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A B S T R A C T

In this thesis we collect problems that arise in different contexts: PDEs, Calculus of Variations
and Fluid Dynamics. We have sorted them in three groups, corresponding to three different parts:

(a) Part i: Differential Inclusions related to Geometric Problems. This chapter contains some partial
results towards the proof of Allard’s celebrated regularity theorem [1] for varifolds that are
stationary for more general functionals than the area functional. We focus in particular on
stationary varifolds that are given by graphs. The point of view we adopt here is the one
of differential inclusions, that has been successfully exploited in the last twenty years to
produce counterexamples using the so-called convex integration methods. The results we
present seem to exclude the possibility to construct counterexample to regularity through
convex integration, at least with the methods available at present;

(b) Part ii: Divergence-Free Matrix Fields in Sym+(n). Here we study some properties of
divergence-free matrix fields from the n dimensional torus with values in the non-negative
symmetric matrices, thus continuing the study started in [76];

(c) Part iii: Sharp Energy Regularity for Euler Equations. Using convex integration methods
introduced in the last years by De Lellis and Székelyhidi, we prove that if θ < 1

3 , 2θ
1−θ is the

optimal Hölder regularity for the energy of Cθ solutions to the incompressible Euler equations
on T3;

The first similarity these problems share is that they are essentially vectorial, in the sense that
either their one dimensional counterpart would lose meaning, as in (b)-(c), or the one-dimensional
version of the problem has already been solved, as in (a). Other than this immediate similarity,
we give a deeper explanation of the connection among the aforementioned problems through the
study of the associated Tartar’s wave-cone.





Z U S A M M E N FA S S U N G

In dieser Arbeit führen wir Probleme aus verschiedenen Bereichen zusammen: PDGs, Varia-
tionsrechnung und Fluiddynamik. Wir unterteilen sie in drei Gruppen, welche jeweils ein Kapitel
der Arbeit ausmachen:

(a) Part i: Differential Inklusionen mit Bezug zu geometrischen Problemen. Dieses Kapitel enthält
einige Teilresultate für die Anpassung des Beweis von Allards berühmtem Regularitätssatz
[1] für Varifolds, welche nicht nur für das Flächenfunktional stationär sind, sondern auch
für allgemeinere Funktionale. Wir legen den Schwerpunkt insbesondere auf stationäre
Varifolds, die durch Graphen beschrieben werden. Wir betrachten das Problem aus der
Sicht der Differential Inklusionen. Diese wurden in den letzten zwanzig Jahren erfolgreich
benutzt, um Gegenbeispiele zu konstruieren, indem man die sogenannte emphkonvexe
Integrationsmethode verwendet hat. Unsere Resultate schliessen die Möglichkeit aus, solche
Gegenbeispiele mit den heute verfügbaren Methoden durch konvexe Integration analog zu
Allards Beweis zu konstruieren.

(b) Part ii: Divergenzfreie Matrixfelder in Sym+(n). Hier untersuchen wir einige Eigenschaften
von divergenzfreien Matrixfelder vom n-dimensionalen Torus mit Werten im Raum der postiv
semi-definiten symmetrischen Matrizen. Wir führen also die Untersuchung von [76] fort.

(c) Part iii: Optimale Energie Regularität für Euler Gleichungen. Indem wir die konvexen Integra-
tionsmethoden verwenden, welche De Lellis und Székelyhidi in den letzten Jahren eingeführt
haben, beweisen wir, dass, falls θ, dann ist θ die optimale Hölder Regularität der Energie von
Cθ-Lösungen der inkompressiblen Euler Gleichungen auf T3.

Die erste Gemeinsamkeit dieser Probleme ist, dass sie alle im Grunde vektoriell sind. Entweder
würde ihr eindimensionales Gegenstück jegliche Bedeutung verlieren (wie in (b)-(c)), oder die
eindimensionale Version des Problems wurde bereits gelöst (wie in (a)). Zusätzlich zu dieser
unmittelbaren Gemeinsamkeit erklären wir später die Verbindung zwischen den vorher genannten
Problemen durch eine Untersuchung der zugehörigen Wellenkegeln von Tartar.
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1
I N T R O D U C T I O N

This thesis is divided into three parts:

(a) Differential Inclusions related to Geometric Problems;

(b) Divergence-Free Matrix Fields in Sym+(n);

(c) Sharp Energy Regularity for Euler Equations.

We introduce separately the three problems in the next sections, and we conclude the introduc-
tion with a section where we give some heuristic explanations on why these results are connected.
We have tried to keep technicalities at the minimum, but anyway even the non-technical de-
scription of the results of the thesis contained in the next sections require some notation and
terminology. In order to help the reader who is not familiar with all of them, these have been
collected in Chapter A of the Appendix.

1.1 differential inclusions related to geometric problems

Let Ω ⊂ Rm be open and f ∈ C1(Rn×m, R) be a (strictly) polyconvex function, i.e. such that
there is a (strictly) convex g ∈ C1 for which f (X) = g(Φ(X)), where Φ(X) denotes the vector of
subdeterminants of X of all orders. We then consider the following energy E : Lip(Ω, Rn)→ R:

E(u) .
=

�
Ω

f (Du)dx . (1.1)

For a map ū ∈ Lip(Ω, Rn), the one-parameter family of functions ū + εv will be called outer
variations and ū will be called critical for E if

d
dε

∣∣∣∣
ε=0

E(ū + εv) = 0, ∀v ∈ C∞
c (Ω, Rn) .

Given a vector field Φ ∈ C1
c (Ω, Rm) we let Xε be its flow1. The one-parameter family of functions

uε = ū ◦ Xε will be called an inner variation. A critical point ū ∈ Lip(Ω, Rn) is stationary for E if

d
dε

∣∣∣∣
ε=0

E(uε) = 0, ∀Φ ∈ C1
c (Ω, Rm) .

Simple computations show that the conditions above are equivalent to, respectively,
�

Ω
〈D f (Dū), Dv〉 dx = 0, ∀v ∈ C1

c (Ω, Rn). (1.2)

and �
Ω
〈D f (Dū), DūDΦ〉dx−

�
Ω

f (Dū)div Φdx = 0, ∀Φ ∈ C1
c (Ω, Rm) . (1.3)

The graphs of Lipschitz functions can be naturally given the structure of integer rectifiable currents
(without boundary in Ω×Rm) and of integral varifold, cf. [33, 78, 38]. For the definition of
rectifiable varifold, see Section A.4. In particular, the graph of any stationary point ū ∈ Lip(Ω, Rn)
for a polyconvex energy E can be thought as a stationary point for a corresponding elliptic energy,
in the space of integer rectifiable currents and in that of integral varifolds, respectively, see [39,

1 Namely Xε(x) = γx(ε), where γx is the solution of the ODE γ′(t) = Φ(γ(t)) subject to the initial condition γ(0) = x.

v
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Chapter 1, Section 2]. Note that a particular example of polyconvex energy is given by the area
integrand

A(X) =
√

det(idRm×m + XTX) . (1.4)

The latter is strongly polyconvex when restricted to any ball BR ⊂ Rn×m, namely there is a positive
constant ε(R) such that X 7→ A(X)− ε(R)|X|2 is still polyconvex on BR.

When n = 1 strong polyconvexity reduces to locally uniform convexity and any Lipschitz
critical point is therefore C1,α by the De Giorgi-Nash theorem, see [15] and [68] respectively. The
same regularity statement holds in the much simpler dual case m = 1, where criticality implies
that the vector valued map ū satisfies an appropriate system of ODEs. L. Székelyhidi in [82]
proved the existence of smooth strongly polyconvex integrands f : R2×2 → R for which the
corresponding energy has Lipschitz critical points which are nowhere C1. The paper [82] is
indeed an extension of a previous groundbreaking result of S. Müller and V. Šverák [62], where
the authors constructed a Lipschitz critical point to a smooth strongly quasiconvex energy (cf.
[62] for the relevant definition) which is nowhere C1. A precursor of such examples can be found
in the pioneering PhD thesis of V. Scheffer, [74]. On the other hand, minimizers of strongly
quasiconvex functions have been proved to be regular almost everywhere, see [28, 52, 74]. Note
that the geometric counterpart of the latter statement is Almgren’s celebrated regularity theorem
for integral currents minimizing strongly elliptic integrands [4]. Let us remark that stationary
points need not to be local minimizers for the energy. This is proved, for instance, in the case
f (X) = A(X) for n = m = 2, by H. Lawson and R. Osserman in [54, Theorem 5.3]. Standard
computations show, on the other hand, that every minimizer for an energy is a stationary point.
Moreover, combining the uniqueness result in [84] and [62, Theorem 4.1], it is easy to see that
there exist critical points that are not stationary.

Other than the result in [84], not much is known about the properties of stationary points, in
particular it is not known whether they must be C1 on a set of full measure. Observe that Allard’s
ε-regularity theorem applies when f is the area integrand and allows to answer positively to the
latter question for f as in (1.4). The validity of an Allard-type ε-regularity theorem for general
elliptic energies is however widely open, even though in the last years there have been important
contributions. Indeed, in [21], G. De Philippis, A. De Rosa and F. Ghiraldin characterize in terms
of an appropriate condition on the integrand (called atomic condition, cf. [21, Definition 1.1]) those
energies for which rectifiability of stationary points hold. For this reason, integrands satisfying
the atomic condition have good ellipticity properties, and seem to be the most likely to allow for
an ε-regularity Theorem.

A first interesting question is whether one could extend the examples of Müller and Šveràk
and Székelyhidi to provide counterexamples. Both in [62] and [82], the starting point of the
construction of irregular solutions is rewriting the condition (1.2) as a differential inclusion, and
then finding a so-called TN-configuration (N = 4 in the first case, N = 5 in the latter) in the set
defining the differential inclusion. In [17], it is shown that such a strategy fails in the case of
stationary points. More precisely:

(a) We show that ū solves (1.2), (1.3) if and only if there exists an L∞ matrix field A that solves
a certain system of linear, constant coefficients, PDEs and takes almost everywhere values in a
fixed set of matrices, which we denote by K f and call inclusion set, cf. Lemma 2.3. The latter
system of PDEs will be called a div-curl differential inclusion, in order to distinguish them from
classical differential inclusions, which are PDE of type Du ∈ K a.e., and from divergence differential
inclusions as for instance considered in [18].

(b) We give the appropriate generalization of TN configurations for div-curl differential inclusions,
which we will call T′N configurations, cf. Definition 2.7. As in the classical case, the latter are
subsets of cardinality N of the set K f which satisfy a particular set of conditions.

(c) We then prove the following nonexistence result, contained in [17]:
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Theorem 1.1. If f ∈ C1(Rn×m) is strictly polyconvex, then K f does not contain any set {A1, . . . , AN}
which induces a T′N configuration.

Instead of giving the proof of Theorem 1.1, we will deduce it as a corollary of a stronger result,
that we explain now. The Constancy Theorem (see, for instance, [78, Theorem 8.4.1]), asserts that
if an m-dimensional integer rectifiable varifold V = (Γ, θ) is stationary with respect to the area
functional and is contained in a C2, m-dimensional submanifold M of Rn+m, then V must be
the varifold given by the integration over M and θ must be constant. This has to be interpreted
as a regularizing effect of the area functional. It has been proved in [27] that the smoothness
assumption can be dropped, and the manifold can be taken to be only Lipschitz. Moreover, in
[22], the authors show that for codimension 1 varifolds the same assertion is true for more general
functionals than the area. The same question can be asked for higher codimension varifolds, and
some results on this problem will appear in [41]. In [41], we use again differential inclusions
to study stationary varifolds given by graphs with (real) multiplicity, and we therefore study a
suitable inclusion set C f ⊂ R(2n+m)×m. In Chapter 2 we present the following result, that will be
part of [41]:

Theorem 1.2. If f ∈ C1(Rn×m) is a strictly polyconvex function, then C f does not contain any set
{A1, . . . , AN} ⊂ R(2n+m)×m which induces a T′N configuration, provided that f (X1) ≥ 0, . . . , f (XN) ≥
0, if

Ai =

 Xi
Yi
Zi

 , Xi, Yi ∈ Rn×m, Zi ∈ Rm×m, ∀i ∈ {1, . . . , N}.

We will also show how Theorem 1.1 follows from this last result. Preliminarily to this result,
we will show that positivity of f also allows us to discard another class of matrices in C f that
could be used to build counterexamples. For m = 2, these are equivalent to the well-known
rank-one connections, while for m > 2 one needs to introduce the Λ-cone of a certain differential
operator to define them, as described in the final section of this introduction. In the case of graphs
with multiplicity one the polyconvexity of f is sufficient to avoid them. This is what leads the
aforementioned authors to consider in [62, 82] more complicated sets of matrices such as TN
configurations. In the case of variable multiplicity, the result is to the best of our knowledge not
known and a proof will be given in Proposition 2.22. These results are the content of Chapter 2.
In Chapter 3, we will provide the aforementioned link between stationary points for polyconvex
energies and stationary varifolds for anisotropic integrands.

