
αk

(w)| .

Now choose w = pV ⊥∩αj
(q) = p⊥

V (q) − p⊥
αj
(q). Since p⊥

αk
◦ p⊥

V = p⊥
αk

(because V ⊂ αk) we
may estimate

µ(S)|pV ⊥∩αj
(q)| ≤ C0M |p⊥

αk
(p⊥

V (q))|+ C0M |p⊥
αk

(p⊥
αj
(q))|

≤ C0M |p⊥
αk

(q)|+ C0M |p⊥
αj
(q)| .

Using the maximality of k, we then reach

µ(S)|pV ⊥∩αj
(q)| ≤ C0M |p⊥

αk
(q)| . (7.33)

It remains to replace αj with α1 in the projection on the left-hand side of the above inequality.
Since pV ⊥∩α1

◦ pαj
= pV ⊥∩α1

◦ pV ⊥∩αj
, we have

|pV ⊥∩α1
(q)| ≤ |pV ⊥∩α1

(pV ⊥∩αj
(q))|+ |pV ⊥∩α1

(p⊥
αj
(q))|

≤ |pV ⊥∩αj
(q)|+ |p⊥

αj
(q)|
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≤ |pV ⊥∩αj
(q)|+ |p⊥

αk
(q)| .

Combining the latter inequality with (7.33) and using that µ(S) ≤ 1, we reach (7.32) and
hence complete the proof of the lemma. □

We can now prove Lemma 7.14.

Proof of Lemma 7.14. We choose j such that |p⊥
αj
(q)| = maxi |p⊥

αi
(q)| and using Lemma 7.16

we aim at proving that

|p⊥
αj
(q)| ≤ C̄1 dist(z, q + S) ∀z ∈ Ω , (7.34)

for some set Ω ⊂ U with Hm(Ω) ≥ C̄−1
1 , where the constant C̄1 is allowed to depend on U . In

fact it turns out that the constant C̄1 depends on

γ := inf{Hm(U ∩ α) : V ⊂ α and α is an m-dimensional subspace} . (7.35)

It is not entirely obvious that γ is necessarily positive. Note, however, that if a point p
belongs to U and another point q satisfies pV (q) = pV (p) and dist(q, V ) = dist(p, V ), then
necessarily q ∈ U , in light of the rotational invariance of U . In particular there is an open
subset U ′ ⊂ V × R+ such that U = {p : (pV (p),dist(p, V )) ∈ U ′}. From this we conclude
that, not only is γ positive, but in fact that Hm(U ∩ α) is exactly the same number for every
m-dimensional plane which contains V .

Observe first that (7.34) is equivalent to

min
i

|p⊥
αi
(z − q)| ≥ C̄−1

1 |p⊥
αj
(q)| ∀z ∈ Ω . (7.36)

Now assume that the claim is false, namely that (7.36) fails for all z ∈ U∩αj with the exception

of a set E of Hausdorff measure smaller than C̄−1
1 . In particular by choosing C̄1 large enough,

we can ensure that, for some i ∈ {1, . . . , N} the set Fi ⊂ αj ∩ U where

|p⊥
αi
(z − q)| ≤ C̄−1

1 |p⊥
αj
(q)| ∀z ∈ Fi (7.37)

has measure at least γ
N+1 . We then claim that

|p⊥
αi
(q)| ≤ Cγ−4C̄−1

1 |p⊥
αj
(q)| , (7.38)

|p⊥
αi
(z)| ≤ Cγ−4C̄−1

1 |p⊥
αj
(q)| ∀z ∈ B1 ∩ αj , (7.39)

where the constant C depends only on m and N . Note that i is the index chosen such that
Hm(Fi) ≥ γ

N+1 , but the second estimate is claimed for every z ∈ B1 ∩ αj , and the latter will
in the end be used to get a contradiction.

In order to prove (7.38) and (7.39) consider first the set F ′
i := pV ⊥(Fi). The latter belongs

to the 2-dimensional subspace V ⊥ ∩ αj and the coarea formula implies immediately that

H2(F ′
i ) ≥ C−1Hm(Fi) ≥ C−1γ (7.40)

for a positive dimensional C = C(m,N). Choose next a vector e1 ∈ F ′
i such that |e1| ≥

1
2 sup{|x| : x ∈ F ′

i} and observe that |e1| ≥ C
√
γ because 4π|e1|2 ≥ H2(F ′

i ). Hence choose
e2 ∈ F ′

i such that

|e2 − |e1|−2(e2 · e1)e1| ≥
1

2
sup{|x− |e1|−2(x · e1)e1| : x ∈ F ′

i}

and observe that H2(F ′
i ) ≤ 4|e2 − |e1|−2(e1 · e2)e1|, so that

||e1|e2 − |e1|−1(e1 · e2)e1| ≥ C−1γ3/2 .

We next define the linear map Φ : R2 → V ⊥ ∩ αj by (λ1, λ2) 7→ λ1e1 + λ2e2 and observe,
by elementary geometry that |detΦ| = ||e1|e2 − |e1|−1(e1 · e2)e1|. In particular, |det Φ−1| ≤
Cγ−3/2 and, given that |Φ| ≤ C, we also have |Φ−1| ≤ Cγ−3/2. Therefore F ′′

i := Φ−1(F ′
i ) is

contained in a disk of radius at most Cγ−3/2. Consider now the number

µ := sup{|λ1 + λ2 − 1| : (λ1, λ2) ∈ F ′′
i }
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and notice that H2(F ′′
i ) ≤ Cγ−3/2µ. Since |detΦ| ≤ 1 we get H2(F ′

i ) ≤ H2(F ′′
i ), and thus,

when combined with (7.40), we infer µ ≥ C−1γ5/2, and thus the existence of (λ1, λ2) ∈ F ′′
i

such that

|λ1 + λ2 − 1| ≥ C−1γ5/2 . (7.41)

Observe now that, by the very definition of F ′
i , there are v1, v2, v3 ∈ V such that

e1 + v1 ∈ Fi

e2 + v2 ∈ Fi

λ1e1 + λ2e2 + v3 ∈ Fi .

Since V ⊂ αi we can write

(λ1 + λ2 − 1)p⊥
αi
(q) = λ1p

⊥
αi
(q − e1) + λ2p

⊥
αi
(q − e2)− p⊥

αi
(q − (λ1e1 + λ2e2))

=λ1p
⊥
αi
(q − e1 − v1) + λ2p

⊥
αi
(q − e2 − v2)− p⊥

αi
(q − (λ1e1 + λ2e2 + v3)) .

In particular we conclude

|p⊥
αi
(q)| ≤ CC̄−1

1 γ−5/2|p⊥
αj
(q)| , (7.42)

which is in fact stronger than (7.38). On the other hand we can also write

|p⊥
αi
(ek)| ≤ |p⊥

αi
(ek − q)|+ |p⊥

αi
(q)| k = 1, 2

and hence we immediately conclude

|p⊥
αi
(ek)| ≤ CC̄−1

1 γ−5/2|p⊥
αj
(q)| . (7.43)

In turn, using again the map Φ we can express any z ∈ B1 ∩ αj as z = λ1e1 + λ2e2 + v for

some coefficients |λi| ≤ Cγ−3/2 and some vector v ∈ V . In particular we achieve (7.39) from
(7.43).

Observe however that (7.39) can be equivalently written as

dist(z, αi) ≤ CC̄−1
1 γ−4|p⊥

αj
(q)| ∀z ∈ B1 ∩ αj , (7.44)

and thus also as

dist(αi ∩B1, αj ∩B1) ≤ CC̄−1
1 γ−4|p⊥

αj
(q)| (7.45)

Since γ is fixed, |q| ≤ 1
2 , and αi and αj have the same dimension, the latter estimate implies

that, by choosing C̄1 appropriately large, we can assume that the linear subspaces αi and αj

are sufficiently close. In particular, given that |q| ≤ 1
2 , for an appropriate large choice of C̄1

the affine subspace q + α⊥
i must intersect B1 ∩ αj at some point z. But then at that point z

we would have

p⊥
αi
(q − z) = q − z . (7.46)

Since z ∈ αj we must have |q − z| ≥ dist(q, αj) = |p⊥
αj
(q)|. Hence

|p⊥
αi
(q − z)| ≥ |p⊥

αj
(q)| .

On the other hand, combining (7.38) and (7.39) we get

|p⊥
αi
(q − z)| ≤ 2CC̄−1

1 γ−4|p⊥
αj
(q)| .

Since C is a constant which depends only on m and N we can now choose C̄1 large enough,
depending only on γ, m, and N so that CC̄−1

1 γ−4 < 1
2 . But then the last two inequalities

would be in contradiction, unless p⊥
αj
(q) = p⊥

αi
(q − z) = 0. In particular we conclude that q

belongs to αj . In this case, however, (7.34) holds trivially. □
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8. Graphical approximations

In this section we start facing two of the geometric issues that complicate the proof of
Theorem 2.5. In an ideal situation the cone S in the statement of the theorem consists of N
m-dimensional planes α1, . . . , αN with the additional properties that, for any pair αi ̸= αj ,

(i) The Hausdorff distance between αi and αj is relatively larger than E(T,S,B1);
(ii) The two Morgan angles θ1(αi, αj), θ2(αi, αj) formed by them are comparable.

Under these two additional assumptions we can hope to use the bounds of Theorem 3.2 and
Corollary 3.3 to give a good approximation of T by graphs over the collection of planes αi,
after removing a small neighborhood of the spine V (S).

Although there is no reason to assume (i) and (ii) for S a priori, we can hope to achieve
them for a different cone S′ without increasing the excess E(T,S′,B1) too much relative to
the excess E(T,S,B1). In light of this we first specify an algorithm that allows us to gain
control on how much the excess increases when we discard planes of S until we achieve (i).
This algorithm is summarized in the Pruning Lemma 8.2. For later use we want to iteratively
apply Lemma 8.2 and keep track of the structure of the planes which have been discarded
during this process; this is accomplished in Lemma 8.3. As for (ii), we will work under the
assumption that it holds for now. Later, in Section 9.1, we will demonstrate that the new cone
S′ achieving (i) indeed additionally satisfies (ii).

In the remainder of this Section, we show how to gain a graphical approximation under a
suitable quantification of (i) and (ii). We begin with a “crude approximation” in Section 8.3,
followed by a more intricate “refined approximation” in Section 8.5; the latter will be needed
later.

8.1. Pruning Lemma and Layer Subdivision. The main purpose of this section is to
introduce two very useful elementary combinatorial lemmas with the aim discussed above.

We will always work under the following assumption. We will often use the terminology
“plane” when referring to a linear subspace of Rm+n.

Assumption 8.1. S ⊂ Rm+n is an m-dimensional cone such that

(i) S is a union of N distinct m-dimensional planes α1, . . . , αN ;
(ii) for each pair i ̸= j the intersection αi ∩ αj is the same (m − 2)-dimensional plane V ,

which we refer to as the spine of S.

Note in particular that the cones in the class of C (p,Q) of Definition 2.3 fall under the latter
assumption.

Our first technical lemma we call the Pruning Lemma. It has two main uses. One is to
prove the second technical lemma (Lemma 8.3); we will explain the meaning behind that lemma
when we get to it. The other use will be to ”prune” a cone, throwing away some of its planes,
and ultimately get that the excess relative to the pruned cone is sufficiently small relative
to the minimal angle of the pruned cone, which is a crucical assumption for our graphical
approximation results later.

Lemma 8.2 (Pruning lemma). Let N ≥ 2, D > 0, and 0 < δ ≤ 1. Set Γ := δ2−N (N − 1)!
and ε := (1 + Γ)−1δ. If

(i) S = α1 ∪ · · · ∪ αN is as in Assumption 8.1;
(ii) D ≤ εmaxi<j dist(αi ∩B1, αj ∩B1);

then there is a subcollection I ⊂ {1, . . . , N} consisting of at least 2 elements and satisfying the
following requirements:

max
j

min
i∈I

dist(αi ∩B1, αj ∩B1) ≤ ΓD (8.1)

D +max
j

min
i∈I

dist(αi ∩B1, αj ∩B1) ≤ δ min
j,ℓ∈I: j<ℓ

dist(αj ∩B1, αℓ ∩B1) . (8.2)

max
i,j∈I: i<j

dist(αi ∩B1, αj ∩B1) = max
i<j

dist(αi ∩B1, αj ∩B1) . (8.3)
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Proof. Set I(0) = {1, . . . , N}. If either (a) N = 2 or (b) N ≥ 3 and

D ≤ δmin
i<j

dist(αi ∩B1, αj ∩B1) , (8.4)

then we select I = I(0) and the proof is complete, since the left hand side of (8.1) is zero (and
hence the left hand side of (8.2) equals D), while (8.3) is obvious. Observe also that, since
ε < δ, the condition (8.4) is implied by (ii) when N = 2.

Otherwise, we select indices ℓ1 and ℓ2 such that

min
i<j

dist(αi ∩B1, αj ∩B1) = dist(αℓ1 ∩B1, αℓ2 ∩B1)

and indices j1 and j2 such that

max
i<j

dist(αi ∩B1, αj ∩B1) = dist(αj1 ∩B1, αj2 ∩B1) .

Since N ≥ 3 we can choose them so that {j1, j2} ≠ {ℓ1, ℓ2}. In particular, we can pick
ℓ(0) ∈ {ℓ1, ℓ2} \ {j1, j2}. We then set I(1) := I(0) \ {ℓ(0)}. Notice that

max
i<j∈I(1)

dist(αi ∩B1, αj ∩B1) = max
i<j∈I(0)

dist(αi ∩B1, αj ∩B1) ,

while, by the assumption that (8.4) fails,

min
j∈I(1)

dist(αℓ(0) ∩B1, αj ∩B1) < δ−1D .

Assuming that we have inductively selected sets I(0), I(1), . . . I(s), we use the same procedure
above to select a new subset I(s+ 1) ⊂ I(s) by removing one element ℓ(s), provided that the
cardinality of I(s) is at least 3 and

D +max
j

min
i∈I(s)

dist(αi ∩B1, αj ∩B1) > δ min
i<j∈I(s)

dist(αi ∩B1, αj ∩B1) . (8.5)

Otherwise, we stop; clearly this process must terminate in finitely many steps. We denote by
σ the index of the stopping step; note that σ ≤ N − 2. We claim that I = I(σ) satisfies the
requirements of the lemma.

First of all we prove the inequality

min
j∈I(s)

dist(αℓ(s′)∩B1, αj ∩B1) ≤ (s−s′) min
j∈I(s)

dist(αℓ(s−1)∩B1, αj ∩B1) ∀s′ < s ≤ σ . (8.6)

Note that if s = s′+1 the inequality is in fact an obvious equality (just from how it is written).
In particular, the claim holds when s′ = σ − 1. We now assume that the claim holds for all
s′ > s0 and will proceed to show it when s′ = s0, by induction. Fix s > s0 and let j∗ ∈ I(s0+1)
be such that

min
j∈I(s0+1)

dist(αℓ(s0) ∩B1, αj ∩B1) = dist(αℓ(s0) ∩B1, αj∗ ∩B1) .

We first observe that, by the very definition of ℓ(s0) and j∗ we have

dist(αℓ(s0) ∩B1, αj∗ ∩B1) ≤ min
j∈I(s)

dist(αℓ(s−1) ∩B1, αj ∩B1) . (8.7)

In particular if j∗ ∈ I(s), the inequality (8.6) is obvious.
Otherwise j∗ ̸∈ I(s) and so j∗ = ℓ(s∗) for some s0 < s∗ < s. In this case, using (8.7) and

the fact that, by the inductive assumption,(8.6) holds for s = s∗, we write

min
j∈I(s)

dist(αℓ(s0) ∩B1, αj ∩B1)

≤dist(αℓ(s0) ∩B1, αj∗ ∩B1) + min
j∈I(s)

dist(αℓ(s∗) ∩B1, αj ∩B1)

≤ min
j∈I(s)

dist(αℓ(s−1) ∩B1, αj ∩B1) + (s− s∗) min
j∈I(s)

dist(αℓ(s−1) ∩B1, αj ∩B1) .

In particular, since s∗ − s0 ≥ 1, we have shown (8.6) for s = s0. We thus conclude that (8.6)
indeed holds by induction over s.

Next, note that (8.6) implies that

max
j

min
i∈I(s)

dist(αi ∩B1, αj ∩B1) ≤ s min
i∈I(s)

dist(αℓ(s−1) ∩B1, αi ∩B1) (8.8)
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for all s, by simply maximizing over all s′ < s on the left-hand side of (8.6), since s− s′ ≤ s.
In particular, combined with (8.5), we must have

D + t min
i∈I(t)

dist(αℓ(t−1) ∩B1, αi ∩B1) > δ min
i∈I(t+1)

dist(αℓ(t) ∩B1, αi ∩B1)

for t = 1, . . . , s−1, with s ≤ σ fixed arbitrarily (note that the right-hand side of this expression
equals that of (8.6), by definition of ℓ(t)). Setting d(t) := mini∈I(t) dist(αℓ(t−1) ∩B1, αi ∩B1),
we rewrite the above as the recursive inequality

δ−1(D + td(t)) > d(t+ 1) ,

which, setting the convention d(0) = 0, can be assumed valid for j = 0 as well. We can thus
iterate this to get

d(s) ≤ δ−1D
(
1 + δ−1(s− 1) + δ−2(s− 1)(s− 2) + · · ·+ δ−(s−1) · (s− 1)!

)
≤ δ−1D

(
s · δ−(s−1) · (s− 1)!

)
= δ−ss!D .

Since s ≤ N − 2, we get d(s) ≤ δ2−N (N − 2)!D, so combining with (8.8), for any s ≤ σ we
have

max
j

min
i∈I(s)

dist(αi ∩B1, αj ∩B1) ≤ sd(s) ≤ (N − 2)d(s) ≤ δ2−N (N − 1)!D .

It is therefore the case that (8.1) holds with I = I(σ).
Next, (8.2) certainly holds with I = I(σ) by construction if |I(σ)| ≥ 3, since then the

procedure stopped due to the fact that (8.5) fails. We thus have to show that (8.2) holds when
|I(σ)| = 2. In this case observe that our procedure guarantees that

max
i<j∈I(σ)

dist(αi ∩B1, αj ∩B1) = max
i<j

dist(αi ∩B1, αj ∩B1) , (8.9)

which shows that (8.3) holds in general. But then, as |I(σ)| = 2 we certainly have

min
i<j∈I(σ)

dist(αi ∩B1, αj ∩B1) = max
i<j∈I(σ)

dist(αi ∩B1, αj ∩B1)

and so combining this with (8.9), using assumption (ii) and the fact that we have already
proved (8.1), we have

D +max
j

min
i∈I(σ)

dist(αi ∩B1, αj ∩B1) ≤ D + ΓD = (1 + Γ)D

≤ (1 + Γ)εmax
i<j

dist(αi ∩B1, αj ∩B1)

= δ min
i<j∈I(σ)

dist(αi ∩B1, αj ∩B1) ,

proving (8.2) in this case also (we have used that ε = (1 + Γ)−1δ here). □

We now iteratively apply Lemma 8.2 to a cone S comprised of planes {α1, . . . , αN} as in
Assumption 8.1, getting a finite family of subcollections of the integers {1, . . . , N} leading
to a family of simpler cones, in the following fashion. The collections of planes after each
application of Lemma 8.2 can be thought of as “layers”, which are subcollections of a starting
one. Moreover, when we fix plane in a certain layer, the closest one among those of the previous
layers is much closer than the minimum distance between any pair of planes belonging to these
previous layers. What we end up with is that each plane we throw away when moving from
one layer to the next is a distance comparable to the minimal distance in the original layer,
whilst for the last layer we have comparability between the maximum and minimum distances
of the planes.

Lemma 8.3 (Layer subdivision). For every integer N ≥ 2 and every 0 < δ ≤ 1, there is
η = η(δ,N) > 0 with the following properties. Let S and α1, . . . , αN be as in Assumption 8.1.
Then, there is κ ∈ N and subcollections I(0) ⊋ I(1) ⊋ · · · ⊋ I(κ) of the integers {1, . . . , N},
each of cardinality at least 2 and with I(0) = {1, . . . , N}, so that the numbers

m(s) := min
i<j∈I(s)

dist(αi ∩B1, αj ∩B1) (8.10)
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d(s) := max
i∈I(0)

min
j∈I(s)

dist(αi ∩B1, αj ∩B1) (8.11)

M(s) := max
i<j∈I(s)

dist(αi ∩B1, αj ∩B1) (8.12)

satisfy the following requirements:

(i) M(κ) = M(0);
(ii) ηM(κ) ≤ m(κ);
(iii) d(s) ≤ δm(s) and ηd(s) ≤ m(s− 1) for every 1 ≤ s ≤ κ;
(iv) m(s− 1) ≤ δm(s) for every 1 ≤ s ≤ κ.

Proof. Let 0 < δ ≤ 1. We fix η > 0 such that η ≤ ε, where ε is the constant in Lemma 8.2
corresponding to δ/N in place of δ. In particular, Nη ≤ Γ−1, where Γ is again as in Lemma
8.2 with δ replaced by δ/N .

If ηM(0) ≤ m(0), we set κ = 0 and obviously the Lemma holds. Otherwise, we inductively
apply Lemma 8.2 with D = m(s − 1) to produce I(s) from I(s − 1), as long as ηM(s − 1) >
m(s− 1). We wish to check that the conclusions of the lemma hold for this particular choice
of subcollections. The fact that the sequence of sets is strictly decreasing and each set has
cardinality at least two are obvious. Property (i) is immediate from (8.3) of Lemma 8.2,
and (iv) is immediate from (8.2), since we are taking D = m(s − 1). Property (ii) holds by
construction, as the process must terminate in finite time; at worst, when κ = N − 2 and
|I(κ)| = 2. Moreover, by (8.2) of Lemma 8.2 we have the inequality

max
i∈I(s−1)

min
j∈I(s)

dist(αi ∩B1, αj ∩B1) ≤
δ

N
m(s) .

for every s = 1, . . . , κ (recall that when generating I(s), we are applying Lemma 8.2 with
I(s− 1) in place of {1, . . . , N}). But the triangle inequality then gives

d(s) ≤ δ

N
(m(1) + · · ·+m(s)) .

Since m(t) ≤ m(s) for all 1 ≤ t < s, and κ ≤ N − 2, we therefore must have d(s) ≤ δm(s) for
every s, proving the first inequality in (iii). Finally, observe that by (8.1) of Lemma 8.2, we
also have

max
i∈I(s−1)

min
j∈I(s)

dist(αi ∩B1, αj ∩B1) ≤ Γm(s− 1)

for s = 1, . . . , κ, and thus by the same triangle inequality argument as above, we achieve
d(s) ≤ NΓm(s − 1) for every s. Hence, recalling that Nη ≤ Γ−1, we achieve the second
inequality of (iii). □

8.2. Graphical parameterizations for T over S. The aim of this part is to efficiently
parameterize area-minimizing currents over cones S as in Definition 2.3 satisfying the additional
pairwise Morgan angle comparability condition (ii) outlined in the introduction of Section 8.
We recall that we are working under the Assumption 2.1 throughout. Moreover, recall the sets
C (Q) and P as in Definition 2.3 and the L2 based excesses of Definition 2.4.

The important concept of a “balanced cone” is given in the following definition.

Definition 8.4. Let S ∈ C (Q), M ≥ 1, and let α1, . . . , αN be the N distinct m-dimensional
planes forming S. We say that S is M -balanced if for every i ̸= j the inequality

θ2(αi, αj) ≤ Mθ1(αi, αj) (8.13)

holds for the two Morgan angles of the pair αi, αj .

Observe that the condition is empty when S ∈ P. Moreover, if we say that a cone S =
α1 ∪ · · · ∪ αN ∈ C (Q) is M -balanced for some M > 0, we will implicitly be assuming that all
the αi are distinct. Loosely speaking, we are interested in balanced cones because two planes
within a balanced cone can only degenerate to a single plane, and not to two planes meeting
along an (n− 1)-dimensional axis.

We will give two different graphical approximation results: a series of “crude approximation”
results, followed by a series of “refined approximation” results.
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8.3. Crude approximation statements. Here we will give the statements of the crude
approximation results; in the next section, we will prove all of them. The key starting point is
the following splitting lemma. We recall the notation

σ(S) := min
i<j

dist(αi ∩B1, αj ∩B1).

Lemma 8.5 (Crude splitting). For every Q,m, n, n̄ ∈ N and every M > 0, ρ, η > 0, there are
constants δ = δ(Q,m, n, n̄,M, ρ, η) > 0 and ϱ = ϱ(Q,m, n, n̄,M, ρ, η) > 0 with the following
property. Let T be as in Assumption 2.1 with ∥T∥(B4) ≤ (Q + 1

2 )4
mωm. Assume that 2 ≤

N ≤ Q, that S = α1 ∪ · · · ∪ αN ∈ C (Q) is M -balanced, and∫
B4\Bρ(V )

dist2(p,S) d∥T∥(p) +A2 ≤ δ2σ(S)2 =: δ2σ2 , (8.14)

where V = V (S) is the spine of S. Then the following properties hold:

(a) The sets Wi := (B4 \Bρ(V )) ∩ {dist(·, αi) < ϱσ} are pairwise disjoint;

(b) spt(T ) ∩B4−η \Bρ+η(V ) ⊂
⋃

i Wi.

From the above lemma, the tilt-excess bound from Theorem 3.2, and Almgren’s strong
Lipschitz approximation over planes ([11, Theorem 1.4]), we can then conclude the following,
where we use heavily the notation of [11, Theorem 1.4] (in particular, if u is a Lipschitz multi-
valued map, gr (u) will denote its set-theoretic graph and Gu the current naturally induced by
it).

Proposition 8.6. Let T , Wi, and all associated notation be as in Lemma 8.5. Consider for
each i ∈ {1, . . . , N} the regions Ωi := (B4−2η ∩ αi) \Bρ+η(V ) and Ωi := B4−η ∩ p−1

αi
(Ωi). Set

Ti := T (Wi ∩Ωi) and

Ei :=

∫
B4\Bρ(V )

dist2(p, αi) d∥Ti∥(p)

Then, there are non-negative integers Q1, . . . , QN with
∑

i Qi ≤ Q satisfying the following
properties:

(a) ∂Ti Ωi = 0;
(b) αi can be appropriately oriented so that (pαi)♯Ti = QiJΩiK;
(c) The following estimate holds

dist2(q, αi) ≡ |p⊥
αi
(q)|2 ≤ CEi + CA2 ∀q ∈ spt(Ti) ∩Ωi ; (8.15)

(d) For all i with Qi ≥ 1, there are Lipschitz multi-valued maps ui : Ωi → AQi
(α⊥

i ) and
closed sets Ki ⊂ Ωi such that gr(ui) ⊂ Σ, Ti p−1

αi
(Ki) = Gui

p−1
αi

(Ki), and the
following estimates hold:

∥ui∥2∞ + ∥Dui∥2L2 ≤ C(Ei +A2) (8.16)

Lip (ui) ≤ C(Ei +A2)γ (8.17)

|Ωi \Ki|+ ∥T∥(Ωi \ p−1
αi

(Ki)) ≤ C(Ei +A2)1+γ ; (8.18)

(e) Qi = 0 if and only if Ti = 0;
(f) Finally, if in addition we have the “reverse excess” estimate∫

S∩B4−2η\Bρ+2η(V )

dist2(p, spt(T )) dHm(p) ≤ δ2σ2 , (8.19)

then Qi ≥ 1 for every i.

Here, γ = γ(Q,m, n, n̄) > 0 and C = C(Q,m, n, n̄) > 0;

In several situations we will need to ensure that
∑

i Qi = Q in Proposition 8.6. This conclu-
sion needs however an additional assumption, as well as smallness of the tubular neighborhood
radius ρ of the spine. Depending on the situation we can guarantee this either by using (1)
the existence of a point of large density; or (2) the existence of a region with sufficiently large
mass.
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Lemma 8.7. There exists ρ∗ = ρ∗(Q,m) ∈ (0, 1) such that, if we assume that T satisfies the
hypotheses of Lemma 8.5 with ρ ≤ ρ∗ and either:

(a) {Θ(T, ·) ≥ Q} ∩Bε(0) ̸= ∅ for a sufficiently small ε = ε(Q,m, n, n̄); or
(b) for some C∗ > 0, ρ∗ is sufficiently small also depending on C∗, and there is a closed

set Ω ⊂ B4 with non-empty interior that is invariant under rotation around V (c.f.
Definition 7.13) and for which ∥T∥(Ω) ≥ (Q− 1

2 )H
m(α1 ∩ Ω) ≥ C∗.

Then, if Qi is as in Proposition 8.6 and δ is sufficiently small, we have
∑

i Qi = Q.

We will only be applying Lemma 8.7 to specific choices of Ω, for which we may ensure that
Hm(α1 ∩ Ω) ≥ C∗ always holds for a specific choice of C∗ = C∗(Q,m) > 0. In particular a
suitable choice of ρ∗ = ρ∗(Q,m) will work whenever we will apply Lemma 8.7 in the rest of the
paper, without any additional assumptions involving C∗ in alternative (b). We will therefore
fix this choice of radius ρ∗ = ρ∗(Q,m) for the rest of the paper.

Finally, we remark that all the statements above can be suitably scaled and translated to
analogous statements where the initial domain B4 in Lemma 8.5 is replaced by an arbitrary
ball B4r(q).

An approximation statement analogous to Proposition 8.6 also holds in the much simpler
setting in which S consists of a single plane. This case is somewhat special because we cannot
identify a unique spine V and at the same time the number σ in Lemma 8.5 is ∞, hence the
smallness condition (8.14) would be empty. For this reason we state the proposition separately
even though it could be embedded as a special case of Proposition 8.6.

Proposition 8.8 (Crude approximation on a single plane). For every Q,m, n, n̄ ∈ N and
ρ, η > 0, there exist δ = δ(Q,m, n, n̄, ρ, η) > 0 and C = C(Q,m, n, n̄) with the following
property. Let T be as in Assumption 2.1 with ∥T∥(B4) ≤ (Q+ 1

2 )4
mωm. Assume S = α1 ∈ P,

V ⊂ α1 is an (m− 2)-dimensional subspace, and

E1 +A2 :=

∫
B4\Bρ(V )

dist(p,S)2 d∥T∥(p) +A2 ≤ δ2 . (8.20)

Set Ω1 := (B4−2η ∩ α1) \ Bρ+η(V ) and Ω1 := B4−η ∩ p−1
α1

(Ω1) and T1 := T Ω1 Then, there
is non-negative integer Q1 ≤ Q such that the following holds:

(a) ∂T1 Ω1 = 0
(b) α1 can be appropriately oriented so that (pα1

)♯T1 = Q1JΩ1K;
(c) The following estimate holds

dist2(q, α1) ≡ |q − pα1
(q)|2 ≤ CE1 + CA2 ∀q ∈ spt(T1) ∩Ω1 ; (8.21)

(d) There is a Lipschitz multi-valued map u1 : Ω1 → AQ1
(α⊥

1 ) and a closed set K1 ⊂ Ω1

such that gr(u1) ⊂ Σ, T1 p−1
α1

(K1) = Gu p−1
α1

(K1) and the following estimates hold:

∥u1∥2∞ + ∥Du1∥2L2 ≤ C(E1 +A2) (8.22)

Lip (u1) ≤ C(E1 +A2)γ (8.23)

|Ω1 \K1|+ ∥T∥(Ω1 \ p−1
α1

(K1)) ≤ C(E1 +A2)1+γ ; (8.24)

(e) Q1 = 0 if and only if T1 = 0;
(f) If ρ ≤ ρ∗ and one of conditions (a) and (b) in Lemma 8.7 holds then Q1 = Q.

Here, γ = γ(Q,m, n, n̄) > 0 and C = C(Q,m, n, n̄) > 0.

We also have an analogous scaled versions of the above where we replace B4(0) by an
arbitrary ball B4r(p) and all quantities are scaled accordingly.

We now prove all of the above results.

8.4. Proofs of Crude Approximation Results. We will prove Lemma 8.5, Proposition 8.6,
and Lemma 8.7. Proposition 8.8 then follows by the same arguments, and so we will leave the
details to the reader.
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Proof of Lemma 8.5. We remark that statement (a) of Lemma 8.5 holds as soon as ϱ is smaller
than an suitable constant which depends only on M,ρ, η (and the number of planes as well as
the dimensions). We fix any such ϱ, and claim that as soon as δ is small enough (b) holds as
well.

Indeed, to this end we may argue by contradiction: consider a sequence Tk of integral
currents and a sequence Σk of Riemannian submanifolds of Rm+n satisfying Assumption 2.1,
together with cones Sk ∈ C (Q) such that

(i) ∥Tk∥(B4) ≤ (Q+ 1
2 )ωm4m;

(ii) Sk = αk
1 ∪ · · · ∪ αk

N(k) ∈ C (Q) is M -balanced, where N(k) ≤ Q;

(iii) If we write σk := σ(Sk) and

Ek :=

∫
B4\Bρ(V (Sk))

dist2(p,Sk)d∥Tk∥(p) ,

we have σ−2
k (Ek +A2

k) → 0, where Ak corresponds to Σk;

(iv) There are points pk ∈ spt(Tk) ∩B4−η \Bρ+η(V (Sk)) such that dist(pk,Sk) ≥ ϱσk.

Observe that σk is a bounded sequence since 0 ≤ σk ≤ 1. Hence, up to the extraction of a
subsequence and after applying suitable rotations, we can assume that:

(v) V (Sk) is a fixed (m− 2)-dimensional plane V and N ≡ N(k) ≤ Q is a fixed integer;
(vi) Sk converges, locally in Hausdorff distance, to S ∈ C (Q) which is the union of N ′ ≤ N

distinct planes αi such that αi ∩ αj = V for all pairs i < j (note that we could have
N ′ = 1, in which case the latter condition here is vacuous);

(vii) Tk converges to an integral current T which is area-minimizing inB4 and obeys ∂T = 0;
(viii) spt(T ) ∩B4 \Bρ(V ) ⊂ S.

By the constancy theorem and the fact that ∂T = 0, it then follows that T B4 \ Bρ(V ) =∑
i Q̄iJαiK (B4 \Bρ(V )) where the Q̄i are integers. Orienting the αi suitably, we can assume

that Q̄i ≥ 0.
We also know that spt(Tk) converges locally in Hausdorff distance to spt(T ). In particular,

passing to a subsequence, the points pk converge to some point p which must lie in one of the
planes αj which form S. We denote by π0 this latter plane and observe that clearly |p| ≤ 4− η
whilst dist(p, V ) ≥ ρ+ η. For each fixed i, the sequence of planes αk

i must converge (locally in
Hausdorff distance) to some plane of S and, again upon extraction of a suitable subsequence
and relabelling, we may assume that there is an N0 ≤ N with the property that αk

i converges
to π0 when i ≤ N0, whilst it converges to some other plane of S when i > N0. Clearly we
know that N0 ≥ 1 by construction.

Now for a fixed parameter η̄ > 0, consider the currents T ′
k := Tk ((B4−η/2 \ Bρ+η(V )) ∩

{dist(·, π0) < η̄}) and the cones S′
k := αk

1 ∪ · · · ∪ αk
N0

. Observe that, if we choose η̄ sufficiently
small, the convergence properties outlined above imply that:

• ∂T ′
k = 0 in B4−η/2 \Bρ+η(V ) for all k sufficiently large;

• dist(q,Sk) = dist(q,S′
k) for all q ∈ spt(T ′

k) and all k sufficiently large;

• T ′
k converges to Q̄jJπ0 ∩B4−η/2 \Bρ+η(V )K, where 1 ≤ Q̄j ≤ Q is as above.

Now consider the cylinder C4r(p, π0), where p is the limit point as above and r is a geometric
constant. Observe that, upon choosing r suitably, in light of (iii), for all k sufficiently large
we can apply Corollary 3.3 to T ′

k in the cylinder C4r(p, π0) (which we may ensure is disjoint
from Bρ(V ) provided that we take 4r ≤ η). We can therefore decompose T ′

k Cr(p, π0) as
T ′
k,1 + · · ·+ T ′

k,N0
with the property that

dist(q, αk
i ) = dist(q,S′

k) = dist(q,Sk) ∀q ∈ spt(T ′
k,i) . (8.25)

Moreover, for each fixed i, the currents T ′
k,i converge to QiJBr(p, π0)K, for some non-negative

integers Qi which obey
∑

i Qi = Q̄j . Consider now the points pk,i := αk
i ∩ p−1

π0
(p) (which

exist for all k sufficiently large) and the cylinders Ck,i := Cr/2(pk,i, α
k
i ). The latter cylinder

is converging to Cr/2(p, π0) and hence in particular, for k large enough, we know that Ck,i ∩
B1 ⊂ Cr(p, π0). Hence, ∂T ′

k,i Ck,i = 0 for k large enough because ∂T ′
k,i Cr(p, π0) = 0 and
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spt(T ′
k,i) are converging locally in Hausdorff distance to B̄r(p, π0). In particular, it follows that

(pαk
i
)♯T

′
k,i = Q′

iJBr/2(pk,i, α
k
i )K for some integersQ′

i ≥ 0 and that ∥T ′
k,i∥(Ck,i) → Qiωm2−mrm.

However, because of (8.25) we also have∫
Ci

dist2(q, αk
i ) d∥T ′

k,i∥(q) ≤ Ek .

We can now apply (a scaled version of) the L∞ estimate (3.3) from Theorem 3.2 to conclude
that

dist2(q, αk
i ) ≤ Cr−m−2Ek + Cr2A2 ≤ C(r−m−2 + r2)δ2σ2

k

for all q ∈ spt(T ′
k,i) ∩Cr/4(pk,i, α

k
i ). But the contradiction point pk must be contained in one

of the cylinders Cr/4(pk,i, α
k
i ) for k sufficiently large, and it is also contained in the support

of T ′
k =

∑
i T

′
k,i; we may pass to a subsequence to fix the i for which this is true. Hence, for k

large enough we must have the estimate

dist2(pk, α
k
i ) ≤ C(r−m−2 + r2)δ2σ2

k

where i is now fixed. But since r is fixed, it suffices to choose δ small enough to ensure
C(r−m−2 + r2)δ2 ≤ ϱ2/4 and contradict (iv) above; notice that δ indeed has the correct
dependencies. □

Proof of Proposition 8.6. First of all notice that the conclusions (a), (b), and the estimate
(c) all follow from the arguments in the proof of Lemma 8.5. The estimates in point (d) of
Proposition 8.6 then follow from the Lipschitz approximation of [11] and (3.2) of Theorem 3.2.

As for the conclusion (e), because for each i one has the identity

∥Ti∥(Ωi) = Qi|Ωi|+
1

2

∫
Ωi

|T⃗ − α⃗i|2 d∥Ti∥ ,

if we again apply the tilt-excess estimate (3.2) from Theorem 3.2, when Qi = 0 we must have

∥Ti∥(Ωi) ≤ Cδ2σ2 .

In particular, if r is the radius of the cylinders considered in the proof of Lemma 8.5, once δ
is sufficiently small, the monotonicity formula guarantees that ∥Ti∥(Br(q)) = 0 for every ball
Br(q) which is contained in Ωi (indeed, as soon as the mass ratio of Ti falls below 1, we get
a contradiction if Ti is not zero as Θ(Ti, q) ≥ 1 at every point q ∈ spt(Ti)). This then implies
conclusion (e).

As for (f), we easily conclude from the argument above that, if Qi = 0, then the distance of
any point q ∈ Ωi to spt(T ) must be at least min{ϱσ, r}. We thus infer∫

S∩B4\Bρ(V )

dist2(p, spt(T )) dHm(p) ≥ cmin{ϱ2σ2, r2}

for some geometric constant c. This obviously contradicts (8.19) if δ is small enough. This
completes the proof of Proposition 8.6. □

Proof of Lemma 8.7. We argue by contradiction, starting in an identical manner to that seen
in the proof of Lemma 8.5. Indeed, following the notation used there, it suffices to show the
limiting current T which obeys

T B4 \Bρ(V ) =
∑
i

Q̄iJαiK (B4 \Bρ(V ))

satisfies
∑

i Q̄i = Q for any ρ ≤ ρ∗(Q,m) sufficiently small, when we suppose that one of the
hypotheses (a) or (b) holds along the contradiction sequence (for suitable ε = εk ↓ 0 in the
case of (a) and suitable sets Ωk in the case of (b)).

First, note that from the monotonicity formula and convergence (namely that we have
weak−∗ convergence of the masses ∥Tk∥ to ∥T∥, where Tk are the currents as in the proof
of Lemma 8.5) we know ∥T∥(B3) ≤ (Q + 1

2 )3
mωm, which for sufficiently small ρ evidently

implies that we must have
∑

i Q̄i ≤ Q. Thus, we just need to show that
∑

i Q̄i ≥ Q when we
additional suppose the hypotheses from (a) or (b).
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Note next that we can cover B3 ∩ V by Cρ−(m−2) balls of radius ρ; if we double the radius
of each ball, we may then without loss of generality assume that they cover B3 ∩Bρ(V ) also.
But then the monotonicity formula for the mass ratios of T gives for any such ball Bi in this
cover,

∥T∥(Bi) ≤ Cρm∥T∥(B7/2) ≤ C(Q,m)ρm

and so
∥T∥(B3 ∩Bρ(V )) ≤ Cρm · ρ−(m−2) = Cρ2. (8.26)

Let us first suppose that the alternative (a) holds. Taking a sequence εk ↓ 0, for the sequence
of currents Tk from the proof of Lemma 8.5, we have a sequence of points pk ∈ Bεk with
Θ(Tk, pk) ≥ Q. Upper semi-continuity of the density guarantees that the limiting current
satisfies Θ(T, 0) ≥ Q, and so ∥T∥(B3) ≥ 3m ·Qωm, and hence ∥T∥(B3 \Bρ(V )) ≥ 3m ·Qωm −
Cρ2. But then in light of the structure of T , this directly implies that∑

i

Q̄i(3
mωm − 3m−2ω2ρ

2) ≥ 3m ·Qωm − Cρ2

and so since the Q̄i are non-negative integers if ρ ≤ ρ∗ = ρ∗(Q,m) is sufficiently small this
evidently implies that

∑
i Q̄i ≥ Q in this case.

If instead (b) holds, then we have ∥Tk∥(Ωk) ≥ (Q− 1
2 )H

m(αk
1∩Ωk) for each k and subsets Ωk

satisfying the given assumptions in (b). SinceHm(α1
k∩Ωk) ≥ C∗, we may pass to a subsequence

to ensure that Hm(α1
k ∩ Ωk) → C̃∗ ∈ [C∗, 4

mωm]. Again from the weak−∗ convergence of the
masses ∥Tk∥ to ∥T∥, using the rotational invariance of T around V in the region B4 \Bρ(V ),
we readily get(

Q− 1
2

)
C̃∗ ≤ lim

k→∞
∥Tk∥(Ωk) ≤ lim

k→∞
∥Tk∥(Ωk \Bρ(V )) + Cρ2 ≤

∑
i

Q̄iC̃∗ + Cρ2.

Note that in the second inequality we use a mass bound analogous to the one in (8.26), which
one may observe still holds for Tk in Ωk ∩Bρ(V ) since Ωk is closed and contained in B4. Thus,
provided ρ ≤ ρ∗ = ρ∗(Q,m,C∗) is sufficiently small, as

∑
i Q̄i is always an integer this gives

that
∑

i Q̄i ≥ Q, completing the proof. □

8.5. Refined approximation. We now come to the second graphical approximation, which
follows a much more refined procedure, using the layers introduced in Lemma 8.3. For the
reader acquainted with [32], this should be compared to [32, Remark (3) in Section 8, and
Section 10].

Assumption 8.9 (Assumptions for the refined approximation). Suppose T and Σ are as in
Assumption 2.1 and ∥T∥(B4) ≤ 4m(Q+ 1

2 )ωm. Suppose S = α1∪· · ·∪αN is a cone in C (Q)\P
which is M -balanced, where M > 0 is a given fixed constant, and V is the spine of S. For a
sufficiently small constant ε = ε(Q,m, n, n̄,M) whose choice will be fixed in Assumption 8.11
below, suppose that {Θ(T, ·) ≥ Q} ∩Bε(0) ̸= ∅ and (cf. Proposition 8.6) suppose that

E(T,S,B4) +A2 ≤ ε2σ(S)2 . (8.27)

Recall that E(T,S,B4) is a two-sided L2 excess between T and S.

8.5.1. Whitney decomposition. Let L0 be the closed cube in V with side-length 2√
m−2

cen-

tered at 0 (if we make the identification V = Rm−2, then we can write explicitly L0 =
[− 1√

m−2
, 1√

m−2
]m−2) and consider the set

R := {p : pV (p) ∈ L0 and 0 < |pV ⊥(p)| ≤ 1} . (8.28)

We recall here that we are assuming m ≥ 3 (cf. Assumption 2.1).
Obviously R is invariant under rotations around V . We next decompose R into a countable

family of closed sets which are also invariant under rotations around V . Firstly, for every
ℓ ∈ N denote by Gℓ the collection of (m − 2)-dimensional cubes in the spine V obtained by

subdividing L0 into 2ℓ(m−2) cubes of side-length 21−ℓ
√
m−2

, and we let G =
⋃

ℓ Gℓ. Note that we

can generate Gℓ+1 from Gℓ by bisecting every face of every cube in Gℓ. We write L for a cube
in G, so L ∈ Gℓ for some ℓ ∈ N. When we want to emphasize the dependence of the integer ℓ
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on L we will write ℓ(L) and we will call it the generation of L. If L ⊂ L′ and ℓ(L′) = ℓ(L)+ 1,
we then call L′ the parent of L, and L a child of L′, while more generally, when ℓ(L′) > ℓ(L),
we say that L′ is an ancestor of L and L a descendant of L′.

For every L ∈ Gℓ we let

R(L) := {p : pV (p) ∈ L and 2−ℓ−1 ≤ |pV ⊥(p)| ≤ 2−ℓ} .
Observe that R(L0) is not the region R (as L0 ∈ G0 so ℓ(L0) = 0), but rather R =

⋃
L∈G R(L).

For each L ∈ Gℓ we let yL ∈ V be its center and denote by B(L) the ball B22−ℓ(L)(yL) (in
Rm+n) and by Bh(L) the set B(L) \ Bρ∗2−ℓ(L)(V ), where ρ∗ is as in Lemma 8.7. It will be
convenient to consider slight enlargements of the sets R(L). More precisely, given a positive
number 1 ≤ λ ≤ 3

2 and L ∈ Gℓ we will denote by λL the cube concentric to L in V with

side-length λ21−ℓ
√
m−2

and λR(L) the set

λR(L) := {p : pV (p) ∈ λL and λ−12−ℓ−1 ≤ |pV ⊥(p)| ≤ λ2−ℓ} .
In fact, in the rest of the paper we will use some fixed choices of λ which depend only on
the dimension and which are rather close to 1. Finally, an important role will be played by
the “planar cross sections” of the sets R(L) and λR(L), namely the intersections of these sets
with the planes αi forming the cone S; these intersections will be denoted by Li and λLi,
respectively.

The following elementary lemma, whose proof is left to the reader, summarizes some im-
portant geometric properties of the sets just introduced, and verifies that {R(L) : L ∈ G} is
indeed a Whitney decomposition towards V . With a slight abuse of terminology we will talk
about the interior of L and Li meaning their interiors in the relative topology of V and αi,
respectively. In order to help the reader visualize the content of Lemma 8.10 we refer to Figure
1 below.

Lemma 8.10. Consider the collection of cubes G introduced above and its elements L. Then
the following properties hold:

(i) Given any pair of distinct L,L′ ∈ G the interiors of R(L) and R(L′) are pairwise
disjoint and R(L) ∩ R(L′) ̸= ∅ if and only if L ∩ L′ ̸= ∅ and |ℓ(L) − ℓ(L′)| ≤ 1, while
the interiors of L and L′ are disjoint if ℓ(L) ≤ ℓ(L′) and L′ is not an ancestor of L.

(ii) The union of R(L) ranging over all L ∈ G is the whole set R.
(iii) The diameters of the sets L, R(L), λL, λR(L), Li, λLi, and Bh(L) are all comparable

to 2−ℓ(L) and, with the exception of L, λL, all comparable to the distance between an
arbitrarily element within them and V ; more precisely, any such diameter and distance
is bounded above by C2−ℓ(L) and bounded below by C−12−ℓ(L) for some constant C
which depends only on m and n.

(iv) There is a constant C = C(m,n) such that, if Bh(L)∩Bh(L′) ̸= ∅, then |ℓ(L)−ℓ(L′)| ≤
C and dist(L,L′) ≤ C2−ℓ(L). In particular, for every L ∈ G, the subset of L′ ∈ G for
which Bh(L) and Bh(L′) have nonempty intersection is bounded by a constant.

(v)
∑

L∈Gℓ
Hm−2(L) = C(m) for any ℓ and therefore, for any κ > 0,∑

L∈G
2−(m−2+κ)ℓ(L) ≤ C(κ,m) . (8.29)

8.5.2. Layering and choice of the parameters. We now fix a δ̄ > 0 (whose choice will specified
below in Assumption 8.11) and apply the layering subdivision Lemma 8.3 with this δ̄ in place
of δ therein, to identify a family of sub-cones S = S0 ⊋ S1 ⊋ · · · ⊋ Sκ where Sk consists of the
union of the planes αi with i ∈ I(k) for the set of indices I(k) given by Lemma 8.3. We then
distinguish two cases:

(a) if maxi<j∈I(κ) dist(αi ∩B1, αj ∩B1) < δ̄, we define an additional cone Sκ+1 consisting
of a single plane, given by the smallest index in I(κ) and we set κ̄ := κ + 1 and
I(κ̄) := {min I(κ)};

(b) otherwise, we select no smaller cone and set κ̄ := κ.

We next detail the choice of the various parameters involved in our discussion.
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αi

α1

V

L

L1

Li

R(L)

Figure 1. An illustration of the Whitney decomposition of R (illustrated on α1). The

subspace V is represented by the thick line joining the two planes, with a representation

cube L showing, with the corresponding sets R(L) (in red) and Li (in blue). The set R(L)
is obtained by rotating the given cube L1 around V in the ambient (m + n)-dimensional

space, a portion of which is shown.

Assumption 8.11 (Selection of the parameters). Firstly, we denote by δ∗ the minimum of
the parameters δ needed to ensure that Proposition 8.6, Lemma 8.7, and Proposition 8.8 are
applicable to all the cones Sk, k ∈ {0, 1, . . . , κ̄}: note that all the Sk are M -balanced by
construction and that therefore δ∗ = δ∗(m,n, n̄, Q,M) > 0, and in particular its choice does
not depend on δ̄. Subsequently, we fix a parameter τ = τ(m,n, n̄, Q,M) > 0 smaller than
δ∗

C for some large constant C = C(m,n, n̄, Q) > 0. The parameter δ̄ leading to the layering

S0 ⊋ S1 ⊋ · · · ⊋ Sκ̄ is then chosen to be much smaller than τ ; so δ̄ = δ̄(m,n, n̄, Q,M) > 0. In
particular, δ̄ ≤ δ∗. Finally, ε = ε(m,n, n̄, Q, δ∗, δ̄, τ) > 0 will be chosen even smaller than δ̄.

8.5.3. Outer, central, and inner regions. We will next subdivide the cubes in G using the
following criterion. In order to simplify our notation we introduce the shorthand:

E(L, k) := 2(m+2)ℓ(L)

∫
Bh(L)

dist2(q,Sk) d∥T∥(q) .

For every k ∈ {0, 1, . . . , κ̄}, recall that I(k) gives the subset of {1, . . . , N} such that Sk =⋃
i∈I(k) αi. If I(k) consists of more than one element, we set

s(k) := min
i<j∈I(k)

dist(αi ∩B1, αj ∩B1) , (8.30)

while we set s(k) := δ̄ if I(k) is a singleton.

Definition 8.12. Let L ∈ G. We say that:

(i) L is an outer cube if E(L′, 0) ≤ τ2s(0)2 for every ancestor L′ of L (including L).
(ii) L is a central cube if it is not an outer cube and if mink E(L′, k)/s(k)2 ≤ τ2 for every

ancestor L′ of L (including L).
(iii) L is an inner cube if it is neither an outer nor a central cube, but its parent is an outer

or a central cube.

The corresponding families of cubes will be denoted by Go, Gc, and Gin, respectively. Observe
that any cube L ∈ G is either an outer cube, or a central cube, or an inner cube, or a descendant
of inner cube.

We correspondingly define three subregions of R:

• The outer region, denoted Ro, is the union of R(L) for L varying over elements of Go.
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• The central region, denoted Rc, is the union of R(L) for L varying over elements of Gc.
• Finally, the inner region, denoted Rin, is the union of R(L) for L ranging over the
elements of G which are neither outer nor central cubes.

Alternatively, the inner region can be defined as the union of R(L) for L ranging over the inner
cubes and their descendants. For a visual illustration of the subdivision and the corresponding
cubes we refer to Figure 2.

o

o

o
o

c

c

c

c

c

c

in

in
in
in
in

in
in

in
in

in

in

in

Figure 2. An example of a possible labeling of the cubes and of a corresponding subdi-

vision of R. The outer region is white, while the central region is lightly shadowed and the

inner region is shadowed. The labels o, c, and in identify rotationally invariant sets R(L)
corresponding to cubes L which are, respectively, outer, central, and inner cubes. Note that

descendants of inner cubes are not inner cubes, even though the corresponding rotationally

invariant regions are included in the inner region.

The following lemma will be pivotal to define our refined approximation.

Lemma 8.13. Let T and S be as in Assumption 8.9 and assume the parameters δ̄, δ∗, τ ,

and ε satisfy Assumption 8.11 and the ratios ε
δ̄
, δ̄
τ , and τ

δ∗ are smaller than a constant c =
c(Q,m, n, n̄) > 0. Then

(i) L0 ∈ Go and moreover, for every choice of τ and ℓ ∈ N there is a constant c̄ =
c̄(Q,m, n, n̄, τ, ℓ) > 0 such that, if ε < c̄, then Gℓ ⊂ Go.

(ii) For every L ∈ Gc there is an index k(L) ∈ {0, . . . , κ̄} such that

E(L, k) ≤ τ2s(k)2 (8.31)

for all k ≥ k(L) while for all k < k(L) we have

E(L, k) > τ2s(k)2 . (8.32)

(iii) For every L ∈ Go we have that (8.31) holds for k = 0 (and thus for every k), whilst
for every L ∈ Gin we have that (8.32) holds for every k.

(iv) There is a constant C̄ = C̄(Q,m, n, n̄, δ̄, δ∗, τ) > 0 such that

E(L, k(L)) ≤ C̄E(L, 0) ∀L ∈ Gc (8.33)

1 ≤ C̄E(L, 0) ∀L ∈ Gin. (8.34)

(v) For every L ∈ Go, Proposition 8.6 is applicable to the current TyL,2−ℓ(L) and the cone
S0, whilst for every L ∈ Gc either Proposition 8.6 or Proposition 8.8 is applicable to
the current TyL,2−ℓ(L) and the cone Sk(L) (depending on whether Sk(L) consists of at
least two planes or is a single plane).
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Given Lemma 8.13 it is convenient to introduce the convention k(L) = 0 if L ∈ Go and to set
E(L) := E(L, k(L)). Note however that k(L) might be indeed equal to 0 for several elements
of Gc as well.

Proof. First of all, for any L ∈ G we have, since Bh(L) ⊂ B4, that

E(L, 0) ≤ C2(m+2)ℓ(L)E(T,S,B4) ≤ C2(m+2)ℓ(L)ε2s(0)2 ,

where the second inequality comes from (8.27), and where C depends only on m. In particular
statement (i) in the Lemma follows immediately, as for any L ∈ Gℓ we have an upper bound
on ℓ(L) and so choosing C2(m+2)ℓε2 < τ2 we get the desired inequality.

Regarding statement (ii), notice that

E(L, k) ≤ C dist2(Sk−1,Sk) + CE(L, k − 1) (8.35)

for each k = 0, . . . , κ̄ and for some constant C = C(m,n). Recalling that dist(Sk−1,Sk) ≤ δ̄s(k)
and that s(k − 1) ≤ δ̄s(k) (by Lemma 8.3 (iii) and (iv)), we immediately get

E(L, k) ≤ C

(
1 +

E(L, k − 1)

s(k − 1)2

)
δ̄2s(k)2 .

In particular, if δ̄
τ is smaller than an appropriate geometric constant, we infer that the inequality

E(L, k − 1) ≤ τ2s(k − 1)2 implies E(L, k) ≤ τ2s(k)2. But then statement (ii) holds if we let
k(L) be the smallest integer k for which E(L, k) ≤ τ2s(k)2, whose existence is guaranteed by
the assumption that L ∈ Gc. The same argument implies immediately the statement (iii) (as
if L ∈ Go then we know the minimum integer k(L) above is k(L) = 0, whilst if L ∈ Gin the
minimum over all k of the ratio E(L, k)/s(k)2 is larger than τ2).

Now recalling the second half of Lemma 8.3(iii), we have

dist(Sk−1,Sk) ≤ η−1s(k − 1) ,

where η depends on N and δ̄. In particular, recalling (8.35), if E(L, k − 1) > τ2s(k − 1)2 we
conclude the inequality

E(L, k) ≤ C

η2
s(k − 1)2 + CE(L, k − 1) ≤ C(1 + (ητ)−2)E(L, k − 1) .

If L ∈ Gc we can apply the latter for k = 1, . . . , k(L) to conclude (8.33). If L ∈ Gin we can
apply it for every k, combined with (8.32), to conclude that

s(κ̄)2 ≤ CE(L, 0) .

We now distinguish two cases:

• I(κ̄) consists of a single element; in this case s(κ̄) = δ̄.
• I(κ̄) consists of more than one element; in this case (from Lemma 8.3(ii) and the
defining property (b) of κ̄ in Section 8.5.2)

s(κ̄) ≥ η max
i<j∈I(κ̄)

d(αi ∩B1, αj ∩B1) ≥ ηδ̄ .

In both cases we conclude that s(κ̄) is bounded away from 0 and thus (8.34) holds, proving
(iv).

As for (v), observe that for L ∈ Go ∪ Gc,∫
B4\Bρ∗ (V )

dist2(q,Sk(L)) d∥TyL,2−ℓ(L)∥(q) = E(L, k(L)) ≤ τ2s(k(L))2 ,

where we have used (iii). Moreover, s(0) ≤ s(k) for all k and A2 ≤ ε2s(0)2 by (8.27). Hence, if
we denote by AL the supremum norm of the second fundamental form of the rescaled manifold
ΣyL,2−ℓ(L) , we then have∫

B4\Bρ∗ (V )

dist2(q,Sk(L)) d∥TyL,2−ℓ(L)∥(q) +A2
L ≤ C(τ2 + 2−2ℓ(L)ε2)s(k)2 .

Recalling the definition of s(k) it suffices to guarantee that C(τ2+ε2) ≤ (δ∗)2 to guarantee that
Proposition 8.6 is applicable in case I(k) consists of more than one element. Otherwise we know
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that s(k) = δ̄ and the same smallness condition guarantees the applicability of Proposition 8.8.
This completes the proof. □

8.5.4. Local approximations. For each outer and central cube L, from Lemma 8.13(v) we apply
Proposition 8.6 or Proposition 8.8 to the current TyL,2−ℓ(L) and the cone Sk(L) (the choice of
which proposition to apply depends only on whether |I(k(L))| > 1 or not). We thus gain a
corresponding Lipschitz approximation for TyL,2−ℓ(L) on the planar domains (B2 \B2ρ∗(V )) ∩
Sk(L). By translating and scaling back we gain corresponding Lipschitz approximations of the

current T defined over the open domains Ω(L) := (B21−ℓ(L)(yL) \ Bρ∗21−ℓ(L)(V )) ∩ Sk(L) of
Sk(L).

We set Ωi(L) := Ω(L)∩αi and denote by uL,i the corresponding multi-valued function given
above and by QL,i the number of values uL,i takes. We moreover denote by Ωi(L) the sets

2−ℓ(L)Ωi + yL and by Ki(L) the sets 2−ℓ(L)KL,i + yL, with Ωi and KL,i given by Proposition
8.6 (or Proposition 8.8) for TyL,2−ℓ(L) . These objects are defined only for the indices i belonging
to the collection I(k(L)), but we may extend our notation to allow also the case QL,i = 0, in
which the map uL,i does not exist (these will be the indices of planes not contained in Sk(L));
this results in a slight abuse of our terminology and notation. The collection of corresponding
multi-valued functions (ranging over all i) corresponding to a given L will be denoted by uL,
and we will call them “local approximations of T related to L”. The following is the key
proposition detailing the refined approximation.

Proposition 8.14 (Refined approximation). Let T , Σ and S be as in Assumption 8.9, and
suppose that the assumptions of Lemma 8.13 hold. There exists 1 < λ = λ(m) ≤ 3

2 and

C̄ = C̄(Q,m, n, n̄, δ∗) > 0, not depending on δ̄, τ , and ε, such that the local approximations
uL,i satisfy the following properties.

(i) For every fixed i ∈ {1, . . . , N}, QL,i is the same positive integer for every L ∈ Go.
(ii)

∑
i QL,i = Q for every L ∈ Go ∪ Gc.

(iii) For every L ∈ Go ∪ Gc we have spt(T ) ∩ λR(L) ⊂
⋃

i Ωi(L) and

22ℓ(L)|q − pαi
(q)|2 ≤ C̄(E(L) + 2−2ℓ(L)A2) ∀q ∈ spt(T ) ∩Ωi(L) ; (8.36)

(iv) For L ∈ Go ∪ Gc, if we set

TL,i := T Ωi(L) ∩
{
dist(·, αi) < C̄2−ℓ(L)(E(L) + 2−2ℓ(L)A2)1/2

}
(with C̄ larger than the constant in the estimate (8.36)), then, for Ki(L) = 2−ℓ(L)Ki+
yL ⊂ Ωi(L) as above,

TL,i p−1
αi

(Ki(L)) = GuL,i
p−1
αi

(Ki(L)) ,

gr (uL,i) ⊂ Σ, and the following estimates hold:

22ℓ(L)∥uL,i∥2∞ + 2mℓ(L)∥DuL,i∥2L2 ≤ C̄(E(L) + 2−2ℓ(L)A2) (8.37)

Lip (uL,i) ≤ C(E(L) + 2−2ℓ(L)A2)γ (8.38)

|Ωi(L) \Ki(L)|+ ∥TL,i∥(Ωi(L) \ p−1
αi

(Ki(L))) ≤ C̄2−mℓ(L)(E(L) + 2−2ℓ(L)A2)1+γ . (8.39)

(v) For every L ∈ Go∪Gc, Θ(T, ·) ≤ maxi QL,i+
1
2 on R(L). In particular, Θ(T, ·) ≤ Q− 1

2
on R(L) if L ∈ Go.

We will prove Proposition 8.14 in tandem with the next lemma. Consider a domain U ⊂
λR(L) which is invariant under rotations around V and set Ui := αi ∩ U . We wish to replace
T U with the union of the portions of the graphs of the functions uL,i lying over Ui. This
will generate errors of two types. One type is due to the fact that spt(T )∩U is not completely
contained in the union of the graphs of the functions uL,i: this will be taken care of by
Proposition 8.14 above. A second type of error is due to the fact that, even though the
estimate (8.36) holds, if we define

Ũ :=
⋃
i

{q : pαi
(q) ∈ Ui and |q − pαi

(q)| ≤ C̄2−ℓ(L)(E(L) + 2−2ℓ(L)A2)1/2} (8.40)
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(where C̄ is assumed to be the constant of estimate (8.36)), there still is a difference between

spt(T ) ∩ Ũ and spt(T ) ∩ U . The purpose of the following lemma is to estimate errors of this
second type:

Lemma 8.15. Under the assumptions of Lemma 8.13, consider L ∈ Go ∪ Gc, let U ⊂ λR(L)
be a set invariant under rotations around V whose cross-sections Ui = U ∩ αi are Lipschitz
open sets or the closures of Lipschitz open sets, and define Ũ as in (8.40). Then

∥T∥(U \ Ũ) + ∥T∥(Ũ \ U) ≤ C̄
(
E(L) + 2−2ℓ(L)A2

)
2−ℓ(L)Hm−1(∂Ui)

+ C̄2−mℓ(L)
(
E(L) + 2−2ℓ(L)A2

)1+γ

(8.41)

where the constant C̄ depends on the parameters m,n, n̄, Q, δ̄, and the Lipschitz regularity of
the boundary of the rescaled cross-section 2ℓ(L)Ui.

Remark 8.16. We will in fact only apply this Lemma to sets U whose cross-sections Ui =
U ∩ αi have a limited number of shapes, up to the rescaling factor 2−ℓ(L). In particular, in
these cases the corresponding constant C̄ in the estimate depends only upon m,n, n̄, Q, and δ̄.

Proof of Proposition 8.14 and of Lemma 8.15. We will prove the two statements at the same
time. We start by showing that the estimates of the statements (iii) and (iv) of Proposition
8.14 hold. Fix L ∈ Go ∪ Gc, let k = k(L), and ℓ = ℓ(L). In order to simplify our notation we
write T ′ := TyL,2−ℓ and Σ′ := ΣyL,2−ℓ . The supremum norm of the second fundamental form

of Σ′ is clearly 2−ℓA. On the other hand, by scaling invariance,∫
B4\Bρ∗ (V )

dist2(q,Sk) d∥T ′∥(q) = E(L) . (8.42)

Let us assume that I(k) consists of more than one element; in particular, by Lemma 8.13(v),
we can apply Proposition 8.6 to T ′, Σ′ and Sk. The argument is entirely analogous when I(k)
consists of one element except instead we apply Proposition 8.8, and so we will just focus on
the former case. We consider the domains Ωi given by Proposition 8.6 and recall that from
Lemma 8.5 it follows that

spt(T ′) ∩B3 \B2ρ∗(V ) ⊂
⋃
i

Ωi ,

In turn this rescales to the statement

spt(T ) ∩B3·2−ℓ(yL) \Bρ∗21−ℓ(V ) ⊂
⋃
i

Ωi(L) .

For an appropriate choice of the constant λ (i.e. sufficiently close to 1),

λR(L) ⊂ B3·2−ℓ(yL) \Bρ∗21−ℓ(V )

and so the first claim of Proposition 8.14(iii) follows. As for the height estimate in (iii),
Proposition 8.6(c) and (8.42) gives

|q − pαi(q)|2 ≤ C(E(L) + 2−2ℓA2) ∀q ∈ Ωi ∩ spt(T ′)

which scales to

|q − pαi
(q)|2 ≤ C2−2ℓ(E(L) + 2−2ℓA2) ∀q ∈ Ωi(L) ∩ spt(T ) ,

i.e. (8.36). This proves (iii).
The first two claims of Proposition 8.14(iv) follow directly from the corresponding claims in

Proposition 8.6. As for the estimates, if we denote by ui and Ki the multi-valued functions ap-
proximating T ′

i := T ′ Ωi ∩Wi and the corresponding “coincidence sets” given by Proposition
8.6, then, taking into account (8.42), we have the estimates

∥ui∥2∞ + ∥Dui∥2L2 ≤ C(E(L) + 2−2ℓA2)

Lip (ui) ≤ C(E(L) + 2−2ℓA2)γ

|Ωi \Ki|+ ∥T ′
i∥(Ωi \ p−1

αi
(Ki)) ≤ C(E(L) + 2−2ℓA2)1+γ .
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The estimates in Proposition 8.14(iv) therefore follow from the obvious scaling relations

∥ui∥∞ = 2ℓ∥uL,i∥∞
∥Dui∥∞ = ∥DuL,i∥∞
∥Dui∥L2 = 2mℓ/2∥DuL,i∥L2

|Ωi \Ki| = 2mℓ|Ωi(L) \Ki(L)|

∥T ′
i∥(p−1

αi
(Ωi \Ki)) = 2mℓ∥TL,i∥(p−1

αi
(Ωi(L) \Ki(L)))

which completes the proof of (iv).
Next, we will prove Proposition 8.14(i). We claim that QL,i = QL′,i if L,L

′ ∈ Go and L′ is
the parent of L; notice that since L0 ∈ Go by Lemma 8.13(i), this will hold for any i ∈ I(0),
and thus for every i ∈ {1, . . . , N}. First, notice that because of (8.36), it is easy to see that
TL,i and TL′,i coincide over Ωi(L) ∩Ωi(L

′). In particular, the two currents GuL,i
and GuL′,i

coincide over p−1
αi

(Ki(L)∩Ki(L
′)). Clearly by (iv), namely (8.39), Ki(L)∩Ki(L

′) has positive
measure provided E(L), E(L′), and A are smaller than a geometric constant, and all these
conditions can be ensured by choosing τ and ε smaller than a geometric constant (here it is
crucial that the constant C in the estimates of statement (iv) does not depend on τ and ε).
But once we know that Ki(L) ∩Ki(L

′) has positive measure and the current graphs coincide
over this set we clearly conclude that QL,i = QL′,i.

Given this, since every parent of an element in Go belongs to Go (by definition of Go)
we conclude from the above that QL,i = QL0,i, which obviously implies the first claim of
Proposition 8.14(i). The fact that all of them are positive follows from Proposition 8.6(f) once
we assume ε is sufficiently small, because it will force QL0,i ≥ 1 for every i. Thus (i) is proved.

Next, because of (i), the conclusion of point (ii) holds for L ∈ Go once we show
∑

i QL0,i = Q.
For the latter we can use Lemma 8.7 with assumption (a), since yL0

= 0 and {Θ(T, ·) ≥
Q} ∩Bε(0) ̸= ∅.

In order to prove (ii) when L ∈ Gc we are again going to argue inductively, showing that:

(A) If
∑

i QL′,i = Q for L′ ∈ Gc ∪ Go, then
∑

i QL,i = Q for every child L ∈ Gc ∪ Go of L′.

In order to show (A) we will in fact use the result of Lemma 8.15, which we shall prove now.
Fix L ∈ Gc ∪Go and a set U ⊂ λR(L) which is invariant under rotations around V . Firstly,

from what has been proved so far of Proposition 8.14, namely (iii) and (iv), we can conclude

that T (U ∪ Ũ) =
∑

i TL,i (U ∪ Ũ) and spt(TL,i) ∩ spt(TL,j) = ∅ for all i < j (which follows
from (iv) provided τ and ε are sufficiently small, as then the neighbourhoods of the αi in (iv)

are all disjoint, and from the choice of λ, which ensures that U ∩ Ũ ∩ spt(T ) is contained in
the union of Ωi(L)). In particular, we have

∥T∥(U∆Ũ) =
∑
i

∥TL,i∥(U∆Ũ)

where U∆Ũ := (U \ Ũ) ∪ (Ũ \ U) is the symmetric difference of U and Ũ . Thus we can again
use the conclusion (iv) in Proposition 8.14 to estimate further

∥T∥(U∆Ũ) ≤
∑
i

∥GuL,i
∥(U∆Ũ) + C2−mℓ(L)(E(L) + 2−2ℓ(L)A2)1+γ .

Consider now the set

∆i := pαi(gr (uL,i) ∩ (U∆Ũ))

Since by choosing τ and ε small enough we can assume Lip(uL,i) ≤ 1 (by (8.38)), it follows
immediately from this this Lipschitz regularity that

∥GuL,i
∥(U∆Ũ) ≤ CQL,i|∆i|

for some geometric constant C. Since
∑

i QL,i ≤ Q (note in particular that we do not need
the equality

∑
i QL,i = Q in this argument), in order to reach the estimate of Lemma 8.15 it

suffices to show that

|∆i| ≤ C(E(L) + 2−2ℓ(L)A2)2−ℓ(L)Hm−1(∂Ui) , (8.43)
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where C has the dependencies in the statement of the lemma (recall that Ui = U ∩ αi). We
will indeed show that

dist(q, ∂Ui) ≤ C2−ℓ(L)(E(L) + 2−2ℓ(L)A2) ∀q ∈ ∆i .

In particular, using the Lipschitz regularity of ∂Ui, (8.43) follows immediately (by taking a
suitable cover of ∂Ui and taking the tubular neighbourhood of each set in this cover with radius
2 times the above distance bound to cover ∆i). In order to show (8.43), fix a point x ∈ ∆i and

observe that by definition there must be a point p ∈ gr (uL,i) ∩ (U∆Ũ) such that x = pαi(p).
Let v = pV (p) = pV (x) and denote by σ the half-line in αi which originates at v and contains
x. On this half-line we denote by y the point such that

dist(y, V ) = |y − v| = dist(p, V ) , (8.44)

and moreover as all points on this half-line project to v, we have

pV (y) = pV (p) . (8.45)

Observe that p ∈ U if and only if y ∈ U (using that U is invariant under rotations about V

and (8.44), (8.45)), which happens if and only if y ∈ Ui. On the other hand p ∈ Ũ if and only
if x = pαi

(p) ∈ Ui. Therefore one of the following two alternatives hold:

• p ∈ U \ Ũ , and hence y ∈ Ui but x ̸∈ Ui

• p ∈ Ũ \ U , and hence x ∈ Ui but y ̸∈ Ui.

In both cases the segment σ joining x and y must contain a point of ∂Ui and thus dist(x, ∂Ui) ≤
|x− y|. We therefore wish to estimate the latter.

To that end consider the triangle with vertices v, p, and x and let θ be the angle at v. We
then have

|x− y| = |p− v|(1− cos θ) ≤ C2−ℓ(L)(1− cos θ) (8.46)

sin θ =
|p− x|
|p− v|

≤ C(E(L) + 2−2ℓ(L)A2)1/2 . (8.47)

Here, the upper bound on |p−v| comes from (8.37) and the upper bound on the distance of Ui

from V , while the lower bound on |p− v| also comes from the lower bound on the distance of
Ui to V , and the upper bound on |p−x| comes from (8.37) (this is using that p ∈ gr(uL,i), but
also holds more generally when p ∈ spt(TL,i)). In particular as (8.47) tells us that θ is small
(e.g. θ < π/3 suffices), we get sin(θ) ≥ θ/2; as 1 − cos(θ) ≤ θ2/2 is always true, combining
these with (8.46) and (8.47) we establish the desired bound on |x − y|, hence completing the
proof of (8.43) and so also the proof of Lemma 8.15.

Having proved Lemma 8.15 we now come to the proof of (A). Consider L,L′ ∈ Gc∪Go, with
L a child of L′. Consider the set U := λR(L) ∩ λR(L′); clearly U is invariant under rotations
around V . Under the assumption that

∑
i QL′,i = Q, we can use Lemma 8.15 to prove

∥T∥(U) ≥ (Q− 1
2 )H

m(U1) . (8.48)

for U1 := U ∩α1 as before. Indeed, introduce the set Ũ for this choice of U as in Lemma 8.15
and note that

∥T∥(Ũ) =
∑
i

∥TL′,i∥(Ũ) ≥
∑
i

QL′,iHm(Ui) = QHm(U1)

(observe that the set Ũ is formed by cylindrical domains with cross-sections Ui, and in particular

(pαi
)♯(TL′,i) Ũ) = QL′,iJUiK).

We can now use Lemma 8.15 to estimate

∥T∥(U) ≥ ∥T∥(Ũ)− ∥T∥(Ũ \ U) ≥ QHm(U1)− C2−ℓ(L)(E(L) + 2−2ℓ(L)A2)Hm−1(∂U1) .

Note that in principle the constant C appearing in the estimate depends on the region U (which
in turn depends on L and L′), however the latter is determined by the cross-section which, after
rescaling by 2ℓ(L) and translating, is the intersection of two shapes ranging in a finite number of
possibilities (the number of which depends on λ). In particular, by Remark 8.16, we can assume
that the constant C depends only on the constants m, n, n̄, Q, δ̄ and λ (note however that we
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have already fixed λ = λ(m)). On the other hand we also get 2−ℓ(L)Hm−1(∂U1) ≤ CHm(U1),
with a constant C depending on m and λ. We thus conclude

∥T∥(U) ≥ (Q− C(E(L) + 2−2ℓ(L)A2))Hm(U1) ≥ (Q− C(τ2 + ε2))Hm(U1) .

Since the constant C is independent of both τ and ε, an appropriate smallness condition on
these two parameters guarantees the validity of (8.48).

If we now consider the current TyL,2−ℓ(L) , the corresponding rescaled set Ω = 2ℓ(L)(U − yL)
satisfies requirement (b) of Lemma 8.7, which implies that

∑
i QL,i = Q, if τ is sufficiently

small. While it is true that Lemma 8.7 imposes a smallness condition on τ which depends
on the set Ω, it is easy to see that the latter varies among a fixed number of sets (since L is
a child of L′), which depend on the relative position of L compared to L′ because once λ is
fixed, λR(L) ∩ λR(L′) overlap for a fixed number of cubes L, L′ always. In particular, there
is a choice of smallness condition on τ which ensures the applicability of the lemma for every
pair of cubes L and L′ as in (A). Therefore to finish the proof, note that as (ii) holds for Go, it
follows by induction from (A) that (ii) holds for every L ∈ Gc ∪Go, as every cube L in this set
is a descendent of a cube in Go, while their ancestors are all in Gc ∪ Go. So we are done with
this part.

We finally prove (v). Fix a point p ∈ R(L)∩spt(T ) and note that it must belong to spt(TL,i)

for some i. For ρ = (λ− 1) 2
−ℓ(L)−1
√
m−2

we estimate

∥Ti∥(Bρ(p)) ≤ ∥Ti∥(Cρ(p, πi)) ≤ QL,iρ
m + C(E(L) + 2−2ℓ(L)A2)1+γ2−mℓ(L)

≤ (QL,i + C(E(L) + 2−2ℓ(L)A2)1+γ)ρm .

Then if ε and τ are small enough, we conclude the claim from (8.31) and the monotonicity
formula. □

8.6. Coherent approximation on the outer region and first blow-up. For technical
reasons, it is useful to have a single multi-valued approximation defined over the union of all
Li for L varying among the elements of Go. Proposition 8.18 below gives a precise statement
of this, but we first introduce some notation.

Definition 8.17. Let T , Σ, and S be as in Proposition 8.14. Fix L ∈ Go. We denote by N (L)
the set of L′ ∈ Go such that R(L) ∩R(L′) ̸= ∅, and let

Ē(L) := max{E(L′) : L′ ∈ N (L)} .

Proposition 8.18 (Coherent outer approximation). Let T and S be as in Proposition 8.14.
For every i ∈ {1, . . . , N} we define

Ro
i :=

⋃
L∈Go

Li ≡ αi ∩
⋃

L∈Go

R(L)

and let Qi := QL0,i. Then, there are Lipschitz multi-valued maps ui : Ro
i → AQi(α

⊥
i ) and

closed subsets K̄i(L) ⊂ Li satisfying the following properties.

(i) gr (ui) ⊂ Σ and TL,i p−1
αi

(K̄i(L)) = Gui
p−1
αi

(K̄i(L)) for every L ∈ Go, where TL,i

are defined as in Proposition 8.14;
(ii) The following estimates hold

22ℓ(L)∥ui∥2L∞(Li)
+ 2mℓ(L)∥Dui∥2L2(Li)

≤ C(Ē(L) + 2−2ℓ(L)A2) (8.49)

∥Dui∥L∞(Li) ≤ C(Ē(L) + 2−2ℓ(L)A2)γ (8.50)

|Li \ K̄i(L)|+ ∥TL,i∥(p−1
αi

(Li \ K̄i(L))) ≤ C2−mℓ(L)(Ē(L) + 2−2ℓ(L)A2)1+γ , (8.51)

where the constant C depends only upon Q,m, n, n̄, and δ̄.

Proof. The ideas of the proof are borrowed from [10, Section 1.2.2] and [13, Section 6.2]. On the
one hand there is a slight complication compared to the arguments borrowed from [10, Section
1.2.2] due to the fact that the regions R(L) are not cubes; on other hand compared to the
arguments borrowed from [13, Section 6.2] our situation is considerably simpler.
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First observe that, since Li = R(L) ∩ αi, the set N (L) is equivalently described as those
cubes L′ ∈ Go such that Li ∩ L′

i ̸= ∅ for some i. In fact, given the invariance of R(L) under
rotations around V , if this is true for some i then it is true for all i, and so we can fix an
arbitrary i. Notice that

(a) the cardinality of N (L) is bounded by a dimensional constant;
(b) |ℓ(L′)− ℓ(L)| ≤ 1 for every L′ ∈ N (L).

Indeed, (a) follows by the construction of the collection of cubes G and their associated sets
R(L), while (b) is a consequence of Lemma 8.10(i). For each cube L ∈ Go, consider the
approximations uL,i and the coincidence sets Ki(L) given by Proposition 8.14 and define

K̄i(L) :=
⋂

L′∈N (L)

Ki(L
′) .

Observe that for every L′ ∈ N (L) we have uL,i = uL′,i on K̄i(L). Note that

|Li \ K̄i(L)| ≤
∑

L′∈N (L)

|Ωi(L
′) \Ki(L

′)|

and

∥TL,i∥(p−1
αi

(Li\K̄i(L)))

≤∥TL,i∥(p−1
αi

(Li \Ki(L))) +
∑

L′∈N (L)\{L}

∥TL,i∥(p−1
αi

(Li \Ki(L
′)))

≤∥TL,i∥(p−1
αi

(Li \Ki(L))) +
∑

L′∈N (L)\{L}

∥TL′,i∥(Ωi(L
′) \ p−1

αi
(Ki(L

′))) ,

and thus (8.51) follows from Proposition 8.14(iv) and (a) and (b) above.
Note that we may define ui := uL,i on K̄i(L), which is clearly well-defined. To complete the

proof we need to extend ui from
⋃

L∈Go K̄i(L) to a Lipschitz map on Ro
i :=

⋃
L∈Go Li which

satisfies gr (ui) ⊂ Σ and the estimates (8.49) and (8.50). Recall that we have the estimates

∥ui∥L∞(K̄i(L)) ≤ C2−ℓ(L)(E(L) + 2−2ℓ(L)A2)1/2 (8.52)

Lip(ui|K̄i(L)) ≤ C(E(L) + 2−2ℓ(L)A2)γ , (8.53)

by Proposition 8.14(iv), just because on the set K̄i(L) the map ui coincides with uL,i.

Observe moreover that, if we consider the larger domains K̃i(L) :=
⋃

L′∈N (L) K̄i(L), we

still have estimates analogous to (8.52), (8.53), with Ē(L) replacing E(L), namely

∥ui∥L∞(K̃i(L)) ≤ C2−ℓ(L)(Ē(L) + 2−2ℓ(L)A2)1/2 (8.54)

Lip(ui|K̃i(L)) ≤ C(Ē(L) + 2−2ℓ(L)A2)γ , (8.55)

Our aim is to show that we can find an extension ui to
⋃

L∈Go Li and use (8.54), (8.55) to show
that for each L ∈ Go this extension satisfies

∥ui∥L∞(Li) ≤ C2−ℓ(L)(Ē(L) + 2−2ℓ(L)A2)1/2 (8.56)

Lip(ui|Li) ≤ C(Ē(L) + 2−2ℓ(L)A2)γ , (8.57)

The remaining claim, namely the L2 bound on Dui over Li claimed in point (ii) of the propo-
sition, is then an obvious consequence of (8.53), the bound on |Li \ K̄i(L)|, and the fact that

∥Dui∥2L2(K̄i(L)) ≤ C2−mℓ(L)(E(L) + 2−2ℓ(L)A2) ,

the latter being again a consequence of ui|K̄i(L) = uL,i.
In order to accomplish the latter task we first observe that we can ignore the requirement

that gr (ui) ⊂ Σ. Indeed, fix the n̄-dimensional subspace π = α⊥
i ∩T0Σ which is the orthogonal

complement of αi in T0Σ and let Ψ : B7 ∩ T0Σ → T0Σ
⊥ be the map whose graph describes Σ.

Recall that ∥D2Ψ∥C0 ≤ CA and, since DΨ(0) = 0, we conclude ∥DΨ∥C0 ≤ CA as well. It thus
suffices to find an extension of the π-component uπ

i of the map ui with the desired estimate
and compose it with Ψ in the remaining components of α⊥

i to find the desired extension of ui

(the formula for the latter map would then be x 7→ (uπ
i (x),Ψ(x, uπ

i (x))) ∈ π × T0Σ
⊥).
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Once we are allowed to ignore the above issue, we consider a cellular decomposition of the
Li’s into 0-cells (the 0-skeleton), 1-cells attached to the 0-cells (the 1-skeleton), 2-cells, and
so on, with the final m-dimensional cells being the interiors of the Li’s. This can be done
canonically across all L, note indeed that each Li is the product, in V × (V ⊥ ∩αi), of the cube
L ⊂ V with the annulus {y ∈ V ⊥ ∩ αi : 2

−ℓ(L)−1 ≤ |y| ≤ 2−ℓ(L)}.
We denote by Si the collection of i-cells in the above. We also slightly fatten each 0-cell

p to open neighborhoods Up so that the separation between any Up and Uq with p, q ∈ Li is
at least c2−ℓ(L) for some dimensional constant c > 0. Now, for every 1-cell σ with endpoints
p, q ∈ S0, we slightly fatten σ \ (Up ∪ Uq) to an open set Uσ and again we take care that
the separation between two fattenings Uσ and Uτ for distinct 1-cells σ and τ contained in the
same Li is at least c2

−ℓ(L). We proceed in this way over all skeleta. Figure 3 gives a graphical
illustration of this on some specific 0, 1, and 2-cells.