Theorem 1.1 serves as an indication of the fact that partial regularity is possible, but it is far
from clear if this information can be used to give a proof of regularity of stationary objects.
In Chapter 4 we have collected the results of [87], where we have anyway proved a regularity
theorem for two-dimensional stationary points for functionals sufficiently close to the area, namely
the following2:

Theorem 1.3. For every R > 0, there exists α = α(R) > 0 such that, if f is a Ck(Rn×2) function, k ≥ 2,
with the property that

‖ f −A‖C2(B2R(0)) ≤ α, (1.5)

and u : Ω→ Rn is a Lipschitz stationary point of f with

‖Du‖∞ ≤ R,

then u ∈ Ck−1,ρ(Ω), for some positive ρ > 0.

2 Notice that we have chosen to state this result in a slightly different language with respect to Theorem 4.20, but the
result is completely equivalent. We chose to simplify the statement to avoid the technical discussion on how to pass from
div-curl to purely curl differential inclusion. This is postponed to Section 4.1.
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This result is obtained thanks to the analysis of the regularity of differential inclusions carried out
by V. Šverák in [88]. In particular, we prove that the differential inclusion associated to the two
dimensional area functional

DU (x) ∈ KA,

is elliptic in the sense of Šverák, meaning that there exist constants cij ∈ R, ε > 0 such that

∑
i<j

cij detij(X−Y) ≥ ε‖X−Y‖2, ∀X, Y ∈ KA,

where detij : R(2n+2)×2 → R is the function

detij(X) = det
(

xi1 xi2
xj1 xj2

)
.

This new ellipticity result on KA is sufficient to ensure that stationary points to the area functional
are smooth and allows us to prove Theorem 1.3.

From a merely analytical point of view, it is still unclear how stationarity with respect to the
inner variations can help in the proof of a partial regularity theorem. An interesting viewpoint is
to interpret the system of PDEs arising from the inner variations as an additional conservation law,
as it happens for instance in the context of Euler’s equations with the energy, see Section 1.3. As
in the case of C1 solutions to the Euler’s equations, one can see that if one assumes u ∈ C2(Ω, Rn)
and satisfying (1.2), then (1.3) follows automatically and does not give additional information.
Hence they can be useful only if one assumes to start with a solution with low regularity, for
instance u ∈ W1,p. In very specific cases, the additional information inner variations carry is a
monotonicity formula for the solutions. This happens for the area functional and for harmonic
maps, see [16, 29]. For general problems no monotonicity formula is available, and at present is
quite unclear which form it should have (on the topic, see [2]).

Classical proofs of regularity, as the one of Evans of [28], are based on showing that an estimate of
the form  

Bτr(x)
‖Du(y)− (Du)x,τr‖2 dy . τ2

 
Br(x)
‖Du(y)− (Du)x,r‖2 dy, (1.6)

holds at every x of Ω, for some τ ∈ (0, 1). In (1.6), (Du)x,r denotes the average of Du on Br(x).
From (1.6) partial regularity follows, and the key point in every regularity proof is to use the
properties of the problem to show that (1.6) holds. For instance, in [28], (1.6) is deduced from a
Caccioppoli inequality, i.e., an inequality of the form

�
Br(x)
|Du− Da|2 .

�
B2r(x)

|u− a|2 (1.7)

for all affine functions a(x) = b + Ax, see [28, Lemma 3.1]. In [28], minimality is used in an
essential way to deduce the last inequality, therefore the same proof cannot be used in our
case. Nonetheless, even without (1.7), one can try to prove (1.6). This is usually achieved by
contradiction, i.e. supposing that there exists a sequence of maps uj : B1(0)→ Rn equibounded
in W1,2, solving (1.2) and (1.3) for the functional induced by

f j(X) =
f (Aj + λjX)− f (Aj)− λj〈D f (Aj), X〉

λ2
j

,

where Aj is a convergent sequence of matrices and λj → 0 such that (1.6) fails for uj. These
solutions uj converge weakly in W1,2(B1(0), Rn) to a solution ū of the linearized problem, i.e. that
solves (1.2) and (1.3) for the functional D2 f (A)[X, X], A being the limit of (Aj)j. The crucial point
is to turn this weak convergence into strong convergence. We learned from J. Hirsch that the
fact that (uj)j is a solution merely of the outer variations equations is sufficient to guarantee that
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(Duj)j converges pointwise a.e., or, equivalently, eliminates oscillations in the sequence of the
gradients. In order to ensure strong convergence, one also needs to show that the sequence of
measures µj := ‖Duj‖2 dx does not concentrate in B1(0), i.e. one would like to prove that for every
ε > 0, there exists δ > 0 such that if |E| ≤ δ, then

sup
j∈N

µj(E) ≤ ε.

It is tempting to conjecture that the inner variations should be sufficient to avoid this phenomenon,
but there is no proof for this at the moment.

Inner variations appear also in similar, yet different, problems arising from elasticity. Consider
the functional f : R2×2 → R

f (X) :=
‖X‖2

2
+ g(det(X)), (1.8)

where g(t) is a convex function on (−∞,+∞) with g(t) ≡ +∞ for t ≤ 0 and limt→0 g(t) = +∞.
The question one asks in this case is, as usual, the one of regularity: for any ϕ ∈ C∞(∂B1, R2),
are minimizers in the class Dϕ := {u ∈ W1,2(B1, R2) : det(Du) > 0, u|∂B1 = ϕ|∂B1} for the
corresponding energy (1.1) smooth? In this problem outer variations cannot be used, since
variations of the form ū + εv do not respect the the determinant constraint in Dϕ. Nonetheless, it
can be shown that they satisfy the inner variation equations (1.3). Thus, one might ask whether
(1.3) and the positivity of the determinant are sufficient to prove regularity for minimizers. This
is a long-standing open problem in the field, see for instance [8] and references therein. In this
direction, in [47], the authors prove for a certain class of energies that critical points for inner
variations with non-negative Jacobian are Lipschitz regular but not necessarily C1. In [79], the
authors construct for a large class of functionals solutions to the inner variations singular solution
lying in W1,p for 1 ≤ p < n. At the end of Chapter 4, we will show how a result of [51] allows to
construct a nowhere C1 solution to (1.3) in the case in which f is the Dirichlet energy or the area
functional, at least if the hypothesis on the non-negativity of the Jacobian is dropped.

1.2 divergence-free matrix fields in Sym+(n)

In this part of the thesis and its appendix we collect some results of [24, 23]. D. Serre proved in
[76, Theorem 2.1] the following:

Theorem. Let the divergence-free, non-negative definite matrix field x 7→ A(x) be Γ-periodic, with
A ∈ L1(Rn/Γ). Then

det(A) ∈ L
1

n−1 (Rn/Γ)

and there holds  
Rn/Γ

det(A(x))
1

n−1 dx ≤ det
( 

Rn/Γ
A(x)dx

) 1
n−1

. (1.9)

Here Γ is a lattice of Rn (one can imagine Γ = Zn, i.e. Rn/Γ = Tn). This theorem shows an

improvement in the integrability of the function x 7→ det(A)
1

n−1 (x), with respect to the straight-
forward one det(A) ∈ L

1
n (Rn/Γ). In [76, Open Question 2.1], it was asked:

Open Question 2.1: Let x 7→ A(x) be Γ-periodic, taking values in Sym+(n). Let A and div(A)
belong to Lp(Rn/Γ) with 1 < p < n. Defining 1

p′ =
1
p −

1
n , is it true that

det(A)
1
n ∈ Lp′(Rn/Γ) ?

The answer to the question is negative, and is the content of the first chapter of Part ii. The proof
involves the construction of a family of approximate counterexamples in Lemma 5.3, and then an
application of Baire’s Theorem A.4 in Theorem 5.1 to find actual counterexamples that are also
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topologically typical. See Section A.6 for the terminology we adopt concerning Baire Theorem.
Even though in our case the situation is quite simple since our family of starting approximate
counterexample is explicit, notice that these two steps are common to all the so-called convex
integration schemes. One can compare, for instance, [51, Proposition 4.17]. To state the result in
more precise terms, let Ω be an open subset of Rn and define

Yp,K
.
= {A ∈ Lp(Ω, Sym+(n)) : div(A) ∈ Lp(Ω, Rn),

A ≡ Ā outside K, for some fixed Ā ∈ Sym+(n)},

for any compact K ⊂ Ω with clos(int(K)) = K 6= ∅. We consider the following distance on Yp,K,
that turns it into a complete metric space:

d(A, B) .
= ‖A− B‖Lp + ‖div(A− B)‖Lp .

The main theorem is:

Theorem 1.4. Let p∗ .
= max

{
0, p(n−1)−n

p(n−1)

}
. The set

Dp,K
.
= {A ∈ Yp,K : det(A)

1
n−1 ∈ L

1
1−p∗ (Ω) \ L

1
1−p∗ +ε

(Ω), ∀ε > 0}

is residual in Yp,K.

The idea behind this improvement of integrability, that can be read in [76, Proposition 1.2]
and the discussion before and after the proposition, is that if one couples a PDE constraint, such
as div(A) = 0, with some other constraint, as A ∈ Sym+(n), it is possible to show some elliptic
regularizations of the solutions, i.e. some improvement in properties of the solutions. In the
particular case when the operator is the divergence, one can show that, on matrices with maximal
rank, A 7→ det(A) is elliptic, see for instance [76, Proposition 1.2]. We will discuss more on this
point in the last section of the introduction. What sparked our interest in this problem is the
fact that for some functional arising in the Calculus of Variations and Fluid Dynamics, the inner
variation tensor is symmetric and non-negative definite. This happens for instance for the area
functional. Some conclusions in this directions are made by Serre in [76, Section 1].

Serre’s result has another consequence. Inequality (1.9) is a generalized Jensen inequality for
non-concave functions, and can be viewed as a div-quasiconcavity property. Let us explain the
link between quasiconcavity and upper semi-continuity of the related functional by considering
the dual of these objects, namely quasiconvexity and lower-semicontinuity, that have received
much more attention in the literature. We will use as a domain the n-dimensional torus Tn simply
because it is the domain we will use throughout the paper, but more generally one could consider
any Ω ⊂ Rn with |∂Ω| = 0. The general question one poses is the following: given a continuous
integrand f : RN → R with growth

| f (z)| ≤ C(1 + ‖z‖p), (1.10)

under which conditions is the functional

E(z) .
=

�
Tn

f (z(x))dx,

defined, for instance, for z ∈ Lq(Tn, RN), q ≤ p, sequentially weakly lower semi-continuous? In
the case we are interested in, the functional is given by

D(A)
.
=

�
Tn

det(A(x))
1

n−1 dx,

and one is interested in its upper-semicontinuity with respect to its weak topology in

Xp
.
=
{

A ∈ Lp(Tn, Sym+(n)) : div A ∈ M(Tn, Rn)
}

.
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The first example of these lower-semicontinuity problems was studied by C.B. Morrey in the case
in which N = m× n, z(x) = Du(x), where u : Tn → Rm is a W1,q function. In [58], he introduced
the notion of quasiconvexity, that is:

f (A) ≤
�

Tn
f (A + Dφ(x))dx, ∀φ ∈ C∞(Tn, Rm), ∀A ∈ Rm×n. (1.11)

It can be proved that (1.10) and (1.11) imply the weak lower semi-continuity of the functional
E(·), when q < p, see for instance [48] for more information and results. It is easy to see using
Jensen’s inequality that every polyconvex function, introduced above, is also quasiconvex. In
other problems, one is interested in maps z : Tn → RN satisfying more general constraints than
z(x) = Du(x). The general framework, considered for instance in [36, 35], consists in taking a
differential operator of order k with smooth coefficients, usually denoted by A , of the form

A
.
= ∑
|α|≤k

Aα∂α, Aα ∈ C∞(Tn, R`×N).

In [36] it is proved that f is weakly lower-semicontinuous on Lq(Tn, RN) ∩ ker(A ), q < p,
provided that A satisfies Murat’s constant rank condition (see [36] or [63] for the definition), f
satisfies (1.10) and is A -quasiconvex, in the sense that

f (A) ≤
�

Tn
f (A + z(x))dx, ∀A ∈ RN , ∀z ∈ C∞(Tn, Rm) with A z = 0.

From the proof of [36], that exploits linearity of certain operators on the Fourier coefficients of
the maps, it is unclear that one can add the non-linear constraint z(x) ∈ Sym+(n), thus it is not
straightforward3 to see that it can be used to prove upper-semicontinuity of D on Xp. In Chapter
6 we show, using a different proof than the one in [36] the following:

Theorem 1.5. Let p > n
n−1 and {Ak}k ⊂ Xp be such that Ak ⇀ A in Xp. Then

lim sup
k

D(Ak) ≤ D(A).

Moreover we show its failure for p ≤ n
n−1 . We also briefly discuss some applications to the

multi-dimensional Burgers equation.

1.3 convex integration and energy regularity for euler equations

This part and its appendix contain results appeared in [25]. In the spatial periodic setting
T3 = R3/Z3, we consider the incompressible Euler equations{

∂tv + div(v⊗ v) + Dp = 0,
div v = 0,

in T3 × [0, T], (1.12)

where v : T3 × [0, T]→ R3 represents the velocity of an incompressible fluid, p : T3 × [0, T]→ R

is the hydrodynamic pressure, with the constraint
�

T3 p dx = 0 which guarantees its uniqueness.