Up, Uq

Uσ, Uτ

Figure 3. An illustration of the fattening of some 0-cells, 1-cells and 2-cells, used in the
extension algorithm to find a coherent approximation.

We then find a Lipschitz extension of the maps ui to the points 0-skeleton in the following
fashion:

For each point P in the 0-skeleton, we let N(P ) be the union of L′
i for those cubes L′ ∈ Go

which contain P . The extension is then done using [10, Theorem 1.7], which ensures that, after
setting K :=

⋃
L∈Go K̄i(L)

Lip(ui|(K∩N(P ))∪Up) ≤ CLip(ui|K∩N(P )) (8.58)

∥ui∥L∞((K∩N(P ))∪Up) ≤ C∥ui∥L∞(K∩N(P )) . (8.59)

To extend to the 1-cells fix any σ ∈ S1 contained in some Li with endpoints p and q, and
let N(σ) be the union of all the L′

i which intersect σ. Observe that, because Up and Uq are
far enough apart from one another, using (8.58) and (8.59) we get the estimates

Lip(ui|(K∩N(σ))∪(Up∪Uq)) ≤ CLip(ui|K∩N(σ)) + C2−ℓ(L)∥ui∥L∞(K∩N(σ))

∥ui∥L∞((K∩N(σ))∪(Up∪Uq)) ≤ C∥ui∥L∞(K∩N(σ)) .

We then proceed and define ui on each Uσ separately so that (again, using [10, Theorem 1.7])

Lip(ui|(K∩N(σ))∪(Up∪Uq∪Uσ)) ≤ CLip(ui|(K∩N(σ))∪(Up∪Uq))

∥ui∥L∞((K∩N(σ))∪(Up∪Uq∪Uσ)) ≤ C∥ui∥L∞((K∩N(σ))∪(Uq∪Up)) .

We proceed inductively in this fashion and after going over all the skeleta we finally arrive at
an extension which, defining N(Li) as the union of the L′

i over L
′ ∈ N (L), satisfies

Lip(u|(K∩N(Li))∪Li)) ≤ CLip(u|K∩N(Li)) + C2−ℓ(L)∥ui∥L∞(K∩N(Li)) .

∥ui∥L∞((K∩N(Li))∪Li) ≤ C∥ui∥L∞(K∩N(Li)) .
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Given that K ∩N(Li) = K̃i(L), we conclude the desired bounds from (8.54) and (8.55). □

8.7. Blow-up. We have thus constructed a collection of N multi-valued approximations on
the outer region. From the estimates of the previous proposition and a suitable covering
argument it is easy to see that, away from the spine V , their Dirichlet energies are controlled
by the conical excess Ê(T,S,B4). Our next main goal is to show that, after we normalize

them by (Ê(T,S,B4))
1/2, they are close to a Dir-minimizing function. The control of the

Dirichlet energy is still too crude for our final purpose, as it degenerates when we get closer
to the spine: in order to gain a uniform control outside the spine we will need to use Simon’s
estimates; Section 11 will be devoted to this task. However, this “first blow-up” will be useful
for two reasons: it is sufficient for the purpose of Section 9.1, where we “balance” the best
approximating cone (recall the discussion at the beginning of Section 8), and it will ultimately
be used in the final blow-up argument to prove Dir-minimality of the blow-up limit away from
the spine. In the final blow-up argument, the better control on the Dirichlet energy will then
be used to prove Dir-minimality across the spine, using the fact that (m − 2)-dimensional
subspaces have vanishing W 1,2-capacity.

Proposition 8.19 (First blow-up). Let T and S be as in Proposition 8.14 and assume
the parameters δ∗, τ , and δ̄ are fixed. Then, for every σ, ς > 0 there are constants C =
C(m,n,Q, δ∗, τ, δ̄) > 0 and ε = ε(m,n,Q, δ∗, τ, δ̄, σ, ς) > 0 such that the following holds:

(i) R \Bσ(V ) is contained in the outer region Ro (recall R is as in (8.28));
(ii) If ui are the maps of Proposition 8.18 and Ri := (R \Bσ(V )) ∩ αi then∫

Ri

|Dui|2 ≤ Cσ−2Ê(T,S,B4) + CA2 . (8.60)

(iii) If additionally A2 ≤ ε2Ê(T,S,B4) and we set vi := Ê(T,S,B4)
−1/2ui, then there is a

map wi : Ri → AQi
(α⊥

i ) which is Dir-minimizing and such that

dW 1,2(vi, wi) ≤ ς , (8.61)

where dW 1,2 is the W 1,2 distance defined in [10].

Note that, crucially, while the parameter ε must be chosen suitably small depending on ς,
the constant C in (8.60) is instead independent of it. As already mentioned, the control (8.60)
is indeed sub-optimal and we will later be able to remove the factor σ−2.

Remark 8.20. We wish to spent a few words on a procedure which will be used often in the
rest of the paper. Assume we have a sequence of currents Tk, manifolds Σk, and cones Sk

satisfying the assumptions of Proposition 8.19 for some fixed choice of the parameters δ∗, τ ,
and δ̄. We assume that the cones Sk are converging locally in the sense of Hausdorff distance
to some limiting S∞, and fix some sequence of m-dimensional planes αk

i ⊂ Sk converging to a

plane α∞
i ⊂ S∞. Assume moreover that Êk = Ê(Tk,Sk,B1) and Ê(Tk,Sk,B1)

−1A2
k are both

converging to zero. Let uk
i be the coherent outer approximations over the domains Ro

i,k which

consist of the outer regions Ro
k for each Tk intersected with the planes αk

i . We would like to
use Proposition 8.19 to extract a Dir-minimizing limit of suitable normalizations of the maps

uk
i , namely vki := E

−1/2
k uk

i for some choice of normalization constants Ek satisfying Êk ≤ Ek.

One technical point is that the maps vki are not defined on the same plane. In order to deal
with issue apply a rotation and map αk

i onto α∞
i . In fact, even though this is not needed, it

is convenient to choose the canonical rotations Rk = R(αk
i , α

∞
i ) of Lemma 7.4. We can then

extract, up to extracting a subsequence, a limit vi of v
k
i ◦ R−1

k ; note that the latter maps are
defined over (subdomains of) the same plane. Observe that the rotations Rk do depend on i
and thus we do not have a single canonical rotation which works for every i. However, we can
also see from Lemma 7.4 that, if we consider the graphs of the maps vki as subsets of Rm+n, the
latter are indeed converging to the graph of vi. Our limiting object is, in that sense, canonical.

In the sequel, when we are referring to “the blow-up vi of the maps vki ” we will assume that
we have followed the above algorithm.
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Proof. First of all we let σ be given and fixed. We then select ℓ so that σ
2 ≤ 2−ℓ ≤ σ and define

G≤ℓ :=

ℓ⋃
j=0

Gj .

We can then appeal to Lemma 8.13(i) to get that, if ε is small enough, then Gℓ+1 ⊂ Go. But
by definition of outer cubes the latter implies in fact G≤ℓ+1 ⊂ Go, which implies the first claim
of the proposition.

Let L ∈ G≤ℓ, and observe that (b) in the proof of Proposition 8.18 tells us that for any
L′ ∈ N (L), we have L′ ∈ G≤ℓ+1. Appealing to Proposition 8.18(ii) (namely, (8.49)) we have∫

Li

|Dui|2 ≤ C2−mℓ(L)(Ē(L) + 2−2ℓ(L)A2)

≤ C2−(m+2)ℓ(L)A2 + C
∑

L′∈N (L)

2−mℓ(L′)E(L′, 0) ,

where N (L) and Ē(L) are as in Definition 8.17. Since the cardinality of N (L) is bounded by
a geometric constant C = C(m,n), we immediately conclude∫

Ri

|Dui|2 ≤ C
∑

L∈G≤ℓ+1

2−mℓ(L)(E(L, 0) + 2−2ℓ(L)A2)

= C
∑

L∈G≤ℓ+1

(
22ℓ(L)

∫
Bh(L)

dist2(q,S) d∥T∥(q) + 2−(m+2)ℓ(L)A2
)

≤ Cσ−2
∑
L∈Go

∫
Bh(L)

dist2(q,S) d∥T∥(q) + CA2 ,

where we have used (8.29) (with κ = 4). We next observe that Bh(L) ⊂ B4 for every L ∈ G
and that, by Lemma 8.10(iv), for given any point q ∈ B4 the cardinality of elements L ∈ G for
which q ∈ Bh(L) is bounded by a constant C = C(m,n). We thus conclude (8.60).

All that remains to be proven is (iii). By the definition of TL,i as the restriction of T on a
suitable open set, for each i there is an integral current Ti with the following properties:

• ∂Ti = 0 on p−1
αi

(⋃
L∈Go Li

)
;

• Ti is area-minimizing;
• Ti p−1

αi
(Li) = TL,i p−1

αi
(Li).

In particular, if we defineKi :=
⋃

L∈Go K̄i(L), the argument leading to (8.60) and the estimates
in Proposition 8.18 lead to the following:

Ti p−1
αi

(Ki ∩Ri) = Gui
p−1
αi

(Ki ∩Ri) (8.62)

∥ui∥2L∞(Ri)
≤ C(Ê(T,S,B4) +A2) (8.63)

∥Dui∥L∞ ≤ C(σ−2Ê(T,S,B4) +A2)γ (8.64)

|Ri \Ki|+ ∥Ti∥(p−1
αi

(Ri \Ki)) ≤ C(σ−2Ê(T,S,B4) +A2)1+γ . (8.65)

We are thus in the same position to apply the arguments of [11] leading to [11, Theorem 2.6]
in order to conclude point (iii) of Proposition 8.19. The reader will notice that the only
obstruction to applying [11, Theorem 2.6] is that the domain of the map ui given above is not
a ball. However, the arguments only use the regularity of the boundary of the domain, and
since the boundary of Ri is Lipschitz, those arguments apply here as well. □

9. Cone balancing

In this section we introduce a suitable procedure which allows us to pass from a possibly
unbalanced cone to a balanced cone whilst only changing the excess by a constant. This
procedure is done under the assumption that the two-sided L2 height excess of T relative to
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a cone S ∈ C (Q) is significantly smaller than the planar L2 height excess of T . To make our
exposition cleaner, we recall the notation

σ(S) := min
i<j

dist(αi ∩B1, αj ∩B1)

µ(S) := max
i<j

dist(αi ∩B1, αj ∩B1)

where i, j in the minimum and maximum range over the indices of the planes in S.

Proposition 9.1 (Cone balancing). Assume that T and Σ are as in Assumption 2.1, B1 =
B1(0) ⊂ Ω, S ∈ C (Q), and α1, . . . , αN are as in Definition 2.3. Then, there are constants
C = C(Q,m, n, n̄) > 0 and ε0 = ε0(Q,m, n, n̄) > 0 with the following property. Assume that

A2 ≤ ε20E(T,S,B1) ≤ ε40E
p(T,B1) . (9.1)

Then there is a subset {i1, . . . , ik} ⊂ {1, . . . , N} with k ≥ 2 such that, upon setting S′ =
αi1 ∪ · · · ∪ αik , the following holds:

(a) S′ is C-balanced;
(b) E(T,S′,B1) ≤ CE(T,S,B1);
(c) dist2(S ∩B1,S

′ ∩B1) ≤ CE(T,S,B1);
(d) C−1Ep(T,B1) ≤ µ(S)2 = µ(S′)2 ≤ CEp(T,B1).

Using the Pruning Lemma (Lemma 8.2), the proof of Proposition 9.1 can be reduced to
showing the following proposition, which roughly says that if the two-sided L2 height excess
of T relative to S is significantly smaller than the minimal angle in the cone S, then in fact S
is already C-balanced for some constant C. Indeed, intuitively, since T is area-minimizing, if
it is very close to S then we would expect the union of planes in S to roughly behave like an
area-minimizer, and from Morgan’s result (Lemma 7.5) we would expect S to be balanced.

Proposition 9.2. Assume that T , Σ, and S are as in Proposition 9.1. Then there are constants
C = C(m,n, n̄,N) and ε = ε(m,n, n̄,N) with the following property. If we additionally have
that

N ≥ 2 and A2 + E(T,S,B1) ≤ ε2σ(S)2 , (9.2)

then S is C-balanced.

Let us first show that Proposition 9.2 implies Proposition 9.1.

Proof of Proposition 9.1. Suppose that Proposition 9.2 holds, and let ε∗ be the minimum over
N ≤ Q of all the constants ε = ε(m,n, n̄,N) from Proposition 9.2. Then fix ε0 ≤ ε∗ to be
determined later.

The hypotheses of Proposition 9.1 in particular give that E(T,S,B1) ≤ ε20E
p(T,B1). Next

we estimate

Ep(T,B1) ≤
∫
B1

dist2(x, α1) d∥T∥(x) ≤ CÊ(T,S,B1) + Cmax
i<j

dist2(αi ∩B1, αj ∩B1)

≤ Cε20E
p(T,B1) + Cµ(S)2 ,

where C = C(m,n). In particular for ε0 smaller than a geometric constant we get

Ep(T,B1) ≤ Cµ(S)2 , (9.3)

where C = C(m,n). Thus we also conclude

E(T,S,B1) ≤ Cε20︸︷︷︸
=:η

µ(S)2 .

Let us now fix δ > 0 (which will be determined later), and let Γ be as in Lemma 8.2 for this
choice of δ and N . If we take η1/2 = (1+Γ)−1δ in the above, we see that if ε0 = ε0(m,n,N, δ) >
0 is sufficiently small, and D := E(T,S,B1)

1/2, then

D ≤ (1 + Γ)−1δµ(S) .

Thus we are in the situation to apply Lemma 8.2 with this choice of D. This yields a subset
I = {i1, . . . , ik} ⊂ {1, . . . , N}, with k ≥ 2, such that the corresponding planes {αi1 , . . . , αik}
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satisfy (8.1), (8.2), (8.3) of the Pruning Lemma. Now set S′ := αi1 ∪ · · · ∪ αik ; we claim that
Proposition 9.1 holds with this S′. We start by observing that, since µ(S) = µ(S′) (by (8.3))
and (9.3) holds, we just need

µ(S′)2 ≤ CEp(T,B1) (9.4)

to complete the proof of (d). However, let us first prove (a)–(c).
Observe that conclusion (8.1) of the Pruning Lemma gives

max
j=1,...,N

min
i∈I

dist2(αi ∩B1, αj ∩B1) ≤ Γ2E(T,S,B1).

In particular, this will give condition (c) once we have chosen δ appropriately. Furthermore,
observe the following consequence of this: for q ∈ spt(T )∩B1, suppose dist(q,S

′) = dist(q, αij )
for some ij ∈ I. If dist(q,S) = dist(q, αij ), then we clearly have dist(q,S′) = dist(q,S).
Otherwise, we must have dist(q,S) = dist(q, αℓ) for some ℓ ̸∈ I. By the above consequence of
the Pruning Lemma however, there is some ij∗ ∈ I for which

dist2(αℓ ∩B1, αij∗
∩B1) ≤ Γ2E(T,S,B1).

In particular, we must have

dist2(q,S′) ≤ dist2(q, αij∗
∩B1) ≤ 4 dist2(q, αℓ) + 4 dist2(αℓ ∩B1, αij∗

∩B1)

≤ 4 dist2(q,S) + 4Γ2E(T,S,B1).

In either case, we see that for any q ∈ spt(T ) ∩B1,

dist2(q,S′) ≤ 4 dist2(q,S) + 4Γ2E(T,S,B1)

which evidently gives

Ê(T,S′,B1) ≤ 4(1 + Γ2(Q+ 1)ωm)E(T,S,B1).

This deals with controlling one term of the two-sided height excess E(T,S′,B1). However,

controlling the other term is simple as S′ ⊂ S, and so Ê(S′, T,B1) ≤ Ê(S, T,B1). Combining
we therefore get E(T,S′,B1) ≤ CE(T,S,B1) where C = C(Q,m, n, δ); this proves conclusion
(b) provided we choose δ = δ(Q,m, n, n̄) > 0 in the end.

To show that conclusion (a) holds we will apply Proposition 9.2 to S′. For this we must
verify that the hypothesis (9.2) holds in this situation. Note that from (8.2) of the Pruning
Lemma we have

E(T,S,B1) + max
j=1,...,N

min
i∈I

dist2(αi ∩B1, αj ∩B1) ≤ 2δ2 min
i<j∈I

dist2(αi ∩B1, αj ∩B1).

In particular, if we perform exactly the same bounds as above when we proved (b), except
replacing the estimate from (8.1) by the above, we would end up with

Ê(T,S′,B1) ≤ 2Ê(T,S,B1) + 8(Q+ 1)δ2 min
i<j∈I

dist2(αi ∩B1, αj ∩B1)

≤ (8Q+ 12)δ2 min
i<j∈I

dist2(αi ∩B1, αj ∩B1)

where in the second inequality we have used the fact E(T,S,B1) ≤ 2δ2 mini<j∈I dist
2(αi ∩

B1, αj ∩ B1) again from the statement of (8.2) above. But again, since for the other half of
the excess we have

Ê(S′, T,B1) ≤ Ê(S, T,B1) ≤ E(T,S,B1) ≤ 2δ2 min
i<j∈I

dist2(αi ∩B1, αj ∩B1)

we see that

E(T,S′,B1) ≤ (8Q+ 14)δ2 min
i<j∈I

dist2(αi ∩B1, αj ∩B1).

Hence, if we choose δ = δ(Q,m, n, n̄) > 0 obeying (8Q+ 14)δ2 < ϵ∗/2, we get that one part of
the inequality in (9.2) holds for T and S′. However, the other part of the inequality in (9.2)
evidently follows, since by assumption we have

A2 ≤ ε20E(T,S,B1) ≤ 2δ2ε20 min
i<j∈I

dist2(αi ∩B1, αj ∩B1)
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and thus we have that (9.2) holds for suitably chosen δ = δ(Q,m, n, n̄) > 0. Hence, with
this choice of δ we can apply Proposition 9.2 to see that S′ is C-balanced for some C =
C(Q,m, n, n̄) > 0, which completes the proof of (a).

It remains to prove (d), namely, as already observed, (9.4). Fix any plane π and observe
that there is one plane αi1 from S′ with i1 ∈ I (which without loss of generality by relabeling
we can assume to be i1 = 1) such that

dist(α1 ∩B1, π ∩B1) ≥
1

2
µ(S′) .

Indeed, if not we would get a contradiction to the definition of µ(S′) by the triangle inequality.
We next show that there is an element p ∈ α1, a radius r(m,n) > 0, and constant C(m,n) >

0 with the property that Br(p) ⊂ B3/4 \B1/4(V ) and

dist(q, π) ≥ C−1µ(S′) ∀q ∈ Br(p, α1) . (9.5)

Recall first that dist(p, π) = |p⊥
π (p)| and that, by linearity of the map p⊥

π we have |p⊥
π (p)| =

|p| · |p⊥
π (p/|p|)| = |p|dist(p/|p|, π), and so

|p⊥
π (p)| ≤ dist(α1 ∩B1, π ∩B1)|p| ∀p ∈ α1 . (9.6)

Next choose any v ∈ V ⊥ ∩ α1 with |v| = 1
2 . Consider then the disk B1/8(v, α1) and inside

this disk select a base e1, . . . em of α1 with the property that any element x ∈ α1 ∩ B1 can
be written as a linear combination

∑
i λiei with |λi| ≤ C = C(m). It follows that, for some

element ei we must necessarily have

|p⊥
π (ei)| ≥

1

mC
dist(α1 ∩B1, π ∩B1) .

Indeed by Corollary 7.3 there is a vector e ∈ B1 ∩α1 with |p⊥
π (e)| = dist(α1 ∩B1, π∩B1). We

can thus use the property above to write e =
∑

i λiei and estimate

dist(α ∩B1, π ∩B1) = |p⊥
π (e)| ≤

∑
i

|λi||p⊥
π (ei)| ≤ C

∑
i

|p⊥
π (ei)| .

Set then p = ei and choose the radius r to equal min{ 1
2mC , 1

8}. We can then use the last
inequality and (9.6) to show that for all q ∈ Br(p, α1),

dist(q, π) = |p⊥
π (q)| ≥ |p⊥

π (p)| − |p⊥
π (q − p)| ≥ 1

2mC
dist(α1 ∩B1, π ∩B1) ≥

1

4mC
µ(S) .

This establishes (9.5).
In particular, if the parameter ε0 is small enough, we can apply Lemma 8.5, Proposition 8.6,

and Lemma 8.7 to T0,1/4 and S′ (note that we have already established that S′ is C-balanced
by the above and that the hypotheses of these results do hold here). In particular, let ϱ be the
parameter in Lemma 8.5. If we consider the current

T ′ := T Br(p) ∩ {dist(·, α1) ≤ ϱσ(S′)}
we will have that ∂T ′ = 0 in Br(p) and that ∥T ′∥(Br(p)) ≥ C−1rm for some constant C(m,n).
Moreover, from (8.15) in Proposition 8.6, we have

dist(q, α1) ≤ CÊ(T,S′,B1)
1/2 + CA ∀q ∈ Br(p) ∩ spt(T ′)

for some constant C = C(Q,m, n, n̄). Since Ê2(T,S′,B1) + A2 ≤ Cε20µ(S
′)2, if ε0 is chosen

sufficiently small we then easily conclude from the above and (9.5) that

dist(q, π) ≥ C−1µ(S′) ∀q ∈ Br(p) ∩ spt(T ′) .

Squaring and integrating the latter inequality with respect to d∥T ′∥, and using the lower bound
∥T ′∥(Br(p)) ≥ C−1rm we reach

µ(S′)2 ≤ CÊ(T, π,B1) .

However, since π is an arbitrary m-dimensional plane, this completes the proof of (9.4). □

We now come to the proof of Proposition 9.2. We first prove a key special case of it when
µ(S) and σ(S) are comparable.
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Proposition 9.3. Assume that T,Σ, and S are as in Proposition 9.1. Fix η > 0. Then, there
exist constants C = C(m,n, n̄,N, η) and ε = ε(m,n, n̄,N, η) > 0 with the following property.
If (9.2) and the assumptions of Proposition 9.1 hold with this choice of ε, and moreover if

ηµ(S) ≤ σ(S) , (9.7)

then S is C-balanced.

Notice in particular that this implies the N = 2 case of Proposition 9.2, as in that situation
we have µ(S) = σ(S).

Proof. We argue by contradiction. If the proposition were false, then we could find sequences
Tk,Σk,Ak and Sk = αk

1 ∪ · · · ∪ αk
N as in Proposition 9.2 such that

A2
k + E(Tk,Sk,B1) ≤ ε2kσ(Sk)

2

and for which (9.7) holds for each k, but (after relabelling the planes) the Morgan angles
θ1(α

k
1 , α

k
2) and θ2(α

k
1 , α

k
2) obey

θ1(α
k
1 , α

k
2)

θ2(αk
1 , α

k
2)

→ 0. (9.8)

We have two possibilities: either (a) lim supk→∞ σ(Sk) > 0 or (b) lim supk→∞ σ(Sk) = 0. In
the case of (a) the situation is simple: we simply pass to a subsequence (which we do not
relabel) for which limk→∞ σ(Sk) > 0, Tk → T∞ as currents, where T∞ is some m-dimensional
area-minimizing integral current in B1, and Sk → S∞ = α∞

1 ∪ · · · ∪ α∞
N for a collection of N

distinct planes α∞
i , locally in Hausdorff distance, with αk

i → α∞
i for each i = 1, . . . , N . By the

assumption that E(Tk,Sk,B1) → 0, we must have spt(T∞)∩B1 = S∞∩B1. Indeed, we first see
that spt(T∞) ∩B1 ⊂ S∞ ∩B1 and then the constancy theorem implies T∞ B1 =

∑
i kiJα

∞
i K

for some ki ∈ Z. The only obstruction to the equality spt(T∞) ∩ B1 = S∞ ∩ B1 is then the
vanishing of some of the coefficients ki, which would come from orientation cancellation in the
limit of the Tk; however, this would contradict the Tk being area-minimizing.

But then by Lemma 7.5, we would necessarily have θ1(α
∞
i , α∞

j ) = θ2(α
∞
i , α∞

j ) > 0 for each
i < j ∈ {1, . . . , N}, where the fact that these angles are non-zero follows from the assumption
that lim infkσ(Sk) > 0. But we clearly have θ1(α

k
1 , α

k
2) → θ1(α

∞
1 , α∞

2 ) and θ2(α
k
1 , α

k
2) →

θ2(α
∞
1 , α∞

2 ) from the local Hausdorff distance convergence in B1, and hence we would have
θ1(α

k
1 , α

k
2)/θ2(α

k
1 , α

k
2) → 1, contradicting (9.8).

Now let us handle the case (b). Here, we can pass to a further subsequence to ensure that
αk
i → α∞ for all i = 1, . . . , N , locally in Hausdorff distance, for some m-dimensional plane

α∞. Since E(Tk,Sk,B1) → 0 we therefore also have that Ê(Tk, α∞,B1) → 0. Note that
we may assume without loss of generality that αk

1 = α∞ for all k: indeed, we can choose a
sequence of rotations qk : Rm+n → Rm+n with qk → idRm+n and obeying qk(α

k
1) = α∞, and

then consider qk(Sk) and (qk)♯Tk; note that σ(Sk) = σ(qk(Sk)) (see the discussion in Section
7.1). Hence, for k sufficiently large, we can consider the (strong) Lipschitz approximations
fk : B3/4(0, α∞) → AQ(α

⊥
∞) of Almgren (see [11, Theorem 2.4]) for the Tk relative to α∞

(here, the assumption Ê(Tk, α∞,B1) → 0 is sufficient in light of Allard’s tilt-excess inequality,
see for example [1, Proposition 4.1]). Now set

f̄k :=
fk

σ(Sk)
.

Note that because αk
1 = α∞ for all k, we have

Ê(Tk, α∞,B1) ≤ 4Ê(Tk,Sk,B1) + Cµ(Sk)
2 ≤ (4ε2k + Cη−1)σ(Sk)

2

and so, again using Allard’s tilt-excess inequality, the estimates from Almgren’s strong Lips-
chitz approximation (see again [11, Theorem 2.4]) give that f̄k → f̄∞ strongly in W 1,2

loc (B3/4)∩
L2(B3/4) for some Dir-minimizer f̄∞. Note also that, if for each i, we denote by Lk

i the

linear maps parameterizing the planes αk
i over α∞ (in particular, Lk

1 = 0 by construction,
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although this will not play any role in the proof), then we necessarily have that |Lk
i | ≤

Cµ(Sk) ≤ Cη−1σ(Sk) for some dimensional constant C, and so if we write

L̄k
i :=

Lk
i

σ(Sk)
,

then we can pass to a further subsequence to ensure also that L̄k
i → L̄i for some linear map

L̄i over α∞. Clearly, for each i ̸= j we have |L̄i − L̄j | ≥ c > 0 by definition of σ(Sk), and so
L̄i ̸= L̄j whenever i ̸= j. Noting that∫

dist2(x,Sk) d∥Gfk∥(x) ≤ CÊ(Tk,Sk,B1) + C
(
A2

k + Ê(Tk, α∞,B1)
)1+γ

= o(σ(Sk)
2)

where o(σ(Sk)
2) denotes a term which converges to zero as k → ∞ when divided by σ(Sk)

2.
Dividing both sides of the above inequality by σ(Sk)

2 and taking k → ∞, we see that neces-
sarily the graph of f̄∞ is supported in the union of the graphs of L̄i, i = 1, . . . , N , and so in
particular we have

f̄∞ =
∑
i

QiJL̄iK

for some non-negative integers Qi such that
∑

i Qi = Q. We claim that necessarily both Q1, Q2

(and in fact all Qi, but we won’t need this to see the contradiction) are strictly positive. Indeed,
once we have this we can complete the proof of the claim in the following manner: for every
constant λ > 0 the map λf̄∞ is Dir-minimizing, and so if Q1, Q2 > 0 then, by Proposition 7.6,
the planes ᾱi that are the graphs of λL̄i are c2-balanced for all λ sufficiently small, where c2 is
an absolute constant (note that necessarily the intersection of the ᾱi is a (m− 2)-dimensional
subspace, as the intersection of the αk

i is an (m− 2)-dimensional subspace for all k, and so up
to passing to a subsequence this subspace will converge to an (m − 2)-dimensional subspace
which is necessarily the intersection of the planes ᾱi). In particular, we have

θ1(ᾱ1, ᾱ2)

θ2(ᾱ1, ᾱ2)
≥ c2 > 0.

Fix such a constant λ for which the above is true. Now, let ᾱk
i be the planes which are the

graphs of λL̄k
i , i = 1, 2. Shrinking λ if necessary (which can be done independently of k, as

|L̄k
i | ≤ C for all k and some geometric constant C), we can infer from Corollary 7.9 that we

have
θ1(ᾱ

k
1 , ᾱ

k
2)

θ2(ᾱk
1 , ᾱ

k
2)

≤ 162
θ1(α

k
1 , α

k
2)

θ2(αk
1 , α

k
2)

.

But then our assumption (9.8) implies from this that

θ1(ᾱ
k
1 , ᾱ

k
2)

θ2(ᾱk
1 , ᾱ

k
2)

→ 0 .

Noting that
θ1(ᾱ

k
1 , ᾱ

k
2)

θ2(ᾱk
1 , ᾱ

k
2)

→ θ1(ᾱ1, ᾱ2)

θ2(ᾱ1, ᾱ2)
≥ c2 > 0

this gives the desired contradiction.
Therefore, all that remains to show is that Q1, Q2 > 0. In order to prove this, we use Lemma

7.10 to find points ξk ∈ αk
1 ∩ ∂B1/2 and a positive constant c0 = c0(m,N) with the property

that

min
j>1

inf{dist(ζ, αk
j ) : ζ ∈ B2c0(ξk) ∩ αk

1} ≥ 2c0min
j>1

dist(αk
1 ∩B1, α

k
j ∩B1) . (9.9)

In particular, for δ = δ(Q,m, n, n̄,N) as in the Splitting Corollary (Corollary 3.3) and for
r = r(δ, η) sufficiently small, the assumptions of Corollary 3.3 are satisfied in C4rc0(ξk).

Indeed, conditions (i), (ii), (iii) are clear. (iv) follows from (9.9), as it gives

min
j>1

inf{dist(ζ, αk
j ) : ζ ∈ B2c0(ξk) ∩ αk

1} ≥ 2c0σ(Sk) ≥ 2c0ηµ(Sk)

which in turn gives (iv) if we chose r = 2δc0η with a possibly smaller constant c0. Note indeed
that in the left hand side of (iv) we are using the distance between oriented planes, however
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it is just a matter of choosing the right orientation for the planes to be able to conclude that
left hand side of (iv) is bounded above by Cµ(S). Finally, condition (v) follows from the
fact A2

k + E(Tk,Sk,B1) ≤ ε2kσ(Sk)
2, combined with the bound µ(Sk) ≤ δmin{1, r−1κ} just

established for the above choice of r.
From Corollary 3.3 we may conclude that T Brc0(ξk) splits into currents Ti, i = 1, . . . , N ,

with the Ti supported in small disjoint neighborhoods of αk
i ∩Crc0(ξk); in particular, T1 and T2

are supported in two small disjoint neighbourhoods of αk
1 ∩Crc0(ξk) and αk

2 ∩Crc0(ξk) respec-
tively, with the property that (pαk

1
)♯Ti = Qi(k)JBrc0(ξk)K for positive integers Qi(k)≥ 1. Upon

extraction of a subsequence we can assume the Qi(k) equal positive integers Q′
i independent

of k and it follows easily that Q′
i = Qi. This concludes the proof. □

We now come to the proof of Proposition 9.2. At one point in the proof we will need the
following proposition, which also plays a key role later on in our work. Its proof will be given
in Section 12, where we collect several important facts regarding Dir-minimizers.

Proposition 9.4. Assume Ω ⊂ Rm is a Lipschitz domain, V ⊂ Rm is an (m−2)-dimensional
plane, and v ∈ W 1,2(Ω;AQ(Rn)) is a map with the property that the restriction of v to Ωε :=
Ω \Bε(V ) is Dir-minimizing for every ε > 0. Then v is Dir-minimizing in Ω.

Proof of Proposition 9.2. We argue by induction on N . The case N = 2 is already established
by Proposition 9.3, since in that situation we have µ(S) = σ(S).

So fix N ≥ 3. We may assume inductively the validity of Proposition 9.2 for all N ′ < N . If
C(m,n, n̄,N ′) and ε = ε(m,n, n̄,N ′) denote the corresponding constants, set

C1 := max
N ′≤N−1

C(m,n, n̄,N ′) and ε∗1 := min
N ′≤N−1

ε(m,n, n̄,N ′).

Suppose however that the conclusion of the proposition fails for N . We may therefore find
sequences Tk, Σk, Ak, Sk = αk

1 ∪ · · · ∪ αk
N and εk ↓ 0 with

A2
k ≤ ε2kE(Tk,Sk,B1) ≤ ε4kσ(Sk)

2, (9.10)

such that, up to relabelling the planes in Sk, we have

θ1(α
k
1 , α

k
2)

θ2(αk
1 , α

k
2)

→ 0. (9.11)

Now, we may assume that
lim
k→∞

σ(Sk)/µ(Sk) = 0 . (9.12)

Indeed, if this were not true, then up to passing to a subsequence we may assume that σ(Sk) ≥
η∗µ(Sk) for all k and some η∗ > 0, at which point we may apply Proposition 9.3 to get that for
all k sufficiently large, the cones Sk are C-balanced for some C > 0 independent of k. But then
we would have θ1(α

k
1 , α

k
2)/θ2(α

k
1 , α

k
2) ≥ C−1 > 0 for all k, in direct contradiction to (9.10).

Now apply the layer subdivision lemma (Lemma 8.3) with δ = 1 to each Sk (the exact choice
of δ is unimportant). This provides subcollections {1, . . . , N} = Ik(0) ⊋ Ik(1) ⊋ · · · ⊋ Ik(κ(k))
satisfying properties (i)–(iv) of Lemma 8.3. Up to extracting a further subsequence (which we
again do not relabel) we can assume that κ(k) is independent of k, and moreover that all the
sets of indices Ik(l), ℓ = 0, 1, . . . , κ are independent of k; we therefore label them I(l). Since
we are assuming now that σ(Sk)/µ(Sk) → 0, we necessarily have that κ ≥ 1, as otherwise
conclusion (ii) of Lemma 8.3 would give that ηµ(Sk) ≤ σ(Sk) for all k and for some fixed
η = η(N) > 0 independent of k, giving a contradiction.

For each k and l ∈ {0, 1, . . . , κ}, write S
(l)
k :=

⋃
i∈I(ℓ) α

k
i for the cone at the lth layer of Sk.

Also write
d
(l)
k := max

i∈I(0)
min
j∈I(l)

dist(αk
i ∩B1, α

k
j ∩B1).

From (iii) of Lemma 8.3, we know that

σ(S
(ℓ−1)
k )

d
(l)
k

≥ η > 0 (9.13)

for all k and ℓ ∈ {1, . . . , κ}, where again η = η(N) > 0 is a fixed constant.
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Suppose first that we have

lim
k→∞

d
(1)
k

σ(S
(1)
k )

= 0 . (9.14)

Then we have d
(1)
k ≤ δkσ(S

(1)
k ) for some non-negative sequence δk → 0. We can thus estimate

Ê(Tk,S
(1)
k ,B1) ≤ Ê(Tk,Sk,B1) + C(d

(1)
k )2

≤ ε2kσ(Sk)
2 + Cδ2kσ(S

(1)
k )2 = (ε2k + Cδ2k)σ(S

(1)
k )2 ,

(9.15)

where C = C(m,n,Q) and we have used that σ(Sk) ≤ σ(S
(1)
k ), since S

(1)
k ⊂ Sk; this inclusion

also gives

Ê(S
(1)
k , Tk,B1) ≤ Ê(Sk, Tk,B1) ≤ ε2kσ(Sk)

2 ≤ ε2kσ(S
(1)
k )2 .

Thus, for all k sufficiently large, we will have that hypothesis (9.2) holds with the smallness

threshold ε∗1. This allows us to conclude, by the induction hypothesis, that S
(1)
k is C-balanced

for some C = C(m,n, n̄,N) (in fact, C = C1).

Now, we know from (9.14) that d
(1)
k → 0. Analogously to case (b) in the proof of Proposition

9.3, we perform a blow-up. This time, however, we will be normalizing by dk and building

graphical approximations over the (balanced) cones S
(1)
k . Indeed, (9.15) tells us that the

hypotheses of Proposition 8.14 (and therefore Propositions 8.18 and 8.19) hold for Tk relative

to the balanced cone S
(1)
k for all k sufficiently large. Thus, Tk splits into a sum of disjoint

currents, denoted by T j
k , near each plane αk

j ⊂ S
(1)
k .

Now choose any sequences ςk ↓ 0 and σk ↓ 0. Passing to a subsequence, we may apply

Proposition 8.19 with σk, ςk in place of σ, ς to Tk and S
(1)
k to find multi-valued Lipschitz

maps uj
k over the sets Rk

i := (R \ Bσk
(V )) ∩ αk

i for i ∈ I(1) with the property that, if

vik := Ê(Tk,S
(1)
k ,B1)

−1/2ui
k, then

dW 1,2(vik, w
i
k) ≤ ςk (9.16)

where wi
k are Dir-minimizing maps on Rk

i . So, if we set ūk
i := (d

(1)
k )−1uk

i , then estimating

similarly to (9.15), since σ(Sk) ≤ d
(1)
k , we have

Ê(Tk,S
(1)
k ,B1) ≤ (ε2k + C)(d

(1)
k )2

meaning that we can blow-up via rescaling by d
(1)
k instead of Ê(Tk,S

(1)
k ,B1)

−1/2 (see the
remark after Proposition 8.19). Indeed, the estimates (8.16)–(8.18), combined with the con-
clusion (ii) of Proposition 8.19, (9.16), and a diagonal argument give that ūk

i → ū∞
j locally

strongly in W 1,2(B1(0) \ V ) and locally uniformly in B1(0) \ V , for some ū∞
j which is Dir-

minimizing in B1−ε(0)\Bρ(V ) for every 0 < ε, ρ < 1/2. Note also that, if for each i, we denote

by Lk
i the linear maps parameterizing the planes αk

i ∈ Sk over the closest plane in S
(1)
k , then

we necessarily have that |Lk
i | ≤ Cd

(1)
k for some dimensional constant C. So, if we write

L̄k
i := (d

(1)
k )−1Lk

i

then we can pass to a further subsequence to ensure also that L̄k
i → L̄i for some linear map

L̄i over some plane α∞
i in S

(1)
∞ := limk→∞ S

(1)
k (note that S

(1)
∞ need not be a single plane).

However, as |Lk
i − Lk

j | ≥ cσ(Sk) for some dimensional constant c (by definition of σ(Sk))

whenever Lk
i , L

k
j are defined over the same plane, from (9.13) we know that |L̄i− L̄j | ≥ cη > 0,

i.e. L̄i ̸= L̄j for i ̸= j ∈ I(0). Note now that∫
dist2(x,Sk) d∥Guk

j
∥(x) ≤ CÊ(Tk,Sk,B1) + C

(
A2

k + Ê(Tk,Sk,B1)
)1+γ

= o
(
(d

(1)
k )2

)
where γ = γ(Q,m, n, n̄) > 0 is as in Proposition 8.6. Thus, dividing both sides by (d

(1)
k )2 and

taking k → ∞, we see that necessarily the graph of ū∞
j is supported on the union of all the
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graphs of the maps L̄i associated to the plane αj . Letting Jj denote this collection of indices
i for j ∈ I(1), on Ω = (B1 ∩ αj) \ V we have

ū∞
j =

∑
i∈Jj

Qj
i JL̄iK

for some non-negative integers Qj
i such that

∑
i,j Q

j
i = Q. Following a similar argument to

the proof in Proposition 9.3, we can in fact show that Qj
i ≥ 1 for each i, j. Now, since ū∞

j

is Dir-minimizing in B1−ε \ Bρ(V ) for every ε, ρ > 0, we may now apply Proposition 9.4 to
conclude that ū∞

j extends to a Dir-minimizer (which we still denote by ū∞
j ) on B1/2 ∩ αj . If

the unbalancing assumption from (9.11) has 1, 2 ∈ Jj for some j, then we can argue as in case
(b) of Proposition 9.3 to arrive at a contradiction. If we have 1 ∈ Jj and 2 ∈ Jj∗ for some

j ̸= j∗, we can again argue in the same way, except now using the fact that S
(1)
k is balanced,

and so the planes αk
j , α

k
j∗ are balanced. Thus, in this situation we arrive at a contradiction.

To summarize, we have now shown that (9.14) cannot hold. From Lemma 8.3 (as δ = 1) we

know that d
(1)
k ≤ σ(S

(1)
k ), and so we may therefore pass to a subsequence to ensure that

d
(1)
k ≥ c1σ(S

(1)
k ) (9.17)

for all k and for some constant c1 > 0.

To progress, we now move to the next layer, namely the cones S
(2)
k . We know from (9.13)

that σ(S
(1)
k ) ≥ ηd

(2)
k . Now, if we have

lim
k→∞

d
(2)
k

σ(S
(2)
k )

= 0 (9.18)

we argue that we can follow an analogous argument to that above when (9.14) held, except

now performing a blow-up of Tk relative to S
(2)
k . Indeed, if (9.18) holds, then we have d

(2)
k ≤

δ′kσ(S
(2)
k ), for some non-negative sequence δ′k → 0. We can estimate as in (9.15) to find

Ê(Tk,S
(2)
k ,B1) ≤ Ê(Tk,Sk,B1) + C(d

(2)
k )2 ≤ ε2kσ(Sk)

2 + C(δ′k)
2σ(S

(2)
k )2

≤ (ε2k + C(δ′k)
2)σ(S

(2)
k )2

where again we have used σ(Sk) ≤ σ(S
(2)
k ) since S

(2)
k ⊂ Sk. Therefore, once again we get

that the hypothesis (9.2) holds with the smallness threshold ε∗1 for all k sufficiently large, and

so by the induction hypothesis we have that S
(2)
k is C-balanced for some C = C(m,n, n̄,N).

The only aspect of the above blow-up procedure which we need to check in this case is the

separation of all the rescaled linear functions of the planes in Sk over S
(2)
k . As we are rescaling

our approximations by d
(2)
k , we therefore need to show that σ(Sk)

d
(2)
k

has a uniform lower bound.

Indeed, combining (9.13) and (9.17), we have

σ(Sk)

d
(2)
k

=
σ(Sk)

d
(1)
k

·
d
(1)
k

σ(S
(1)
k )

·
σ(S

(1)
k )

d
(2)
k

≥ η · c1 · η = η2c1 > 0 . (9.19)

This tells us that we may repeat the blow-up argument as above, with d
(1)
k replaced by d

(2)
k

and S
(1)
k replaced with S

(2)
k , to contradict the lack of balancing (9.11) of Sk when (9.18) holds.

Proceeding now inductively, we see that we must be able to find a subsequence with

d
(l)
k ≥ clσ(S

(l)
k )

for all l = 1, . . . , κ and some constants cl > 0. However, we can now show that this is in direct
contradiction to the assumption (9.12). Indeed, an identical calculation from (9.19) gives

σ(Sk)

µ(Sk)
=

σ(S
(κ)
k )

µ(Sk)
·
κ−1∏
ℓ=0

(
σ(S

(ℓ)
k )

d
(ℓ+1)
k

·
d
(ℓ+1)
k

σ(S
(ℓ+1)
k )

)
≥

σ(S
(κ)
k )

µ(Sk)
· ηκ

κ∏
l=1

cl ,
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where we recall S
(0)
k = Sk. But we know from Lemma 8.3(i) and (ii) that µ(Sk) = µ(S

(κ)
k )

and ηµ(S
(κ)
k ) ≤ σ(Sκ

k). Hence, the above gives

σ(Sk)

µ(Sk)
≥ ηκ+1

κ∏
l=1

cl > 0 ,

thus reaching the desired contradiction to (9.12), and completing the proof. □

10. Reduction of the main decay theorem

In this section, we reduce the proof of Theorem 2.5 to an a priori much weaker decay
statement; Theorem 10.2 below. For this we will utilize the balancing result from Proposition
9.1. Recall that for a cone S ∈ C (Q), we write

σ(S) := min
i<j

dist(αi ∩B1, αj ∩B1), µ(S) := max
i<j

dist(αi ∩B1, αj ∩B1).

From now on, we make the following assumption regarding the (balancing) constant M :

Assumption 10.1. The constant M ≥ 1 is chosen so that the application Proposition 9.1
yields an M -balanced cone. Thus, M = M(Q,m, n, n̄).

Theorem 10.2 (Weak Excess Decay Theorem). Fix Q,m, n, n̄ as before, and let M ≥ 1 be as in
Assumption 10.1. Fix also ς1 > 0. Then, there are constants ε1 = ε1(Q,m, n, n̄, ς1) ∈ (0, 1/2],
r11 = r11(Q,m, n, n̄, ς1) ∈ (0, 1/2] and r21 = r21(Q,m, n, n̄, ς1) ∈ (0, 1/2], such that the following
holds. Suppose that

(i) T and Σ are as in Assumption 2.1;
(ii) ∥T∥(B1) ≤ (Q+ 1

2 )ωm;
(iii) There is S ∈ C (Q, 0) which is M -balanced, such that

E(T,S,B1) ≤ ε21σ(S)
2 (10.1)

and
Bε1(ξ) ∩ {p : Θ(T, p)≥ Q} ≠ ∅ ∀ξ ∈ V (S) ∩B1/2 ; (10.2)

(iv) A2 ≤ ε21E(T, S̃,B1) for every S̃ ∈ C (Q, 0).

Then, there is S′ ∈ C (Q, 0) \ P(0) such that for some i ∈ {1, 2} we have

E(T,S′,Bri1
) ≤ ς1E(T,S,B1) . (10.3)

The above theorem would appear to be considerably weaker than Theorem 2.5; not only
are we assuming the cone S is balanced, but there is also a significant difference between the
smallness assumption (2.1) and (10.1). In fact, (10.1) implies the second inequality in (2.1) for
ε1 suitably small (indeed, Proposition 8.6 then gives σ(S)2 ≤ CEp(T,B1)), whilst when the
cone S arises from Proposition 9.1 (as it will) the second inequality in (2.1) is equivalent, up
to constants, to (from Proposition 9.1(d))

E(T,S,B1) ≤ ε20µ(S)
2 . (10.4)

In order to show that in fact the above seemingly weaker statement implies Theorem 2.5, the
idea is to first show that Theorem 10.2 implies a multiple radii decay version of Theorem 2.5, by
first removing the necessary planes in the cone S to reach a balanced cone, and then inductively
removing additional planes to obtain a cone (that is still balanced) for which assumption (10.1)
holds. In doing so we reach an intermediate statement, namely an excess decay with finitely
many scales, from which we then derive Theorem 2.5. This is the following, the idea of which
is similar to that seen in [32, Section 13]:

Proposition 10.3 (Multiple Radii Excess Decay). Fix Q,m, n, n̄ as before, and let M ≥ 1 be
as in Assumption 10.1. Let N̄ := Q(Q − 1). Fix ς2 > 0. Then, there exist positive constants
ε2, r1, . . . , rN̄ ≤ 1

2 , depending only on Q,m, n, n̄, and ς2, such that the following holds. Suppose
that T,Σ,S are as in Theorem 2.5, i.e.:

(i) T and Σ are as in Assumption 2.1 and B1 ⊂ Ω;
(ii) ∥T∥(B1) ≤ (Q+ 1

2 )ωm;
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(iii) There is S ∈ C (Q, 0) \ P(0) such that

E(T,S,B1) ≤ ε22E
p(T,B1),

and that

Bε2(ξ) ∩ {p : Θ(T, p) ≥ Q} ≠ ∅ ∀ξ ∈ V (S) ∩B1/2 ;

(iv) A2 ≤ ε22E(T, S̃,B1) for every S̃ ∈ C (Q, 0).

Then, there is a S′ ∈ C (Q, 0) \ P(0) and i ∈ {1, . . . , N̄} such that:

E(T,S′,Bri) ≤ ς2E(T,S,B1) . (10.5)

We will then be able to show that Proposition 10.3 implies Theorem 2.5, which therefore
demonstrates that the weak excess decay from Theorem 10.2 implies the stronger excess decay
statement from Theorem 2.5. Let us begin by showing that Theorem 10.2 implies Proposition
10.3.

Proof of Proposition 10.3 from Theorem 10.2. Fix T,Σ,S, and ς2 as in the statement of Propo-
sition 10.3.

Firstly, because of Proposition 9.1, if we take ε2 ≤ ε0 where ε0 = ε0(Q,m, n, n̄) > 0 is as

in Proposition 9.1, then we can find a cone S̃ which is M -balanced and obeys E(T, S̃,B1) ≤
ME(T,S,B1), where M = M(Q,m, n, n̄) is as in Assumption 10.1. Thus, we have

E(T, S̃,B1) ≤ ME(T,S,B1) ≤ Mε22E
p(T,B1)

In particular, this coupled with the other estimates in Proposition 9.1 gives that if we can
prove the result for S̃, then the result follows for S, up to changing ς2 by a factor of M . Thus,
we may without loss of generality assume that S is M -balanced and M−1Ep(T,B1) ≤ µ(S) ≤
MEp(T,B1).

We would now like to apply Theorem 10.2. However, a priori, it may be the case that (10.1)
does not hold for S, as we are merely assuming that E(T,S,B1) ≤ ε22E

p(T,B1). The remaining
part of the argument deals with this difficulty; the price to pay is that the decay might occur
at one of finitely many scales, but nonetheless the number of possible scales which are needed
belong to a set of controlled cardinality.

We start by introducing, for every integer k ∈ {2, . . . , Q}, functions ε(k)(s), r
1
(k)(s), and

r2(k)(s) of a parameter s > 0 as follows:

• If one takes Q = k and ς1 = s in Theorem 10.2, then ε(k)(s) := ε1(k,m, n, n̄, s), where

the ε1 is the constant from Theorem 10.2 with this choice of Q, ς1, and r1(k)(s) :=

r11(k,m, n, n̄, s), r2(k)(s) := r21(k,m, n, n̄, s) are the corresponding radii, where r11 and

r21 are as in Theorem 10.2.

In particular, k here is the number of planes forming the cone S to which Theorem 10.2 is
applied, whilst s is the specified decay factor.

We now denote by N the number of planes forming S. If N = 2, then µ(S) = σ(S), and
so from (10.4) we get that the assumptions of Theorem 10.2 hold (up to ε2 changing by a
constant), and so if we take ε2 smaller than ε(2)(ς2), we see that we can apply Theorem 10.2.

The corresponding radii from this application of Theorem 10.2 will be denoted by r12,2 and r22,2
(the first subscript here denotes the number of planes, N , in the cone S, whilst the second
subscript denotes the number of planes left at the point of application of Theorem 10.2 – see
below), which are simply r1(2)(ς2) and r2(2)(ς2). In particular, the proof is complete in the case

Q = 2.
From now on we therefore assume N ≥ 3. We may take ε2 ≤ ε(N)(ς2). We then consider

two cases. If we have

E(T,S,B1) ≤ ε(N)(ς2)
2σ(S)2

then we can simply apply Theorem 10.2 to get the desired decay at one of the two radii
r1N,N := r1(N)(ς2), r

2
N,N := r2(N)(ς2). We can therefore assume that

E(T,S,B1) > ε(N)(ς2)
2σ(S)2. (10.6)
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We now follow the same idea in the argument for the Pruning Lemma (Lemma 8.2). Let
S = α1 ∪ · · · ∪ αN , where the αi are distinct m-dimensional planes. We can assume, upon
relabelling, that

dist(α1 ∩B1, α2 ∩B1) = σ(S)

and that there are two indices i∗, j∗ ̸= 1 with

dist(αi∗ ∩B1, αj∗ ∩B1) = µ(S).

We now remove the plane α1 and consider SN−1 := α2 ∪ · · · ∪ αN ; note that SN−1 is still
M -balanced, V (SN−1) = V (S), µ(S) = µ(SN−1), and

dist2(S ∩B1,SN−1 ∩B1) ≤ σ(S)2 ≤ ε(N)(ς2)
−2E(T,S,B1);

these conditions imply that if we can show the result for SN−1, the corresponding statement
for S follows.

Now observe that

E(T,SN−1,B1) ≤ C0E(T,S,B1) + C0σ(S)
2 ≤ C0

(
1 + ε(N)(ς2)

−2
)
E(T,S,B1).

for some constant C0 = C0(Q,m, n, n̄) ≥ 1. Let us write C∗
1 := C0(1 + ε(N)(ς2)

−2), and so
C∗

1 = C∗
1 (N,m, n, n̄, ς2) > 1, and so the above inequality is just

E(T,SN−1,B1) ≤ C∗
1E(T,S,B1).

Therefore, if
E(T,S,B1) ≤ ε(N−1)(ς2/C

∗
1 )

2σ(SN−1)
2 (10.7)

and if we take ε2 ≤ ε(N−1)(ς2/C
∗
1 )/
√
C∗

1 (which of course we may), then the above gives
that we can apply Theorem 10.2 to the triple T,Σ, and SN−1 to conclude the desired decay
statements in Proposition 10.3, for one of the radii

riN,N−1 := ri(N−1)(ς2/C
∗
1 ), i ∈ {1, 2}.

If (10.7) is not true, i.e. if we cannot apply Theorem 10.2 as above, then we must have

E(T,S,B1) > ε(N−1)(ς2/C
∗
1 )

2σ(SN−1)
2. (10.8)

We now wish to apply the above procedure inductively; indeed, suppose we have performed
the above procedure K times, and at each stage we have not been able to apply Theorem 10.2.
Thus, upon relabelling the planes in S, for k = 0, 1, . . . ,K we have cones SN−k = αk+1∪· · ·∪αN

which are all M -balanced and obey V (SN−k) = V (S), µ(SN−k) = µ(S). We also know that
SN−(k+1) is formed from SN−k by removing a single plane, namely αk+1, which is a plane in
SN−k achieving the minimal separation σ(SN−k) and such that there are two other planes in
SN−k which achieve the maximal separation µ(SN−k) (this can be done as long as N − k ≥ 3,
i.e. 0 ≤ k ≤ N − 3). The criterion along this sequence is that

E(T,S,B1) > ε(N−k)(ς2/C
∗
k)

2σ(SN−k)
2

where C∗
k = C0(C

∗
k−1 + ε(N−(k−1))(ς2/C

∗
k−1)

−2) is defined inductively for k ≥ 1, with C∗
0 = 1

and C0 = C0(Q,m, n, n̄) is as above, and

E(T,SN−k,B1) ≤ C∗
kE(T,S,B1) ;

for this procedure we need to assume ε2 ≤ ε(N−k)(ς2/C
∗
k)/
√

C∗
k for each k = 0, 1, . . . ,K (which

of course we may). We also therefore have

dist2(SN−(k+1) ∩B1,SN−k ∩B1) ≤ σ(SN−k)
2 ≤ ε(N−k)(ς2/C

∗
k)

−2E(T,S,B1)

and thus

E(T,SN−(k+1),B1) ≤ CE(T,SN−k,B1) + Cσ(SN−k)
2

≤ C0E(T,SN−k,B1) + C0ε(N−k)(ς2/C
∗
k)

−2E(T,S,B1)

which in particular gives the inductive definition of C∗
k . Note that this procedure can occur at

most N − 2 times, and thus all the constants and smallness assumptions here only depend on
N,m, n, n̄, and ς2, and so certainly we can choose ε2 = ε2(N,m, n, n̄, ς2) small enough so that
the above procedure is guaranteed whenever we cannot apply Theorem 10.2.
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Hence, for this choice of ε2, if we are unable to apply Theorem 10.2 at all steps to conclude,
the above process must eventually terminate when the cone is formed of exactly two planes,
i.e. at S2. Since we are unable to apply Theorem 10.2 to S2, we must have

E(T,S,B1) > ε(2)(ς2/C
∗
N−2)

2σ(S2)
2. (10.9)

However, as S2 consists of two planes we know that σ(S2) = µ(S2), and moreover since by
construction we know that µ(S2) = µ(S), we see that (10.9) is equivalent to

E(T,S,B1) > ε(2)(ς2/C
∗
N−2)

2µ(S)2. (10.10)

However, we are assuming (see Proposition 10.3(iii)) that E(T,S,B1) ≤ ε22E
p(T,B1), which

from (10.4) we know implies

E(T,S,B1) ≤ Cε22µ(S)
2

for some C = C(Q,m, n, n̄) > 0. Thus, if we ensure that Cε22 < 1
2ε(2)(ς2/C

∗
N−2)

2 also, then
this would give a contradiction to (10.10); hence, for such a choice of ε2 we see that once we
reach S2, we in fact must be able to apply Theorem 10.2 in the above procedure.

We hence conclude that, for any fixed N ≤ Q, if the threshold ε2 satisfies all the (finitely
many) smallness conditions above, then we have that Proposition 10.3 holds for one of the radii
r1N,N , r2N,N , r1N,N−1, r

2
N,N−1, . . . , r

1
N,2, r

1
N,2, of which there are 2(N − 1) radii. In particular,

if ε2 satisfies all of these smallness conditions as we range N over {2, . . . , Q}, then the above
argument is valid for any cone S ∈ C (Q, 0) comprised of N ∈ {2, . . . , Q} planes, i.e. for every
S ∈ C (Q, 0) \ P. Thus, Proposition 10.3 holds for every S ∈ C(Q, 0) \ P for one of the radii
in the collection {rij,k}, where i ∈ {1, 2} and 2 ≤ k ≤ j ≤ Q. Thus, the number of possible
decay scales is

Q∑
N=2

2(N − 1) = Q(Q− 1) = N̄

as claimed in the statement of Proposition 10.3. This completes the proof. □

Now we will prove Theorem 2.5 from Proposition 10.3, thus reducing the proof of Theorem
2.5 to proving the weaker version, Theorem 10.2. First, we observe a corollary of the Propo-
sition 9.1 and Proposition 8.14, the purpose of which is to control the excess of rescalings; it
will be a useful tool in the proof of the reduction.

Corollary 10.4. Suppose T̃ and Σ̃ satisfy Assumption 2.1, let S̃ ∈ C (Q, 0) \P(0), and write

Ã2 for the supremum norm of the second fundamental form of Σ̃. Fix also a radius r̄ ∈ (0, 1].

Then, there are constants ε̃ = ε̃(Q,m, n, n̄, r̄) > 0 and C̃ = C̃(Q,m, n, n̄, r̄) > 0 such that the
following holds. If we have

E(T̃ , S̃,B1) ≤ ε̃2Ep(T̃ ,B1)

and

Ã2 ≤ ε̃2E(T̃ , S̄,B1) ∀S̄ ∈ C (Q, 0) ,

then there is S′ ∈ C (Q, 0) \ P(0) such that

E(T̃ ,S′,Br) ≤ C̃E(T̃ , S̃,B1) ∀r ∈ [r̄, 1]. (10.11)

Proof. Observe that for any r ∈ [r̄, 1] we clearly have

Ê(T̃ , S̃,Br) = r−m−2

∫
Br

dist2(x, S̃) d∥T̃∥(x) ≤ r̄−m−2Ê(T̃ , S̃,B1).

On the other hand, there is no obvious reason to have a bound of the form

Ê(S̃, T̃ ,Br) ≤ C(r̄)E(T̃ , S̃,B1)

because in the integral defining the reverse excess Ê(S̃, T̃ ,Br) we omit a tubular neighbourhood

of the spine V (S̃) of radius ar, and thus there is no inclusion property of one domain of
integration into the other when we are comparing two different scales.

To get around this problem, first note that, provided ε̃ ≤ ε0 where ε0 = ε0(Q,m, n, n̄) is as

in Proposition 9.1, we can apply Proposition 9.1 to assume without loss of generality that S̃ is
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M -balanced (M as in Assumption 10.1; all that changes is the two-sided excess increases by a
factor of M = M(Q,m, n, n̄)).

Fix δ > 0 (to be determined later). Now, apply the Pruning Lemma (Lemma 8.2) with this

choice of δ and with D = E(T̃ , S̃,B1)
1/2 to the (balanced) cone S̃, in exactly the same way

as was done in the proof of Proposition 9.1, to yield a new cone S′. The latter is the union
of some subset of the planes in S̃, in particular it is M -balanced and obeys V (S′) = V (S̃).
Moreover it satisfies

E(T̃ ,S′,B1) ≤ CδE(T̃ , S̃,B1)

and
E(T̃ ,S′,B1) ≤ Cδ2σ(S′)2

where here Cδ = Cδ(Q,m, n, n̄, δ) and C = C(Q,m, n, n̄). In particular, we have

Ã2 + E(T̃ ,S′,B1) ≤ C(ε̃2 + δ2)σ(S′)2.

Thus, we are in a situation to apply the refined approximation (Proposition 8.14) to T̃ , S′,
provided we take ε̃, δ sufficiently small. The region we are interested in building the refined
approximation over is B1 \Bar̄/2(V (S̃)), and so in particular the radius of this neighbourhood
of the spine is fixed only depending on r̄ and a. Thus, by Lemma 8.13, if we take ε̃ and δ smaller
than a constant depending only on Q,m, n, n̄, r̄, we can ensure that B1 \ Bar̄/2(V (S̃)) ⊂ Ro,
(recall that Ro is the outer region of the refined approximation). In particular, one can apply
Proposition 8.14; the estimates therein (summed over the cubes L ∈ Go ∪ Gc that intersect

Br \Bar(V (S̃)) give that

Ê(S′, T̃ ,Br) ≤ C̃E(T̃ ,S′,B1)

for any r ∈ [r̄, 1], where C̃ = C̃(Q,m, n, n̄, r̄). Hence by choosing such an appropriate δ =
δ(Q,m, n, n̄, r̄) and ε̃ = ε̃(Q,m, n, n̄, r̄), we see that the proof is complete. □

The next lemma gives the final ingredient for our proof that Proposition 10.3 implies The-
orem 2.5(a). The lemma provides a condition for which the rescalings of Corollary 10.4 also
satisfy the conditions of Theorem 2.5.

Lemma 10.5. Fix a radius r̄ ∈ (0, 1
2 ] and ε2 ∈ (0, 1). Then, there exists a positive number

ε0 = ε0(Q,m, n, n̄, r̄, ε2) such that the following holds. Suppose that T , Σ, and S satisfy the
assumptions in Theorem 2.5 with this choice of ε0. Then, for every radius r ∈ [r̄, 1

2 ] we have
the following. If there is a cone Sr ∈ C (Q, 0) which obeys

E(T,Sr,Br) ≤ E(T,S,B1), (10.12)

and moreover
A2r2 ≤ ε20 inf{E(T,S′,Br) : S

′ ∈ C (Q, 0)} , (10.13)

then the rescalings T0,r, Σ0,r, and Sr satisfy the assumptions (i)–(iii) of Theorem 2.5 (and so
also Proposition 10.3 and Corollary 10.4) with ε2 in place of ε0, i.e.

E(T0,r,Sr,B1) ≤ ε22E
p(T0,r,B1)

and
Bε2(ξ) ∩ {p : Θ(T0,r, p) ≥ Q} ≠ ∅ ∀ξ ∈ V (Sr) ∩B1/2.

Proof. We argue by contradiction. Fix ε2 and r̄. If the conclusion of the lemma is false, then
we can find a sequence of currents Tk, manifolds Σk, cones Sk, and εk0 ↓ 0 as in Theorem 2.5
with εk0 in place of ε0 for which the present lemma fails. Namely, there exist radii rk ∈ [r̄, 1

2 ]
and cones Srk ≡ (Sk)rk which obey

(εk0)
−2r2kA

2
k ≤ E(Tk,Srk ,Brk) ≤ E(Tk,Sk,B1)

yet either we have (as the inequality A2
0,rk

≤ ε22E((Tk)0,rk ,Srk ,B1) holds for all k sufficiently
large by the above assumption)

E(Tk,Srk ,Brk) > ε22E
p(Tk,Brk)

or
Brkε2(ξ) ∩ {p : Θ(Tk, p) ≥ Q} = ∅ for some ξ ∈ V (Srk) ∩Brk/2.
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In particular, since the assumptions of Theorem 2.5 hold for Tk and Sk, points of density at
least Q in Tk accumulate on the spines V (Sk). Thus, if we pass to a subsequence for which
V (Sk) and V (Srk) converge, the second condition above in fact gives that we must have

lim
k→∞

dist(V (Srk) ∩B1, V (Sk) ∩B1) ≥ r̄ε2/2 > 0 (10.14)

whilst the first condition above gives

lim inf
k→∞

E(Tk,Srk ,Brk)

Ep(Tk,Brk)
≥ ε22 > 0. (10.15)

Without loss of generality, we can select planes πk realizing Ep(Tk,B1), and, up to perform-
ing a rotation, we can assume they all coincide with the same fixed plane, π0. We can also pass
to a subsequence to ensure that the number Nk of planes forming Sk is a constant N (obeying
N ≤ Q), and similarly the number of planes forming Srk is a constant N̄ .

Let us first contradict (10.15). Note that we have

E(Tk,Srk ,Brk) ≤ E(Tk,Sk,B1) ≤ (εk0)
2Ep(Tk,B1) → 0 .

and thus (10.15) tells us that we must have Ep(Tk,Brk) → 0. In particular, up to subsequences,
we know that the current Tk is converging to a limiting current T∞ which coincides with an
integer multiple of some plane π∞ in Brk . On the other hand, if we extract a converging
subsequence, not relabelled, we have Sk → S∞ in the local Hausdorff topology for some
S∞ ∈ C (Q, 0). Hence we also conclude that spt(T ) ∩ B1 ≡ S∞ ∩ B1. This implies that the
cone S∞ ∈ C (Q, 0) is in fact the plane π∞. In particular we conclude Ep(Tk,B1) → 0.

We can therefore apply Almgren’s (strong) Lipschitz approximation to the sequence Tk and
perform a blow-up procedure. We normalize the Lipschitz approximations by

E
1/2
k = Ep(Tk,B1)

1/2

and, upon possibly applying suitable rotations (see Remark 8.20), extract a Dir-minimizing
function f∞ : B1/2(π∞) → AQ(π

⊥
∞) in the blow-up limit. Moreover, since E(Tk,Sk,B1) ≤

(εk0)
2Ep(Tk,B1), we see that if we describe the cones Sk as a union of graphs of linear maps

Lk
1 , . . . , L

k
N : π∞ → π⊥

∞ then, as we have previously seen, upon extraction of a subsequence

we will have that E
−1/2
k Lk

i converges to some linear function L∞
i for each i = 1, . . . , N .

At least two of these linear functions are distinct, given that by Proposition 9.1(d) µ(S) is

comparable to E
1/2
k . But now, since f∞ =

∑N
i=1JL

∞
i K and rk ≤ 1

2 , this would imply that

C−1 ≤ Ep(Tk,Brk)/E
p(Tk,B1) ≤ C for some geometric constant C > 0, and hence we would

have
E(Tk,Srk ,Brk)

Ep(Tk,Brk)
≤ C

E(Tk,Srk ,Brk)

Ep(Tk,B1)
≤ C

E(Tk,Sk,B1)

Ep(Tk,B1)
≤ C(εk0)

2 → 0

which is in direct contradiction to (10.15).
Now we contradict (10.14). We distinguish two cases here, depending on whether Ep(T,B1)

converges to 0 or not. In the latter case we can assume, after extracting a suitable subsequence,
that Sk converges to a non-planar cone S∞ ∈ C (Q, 0)\P in the local Hausdorff topology which
is the support of an area-minimizing current. But then it would follow that Srk converges to
the same cone. In particular V (Srk) ∩ B1 and V (Sk) ∩ B1 both converge to V (S∞) ∩ B1,
contracting (10.14).

In the other case note that, since E(Tk,Srk ,Brk) ≤ (εk0)
2Ep(Tk,B1), if we assume that the

cones Srk are the union of N̄ distinct linear maps L̄k
i , we see that E

−1/2
k L̄k

i converge to a linear
map L̄∞

i for each i = 1, . . . , N̄ . Furthermore the union of the graphs of these limiting linear
maps must coincide with the support of the map f∞ found previously (indeed, we get from
the above inequality that they must coincide on Br̄, and hence on all of B1 as they are linear).
But this is only possible if

dist(V (Srk) ∩B1, V (Sk) ∩B1) → 0

which contradicts (10.14). This completes the proof. □
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We are now ready to complete the proof of Theorem 2.5 from Proposition 10.3. We first
address the most important conclusion, which is the decay estimate in (a). We will see after
how (b), (c), and (d) can be derived from this.

Proof of Theorem 2.5(a) from Proposition 10.3. We therefore fix T , Σ, S, and ς as in the state-
ment of Theorem 2.5, and fix parameters ε0 and r0 < 1/2 to be specified later.

Choose ς2 = 1
2 in Proposition 10.3, and denote by ε2 = ε2(Q,m, n, n̄) the corresponding

constant from Proposition 10.3 for this choice of ς2. Also denote by r1, . . . , rN̄ ≤ 1
2 the

corresponding radii from Proposition 10.3 with this choice of ς2. Write r̄ := min{ri : i =
1, . . . , N̄}, which depends only on Q,m, n, n̄.

Define
E(T,Br) := inf{E(T,S,Br) : S ∈ C (Q, 0) \ P(0)}

and
A := {r ∈ [r0, 1/2] : ε

−2
0 A2r2 ≥ E(T,Br)}.

We now distinguish three possibilities.

Case 1: A = ∅. We then have ε−2
0 r2A2 ≤ E(T,Br) for all r ∈ [r0, 1/2]. If ε0 ≤ ε2, then

at scale 1 the assumptions of Theorem 2.5 give that we can apply Proposition 10.3 to T,Σ,S
to get that there exists ρ1 ∈ [r̄, 1/2] (indeed, ρ1 = ri for some i = 1, . . . , N̄ , but this is not
relevant) and a cone S1 ∈ C (Q, 0) \ P(0) such that

E(T,S1,Bρ1) ≤
1

2
E(T,S,B1).

Let us assume (as we may) that r0 < r̄. Since A = ∅, we therefore fall into the realm of Lemma
10.5, taking ε2 and r̄ to be the above constants. If ε0 is smaller than the corresponding constant
from Lemma 10.5 with this choice of ε2 and r̄ (and thus only depends on Q,m, n, n̄), we see
that Lemma 10.5 gives that T0,ρ1 , Σ0,ρ1 , and some cone S′

1 (namely the cone achieving the
infimum in E(T,Bρ1)) obey the necessary conditions to apply Proposition 10.3 again. Thus,
we find a second radius ρ2 obeying ρ2/ρ1 ∈ [r̄, 1/2] and a cone S2 ∈ C (Q, 0) \ P(0) obeying

E(T,S2,Bρ2) ≤
1

2
E(T,S1,Bρ1) ≤

1

4
E(T,S,B1).

We now keep iterating this procedure, until we arrive at a radius ρk so that the next
radius ρk+1 is smaller than r0 (in particular we no longer necessarily have that ε−2

0 A2ρ2k+1 ≤
E(T,Bρk+1

)); as ρk+1/ρk ∈ [r̄, 1/2], when this happens we have r̄ ≤ ρk+1/ρk < r0/ρk. Since
we can apply Corollary 10.4 to T0,ρk

, Σ0,ρk
, and Sk (again, using the fact that ρk ̸∈ A = ∅

and Lemma 10.5), provided ε2 is smaller than the corresponding constant from Corollary 10.4
with this choice of r̄ (which can of course be arranged), we therefore get the existence of a
cone S′ ∈ C (Q, 0) \ P(0) such that (choosing r∗ = r0/ρk ∈ [r̄, 1] in Corollary 10.4, so that
r∗ρk = r0)

E(T0,ρk
,S′,Br∗) ≤ CE(T0,ρk

,Sk,B1)

where C = C(Q,m, n, n̄) (indeed the constant C depends on r̄, but at this stage the latter has
been fixed as depending only upon Q,m, n, and n̄). In particular, combined with the above
iteration, the last inequality yields

E(T,S′,Br0) ≤ CE(T,Sk,Bρk
) ≤ C · 2−kE(T,S,B1).

Observe however that as r̄ < r0/ρk < r0/r̄
k, i.e. r0 > r̄k+1, we have k + 1 ≥ log(r0)/ log(r̄).

Hence, choosing r0 = r0(Q,m, n, n̄) sufficiently small we can ensure that k ≥ 1
2

⌊
log(r0)
log(r̄)

⌋
, and

hence

E(T,S′,Br0) ≤ C2
− 1

2

⌊
log(r0)

log(r̄)

⌋
E(T,S,B1). (10.16)

Now we may further take r0 small enough to make sure that C2
− 1

2

⌊
log(r0)

log(r̄)

⌋
≤ ς to deduce the

conclusion (a) of Theorem 2.5.

Case 2: inf A = r0. Note that A is certainly a closed set, and so in this case we have
r0 ∈ A. Hence, we have

E(T,Br0) ≤ ε−2
0 A2r20 ≤ r20E(T,S,B1)
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where the second inequality comes from our assumption in Theorem 2.5. In particular, we can
find S′ ∈ C (Q, 0) \ P(0) with

E(T,S′,Br0) ≤ 2E(T,Br0) ≤ 2r20E(T,S,B1)

and so we just need to take 2r20 < ς to deduce conclusion (a) of Theorem 2.5.

Case 3: A ≠ ∅ yet inf A > r0. In this case, let rI = inf A ∈ A. Let SI ∈ C (Q, 0) \ P(0) be
such that

E(T,SI ,BrI ) ≤ 2E(T,BrI ) ≤ 2ε−2
0 A2r2I . (10.17)

Now observe that

lim
r↑rI

E(T,SI ,Br) = E(T,SI ,BrI )

Moreover, as [r0, rI) ̸= ∅ and [r0, rI) ∩ A = ∅, we see that for all r ∈ [r0, rI),

ε−2
0 r2A2 ≤ E(T,Br) ≤ E(T,SI ,Br).

Taking r ↑ rI in this expression, we deduce

ε−2
0 r2IA

2 ≤ E(T,SI ,BrI ).

Moreover, from (10.17) and our assumption (2.1) we know

E(T,SI ,BrI ) ≤ 2ε−2
0 A2r2I ≤ 2r2IE(T,S,B1). (10.18)

Hence, we have all the necessary assumptions to apply Lemma 10.5, which guarantees that we
can apply Proposition 10.3 to T0,rI , Σ0,rI , and SI . We can now argue as in Case 1, but with
rI replacing 1 as a starting point of the iteration and with r0/rI as the lower endpoint. We
therefore get the existence of an S′ ∈ C (Q, 0) \ P(0) with the property that (see (10.16))

E(T,S′,Br0) ≤ C2−
1
2

log(r0/rI )

log(r̄) E(T,SI ,BrI ).

Combining this with (10.18) we arrive at

E(T,S′,Br0) ≤
(
2r2IC2

1
2

log(rI )

log(r̄)

)
2−

1
2

log(r0)

log(r̄) E(T,S,B1).

Noting that 2
1
2

log(rI )

log(r̄) =
(

1
rI

) log(2)
2 log(1/r̄) ≤ r

− 1
2

I , the above becomes

E(T,S′,Br0) ≤
(
2Cr

3/2
I

)
2−

1
2

log(r0)

log(r̄) E(T,S,B1) ≤ 2C · 2−
1
2

log(r0)

log(r̄) E(T,S,B1).

Thus choosing r0 small enough so that 2C · 2−
1
2

log(r0)

log(r̄) ≤ ς, we deduce (a) from Theorem 2.5.
As the above three situations exhaust all possibilities, the proof is completed. □

To summarize: we have now reduced the proof of point (a) in Theorem 2.5 to proving the
a priori much weaker result of Theorem 10.2. We will next address how points (b), (c), and
(d) follow from (a). In fact, since it will prove to be useful also later when we get to the
rectifiability statement in Theorem 1.1, we state here a more general lemma.

Lemma 10.6. There is a constant C = C(Q,m, n, n̄) > 0 with the following property. For
every r0 > 0, there exists ε = ε(Q,m, n, n̄, r0) > 0 such that if

(i) T and Σ are as in Assumption 2.1;
(ii) ∥T∥(B1) ≤ (Q+ 1

2 )ωm; and
(iii) there is S ∈ C (Q, 0) \ P(0) such that

A2 + E(T,S,B1) ≤ ε2Ep(T,B1) ; (10.19)

then

C−1Ep(T,B1) ≤ Ep(T,Br0) ≤ CEp(T,B1) . (10.20)

Moreover, there is a constant C̄ = C̄(Q,m, n, n̄, r0) such that, provided ε is chosen possibly
smaller, if there is another cone S′ ∈ C (Q, 0)\P(0) that also obeys

E(T,S′,Br0) ≤ ε2Ep(T,B1) , (10.21)
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then

dist2(S ∩B1,S
′ ∩B1) ≤ C̄(A2 + E(T,S,B1) + E(T,S′,Br0)) (10.22)

dist2(V (S) ∩B1, V (S′) ∩B1) ≤ C̄Ep(T,B1)
−1(A2 + E(T,S,B1) + E(T,S′,Br0)) . (10.23)

Proof. First of all we argue for (10.20). We start by demonstrating that

µ(S)2 ≤ CEp(T,B1) . (10.24)

In fact, fix π such that Ep(T,B1) = Ê(T, π,B1) and use Allard’s L2–L∞ height bound to infer
that

dist2(q, π) ≤ CEp(T,B1) + CA2 ∀q ∈ spt(T ) ∩B1/2 . (10.25)

Next, let αi be one of the planes which form S and recall that∫
αi∩B1\Ba(V )

dist2(q, spt(T )) dHm(q) ≤ E(T,S,B1) .

Using Chebyshev’s inequality (applied to the measure Hm αi), we have that the set Fi ⊂
αi ∩B1/4 \Ba(V ) of points q ∈ αi ∩B1/4 \Ba(V ) obeying

dist2(q, spt(T )) ≤ C

Hm(αi ∩B1/4 \Ba(V ))
E(T,S,B1) (10.26)

satisfies Hm(Fi) ≥
(
1− 1

C

)
Hm(αi ∩B1/4 \Ba(V )) and so for a choice of C = C(m) > 0

sufficiently large, there exist m linearly independent vectors e1, . . . , em ∈ Fi with the property
that every v ∈ αi ∩B1 can be written as v =

∑
j λjej with |λj | ≤ C.

Combining the above distance inequalities, for each j ∈ {1, . . . ,m} we have

dist2(ej , π) ≤ C(E(T,S,B1) +A2 +Ep(T,B1)) ≤ CEp(T,B1) .

For each v ∈ αi ∩B1, using the identity dist(v, π) = |p⊥
π (v)|, this in turn implies

dist2(v, π) ≤ CEp(T,B1) .

We thus can use (7.2) of Corollary 7.3 to infer that

dist2(αi ∩B1, π ∩B1) ≤ CEp(T,B1) , (10.27)

which in turn implies (10.24).
Observe also that we have the inequality

Ep(T,B1) ≤ Ê(T, α1,B1) ≤ CÊ(T,S,B1) + Cµ(S)2 ≤ Cε2Ep(T,B1) + Cµ(S)2 ,

and so in particular we conclude

C−1Ep(T,B1) ≤ µ(S)2 ≤ CEp(T,B1) , (10.28)

if ε is sufficiently small. Moreover, since we have not used any information other than the
smallness of E(T,S,B1)+A2 with respect to Ep(T,B1), the same argument applies to S′ and
T0,r0 , which allows us to conclude

C−1Ep(T,Br0) ≤ µ(S′)2 ≤ CEp(T,Br0) . (10.29)

We next observe that from (10.24) (see also (10.27)) we immediately get the inequality on the
right-hand side of (10.20). Indeed, we can write

Ep(T,Br0) ≤ Ê(T, π,Br0) ≤ Cr−2
0 max

i
dist2(αi ∩Br0 , π ∩Br0) + CÊ(T,S,Br0)

≤ CEp(T,B1) + Cr−m−2
0 Ê(T,S,B1) ≤ C(1 + εr−m−2

0 )Ep(T,B1)

and so to conclude the right-hand inequality in (10.20) it suffices to choose ε small compared
to r0.

We next argue by contradiction for the left-hand inequality in (10.20). If the conclusion
is false, then we could find a sequence of area-minimizing currents Tk, ambient manifolds Σk,



FREQUENCY 1 FLAT SINGULAR POINTS AND Hm−2-A.E UNIQUENESS OF TANGENT CONES 73

cones Sk ∈ C (Q, 0) \P(0), and parameters εk ↓ 0 for which the left-hand inequality in (10.20)
fails for some fixed r0, namely

lim
k→∞

Ep(Tk,Br0)

Ep(Tk,B1)
< C−1

∗ , (10.30)

for some constant C∗ which will be specified only later and which will turn out to be indepen-
dent of r0. Without loss of generality, we can select planes πk with Ep(Tk,B1) = Ê(Tk, πk,B1),
and, up to performing a rotation, we can assume they all coincide with the same fixed plane,
π∞. We can also pass to a subsequence to ensure that the number Nk of planes forming Sk is
a constant N (obeying N ≤ Q).

Observe that we must necessarily have

Ep(Tk,B1) → 0 .

Indeed, we can assume Sk → S∞∈ C (Q, 0) \ P(0) locally in the Hausdorff topology, while Tk

converges weakly to some area-minimizing current T∞ and it follows easily that spt(T∞)∩B1 =
S∞∩B1. If E

p(Tk,B1) does not converge to 0, then T∞ is not supported in a plane, so it must
be an area-minimizing integral cone which is not planar. But then we see immediately that

lim
k→∞

Ep(Tk,B1)

Ep(Tk,Br0)
= 1 .

In particular this would be a contradiction if we impose C∗ ≥ 1 in (10.30).
We conclude then that Sk converges indeed to π∞. We can therefore apply Almgren’s

(strong) Lipschitz approximation [11, Theorem 2.4] to the sequence Tk relative to the plane
π∞ and perform a blow-up procedure. We normalize the Lipschitz approximations by

E
1/2
k = Ep(Tk,B1)

1/2

and, upon possibly applying suitable rotations (see Remark 8.20), extract a Dir-minimizing
function f∞ : B1(π∞) → AQ(π

⊥
∞) in the blow-up limit (the Dir-minimizing property follows

from [11, Theorem 2.6]). Moreover, since E(Tk,Sk,B1) ≤ (εk)2Ep(Tk,B1), we see that if we
describe the cones Sk as a union of graphs of linear maps Lk

1 , . . . , L
k
N : π∞ → π⊥

∞ then upon

extraction of a subsequence we will have that E
−1/2
k Lk

i converges to some linear function L∞
i

for each i = 1, . . . , N , because of (10.24).
Observe that:

• L∞
i and L∞

j are not necessarily distinct for every i ̸= j;
• However there is at least one pair of indices i ̸= j for which they are indeed distinct.

The second fact is a simple consequence of (10.28).
Up to reordering, we can assume that there are exactly N̄ ≥ 2 distinct linear maps

L∞
1 , . . . , L∞

N̄
in the collection {L∞

i }. Consider then the cones S′
k ⊂ Sk given by the graph

of the linear maps Lk
1 , . . . , L

k
N̄
. It follows from the arguments outlined so far that

lim
k→∞

Ê(Tk,S
′
k,B1)

Ep(Tk,B1)
→ 0 ,

lim inf
k→∞

σ(S′
k)

µ(S′
k)

> 0 ,

and

lim
k→∞

µ(Sk)

µ(S′
k)

= 1 .

Together with the fact that C−1 ≤ Ep(Tk,B1)
µ(Sk)2

≤ C, we conclude that

max
1≤i<j≤N̄

∫
B1

|L∞
i − L∞

j |2 ≥ 2C−1
∗

for a suitable choice of C∗ = C∗(Q,m, n, n̄) > 0.
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We can now argue as in the proof of Proposition 9.3 to conclude that

f∞ =

N̄∑
i=1

QiJL∞
i K

for some positive integers Qi ≥ 1.
Consider now for each k a plane π1

k such that Ê(Tk, π
1
k,Br0) = Ep(Tk,Br0). By Allard’s

L∞-L2 bound, for each v ∈ π1
k ∩Br0/2 there is a point q ∈ spt(Tk)∩Br0 such that pπ1

k
(q) = v

and

|v − p|2 ≤ Cr20(E
p(Tk,Br0) + r20A

2
k) ≤ Cr−m

0 Ep(Tk,B1) .

However, by (10.25), dist2(p, π∞) ≤ C(Ep(Tk,B1) +A2
k) ≤ CEp(Tk,B1). It follows immedi-

ately that

dist2(π1
k ∩Br0 , π∞ ∩Br0) ≤ Cr−m

0 Ep(Tk,B1)

which in turn implies

dist2(π1
k ∩B1, π∞ ∩B1) ≤ Cr−m−2

0 Ep(Tk,B1) .

Let Ak : π∞ → π⊥
∞ be the linear map whose graph gives π1

k and note that, from the above

discussion, ∥Ak∥L∞(B1(0,π∞)) ≤ Cr
−1−m/2
0 E

1/2
k . In particular we can extract an L2 limit A∞

of the maps E
−1/2
k Ak, up to subsequences. Now the estimates in [11, Theorem 2.4] imply

lim
k→∞

Ep(Tk,Br0)

Ep(Tk,B1)
= r−m−2

0

∫
Br0

G(f∞, QJA∞K)2 =

∫
B1

G(f∞, QJA∞K)2 ,

where in the last equality we have used the 1-homogeneity of both f∞ and A∞. On the other
hand by the triangle inequality,∫

B1

G(f∞, QJA∞K)2 ≥ 1

2
max

1≤i<j≤N̄

∫
B1

|L∞
i − L∞

j |2 ≥ C−1
∗ .