A weak solution of the system (1.12) is a vector field v ∈ L2(T3 × [0, T]; R3) such that
� T

0

�
T3

(v · ∂t ϕ + v⊗ v : Dϕ) dx dt = 0,

for all ϕ ∈ C∞
c (T3 × (0, T); R3) such that div ϕ = 0. The pressure does not appear in the weak

formulation because it can be recovered as the unique 0-average solution of

−∆p = div div(v⊗ v).

3 Nonetheless, in a very recent work, [80], J. Skipper and E. Wiedemann have managed to modify the proof of [36] to obtain
this result.
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Multiplying by v the first equation in (1.12) and integrating by parts on T3, one gets that, at least
for smooth solutions,

d
dt

ev(t) :=
d
dt

�
T3
|v|2(x, t) dx = 0, ∀t ∈ [0, T].

For weak solutions v ∈ L∞((0, T); Cθ(T3)) it is known, and was previously conjectured by Lars
Onsager, that the threshold for the energy conservation is θ = 1/3. The first proof of the
conservation in the range θ > 1/3 was given in [13], while in [44] P. Isett proved the existence of
dissipative solutions for any θ < 1/3 using the convex integration techniques introduced by C.
De Lellis and L. Székelyhidi in [18, 19, 20, 10].

As proved in [43], given any solution v ∈ L∞((0, T); Cθ(T3)), it can be shown that the associated
kinetic energy ev satisfies

|ev(t)− ev(s)| ≤ C |t− s|
2θ

1−θ , ∀t, s ∈ [0, T], (1.13)

which in particular implies the conservation if θ > 1/3, but also shows a peculiar Hölder
regularity of the energy (see also [12] for an alternative proof). It is a natural question to ask
whether this regularity is optimal. In [46, Conjecture 1], Isett and S. Oh formulated the following:

Conjecture. For any θ < 1
3 , there exists a solution to (1.12) in the class v ∈ Cθ(R×Tn) whose energy

profile e(t) fails to have any regularity above the exponent 2θ
1−θ , in the sense that ev(t) /∈W

2θ
1−θ +ρ,p(I), for

every ρ > 0, p ≥ 1 and every open time interval I ⊂ R. Furthermore, the set of all such solutions v with
the above property is residual (in the sense of category) within the space of all weak solutions to (1.12) in
the class ev ∈ Cθ(R×Tn) when the latter space is endowed with the topology from the Cθ norm.

The result we present here answers to the first part of the conjecture. In particular, we start by
proving, in the spirit of [11]:

Theorem 1.6. Fix γ > 0 and θ ∈ (0, 1/3) such that 2θ
1−θ + γ < 1. For every strictly positive

e ∈ C
2θ

1−θ +γ([0, T]), there exists a vector field v ∈ Cθ(T3 × [0, T]) that solves (1.12) in the distributional
sense and such that

e(t) =
�

T3
|v|2(x, t) dx, ∀t ∈ [0, T].

This result shows how it is possible to construct approximate counterexamples to the fact that the

energy is more regular than C
2θ

1−θ . This type of result already appeared in [45] for any θ ∈ (0, 1/5).
Once again, Baire category argument, Theorem A.4, allows us to construct exact counterexamples.
We define

Xθ =

{
v ∈

⋃
θ′>θ

Cθ′(T3 × [0, T]) : v weakly solves (1.12)

}‖·‖
Cθ

x,t

, (1.14)

endowed with the distance
d(u, v) := ‖u− v‖Cθ

x,t
.

It is clear that (Xθ , d) is a complete metric space. We also define

Yθ =

v ∈ Xθ : ev ∈ C
2θ

1−θ ([0, T]) \
⋃

γ>0
W

2θ
1−θ +γ,1(I), for any interval I ⊂ [0, T]

 .

Finally we prove our main Theorem:

Theorem 1.7. For any θ ∈ (0, 1/3), the set Yθ is residual in Xθ .
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The previous Theorem yields some immediate corollaries. First, it implies that the typical
solution in Xθ is not of bounded variation, thus not monotonic, in any open subset of [0, T].
Therefore, Theorem 1.7 shows a very irregular behaviour of the energy of solutions, in sharp
contrast with the conservation of the energy in the case θ > 1/3. We refer the reader to [46, 45] for
further discussions. A second immediate corollary of Theorem 1.7 is that, for every θ ∈ (0, 1/3),
there exists a weak solution v of (1.12) such that ev ∈ Cθ∗([0, T]) but ev /∈ Cθ∗+γ([0, T]), for any
γ > 0. Let us note in passing that this also yields a weak Cθ(T3 × [0, T]) solution of (1.12) that is
not in Cθ+γ(T3 × [0, T]), for any γ. Indeed, from (1.13) it is clear that Yθ can not contain solutions
v that are more Hölder regular than Cθ(T3 × [0, T]). While the residuality property implies that
the kinetic energy of many Cθ(T3 × [0, T]) solutions enjoys the sharp regularity (1.13), it must be
noted that Xθ might not contain all the Cθ(T3 × [0, T]) solutions of Euler, since in general not all
the Cθ(T3 × [0, T]) functions can be obtained as limit of more regular ones. The argument used
to prove Theorem 1.7 does not work with the choice

Xθ = {u ∈ Cθ([0, T]) : u solve (1.12)},

or4

Xθ = {u ∈ cθ([0, T]) : u solve (1.12)},

hence it does not answer to the second part of the above conjecture. In Section 7.5, we comment
more on the technical reasons why this is the case.

1.4 connections among the problems

In this section we give a heuristic explanation on why many of the results of the previous
sections can be thought as consequence of a quite general principle. These ideas have their root
in the classical theory of compensated compactness of F. Murat and L. Tartar, see [64, 65, 85, 86]. Let
us first give the following:

Definition 1.8. Let A be a given constant coefficient differential operator of order 1 acting on
maps from a domain Ω ⊂ Rm to Rn×m. Namely

A
.
=

m

∑
α=1

Aα∂α,

where Aα ∈ Rr×(n×m), r ∈N. The wave cone of A is defined as

ΛA
.
=

⋃
‖ξ‖=1

ker A(ξ), where A(ξ)
.
=

m

∑
α=1

ξα Aα.

This is not the most general definition, as one could allow for differential operators of order k
with continuous coefficients, but for our presentation this is completely sufficient. An equivalent
definition of the wave cone can be given in terms of plane wave solutions, i.e. maps of the form

z(x) = h(x · ξ)a, (1.15)

solving
A z = 0, (1.16)

where h : R→ R. The wave cone ΛA is exactly given by the states a ∈ Rn×m for which there is a
vector ξ 6= 0 such that for any choice of the profile h the function (1.15) solves (1.16), that is,

ΛA =

{
a ∈ Rn×m : ∃ξ ∈ Rm \ {0} with

m

∑
α=1

ξα Aαa = 0

}
. (1.17)

4 For the definition of the function space cθ (or Cθ), see Section A.3.
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As explained in [71], ΛA essentially captures the directions in which a sequence of maps zn
equibounded in L1 and solving (1.16) can develop oscillations. This is justified by the definition
of the wave-cone through plane-wave solutions, (1.17). Indeed, consider a segment [A, B], for two
matrices A, B such that A− B = C ∈ ΛA . Then, the family of maps

zε(x) =
A + B

2
+ sin

(
(x, ξ)

ε

)
C
2

,

gives a highly oscillatory sequence of plane-wave solutions of the differential inclusion

zε(x) ∈ [A, B], for a.e. x ∈ Q1.

The fact that C ∈ ΛA implies moreover that A zε = 0, for every ε > 0. This family fails to
converge strongly as ε→ 0, due to the oscillations in direction C. Let us make another important
example. Let A = curl, so that z ∈ L1 solving A z = 0 on the square Q1 ⊂ Rm equals to say
z = Du for some u ∈W1,1(Q1, Rn). In this case, one has

Λcurl = {M ∈ Rn×m : rank(M) ≤ 1}.

Given A, B ∈ Rn×m, if A− B ∈ Λcurl, then one can construct a so-called simple laminate, i.e. for
every λ ∈ [0, 1], ε > 0, one can find a map zε,λ : Q1 → Rn such that

|{x ∈ Q1 : zε,λ(x) = A}| = λ, |{x ∈ Q1 : zε,λ(x) = B}| = 1− λ,

and that moreover still solves (1.16). These oscillatory solutions can be constructed in such a way
that they jump between A and B arbitrarily fast, i.e. in strips of size ε. It is easy to see that the
family (zε,λ)ε>0 converges weakly but not strongly in Lp.

Q1

A B A B A B A B

size ε

Figure 1: An example of simple laminate in R2 with ξ = e1 and λ = 1
2 .

The examples above explain why, when looking at differential inclusions of the form

u ∈ Lip(Q1, Rn), Du(x) ∈ K ⊂ Rn×m a.e., (1.18)

strong compactness is doomed by the existence of rank-one connections in K, i.e. matrices
A, B ∈ K such that A− B ∈ Λcurl. This holds more generally when considering inclusions of the
form

W ∈ L∞(Q1, Rn), W(x) ∈ K ⊂ Rn×m a.e., A W = 0,

and K contains matrices A, B such that A− B ∈ ΛA .

A deep recent result by G. De Philippis and F. Rindler, [71, Theorem 1.1], asserts that if
µ ∈ M(Q1, RN) solves

A µ = 0,
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then the singular part of µ with respect to the Lebesgue measure, µsing, has the property that

dµsing

d‖µsing‖
(x) ∈ ΛA , ‖µ‖sing-a.e.,

that proves formally the idea that ΛA encodes the directions of the oscillations of an equibounded
L1 sequence of A -free maps. This result, together with its extension [6], allows to prove as
a corollary many celebrated results, such as Alberti’s Rank One Theorem, see [40], and the
aforementioned recent extension of Allard’s rectifiability result, [21].

Most of the results contained in the literature study the case of differential inclusion of the
form (1.18). In [88], it is proved that the absence of rank-one connections and connectedness
of K in the case n = m = 2 yields compactness of the differential inclusion, i.e. a sequence
un ∈ Lip(Q1, Rn) with equibounded Lipschitz norm solving Dun ∈ K, ∀n, admits a subsequence
converging strongly in Lp. If one drops the hypothesis of connectedness of K, this is false.
Indeed Tartar discovered a special set of 4 matrices in R2×2 nowadays called Tartar’s square,
E = {A1, A2, A3, A4}, such that there exists a sequence of equibounded Lipschitz maps un with

d(Dun(x), E)→ 0 pointwise a.e.,

but such that no subsequence of Dun converges strongly in Lp. This set E is called a T4-
configurations, and we will describe it in detail in Part i. In R2×2, a deep result of Faraco
and Székelyhidi, [32], states that if K ⊂ R2×2 does not contain rank-one connections and T4
configurations, then K has such compactness properties.

The interest in these properties for the set defining a differential inclusion stems from the fact
that usually a lack of compactness for the differential inclusion allows for the construction of
irregular solutions. This procedure is nowadays called convex integration, and it was introduced by
Gromov extending the groundbreaking result of Nash on the existence of isometric embeddings,
see [67]. As said, the presence of T4 (resp. T5) configurations in the differential inclusion
considered in [62] (resp. [82]) yields the existence of very irregular solutions. The first part of this
thesis, Part i, is devoted to results in this direction concerning the differential inclusion in K f .

Similarly, in [18], Euler equations are rewritten as a differential inclusion of the form

z(x) ∈ K, div(z) = 0, on Tn,

for a suitable set K ⊂ Rn×n. For the divergence operator we have

Λdiv = {M ∈ Rn×n : rank(M) ≤ n− 1}.

In [18], the authors exploit the richness of rank- (n - 1) segments in the differential inclusion
defining Euler equations to find weak solutions to Euler equations with the required properties,
see [18, Section 2]. Refining these methods, De Lellis and Székelyhidi made the progresses in
the solution of Onsager conjecture that finally led to its solution, ultimately inventing the convex
integration scheme that is used in Part iii.

On the other hand, if a matrix-field z satisfying A z = 0 is in some sense far from ΛA , one
expects some elliptic estimates. Examples are given by the improvement in the integrability of the
determinant for Hessians of convex functions, see Appendix C, or the regularizing properties
of mappings of bounded distorsion, see [72, II.1.2]. The result by Serre that was mentioned in
Section 1.2 follows this line, indeed to a divergence-free matrix field z with values in Sym+(n),
one can always add ε id to have

d(z(x) + ε idn, Λdiv) ≥ ε, for a.e. x ∈ Tn.

As discussed in Part ii, one gets an elliptic improvement in the integrability of the function

x 7→ det
1

n−1 (·), and these are stable when letting ε→ 0. Nonetheless, the result presented in the
first chapter of Part ii shows how these L1 estimates cannot be turned into Lp estimates, and
ultimately that we are still far from a complete understanding of the relation between the wave
cone and elliptic estimates in the form of functional inequalities.
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2
A B S E N C E O F T ′N C O N F I G U R AT I O N S

This chapter is devoted to the proof of the following:

Theorem 2.1. If f ∈ C1(Rn×m) is a strictly polyconvex function, then C f does not contain any set
{A1, . . . , AN} ⊂ R(2n+m)×m which induces a T′N configuration, provided that f (X1) ≥ 0, . . . , f (XN) ≥
0, if

Ai =

 Xi
Yi
Zi

 , Xi, Yi ∈ Rn×m, Zi ∈ Rm×m, ∀i ∈ {1, . . . , N}.