Thus, we are in contradiction with (10.30), which concludes the proof of (10.20).

Step 1: Reduction via enlarging, balancing, and pruning. We will first show that
one can without loss of generality assume also the following on S and S′:

(B) S and S′ are both M -balanced (with M the constant of Assumption 10.1);
(P) For a suitably small constant δ = δ(Q,m, n, n̄, r0) > 0 we have

A2 + E(T,S,B1) ≤ δ2σ(S)2 (10.31)

r20A
2 + E(T,S′,Br0) ≤ δ2σ(S′)2 . (10.32)

For the present reduction step, we will show the existence of another cone S1 ∈ C (Q, 0)
such that:

(i) (B) and (10.31) above hold for S1 in place of S;
(ii) V (S) = V (S1);
(iii) E(T,S1,B1) ≤ C̄(E(T,S,B1) +A2), for a constant C̄ = C̄(Q,m, n, n̄, δ);
(iv) dist2(S1 ∩B1,S ∩B1)

2 ≤ C̄(E(T,S,B1) +A2);

We can then use the same argument to find a cone S′
1 satisfying (i)–(iv) for T0,r0 and S′.

Given this, it is easy to check that the assumptions of the lemma hold with T,S1,S
′
1 in place

of T,S,S′ (up to controlled constant factors), and that if one can prove the result for T,S1,S
′
1,

then the result follows for T,S,S′. Thus, after Step 1 we will have reduced the proof to the
case where we can also assume the validity of (B) and (P).

In order to accomplish the task of this step, we observe that, by choosing ε in (10.19)
small enough, T , Σ, and S satisfy all the requirements of Proposition 9.1, except possibly
A2 ≤ ε20E(T,S,B1), for the parameter ε0 = ε0(Q,m, n, n̄) in Proposition 9.1. Let us assume
for the moment that this does not hold, i.e.

E(T,S,B1) < ε−2
0 A2 . (10.33)
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In this case we wish to deform S to another cone Se ∈ C (Q, 0) such that E(T,Se,B1) < ε−2
0 A2

and V (Se) = V (S) =: V . This can be accomplished as follows. We consider a plane π ∈ P(0)

containing V and observe that, because of (10.19), provided that we take ε <
√
Nε0 , we have

NÊ(T, π,B1) > ε−2
0 A2 . (10.34)

Next enumerate the (distinct) planes forming S as α1, . . . , αN , and for each i = 1, . . . , N fix a
continuous path of planes αi(t) in T0Σ connecting αi(0) = αi and αi(1) = π, with the property
that V ⊂ αi(t) for all t ∈ [0, 1]. The existence of the path can be reduced to the existence of a
continuous path for the cross sections V ⊥ ∩ αi(t) ⊂ V ⊥ ∩ T0Σ and the existence of the latter
is a consequence of the path connectedness of the Grassmannian of 2-planes in R2+n̄).

Next we want to avoid that along the path we have αi(t) = αj(t) for some i ̸= j and
some 0 < t < 1. To that end, denote by X the set of m-dimensional subspaces of T0Σ which
contain V , and consider its N -fold product X × · · · × X. Let Z ⊂ X × · · · × X be the set
of elements (β1, β2, . . . , βN ) such that βi = βj for some i ̸= j. We then need to show that
(X × · · ·×X \Z)∪{(π, . . . , π)} is path connected. Note that Z can be written as the union of
Zij := {(β1, . . . , βN ) : βi = βj}. On the other hand the dimension of Zij equals the dimension
of Z12, while the latter can be written as ∆×X × · · · ×X where ∆ ⊂ X ×X is the diagonal
{(β, β) : β ∈ X}. Hence the codimension of Z in X × · · · ×X equals the codimension of the
diagonal ∆ in X × X. Since the codimension of ∆ in X × X is the dimension of X, which
is strictly larger than 1, we conclude that the codimension of Z in X × · · · ×X is at least 2.
This in particular implies the path connectedness of the desired set, meaning we can assume
our path obeys αi(t) ̸= αj(t) for all i ̸= j and all t ∈ (0, 1).

Now let t 7→ S(t) = α1(t) ∪ · · · ∪ αN (t), t ∈ [0, 1], denote the above continuous path from S
to π. Observe that by definition,

t 7→ Ê(T,S(t),B1) is continuous for 0 ≤ t ≤ 1, (10.35)

t 7→ Ê(S(t), T,B1) is continuous for 0 ≤ t < 1, (10.36)

and
lim
t↑1

Ê(S(t), T,B1) = NÊ(π, T,B1) .

These properties, combined with (10.33) and (10.34), are enough to claim the existence of a
te ∈ [0, 1) such that for Se := S(te) we have

1

2
ε−2
0 A2 < E(T,Se,B1) < ε−2

0 A2 .

However, it might be that Se is not an element of C (Q, 0); this can only happen if the intersec-
tion of two of the planes forming Se is strictly bigger than V (and so is (m− 1)-dimensional as
they do not coincide). Denote by Z ′ ⊂ X × · · · ×X the set of elements (β1, . . . , βN ) such that
dim (βi ∩ βj) ≥ m− 1 for some i ̸= j. Z ′ is closed and has non-empty interior in X × · · · ×X.
In particular, if we perturb the planes forming Se slightly (within the N -fold product space

X × · · · ×X), in light of the continuity of the map S̃ 7→ E(T, S̃,B1), we can ensure that the
inequality above holds and that at the same time the new cone, which we will abuse of notation
and still denote by Se, is an element of C (Q, 0).

We have now found a suitable cone Se when the unfavourable assumption (10.33) holds.
Notice that for such Se we also have

E(T,Se,B1) < ε−2
0 A2 ≤ ε−2

0 ε2Ep(T,B1)

by (10.19), and thus if ε2 < ε40, we have that the assumptions of Proposition (9.1) hold for T
and Se. If we are in the favourable situation where (10.33) does not hold, then we have

A2 ≤ ε20E(T,S,B1) ,

and so we can simply set Se := S, and again all the assumptions of Proposition 9.1 hold for T
and Se.

Thus, we are in a position to apply Proposition 9.1 to T and Se to find a cone S1 which
satisfies (ii) and is M -balanced. However, it must be noticed that indeed Proposition 9.1 is
proved by showing that S1 satisfies the smallness assumption (9.2) in Proposition 9.2, with the
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choice of ε = ε(m,n, n̄,N) therein. In particular, since the argument of Proposition 9.1 allows
one to ensure that S1 satisfies (9.2) with ε replaced by any δ ≤ ε, up to further decreasing ε0
(dependent on δ), we get exactly (10.31), and moreover we are still left with the freedom of
choosing δ. Thus, S1 satisfies (i) and (ii).

By Proposition 9.1 we also know that

E(T,S1,B1) ≤ C̄E(T,Se,B1) ,

where C̄ = C̄(Q,m, n, n̄, δ). On the other hand, by construction either Se = S, or

E(T,Se,B1) ≤ ε−2
0 A2 ,

and in particular we infer (iii) (we stress that now ε0 = ε0(Q,m, n, n̄, δ)).
So far we have proved that (i), (ii), and (iii) hold. Property (iv) would follow from Propo-

sition 9.1 in the case Se = S, but unfortunately this may not be the case and so we will have
to provide a more subtle argument. In fact, we will use the validity of (B) and (P) for S1 to
prove (iv) even when Se ̸= S (for δ chosen sufficiently small).

We first assume that δ = δ(Q,m, n, n̄) > 0 is sufficiently small so that Lemma 8.5 and
Proposition 8.6 apply to T0,1/4 and S1. We will show that this implies

dist2(S1 ∩B1,S ∩B1)
2 ≤ C(E(T,S1,B1) + E(T,S,B1)+A2) . (10.37)

As observed, we would need to show this when E(T,S,B1) < ε−2
0 A2, but the argument is in

fact more general and does not use the latter information. Combined with (iii), (10.37) proves
(iv).

We enumerate the (distinct) planes β1, . . . , βN ′ forming S1, while we also recall the enumera-
tion α1, . . . , αN for S. LetWi⊂ B4 be the disjoint neighbourhoods of the planes βi as in Lemma
8.5, and consider their homothetic rescalings W̃i := (Wi)0,4. Observe that T B3/4 \B1/32(V )

is supported in the union of the W̃i and let Ti := T W̃i. By Proposition 8.6(c) we know that

dist(p, βi) ≤ C(E(T,S1,B1) +A2)1/2 for all p ∈ spt(Ti) . (10.38)

For each fixed i = 1, . . . , N ′, consider a unit vector e1 ∈ V ⊥∩βi, let ξ1 := e1
4 , and define the disk

Bi := B1/32(ξ1, βi). By Proposition 8.6(f) we know that ((pβi
)♯Ti) (B1/2(0, βi) \B1/16(V )) =

QiJ(B1/2(0, βi) \B1/16(V )K for some integer 1 ≤ Qi ≤ Q, and thus

∥Ti∥(p−1
βi

(Bi)) ≥ c0 > 0 (10.39)

for some geometric constant c0(m,n, n̄). Since∫
dist2(p,S) d∥Ti∥(p) ≤ E(T,S,B1) ,

for a fixed constant C̃ = C∗
c0
, with C∗ > 0 to be determined, by Chebyshev’s inequality and

(10.39) we have

∥Ti∥({p ∈ p−1
βi

(Bi) : dist
2(p,S) > C̃E(T,S,B1)}) ≤ C−1

∗ ∥Ti∥(p−1
βi

(Bi)) .

Thus, the set Ei ⊂ p−1
βi

(Bi)∩spt∥Ti∥ of points p ∈ p−1
βi

(Bi) which obey

dist2(p,S) ≤ C̃E(T,S,B1) , (10.40)

has ∥Ti∥(Ei) ≥ (1− 1/C∗)∥Ti∥(p−1
βi

(Bi)).

We then use Proposition 8.6(iv) to estimate

QiHm(Bi \ pβi
(Ei)) ≤ C0∥Ti∥(p−1

βi
(Bi \ pβi

(Ei))) + C0(A
2 + E(T,S1,B1))

1+γ

≤ C0∥Ti∥(p−1
βi

(Bi) \ Ei) + C0(A
2 + E(T,S1,B1))

1+γ

≤ C0

C∗
∥Ti∥(p−1

βi
(Bi)) + C0(A

2 + E(T,S1,B1))
1+γ

≤ C0

C∗
QiHm(Bi) + C0(A

2 + E(T,S1,B1))
1+γ
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where C0 = C0(Q,m, n, n̄). Note however that E(T,S1,B1) ≤ C1(E(T,S,B1) + A2) for an-
other constant C1 = C1(Q,m, n, n̄, δ). Hence, if A2 + E(T,S,B1) is sufficiently small and C∗
sufficiently large compared to C0, we get

Hm(pβi
(Ei)) ≥

1

2
Hm(Bi) .

For each point p ∈ Ei we let j(p)∈ {1, . . . , N} be an index such that dist(p, αj(p)) =
dist(p,S). We then define Fi,j := pβi

({p ∈ Ei : j(p) = j}). Clearly from the above lower bound
on Hm(pβi(Ei)), there must be an index j∗ ∈ {1, . . . , N} for which Hm(Fi,j∗) ≥ 1

2NHm(Bi).
Fix now an arbitrary point w1 in Fi,j∗ and recall that, since it belongs to Bi = B1/32(ξ1, βi),
3
8 ≥ |w1| ≥ 1

8 . Next,we let r∗ > 0 and consider the open set

Λ(r∗) := {w ∈ βi : |w · w1|2 > (1− r2∗)|w1|2|w|2} .
By the lower bound on the Hausdorff measure of Fi,j∗ the set Fi,j∗ \ Λ(r∗) must contain at
least one point w2 if we choose r∗ = r∗(m,N) appropriately.

Clearly w2 enjoys as well the bound 3
8 ≥ |w2| ≥ 1

8 . Moreover, since e1 is orthogonal to V ,
the angles formed by the wk and V must both be larger than a geometric constant. Finally,
the sine of the angle formed by w1 and w2 is at least r∗. In particular we can complete the
pair w1, w2 to a basis of βi, via an orthonormal basis v1, . . . , vm−2 of V . Thus, any vector
v ∈ B1 ∩ βi can be written as a linear combination

v =
∑
i

λivi + λm−1w1 + λmw2

for a choice of λi which satisfy |λi| ≤ C for some constant C = C(m,N).
For the points w1, w2, if we let p1, p2 denote points in Ei which obey j(p) = j∗ and pβi

(pk) =
wk for k = 1, 2, it follows from (10.40) and (10.38) that, for k = 1, 2,

|p⊥
αj∗

(wk)|2 = dist2(wk, αj∗) ≤ 2 dist2(wk, pk) + 2 dist2(pk, αj∗)

= 2 dist2(pk, βi) + 2 dist2(pk,S) ≤ C(E(T,S1,B1) + E(T,S,B1) +A2)

where C = C(Q,m, n, n̄, δ). In particular, using the linearity of p⊥
αj∗

and the fact that V ⊂ αj∗ ,
this shows that

dist2(v, αj∗) ≤ C(E(T,S1,B1) + E(T,S,B1) +A2) ∀v ∈ βi ∩B1 .

Summarizing our argument so far, for every plane βi in S1 we can show the existence of a
plane αj∗ in S such that

dist2(βi ∩B1, αj∗ ∩B1) ≤ C(E(T,S1,B1) + E(T,S,B1) +A2) . (10.41)

We now would like to prove the converse; namely, if we fix any plane αj forming S, we look
for a plane βi∗ in S1 satisfying (10.41) with i∗, j in place of i, j∗. This time, we choose a unit
vector f1 ∈ V ⊥ ∩ αj . We let ζ1 = f1/4 and set Bj := B1/32(ζ1, αj). We then know that∫

Bj

dist2(q, spt(T ))dHm(q) ≤ Ê(S, T,B1) .

Once again applying Chebyshev’s inequality, this time with Hm, we get that if Fj ⊂ Bj is the
set of points q ∈ Bj which obey

dist2(q, spt(T )) ≤ (2/Hm(Bj))E(T,S,B1) , (10.42)

then we have Hm(Fj) ≥ 1
2H

m(Bj). Now for each q ∈ Fj let p(q) ∈ spt(T ) be such that
dist(q, spt(T )) = |q − p(q)|. Thus, (10.42) tells us that if ε is chosen small enough, we can
guarantee that |q − p(q)|< 1/16 and so in particular p(q) ∈ B3/4 \ B1/32(V ). It thus follows

that p(q) ∈ W̃i for some i ∈ {1, . . . , N ′}. For each such i, let Fj,i be the set of points q ∈ Fj for

which at least one such p(q) belongs to W̃i. Arguing as before, it follows that for some i∗ we
have Hm(Fj,i∗) ≥ 1

2N ′Hm(Bj). We can now argue as above that Fj,i∗ contains two appropriate
points w1, w2, complete the pair with vectors in V to form an appropriate base of αj and use
this base to prove

dist2(αj ∩B1, βi∗ ∩B1) ≤ C(E(T,S1,B1) + E(T,S,B1) +A2) .
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Combined with (10.41), this therefore completes the proof of (10.37) and hence the first step.

Step 2. Concluding from the reduction. Now that we have reduced to the setting
where we may assume the validity of (B) and (P), we conclude the proof of the proposition by
showing that the claimed conclusions hold under these additional assumptions, if we choose δ
small enough. First of all we observe that, by (iv) in Step 1, (10.20), (10.28), and (10.29) we
have

C−1Ep(T,B1) ≤ min{µ(S)2,µ(S′)2} ≤ max{µ(S)2,µ(S′)2} ≤ CEp(T,B1) . (10.43)

So we can appeal to Lemma 7.12 to conclude (10.23) from (10.22). We will thus focus on
proving (10.22).

The latter task is similar to the one accomplished at the end of Step 1; while it is more
complicated by the fact that V (S) and V (S′) might be different (unlike V (S) and V (S1) in
Step 1), we can now take advantage of (B) and (P) for both (whereas previously, we only knew
that S1 was balanced). Indeed, by choosing δ small enough we can ensure, using Lemma 8.5
and Proposition 8.6 for S′, T0,r0/4, and S, T0,1/4, respectively, that the following situation
holds:

(i) If we enumerate the planes β1, . . . , βN ′ forming S′ and set V ′ := V (S′), then there
are pairwise disjoint neighborhoods W ′

j of βj ∩ Br0/2 \ Br0/16(V
′), a constant C =

C(Q,m, n, n̄) > 0 and positive integers Q′
j such that

spt(T ) ∩Br0/2 \Br0/16(V
′) ⊂

⋃
j

W ′
j ; (10.44)

dist2(p, βj) ≤ C(E(T,S′,Br0) +A2r20)r
2
0 ∀p ∈ spt(T ) ∩W ′

j ; (10.45)

(pβj )♯(T W ′
j ∩ p−1

βj
(Br0/2(0, βj) \Br0/16(V

′))) (10.46)

= Q′
jJBr0/2(0, βj) \Br0/16(V

′)K .

(ii) If we enumerate the planes α1, . . . , αN forming S and set V = V (S), then there are pair-
wise disjoint neighborhoods Wi of αi∩B1/2\Br0/16(V ), constants C = C(Q,m, n, n̄) >

0, C̄ = C̄(Q,m, n, n̄, r0) > 0 and positive integers Qi such that

spt(T ) ∩B1/2 \Br0/16(V ) ⊂
⋃
i

Wi (10.47)

dist2(p, αi) ≤ C(E(T,S,B1) +A2)

≤ C̄(E(T,S,B1) +A2r20)r
2
0 ∀p ∈ spt(T ) ∩Wi ∩Br0 (10.48)

(pαi
)♯(T Wi ∩ p−1

αi
(Br0(0, αi) \Br0/16(V ))) (10.49)

= QiJBr0(0, αi) \Br0/16(V )K .

We will now proceed to show that all these estimates imply, for each plane αi in S, the existence
of a plane βj in S′ such that

dist2(αi ∩B1, βj ∩B1) ≤ C̄(E(T,S,B1) + E(T,S′,B1) +A2) . (10.50)

Since the argument can be symmetrized to switch the roles of αi and βj , this would conclude
the proof of (10.22). Without loss of generality we assume that i = 1 and we start by fixing
a vector e ∈ α1 with |e| = r0

4 such that B2c0r0(e) ⊂ Br0/2 \ (Br0/16(V ) ∪ Br0/16(V
′)), where

c0 = c0(m) is a positive dimensional constant. For each point q ∈ Bc0r0(e, α1), by (10.48) and
(10.49) above we can find a point p = p(q) ∈ spt(T ) ∩W1 such that

|p− q|2 ≤ C̄(E(T,S,B1) +A2r20)r
2
0

and then by (10.44) we find W ′
j (for some j = j(q) ∈ {1, . . . , N ′}) such that p ∈ W ′

j . In
particular, setting qj := pβj

(p), we conclude from (10.45) that

|p− qj |2 ≤ C(E(T,S,B1) +A2r20 + E(T,S′,Br0))r
2
0 .

So, for each point q ∈ Bc0r0(e, α1) we conclude that there is a plane βj(q) in S′ such that

dist(q, βj(q))
2 ≤ C(E(T,S,B1) +A2r20 + E(T,S′,Br0))r

2
0 , (10.51)
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where C = C(Q,m, n, n̄, r0) > 0. Select now m linearly independent vectors v1, . . . , vm ∈
Bc0r0(e, α1) with the property that, if we set ei :=

vi
r0
, then every vector v ∈ B1∩α1 is a linear

combination

v =
∑
i

λiei

with |λi| ≤ C, for some constant C which depends only on c0 and therefore only on m.
In light of the above argument, for each vector vi we may find a plane βj(i) in S′ such that

dist2(vi, βj(i)) ≤ C(E(T,S,B1) +A2r20 + E(T,S′,Br0))r
2
0 . (10.52)

Now, we would like to achieve (10.52) but with the same plane, say βj(1), for each vi, up to
increasing the constant by a fixed amount. Suppose that j(i) ̸= j(1) for some i > 1. Consider
the line segment [v1, vi] and parameterize it with a constant speed curve γ : [0, 1] → [v1, vi]
with γ(0) = v1 and γ(1) = vi. By continuity of t 7→ dist(γ(t), βj(1)), for some σ ∈ (0, 1] we
have

dist2(γ(t), βj(1)) ≤ 2C(E(T,S,B1) +A2r20 + E(T,S′,Br0))r
2
0 ∀t ∈ [0, σ] .

Now let τ be the maximal number in [0, 1] such that

dist2(γ(τ), βj(1)) ≤ 2C(E(T,S,B1) +A2r20 + E(T,S′,Br0))r
2
0 . (10.53)

If τ = 1 then we indeed arrive at (10.52) with βj(i) replaced by βj(1) and C replaced by 2C.
Otherwise, if τ < 1, then we must have equality in (10.53). Since γ(τ) ∈ Bc0r0(e, α1), (10.51)
implies that there must be another index j′ = j′(τ) ̸= j(1) such that

dist2(γ(τ), βj′) ≤ C(E(T,S,B1) +A2r20 + E(T,S′,Br0))r
2
0 . (10.54)

If pj(1) = pβj(1)
(γ(τ)) and pj′ = pβj′ (γ(τ)) are the respective nearest point projections of

γ(τ), and if we ensure that ε is taken to be small enough, we can guarantee that both points
belong to B2c0r0(e). Recall that our choice of the vector e guarantees that this ball does
not intersect Br0/16(V

′). In particular, if we set qj(1) = pj(1)/r0 and qj′ = pj′/r0 we find
qj(1) ∈ βj(1) ∩B1 \B1/16(V

′) and qj′ ∈ βj′ ∩B1 \B1/16(V
′) are such that

|qj(1) − qj′ |2 ≤ 6C(E(T,S,B1) +A2r20 + E(T,S′,Br0)) .

Since the pair of planes have V ′ as common spine and are M -balanced, we can combine the
above with Corollary 7.3 (namely, first use (7.2), then M -balanced, then the first inequality in
(7.1), then the above) to conclude that

dist2(βj(1) ∩B1, βj′ ∩B1) ≤ C ′(E(T,S,B1) +A2r20 + E(T,S′,Br0)) (10.55)

for some constant C ′ which depends on M and the previous constant C.
We now look at the point τ ′ which is the maximum in the set of t ∈ [0, 1] for which

dist2(γ(t)), βj′)
2 ≤ 2C(E(T,S,B1) +A2r20 + E(T,S′,Br0))r

2
0 , (10.56)

where C is again the constant in (10.51). Now τ ′ must be strictly larger than τ , by (10.54).
Moreover, if τ ′ < 1 then

dist2(γ(τ ′), βj′) = 2C(E(T,S,B1) +A2r20 + E(T,S′,Br0))r
2
0 . (10.57)

In this case we can look at the closest plane βj′′ to γ(τ ′), which satisfies

dist2(γ(τ ′), βj′′) ≤ C(E(T,S,B1) +A2r20 + E(T,S′,Br0))r
2
0 , (10.58)

where C is the constant in (10.51). Obviously by construction j′′ ̸∈ {j(1), j′}. But then we
can repeat the argument above with j′ replacing j(1) and j′′ replacing j′ and estimate

dist2(βj′ ∩B1, βj′′ ∩B1) ≤ C ′(E(T,S,B1) +A2r20 + E(T,S′,Br0)) (10.59)

with the same constant C ′ of (10.54). We can iterate this procedure until we reach the right
endpoint t = 1. Any time that we do not stop, we find a new plane in the collection forming
S′. Since there is a finite number N ′ of such planes, we conclude that the procedure stops
after at most N ′ − 1 steps. The last plane we find is a plane βκi

which satisfies (10.52) with
2C in place of C and βκi in place of βj(i). On the other hand we have a chain of at most
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N ′ − 1 inequalities of the form (10.59) between each pair of consecutive planes found during
the procedure. In particular for every i we have

dist2(βj(1) ∩B1, βκi
∩B1) ≤ (N ′ − 1)2C ′(E(T,S,B1) +A2r20 + E(T,S′,Br0)) ,

which combined with (10.52) gives that (10.52) holds with βj(1) in place of βj(i) with a larger
constant C, for every i, which is what we wanted. Summarizing the discussion above, we have
found a larger constant C such that, if we set j = j(1), then

dist2(ei, βj) = |p⊥
βj
(ei)|2 ≤ C(E(T,S,B1) +A2r20 + E(T,S′,Br0))

for every i. Writing an arbitrary vector in B1 ∩α1 in terms of the basis ei as described above,
we then conclude that

dist2(α1 ∩B1, βj ∩B1)
2 ≤ C(E(T,S,B1) +A2r20 + E(T,S′,Br0)) .

This completes the proof of (10.50) and thus completes the proof of the lemma. □

Thus, to prove Theorem 2.5, now we just need to prove Theorem 10.2.

11. Estimates at the spine

In this section we address the pivotal estimates needed at the spine of the cone for the proof
of Theorem 2.5, which are a suitable adaptation of the groundbreaking work of Simon in [29].
They will be crucial for demonstrating that in the end, after a blow-up procedure under the as-
sumption that Q-points accumulate across the spine, the graphical approximations constructed
in Proposition 8.19 will remain controlled as one approaches the spine, and will converge to a
Dir-minimizer that has an (m−2)-dimensional subspace of Q-points. We start by detailing the
assumptions which will be used through this section. Note that, in contrast to [6], we denote
the estimates in Theorem 11.2, Corollary 11.3 and Proposition 11.4 collectively as Simon’s
estimates. Indeed, although the first occurrence of an estimate analogous to (11.2) below first
appeared in the work of Hardt and Simon in [18], the framework therein is significantly simpler.
The first appearance of the estimates (11.2), (11.3), (11.4) and (11.5), albeit in a multiplicity
one setting, is in [29]; the corresponding estimates in a setting of higher multiplicity, as is the
case in the present work, first appeared in [32]. We note that (11.6) is a more refined version of
an estimate in [29], but in this form it appeared first in [32]. One important difference between
our work and [29, 32] is that, even when we are at a fixed distance from the spine of the cone
S and the excess of the current from S is very small, the current is not necessarily a graph,
nor a multigraph (it is merely approximated suitably by the latter), and therefore we need to
deal with appropriate additional error estimates coming from regions of non-graphicality.

Throughout this section, we will work under an analogous assumption to Assumption 8.9,
but with possibly smaller parameters:

Assumption 11.1 (Assumptions for Simon’s estimates). Suppose T and Σ are as in Assump-
tion 2.1 and ∥T∥(B4) ≤ 4m(Q + 1

2 )ωm. Suppose S = α1 ∪ · · · ∪ αN is a cone in C (Q) \ P
which is M -balanced, where M > 0 is a given fixed constant, and V is the spine of S. For a
sufficiently small constant ε = ε(Q,m, n, n̄,M) smaller than the ε-threshold in Assumption 8.9,
whose choice will be fixed by the statements of Theorem 11.2, Corollary 11.3, and Proposition
11.4 below, suppose that

E(T,S,B4) +A2 ≤ ε2σ(S)2 . (11.1)

We recall once again the notation

σ(S) := min
i<j

dist(αi ∩B1, αj ∩B1) , and µ(S) := max
i<j

dist(αi ∩B1, αj ∩B1) .

Before stating the inequalities that we need, let us introduce the following short-hand notation
for points q ∈ spt (T ) at which the m-rectifiable set spt (T ) has an approximate tangent plane

π(q) oriented by the simple m-vector T⃗ (q):

• pT⃗ and p⊥
T⃗

will denote the orthogonal projections onto π(q) and its orthogonal com-

plement (π(q))⊥ respectively;
• q∥ and q⊥ will denote the vectors pT⃗ (q) and p⊥

T⃗
(q) respectively.
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We now split the key estimates into three separate statements and we will proceed with
their proofs afterwards.

Theorem 11.2 (Simon’s error and gradient estimates). Assume T , Σ, and S are as in As-
sumption 11.1, suppose in addition that Θ(T, 0) ≥ Q and set r = 1

3
√
m−2

. Then there is a

constant C = C(Q,m, n, n̄,M) > 0 and a choice of ε = ε(Q,m, n, n̄,M) > 0 in Assumption
11.1 sufficiently small such that∫

Br

|q⊥|2

|q|m+2
d∥T∥(q) ≤ C(A2 + Ê(T,S,B4)) (11.2)∫

Br

|pV ◦ p⊥
T⃗
|2 d∥T∥ ≤ C(A2 + Ê(T,S,B4)) . (11.3)

We refer to the first estimate (11.2) as “Simon’s error estimate”, since it is estimating
the error in the monotonicity formula. Meanwhile, we refer to the second estimate (11.3) as
“Simon’s gradient estimate”, since if T were the graph of a function, this would be an L2

bound on the derivative of the function in the directions parallel to V .
An important corollary which will not require much additional work is the following.

Corollary 11.3 (Simon’s non-concentration estimate). Assume T , Σ, S and r are as in
Theorem 11.2. Then, there is a choice of ε = ε(Q,m, n, n̄,M) in Assumption 11.1, possibly
smaller than that in Theorem 11.2, such that for every κ ∈ (0,m+ 2),∫

Br

dist2(q,S)

|q|m+2−κ
d∥T∥(q) ≤ Cκ(A

2 + Ê(T,S,B4)) , (11.4)

where here Cκ = Cκ(Q,m, n, n̄,M, κ).

Finally, this part will be concluded by deriving the following consequence of Corollary 11.3,
which will require a subtle geometric consideration.

Proposition 11.4 (Simon’s shift inequality). Assume T , Σ, and S are as in Assumption
11.1 and in addition {Θ(T, ·) ≥ Q} ∩ Bε(0) ̸= ∅. Then there is a radius r = r(Q,m, n, n̄)
and a choice of ε = ε(Q,m, n, n̄,M) in Assumption 11.1, possibly smaller than those in
Theorem 11.2 and Corollary 11.3 such that for each κ ∈ (0,m + 2), there are constants
C̄κ = C̄κ(Q,m, n, n̄,M, κ) > 0 and C = C(Q,m, n, n̄,M) such that the following holds. If
q0 ∈ Br(0) and Θ(T, q0) ≥ Q, then∫

B4r(q0)

dist2(q, q0 + S)

|q − q0|m+2−κ
d∥T∥(q) ≤ C̄κ(A

2 + Ê(T,S,B4)) . (11.5)

|p⊥
α1
(q0)|2 + µ(S)2|pV ⊥∩α1

(q0)|2 ≤ C(A2 + Ê(T,S,B4)) . (11.6)

Remark 11.5. Observe that p⊥
V = p⊥

α1
+ pV ⊥∩α1

. In particular, when we know that S is
at a fixed positive distance from any plane (namely, µ(S) is bounded from below away from
0), then (11.6) gives a control on how far q0 can be from the spine V . This particular case
corresponds to what Simon proves in [29], while, as already mentioned, (11.6) is a refinement
which appears first in the work [32] of Wickramasekera.

11.1. Proof of the Simon’s error and gradient estimates (Theorem 11.2).

11.1.1. Monotonicity formula. We begin by recalling the monotonicity formula for mass ratios,
along with some consequences. For T as in Assumption 2.1 and ρ ∈ (0, 4], the monotonicity
formula reads∫

Bρ

|q⊥|2

|q|m+2
d∥T∥(q) = ∥T∥(Bρ)

ρm
− ωmΘ(T, 0)− 1

m

∫
Bρ

(q⊥ · H⃗T (q))(|q|−m − ρ−m) d∥T∥(q) .

The mean curvature vector H⃗T (q) is defined as

H⃗T (q) :=

m∑
i=1

AΣ(ei, ei) ,
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where AΣ is the second fundamental form of Σ and e1, . . . , em is an orthonormal base of the
approximate tangent π(q) to spt(T ) at q.

We next assume that Θ(T, 0) ≥ Q, fix the multiplicities Q1, . . . , QN given by Proposition
8.18 and observe that for ρ as above, we have∑

i

QiHm(αi ∩Bρ) = Qωmρm ≤ ωmΘ(T, 0)ρm . (11.7)

Fix r = 1
3
√
m−2

as in the statement and note that any constants depending on r become in

turn dimensional constants. We moreover fix a smooth, monotone non-increasing function
χ : [0,∞) → R with χ ≡ 1 on [0, r] and χ ≡ 0 on [2r,∞) and we introduce the function

Γ(t) := −
∫ ∞

t

d

ds
(χ(s)2)sm ds .

Recall the elementary equalities∫
BR

χ(|q|)2 dµ(q) =
∫ R

0

χ(t)2
d

dt
(µ(Bt)) dt (11.8)∫

BR

Γ(|q|) dµ(q) =
∫ R

0

χ(t)2
d

dt
(tmµ(Bt)) dt , (11.9)

which are valid for any Radon measure µ with µ({0}) = 0 via Fubini’s Theorem and the
definition of the distributional derivative of the BV function t 7→ µ(Bt). We then multiply
both sides of the monotonicity formula by ρm, differentiate the resulting identity in ρ, multiply
by χ(ρ)2, integrate over ρ ∈ [0, 2r] and use (11.8), (11.9), and (11.7) (treating, for example,
|q⊥|2
|q|m+2 d∥T∥(q) as a Radon measure dµ as above). Since Γ ≥ C−11[0,r] for some constant

C(m, r) > 0, we get∫
Br

|q⊥|2

|q|m+2
d∥T∥(q) ≤ C

[∫
χ2(|q|) d∥T∥(q)−

∑
i

Qi

∫
αi

χ2(|q|) dHm(q)

]

+ C

∫
|Γ(|q|)q⊥ · H⃗T (q)|

|q|m
d∥T∥(q)︸ ︷︷ ︸

=: (A)

. (11.10)

We first demonstrate that the error term (A) coming from the mean curvature of T may be
controlled by A2 and to that end we observe that

|H⃗T (q)| ≤ mA , (11.11)

|TqΣ− T0Σ| ≤ CA|q| (11.12)

|p⊥
TqΣ(q)| ≤ CA|q| ∀q ∈ Σ . (11.13)

Indeed the first inequality is obvious by the very definition of H⃗T , while the second and the
third are a simple exercise in differential geometry and we leave them to the reader.

Observe that since T is area-minimizing in Σ, H⃗T (q) is orthogonal to TqΣ, while π(q) ⊂ TqΣ,
so

q⊥ · H⃗T (q) = q · H⃗T (q) = p⊥
TqΣ(q) · H⃗T (q) . (11.14)

In particular, since spt(T ) ⊂ Σ, (11.11) and (11.13) imply

(A) ≤ CA2

∫
Br

|q|1−m d∥T∥(q) ≤ CA2

where again C = C(m, r) > 0. We can therefore write∫
Br

|q⊥|2

|q|m+2
d∥T∥(q) ≤ C

[∫
χ2(|q|) d∥T∥(q)−

∑
i

Qi

∫
αi

χ2(|q|) dHm(q)

]
+ CA2. (11.15)
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We now wish to estimate the first term on the right hand side of (11.15) in terms of the excess
E(T,S,B4); to achieve this, we will test the first variation formula for both T and the current
whose support is S with the vector field

X(q) = χ(|q|)2p⊥
V (q) .

The first variation formula for T reads∫
divT⃗ X(q) d∥T∥(q) = −

∫
X⊥(q) · H⃗T (q) d∥T∥(q)︸ ︷︷ ︸

=: (B)

, (11.16)

where we use the shorthand notation X⊥(q) = p⊥
T⃗
(X(q)) and

divT⃗ X(q) =
∑
i

∂eiX(q) · ei (11.17)

for any orthonormal base e1, . . . , em of the approximate tangent π(q) of spt(T ).
Writing x = p⊥

V (q), we can now use (11.11) to write

|X⊥(q) · H⃗T (q)| = χ(|q|)2|p⊥
TqΣ(x) · H⃗T (q)| ≤ mA|p⊥

TqΣ(x)| .

Observe next that x = p⊥
V (q) = q − pV (q) and V ⊂ T0Σ. Therefore for q ∈ spt(T ) we can use

(11.12) and (11.13) to estimate

|p⊥
TqΣ(x)| ≤ |p⊥

TqΣ(q)|+ |p⊥
TqΣ(pV (q))| ≤ CA|q|+ |p⊥

TqΣ − p⊥
T0Σ||pV (q)| ≤ CA|q| .

In particular

|(B)| ≤ CA2

∫
χ(|q|)2|q| d∥T∥(q) ≤ CA2 ,

which in turn leads to ∫
divT⃗X(q) d∥T∥(q) = O(A2) . (11.18)

For x = p⊥
V (q), q ∈ spt(T ), let pT⃗ (x) ≡ pπ(q)(x) denote the orthogonal projection of x onto

the approximate tangent plane π(q) at q. We next compute divT⃗ X:

divT⃗ X(q) = 2χ(|q|)pT⃗ (x) · ∇χ(|q|) + χ(|q)2divT⃗x .

Let us now compute divT⃗x. Complete e1, . . . , em to an orthonormal basis e1, . . . , em, ν1 . . . , νn
of Rm+n, and compute

divT⃗x =
∑
i

ei · ∂eix =
∑
i

ei · p⊥
V (ei)

= m−
∑
i

ei · pV (ei) = m− tr (pV ) +
∑
j

νj · pV (νj) = 2 +
∑
j

νj · pV (νj) ,

where the last equality follows from the fact that V is (m−2)-dimensional. Let us now rewrite
the sum on the right-hand side in a more convenient form. Observe that

tr (pV ◦ p⊥
T⃗
) = tr (p⊥

T⃗
◦ pV ◦ p⊥

T⃗
) ,

and also, since pT
V = pV , p

T
T⃗
= pT⃗ , and pV ◦ pV = pV , we have

|pV ◦ p⊥
T⃗
|2 = tr ((pV ◦ p⊥

T⃗
)T ◦ (pV ◦ p⊥

T⃗
)) = tr ((p⊥

T⃗
)T ◦ pT

V ◦ pV ◦ p⊥
T⃗
)

= tr (p⊥
T⃗
◦ pV ◦ pV ◦ p⊥

T⃗
) = tr (p⊥

T⃗
◦ pV ◦ p⊥

T⃗
) ,

Thus, we deduce that ∑
j

νj · pV (νj) = tr (pV ◦ p⊥
T⃗
) = |pV ◦ p⊥

T⃗
|2 ,

so in summary,

divT⃗ X(q) = 2χ(|q|)pT⃗ (x) · ∇χ(|q|) + χ(|q|)2(2 + |pV ◦ p⊥
T⃗
|2) . (11.19)
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Plugging this into (11.18) we then conclude that∫
χ(|q|)2(2 + |pV ◦ p⊥

T⃗
|2) d∥T∥(q) ≤ CA2 −

∫
2χ(|q|)pT⃗ (x) · ∇χ(|q|) d∥T∥(q) . (11.20)

Since id = pV + p⊥
V = pT⃗ + p⊥

T⃗
and x = p⊥

V (q), we have

pT⃗ (x) · ∇χ(|q|) = pT⃗ (x) · pV (∇χ(|q|)) + pT⃗ (x) · pV ⊥(∇χ(|q|))

= −p⊥
T⃗
(x) · pV (∇χ(|q|)) + pT⃗ (x) · pV ⊥(∇χ(|q|)) (11.21)

On the other hand, once again using that pT
V = pV , we have

|p⊥
T⃗
(x) · pV (∇χ(|q|))|=|(pV ◦ p⊥

T⃗
)(p⊥

T⃗
(x)) · ∇χ(|q|)| ≤ C|pV ◦ p⊥

T⃗
||p⊥

T⃗
(x)| .

Introducing the short-hand notation x⊥ for p⊥
T⃗
(x), as well as ∇V χ(|q|) and ∇V ⊥χ(|q|) for

pV (∇χ(|q|)) and pV ⊥(∇χ(|q|)) respectively, we arrive at

−2χ(|q|)pT⃗ (x) · ∇χ(|q|) ≤ −2χ(|q|)pT⃗ (x) · ∇V ⊥χ(|q|) + C|χ(|q|)||pV ◦ p⊥
T⃗
||x⊥|

≤ −2χ(|q|)pT⃗ (x) · ∇V ⊥χ(|q|) + 1

2
χ(|q|)2|pV ◦ p⊥

T⃗
|2 + C|x⊥|21B2r

.

(11.22)

Inserting the latter inequality in (11.20) we arrive at∫
χ2(|q|)

(
1 + 1

4 |pV ◦ p⊥
T⃗
|2
)
d∥T∥(q) ≤ CA2 + C

∫
B2r

|x⊥|2d∥T∥

−
∫

χ(|q|)pT⃗ (x) · ∇V ⊥χ(|q|) d∥T∥(q) . (11.23)

Consider next the current S :=
∑

i QiJαiK, where we recall that the Qi are the multiplicities
on the outer region. Observe that, since X(q) = χ(|q|)2x, if {Φt}t denotes the one-parameter
family of diffeomorphisms generated by X, then (Φt)♯S = S for each t, since S is invariant
under rescalings in any direction in V ⊥. In particular, the first variation formula tells us that
we must have ∫

divS⃗X d∥S∥ = 0 .

Now we may repeat the computation above leading to (11.19), but with S⃗ in place of T⃗ ; notice
however that (11.19) is in fact simpler because pV ◦ p⊥

S⃗
= 0. Also notice that (11.21) is

simpler, because for q ∈ S = spt(S) we have that x is tangent to S and therefore p⊥
S⃗
= 0 whilst

pS⃗(x) = x, meaning the first term on the right hand side of (11.21) vanishes and the second is
simply x · pV ⊥(∇χ(|q|)). Thus, in place of (11.23) we get∫

χ2(|q|) d∥S∥(q) = −
∫

χ(|q|)x · ∇V ⊥χ(|q|) d∥S∥(q) .

Subtracting this from (11.23) and rearranging, we arrive at∫
χ2(|q|) d∥T∥(q)−

∫
χ2(|q|) d∥S∥(q)

≤
∫

χ2(|q|) d∥T∥(q)−
∫

χ2(|q|) d∥S∥(q) + 1

4

∫
χ2(|q|)|pV ◦ p⊥

T⃗
|2 d∥T∥(q)

≤ CA2 + C

∫
B2r

|x⊥|2d∥T∥+
∫

χ(|q|)x · ∇V ⊥χ(|q|) d∥S∥(q)

−
∫

χ(|q|)pT⃗ (x) · ∇V ⊥χ(|q|) d∥T∥(q) . (11.24)

On the other hand, observe that for any function f on Rm+n,∫
f(q) d∥S∥(q) =

∑
i

Qi

∫
αi

f(q) dHm(q) .
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Therefore, combining (11.24) with our monotonicity formula estimate (11.15), we arrive at∫
Br

|q⊥|2

|q|m+2
d∥T∥(q) ≤ CA2 + C

∫
B2r

|x⊥|2d∥T∥+
∑
i

Qi

∫
αi

χ(|q|)x · ∇V ⊥χ(|q|) dHm(q)

−
∫

χ(|q|)pT⃗ (x) · ∇V ⊥χ(|q|) d∥T∥(q) . (11.25)

Observe however that (11.15) gives∫
χ2(|q|)d∥T∥(q)−

∫
χ2(|q|)d∥S∥(q) ≥ −CA2 .

Thus, from (11.24) we may further infer that∫
Br

|pV ◦ p⊥
T⃗
|2 d∥T∥ ≤ CA2 + C

∫
B2r

|x⊥|2d∥T∥+
∑
i

Qi

∫
αi

χ(|q|)x · ∇V ⊥χ(|q|) dHm(q)

−
∫

χ(|q|)pT⃗ (x) · ∇V ⊥χ(|q|) d∥T∥(q) . (11.26)

11.1.2. Key estimates. The rest of the proof is dedicated to estimating the terms in the right
hand side of (11.25) and, equivalently, (11.26). To that end we will use the refined graphical
approximation of Proposition 8.14 and observe that r has been chosen so that B2r ⊂ R ∪ V .
Observe moreover that V is a negligible set in all the integrals appearing in the right and
side of (11.25) and we will therefore ignore it. Recalling the inner, central, and outer regions
(cf. Definition 8.12), we will split our task into four estimates , depending on whether we are
integrating over the inner region (near the spine), or central or outer regions (the latter two
will be coupled together): ∫

Rin

|x⊥|2d∥T∥︸ ︷︷ ︸
=: (C)

≤ C(A2 + Ê(T,S,B4)) (11.27)

∑
j

Qj

∫
αj∩Rin

χ(|q|) |x · ∇V ⊥χ(|q|)| dHm(q) +

∫
Rin

χ(|q|) |pT⃗ (x) · ∇V ⊥χ(|q|)| d∥T∥(q)︸ ︷︷ ︸
=: (D)

≤ C(A2 + Ê(T,S,B4)) (11.28)∫
Ro∪Rc

|x⊥|2d∥T∥︸ ︷︷ ︸
=: (E)

≤ C(A2 + Ê(T,S,B4)) (11.29)

∣∣∣∣∣∣
∑
j

Qj

∫
αj∩(Ro∪Rc)

χ(|q|)x · ∇V ⊥χ(|q|) dHm(q)−
∫
Ro∪Rc

χ(|q|)pT⃗ (x) · ∇V ⊥χ(|q|) d∥T∥(q)

∣∣∣∣∣∣︸ ︷︷ ︸
=: (F)

≤ C(A2 + Ê(T,S,B4)) . (11.30)

Once we have established these four estimates, the result follows from (11.25) and (11.26). We
stress that, whilst in (11.28) we do not care about subtracting the two terms as in (11.25),
(11.26) (indeed, our estimates on the inner region will suffice there), it is important in the outer
and central regions that we are subtracting the two terms, as in (11.30); the argument will
exploit in a crucial way a cancellation effect due to the fact that this is a difference between
two nearly equal quantities (so, we do not wish to crudely estimate (F) by the sum of the two
terms therein at any point, unlike in (D)).

11.1.3. Estimates in the inner region. This section is dedicated to prove the first two inequal-
ities, (11.27) and (11.28). First of all observe that

|x⊥|2 ≤ |x|2 = dist(q, V )2 (11.31)
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Note that,

χ(|q|)|x · ∇V ⊥χ(|q|)| = χ(|q|)|x|2 |χ
′(|q|)|
|q|

. (11.32)

On the other hand χ′(|q|) = 0 if |q| ≤ r and |χ′(|q|)| ≤ C
r otherwise; in particular we conclude

that for C = C(m) > 0 we have

χ(|q|)|x · ∇V ⊥χ(|q|)| ≤ C dist(q, V )2 . (11.33)

On the other hand

χ(|q|)|pT⃗ (x) · ∇V ⊥χ(|q|)| ≤ χ(|q|)|pT⃗ (x) · x|
|χ′(|q|)|

|q|
= χ(|q|)|pT⃗ (x)|

2 |χ′(|q|)|
|q|

and since |pT⃗ (x)| ≤ |x|, we can combine it with the second inequality of (11.31) to estimate

χ(|q|)|pT⃗ (x) · ∇V ⊥χ(|q|)| ≤ C dist(q, V )2 . (11.34)

Using the monotonicity formula for y ∈ [− 1√
m−2

, 1√
m−2

]m−2 ⊂ V and ρ ≤ 2 (which in partic-

ular tells us that ∥T∥(Bρ(y)) ≤ Cρm), we easily conclude that∫
Bρ(y)

(|x⊥|2 + χ(|q|)|pT⃗ (x) · ∇V ⊥χ(|q|)|) d∥T∥(q) ≤ Cρm+2 , (11.35)

∑
j

Qj

∫
αj∩Bρ(y)

χ(|q|)|x · ∇V ⊥χ(|q|)| dHm(q) ≤ Cρm+2 . (11.36)

Consider now the cubes L ∈ Gin as in Definition 8.12 and enumerate them as {Lk}k. Let
yk := yLk

∈ V be the corresponding centers and let ρk = 22−ℓ(Lk) be the radii of the balls
B(Lk) as defined in Section 8.5.1. Clearly {Bρk

(yk)} is a covering of Rin. We now appeal to
(8.34) in Lemma 8.13 and use (11.35), (11.36) with y = yk and ρ = ρk to estimate

(C) + (D) ≤ C
∑
k

ρm+2
k E(Lk, 0) = C

∑
k

∫
Bh(Lk)

dist2(q,S) d∥T∥(q) . (11.37)

Recall that, by Lemma 8.10(iv), the collection of sets Bh(Lk) has a control on their overlaps
(each point in R belongs to at most C(m) such sets). Therefore

(C) + (D) ≤ C

∫
B4

dist2(q,S) d∥T∥(q) ,

which gives (11.27) and (11.28).

11.1.4. Estimates in the central and outer regions. In this section we prove (11.29) and (11.30)
and hence conclude the proof of Theorem 11.2. We first observe that, because of Lemma
8.13(iii), (iv) and Lemma 8.10(iv), (v) we have∑

L∈Gc∪Go

2−(m+2)ℓ(L)(E(L) + 2−2ℓ(L)A2) ≤ C(Ê(T,S,B4) +A2) . (11.38)

For each L ∈ Gc ∪ Go we consider the approximations uL given by Proposition 8.14. These
approximations consist of QL,i-valued functions defined over the regions λLi for some subcol-
lection of the planes {α1, . . . , αN} for each L. In order to simplify our notation, we do not
keep track of these collections for different L.

The estimate (11.29) is less laborious than (11.30), thanks to the fact that we do not need
to exploit any cancellation effect. We can in particular write

(E) ≤
∑

L∈Gc∪Go

∫
R(L)

|x⊥|2 d∥T∥ . (11.39)

Now, for each region R(L) with L ∈ Gc∪Go, we can use that |x⊥|2 ≤ C2−2ℓ(L) on spt(T )∩R(L),
together with Proposition 8.14(iii) and (8.39), to estimate∫

R(L)

|x⊥|2d∥T∥ ≤
∑
i

∫
Ω(L)

|x⊥|2 d∥GuL,i
∥+ C2−(m+2)ℓ(L)(E(L) + 2−2ℓ(L)A2) .
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Using (11.38) we then conclude that

(E) ≤
∑

L∈Gc∪Go

∑
i

∫
Ω(L)

|x⊥|2 d∥GuL,i
∥+ C(Ê(T,S,B4) +A2) . (11.40)

Consider now coordinates z on αi and recall that, for a point q = (z, (uL,i)j(z)), for some
j = 1, . . . , QL,i, in the graph of the QL,i-valued function uL,i =

∑
jJ(uL,i)jK, the vector x⊥

is the projection of x = p⊥
V (q) onto the orthogonal complement of the tangent plane G⃗uL,i

to the graph of (uL,i)j at q. In particular, since at such a point q we have
∣∣p⊥

G⃗uL,i

− p⊥
αi

∣∣ ≤
C|∇(uL,i)j(z)|, and moreover because p⊥

αi
◦ p⊥

V = p⊥
αi
, this yields (noting that |x| ≤ |q| ≤

C2−ℓ(L))

|x⊥| =
∣∣p⊥

G⃗uL,i

(x)
∣∣ ≤ ∣∣p⊥

G⃗uL,i

− p⊥
αi

∣∣ · |x|+ |p⊥
αi
(p⊥

V (q))|

≤ C|∇(uL,i)j(z)| · 2−ℓ(L) + |(uL,i)j(z)| (11.41)

Now if we square this expression and integrate it, we get from the two bounds in (8.37) (to
control the integrand) as well as the Lipschitz bound (8.38) (to control the Jacobian) that∑

i

∫
Ω(L)

|x⊥|2 d∥GuL,i
∥ ≤ C

∑
i,j

∫
Ωi(L)

|∇(uL,i)j(z)|22−2ℓ(L) + |(uL,i)j(z)|2d∥GuL,i
∥

≤ C2−(m+2)ℓ(L)(E(L) + 2−2ℓ(L)A2).

In particular, plugging the latter estimate in (11.40) and using again (11.38) we reach (11.29).
We now come to the proof of (11.30), which is more laborious. First of all, because

∥GuL,i
∥(∂R(L)) = 0 for each L ∈ Gc ∪ Go, we can use Proposition 8.14(iii), the estimate

(8.39) and the estimate (11.34) to deduce that∣∣∣∣∣
∫
∂R(L)

χ(|q|)pT⃗ (x) · ∇V ⊥χ(|q|) d∥T∥(q)

∣∣∣∣∣ ≤ C2−(m+2)ℓ(L)(E(L) + 2−2ℓ(L)A2) .

Thus, letting (R(L))◦ denote the interior of R(L), we can once again use (11.38) to estimate

(F) ≤
∑

L∈Gc∪Go

∣∣∣∣∣∣
∑
j

Qj

∫
αj∩(R(L))◦

χ(|q|)x · ∇V ⊥χ(|q|) dHm

−
∫
(R(L))◦

χ(|q|)pT⃗ (x) · ∇V ⊥χ(|q|) d∥T∥

∣∣∣∣∣+ C(Ê(T,S,B4) +A2) .

(11.42)

We remove the boundary as above to ensure that our regions are disjoint. Now we want
to straighten out the curved regions (using Lemma 8.15) to cylinders over disjoint cubes in
our planes where we can pass to graphs. So, next, again taking into account (11.34), and
then (recalling the notation Lj = αj ∩ R(L)) using Lemma 8.15 with U = (R(L))◦ and

Ũ =
⋃

j p
−1
αj

(Lj), since Hm−1(∂Lj) ≤ C2−(m−1)ℓ(L), we can further estimate∣∣∣∣∣∣
∫
(R(L))◦

χ(|q|)pT⃗ (x) · ∇V ⊥χ(|q|) d∥T∥ −
∑
j

∫
p−1

αj
(Lj)

χ(|q|)pT⃗ (x) · ∇V ⊥χ(|q|) d∥TL,j∥

∣∣∣∣∣∣
≤ C2−(m+2)ℓ(L)(E(L) + 2−2ℓ(L)A2) .

We can now yet again use (11.34), as well as the estimate, (8.39) of Proposition 8.14 to further
estimate∣∣∣∣∣∣

∑
j

∫
p−1

αj
(Lj)

χ(|q|)pT⃗ (x) · ∇V ⊥χ(|q|) d∥TL,j∥
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−
∑
j

∫
p−1

αj
(Lj)

χ(|q|)pG⃗uL,j
(x) · ∇V ⊥χ(|q|) d∥GuL,j

∥

∣∣∣∣∣∣
≤ C2−(m+2)ℓ(L)(E(L) + 2−2ℓ(L)A2)

Combining the above estimates with (11.42) and again making use of (11.38), we arrive at

(F) ≤
∑

L∈Gc∪Go

∣∣∣∣∣∣
∑
j

[
Qj

∫
αj∩(R(L))◦

χ(|q|)x · ∇V ⊥χ(|q|) dHm

−
∫
p−1

αj
(Lj)

χ(|q|)pG⃗uL,j
(x) · ∇V ⊥χ(|q|) d∥GuL,j

∥

]∣∣∣∣∣
+ C(Ê(T,S,B4) +A2) . (11.43)

Now note that the multiplicities Qj are the ones from the outer region, and so they do not
necessarily match the multiplicities QL,j of the multi-valued functions uL,j when L ∈ Gc.
However recall the computation (see (11.32)),

χ(|q|)x · ∇V ⊥χ(|q|) = χ(|q|)χ′(|q|)
|q|

|x|2 , (11.44)

which since x ∈ V ⊥ shows that the integrand χ(|q|)x · ∇V ⊥χ(|q|) is invariant under rotations
which keep the spine V fixed. Since for every j, k ∈ {1, . . . , N} there is a rotation which maps
αj onto αk and fixes V , the integral∫

αj∩(R(L))◦
χ(|q|)x · ∇V ⊥χ(|q|) dHm

is independent of the plane αj . In particular, given that
∑

j QL,j =
∑

j Qj = Q, we can in

fact write from (11.43) (using Lj = αj ∩R(L)

(F) ≤
∑

L∈Gc∪Go

∑
j

∣∣∣∣∣QL,j

∫
Lj

χ(|q|)x · ∇V ⊥χ(|q|) dHm

−
∫
p−1

αj
(Lj)

χ(|q|)pG⃗uL,j
(x) · ∇V ⊥χ(|q|) d∥GuL,j

∥

∣∣∣∣∣
+ C(Ê(T,S,B4) +A2) (11.45)

Next, following the same computation as for (11.34) we get

|χ(|q|)pG⃗uL,j
(x) · ∇V ⊥χ(|q|)| ≤ C dist(q, V )2 ≤ C · 2−2ℓ(L) ,

and hence, through the usual Taylor expansion of the area functional for a multi-valued graph,
for k = 1, . . . , QL,j letting qk := (z, (uL,j)k(z)) ≡ z + (uL,j)k(z) ∈ αj × α⊥

j , we get∣∣∣∣∣
∫
p−1

αj
(Lj)

χ(|q|)pG⃗uL,j
(x) · ∇V ⊥χ(|q|) d∥GuL,j

∥

−
∫
Lj

∑
k

χ(|qk|)pG⃗(uL,j)k

(p⊥
V (qk)) · ∇V ⊥χ(|qk|) dHm(z)

∣∣∣∣∣
≤ C2−2ℓ(L)

∫
Lj

|DuL,j |2 dHm .

We can in particular use (11.45), (8.37), and (11.38) to obtain

(F) ≤
∑

L∈Gc∪Go

∑
j

∣∣∣∣∣
∫
Lj

[QL,jχ(|z|)p⊥
V (z) · ∇V ⊥χ(|z|)
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−
∑
k

χ(|qk|)pG⃗(uL,j)k

(p⊥
V (qk)) · ∇V ⊥χ(|qk|)] dHm(z)

∣∣∣∣∣
+ C(Ê(T,S,B4) +A2) (11.46)

Now use the coordinates z = (ζ, ξ) ∈ V × V ⊥ for points z ∈ αj . Recalling (11.44), the first
integrand above is then given by

h(z) := QL,j
χ(|z|)χ′(|z|)

|z|
|ξ|2 .

Meanwhile, we write the second integrand as

g(z) :=

QL,j∑
k=1

χ(|qk|)χ′(|qk|)
|qk|

pG⃗(uL,j
)k
(p⊥

V (qk)) · p⊥
V (qk) .

Considering that χ′(|q|) = 0 when |q| ≤ r, for each k = 1, . . . , QL,j we can estimate (by Taylor
expansion) ∣∣∣∣χ(|qk|)χ′(|qk|)

|qk|
− χ(|z|)χ′(|z|)

|z|

∣∣∣∣ ≤ C22ℓ(L)|(uL,j)k(z)|2 .

On the other hand we have∣∣∣pG⃗(uL,j
)k
(p⊥

V (qk)) · p⊥
V (qk)

∣∣∣ ≤ C2−2ℓ(L) .

In particular, if we define

ḡ(z) :=

QL,j∑
k=1

χ(|z|)χ′(|z|)
|z|

pG⃗(uL,j)k

(p⊥
V (qk)) · p⊥

V (qk) ,

we then get

|g(z)− ḡ(z)| ≤ C|uL,j(z)|2 . (11.47)

Next, recalling the definition of qk, notice that

p⊥
V (qk) = ξ + (uL,j)k(z) ,

On the other hand,

|pG⃗(uL,j)k

(p⊥
V (qk)) · p⊥

V (qk)− |ξ|2|

=
∣∣∣|pG⃗(uL,j)k

(ξ + (uL,j)k)|2 − |ξ|2
∣∣∣

=
∣∣∣|pG⃗(uL,j)k

(ξ)|2 − |ξ|2
∣∣∣+ |pG⃗(uL,j)k

((uL,j)k)|2

+ 2
∣∣∣pG⃗(uL,j)k

(ξ) · pG⃗(uL,j)k

((uL,j)k)
∣∣∣

≤ |p⊥
G⃗(uL,j)k

(ξ)|2 + |(uL,j)k|2 + 2|pG⃗(uL,j)k

(ξ)|
∣∣∣(pG⃗(uL,j)k

− pαj
)((uL,j)k)

∣∣∣
≤ |p⊥

G⃗(uL,j)k

− p⊥
αj
|2|ξ|2 + |(uL,j)k|2 + 2|ξ| · |D(uL,j)k||(uL,j)k|

≤ |D(uL,j)k|22−2ℓ(L) + |(uL,j)k|2 + 21−ℓ(L)|D(uL,j)k||(uL,j)k|

≤ C2−2ℓ(L)|D(uL,j)k|2 + C|(uL,j)k|2

where we have used that pαj
((uL,j)k) = 0 and p⊥

αj
(ξ) = 0. In particular, we arrive at

|ḡ(z)− h(z)| ≤ C|uL,j(z)|2 + 2−2ℓ(L)|DuL,j(z)|2 .

Combining this last inequality and (11.47) with the bound (8.37), for each L ∈ Gc∪Go and each
index j enumerating the planes for the corresponding cone associated to L, we thus achieve∣∣∣∣∣

∫
Lj

QL,jχ(|z|)pV ⊥(z) · ∇V ⊥χ(|z|) dHm(z)
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−
∑
k

∫
Lj

χ(|qk|)pG⃗(uL,j)k

(p⊥
V (qk)) · ∇V ⊥χ(|qk|) dHm(z)

∣∣∣∣∣
≤ C2−(m+2)ℓ(L)(E(L) + 2−2ℓ(L)A2)

Together with (11.46) and (11.38), this completes the proof of (11.30) and thus the proof of
the theorem. □

11.2. Proof of Simon’s non-concentration estimate (Corollary 11.3). We observe that
Corollary 11.3 is a direct consequence of Theorem 11.2 and of the following lemma (after an
appropriate rescaling to adjust the radius).

Lemma 11.6. Let T , Σ and S be as in Assumption 11.1 with B1 ⊂ Ω and Θ(T, 0) ≥ Q. Then
we may choose ε sufficiently small in Assumption 11.1 such that for each κ > 0 we have∫

B1

dist2(q,S)

|q|m+2−κ
d∥T∥(q) ≤ Cκ

∫
B1

|q⊥|2

|q|m+2
d∥T∥(q) + Cκ(Ê(T,S,B4) +A2) , (11.48)

where Cκ = Cκ(Q,m, n, n̄,M, κ) > 0.

Proof of Lemma 11.6. Fix κ ∈ (0,m + 2). We test the first variation identity (11.16) for T
with the vector field

X(q) := dist2(q,S) (max{r, |q|}−m−2+κ − 1)+︸ ︷︷ ︸
=: f(q)

q ,

where r > 0 and for a function g we define g+(q) := max{g(q), 0}. Note that f is supported in
B1 \Br. In order to estimate the integrand in (B) of (11.16), we first observe that

f(q) dist2(q,S) ≤ |q|κ−m .

Recalling (11.14), (11.11), and (11.13), we have

|H⃗T ·X⊥(q)| ≤ CA2|q|1+κ−m .

Hence we can estimate

|(B)| ≤ CA2

∫
B1

|q|1+κ−m d∥T∥(q) ≤ CA2 .

In particular we conclude that ∫
divT⃗X d∥T∥ = O(A2) . (11.49)

We next compute

divT⃗X(q) = mdist2(q,S)f(q) + f(q)∇ dist2(q,S) · q∥ + dist2(q,S)∇f(q) · q∥ . (11.50)

Moreover, we can explicitly compute

∇f(q) · q∥ = −(m+ 2− κ)|q|−m−4+κ|q∥|21B1\Br
(q)

= −(m+ 2− κ)|q|−m−2+κ1B1\Br
(q) + (m+ 2− κ)|q|−m−4+κ|q⊥|21B1\Br

(q) .
(11.51)

On the other hand, using the 2-homogeneity of dist2(q,S) we can likewise compute

∇dist2(q,S) · q∥ = ∇dist2(q,S) · q −∇ dist2(q,S) · q⊥

= 2dist2(q,S)−∇ dist2(q,S) · q⊥ .

Inserting this and (11.51) into (11.50) we reach

divT⃗X(q) = κdist(q,S)2|q|−m−2+κ1B1\Br
(q)

+ (m+ 2)r−m−2+κ dist2(q,S)1Br (q)− (m+ 2) dist2(q,S)1B1(q)

+ (m+ 2− κ) dist2(q,S)|q⊥|2|q|−m−4+κ1B1\Br
(q)−∇ dist2(q,S) · q⊥f(q) .

(11.52)
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In turn, inserting this in (11.49) we achieve

κ

∫
B1\Br

dist2(q,S)

|q|m+2−κ
d∥T∥(q) ≤ CA2 + (m+ 2)Ê(T,S,B1)

+

∫
∇ dist(S, q)2 · q⊥f(q) d∥T∥(q)︸ ︷︷ ︸

=: (C)

. (11.53)

On the other hand, using that dist(q,S) is 1-Lipschitz, we can estimate

|(C)| ≤ 2

∫
dist(q,S)|q⊥|f(q) d∥T∥(q)

≤ κ

∫
dist2(q,S)f(q) d∥T∥(q) + 1

κ

∫
|q⊥|2f(q) d∥T∥(q)

≤ κ

∫
B1\Br

dist2(q,S)

|q|m+2−κ
d∥T∥(q)

+ κr−m−2+κ

∫
Br

dist2(q,S) d∥T∥(q) + 1

κ

∫
B1

|q⊥|2

|q|m+2
d∥T∥(q) . (11.54)

Inserting (11.54) into (11.53) we then reach∫
B1\Br

dist2(q,S)

|q|m+2−κ
d∥T∥(q) ≤ Cκ

∫
B1

|q⊥|2

|q|m+2
d∥T∥(q) + Cκ(A

2 + Ê(T,S,B1)) + C
∥T∥(Br)

rm−κ
.

(11.55)

Letting r ↓ 0 and using ∥T∥(Br) ≤ Crm we reach (11.48). □

11.3. Proof of Simon’s shift inequality (Proposition 11.4). In Lemma 11.7 below we
will show the following inequality for each κ ∈ (0,m+2), under the assumption that ε is chosen
sufficiently small and that ρ = ρ(m) is a dimensional constant:∫

Bρ(q0)

dist(q, q0 + S)2

|q − q0|m+2−κ
d∥T∥(q) ≤ C⋆

κ(A
2 + Ê(T,S,B4) + |p⊥

α1
(q0)|2 + µ(S)2|pV ⊥∩α1

(q0)|2) ,

(11.56)
for C⋆

κ = C⋆
κ(Q,m, n, n̄). Assuming the validity of this, our aim is therefore to show that we

also have
|p⊥

α1
(q0)|2 + µ(S)2|pV ⊥∩α1

(q0)|2 ≤ C(A2 + Ê(T,S,B4)) , (11.57)

for C = C(Q,m, n, n̄). Observe that (11.56) and (11.57) together yield (11.5).
Fix now a scale r̄ ≤ ρ

2 (for ρ fixed as in (11.56)), whose choice will be specified later.
Observe that, by assuming ε is small enough depending on r̄, Proposition 8.14(v) guarantees
that dist(q0, V ) ≤ r̄

2 . We can now apply a scaled version of Lemma 7.14 to find an index j and
a subset Ω ⊂ αj ∩Br̄(pV (q0)) \Br̄/2(V ) with the property that

|p⊥
α1
(q0)|2 + µ(S)2|pV ⊥∩α1

(q0)|2 ≤ C̄ dist(z, q0 + S)2 ∀z ∈ Ω (11.58)

and Hm(Ω) ≥ C̄−1r̄m for some geometric constant C̄ > 0 (from the proof of Lemma 7.14, we
know C̄ = C̄(Q,m, n, n̄) due to the specific choice of U = Br̄ \ Br̄/2(V ) here in Lemma 7.14;
see also Remark 7.15). If we choose ε sufficiently small, depending on r̄, by Proposition 8.14
we can find a further subset Ω′ ⊂ Ω with measure larger than (2C̄)−1r̄m and such that over
each z ∈ Ω′ we can find a point p in the outer graphical approximation lying in z + α⊥

j and in
the support of the current T with the property that

dist(z, q0 + S) ≤ dist(p, q0 + S) + Cr̄−m/2(Ê(T,S,B4) + r̄2A2)1/2 .

In particular we achieve

|p⊥
α1
(q0)|2 + µ(S)2|pV ⊥∩α1

(q0)|2 ≤ C̄ dist2(p, q0 + S) + Cr̄−m(Ê(T,S,B4) + r̄2A2) (11.59)

for all p in the subset Ω′′ of points p ∈ spt(T ) which coincide with the outer graphical ap-
proximation of Proposition 8.14 restricted to the subset Ω′. For this set we clearly have
∥T∥(Ω′′) ≥ Hm(Ω′) ≥ (2C̄)−1r̄m. Observe moreover that, since Ω′ ⊂ Br̄(pV (q0)) ⊂ B3r̄/2(q0),
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if ε is sufficiently small (depending on r̄), then Ω′′ ⊂ B2r̄(q0). We now integrate (11.59) over
Ω′′ with respect to d∥T∥ to find

|p⊥
α1
(q0)|2 + µ(S)2|pV ⊥∩α1

(q0)|2 ≤ Cr̄−m

∫
B2r̄(q0)

dist2(p, q0 + S) d∥T∥(p)

+ Cr̄−m(Ê(T,S,B4) + r̄2A2) .

We can in particular write

|p⊥
α1
(q0)|2 + µ(S)2|pV ⊥∩α1

(q0)|2 ≤ Cr̄
7
4

∫
B2r̄(q0)

dist2(q, q0 + S)

|q − q0|m+7/4
d∥T∥(q)

+ Cr̄−m(Ê(T,S,B4) + r̄2A2) . (11.60)

Given that the constant C is independent of the radius r̄, for any fixed δ > 0 if we choose
r̄ = r̄(Q,m, n, n̄, δ) sufficiently small we achieve

|p⊥
α1
(q0)|2 + µ(S)2|pV ⊥∩α1

(q0)|2 ≤ δ

∫
B2r̄(q0)

dist(q, q0 + S)2

|q − q0|m+7/4
d∥T∥(q)

+ Cr̄−m(Ê(T,S,B4) + r̄2A2) .

We can now insert the latter in (11.56) (with κ = 1
4 ) and, upon fixing δ = δ(Q,m, n, n̄) small

enough (recalling that 2r̄ ≤ ρ), conclude that∫
B2r̄(q0)

dist(q, q0 + S)2

|q − q0|m+7/4
d∥T∥(q) ≤

∫
Bρ(q0)

dist(q, q0 + S)2

|q − q0|m+7/4
d∥T∥(q)

≤ Cr̄−m(r̄2A2 + CÊ(T,S,B4))

+
1

2

∫
B2r̄(q0)

dist(q, q0 + S)2

|q − q0|m+7/4
d∥T∥(q) . (11.61)

In particular we conclude∫
B2r̄(q0)

dist(q, q0 + S)2

|q − q0|m+7/4
d∥T∥(q) ≤ Cr̄−m(r̄2A2 + Ê(T,S,B4)) ,

for this fixed choice of r̄ and inserting the latter into (11.60) we achieve (11.57).
We are left with the task of showing that (11.56) holds. This is accomplished in the following:

Lemma 11.7. If T , Σ, and S are as in Assumption 11.1 and ρ = 1
12(m−2) , then (11.56) holds

for every point q0 ∈ Bρ with the property that Θ(T, q0) ≥ Q.

Proof. First of all, observe the following elementary fact for all q, q0,S:

dist(q, q0 + S) ≤ |p⊥
α1
(q0)|+ Cµ(S)|pV ⊥∩α1

(q0)|+ dist(q,S) . (11.62)

Fix ρ̄ = 1
4
√
m−2

. Next note that, assuming ε is sufficiently small, we can assume that B4ρ̄ \
Baρ̄/8(V ) is in the outer region Ro and moreover that dist(q0, V ) < aρ̄/8, by Proposition
8.14(v). Thus, using (11.62) with q0 as in the statement of the lemma, we gain the inequality

E(Tq0,ρ̄,S,B4) +A2 ≤ C0(Ê(T,S,B4) +A2 + |p⊥
α1
(q0)|2 + µ(S)2|pV ⊥∩α1

(q0)|2)︸ ︷︷ ︸
=:D2

, (11.63)

for some constant C0 which is now independent of ε.
Note that, if D2 ≤ ε̄σ(S)2 for ε̄ = ε̄(Q,m, n, n̄,M) which is the threshold needed to apply

Corollary 11.3, then we could apply Corollary 11.3 with Tq0,ρ̄ in place of T and the desired
inequality (11.56) would then follow.

To handle the general case we fix a suitable δ > 0, which will be chosen depending on ε̄. We
wish to apply the Pruning Lemma 8.2 with this choice of δ and D. Let ε∗ = ε∗(δ,N) be the
threshold needed for the applicability of Lemma 8.2 and observe that we need to prove that

D2 ≤ ε2∗µ(S)
2 . (11.64)
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Note that we can assume

C0(Ê(T,S,B4) +A2) ≤ ε2∗
2
µ(S)2 (11.65)

by choosing ε sufficiently small, depending on ε∗ in addition to existing dependencies.
Next observe that for every fixed λ > 0, by choosing ε sufficiently small depending on λ, the

set Bρ \ Bλ(V ) will be contained in the outer region Ro. In particular, applying Proposition
8.14(v) as before, it follows that dist(q0, V ) ≤ λ and thus for λ ≤ ε∗/(2

√
C0) we gain

C0µ(S)
2|pV ⊥∩α1

(q0)|2 ≤ ε2∗
4
µ(S)2 . (11.66)

Consider moreover the ball B := B4λ(pV (q0)) and estimate

Ê(T, α1,B) ≤ C1µ(S)
2 + C1Ê(T,S,B) ≤ C1µ(S)

2 + C1λ
−m−2Ê(T,S,B4) ,

where C1 = C1(m,n, n̄, Q). In particular applying Allard’s L2–L∞ bound for α1 we conclude
that

|p⊥
α1
(q0)|2 ≤ C1λ

2µ(S)2 + C1λ
−mÊ(T,S,B4) + C1λ

2A2 .

We can now select λ so that C0C1λ
2 ≤ ε2∗

16 , yielding

C0|p⊥
α1
(q0)|2 ≤ ε2∗

16
µ(S)2 + Cε−m−2

∗ Ê(T,S,B4) + Cε2∗A
2 .

We are now in the position to choose ε sufficiently small (depending on ε∗) so that

C0|p⊥
α1
(q0)|2 ≤ ε2∗

8
µ(S)2 . (11.67)

Summing (11.65), (11.66), and (11.67) we obtain (11.64).
So we can now indeed apply Lemma 8.2 to find a cone S′ ⊂ S, indexed as S′ =

⋃
i∈I αi,

with the properties that

D2 +max
j

min
i∈I

dist2(αi ∩B1, αj ∩B1) ≤ δ2σ(S′)2 ,

and

max
j

min
i∈I

dist2(αi ∩B1, αj ∩B1) ≤ Γ2D2 (11.68)

for Γ = Γ(δ) given by Lemma 8.2. Now, since by (11.63) and the triangle inequality

Ê(Tq0,ρ̄,S
′,B4) ≤ CD2 + Cmax

j
min
i∈I

dist2(αi ∩B1, αj ∩B1) ≤ Cδ2σ(S′)2 , (11.69)

where C is a constant independent of δ, and since S′ ⊂ S we have by (11.63) again that

Ê(S′, Tq0,ρ̄,B4) + A2 ≤ C0D
2 ≤ Cδ2σ(S′)2, we can choose δ = δ(Q,m, n, n̄,M) small to

achieve the applicability of Corollary 11.3 with S′ replacing S and Tq0,ρ̄ replacing T . Given
that ρ = ρ̄

3
√
m−2

the estimate (11.4), together with (11.69) and (11.68), give∫
Bρ(q0)

dist2(q, q0 + S′)

|q − q0|m+2−κ
d∥T∥(q) ≤ C(A2 + Γ2D2) . (11.70)

Since however we have chosen δ and thus we have Γ fixed, we can treat the latter as a constant
depending only on Q, m, n, n̄, and M . Since S ⊃ S′, we trivially have dist(q, q0 + S) ≤
dist(q, q0 + S′), and hence, given our definition of D2, (11.70) implies (11.56). □

12. Linearization

The aim of this section is to collect some results on Dir-minimizing functions which will be
pivotal to close the proof of Theorem 2.5. We follow the notation of [10].

Definition 12.1. Let Q,m, and n be positive integers. We denote by:

• H1 the space of 1-homogeneous locally Dir-minimizing functions u : Rm → AQ(Rn);
• L1 the subspace of u ∈ H1 which are invariant by translations along at least (m− 2)-
independent directions;

• H 0
1 and L 0

1 the subsets of H1 and L1 consisting of maps u such that η ◦ u ≡ 0.
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Observe that all these spaces are locally compact in the L2
loc topology. In particular, all the

minima appearing in the inequalities below (e.g. see the right hand side of (12.1)) are attained.
We begin with a suitable decay lemma.

Theorem 12.2. For every Q,m, n, and ε > 0, there is ρ = ρ(Q,m, n, ε) ∈ (0, 1
2 ) with the

following property. Assume that u : Rm ⊃ B1 → AQ(Rn) is Dir-minimizing, that u(0) = QJ0K,
and I0,u(0) := limr→0 I0,u(r) ≥ 1. Then

min
v∈H1

∫
Br

G(u, v)2 ≤ εrm+2

∫
B1

|u|2 ∀r ≤ ρ . (12.1)

If additionally for some constant ϑ > 0 and for every r ≤ 1
2 there are m−2 points z1, . . . , zm−2 ∈

Br such that u(zi) = QJ0K, Izi,u(0) ≥ 1 and det((zi · zj)i,j) ≥ ϑrm−2, then

min
v∈L1

∫
Br

G(u, v)2 ≤ εrm+2

∫
B1

|u|2 ∀r ≤ ρ (12.2)

(where ρ will depend also on ϑ). Finally, when η ◦ u ≡ 0 we have the equalities

min
v∈H1

∫
Br

G(u, v)2 = min
v∈H 0

1

∫
Br

G(u, v)2 , (12.3)

min
v∈L1

∫
Br

G(u, v)2 = min
v∈L 0

1

∫
Br

G(u, v)2 . (12.4)

Let us first remark that the identities (12.3) and (12.4) are simple consequences of the
following elementary algebraic fact. Consider any pair T =

∑
iJTiK, S =

∑
iJSiK ∈ AQ(Rn)

and define

T ′ =
∑
i

JTi − η(T )K , and S′ =
∑
i

JSi − η(S)K ,

then
G(T, S)2 = Q|η(T )− η(S)|2 + G(T ′, S′)2 .

Given this then, for example, in (12.3), we would have for v ∈ H1,

G(u, v)2 = Q|η ◦ v|2 + G(u, v′)2

where v′ = v−η ◦v, meaning minv∈H1

∫
Br

G(u, v)2 ≥ minv∈H 0
1

∫
Br

G(u, v)2; the other inequal-
ity is of course trivial as we are minimizing over a larger set. Thus, to prove Theorem 12.2 we
just need to prove (12.1) and (12.2). We will first show, using a compactness argument, that
if the frequency of a Dir-minimizer is pinched between 1 and 1 + η then the function is very
close to be 1-homogeneous. We begin with the following intermediate lemma.

Lemma 12.3. For every Q,m, n, ε̄ > 0, there is a constant η = η(Q,m, n, ε̄) > 0 with the
following property. Fix r > 0. Then if u : Br → AQ(Rn) is a Dir-minimizing function such
that u(0) = QJ0K, I0,u(0) ≥ 1 and I0,u(r) ≤ 1 + η, then

min
v∈H1

∫
Br

G(u, v)2 ≤ ε̄r

∫
∂Br

|u|2 . (12.5)

If additionally for some constant ϑ > 0 there are m − 2 points z1, . . . , zm−2 ∈ Br/2 such that

u(zi) = QJ0K, Izi,u(0) ≥ 1 and det((zi · zj)i,j) ≥ ϑrm−2, then, under the assumption that the
parameter η is small enough, depending also on the value of ϑ, we have

min
v∈L1

∫
Br

G(u, v)2 ≤ ε̄r

∫
∂Br

|u|2 . (12.6)

Proof. By scaling the domain and u, we can assume without loss of generality that r = 1 and
Hu(1) :=

∫
∂B1

|u|2 = 1. We then argue by contradiction and assume the statements to be false

for some fixed ε̄ (and ϑ) no matter how small η is. In particular we can set η = 1
k and select

corresponding maps uk satisfying uk(0) = QJ0K, 1 ≤ I0,uk
(0) ≤ I0,uk

(1) ≤ 1 + 1
k , Huk

(1) = 1
and

min
v∈H1

∫
B1

G(uk, v)
2 ≥ ε̄ . (12.7)
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As for the second statement of the lemma, we know additionally

(⋆) the existence of points zk1 , . . . , z
k
m−2 ∈ B1/2 such that uk(z

k
i ) = QJ0K, Izk

i ,uk
(0) ≥ 1

and det((zki · zkj )i,j) ≥ ϑ,

while

min
v∈L1

∫
B1

G(uk, v)
2 ≥ ε̄ . (12.8)

As
∫
B1

|Duk|2 = I0,uk
(1) · Huk

(1) ≤ 1 + 1
k , we can appeal to the compact embedding of the

W 1,2(B1;AQ(Rn)) in L2(B1;AQ(Rn)) (cf. [10, Proposition 2.11]) to extract (in both cases) a
subsequence, not relabeled, which converges strongly in L2 to some u. In fact (up to extraction
of another subsequence), we can also assume that uk|∂B1 → u|∂B1 by the trace property ofW 1,2

(cf. [10, Proposition 2.10]), while u is Dir-minimizing (cf. [10, Proposition 3.20]) and uk → u

strongly in W 1,2
loc (B1). It also follows, from Hölder estimates (cf. [10, Theorem 3.9] that u(0) =

J0K. Also, from upper semi-continuity of the frequency, I0,u(0) ≥ lim supk→∞ I0,uk
(0) ≥ 1,

while I0,u(1) ≤ lim infk→∞ I0,uk
(1) = 1. Hence, by the monotonicity of the frequency function

(cf. [10, Theorem 3.15]) I0,u(r) ≡ 1, which in turn implies that u is 1-homogeneous (cf.
[10, Corollary 3.16]). In particular u ∈ H1 and so the L2 convergence of uk to u contradicts
(12.7).

Under the additional assumption (⋆) we can assume, up to extraction of a further subse-
quence, that zki → zi ∈ B1/2 and obviously det((zi · zj)i,j)⟩ ≥ ϑ. In particular the vectors vi
span an (m − 2)-dimensional subspace V . Again by the Hölder continuity of uk and upper
semi-continuity of the frequency function we conclude u(zi) = QJ0K and Izi,u(0) ≥ 1. But
because of the 1-homogeneity of u we have the same properties for u(σzi) for every σ ∈ (0, 1],
in particular, again by upper semi-continuity of the frequency, Izi,u(0) ≤ 1. Arguing as in
[10, Proof of Lemma 3.4], it follows that u(x + λzi) = u(x) for every x, every i, and every
λ ∈ R. In particular u ∈ L1. By the strong L2-convergence of uk to u this contradicts
(12.8). □

Proof of Theorem 12.2. We fix ε and ϑ as in the statement of the Theorem. Fix ε̄ > 0 (to
be determined, possibly smaller than ε), and let η = η(Q,m, n, ε̄) be the parameter given by
Lemma 12.3 with this choice of ε̄. We then define

ϱ := inf{0 ≤ r ≤ 1
2 : I0,u(r) ≥ 1 + η} .

In particular, we can apply Lemma 12.3 to infer, respectively in each case ((12.1) or (12.2))
that

min
v∈H1

∫
Br

G(u, v)2 ≤ ε̄r

∫
∂Br

|u|2 ∀r ≤ ϱ (12.9)

min
v∈L1

∫
Br

G(u, v)2 ≤ ε̄r

∫
∂Br

|u|2 ∀r ≤ ϱ . (12.10)

We know by the decay of the L2 height in terms of the frequency (cf. [10, Corollary 3.18]) that∫
∂Br

|u|2 ≤
(r
s

)m−1+2I0,u(r)
∫
∂Bs

|u|2 ∀r ≤ s ≤ 1 . (12.11)

Moreover, we have

min
t∈[1/2,1]

∫
∂Bt

|u|2 ≤ C

∫
B1

|u|2 , (12.12)

for some constant C = C(Q,m, n). Thus, we infer from (12.9) (respectively (12.10)), combined
with (12.11) with s chosen to be t ∈ [1/2, 1] realizing the minimum and the fact that I0,u(r) ≥ 1
for all r > 0, that

min
v∈H1

∫
Br

G(u, v)2 ≤ Cε̄rm+2

∫
B1

|u|2 ∀r ≤ ϱ (12.13)

min
v∈L1

∫
Br

G(u, v)2 ≤ Cε̄rm+2

∫
B1

|u|2 ∀r ≤ ϱ . (12.14)
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This proves the result for r ≤ ϱ; however, ϱ is not a geometric constant (it depends on u),
so we are not done. Now, by monotonicity of the frequency and the definition of ϱ we know
that I0,u(r) ≥ 1 + η for every r > ϱ. So, again by (12.11) and (12.12) (choosing appropriate
t ∈ [1/2, 1] again), for every r ∈ (ϱ, 1] we have∫

∂Bs

|u|2 ≤
(s
r

)m+1
∫
∂Br

|u|2 ≤ sm+1
(r
t

)2η ∫
∂Bt

|u|2 ≤ Csm+1r2η
∫
B1

|u|2 ∀s ≤ r .