This result is part of the forthcoming paper [41]. As a consequence of this, we obtain as a
corollary the following main result of [17]

Theorem 2.2. If f ∈ C1(Rn×m) is strictly polyconvex, then K f does not contain any set {A1, . . . , AN}
which induces a T′N configuration.

The chapter is organized as follows: in Section 2.1 we rewrite the Euler Lagrange defining
stationary points as a div-curl differential inclusion and we determine its wave cone. We then
introduce the inclusion sets C f and K f appearing in the statements of the previous theorems and,
after recalling the definition of TN configurations for classical differential inclusions, we define
corresponding T′N configurations for div-curl differential inclusions. In Section 2.2 we give a
small extension of a key result of [83] on classical TN configurations. In Section 2.3 we consider
arbitrary sets of N matrices and give an algebraic characterization of those sets which belong to
an inclusion set K f for some strictly polyconvex f . In Section 2.4 we then prove the Theorem 2.1
and deduce Theorem 2.2.

2.1 div-curl differential inclusions , wave cones and inclusion sets

As written in Section 1.1, the Euler-Lagrange conditions for energies E of the form

E =

�
Ω

f (Du(x))dx (2.1)

are given by:
�

Ω
〈D f (Du), Dv〉 dx = 0 ∀v ∈ C1

c (Ω, Rn)
�

Ω
〈D f (Du), DuDΦ〉dx−

�
Ω

f (Du)div Φdx = 0 ∀Φ ∈ C1
c (Ω, Rm),

(2.2)

Here we rewrite the system (2.2) as a differential inclusion. To do so, it is sufficient to notice that
the left hand side of the second equation can be rewritten as

�
Ω
〈D f (Du), DuDΦ〉dx−

�
Ω

f (Du)div Φdx =

�
Ω
〈DuT D f (Du), DΦ〉 − 〈 f (Du) id, Dg〉dx

=

�
Ω
〈DuT D f (Du)− f (Du) id, DΦ〉dx

Hence, the inner variation equation is the weak formulation of

div(DuT D f (Du)− f (Du) id) = 0.

5
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Since also the outer variation is the weak formulation of a PDE in divergence form, namely

div(D f (Du)) = 0,

we consider the following div-curl differential inclusion for a triple of maps X, Y ∈ L∞(Ω, Rn×m)
and Z ∈ L∞(Ω, Rm×m):

curl X = 0, div Y = 0, div Z = 0 , (2.3)

W .
=

 X
Y
Z

 ∈ K f
.
=

A ∈ R(2n+m)×m : A =

 X
D f (X)

XT D f (X)− f (X) id

 , (2.4)

where f ∈ C1(Rn×m) is a fixed function.

Moreover, we also consider the following more general system of PDEs, for u ∈ Lip(Ω, Rn)
and a Borel map β ∈ L∞(Ω, (0,+∞)):

�
Ω
〈D f (Du), Dv〉β dx = 0 ∀v ∈ C1

c (Ω, Rn)
�

Ω
〈D f (Du), DuDΦ〉β dx−

�
Ω

f (Du)div Φβ dx = 0 ∀Φ ∈ C1
c (Ω, Rm).

(2.5)

This system is equivalent to the stationarity in the sense of varifolds of the varifold V = (Γu, β),
where Γu is the graph of u. This will be discussed in detail in Chapter 3. The div-curl differential
inclusion associated to this system is, again for a triple of maps X, Y ∈ L∞(Ω, Rn×m) and
Z ∈ L∞(Ω, Rm×m):

curl X = 0, div Y = 0, div Z = 0 , (2.6)

W .
=

 X
Y
Z

 ∈ C f (2.7)

where

C f
.
=

C ∈ R(2n+m)×m : C =

 X
βD f (X)

βXT D f (X)− β f (X) id

 , for some β > 0

 ,

The following lemma is then an obvious consequence of the above discussion

Lemma 2.3. Let f ∈ C1(Rn×m). A map u ∈ Lip(Ω, Rn) is a stationary point of the energy (2.1) if and
only there are matrix fields Y ∈ L∞(Ω, Rn×m) and Z ∈ L∞(Ω, Rm×m) such that W = (Du, Y, Z)
solves the div-curl differential inclusion (2.3)-(2.4). Moreover, the couple (u, β) ∈ Lip(Ω, Rn) ×
L∞(Ω, (0,+∞)) solves (2.5) if and only there are matrix fields Y ∈ L∞(Ω, Rn×m) and Z ∈ L∞(Ω, Rm×m)
such that W = (Du, Y, Z) solves the div-curl differential inclusion (2.6)-(2.7).

Motivated by the arguments of Section 1.4, we introduce here the Λ-cone, recall Definition 1.8,
of the mixed div-curl operator we are considering in this chapter.

Lemma 2.4. The wave cone of the system curl X = 0 is given by rank one matrices, whereas the wave
cone for the system (2.3) is given by triple of matrices (X, Y, Z) for which there is a unit vector ξ ∈ Sm−1

and a vector u ∈ Rn such that X = u⊗ ξ, Yξ = 0 and Zξ = 0.

Motivated by the above lemma we then define

Definition 2.5. The cone Λdc ⊂ R(2n+m)×m consists of the matrices in block form X
Y
Z


with the property that there is a direction ξ ∈ Sm−1 and a vector u ∈ Rn such that X = u⊗ ξ,
Yξ = 0 and Zξ = 0.
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2.1.1 TN configurations

We start definining TN configurations for classical curl-type differential inclusions.

Definition 2.6. An ordered set of N ≥ 2 matrices {Xi}N
i=1 ⊂ Rn×m of distinct matrices is said to

induce a TN configuration if there exist matrices P, Ci ∈ Rn×m and real numbers ki > 1 such that:

(a) Each Ci belongs to the wave cone of curl X = 0, namely rank(Ci) ≤ 1 for each i;

(b) ∑i Ci = 0;

(c) X1, . . . , XN , P and C1, . . . , CN satisfy the following N linear conditions

X1 = P + k1C1,

X2 = P + C1 + k2C2,

. . .

. . .

XN = P + C1 + · · ·+ kNCN .

(2.8)

In the rest of the chapter we will use the word TN configuration for the data

P, C1, . . . , CN , k1, . . . kN .

We will moreover say that the configuration is nondegenerate if rank(Ci) = 1 for every i.

Note that our definition is more general that the one usually given in the literature (cf. [62, 82,
83]) because we drop the requirement that there are no rank one connections between distinct Xi
and Xj. Moreover, rather than calling {X1, . . . , XN} a TN configuration, we prefer to say that it
induces a TN configuration, namely we regard the whole data X1, . . . , XN , C1, . . . , CN , k1, . . . , kN
since it is not at all clear that given an ordered set {X1, . . . , XN} of distinct matrices there can be
more than one choice of the matrices C1, . . . , CN and of the coefficients k1, . . . , kN satisfying the
conditions above (if we drop the condition that the set is ordered, then it is known that there is
more than one choice, see [37]). We observe that the definition of TN configuration could be split
into two parts. A geometric part’, namely the points (b) and (c), can be considered as characterizing
a certain arrangement of 2N points in the space of matrices, consisting of:

• A closed piecewise linear loop, loosely speaking a polygon (not necessarily planar) with
vertices P1 = P + C1, P2 = P + C1 + C2, . . . , PN = P + C1 + . . . + CN = P;

• N additional “arms” which extend the sides of the polygon, ending in the points X1, . . . , XN .

See Figure 2 for a graphical illustration of these facts in the case N = 4.
The closing condition in Definition 2.6(b) is a necessary and sufficient condition for the polygonal
line to “close”. Condition (c) determines that each Xi is a point on the line containing the segment
Pi−1Pi. Note that the inequality ki > 1 ensures that Xi is external to the segment, “on the side of
Pi”. The “nondegeneracy” condition is equivalent to the vertices of the polygon being all distinct.
Note moreover that, in view of our definition, we include the possibility N = 2. In the latter
case the T2 configuration consists of a single rank one line and of 4 points X1, X2, C1, C2 lying on
it. We have decided to follow this convention, even though this is an unusual choice compared
to the literature. The second part of the Definition, namely condition (a), is of algebraic nature
and related to the fact that TN configurations are used to study “classical differential inclusions”,
namely PDEs of the form curl X = 0. The condition prescribes simply that each vector Xi − Pi
belongs to the wave cone of curl X = 0.
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P + C1 + C2

X2

P

X4

P + C1 + C2 + C3

X3

X1

P + C1

Figure 2: The geometric arrangement of a T4 configuration.

2.1.2 T′N configurations

In this section we generalize the notion of TN configuration to div-curl differential inclusions.
The geometric arrangement remains the same, while the wave cone condition is replaced by the
one dictated by the new PDE (2.3).

Definition 2.7. A family {A1, . . . , AN} ⊂ R(2n+m)×m of N ≥ 2 distinct

Ai
.
=

 Xi
Yi
Zi


induces a T′N configuration if there are matrices P, Q, Ci, Di ∈ Rn×m, R, Ei ∈ Rm×m and coefficients
ki > 1 such that Xi

Yi
Zi

 =

 P
Q
R

+

 C1
D1
E1

+ · · ·+

 Ci−1
Di−1
Ei−1

+ ki

 Ci
Di
Ei

 (2.9)

and the following properties hold:

(a) each element (Ci, Di, Ei) belongs to the wave cone Λdc of (2.3);

(b) ∑` C` = 0, ∑` D` = 0 and ∑` E` = 0.

We say that the T′N configuration is nondegenerate if rank(Ci) = 1 for every i.

We collect here some simple consequences of the definition above and of the discussion on TN
configurations.

Proposition 2.8. Assume A1, . . . , AN induce a T′N configuration with P, Q, R, Ci, Di, Ei and ki as in
Definition 2.7. Then:

(i) {X1, . . . , XN} induce a TN configuration of the form (2.8), if they are distinct; moreover the T′N
configuration is nondegenerate if and only if the TN configuration induced by {X1, . . . , XN} is
nondegenerate;

(ii) For each i there is an ni ∈ Sm−1 and a ui ∈ Rn such that Ci = ui ⊗ ni, Dini = 0 and Eini = 0;

(iii) tr CT
i Di = 〈Ci, Di〉 = 0 for every i.
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Proof. (i) and (ii) are an obvious consequence of Definition 2.7 and of Definition 2.5. After
extending ni to an orthonormal basis {ni, vj

2, . . . vj
m} of Rm we can explicitely compute

〈Ci, Di〉 = (Dini, Cini) +
m

∑
j=2

(Div
j
i , Civ

j
i) = 0 ,

where (·, ·) denotes the Euclidean scalar product.

2.1.3 Strategy

Before starting with the proof of the main result of this chapter, it is convenient to explain
the strategy we intend to follow. In order to do so, let us consider the simplest case n = m = 2,
N = 5. Suppose by contradiction that there exists a strictly polyconvex function f : R2×2 → R,
f (X) = g(X, det(X)) and a T′5 configuration A1, A2, A3, A4, A5,

Ai =

 Xi
Yi
Zi

 , ∀i ∈ {1, . . . , 5},

where Xi, Yi, Zi fulfill the relations of (2.9), i.e. Xi
Yi
Zi

 =

 P
Q
R

+

 C1
D1
E1

+ · · ·+

 Ci−1
Di−1
Ei−1

+ ki

 Ci
Di
Ei

 .