Integrating the latter over s ∈ [0, r] we get∫
Br

|u|2 ≤ Crm+2+2η

∫
B1

|u|2 ∀ϱ < r ≤ 1 .

Since, however, the function v ≡ QJ0K belongs to L1 ⊂ H1, we can combine the latter
inequality with (12.13) (resp. (12.14)) to get

min
v∈H1

∫
Br

G(u, v)2 ≤ Cmax{ε̄, r2η}rm+2

∫
B1

|u|2 ∀r ≤ 1

2
, (12.15)

and respectively

min
v∈L1

∫
Br

G(u, v)2 ≤ Cmax{ε̄, r2η}rm+2

∫
B1

|u|2 ∀r ≤ 1

2
, . (12.16)

We now choose first ε̄ so that Cε̄ ≤ ε, which in turn fixes the value of η > 0 determined by
Lemma 12.3. Hence we can choose ρ = ρ(Q,m, n, ε) > 0 such that Cρ2η ≤ ε. Then the desired
estimates (12.1) and (12.2) for r ≤ ρ follow. □

The second result we will need is a suitable “removability result” which we stated previously
in Proposition 9.4. We recall the statement for the convenience of the reader.

Proposition 12.4. Assume Ω ⊂ Rm is a Lipschitz domain, V ⊂ Rm is an (m−2)-dimensional
plane, and v ∈ W 1,2(Ω;AQ(Rn)) is a map with the property that the restriction of v to Ωε :=
Ω \Bε(V ) is Dir-minimizing for every ε > 0. Then, v is Dir-minimizing in Ω.

We remark an important subtlety: the set which is removed from Ω to get to Ωε is not
compactly contained in Ω when m ≥ 3.

We will in fact prove the following lemma, where we use the notion of p-capacity, Capmp (A),
of a set A ⊂ Rm. We refer the reader to e.g. [17] for the definition and preliminaries.

Lemma 12.5. Let Ω ⊂ Rm be any bounded Lipschitz domain and A ⊂ Rm any set with
Capm2 (A) = 0. Then, for any two maps v, u ∈ W 1,2(Ω,AQ(Rn)) such that v = u on ∂Ω
and for any δ > 0, we can find a third map w ∈ W 1,2(Ω,AQ(Rn)) which coincides with v on
∂Ω ∪ (Ω ∩ U) for some neighborhood U of A and such that∫

Ω

|Dw|2 ≤
∫
Ω

|Du|2 + δ .

Let us first prove Proposition 12.4 from Lemma 12.5.

Proof of Proposition 12.4. First note that since V is an (m − 2)-dimensional plane, it obeys
Capm2 (V ) = 0 (note herem > 2, and so this follows because sets with finiteHm−2-measure have
vanishing 2-capacity, see [17]; the result still holds for m = 2 by using the classical logarithmic
cut-off trick).

Suppose for contradiction that v is not Dir-minimizing in Ω. Then we can find a competitor
u ∈ W 1,2(Ω;AQ(Rn)) with v = u on ∂Ω and∫

Ω

|Du|2 <

∫
Ω

|Dv|2 − δ

for some δ > 0. Now apply Lemma 12.5 with this choice of v, u and δ to find a map w ∈
W 1,2(Ω;AQ(Rn)) which coincides with v on ∂Ω∪ (Ω∩Bε∗(V )) for some ε∗ > 0. In particular,
we have ∫

Ω

|Dw|2 ≤
∫
Ω

|Du|2 + δ <

∫
Ω

|Dv|2.

However, this contradicts v being Dir-minimizing on Ωε∗ (since v = w on Bε∗(V )). □
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All that remains is to prove Lemma 12.5.

Proof of Lemma 12.5. We fix Ω a Lipschitz domain and we let v, u : Ω → AQ(Rn) be any pair
of W 1,2(Ω;AQ(Rn)) functions with v|∂Ω = u|∂Ω, where the boundary data is defined in the
Sobolev trace sense (see [10, Section 2.2.2]). Consider now ũ := ξBW ◦u and ṽ := ξBW ◦v, where
ξBW : AQ(Rn) → RN is the special bi-Lipschitz embedding of White, which is constructed via
a modification of the original embedding of Almgren (see [3] or [10, Corollary 2.2]).

Let z := ũ− ṽ and extend it to be identically equal to 0 on Rm \Ω. We claim that there is
a sequence {ζk} ⊂ W 1,2(Rm,RN ) with the following properties:

• ζk vanishes identically on (Rm \Ω) ∪ Uk(A), where Uk(A) is some open neighborhood
of A (which depends on k);

• ∥ζk − z∥W 1,2 → 0 as k ↑ ∞.

Assuming the existence of such a sequence {ζk} for now, we then let wk := ξ−1
BW ◦ (ρ◦ (ṽ+ζk)),

where ρ is Almgren’s Lipschitz retraction of RN onto ξBW (AQ(RN )) (cf. [10, Chapter 2]).
Observe that ṽ + ζk = ṽ on ∂Ω ∪ (Ω ∩ Uk(A)) and so wk = v on ∂Ω ∪ (Ω ∩ Uk(A)). Moreover∫

Ω

|Dwk|2 =

∫
Ω

|D(ρ ◦ (ṽ + ζk))|2

and ∫
Ω

|Du|2 =

∫
Ω

|Dũ|2 .

On the other hand ṽ + ζk converges to ṽ + z = ṽ + (ũ − ṽ) = ũ strongly in W 1,2(Rm;RN )
and, because ρ is Lipschitz and equal to the identity on ξBW (AQ(Rn)), ρ ◦ (ṽ+ ζk) converges
strongly in W 1,2 to ρ◦ ũ = ũ. In particular we conclude from this and the above two identities
that the Dirichlet energy of wk converges to the Dirichlet energy of u, and thus to conclude
the result of the lemma we just need to take w = wk for k sufficiently large (depending on δ).

So now we just need to show the existence of ζk satisfying the desired properties. By the
definition of Capm2 , given ε > 0, we may choose ρε ∈ C∞

c (Bε(A)) with ρε ≥ 1Bε/2(A) and such
that ∫

|Dρε|2 ≤ Capm2 (A) + ε = ε.

In particular we can assume, by truncating ρε, that it takes values between 0 and 1; clearly it
also follows that ρε → 0 pointwise almost everywhere as ε ↓ 0.

Next we chooseM sufficiently large and consider the truncation function zM = (z1M , . . . , zNM )
given by

ziM := min{zi,M}1{zi>0} +max{zi,−M}1{zi≤0} ,

where we have written z = (z1, . . . , zN ). It is simple to see that zM → z in W 1,2 as M → ∞,
and so for each k ∈ {1, 2, . . . } we can select M = M(k) so that ∥zM − z∥W 1,2 ≤ 1

2k . Observe
also that zM always vanishes outside of Ω. Next we take ζk := zM (1 − ρεk) for a sufficiently
small εk to be chosen. Note indeed that for fixed M , ∥zMρε∥L2 → 0 as ε ↓ 0 by dominated
convergence. On the other hand

D(zM (1− ρε))−DzM = −ρεDzM − zMDρε

and ∥DzMρε∥L2 → 0 as ε ↓ 0, again by dominated convergence, while we have ∥zMDρε∥L2 ≤√
NM∥Dρε∥L2 converges to 0 as well as long as we keep M fixed while ε ↓ 0. Thus, zM (1 −

ρε) → zM in W 1,2, and so we can choose ε = εk sufficiently small so that ∥zM (1 − ρεk) −
zM∥W 1,2 ≤ 1

2k . This is the choice of εk used to define ζk. Note then that ∥ζk−z∥W 1,2 ≤ 1/k →
0, and also that ζk vanishes identically on (Rm \ Ω) ∪Bεk/2(A); this completes the proof. □

13. Final blow-up argument

In this part we complete the proof of Theorem 10.2, which we recall in turn implies the
validity of Theorem 2.5, as demonstrated in Section 10.
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13.1. Two regimes. The proof of Theorem 10.2 will be split into two cases, which will both
be proved via a blow-up argument. We start by giving the detailed statements.

Proposition 13.1 (Collapsed decay). For every Q,m, n, n̄, and ς1 > 0 there are positive
constants εc = εc(Q,m, n, n̄, ς1) ≤ 1/2 and rc = rc(Q,m, n, n̄, ς1) ≤ 1/2 with the following
property. Assume that

(i) T and Σ are as in Assumption 2.1, and ∥T∥(B1) ≤ ωm(Q+ 1
2 );

(ii) There is a cone S ∈ C (Q, 0) which is M -balanced (with M as in Assumption 10.1),
such that (10.1) and (10.2) hold with εc in place of ε1, and in addition µ(S) ≤ εc;

(iii) A2 ≤ ε2cE(T, S̃,B1) for every S̃ ∈ C (Q, 0).

Then, there is another cone S′ ∈ C (Q, 0) \ P(0) such that

E(T,S′,Brc) ≤ ς1E(T,S,B1) . (13.1)

Proposition 13.2 (Non-collapsed decay). For every Q,m, n, n̄, ε⋆c > 0, and ς1 > 0, there are
positive constants εnc = εnc(Q,m, n, n̄, ε⋆c , ς1) ≤ 1/2 and rnc = rnc(Q,m, n, n̄, ε⋆c , ς1) ≤ 1

2 with
the following property. Assume that

(i) T and Σ are as in Assumption 2.1 and ∥T∥(B1) ≤ ωm(Q+ 1
2 );

(ii) There is S ∈ C (Q, 0) which is M -balanced (with M as in Assumption 10.1), such that
(10.1) and (10.2) hold with εnc in place of ε1 and in addition µ(S) ≥ ε⋆c ;

(iii) A2 ≤ ε2ncE(T, S̃,B1) for every S̃ ∈ C (Q, 0).

Then, there is another cone S′ ∈ C (Q, 0) \ P(0) such that

E(T,S′,Brnc
) ≤ ς1E(T,S,B1) . (13.2)

Remark 13.3. In fact, for the proof of Proposition 13.1 and Proposition 13.2, instead of
condition (iii) all we will need to assume is that A2 ≤ ε2cE(T,S,B1) or A

2 ≤ ε2ncE(T,S,B1),
respectively, for the cone S as in (ii) in each proposition, respectively.

Theorem 10.2 obviously follows from the two propositions above. In fact, being given
Q,m, n, n̄, and ς1 as in Theorem 10.2, we first apply Proposition 13.1 and get εc and rc.
We then apply Proposition 13.2 with the same choice of Q,m, n, n̄, and ς1, and with ε⋆c = εc,
to get εnc and rnc. It is then clear that Theorem 10.2 holds if we set ε1 := min{εc, εnc},
r12 := rc and r22 := rnc.

Both propositions will be proved by a blow-up procedure, which will assume, by seeking a
contradiction, that the statements fail. In the proof of Proposition 13.2 this means that ε⋆c is
fixed while εnc will be taken to be arbitrarily small and so in particular µ(S) will stay away
from 0 while the ratio

E(T,S,B1)

σ(S)2
(13.3)

is arbitrarily small. We will call the latter a Simon blow-up (since in the work [29] the cones
are uniformly non-collapsed, analogously to this case), and in this case we will take limits of
suitable rescalings of the coherent outer approximations of Proposition 8.18.

In the proof of Proposition 13.1 we will instead assume that εc is arbitrarily small. This
will mean that both the ratio in (13.3) and µ(S) are arbitrarily small. In this case we will
approximate the current in the outer region by reparameterizing the graphs of the coherent
outer approximations over a single plane, which we can fix to be one of the planes forming
S, say α1. We will call these the transversal coherent approximations, as opposed to the
ones of the Simon blow-up, which will be called the orthogonal coherent approximations. By
construction the transversal approximations are superpositions of multi-valued maps, each of
them close to the linear map describing αj as a graph over α1. We will then subtract the
latter linear map from the sheet of the corresponding multi-valued approximation and study
the limits of appropriate rescalings. We will call this procedure a Wickramasekera blow-up
(since the work [32] is the first appearance of such a blow-up where the cones are collapsing to
a high-multiplicity flat plane).
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13.2. Transversal coherent approximation. In this section we work under the assumption
of Proposition 13.1 and recast the coherent outer approximation of Proposition 8.18 as an
approximation through a Lipschitz multi-valued function over a single plane (the latter function
representing the cone S). The choice of the plane is not really important as long as its Hausdorff
distance from S in B1 is comparable to µ(S); we may without loss of generality take it to be the
first indexed plane α1 forming S. Given a multi-valued function g =

∑
iJgiK and a single-valued

function f with the same domain, we also use the notational shorthand g ⊖ f for

g ⊖ f(x) :=
∑
i

Jgi(x)− f(x)K ,

and similarly we define g⊕ f . We moreover recall the set N (L) of “neighbouring cubes” to L
and the quantity Ē(L) introduced in Definition 8.17 and introduce

Ẽ(L) := max{Ē(L′) : L′ ∈ N (L)} = max{E(L′′) : L′′ ∈ N (L′), L′ ∈ N (L)}
i.e. we maximize the excess of neighbours of neighbours.

Proposition 13.4 (Transversal coherent approximation). Let T , Σ, and S be as in Proposition

8.14, let ℓ ∈ N be the maximal number such that Gℓ+2 ⊂ Go, and consider the regions R̃o
i :=

αi ∩
⋃

L∈G≤ℓ
R(L). Let ui : R

o
i → AQi

(α⊥
i ) be the Qi-valued maps in Proposition 8.18. Under

the additional assumption that µ(S) ≤ c0 for a geometric constant c0 = c0(m,n, n̄) > 0, the
following holds.

(a) Each plane αi is the graph over α1 of a linear map Ai : α1 → α⊥
1 with |Ai| ≤ Cµ(S)

and ker(Ai) = V .

(b) For each i there is a map vi : R̃
o
1 → AQi

(α⊥
1 ) with the property that

Gvi = Gui p−1
α1

(R̃o
1) .

(c) If we let v : R̃o
1 → AQ(α

⊥
1 ) be the Q-valued function v :=

∑
iJviK (note that Q =∑N

i=1 Qi), then

∥v∥L∞ + ∥Dv∥L2 ≤ Cµ(S) (13.4)

(d) If we let

K := pα1
((spt(T ) ∩B1/2 ∩ p−1

α1
(R̃o

1)) \ gr (v))
then, for all L ∈ G≤ℓ,

|L1 \K|+ ∥T∥(p−1
α1

(L1 \K)) ≤ C2−mℓ(L)(Ẽ(L) + 2−2ℓ(L)A2)1+γ , (13.5)

where L1 is as in Proposition 8.18.
(e) If we let wi := vi ⊖Ai : R̃

o
1 → AQi

(α⊥
1 ), then

22ℓ(L)∥wi∥2L∞(L1)
+ 2mℓ(L)∥Dwi∥2L2(L1)

≤ C(Ẽ(L) + 2−2ℓ(L)A2) (13.6)

∥Dwi∥L∞(L1) ≤ C(Ẽ(L) + 2−2ℓ(L)A2)γ (13.7)

Here, C = C(Q,m, n, n̄).

Proof. Claim (a) is obvious. For the rest, all we are essentially doing is changing the coordinates
of ui, to give a parameterization over α1 rather than αi. Claims (b) and and the L∞-estimate
in (c) follow immediately from [12, Proposition 5.2]. The L2-gradient estimate in (c) follows
immediately from the L2 bound in (13.6) and (a). Conclusion (d) follows immediately from

the corresponding estimate in Proposition 8.18. As for (13.7), observe that, for a.e. x ∈ R̃o
1,

|Dwi|(x) equals, up to a geometric constant, the following quantity:

sup{|G⃗vi(x, y)− α⃗i| : (x, y) ∈ gr (vi)}
while an analogous formula holds for |Dui|(x), with x ∈ Ro

i : since the graph of vi equals that
of ui in a different coordinate system, the estimate (13.7) follows from the analogous one for
ui in Proposition 8.18. Likewise, ∥Dwi∥2L2(L1)

is equivalent, up to constants, to∫
p−1

α1
(L1)

|G⃗vi(p)− α⃗i|2 d∥Gvi∥(p) .
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Thus from the corresponding inequality for ui, we obtain the inequality

∥Dwi∥2L2(L1)
≤ C2−mℓ(L)(Ẽ(L) + 2−2ℓ(L)A2) .

As for ∥wi∥L∞(L1) it is easy to see that it is controlled by ∥ui∥L∞(λLi) for a choice of λ slightly
larger than 1 (cf. the arguments in [12, Section 5]). This establishes (13.6) and so completes
the proof. □

13.3. Non-concentration estimates. In this section we draw some important conclusions
from Simon’s estimates in Section 11. We will work under the following assumptions throughout
this section.

Assumption 13.5. T and Σ are as in Assumption 2.1. S ∈ C (Q, 0) \ P(0) is such that

A2 + E(T,S,B1) ≤ ε2σ(S)2 (13.8)

and

Bε(y) ∩ {Θ(T, ·) ≥ Q} ≠ ∅ for all y ∈ V (S) ∩B1 , (13.9)

for some ε > 0, to be determined.

Next, consider recall the family of cubes G, where L ∈ G has center point yL ∈ V , as defined
in Section 8.5.1.

Definition 13.6. Let T , Σ, and S be as in Assumption 13.5. For every L ∈ G we let β(L) be
a point p in {Θ(T, ·) ≥ Q} which minimizes the distance to yL. This point will be called the
nail of L.

Of course, there might be more than one candidate for the nail of L, but under Assumption
13.5, one nail always exists as the set {Θ(T, ·) ≥ Q} is closed by upper semi-continuity of
density. In the rest of the paper we will just assume that some arbitrary choice for each given
nail has been made. The main conclusion of this section is then the following.

Proposition 13.7. There is a constant C = C(m,n, n̄, Q) such that, for every ϱ > 0 there
exists ε = ε(Q,m, n, n̄, ϱ) > 0 with the following property. Assume T , Σ, and S are as in
Assumption 13.5 with this choice of ε, let r∗ denote the radius of Proposition 11.4 and let
r = r∗

4 . Then ∫
Br

dist2(q,S)

max{ϱ,dist(q, V )}3/2
d∥T∥(q) ≤ C(Ê(T,S,B1) +A2) . (13.10)

Moreover, if u1, . . . , uN are the coherent approximations of Proposition 8.18, upon suitably
modifying them (without relabelling) we can assume that they satisfy the following stronger
estimates for each j ∈ {1, . . . , N}:∫

(Br∩αj)\Bϱ(V )

|Duj(z)|2

dist(z, V )3/2
dz ≤ C(Ê(T,S,B1) +A2) (13.11)

∑
i: 2−i−1≥ϱ

∑
L∈Gi

∫
Lj

|uj(z)⊖ (p⊥
αj
(β(L)))|2

dist(z, V )7/2
dz ≤ C(Ê(T,S,B1) +A2) . (13.12)

Finally, under the additional assumption that µ(S) ≤ c0 for the constant c0 = c0(m,n, n̄) of
Proposition 13.4, the maps w1, . . . , wN and A1, . . . , AN defined therein satisfy the corresponding
estimates ∫

(Br∩α1)\Bϱ(V )

|Dwj(z)|2

dist(z, V )3/2
dz ≤ C(A2 + Ê(T,S,B1)) (13.13)

∑
2−i−1≥ϱ

∑
L∈Gi

∫
L1

|wj(z)⊖ (p⊥
α1
(β(L)) +Aj(pV ⊥∩α1

(β(L))))|2

dist(z, V )7/2
dz ≤ C(A2 + Ê(T,S,B1)) .

(13.14)
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Proof. We begin with the first estimate (13.10); we may assume that ϱ < 1 is smaller than half
the radius in Proposition 11.4, as if not the inequality follows trivially. We begin by estimating
the part of the integral on the left-hand side that is over Br ∩ Bϱ(V ). Cover V ∩ Br with

Cϱ−(m−2) balls Bϱ(yi) of radius ϱ (of course, we can assume Bϱ(yi) ∩ V ̸= ∅ for each i) and
observe that {B2ϱ(yi)}i covers Bϱ(V ) ∩ Br. If (13.9) holds with ε < ϱ, then for each i we
can find a point pi ∈ B2ϱ(yi) such that Θ(T, pi) ≥ Q. In particular we can estimate, using
Proposition 11.4 with κ = 1/4, centered at each pi,

ϱ−3/2

∫
Br∩Bϱ(V )

dist2(q,S) d∥T∥(q) ≤ ϱ−3/2
∑
i

∫
Br∩B2ϱ(yi)

dist2(q,S) d∥T∥(q)

≤ Cϱ−3/2
∑
i

∫
Br∩B2ϱ(yi)

dist2(q, pi + S) d∥T∥(q)

+ Cϱ−3/2
∑
i

ϱm
(
|p⊥

α1
(pi)|2 + µ(S)2|pV ⊥∩α1

(pi)|2
)

≤ Cϱm+7/4−3/2
∑
i

∫
Br∩B4ϱ(pi)

dist2(q, pi + S)

|q − pi|m+7/4
d∥T∥(q)

+ Cϱ−(m−2)ϱm−3/2(Ê(T,S,B1) +A2)

≤ Cϱ−(m−2)ϱm+1/4(Ê(T,S,B1) +A2) + Cϱ1/2(Ê(T,S,B1) +A2)

≤ C(Ê(T,S,B1) +A2) . (13.15)

We next consider the region Br \ Bϱ(V ) and note that we can we cover it with the regions

R(L) for L ∈ G such that 2−ℓ(L)−1 ≥ ϱ. However, we only include in the cover the cubes L for
which R(L) have a nonempty intersection with Br: denote the latter family of cubes by F .
For each such cube we denote by β(L) its nail as in Definition 13.6. Note in particular that, if
ε < ϱ

4 in (13.9), then

C−22−ℓ(L) ≤ C−1|q − β(L)| ≤ dist(q, V ) ≤ C|q − β(L)| ≤ C22−ℓ(L) ∀q ∈ R(L) ,

where C is a geometric constant. Again combining with Proposition 11.4 with κ = 1
4 , this

allows us to estimate∫
Br\Bϱ(V )

dist2(q,S)

dist(q, V )3/2
d∥T∥(q)

≤ C
∑

i≤−1−log2(ϱ)

∑
L∈Gi∩F

23i/2
∫
R(L)

dist2(q,S) d∥T∥(q)

≤ C
∑

i≤−1−log2(ϱ)

∑
L∈Gi∩F

23i/2
∫
R(L)

dist2(q, β(L) + S) d∥T∥(q)

+ C
∑

i≤−1−log2(ϱ)

∑
L∈Gi∩F

23i/22−mi
(
|p⊥

α1
(β(L))|2 + µ(S)2|pV ⊥∩α1

(β(L))|2
)

≤ C
∑

i≤−1−log2(ϱ)

∑
L∈Gi∩F

23i/2−mi−7i/4

∫
R(L)

dist2(q, β(L) + S)

|q − β(L)|m+7/4
d∥T∥(q)

+ C(Ê(T,S,B1) +A2)
∑

i≤−1−log2(ϱ)

23i/2−mi#Gi

≤ C(Ê(T,S,B1) +A2)
∑

i≤−1−log2(ϱ)

(2−i/4−mi + 23i/2−mi)#Gi .

Since the cardinality #Gi of Gi is bounded by C2(m−2)i, it follows that∫
Br\Bϱ(V )

dist2(q,S)

dist(q, V )3/2
d∥T∥(q) ≤ C(Ê(T,S,B1) +A2) . (13.16)

Clearly (13.15) and (13.16) imply (13.10).
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We next use the same family F of cubes to prove the remaining estimates. Fix any cube
L ∈ F and recall Proposition 8.14, but rather than approximating over S, approximate the
current over the shifted cone S + β(L). We can indeed do this by Proposition 11.4, which
moreover yields

Ê(T,S+ β(L),BC2−ℓ(L)(β(L))) ≤ C2ℓ(L)/4(Ê(T,S,B1) +A2) . (13.17)

Note that we can apply (11.5) provided C2−ℓ(L) ≤ r, where r = r(Q,m, n, n̄) is the radius
from Proposition 11.4, i.e. provided ℓ(L) is larger than a constant depending on Q,m, n, n̄.
For the cubes L with ℓ(L) smaller than this constant, the inequality above follows more easily
as we have an upper bound on ℓ(L)).

We then gain an approximation ũL,i : pV ⊥∩αi
(β(L)) + λLi → AQi(α

⊥
i ) which satisfies the

estimate

∥DũL,i∥2L2 ≤ C2−mℓ(L)(Ê(T,S+ β(L),BC2−ℓ(L)(β(L))) + 2−2ℓ(L)A2)

≤ C2−mℓ(L)+ℓ(L)/4(Ê(T,S,B1) +A2) .

Similarly, Proposition 8.14, (11.6) and (13.17) also give the estimate

∥ũL,i ⊖ (p⊥
αi
(β(L)))∥L∞ ≤ C2−7ℓ(L)/4(Ê(T,S,B1) +A2)

We can now consider the map ûL,i := ũL,i⊖ (p⊥
αi
(β(L))) over the domain pV ⊥∩αi

(β(L))+λLi,
which we can assume contains Li, provided that ε is sufficiently small. Observe that we can use
this new map in the algorithm within Proposition 8.18 in place of uL,i to construct a coherent
approximation from ũL,i, since this new map satisfies the same estimates as above. We can in
turn use this new coherent approximation to construct a coherent transversal approximation
as in Proposition 13.4. In particular, if we keep denoting these improved approximations by
ui and wi without relabeling, they will satisfy the estimates∫

Li

|Dui|2

dist(z, V )3/2
dz ≤ C2−mℓ(L)+7ℓ(L)/4(Ê(T,S,B1) +A2) (13.18)∫

L1

|Dwi|2

dist(z, V )3/2
dz ≤ C2−mℓ(L)+7ℓ(L)/4(Ê(T,S,B1) +A2) (13.19)∫

Li

|ui ⊖ (p⊥
αi
(β(L)))|2

dist(z, V )7/2
dz ≤ C2−mℓ(L)+7ℓ(L)/4(Ê(T,S,B1) +A2) (13.20)

∫
L1

|wi ⊖ (p⊥
α1
(β(L)) +Ai(pV ⊥∩α1

(β(L))))|2

dist(z, V )7/2
dz ≤ C2−mℓ(L)+7ℓ(L)/4(Ê(T,S,B1) +A2) .

(13.21)

We now sum the latter estimates over L ∈ F ∩ Gi for i ≤ − log2(ϱ)− 1. Considering that the
cardinality of Gi is C2(m−2)i we get (13.11)–(13.14). □

13.4. Blow-ups. We are now ready to define blow-up sequences for the contradiction argu-
ment in the two cases of Proposition 13.1 and Proposition 13.2. In both cases we have a
sequence of currents Tk, cones Sk, and manifolds Σk for which the assumption of their respec-
tive proposition fails, with a sequence of thresholds εc = 1/k in the case of Proposition 13.1
and with εnc = 1/k in the case of Proposition 13.2 (we stress that ε⋆c is a fixed number in
the case of Proposition 13.2 and currently unrelated to εc!). In particular, we know that (cf.
Remark 13.3)

lim
k↑∞

( A2
k

E(Tk,Sk,B1)
+

E(Tk,Sk,B1)

σ(Sk)2

)
= 0 (13.22)

while, denoting by βk(L) the nails of Definition 13.6 for Tk, we have

lim
k↑∞

|βk(L)− yL| = 0 ∀L ∈ G . (13.23)

Moreover, upon extracting a subsequence, we can assume that Sk consists of a fixed number
N(k) = N ∈ {2, . . . , Q} of distinct planes, which we denote by αk

1 , . . . , α
k
N . Applying suitable
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rotations, we can assume that T0Σk, V (Sk), and αk
1 are independent of k. In particular, we

will often use V in place of V (Sk) and α1 in place of αk
1 .

The distinction between the case of Proposition 13.1 and Proposition 13.2 is that

(C) In the collapsed case (Proposition 13.1) we have µ(Sk) → 0;
(NC) In the non-collapsed case (Proposition 13.2) we have lim infk µ(Sk) ≥ ε⋆c > 0, for some

ε⋆c > 0.

In particular, in the non-collapsed case we can assume in addition that:

(NC1) Up to relabelling, dist(αk
1 ∩B1, α

k
N ∩B1) = µ(Sk);

(NC2) Each sequence αk
i converges (in Hausdorff distance) to a plane αi, and αN is necessarily

distinct from α1 (but some of the other planes αi could coincide).

In the collapsed case we consider the transversal coherent approximations wk
i , while in the

non-collapsed case we consider the orthogonal coherent approximations uk
i . In both cases

we assume that their domains of definition Dom (wk
i ) and Dom (uk

i ) contain, respectively,
(Br ∩ α1) \B1/k(V ) and (Br ∩ αk

i ) \B1/k(V ). We further consider the rescaled functions

ūk
i :=

uk
i√

E(Tk,Sk,B1)
(13.24)

w̄k
i :=

wk
i√

E(Tk,Sk,B1)
. (13.25)

Observe that we have uniform estimates for the W 1,2 norms of ūk
i and w̄i

k (from Proposition
13.7, which are even stronger as they have a weight). The maps wk

i are also defined over
the same plane α1. For the maps uk

i there is the annoying technicality that they are not. In
the latter case we refer to Remark 8.20 and assume they are, up to composition with a small
rotation, defined on the same planes αi.

In particular, up to extraction of a subsequence we can assume that the ūk
i and w̄k

i converge
strongly in W 1,2 locally away from V and strongly in L2 on the entirety of Br (due to the
non-concentration estimates from Proposition 13.7) to W 1,2 maps ūi and w̄i defined on (Br ∩
αi)\V and (Br∩α1)\V respectively (and taking values in AQ(α

⊥
i ) and AQ(α

⊥
1 ) respectively).

However, since V is an (m− 2)-dimensional subspace, which has zero 2-capacity, the maps ūi

and w̄i belong indeed to W 1,2(αi ∩Br) and W 1,2(α1 ∩Br) respectively. In the collapsed case
we also introduce the linear maps Ak

i : α1 → α⊥
1 whose graphs describe the planes αk

i , and can
consider their rescalings

Āk
i :=

Ak
i

µ(Sk)
. (13.26)

Moreover, up to extraction of a further subsequence, we assume that Āk
i converges to some

linear map Āi.
We are now ready to state our main proposition concerning the properties of the limiting

maps ūi and w̄i.

Proposition 13.8. Let ūk
i , w̄

k
i and their respective limits ūi, w̄i be as described above. The

following holds in the non-collapsed case:

(a) Each ūi is Dir-minimizing on Br ∩ αi, for r as in Proposition 13.7.
(b) ūi = QiJη ◦ ūiK on V .
(c) ūi(0) = QiJη ◦ ūi(0)K = QiJ0K and the frequency obeys I0,ūi(0) ≥ 1. Moreover, we have

Iy,ūi⊖η◦ūi
(0) ≥ 1 for all y ∈ V ∩Br.

(d) There is a smooth function β : V → V ⊥ such that η ◦ ūi = p⊥
αi
(β) on V for every

i. (Note that with a slight abuse of notation we are using the same letter identifying
the nails of Definition 13.6. In fact this function β is the trace of the limit of suitable
normalizations of the nails.)

The following holds in the collapsed case:

(e) Each w̄i is Dir-minimizing on Br ∩ α1.
(f) w̄i = QiJη ◦ w̄iK on V .
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(g) w̄i(0) = QiJη ◦ ūi(0)K = QiJ0K and the frequency I0,w̄i
(0) ≥ 1. Moreover, we have

Iy,w̄i⊖η◦w̄i
(0) ≥ 1 for all y ∈ V ∩Br;

(h) There are smooth function β⊥ : V → α⊥
1 and β∥ : V → V ⊥ ∩ α1 such that η ◦ w̄i =

β⊥ + Āi(β∥) on V for all i.

The functions ūi and β also enjoy the estimates

∥ūi∥W 1,2 + ∥β∥C2 ≤ C (13.27)

for some constant C which depends only on Q,m, n, n̄ and ε⋆c . The functions w̄i, β
⊥, and β∥

enjoy the estimates

∥w̄i∥W 1,2 + ∥β⊥∥C2 + ∥β∥∥C2 ≤ C (13.28)

for some constant C which depends only on Q,m, n, n̄.

Proof. We start with (a). Here we first appeal to Proposition 8.19 to prove the Dir-minimality
of ūi away from the spine V . Observe that, if, along the sequence ūk

i , the double-sided excess

E(Tk,Sk,B1) stays comparable to Ê(Tk,Sk,B1), this claim follows from Proposition 8.19(iii)
because A2 is infinitesimal compared to E(Tk,Sk,B1). The alternative left is that (up to

subsequence) Ê(Tk,Sk,B1)/E(Tk,Sk,B1) is infinitesimal. In this case, by Proposition 8.19(ii),
Dūi vanishes. Having established the Dir-minimality away from the spine, Proposition 12.4
allows us to conclude that it is Dir-minimizing on any Ω ⊂⊂ Br; this proves (a).

Now let us show (b). We next observe that, by (11.6) (in which one can clearly replace α1

by any other plane of S), |p⊥
αk

i
(βk(L))| ≤ CE(Tk,Sk,B1)

1/2 and, because of the lower bound

on µ(Sk), |pV ⊥∩αk
i
(βk(L))| ≤ CE(Tk,Sk,B1)

1/2, for each i = 1, . . . , N . In particular we easily

conclude that

|p⊥
V (β

k(L))| ≤ CE(Tk,Sk,B1)
1/2

for a constant C = C(Q,m, n, n̄, ε⋆c). Thus we can assume that for every L, we can find β̄(L)
such that

lim
k→∞

p⊥
V (β

k(L))

E(Tk,Sk,B1)1/2
= β̄(L) .

It is notationally convenient to think of β̄ as a piecewise constant function which is defined
over Br as being identically equal to β̄(L) on the set R(L) (note that this is well-defined away
from V and the overlaps of the regions R(L), but this set has measure 0). In that way we can
divide by E(Tk,Sk,B1) in (13.12) and pass to the limit to conclude that∫

Br∩αi

|ūi(z)⊖ p⊥
αi
(β̄)(z)|2

dist(z, V )7/2
dz < ∞ . (13.29)

But in particular, since |ūi(z) ⊖ (η ◦ ūi)(z)| ≤ |ūi(z) ⊖ p⊥
αi
(β̄)(z)| (this is just the trivial fact

that the barycenter minimizes this quantity), we get∫
Br∩αi

|ūi(z)⊖ η ◦ ūi(z)|2

dist(z, V )7/2
dz < ∞ . (13.30)

Given that the numerator is continuous, it must be identically 0 for z ∈ V ∩Br, otherwise the
integral would diverge (recall that V has codimension 2 and thus the integral of dist(z, V )−s

diverges for every s ≥ 2). In particular we have shown (b).
As for (c), recall first that we have the estimate of Corollary 11.3. Once again choosing

κ = 1
4 , this is easily seen to imply the estimate∫

Br∩αi

|ūi(z)|2

|z|m+7/4
dz < ∞ .

Arguing as above, this clearly implies that |ūi(0)| = 0 and hence the first claim of point (c).
We next argue for the second part of the claim; here we resort to the full version of Corollary
11.3 for any κ ∈ (0,m+ 2). Observe that it suffices to prove the latter claim Iy,ūi⊖η◦ūi

(0) ≥ 1
for all y ∈ V ∩ Br. Indeed, the fact that I0,ūi

(0) ≥ 1 follows immediately from this at
y = 0, combined with the property η ◦ ūi(0) = 0 that we have just proved. Fix a point
y ∈ V ∩Br and for each k ∈ N, consider a point qk ∈ Bεk(y) with Θ(Tk, qk) ≥ Q and fix any
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ρ ∈ (0, r). It follows from Proposition 11.4 that, if p ∈ gr (uk
i )∩ spt(Tk) and |pαi

(p)| ≥ ρ, then
dist(p, qk) + Sk) = dist(p, qk + αk

i ) for all k sufficiently large (depending on ρ and κ) and in
particular, if Kk,i ⊂ αk

i denotes the set over which the graph of uk
i coincides with the current

T , then Proposition 11.4∫
(Br(y)\Bρ(y))∩Kk,i

|uk
i (z)⊖ p⊥

αk
i
(qk)|2

|z − y|m+2−κ
dz ≤ C(κ)E(Tk,Sk,B1) ,

for every positive κ, and for k sufficiently large, depending on ρ, κ.
Again recall that |uk

i ⊖ η ◦ uk
i | ≤ |uk

i ⊖ p⊥
αk

i
(qk)|, and so in particular we conclude that∫

(Br(y)\Bρ(y))∩Kk,i

|uk
i (z)⊖ η ◦ uk

i (z)|2

|z − y|m+2−κ
dz ≤ C(κ)E(Tk,Sk,B1) .

Dividing by E(Tk,Sk,B1), taking the limiting in k and noting that the measure of (Br \Bρ)∩
(αk

i \Kk,i) converges to 0 (cf. (8.51)), we arrive at∫
(Br(y)\Bρ(y))∩αi

|ūi(z)⊖ η ◦ ūi(z)|2

|z − y|m+2−κ
dz ≤ C(κ) .

On the other hand letting ρ ↓ 0 we then get∫
Br(y)∩αi

|ūi(z)⊖ η ◦ ūi(z)|2

|z − y|m+2−κ
dz ≤ C(κ) (13.31)

Now let γ := Iy,ūi⊖η◦ūi
(0). It follows from [10, Corollary 3.18] that for every γ′ > γ there is a

positive constant C (depending on γ′ and ūi) such that∫
∂Bσ(y)∩α1

|ūi ⊖ η ◦ ūi|2 ≥ Cσm−1+2γ′
,

for every σ ∈ (0, r). Combined with (13.31), we conclude that∫ r

0

σ2γ′+κ−3 dσ < ∞

which implies that 2γ′ + κ > 2. Letting κ ↓ 0 and γ′ ↓ γ = Iy,ūi⊖η◦ūi
(0) we then conclude

that Iy,ūi⊖η◦ūi
(0) ≥ 1. Note that one could alternatively conclude that Iy,ūi⊖η◦ūi

(0) ≥ 1 via
the Hardt-Simon inequality, as done in [29].

We next come to point (d). Observe that if ζ is in V ⊥ then

|ζ| ≤ C(|p⊥
α1
(ζ)|+ |p⊥

αN
(ζ)|) , (13.32)

(where the constant C in particular depends on ε⋆c). We next observe that we have (from
(13.29), (13.30)) ∫

Br∩αi

|p⊥
αi
(β̄)− η ◦ ūi|2

dist(z, V )7/2
dz < ∞ . (13.33)

For each ρ ∈ (0, r) consider the functions defined on V which result averaging β̄ and η ◦ ūi

respectively, over 2-dimensional disks in αi (for any i ∈ {1, . . . , N}) of radius ρ perpendicular
to V and centered at y ∈ V :

β̄ρ(y) =
1

πρ2

∫
Bρ(y)∩(y+V ⊥)∩αi

β̄ ,

gρ(y) =
1

πρ2

∫
Bρ(y)∩(y+V ⊥)∩αi

η ◦ ūi .

We clearly have, from (13.33),∫
V ∩B√

r2−ρ2

|p⊥
αi
(β̄ρ)− gρ|2 ≤ Cρ3/2 .
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In particular p⊥
αi
(β̄ρ) converges, as ρ ↓ 0, in L2(V ∩Br) to limρ↓0 gρ = η ◦ ūi. But then for any

given ρ ∈ (0, r),∫
V ∩B√

r2−ρ2

|p⊥
αi
(β̄ρ)− p⊥

αi
(β̄ρ′)|2 ≤ Cρ3/2 +

∫
V ∩B√

r2−ρ2

|gρ − gρ′ |2 ∀ρ′ < ρ

Hence, recalling that β̄ takes values in V ⊥, applying (13.32) and the above inequality with
i = 1, N , we conclude∫

V ∩B√
r2−ρ2

|β̄ρ − β̄ρ′ |2 ≤ Cρ3/2 +

∫
V ∩B√

r2−ρ2

|gρ − gρ′ |2 ∀ρ′ < ρ .

In particular {β̄ρ}ρ>0 converges strongly in L2(V ∩Br) as ρ ↓ 0 to some function β ∈ L2(V ∩Br)
and clearly p⊥

αi
(β) = η ◦ ūi for each i = 1, . . . , N . The smoothness of β follows easily from the

smoothness of the η ◦ ūi, which in turn is obvious from the fact that they are the traces on V
of classical harmonic functions. This proves (d).

Coming to the estimate (13.27) in the non-collapsed case, by construction (namely, the
L2 non-concentration estimates (13.11), (13.12)), ∥ūi∥W 1,2 ≤ C for some constant C =
C(Q,m, n, n̄), which in fact does not depend on ε⋆c . Next, as p⊥

αi
(β) = η ◦ ūi and the cone S is

well-separated (cf. (13.32)), β is determined as a linear combination of the p⊥
αi
(β) for i = 1, N ,

which in turn are the traces of η ◦ ūi. The latter are harmonic functions and they enjoy the
same W 1,2 bound on ūi. Hence, the C2 estimate follows from the classical theory of harmonic
functions.

The conclusion (e) is more subtle than (a). As above, we wish to argue that w̄i is Dir-
minimizing on every Ω ⊂⊂ Br ∩ α1 \ V and invoke Proposition 12.4 to argue that therefore
it is Dir-minimizing on Br ∩ α1. First of all we assume, without loss of generality, that
the double-sided excess E(Tk,Sk,B1) and the one sided excess Ê(Tk,Sk,B1) are comparable,
since the alternative would be that the latter is infinitesimal compared to the former, and
in that case w̄i would vanish. Then, we notice that in order to argue for the minimality in
Ω ⊂⊂ Br ∩ α1 \ V we cannot invoke directly the argument of [11, Theorem 2.6]. However,
since the mismatch in mass between the current T and the graphs of the multi-valued maps∑

i w
k
i ⊕Ak

i is controlled by E1+γ
k := E(Tk,Sk,B1)

1+γ , the area-minimizing property of T and

the arguments in [11, Section 5] shows the following minimality property for the map wk
i ⊕Ak

i :

(Min) If w̃k
i is a Lipschitz map which coincides with wk

i outside of Ω and its Lipschitz constant
is controlled by 1, then

∥Gw̃k
i ⊕Ak

i
∥(Ω× α⊥

1 ) ≥ ∥Gwk
i ⊕Ak

i
∥(Ω× α⊥

1 )− CE1+γ
k . (13.34)

Our aim is to show that, if w̄i is not Dir-minimizing, then (13.34) is violated for k sufficiently
large. Assuming it is not Dir-minimizing, the Lipschitz truncation and “cut-and-paste” argu-
ments of [11, Theorem 2.6] show the existence of a sequence w̃k

i of multi-valued maps such
that

(i) w̃k
i = wk

i outside Ω;
(ii) Lip(w̃k

i ) ≤ CEγ
k ;

(iii) The Dirichlet energy of w̃k
i has the following gain:∫

Ω

|Dw̃k
i |2 ≤

∫
Ω

|Dwk
i |2 − ϑEk , (13.35)

for some positive ϑ > 0 independent of k.