For convenience, let us consider P = 0. We will prove in Lemma 2.23 that this can be done
without loss of generality. It is convenient to think of the relations Ai ∈ C f , ∀i as two separate
pieces of information:(

Xi
Yi

)
∈ K′f =

{
A ∈ R4×2 : A =

(
X

βD f (X)

)
, β > 0, X ∈ R2×2

}
(2.10)

and
Zi = XT

i Yi − βi f (Xi) id . (2.11)

Let us denote with ci
.
= f (Xi). Similarly to the procedure of [82], we exploit the poly-

convexity of f to rewrite (2.10) in terms of inequalities involving Xi, Yi, ci, di, where di
.
=

∂y5 g(y1, y2, y3, y4, y5)|(Xi ,det(Xi))
, of the form

ci − cj +
1
βi
〈Yi, Xj − Xi〉 − di det(Xi − Xj) < 0. (2.12)

This is the content of Proposition 2.19. The final goal is to prove that these inequalities can not be
fulfilled at the same time. The previous expression can be considerably simplified by the structure
result on TN configurations in R2×2 of [83, Proposition 1]. This asserts, in the specific case of the
ongoing example, the existence of 5 vectors (ti

1, . . . , ti
5), i ∈ {1, . . . , 5} with positive components,

such that
5

∑
j=1

ti
j det(Xj − Xi) = 0. (2.13)

If we use this result in (2.12), we can eliminate from the expression the variable di, thus obtaining

νi
.
=

5

∑
j=1

ti
j(ci − cj +

1
βi
〈Yi, Xj − Xi〉 − di det(Xi − Xj))

=
5

∑
j=1

ti
j(ci − cj +

1
βi
〈Yi, Xj − Xi〉) < 0, ∀i ∈ {1, . . . , 5},
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compare Corollary 2.20. Section 2.2 is devoted to extending relations (2.13) to general TN
configurations in Rn×m. Despite being very useful, this simplification can not conclude the
proof. Indeed, up to now we have exploited (2.10) and the fact that {X1, . . . , X5} induce a T5
configuration, but, if βi = 1, ∀i, this is the exact same situation of [82]. Since from that paper we
know the existence of T5 configurations in K′f , clearly we can not reach a contradiction at this
point of the strategy. This is where the inner variations come into play. In the proof of Theorem
2.1, we rewrite (2.11) using the definition of T′5 configuration and, after some manipulations, we
find that the numbers

µi
.
=

5

∑
j=1

ti
j(〈Xj − Xi, Yi〉 − βici + β jcj)

must all be 0. For the index I such that β I = mini βi, and essentially using the positivity of cj, we
find that

0 = µI =
5

∑
j=1

ti
j(〈Xj − Xi, Yi〉 − βici + β jcj) ≤

5

∑
j=1

ti
j(〈Xj − Xi, Yi〉 − βici + β Icj) = νI ,

which is in contradiction with the negativity of νI .

2.2 preliminaries on classical TN configurations

This section is devoted to a generalization of a powerful machinery introduced in [83] to study
TN configurations.

2.2.1 Székelyhidi’s characterization of TN configurations in R2×2

We start with the following elegant characterization.

Proposition 2.9. ([83, Proposition 1]) Given a set {X1, . . . , XN} ⊂ R2×2 and µ ∈ R, we let Aµ be the
following N × N matrix:

Aµ .
=


0 det(X1 − X2) det(X1 − X3) . . . det(X1 − XN)

µ det(X1 − X2) 0 det(X2 − X3) . . . det(X2 − XN)
...

...
...

. . .
...

µ det(X1 − XN) µ det(X2 − XN) µ det(X3 − XN) . . . 0

 .

Then, {X1, . . . , XN} induces a TN configuration if and only if there exists a vector λ ∈ RN with positive
components and µ > 1 such that

Aµλ = 0.

Even though not explicitely stated in [83], the following Corollary is part of the proof of
Proposition 2.9 and it is worth stating it here again, since we will make extensive use of it in the
sequel.

Corollary 2.10. Let {X1, . . . , XN} ⊂ R2×2 and let µ > 1 and λ ∈ RN be a vector with positive entries
such that Aµλ = 0. Define the vectors

ti .
=

1
ξi
(µλ1, . . . , µλi−1, λi, . . . , λN), for i ∈ {1, . . . , N} (2.14)

where ξi > 0 is a normalizing constant so that ‖ti‖1
.
= ∑j |ti

j| = 1, ∀i. Define the matrices Cj with
j ∈ {1, . . . , N − 1} and P by solving recursively

N

∑
j=1

ti
jXj = P + C1 + · · ·+ Ci−1 (2.15)
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and set CN
.
= −C1 − . . .− CN−1. Finally, define

ki =
µλ1 + · · ·+ µλi + λi+1 · · ·+ λN

(µ− 1)λi
. (2.16)

Then P, C1, . . . , CN and k1, . . . kN give a TN configuration induced by {X1, . . . , XN} (i.e. (2.8) holds).
Moreover, the following relation holds for every i:

det

(
N

∑
j=1

ti
jXj

)
=

N

∑
j=1

ti
j det(Xj) . (2.17)

Remark 2.11. Observe that the relations (2.16) can be inverted in order to compute µ and λ (the
latter up to scalar multiples) in terms of k1, . . . , kN . In fact, let us impose

‖λ‖1 = λ1 + · · ·+ λN = 1 .

Then, regarding µ as a parameter, the equations (2.16) give a linear system in triangular form
which can be explicitely solved recursively, giving the formula

λj =
k1k2 · · · k j−1

(µ− 1)(k1 − 1)(k2 − 1) · · · (k j − 1)
. (2.18)

The following identity can easily be proved by induction:

1
k1 − 1

+
k1

(k1 − 1)(k2 − 1)
+ · · ·+

k1 · · · k j−1

(k1 − 1) · · · (k j − 1)
=

k1 · · · k j

(k1 − 1) · · · (k j − 1)
− 1 .

Hence, summing (2.18) and imposing ∑j λj = 1 we find the equation

1 =
1

µ− 1

(
k1 · · · kN

(k1 − 1) · · · (kN − 1)
− 1
)

,

which determines uniquely µ as

µ =
k1 · · · kN

(k1 − 1) · · · (kN − 1)
. (2.19)

A second corollary of the computations in [83] is that

Corollary 2.12. Assume {X1, . . . , XN} ∈ R2×2 induce the TN configuration of form (2.8) and let µ and
λ be as in (2.18) and (2.19). Then Aµλ = 0.

2.2.2 A characterization of TN configurations in Rn×m

We start with a straightforward consequence of the results above. Let us first introduce some
notation concerning multi-indexes. We will use I for multi-indexes referring to ordered sets of
rows of matrices and J for multi-indexes referring to ordered sets of columns. In our specific case,
where we deal with matrices in Rn×m we will thus have

I = (i1, . . . , ir), 1 ≤ i1 < · · · < ir ≤ n ,

and J = (j1, . . . , js), 1 ≤ j1 < · · · < js ≤ m

and we will use the notation |I| .
= r and |J| .

= s. In the sequel we will always have r = s.

Definition 2.13. We denote by Ar the set

Ar = {(I, J) : |I| = |J| = r}, 2 ≤ r ≤ min(n, m).
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For a matrix M ∈ Rn×m and for Z ∈ Ar of the form Z = (I, J), we denote by MZ the squared
r× r matrix obtained by A considering just the elements aij with i ∈ I, j ∈ J (using the order
induced by I and J).

Given a set {X1, . . . , XN} ⊂ Rn×m, µ ∈ R and Z ∈ Ar, we introduce the matrix

Aµ
Z

.
=


0 det(XZ

2 − XZ
1 ) det(XZ

3 − XZ
1 ) . . . det(XZ

N − XZ
1 )

µ det(XZ
1 − XZ

2 ) 0 det(XZ
3 − XZ

2 ) . . . det(XZ
N − XZ

2 )
...

...
...

. . .
...

µ det(XZ
1 − XZ

N) µ det(XZ
2 − XZ

N) µ det(XZ
3 − XZ

N) . . . 0

 .

Proposition 2.14. A set {X1, . . . , XN} ⊂ Rn×m induces a TN configuration if and only if there is a real
µ > 1 and a vector λ ∈ RN with positive components such that

Aµ
Zλ = 0 ∀Z ∈ A2 .

Moreover, if we define the vectors ti as in (2.14), the coefficients ki through (2.16) and the matrices P and
Ci through (2.15), then P, C1, . . . , CN and k1, . . . , kN give a TN configuration induced by {X1, . . . , XN}.

For this reason and in view of Remark 2.11, we can introduce the following terminology:

Definition 2.15. Given a TN-configuration P, C1, . . . , CN and k1, . . . , kN we let µ and λ be given
by (2.18) and (2.19) and we call (λ, µ) ∈ RN+1 the defining vector of the TN configuration.

Proof of Proposition 2.14. Direction⇐=. Fix a set {X1, . . . , XN} of matrices with the property that
there is a common µ > 1 and a common λ with positive entries such that Aµ

Zλ = 0 for every
Z ∈ A2. For each Z we consider the corresponding set {XZ

1 , . . . , ZZ
N} and we use formulas (2.14),

(2.16) and (2.15) to find k1, . . . , kN , P(Z) and Ci(Z) such that

XZ
i = P(Z) + C1(Z) + . . . Ci−1(Z) + kiCi(Z) .

Since the coefficients ki are independent of Z, the formulas give that the matrices Ci(Z) (and P(Z))
are compactible, in the sense that, if j` is an entry common to Z and Z′, then (Ci(Z))j` = (Ci(Z′))j`.
In particular there are matrics Ci’s and P such that Ci(Z) = CZ

i and P(Z) = PZ and thus (2.8)
holds. Moreover, we also know from Proposition 2.9 that rank(CZ

i ) ≤ 1 for every Z and thus
rank(Ci) ≤ 1. We also know that CZ

1 + . . . + CZ
N = 0 for every Z and thus C1 + . . . + CN = 0.

Direction =⇒. Assume X1, . . . , XN induce a TN configuration as in (2.8). Then XZ
1 , . . . , XZ

N
induce a TN configuration with corresponding PZ, CZ

1 , . . . , CZ
N and k1, . . . , kN , where the latter

coefficients are independent of Z. Thus, by Corollary 2.12, Aµ
Zλ = 0.

2.2.3 Computing minors

We end this section with a further generalization, this time of (2.17): we want to extend the
validity of it to any minor.

Proposition 2.16. Let {X1, . . . , XN} ⊂ Rn×m induce a TN configuration as in (2.8) with defining vector
(λ, µ). Define the vectors t1, . . . , tN as in (2.14) and for every Z ∈ Ar of order r ≤ min{n, m} define the
minor S : Rn×m 3 X 7→ S(X)

.
= det(XZ) ∈ R. Then

N

∑
j=1

ti
jS(Xj) = S

(
N

∑
j=1

ti
jXj

)
= S(P + C1 + · · ·+ Ci−1) . (2.20)

and Aµ
Zλ = 0.

We will need the following elementary linear algebra fact, which in the literature is sometimes
called Matrix Determinant Lemma:
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Lemma 2.17. Let A, B be matrices in Rm×m, and let rank(B) ≤ 1. Then,

det(A + B) = det(A) + 〈cof(A)T , B〉

Moreover, we need another elementary computation, which is essentially contained in [83] and
for which we report the proof at the end of the section for the reader’s convenience.

Lemma 2.18. Assume the real numbers µ > 1, λ1, . . . , λN > 0 and k1, . . . , kN > 1 are linked by the
formulas (2.16). Assume v, v1, . . . , vN , w1, . . . , wN are elements of a vector space satisfying the relations

wi = v + v1 + . . . + vi−1 + kivi (2.21)

0 = v1 + . . . + vN . (2.22)

If we define the vectors ti as in (2.14), then

∑
j

ti
jwj = v + v1 + . . . + vi−1 . (2.23)

Proof of Proposition 2.16. Fix the Z of the statement of the proposition. XZ
1 , . . . , XZ

N induces TN
with the same coefficients k1, . . . kN . This reduces therefore the statement to the case in which
m = n, Z = ((1, . . . n), (1, . . . , n)) and the minor S is the usual determinant.

We first prove (2.20). In order to do this we specialize (2.23) to w` = det(X`), v = det(P),
v` = 〈cofT(P + C1 + · · ·+ C`−1), C`〉. To simplify the notation set

P(1) = P, and P(`) = P + C1 + · · ·+ C`−1 ∀` ∈ {1, . . . , N + 1}.

We want to show that

v + v1 + · · ·+ vi−1 = det(P(i)) and v1 + · · ·+ vN = 0,

and this would conclude the proof of (2.20) because of Lemma 2.18. A repeated application of
Lemma 2.17 yields:

v + v1 + · · ·+ vi−1 = det(P) + 〈cofT(P), C1〉︸ ︷︷ ︸
det(P(2))

+〈cofT(P(2)), C2〉

︸ ︷︷ ︸
det(P(3))

+

+ · · ·+ 〈cofT(P(i)), Ci−1〉 = det(P(i)) = det(P + C1 + · · ·+ Ci−1).

As a consequence of Lemma 2.17, we also have v` = det(P(`+1))− det(P(`)). Therefore:

v1 + · · ·+ vN =
N

∑
`=1

(
det(P(`+1))− det(P(`))

)
= det(P(N+1))− det(P(1)).

Since ∑` C` = 0 and det(P(N+1)) = det(P + ∑` C`), we have

det(P(N+1))− det(P(1)) = det(P + ∑
`

C`)− det(P) = det(P)− det(P) = 0,

and the conclusion is thus reached.
To prove the second part of the statement notice that Aµ

Zλ = 0 is equivalent to the following N
equations:

N

∑
j=1

ti
j det(Xj − Xi) = 0 ∀i ∈ {1, . . . , N}.

Fix i ∈ {1, . . . , N} and define matrices Yj
.
= Xj − Xi, ∀j. {Y1, . . . , YN} is still a TN configuration of

the form

Yi = P′ +
i−1

∑
`=1

C` + kiCi,
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and P′ = −Xi (recall that P = 0). Apply now (2.20) to find that

∑
j

ti
j det(Xj − Xi) = ∑

j
ti

j det(Yj)

= det

(
P′ +

i−1

∑
`=1

C`

)
= det

(
−Xi +

i−1

∑
`=1

C`

)
= det(−kiCi) = 0

and conclude the proof.

2.2.4 Proof of Lemma 2.18

It is sufficient to compute separately ∑N
j=1 t1

j wj = ∑N
j=1 λjwj and ∑i−1

j=1 λjwj. In fact,

N

∑
j

ti
jwj =

1
ξi

[
N

∑
j=1

λjwj + (µ− 1)
i−1

∑
j=1

λjwj

]
. (2.24)

We can write
∑

j
λjwj = v + a1v1 + · · ·+ aNvN ,

being, ∀` ∈ {1, . . . , N}, a` = k`λ` + · · ·+ λN . Recalling that the defining vector and the numbers
ki are related through (2.16), we compute

a` = k`λ` + · · ·+ λN =
µλ1 + · · ·+ µλ` + λ`+1 + . . . λN

µ− 1
+ λ`+1 + · · ·+ λN

=
µ(λ1 + · · ·+ λN)

µ− 1
=

µ

µ− 1
=: a.

(2.25)

Hence
N

∑
j=1

λjwj = v +
µ

µ− 1
(v1 + · · ·+ vN).

On the other hand,
i−1

∑
j=1

λjwj = b1v + b2v1 + · · ·+ bivi−1,

and

b1 = λ1 + · · ·+ λi−1 =: c,

b` = k`λ` + · · ·+ λi−1 =
µ(λ1 + · · ·+ λ`) + ∑N

j=`+1 λj + (µ− 1)∑i−1
j=`+1 λj

µ− 1
=

=
µ(∑i−1

j=1 λj) + ∑N
j=i λj

µ− 1
=: b, ∀` ∈ {2, . . . , i}.

Also,

ξi = ‖(µλ1, . . . , µλi−1, λi, . . . , λN)‖1 = (µ− 1)(λ1 + · · ·+ λi−1) + 1 = (µ− 1)b = 1 + (µ− 1)c.

We can now compute (2.24):

1
ξi

[
N

∑
j=1

λjwj + (µ− 1)
i−1

∑
j=1

λjwj

]
=

1
ξi

[v + a1v1 + · · ·+ aNvN + (µ− 1)(b1v + b2v1 + · · ·+ bivi−1)] =
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1
ξi

[(µ− 1)b(v + v1 + · · ·+ vi−1) + a(v1 + · · ·+ vN)] =

v + v1 + · · ·+ vi−1 +
a

(µ− 1)b
(v1 + · · ·+ vN)

We use the just obtained identity

N

∑
j=1

ti
jwj = v + v1 + · · ·+ vi−1 +

a
(µ− 1)b

(v1 + · · ·+ vN) (2.26)

Using that v1 + . . . + vN = 0 we conclude the desired identity.

2.3 inclusions sets relative to polyconvex functions

In this section we consider the following question. Given a set of distinct matrices Ai ∈ R(2n)×m

Ai
.
=

(
Xi
Yi

)
, (2.27)

do they belong to a set of the form

K′f
.
=

{(
X

D f (X)

)
: X ∈ Rn×m

}
(2.28)

for some strictly polyconvex function f : Rn×m → R? In order to answer, we first need to
introduce the following notation. Let f : Rn×m → R be a strictly polyconvex function of the
form f (X) = g(Φ(X)), where g ∈ C1(Rk) is strictly convex and Φ is the vector of all the
subdeterminants of X, i.e.

Φ(X) = (X, v1(X), . . . , vmin(n,m)(X)),

and
vs(X) = (det(XZ1), . . . , det(XZ#As

))

for some fixed (but arbitrary) ordering of all the elements Z ∈ As. Variables of Rk, and hence
partial derivatives in Rk, are labeled using the ordering induced by Φ. The first nm partial
derivatives, corresponding in Φ(X) to X, are collected in a n × m matrix denoted with DX g.
The j-th partial derivative, mn + 1 ≤ j ≤ k, is instead denoted by ∂Zg, where Z is the element
of As corresponding to the j-th position of Φ. Let us make an example in low dimension: if
n = 3, m = 2, then k = 9, and we choose the ordering of Φ to be

Φ(X) = (X, det(X(12,12)), det(X(13,12)), det(X(23,12))).

In this case, y ∈ Rk has coordinates

y = (y11, y12, y21, y22, y31, y32, y(12,12), y(13,12), y(23,12)).

The partial derivatives with respect to the first 6 variables are collected in the 3× 2 matrix:

DX g =

 ∂11g ∂12g
∂21g ∂22g
∂31g ∂32g


The partial derivatives with respect to the remaining variables are denoted as ∂(12,12)g, ∂(13,12)g
and ∂(23,12)g, i.e. following the ordering induced by Φ. We are ready to state the following
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Proposition 2.19. Let f : Rn×m → R be a strictly polyconvex function of the form f (X) = g(Φ(X)),
where g ∈ C1 is strictly convex and Φ is the vector of all the subdeterminants of X, i.e.

Φ(X) = (X, v1(X), . . . , vmin(n,m)(X)),

and
vs(X) = (det(XZ1), . . . , det(XZ#As

))

for some fixed (but arbitrary) ordering of all the elements Z ∈ As. If Ai ∈ K′f and Ai 6= Aj for i 6= j, then
Xi, Yi = D f (Xi) and ci = f (Xi) fulfill the following inequalities for every i 6= j:

ci − cj + 〈Yi, Xj − Xi〉

−
min(m,n)

∑
r=2

∑
Z∈Ar

di
Z

(
〈cof(XZ

i )
T , XZ

j − XZ
i 〉 − det(XZ

j ) + det(XZ
i )
)
< 0, (2.29)

where di
Z = ∂Zg(Φ(Xi)).

We now introduce the set

C′f
.
=

{
C′ ∈ R2n×m : C′ =

(
X

βD f (X)

)
, for some β > 0

}
.

Notice that C′f is the projection of C f on the first 2n×m coordinates. We immediately obtain
from the previous proposition and the definition of C′f that

Ai ∈ C′f , ∀i ∈ {1, . . . , N}

if and only if there exist numbers βi > 0, ∀i, such that

ci − cj +
1
βi
〈Yi, Xj − Xi〉

−
min(m,n)

∑
r=2

∑
Z∈Ar

di
Z

(
〈cof(XZ

i )
T , XZ

j − XZ
i 〉 − det(XZ

j ) + det(XZ
i )
)
< 0. (2.30)

The expressions in (2.30) can be considerably simplied when the matrices X1, . . . , XN induce a
TN configuration:

Corollary 2.20. Let f be a strictly polyconvex function and let A1, . . . , AN be distinct elements of K′f
with the additional property that {X1, . . . , XN} induces a TN configuration of the form (2.8) with defining
vector (µ, λ). Then,

ci −∑
j

ti
jcj −

ki
βi
〈Yi, Ci〉 < 0, (2.31)

where the ti’s are given by (2.14).

To prove the previous corollary, we will use the following lemma, that is an easy consequence
of the results of Section 2.2

Lemma 2.21. Assume X1, . . . , XN induces a TN configuration of the form (2.8) and associated vectors ti,
i ∈ {1, . . . , N}. Then, ∀i ∈ {1, . . . , N}, ∀r ∈ {2, . . . , min(m, n)}, ∀Z ∈ Ar,

∑
j

ti
j

(
〈cof(XZ

i )
T , XZ

j − XZ
i 〉 − det(XZ

j ) + det(XZ
i )
)
= 0. (2.32)
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2.3.1 Proof of Proposition 2.19

The strict convexity of g yields, for i 6= j,

〈Dg(Φ(Xi)), Φ(Xj)−Φ(Xi)〉 < g(Φ(Xj))− g(Φ(Xi)). (2.33)

A simple computation shows that for the function det(·) : Rr×r → R:

D(det(X))|X=Y = cof(Y)T .

In the following equation, we will write, for an n×m matrix M and for Z ∈ Ar, cof(MZ)T to
denote the n×m matrix with 0 in every entry, except for the rows and columns corresponding to
the multiindex Z = (I, J), which will be filled with the entries of the matrix cof(MZ)T ∈ Rr×r,
namely, if i /∈ I or j 6∈ J, then (cof(MZ)T)ij = 0 and, if we eliminate all such coefficients, the
remaining r × r matrix equals cof(MZ)T . Moreover, we will identify the differential of a map
from Rn×m to R with the obvious associated matrix. We thus have the formula, recalling the
notation introduced in at the beginning of Section 2.3,

D f (X) = D(g(Φ(X))) = DX g(Φ(X)) +
min(m,n)

∑
r=2

∑
Z∈Ar

∂Zg(Φ(X))cof(XZ)T

When evaluated at X = Xi,

Yi = DX g(Φ(Xi)) +
min(m,n)

∑
r=2

∑
Z∈Ar

∂Zg(Φ(Xi))cof(XZ
i )

In order to simplify the notation set now di
Z

.
= ∂Zg(Φ(Xi)). The previous expression yields:

〈Dg(Φ(Xi)),Φ(Xj)−Φ(Xi)〉

=〈DX g(Φ(Xi)), Xj − Xi〉+
min(m,n)

∑
r=2

∑
Z∈Ar

di
Z

(
det(XZ

j )− det(XZ
i )
)

=

〈
Yi −

min(m,n)

∑
r=2

∑
Z∈Ar

di
Zcof(XZ

i )
T , Xj − Xi

〉
+

min(m,n)

∑
r=2

∑
Z∈Ar

di
Z

(
det(XZ

j )− det(XZ
i )
)

.

Since
g(Φ(Xj))− g(Φ(Xi)) = f (Xj)− f (Xi) = cj − ci,

(2.33) becomes:

〈Yi, Xj − Xi〉 −
min(m,n)

∑
r=2

∑
Z∈Ar

di
Z

(
〈cof(XZ

i )
T , Xj − Xi〉 − det(XZ

j ) + det(XZ
i )
)
< cj − ci.

Finally, summing ci − cj on both sides:

ci − cj + 〈Yi, Xj − Xi〉 −
min(m,n)

∑
r=2

∑
Z∈Ar

di
Z

(
〈cof(XZ

i )
T , Xj − Xi〉 − det(XZ

j )− det(XZ
i )
)
< 0 (2.34)

Using the fact that 〈cof(XZ
i )

T , Xj − Xi〉 = 〈cof(XZ
i )

T , XZ
j − XZ

i 〉, we see that the previous inequal-
ity implies the conclusion

∀i 6= j,

ci − cj + 〈Yi, Xj − Xi〉 −
min(m,n)

∑
r=2

∑
Z∈Ar

di
Z

(
〈cof(XZ

i )
T , XZ

j − XZ
i 〉 − det(XZ

j ) + det(XZ
i )
)
< 0.
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2.3.2 Proof of Lemma 2.21

The result is a direct consequence of Lemma 2.17 and Proposition 2.16. First of all, by
Proposition 2.16 we have

∑
j

ti
j det(XZ

j ) = det

(
∑

j
ti

jX
Z
j

)
= det

(
PZ

1 + · · ·+ CZ
i−1

)
(2.35)

Moreover, by (2.15), we get

∑
j

ti
j〈cof(XZ

i )
T , XZ

j − XZ
i 〉 = 〈cof(XZ

i )
T , PZ + CZ

1 + · · ·+ CZ
i−1 − XZ

i 〉 = −ki〈cof(XZ
i )

T , CZ
i 〉 .

(2.36)
Finally, apply Lemma 2.17 to A = XZ

i and B = −kiCZ
i to get

det
(

PZ + · · ·+ CZ
i−1

)
= det(XZ

i )− ki〈cof(XZ
i )

T , CZ
i 〉 . (2.37)

These three equalities together give (2.32).

2.3.3 Proof of Corollary 2.20

Multiply (2.30) by ti
j and sum over j. Using Lemma 2.21 and taking into account ∑j ti

j = 1 we
get

ci −∑
j

ti
jcj +

1
βi

〈
Yi, ∑

j
ti

jXj − Xi

〉
< 0 .

Since
∑

j
ti

jXj = P + C1 + . . . + Ci−1

and
Xi = P + C1 + . . . + Ci−1 + kiCi ,

we conclude that (2.31) holds.

2.4 proof of the main results

As explained in Section 1.4, before checking whether the inclusion set contains TN or T′N
configurations, we need to exclude more basic building block for bad solutions, such as rank-one
connections or, as in this case, Λdc-connections in C f . It is rather easy to see, compare for instance
[82], that if f is strictly polyconvex, then for A, B ∈ K f it is not possible to have

A− B ∈ Λdc.

Indeed the same result holds even considering K′f . To prove this, it is sufficient to observe that if

X, Y ∈ Rn×m are rank-one connected, i.e. for some u ∈ Sm−1

(X−Y)v = 0, ∀v ⊥ u, (2.38)

and
(D f (X)− D f (Y))u = 0, (2.39)

then

〈D f (X)− D f (Y), X−Y〉 =
m

∑
i=1

((D f (X)− D f (Y))ui, (X−Y)ui)
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(2.38)
= ((D f (X)− D f (Y))u, (X−Y)u)

(2.39)
= 0,

where {u1, . . . , um} is an orthonormal basis of Rm with u1 = u. On the other hand, since f is
strictly polyconvex, it is easy to see that

〈D f (X)− D f (Y), X−Y〉 > 0

if rank(X − Y) = 1. The first result of this section shows that this result holds also for C f ,
provided f is positive.