We now wish to show that (i)-(iii) contradict (13.34). We let A(Du) be the area integrand for
the graph of a single-valued function u. More precisely, if we denote by M(B) the set of all
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k × k minors of the matrix B with k ≥ 2, then1

A(B) =

√
1 + |B|2 +

∑
M∈M(B)

det(M)2 .

We next use the notation wk
i =

∑
jJw

k
i,jK and w̃k

i =
∑

jJw̃
k
i,jK. Using the area formula in

[12, Corollary 1.11] we can compute

∥Gw̃k
i ⊕Ak

i
∥(Ω× α⊥

1 ) =

∫
Ω

∑
j

A(Ak
i +Dw̃k

i,j)

and

∥Gwk
i ⊕Ak

i
∥(Ω× α⊥

1 ) =

∫
Ω

∑
j

A(Ak
i +Dwk

i,j) .

In particular, defining

∆ := ∥Gw̃k
i ⊕Ak

i
∥(Ω× α⊥

1 )− ∥Gwk
i ⊕Ak

i
∥(Ω× α⊥

1 ) ,

we arrive at the expression

∆ =

∫
Ω

∑
j

A(Ak
i +Dw̃k

i,j)−
∑
j

A(Ak
i +Dwk

i,j)

 . (13.36)

We now wish to make a Taylor expansion of the function A at the constant Ak
i . In particular

we can write
A(Ak

i +B) = A(Ak
i ) + Lk,i(B) +Qk,i(B) +O(|B|3)

where Lk,i are appropriate linear functions and Qk,i are appropriate quadratic forms. However

note that at Ak
i = 0 the quadratic form would be |B|2

2 , and given that |Ak
i | ≤ µ(Sk) we can

further write

A(Ak
i +B) = A(Ak

i ) + Lk
i (B) +

|B|2

2
+O((µ(Sk) + |B|)|B|2) .

Now, inserting the latter expansion in our expression (13.36) and using that ∥Dw̃k
i ∥∞ +

∥Dwk
i ∥∞ ≤ CEγ

k and ∥Dw̃k
i ∥L2 + ∥Dwk

i ∥L2 ≤ CEk we arrive at

∆ =

∫
Ω

∑
j

(
Lk
i (Dw̃k

i,j) +
|Dw̃k

i,j |2

2

)
−
∑
j

(
Lk
i (Dwk

i,j) +
|Dwk

i,j |2

2

)
+O((µ(Sk) + Eγ

k )Ek)

= Qi

∫
Ω

Lk
i (D(η ◦ w̃k

i − η ◦ wk
i ))︸ ︷︷ ︸

=: (L)

+
1

2

∫
Ω

(|Dw̃k
i |2 − |Dwk

i |2)︸ ︷︷ ︸
=:(Q)

+O((µ(Sk) + Eγ
k )Ek) ,

where we have used the linearity of Lk
i . Now observe that the function

fk := η ◦ w̃k
i − η ◦ wk

i

is a single-valued Lipschitz function that vanishes on ∂Ω. On the other hand Lk
i is a linear

function. In particular, if we write fk = (f1
k , . . . , f

n
k ) for the components of the functions fk,

there are vectors v1k, . . . v
n
k ∈ Rn (determined by Lk

i ) such that

(L) =
∑
l

∫
Ω

vlk · ∇f l
k =

∑
l

∫
Ω

div (vlkf
l
k) =

∑
l

∫
∂Ω

f l
kν · vlk = 0 ,

where ν denotes the unit normal determined by the Stokes’ orientation of ∂Ω. Moreover, by
(13.35) we have

(Q) ≤ −ϑEk .

1Note that, when u is a scalar function, Du only has 1 × 1 minors, namely M(Du) is empty, and we

would use the convention that the formula reduces to A(B) =
√

1 + |B|2. However in our case u is necessarily

vector-valued.
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We can thus write

∆ ≤ −ϑ

2
Ek +O((µ(Sk) + Eγ

k )Ek) .

Since Ek + µ(Sk) → 0, the latter clearly contradicts (13.34). This concludes the proof of (e).

The argument for (f) is entirely analogous to the argument for (b), where we use (13.14) in
place of (13.12): indeed (13.14) leads to the conclusion that∫

Br∩α1

|w̄i ⊖ η ◦ w̄i|2

dist(z, V )7/2
< ∞ ,

which in turn clearly implies (f) using the continuity of w̄i. The argument for (g) is entirely
analogous to the argument for (c): using Corollary 11.3 with κ = 1

4 we derive∫
Br∩α1

|w̄i(z)|2

|z|m+7/4
dz < ∞ ,

which yields w̄i(0) = η ◦ w̄i(0) = 0, while Proposition 11.4 gives∫
Br(y)∩α1

|w̄i ⊖ η ◦ w̄i(z)|2

|z − y|m+2−κ
dz ≤ C(κ) (13.37)

for y ∈ V ∩Br. We then use this in place of (13.31) to conclude the desired lower bound on
the frequency.

We finally come to (h). Recall the notation βk(L) for the nail of L when the current is Tk.
Recall that from (11.6) that

|p⊥
α1
(βk(L))| ≤ CE(Tk,Sk,B1)

1/2 ,

µ(Sk)|pV ⊥∩α1
(βk(L))| ≤ CE(Tk,Sk,B1)

1/2 .

Arguing as in (d), we assume, upon extraction of a subsequence, that there are β̄⊥ and β̄∥

such that

p⊥
α1
(βk(L))

E(Tk,Sk,B1)1/2
→ β̄⊥(L)

µ(Sk)pV ⊥∩α1
(βk(L))

E(Tk,Sk,B1)1/2
→ β̄∥(L) .

In analogy with the argument for (d) we consider both functions as defined over Br∩α1. Since
Āk

i = µ(Sk)
−1Ak

i , by passing into the limit in (13.14) we get to, for each i = 1, . . . , N∫
Br∩α1

|w̄i ⊖ (β̄⊥ + Āi(β̄∥))|2

dist(z, V )7/2
dz < ∞ . (13.38)

Combining with (13.37), in turn these estimates imply∫
Br∩α1

|η ◦ w̄i − (β̄⊥ + Āi(β̄∥))|2

dist(z, V )7/2
dz < ∞ . (13.39)

As Ā1 = 0, we immediately conclude that β̄⊥ = η◦w̄1 on V ∩Br, and by the triangle inequality
that ∫

Br∩α1

|η ◦ w̄i − (η ◦ w̄1 + Āi(β̄∥))|2

dist(z, V )7/2
dz < ∞ . (13.40)

Next, notice that
∑

iJĀiK is Dir-minimizing (indeed, this will simply be the usual blow-up of Tk

relative to α1). Moreover, because maxi |Ak
i | ≥ C−1µ(Sk), we have that maxi |Āi| ≥ C−1 > 0

for some constant C = C(Q,m, n, n̄); we also know that this maximum is achieved by ĀN .
Since Ā1 = 0, the map JĀN K + J0K is Dir minimizing and hence, by subtracting the average
and rescaling by a factor 2, so is JĀN K + J−ĀN K. In particular we can apply Lemma 7.7 and
conclude that, if we let W be the image of ĀN , ĀN : V ⊥ → W is invertible and its inverse B
satisfies |B| ≤ C for some C = C(Q,m, n, n̄).
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We therefore have the identity β̄∥ = B(ĀN (β̄∥)). For y ∈ V ∩Br, define now the functions

(β̄∥)ρ and hρ as follows, analogously to those the proof of (d): for y ∈ V ∩Br,

(β̄∥)ρ(y) =
1

πρ2

∫
Bρ(y)∩(y+V ⊥)∩α1

β̄∥ , (13.41)

hρ(y) =
1

πρ2

∫
Bρ(y)∩(y+V ⊥)∩α1

(η ◦ w̄i − η ◦ w̄1) . (13.42)

Arguing as in the proof of (d) we use (13.40) to conclude that Āi((β̄∥)ρ) converges in L2(V ∩Br)
to the function η ◦ w̄i − η ◦ w̄1 = limρ↓0 hρ, which in particular gives us the conclusion that
η ◦ w̄N − η ◦ w̄1 is in the image of ĀN . Hence, if we define β∥ := B(η ◦ w̄N − η ◦ w̄1) and

β⊥ := η ◦ w̄1, we see immediately that we have the identity

η ◦ w̄i = η ◦ w̄1 + Āi(β∥) = β⊥ + Āi(β∥) .

In order to conclude the proof we need to show the desired estimates (13.28) on ∥w̄i∥W 1,2 ,
∥β⊥∥C2 , and ∥β∥∥C2 . The first is obvious because ∥w̄k

i ∥W 1,2 is bounded by a universal constant.

The second is also obvious because β⊥ is the restriction to V of the harmonic function η ◦ w̄1

whose W 1,2 norm is controlled by ∥w̄1∥W 1,2 . Finally, the estimate on ∥β∥∥C2 follows from the
same argument because β∥ = B(η ◦ w̄N −η ◦ w̄1) and the norm of the linear map B is bounded
by a universal constant. Thus, the proof of Proposition 13.8 is complete. □

13.5. Final argument. In this section we are going to show Proposition 13.1 and Proposition
13.2. We fix the decay scale ς1 and we will show that this will be reached at a certain radius, rc
or rnc, whether we are in the collapsed or non-collapsed setting, respectively, via a contradiction
argument. We start with Proposition 13.1; we fix a contradiction sequence Tk, Sk, and Σk as
in the previous section and use Proposition 13.8(e)-(h) to extract the blow-up limits Āi, w̄i,
β⊥, and β∥. As before, without loss of generality we have rotated so that the planes αk

1 all

coincide with the same plane α1. We next observe that, by (e)-(h), the functions β⊥ and β∥
both equal 0 at the origin. We therefore linearize them and let γ⊥ and γ∥ be their respective

linearizations at 0. Observe that the C2-regularity of β⊥ and β∥ guarantees that

|β⊥(y)− γ⊥(y)| ≤ C|y|2 (13.43)

|β∥(y)− γ∥(y)| ≤ C|y|2 . (13.44)

The constant C depends only on the C2 norm of β⊥ and β∥, which in turn is bounded by
a constant depending only upon on Q,m, n, n̄, by Proposition 13.8. Observe that γ∥ : V →
V ⊥ ∩ α1 and let γT

∥ : V ⊥ ∩ α1 → V be its transpose. We build a skew-symmetric map of α1

onto itself by mapping

V ⊕ (V ⊥ ∩ α1) ∋ y + x 7→ γ∥(y)− γT
∥ (x) .

This skew-symmetric map generates a one-parameter family R[t] of rotations of α1, which we
may extend to all of Rm+n̄ by setting it to be the identity on α⊥

1 and extended linearly. We
next define the rotations

Rk := R

[
E(Tk,Sk,B1)

1/2

µ(Sk)

]
and observe that these rotations map α1 and α⊥

1 onto themselves.
The rotated cones S′

k := Rk(Sk) are thus a first step towards the cones which will have
the desired decay at the radius rc. Next consider the Dir-minimizing map w̄i ⊖ η ◦ w̄i and
the (single-valued) harmonic function ζi := η ◦ w̄i − γ⊥ − Āi(γ∥), where the latter two linear

maps are extended in the V ⊥ ∩ α1 directions as constant (in particular, being linear, they
are harmonic). To the map w̄i ⊖ η ◦ w̄i we apply Theorem 12.2 (namely (12.2), which we
can do by Proposition 13.8(g)): for a fixed δ, which will be chosen later, we find a radius
r̄ = r̄(Q,m, n, n̄, δ) such that for every ρ < r̄ we can find a 1-homogeneous Dir-minimizer
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hi,ρ ∈ L1 with the property that∫
Bρ∩α1

G(w̄i ⊖ η ◦ w̄i, hi,ρ)
2 ≤ δρm+2

(indeed,
∫
B1∩α1

|w̄i|2 ≤ 1 by construction). As for the classical harmonic part ζi, sinceDζi(0) =

0, we find a linear map ξi (namely, the linearization of ζi) which vanishes on V such that

|ζi(z)− ξi(z)| ≤ C|z|2 .

We fix now a radius rc < r̄. We are now ready to define a new sequence of cones S′′
k . We take

the linear functions Ak
i whose graphs over α1 give the planes αk

i , hence the linear functions ξi,
and construct the maps

Ak
i + E(Tk,Sk,B1)

1/2ξi ,

and then we add to them the multi-valued functions E(Tk,Sk,B1)
1/2hi,ρ, and compose the

resulting Q-valued function with R−1
k . The formula for this Q-valued function over α1 is thus

given by ∑
i

(E(Tk,Sk,B1)
1/2hi,ρ ⊕ (Ak

i + E(Tk,Sk,B1)
1/2(ξi + γ⊥))) ◦R−1

k .

By construction, since the support of the graph of any element h ∈ L1 with h(0) = QJ0K lies
in C (Q, 0), the graphs of these functions give new cones S′′

k which belong to C (Q, 0). From
the estimates that we have, we can check that, if rc = ρ ≤ r̄

lim
k→∞

E(Tk,S
′′
k ,Brc)

E(Tk,Sk,B1)
≤ Cδ + Cr2c ,

where C is just a geometric constant. In particular, we choose δ sufficiently small so that
Cδ ≤ ς1

2 , which in turn fixes r̄, and hence we fix rc ≤ r̄ so that Cr2c ≤ ς1
4 . With this choice we

conclude that

lim
k→∞

E(Tk,S
′′
k ,Brc)

E(Tk,Sk,B1)
≤ 3ς1

4
.

Now, with this particular choice of rc, which depends only on ς1, we get for k large enough a
contradiction to the absence of decay with factor ς1. This proves Proposition 13.1.

The proof of Proposition 13.2 works in a very similar way. We again assume that ς1 and
ε⋆c are given, that rnc is fixed, and that there is absence of decay by ς1 for sequences Tk, Σk,
and Sk. We then apply Proposition 13.8 and get the maps ūi and β. Arguing as above, we
linearize the map β (which vanishes at 0) to a map γ. Again we note that

|β(y)− γ(y)| ≤ C|y|2 .

However, this time the constant C depends on ε⋆c as well as the C2 norm of β. First of all we
consider γ as a map from V to V ⊥, we let γT : V ⊥ → V be its transpose, we again build the
skew-symmetric map

V ⊕ V ⊥ ∋ y + x 7→ γ(y)− γT (x)

and hence we consider the one-parameter family of rotations R[t] generated by it. We then
introduce the multi-valued functions ūi ⊖ η ◦ ūi and the harmonic functions η ◦ ūi − p⊥

αi
(γ),

where we assume that γ is extended in the V ⊥ directions as a constant map.
As above, we fix δ > 0 (whose choice will be specified later) and we appeal to Theorem 12.2

to find a threshold r̄ = r̄(Q,m, n, n̄, δ) > 0 with the property that, for every ρ < r̄ we can find
a 1-homogeneous map hi,ρ ∈ L1 (again, this map lies in L1 due to (12.2), which is applicable
due to Proposition 13.8(c)) with the property that∫

Bρ∩αi

G(ūi ⊖ η ◦ ūi, hi,ρ)
2 ≤ δρm+2 .

Likewise we find a linear map ξi which vanishes on V and such that

|(η ◦ ūi − p⊥
αi
(γ))(z)− ξi(z)| ≤ C|z|2 ,

where the constant C depends again on ε⋆c .
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We are now ready to find the desired new cones. First of all we define

Rk := R[E(Tk,Sk,B1)
1/2]

and we consider the first adjustment to the cones as

S′
k := Rk(Sk) .

Next recall that along the sequence we are fixing αk
1 to be always the same plane (by applying a

suitable rotation), and we are assuming that αk
i converges to αi. Moreover, for each k and i ̸= 1,

we fix a rotation Ok,i which maps the approximating planes αk
i onto αi (where we use Lemma

7.4 to determine the Ok,i). In particular, we now consider the maps E(Tk,Sk,B1)
1/2(hi,ρ⊕ ξi)

over αi, compose them with O−1
k,i ◦R

−1
k on the right and with Rk ◦Ok,i on the left.

We thus find the following multi-valued maps over (αk
i )

′ = Rk(α
k
i ), namely

Rk ◦Ok,i ◦ (E(Tk,Sk,B1)
1/2(hi,ρ ⊕ ξi)) ◦O−1

k,i ◦R
−1
k .

The graphs of these maps give the new cone S′′
k , which are easily seen to belong to C (Q, 0).

We now arrive at the same conclusion of the argument for Proposition 13.1, namely, under the
assumption that ρ = rnc ≤ r̄,

lim
k→∞

E(Tk,S
′′
k ,Brnc

)

E(Tk,Sk,B1)
≤ Cδ + Cr2nc .

The only difference is that in this case the constants C depend upon ε⋆c as well. However, since
the ε⋆c and ς1 are both fixed, the constants above are also fixed, and we just choose δ so that
Cδ ≤ ς1

2 . This in turn fixes r̄, and we can further choose rnc ≤ r̄ so that Cr2nc ≤ ς1
4 . As in the

proof of Proposition 13.1 we conclude that

lim
k→∞

E(Tk,S
′′
k ,Brnc

)

E(Tk,Sk,B1)
≤ 3ς1

4
.

Since rnc is now fixed, this now contradicts the assumption that there was no decay by a factor
ς1 at that radius for any of the currents Tk. Thus the proof of Proposition 13.2 is complete. □

To summarize, we have now established Theorem 2.5.

Part 3. Uniqueness of Tangent Cones and Rectifiability

14. Uniqueness and Rectifiability

14.1. Rectifiability. In this section we will use Theorem 2.5 to prove Theorem 1.3(i), namely
that the set FQ,1 has Hm−2-measure zero. Before proceeding with the proof that Theorem 2.5
implies Theorem 1.3(i), we begin with some preliminaries.

First of all, we would like to show that the cones in the class C (Q, 0) \ P(0) are the
“prevalent” fine blow-ups appearing in the compactness procedure in [8]. This can be thought
of as the analogue of [29, Lemma 2.4] and [19, Lemma 4.3] for the present setting, and is the
key (and, in fact, the only) ingredient needed from the analysis in [8].

Lemma 14.1. For each ε ∈ (0, 1], the following holds. Suppose that T and Σ are as in
Assumption 2.1. Then, for each p ∈ FQ,1(T ) ∩ B1 there exists ρ̄ = ρ̄(p, ε) > 0 such that the
following dichotomy holds for each ρ ∈ (0, ρ̄]:

(a) There exists S ∈ C (Q, p) \ P(p) with

(ρA)2 + E(T,S,Bρ(p)) ≤ ε2Ep(T,Bρ(p));

(b) There exists an (m − 3)-dimensional affine subspace V ⊂ TpΣ (depending on ρ) such
that

FQ,1 ∩Bρ(p) ⊂ {q : dist(q, V ) < ερ}.

Remark 14.2. The subspace V in alternative (b) of Lemma 14.1 arises as either

• the spine of a non-flat area-minimizing cone;
• the set of multiplicity Q points of a 1-homogeneous Q-valued Dir-minimizer arising as
a coarse blow-up at p (cf. Proposition 2.2).
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Proof of Lemma 14.1. We argue by contradiction. Namely, suppose that there exists some
ε ∈ (0, 1] for which the following holds. There exist T , Σ, a point p ∈ FQ,1(T ) ∩ B1, and a
corresponding sequence of scales ρ̄k ↓ 0 such that both (a) and (b) fail on balls Bρ̄k

(p), for this
choice of ε.

Up to extracting a further subsequence, we have two possibilities. Either Tp,ρ̄k
converges to

a flat tangent cone in B6
√
m, namely QJπK for some m-dimensional plane π, or it converges to

a non-flat tangent cone T∞. In the latter case we let V be the spine of T∞, and note that either
V is (m−2)-dimensional, and hence its support is a cone S ∈ C (Q, 0)\P(0), or the dimension
of V is at most m− 3. On the other hand, in the latter case {Θ(Tk, ·) ≥ Q} ∩B1 converges in
the sense of Hausdorff to a subset of {Θ(T∞, ·) ≥ Q} (by upper semi-continuity of the density)
and the latter set is in fact the spine V . Hence, in the latter case, alternative (b) of the lemma
holds for all sufficiently large k, giving a contradiction. In the former case clearly alternative
(a) holds for all sufficiently large k, again giving the desired contradiction (note that since
limk→∞ Ep(Tp,ρ̄k

,B6
√
m) > 0 in this case, we clearly have (ρ̄kA)2 ≤ ε2Ep(Tp,ρ̄k

,B6
√
m) for all

k sufficiently large).
So we are left with contradicting the case where Tp,ρ̄k

converges to a flat tangent cone; in
this situation Ep(T,B6

√
mρ̄k

(p)) ↓ 0. Proposition 2.2 then tells us that

Ep(T,B6
√
mρ̄k

(p))−1 · ρ2kA2
k → 0. (14.1)

Now let πk be a plane such that Ep(T,B6
√
mρ̄k

(p)) = Ê(T, πk,B6
√
mρ̄k

(p)) and, without loss
of generality, we can rotate to assume that πk is a fixed plane π for all k. We now consider
a coarse blow-up f as defined in [8]; we know that f is non-trivial and 1-homogeneous by
Proposition 2.2. We then have two possibilities: either f is translation invariant in m − 2
independent directions, or its spine has dimension at most m − 3. In the former case, notice
that in combination with the fact that I0,f (0) = 1 (as f is 1-homogeneous), the support of
the (multi-valued) graph of f is a superposition of planes S ∈ C (Q, 0) \ P(0). In light of the
estimates in [11, Theorem 2.4], combined with (14.1) and the strong L2-convergence of the
normalizations of the Lipschitz approximations of Tp,ρ̄k

B6
√
m to f , we contradict (a).

Otherwise, consider the set Z of points z which are limits of pπ(pk) with Θ(Tp,ρ̄k
, pk) = Q

and |pk| ≤ 1. By [11, Theorem 2.7] f(z) = QJη◦f(z)K for any such point z (this also follows by
the Hardt–Simon inequality). Moreover, since by Proposition 2.2 we know that η ◦ f ≡ 0, we
in fact have f(z) = QJ0K at such z. By the 1-homogeneity of f and the upper semi-continuity
of the frequency function, we know that Iz,f (0) ≤ 1. On the other hand by the Hardt-Simon
inequality, as in [8, Section 3], Iz,f (0) ≥ 1. Therefore, Iz,f (0) = 1 and hence f is translation
invariant along any z ∈ Z. In particular Z ⊂ V , which, being at most (m − 3)-dimensional,
would imply that (b) would hold for ρ = ρ̄k when k is large enough. This contradiction
therefore proves the result. □

It will become convenient to subdivide FQ,1(T ) ∩B1 as follows.

Definition 14.3. Fix ε† > 0. Suppose that T , Σ are as in Assumption 2.1. For r > 0, we let
FQ,1,r(T ) denote the set of all points p ∈ FQ,1(T )∩B1 for which the conclusions of Lemma 14.1
hold for all scales ρ ∈ (0, r] with ε† in place of ε, and moreover ∥T∥(Bρ(p)) ≤ (Q + 1

4 )ωmρm

for all ρ ∈ (0, r].

Notice that by Lemma 14.1 we may write

FQ,1(T ) ∩B1 =
⋃
k

FQ,1,2−k(T ) ∩B1 . (14.2)

The fact that ι0,r(FQ,1,r(T )) ⊂ FQ,1,1(T0,r) for any r > 0, combined with a translation,
together imply that it suffices to prove Theorem 1.3(i) for FQ,1,1(T ).

We will now proceed to show that a set satisfying a number of properties at every scale
around every point is, up to a Hk-negligible set, a countable union of k-dimensional C1,α

graphs. This is only one possible abstract formulation of what the arguments used by Simon
in the proof of [29, Theorem 1] imply for general sets.
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Assumption 14.4. k ∈ N and δ, α, ε > 0 are fixed. E is a Borel subset of B2 ⊂ Rm+n such
that for every p ∈ E ∩B1 and every r ∈ (0, 1− |q|] there is a choice of a k-dimensional affine
subspace V (p, r) satisfying the following properties:

(1) E ∩Br(p) ⊂ Bεr(V (p, r)) .
(2) if 0 ≤ a < b ≤ 1− |p| are radii for which the condition

V (p, r) ∩Br/2 ⊂ Bδr(E) (14.3)

holds for every r ∈ (a, b], then the following estimate holds for every a < s < r ≤ b:

|pV (p,r) − pV (p,s)| ≤ ε
(r
b

)α
. (14.4)

We now state the result concerning how a set satisfying Assumption 14.4 decomposes into
a union of a Hk-negligible set and a countable union of k-dimensional C1,α submanifolds:

Theorem 14.5. Let k ∈ N and α, δ > 0 be fixed numbers. There exists εs = εs(k,m, n, δ) > 0
such that, if E satisfies Assumption 14.4 with ε ≤ εs, then E ∩B1/2 can be decomposed as a

disjoint union Ẽ ∪R where

(i) Hk(Ẽ) = 0;

(ii) Ẽ consists of all points p ∈ E ∩ B1/2 for which there is a sequence ρk ↓ 0 violating
condition (14.3);

(iii) R is contained in a countable union of C1,α graphs (each defined on an open cube in a
k-dimensional affine subspace of Rm+n).

We omit the proof of Theorem 14.5, since it is a simple consequence of the arguments given
in [29]. We next demonstrate how Theorem 1.3(i) follows from it. In order to do this, we
require the following lemma (in place of [29, Lemma 1]), which is a simple consequence of
Theorem 2.5. It verifies that not only does the ratio of double-sided excess and planar excess
under the assumptions of Theorem 2.5, but in fact so does the maximum of this ratio and the
ratio between r2A2 and the planar excess.

Lemma 14.6. There are positive constants εf = εf(Q,m, n, n̄), θ = θ(Q,m, n, n̄) ≤ 1
2 , and

C = C(Q,m, n, n̄) with the following property. Let T and Σ be as in Assumption 2.1 and
p ∈ FQ,1,1(T ). Assume 0 < r ≤ 2− |p| and

• S ∈ C (Q, p) \ P(p) satisfies E(T,S,Br(p)) = inf{E(T, S̄,Br(p)) : S̄ ∈ C (Q, p)};
• max{ε−2

f A2r2,E(T,S,Br(p))} ≤ ε2fE
p(T,Br(p));

• Bεfr(q) ∩ FQ,1,1(T ) ̸= ∅ for every q ∈ V (S) ∩Br/4(p).

Then there is a cone S′ ∈ C (Q, p) \ P(p) such that

max{ε−2
f A2θ2r2,E(T,S′,Bθr(p))}

Ep(T,Bθr(p))
≤ 1

4

max{ε−2
f A2r2,E(T,S,Br(p))}
Ep(T,Br(p))

, (14.5)

and

dist2(V (S) ∩Br(p), V (S′) ∩Br(p)) ≤ C
max{ε−2

f A2r2,E(T,S,Br(p))

Ep(T,Br(p))
. (14.6)

Proof. Let ς = 1
8 in Theorem 2.5, and let εf := ε0 and θ := r0 be as in Theorem 2.5 for this

choice of ς. The decay (14.5) is obvious by Theorem 2.5 if ε−2
f A2r2 ≤ E(T,S,Br). In the other

case we apply the continuity argument in Step 1 of Lemma 10.6 to find a cone Se such that
ε−2
f Ar2 ≤ E(T,Se,Br) ≤ 2ε−2

f A2r2 and obeying the conditions therein, at which point we
may once again apply Theorem 2.5, now with ς = 1

16 , and again choose εf := ε0 and θ := r0 to
be as in Theorem 2.5 for this choice of ς. The conclusion (14.6) is an immediate consequence
of Theorem 2.5(d), (14.5), and the reasoning above. □

We will also require the following lemma, which gives control on the tilting between different
k-dimensional subspaces that a given set E satisfying Assumption 14.4 is bilaterally close to.
It is analogous to [4, Lemma 5.13]. We thus refer the reader to the proof therein, and do not
include it here.
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Lemma 14.7. Let k ∈ N and α, δ > 0 be fixed numbers. There are positive constants C0 =
C0(m,n, k), δ0 = δ0(m,n, k), and ε0 = ε0(m,n, k) such that the following holds. Assume
E ⊂ Rm+n, p ∈ E, and r > 0 are radii such that Assumption 14.4(1) and (14.3) hold for some
V = V (p, r) and ε ≤ ε0 and δ ≤ δ0. Assume moreover that V ′ is another k-dimensional affine
subspace for which

E ∩Br(p) ⊂ Bεr(V
′) .

Then
|pV − pV ′ | ≤ C0ε (14.7)

and, if we set δ′ := 2δ + C0ε,
V ′ ∩Br/2(p) ⊂ Bδ′r(E) . (14.8)

We are now in a position to conclude the proof of the fact that FQ,1(T ) is Hm−2-null.

Proof of Theorem 1.3(i). Let E = FQ,1,1(T ), let k = m − 2, and in Definition 14.3 and fix
ε = min{εs, εf}, where εf is the constant of Lemma 14.6 and εs is the constant of Theorem
14.5 Choose ε† = ε. We will proceed to verify that Assumption 14.4 holds for this choice of
E and k, and with a choice of δ = δ(ε) sufficiently small. First of all, notice that Lemma 14.1
implies that property (1) of Assumption 14.4 holds for each p ∈ E ∩B1, with V (p, r) defined
to be the spine of S (defined therein, which implicitly depends on p and r) if alternative (a)
of Lemma 14.1 holds in Br(p), and any (m − 2)-dimensional affine subspace containing V of
alternative (b) of Lemma 14.1 if that holds in Br(p) instead. To see that (2) of Assumption
14.4 holds, we proceed as follows. Suppose that (14.3) holds for a given point p ∈ E ∩B1 and
for all scales r ∈ (a, b], for a given pair of radii a < b as in (2). Then for all such scales r, the
alternative (a) of Lemma 14.1 must hold in Br(p), and in addition, Lemma 14.7 tells us that
provided that δ is chosen sufficiently small (depending on εf), all of the hypotheses of Lemma
14.6 hold with the ball Br/2(p) replacing Br(p). Now fix any such r and find j ∈ N such that

r ∈ (θjb, θj−1b]. Applying Lemma 14.6 j times successively, starting from Bb(p), yields

dist(V (Sj−1) ∩Bb(p), V (Sj) ∩Bb(p)) ≤ C2−jεf ≤ ε
(r
b

)α
,

for an appropriate choice of α = α(Q,m, n, n̄, θ), where Sj ,Sj−1 are the cones S,S′ in Lemma
14.6 when r is replaced by θj−1r. This verifies that property (2) of Assumption 14.4 holds for
this choice of E, and thus allows us to apply Theorem 14.5 with the above choice of parameters.
As observed above for each point p ∈ R all of the hypotheses of Lemma 14.6 are satisfied in
Br(p) for each sufficiently small scale, so one may iteratively apply this lemma to deduce that
any tangent cone at each such point p will be supported in a unique element S ∈ C (Q, p)\P(p).
This, however, is in contradiction with the fact that p ∈ FQ,1,1(T ). Therefore, R = ∅ here.
Combined with (14.2), this completes the proof. □

14.2. Uniqueness of tangent cones. Having proved the rectifiability, we now turn to the
conclusion of Theorem 1.3, namely the Hm−2-a.e. uniqueness of tangent cones. Recalling
[8, Theorem 2.10], we know that the tangent cone is unique at every flat singular point in
FQ(T ) \ FQ,1(T ), and given the previous section, it is therefore unique at Hm−2-a.e. point in
FQ(T ). Since Q is arbitrary, it remains to show that the tangent cone is unique at Hm−2-

a.e. point p ∈ S(m−2). Although countable (m − 2)-rectifiability of S(m−2) \ S(m−3) follows
from [27], we will achieve this independently as an additional consequence of the arguments in
this section, together with the Hm−2-a.e. uniqueness of tangent cones, following an argument
analogous to that in the previous section. First of all recall that every point p ∈ S(m−2)\S(m−3)

has integer density and that S(m−3) has Hausdorff dimension at most m − 3. Then we have
the following counterpart of Lemma 14.1 above.

Lemma 14.8. For each ε ∈ (0, 1], the following holds. Suppose that T and Σ are as in
Assumption 2.1. For each p ∈ S(m−2) \ S(m−3) ∩ B1 with Θ(T, p) = Q, there exists ρ̄ =
ρ̄(p, ε) > 0 such that the following dichotomy holds for each ρ ∈ (0, ρ̄]:

(a) There exists S ∈ C (Q, p) \ P(p) and

(ρA)2 + E(T,S,Bρ(p)) ≤ ε2Ep(T,Bρ(p));
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(b) There exists an (m − 3)-dimensional affine subspace V ⊂ TpΣ (depending on ρ) such
that

{Θ(T, ·) ≥ Q} ∩ B̄ρ(p) ⊂ {q : dist(q, V ) < ερ}.

Proof. The proof is by contradiction and is much simpler than the one of Lemma 14.1 since in
this case

lim inf
ρ↓0

Ep(T,Bρ(p)) > 0 .

Therefore, any tangent cone to T at p either has an (m− 2)-dimensional spine, and hence its
support is an element of C (Q, p) \P(p), or it has an (m− 3)-dimensional spine, leading to the
desired contradiction in either case. □

We now subdivide S(m−2) \ S(m−3) into countably many pieces (analogously to the subdi-
vision of FQ,1(T ) carried out in Definition 14.3) in the following way:

Definition 14.9. Let ε† > 0 and δ > 0 be fixed. Suppose that T , Σ are as in Assumption
2.1. For r > 0 we let SQ,δ,r(T ) be the set of points q ∈ (S(m−2) \ S(m−3)) ∩ B1 of density
Θ(q, T ) = Q such that

• The dichotomy of Lemma 14.8 applies at every scale ρ ∈ (0, r] with ε = ε†;
• Ep(T,Bρ) ≥ δ for every ρ ∈ (0, r].

First observe that we have the decomposition

S(m−2) \ S(m−3) =
⋃
Q,j,ℓ

SQ,1/j,1/ℓ .

Thus, in order to conclude the (m − 2)-rectifiability and Hm−2-a.e. uniqueness of tangent
cones, it suffices to prove that each piece SQ,1/j,1/ℓ in the above decomposition is rectifiable

and the tangent cone is unique at Hm−2-a.e. point q ∈ SQ,1/j,1/ℓ. By scaling we assume ℓ = 1,
and we may without loss of generality further assume that j = 1, in order to simplify notation.

The proof of the (m− 2)-rectifiability of S(m−2) \ S(m−3) and uniqueness of tangent cones
at Hm−2-a.e. point p ∈ S(m−2) will once again be concluded from Theorem 14.5. In order to
do this, we first require the following analogue of Lemma 14.6, which is proved in exactly the
same way.

Lemma 14.10. There are positive constants εnf = εnf(Q,m, n, n̄), θ = θ(Q,m, n, n̄) ≤ 1
2 with

the following property. Let T and Σ be as in Assumption 2.1 and let p ∈ SQ,1,1(T ). Assume
0 < r ≤ 2− |p| and

• S ∈ C (Q, p) \ P(p) satisfies E(T,S,Br(p)) = inf{E(T, S̄,Br(p)) : S̄ ∈ C (Q, p)};
• max{ε−2

nf r
2A2,E(T,S,Br(p))} ≤ ε2nfE

p(T,Br(p)));
• Bε(q) ∩ SQ,1,1(T ) ̸= ∅ for every q ∈ V (S) ∩Br/4(p).

Then there is a S′ ∈ C (Q, 0) such that

max{ε−2
nf θ

2r2A2,E(T,S′,Bθr)}
Ep(T,Bθr)

≤ 1

4

max{ε−2
nf r

2A2,E(T,S,Br)}
Ep(T,Br)

,

and

dist2(V (S) ∩Br(p), V (S′) ∩Br(p)) ≤ C
max{ε−2

f A2r2,E(T,S,Br(p))

Ep(T,Br(p))
.

Proof of Theorem 1.3(ii) and rectifiability of S(m−2) \ S(m−3). Let E = SQ,1,1(T ), let k = m−
2, and in Definition 14.3 and fix ε = min{εs, εnf}, where εnf is the constant in Lemma 14.10
and εs is the constant in Theorem 14.5. Choose ε† = ε. Arguing exactly as in the proof
of Theorem 1.3(i), with Lemma 14.8 and Lemma 14.10 applied in place of Lemma 14.1 and
14.6 respectively, we verify that Assumption 14.4 holds for this choice of E and k, and with a
choice of δ = δ(ε) sufficiently small. We may thus apply Theorem 14.5 with the above choice
of parameters. At each point p ∈ R, all of the hypotheses of Lemma 14.10 are satisfied in
Br(p) for each sufficiently small scale r > 0. This in turn implies that the tangent cone is
supported in a unique element S ∈ C (Q, p) \P(p) at each such point, and the supports of the
rescalings Tp,r decay towards S with a power law for all r sufficiently small. But, because of
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this decay and the graphical approximation in Proposition 8.14 applied to Tp,r and this unique
S, we can select r sufficiently small to see that the origin is in fact in the closure of the outer
region. Conclusion (i) of Proposition 8.14 ensures that the multiplicities assigned to the planes
in S ∩Bρ(0) with ρ ≤ r do not change with the radius. Thus, not only is the support of the
tangent cone unique, but so is the tangent cone itself. Combined with (14.2), this completes
the proof. □

Appendix A. Proofs of combinatorial results in Section 4.3

A.1. Proof of Lemma 4.3. First of all, note that if N = 2 the conclusion of the lemma is
trivially true for P ′ = P , so we may assume N ≥ 3. Then we define inductively the sets Pj ,
with j = {0, . . . , N −2} and the elements pj in the following way. P0 = P and, for every j ≥ 1,
we select pj ∈ Pj−1 with the property that

Mj−1 :=max{|p− q| : p, q ∈ Pj−1} = max{|p− q| : p, q ∈ Pj−1 \ {pj}}
mj−1 :=min{|p− q| : p, q ∈ Pj−1, p ̸= q} ≤ min{|p− q| : p, q ∈ Pj−1 \ {pj}, p ̸= q}

Since the cardinality of Pj−1 is always at least three it is clear that such an element exists:
we first select p, q such that |p − q| = min{|a − b| : a ̸= b ∈ Pj−1} and then p′, q′ such that
|p′−q′| = max{|a−b| : a, b ∈ Pj−1}. If the pairs (p, q) and (p′, q′) are the same, then obviously
all points in Pj−1 are equidistant and we can define pj to be any of them. Otherwise the two
pairs have at most one element in common, and we define pj to be an element in {q, p}\{q′, p′}.
We then let Pj := Pj−1 \ {pj} = P \ {p1, . . . , pj}. By construction, we have

mj−1 = dist(pj , Pj−1 \ {pj}) = dist(pj , Pj) , (A.1)

while at the same time Mj = M0 and mj ≥ mj−1. Observe in particular that the requirements
(iii) is satisfied if we terminate this process at any stage PJ .

Now let λ = λ(δ̄) ≥ 1 be a large number whose choice will be specified later and let J
be the smallest number j such that Mj ≤ λN−2−jmj . Since PN−2 consists of two elements,
MN−2 = mN−2 and thus such a number J exists. Obviously P ′ = PJ satisfies (i) with
C = λN−2. We claim that for (ii) to hold we just need λ to be large enough. Note that

min{|p− q| : p, q ∈ P ′, p ̸= q} = mJ ≥ λ−(N−2−J)MJ ,

while, for every p ∈ {p1, . . . , pJ}, by our definition of J and by (A.1), we have

dist(p, P ′) ≤
J∑

i=1

dist(pi, Pi) =

J∑
i=1

mi−1 ≤ MJλ
−(N−2−J)

∑
k≥0

λ−k

=
MJλ

−(N−2−J)

λ− 1
≤ mJ

λ− 1
.

In particular, it suffices to choose 1
λ−1 = δ̄.

A.2. Proof of Lemma 4.4. If ε ≤ δmin{|q1 − q2| : q1, q2 ∈ P, q1 ̸= q2}, we then set P̃ = P .
Otherwise, pick a pair of points p0, p1 ∈ P not satisfying this property and set P1 := P \ {p1}.
By construction, dist(p1, P1) ≤ δ−1ε. If N = 2, P̃ := P1 contains a single element and hence
(ii) holds. On the other hand, if N ≥ 3 and δ−1ε ≤ δmin{|q1 − q2| : q1, q2 ∈ P1, q1 ̸= q2},
we define P̃ = P1, which satisfies (ii) because dist(p1, P1) ≤ δ−1ε. Otherwise we discard yet
another point p2 from P in the same way as above, with P1 in place of P , and set P2 := P1\{p2}.
This time, we notice that

dist(p2, P2) ≤ δ−2ε ,

while

dist(p1, P2) ≤ dist(p1, P1) + dist(p2, P2) ≤ (δ−1 + δ−2)ε .

Iterating this procedure, we generate a family of sets Pj , j = 1, . . . , J . We stop if either PJ is
a singleton, or if

δ−1(1 + δ−1)J−1ε ≤ δmin{|q1 − q2| : q1, q2 ∈ PJ , q1 ̸= q2} .
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For every point p ∈ P , since dist(pj , Pj) ≤ δ−2(1 + δ−1)j−2 for each j ≥ 2, we therefore
inductively have

dist(p, PJ) ≤
J∑

j=1

dist(pj , Pj) ≤ δ−1(δ−1 + 1)J−1ε .

In particular, when we stop the set P̃ = PJ satisfies (ii). Since PN−1 would necessarily be a
singleton, we must stop at a J ≤ N = 1, which makes the estimate (i) trivially true.

A.3. Proof of Lemma 4.5. When N = 2 and P = {p1, p2}, we can clearly just let Pj := {pj}
for j = 1, 2. We now argue by induction on N . Fix N ≥ 3, and suppose the conclusion of the
lemma holds for N ′ ≤ N − 1. Select p ∈ P such that max{|q − q′| : q, q′ ∈ P \ {p}} = M =
max{|q − q′| : q, q′ ∈ P}. By our inductive hypothesis, we can then decompose P \ {p} into
P ′
1 ∪ P ′

2 such that

min{|p1 − p2| : p1 ∈ P ′
1, p2 ∈ P ′

2} ≥ M

2N−3
.

Let pi ∈ P ′
i be such that dist(p, pi) = dist(p, P ′

i ) for i = 1, 2. Since dist(p1, p2) ≥ M
2N−3 , at least

one among dist(pi, p) has to be ≥ M
2N−2 . Assuming, upon relabeling, that the latter happens

for i = 1, we set P1 = P ′
1 and P2 = P ′

2 ∪ {p}, proving the conclusion of the Lemma.
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