Proposition 2.22. Let f be strictly polyconvex. If

A =

 X
Y
Z

 , B =

 X′

Y′

Z′

 ∈ C f ,

and f (X) ≥ 0, f (X′) ≥ 0, then
A− B /∈ Λdc.

Proof. Suppose by contradiction that there exist

A =

 X
Y
Z

 ∈ C f , B =

 X′

Y′

Z′

 =

 X + C
Y + D
Z + E

 ∈ C f ,

with c .
= f (X) ≥ 0, c′ .

= f (X′) ≥ 0, and there is a vector ξ ∈ Rm with ‖ξ‖ = 1 such that for every
v ⊥ ξ,

Cv = 0, Dξ = 0, Eξ = 0.

Using the expressions found in (2.30) with

A1 =

(
X
Y

)
, A2 =

(
X + C
Y + D

)
,

it is easy to see using the Matrix Determinant Lemma 2.17 that we have the two simple inequalities

c− c′ − 1
β
〈X− X′, Y〉 < 0, (2.40)

c′ − c− 1
β′
〈X′ − X, Y′〉 < 0. (2.41)

Moreover by assumption (Z′ − Z)ξ = 0, i.e.

(Z′ − Z)ξ = 0 = (X′)TY′ξ − XTYξ − (c′β′ − cβ)ξ.

Thus, using (Y′ −Y)ξ = 0,

0 = (X′ − X)TY′ξ − (c′β′ − cβ)ξ = 〈C, Y〉ξ − (c′β′ − cβ)ξ,

that yields, since ‖ξ‖ = 1,
〈C, Y〉 = c′β′ − cβ. (2.42)

In the previous lines we have used the fact that

(X′ − X)TY′ξ = CT(Y + D)ξ = CTYξ,

and, since C is of rank one with Cv = 0, ∀v ⊥ ξ,

CTYξ = 〈C, Y〉ξ.
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Exploiting (2.42), we rewrite (2.40) as

c− c′ − 1
β
〈X− X′, Y〉 = c− c′ +

1
β
〈C, Y〉 = c− c′ +

1
β
(c′β′ − cβ) < 0, (2.43)

and (2.41) as

c′ − c− 1
β′
〈C, Y〉 = c′ − c− 1

β′
(c′β′ − cβ) < 0 (2.44)

From (2.43), we infer
βc− βc′ + (c′β′ − cβ) < 0⇔ c′(β′ − β) < 0

and from (2.44)
β′c′ − β′c− (c′β′ − cβ) < 0⇔ c(β− β′) < 0.

Since c > 0 and c′ > 0, we get a contradiction.

Now that we have excluded Λdc - connections, we can ask ourselves the same question
concerning T′N configurations. In particular we want to prove the main Theorem of the chapter,
Theorem 2.1, that we recall here for the reader’s convenience

Theorem. If f ∈ C1(Rn×m) is a strictly polyconvex function, then C f does not contain any set
{A1, . . . , AN} ⊂ R(2n+m)×m which induces a T′N configuration, provided that f (X1) ≥ 0, . . . , f (XN) ≥
0, if

Ai =

 Xi
Yi
Zi

 , Xi, Yi ∈ Rn×m, Zi ∈ Rm×m, ∀i ∈ {1, . . . , N}.

Let us fix the notation. We will always consider T′N configurations of the following form:

Ai
.
=

 Xi
Yi
Zi

 , Xi, Yi ∈ Rn×m, Zi ∈ Rm×m, (2.45)

with:

Xi = P +
i−1

∑
j=1

Cj + kiCi, Yi = Q +
i−1

∑
j=1

Dj + kiDi, Zi = R +
i−1

∑
j=1

Ej + kiEi,

and we denote with ni ∈ Sm−1 the vectors such that

Dini = 0, Eini = 0, Civ = 0, ∀v ⊥ ni, ∀1 ≤ i ≤ N.

2.4.1 Idea of the Proof

Before proving the Theorem, let us give an idea of the key steps of the proof. First of all, in
Lemma 2.23, we will see that without loss of generality we can choose P = 0. As already seen in
Subsection 2.1.3, we want to prove that the system of inequalities

νi
.
= βici −∑

j
βiti

jcj − ki〈Yi, Ci〉 < 0, ∀i , (2.46)

cannot be fulfilled at the same time. This gives a contradiction with Corollary 2.20. In particular,
we show that for the index σ such that βσ = minj β j,

νσ ≥ 0.

To do so, we prove that the quantities

µi
.
= βici −∑

j
β jti

jcj − ki〈Yi, Ci〉
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equal to 0 for every i. Then, choosing σ as above and exploiting the positivity of cj, ∀j, we estimate

0 = µσ = βσcσ −∑
j

β jtσ
j cj − kσ〈Yσ, Cσ〉 ≤ βσcσ −∑

j
βσtσ

j cj − kσ〈Yσ, Cσ〉 = νσ.

This will then yield the required contradiction. In order to show µi = 0, ∀1 ≤ i ≤ N, we consider
N matrices Mi defined as

Mi
.
= µ ∑

j≤i−1
αjCT

j Dj + ∑
j≥i

αjCT
j Dj,

where µ > 1 is part of the defining vector of the TN configuration {X1, . . . , XN}, compare
Definition 2.15, and αj are real numbers. We prove that for numbers ξ j > 0, a subset Ii ⊂
{ξ1µ1, . . . , ξNµN} is made of generalized eigenvalues of Mi, see (2.57). This is achieved thanks to
Lemma 2.24. Since Mi is trace-free, as can be seen by the structure of Cj and Dj, we will find N
relations of the form

∑
ξ jµj∈Ii

ξ jµj = 0.

This can be read as the equations for the kernel for a specific matrix N × N matrix, W. Proving
that W has trivial kernel will yield ξ jµj = 0, ∀j, and thus µj = 0 since ξ j > 0. The proof of the
invertibility of W is the content of the last Lemma 2.25.

2.4.2 Proof of Theorem 2.1

Lemma 2.23. If f is a strictly polyconvex function such that Ai ∈ C f , ∀1 ≤ i ≤ N and f (Xi) ≥ 0, ∀1 ≤
i ≤ N, then there exists another strictly polyconvex function F such that the T′N configuration Bi defined
as

Bi =

 Xi − P
Yi

Zi − PTYi


satisfies Bi ∈ CF, for every 1 ≤ i ≤ N and moreover F(Xi − P) ≥ 0, ∀i.

Proof. Simply define F(X) by F(X)
.
= f (X + P). Clearly the newly defined family {B1, . . . BN}

still induces a T′N configuration, and it is straightforward that Bi ∈ CF. Moreover, this does not
affect positivity, in the sense that F(Xi − P) = f (Xi − P + P) = f (Xi) ≥ 0.

Lemma 2.24. Suppose Ai ∈ C f , ∀i, and P = 0. Then, for every i ∈ {1, . . . , N}:

N

∑
j=1

k j(k j − 1)ti
jC

T
j Djni =

(
ki〈Ci, Yi〉 − βici +

N

∑
j=1

β jti
jcj

)
ni, ∀i = 1, . . . , N,

where ti are the vectors defined in (2.14).

Proof. We need to compute the following sums:

∑
j

ti
jZj = ∑

j
ti

jX
T
j Yj −∑

j
ti

jcjβ j id . (2.47)

Let us start computing the sum for i = 1, ∑j λjXT
j Yj. First, notice that

∑
j

λjXT
j Yj = ∑

j
λjXT

j (Yj −Q) + ∑
j

λjXT
j Q = ∑

j
λjXT

j (Yj −Q),

since

∑
j

λjXT
j Q = PTQ = 0.
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We rewrite it in the following way:

∑
j

λjXT
j Yj = ∑

j
λjXT

j (Yj −Q)

=
N

∑
j=1

λj

(
∑

1≤a,b≤j−1
CT

a Db + k j ∑
1≤a≤j−1

CT
a Dj + k j ∑

1≤b≤j−1
CT

j Db + k2
j CT

j Dj

)
= ∑

i,j
gijCT

i Dj,

(2.48)

where we collected in the coefficients gij the following quantities:

gij =

{
λiki + ∑N

r=i+1 λr, if i 6= j
λik2

i + ∑N
r=i+1 λr, if i = j.

We have:

gij = gji = λiki +
N

∑
r=i+1

λr =
µ

µ− 1
,

On the other hand,

gii = k2
i λi +

N

∑
r=i+1

λr = ki(ki − 1)λi +
µ

µ− 1
.

Using the equalities ∑` C` = 0 = ∑` D`, then also ∑i,j CT
i Dj = 0, and so ∑i 6=j CT

i Dj = −∑i CT
i Di.

Hence, (2.48) becomes

∑
i,j

gijCT
i Dj =

µ

µ− 1 ∑
i 6=j

CT
i Dj + ∑

i

(
ki(ki − 1)λi +

µ

µ− 1

)
CT

i Di = ∑
i

ki(ki − 1)λiCT
i Di.

We just proved that

∑
j

λjXT
j Yj = ∑

j
k j(k j − 1)λjCT

j Dj. (2.49)

We also have:

∑
j

λjZj = ∑
j

λjXT
j Yj −∑

j
λjcjβ j id⇒∑

i
ki(ki − 1)λiCT

i Di = R + ∑
j

λjcjβ j id .

Recall the definition of ti, namely

ti =
1
ξi
(µλ1, . . . , µλi−1, λi, . . . , λN) .

By the previous computation (i = 1), it is convenient to rewrite (2.47) as

R +
i−1

∑
j

Ej =
1
ξi

(
∑

j
k j(k j − 1)λjCT

j Dj + (µ− 1)
i−1

∑
j=1

λjXT
j Yj

)
−∑

j
ti

jcjβ j id . (2.50)

Once again, let us express the sum up to i− 1 in the following way:

i−1

∑
j=1

λjXT
j Yj =

i−1

∑
j=1

λjXT
j Q +

i−1

∑
k,j

skjCT
k Dj.

A combinatorial argument analogous to the one in the previous case gives

s`` = k2
`λ` + · · ·+ λi−1
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= (k2
` − k`)λ` + k`λ` + · · ·+ λi−1,

sαβ = kαλα + · · ·+ λi−1, α > β

sβα = kβλβ + · · ·+ λi−1, α < β.

Now

krλr + · · ·+ λi−1 =
µ(∑i−1

j=1 λj) + ∑N
j=i λj

µ− 1

and so

krλr + · · ·+ λi−1 =
(µ− 1)(∑i−1

j=1 λj) + 1

µ− 1
=

ξi
µ− 1

=: bi−1

Hence

i−1

∑
j=1

λjXT
j Yj =

i−1

∑
j=1

λjXT
j Q +

i−1

∑
k,j

skjCT
k Dj =

i−1

∑
j=1

λjXT
j Q + bi−1

i−1

∑
k,j

CT
k Dj +

i−1

∑
j=1

k j(k j − 1)λjCT
j Dj.

We rewrite (2.50) as

R +
i−1

∑
j=1

Ej =
1
ξi

(
∑

j
k j(k j − 1)λjCT

j Dj + ξi

i−1

∑
k,j

CT
k Dj + (µ− 1)

i−1

∑
j=1

(k j(k j − 1)λjCT
j Dj + λjXT

j Q)

)
−∑

j
β jti

jcj id

(2.51)

Ei is readily computed using (2.51) and the definition of Zi:

kiEi +
1
ξi

(
∑

j
k j(k j − 1)λjCT

j Dj + ξi

i−1

∑
k,j

CT
k Dj + (µ− 1)

i−1

∑
j=1

(k j(k j − 1)λjCT
j Dj + λjXT

j Q)

)
−∑

j
β jti

jcj id = XT
i Yi − βici id

Multiply by ni the previous expression

1
ξi

(
∑

j
k j(k j − 1)λjCT

j Djni + ξi

i−1

∑
k,j

CT
k Djni + (µ− 1)

i−1

∑
j=1

(k j(k j − 1)λjCT
j Djni + λjXT

j Qni)

)
−∑

j
β jti

jcjni = XT
i Yini − βicini.

(2.52)

Now notice that

XT
i Yini = XT

i Qni +
i−1

∑
j,k

CT
k Djni + ki

i

∑
j=1

CT
i Djni + ki

i

∑
j=1

CT
j Dini + k2

i CT
i Dini

= XT
i Qni +

i−1

∑
j,k

CT
k Djni + ki

i

∑
j=1

CT
i Djni.

Thus (2.52) becomes

1
ξi

(
∑

j
k j(k j − 1)λjCT

j Djni + (µ− 1)
i−1

∑
j=1

(k j(k j − 1)λjCT
j Djni + λjXT

j Qni)

)

−∑
j

β jti
jcjni = XT

i Qni + ki

i−1

∑
j=1

CT
i Djni − βicini.

(2.53)
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Now we need to compute
i−1

∑
j=1

λjXj =
i−1

∑
j=1

yjCj,

and

yj = k jλj + · · ·+ λi−1 =
ξi

µ− 1
, ∀j ∈ {1, . . . , i− 1}.

With this, (2.53) becomes

1
ξi

(
∑

j
k j(k j − 1)λjCT

j Djni + (µ− 1)
i−1

∑
j=1

k j(k j − 1)λjCT
j Djni

)
+

i−1

∑
j=1

CT
j Qni −∑

j
β jti

jcjni =

XT
i Qni + ki

i−1

∑
j=1

CT
i Djni − βicini.

(2.54)

Exploiting the definition of ti
j, we see that we can rewrite

1
ξi

(
∑

j
k j(k j − 1)λjCT

j Djni + (µ− 1)
i−1

∑
j=1

k j(k j − 1)λjCT
j Djni

)
= ∑

j
k j(k j − 1)ti

jC
T
j Djni,

and

XT
i Qni + ki

i−1

∑
j=1

CT
i Djni −

i−1

∑
j=1

CT
j Qni

=
i−1

∑
j=1

CT
j Qni + kiCT

i Qni + ki

i−1

∑
j=1

CT
i Djni −

i−1

∑
j=1

CT
j Qni = kiCT

i Yini.

Thus (2.54) can be rewritten as

∑
j

k j(k j − 1)ti
jC

T
j Djni −∑

j
β jti

jcjni = ki

i−1

∑
j=1

CT
i Yini − βicini.

We finally obtain the statement of the Lemma:

N

∑
j=1

k j(k j − 1)ti
jC

T
j Djni =

(
ki〈Ci, Yi〉 − βici +

N

∑
j=1

β jti
jcj

)
ni, ∀i = 1, . . . , N.

We are finally in position to prove the main Theorem.

Proof of Theorem 2.1. Assume by contradiction the existence of a T′N configuration induced by
matrices {A1, . . . , AN} of the form (2.45) which belong to the inclusion set C f of some stictly
polyconvex function f ∈ C1(Rn×m) and f (Xi) ≥ 0 for every i. We can assume, without loss of
generality by Lemma 2.23, that

P = 0 .

Using the previous Lemma, we find

N

∑
j=1

k j(k j − 1)ti
jC

T
j Djni =

(
ki〈Ci, Yi〉 − βici +

N

∑
j=1

β jti
jcj

)
ni, ∀i. (2.55)
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Define αj
.
= k j(k j − 1)λj > 0, and

Mi
.
= µ ∑

j≤i−1
αjCT

j Dj + ∑
j≥i

αjCT
j Dj,

for i ∈ {1, . . . , N}. Define moreover for convenience

Mi
.
= µMi−N , ∀i ∈ {N + 1, . . . , 2N}.

Then, (2.55) can be rewritten as

Mini = ξiµini, ∀i ∈ {1, . . . , N}. (2.56)

We define ns
.
= ns−N , for s ∈ {N + 1, . . . , N}. As explained in Subsection 2.4.1, the idea is to

show that a subset of the vectors nj are generalized eigenvectors and ξni are generalized eigenvalues of
Mi. In particular, we want to show the following equalities:{

Mini+a = ξi+aµi+1ni+a + vi,a, if i ≤ i + a ≤ N
Mini+a = µξi+aµi+1ni+a + vi,a, if N + 1 ≤ i + a ≤ N + i− 1,

(2.57)

where vi,a ∈ span{ni, . . . , ni+a−1}. From now on, we fix i ∈ {1, . . . , N}. To prove (2.57), first we
rewrite

Mini+a = (Mi −Mi+a)ni+a + Mi+ani+a, (2.58)

and then we use (2.56) to obtain

(Mi −Mi+a)ni+a + Mi+ani+a =

{
ξi+aµi+ani+a + (Mi −Mi+a)ni+a, if i + a ≤ N,
µξi+aµi+ani+a + (Mi −Mi+a)ni+a, if i + a > N.

.

To conclude the proof of (2.57), we only need to show that

(Mi −Mi+a)ni+a ∈ span{ni, . . . , ni+a−1}. (2.59)

To do so, we compute Mi −Mi+a. Let us start from the case i + a ≤ N:

Mi −Mi+a = µ ∑
j<i

αjCT
j Dj + ∑

j≥i
αjCT

j Dj − µ ∑
j<i+a

αjCT
j Dj − ∑

j≥i+a
αjCT

j Dj

= ∑
i+a>j≥i

αjCT
j Dj − µ ∑

i<j<i+a
αjCT

j Dj.

On the other hand, if N + 1 ≤ i + a ≤ i + N − 1, then

Mi −Mi+a = Mi − µMi+a−N

= µ ∑
j<i

αjCT
j Dj + ∑

j≥i
αjCT

j Dj − µ2 ∑
j<i+a−N

αjCT
j Dj − µ ∑

j≥i+a−N
αjCT

j Dj

= µ ∑
j<i+a−N

αjCT
j Dj − µ ∑

j≥i
αjCT

j Dj + ∑
j≥i

αjCT
j Dj − µ2 ∑

j<i+a−N
αjCT

j Dj.

Now the crucial observation is that, due to the structure of Cj, the image of CT
j Dj is contained

in the line span(nj), for every j ∈ {1, . . . , N}. Therefore, the previous computations prove (2.59)
and hence (2.57). Now we introduce

Vi
.
= {ni, ni+1, ni+2, . . . , nN , nN+1, . . . , nN+i−1}.

We can extract a basis for span(Vi) in the following way. First, choose indexes

Si
.
= {k : k = i or i < k ≤ N + i− 1, nk /∈ span(ni, . . . , nk−1)}. (2.60)
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Then, consider the basis Bi
.
= {nk : k ∈ Si} for span(Vi). Since

span(Bi) = span({n1, . . . , nN}), ∀i,

then #Si = C ≤ min{m, N}. Indexes in Si lie in the set {1, . . . , 2N}. For technical reasons, we also
need to consider the modulo N counterpart of Si, that is

Si
.
= {k ∈ {1, . . . , N} : k ∈ Si or k + N ∈ Si}. (2.61)

In Si, consider furthermore S′i
.
= Si ∩ {i, . . . , N}, S′′i

.
= Si ∩ {1, . . . , i− 1}. If necessary, complete

Bi to a basis of Rm made with elements γj orthogonal to the ones of Bi. Note that, since
Im(CT

i Di) ⊂ {ni}, then Im(Mi) ⊂ {n1, . . . , nN}. Then, the associated matrix to Mi with respect
to Bi is

Mi =


a1i ∗ ∗ . . . ∗
0 a2i ∗ . . . ∗
...

...
...

. . .
...

0 0 0 . . . aCi

T

0m−C,C 0m−C,m−C

 . (2.62)

We denoted with 0c,d the zero matrix with c rows and d columns, with T the C× (m− C) matrix
of the coefficients of Miγj with respect to {ns : s ∈ Si}, and with ∗ numbers we are not interested
in computing explicitely. Finally, we have chosen an enumeration s1 < s2 < · · · < s` < · · · < sC
of the elements of Si, and we have defined

a`i =

{
ξs`µs` , if s` ∈ S′i ,
µξs`µs` , if s` − N ∈ S′′i .

The triangular form of the matrix representing Mi is exactly due to (2.57). Now, tr (Mi) = 0, ∀i,
since CT

i Di is trace-free for every i. This implies that the matrix in (2.62) must be trace-free, hence:

0 = tr (Mi) =
C

∑
`=1

a`i = ∑
a∈S′i

ξaµa + µ ∑
b∈S′′i

ξb+Nµb+N . (2.63)

We have thus reduced the problem to the following Linear Algebra simple statement: we wish to
show that, if W is the N × N matrix defined as

Wij =


1, if j ∈ S′i ,
µ, if j ∈ S′′i ,
0, if j /∈ Si,

then, Wx = 0 ⇒ x = 0. By (2.63), the vector x ∈ RN defined as xj
.
= ξ jµj, ∀1 ≤ j ≤ N, is such

that Wx = 0, thus if the statement is true we get ξ jµj = 0, ∀1 ≤ j ≤ N, and since ξ j > 1, also
µj = 0, ∀1 ≤ j ≤ N. As discussed at the beginning of the proof, this is sufficient to conclude.
Therefore, we only need to show that Wx = 0 ⇒ x = 0. This proof will be given in Lemma
2.25.

Before giving the proof of the final Lemma, let us make some examples of possible matrices W
arising from the previous construction. For the sake of illustration, let us take N to be as small as
possible, i.e. N = 4.

E.g. 2.1. Consider the case in which C = 2. This corresponds, for instance, to the case m = 2.
Then, by Proposition 2.22, the only possible form of W is

W =


1 1 0 0
0 1 1 0
0 0 1 1
µ 0 0 1

 , Wx =


x1 + x2
x2 + x3
x3 + x4

µx1 + x4

 = 0.
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Let Wi be the i-th row of W. We notice that for i = 1, 2, 3, Wi+1 differs from Wi by exactly two
elements, while W4 does not differ with W1 by only two elements. It does, though, with µW1.
Hence we rewrite equivalently the system Wx = 0 as Wi −Wi+1, W4 − µW1:

0 =


x1 − x3
x2 − x4

x3 − µx1
x4 − µx2

 , i.e. xi = aixh(i), ai =

{
1, if h(i) > i,
µ, if h(i) ≤ i,

For a function h : {1, . . . , 4} → {1, . . . , 4}. Since µ > 1, this immediately implies xi = 0, ∀i.
E.g. 2.2. Consider the case in which C = 4, corresponding to n1, n2, n3, n4 linearly independent.
Then,

W =


1 1 1 1
µ 1 1 1
µ µ 1 1
µ µ µ 1

 , Wx =


x1 + x2 + x3 + x4

µx1 + x2 + x3 + x4
µx1 + µx2 + x3 + x4

µx1 + µx2 + µx3 + x4

 = 0.

As in the previous example, for i = 1, 2, 3, Wi+1 differs from Wi by exactly one element, while
W4 does the same with µW1. Thus as before we rewrite equivalently the system Wx = 0 as
Wi −Wi+1, W4 − µW1:

0 =


(µ− 1)x1
(µ− 1)x2
(µ− 1)x3
(µ− 1)x4

 , i.e. xi = aixh(i), ai =

{
1, if h(i) > i,
µ, if h(i) ≤ i,

In this case, h(i) = i, ∀i ∈ {1, . . . , 4}. Clearly also in this case µ > 1, implies xi = 0, ∀i.
Finally, let us show a less symmetric example:

E.g. 2.3. Consider the case in which C = 3. Then, a possible matrix is:

W =


1 1 0 1
0 1 1 1
µ 0 1 1
µ µ 0 1

 , Wx =


x1 + x2 + x4
x2 + x3 + x4

µx1 + x3 + x4
µx1 + µx2 + x4

 = 0.

First, let us comment on the fact that this is a possible matrix appearing in the proof of the
previous Theorem. Indeed, let’s consider the first two lines:(

1 1 0 1
0 1 1 1

)
.

The fact that W13 = 0 means that n3 ∈ span(n1, n2), since 3 /∈ S1. On the other hand, Proposition
2.22 ensures that n3 is not a multiple of n2, hence n3 ∈ S2, and W23 = 1 6= 0. For this reason, the
matrix

W =


1 0 1 1
0 1 1 1
µ 0 1 1
µ µ 0 1


would for instance have been non-admissible. Now, in order to prove Wx = 0⇒ x = 0, we work
as in the previous examples, by noticing that for i = 1, 2, 3, Wi+1 differs from Wi by at most two
elements, while W4 must be compared with µW1. Thus we write Wi −Wi+1, W4 − µW1:

0 =


x1 − x3

x2 − µx1
x3 − µx2
(µ− 1)x4

 , i.e. xi = aixh(i), ai =

{
1, if h(i) > i,
µ, if h(i) ≤ i.

It is an elementary computation to show that xi = 0, ∀i.
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Even though the examples we have given are too simple to appreciate the usefulness of the
function h such that xi = aixh(i), this will be crucial in the proof of the Lemma.

Lemma 2.25. Let W be the matrix defined in the proof of Theorem 2.1. Then, Ker(W) = {0}.

Proof. Throughout the proof, we always consider a given vector x ∈ RN such that Wx = 0. The
strategy of the proof, partially suggested by the previous examples, consists in the following steps.
First, we show that the rows of W, Wi and Wi+1 (if i = N, we compare WN with µW1) differ for
at most two elements, and one of them is always xi. This immediately yields the existence of a
function h : {1, . . . , N} → {1, . . . , N} such that xi = aixh(i). We will then use this and the crucial
fact that µ > 1 to conclude that xi = 0, ∀i. Let us make the following claims, and see from them
how to conclude the proof of the present Lemma. We will use freely the notation introduced at
the end of the proof of Theorem 2.1.

Claim 1: Let i ∈ {1, . . . , N}. Then Si differs from Si+1 (if i = N, Si+1 = S1) of at most
two elements, in the sense that

Si∆Si+1
.
= Si \ Si+1 ∪ Si+1 \ Si

contains at most 2 elements. Moreover, if Si∆Si+1 6= ∅, then i ∈ Si∆Si+1, and if Si∆Si+1 = {i, I(i)}
with I(i) 6= i, then I(i) ∈ Si+1 \ Si.

Claim 2: Let i ∈ {1, . . . , N − 1}. The couple of rows Wi,Wi+1 and µW1, WN differ at most by
two elements, in the sense that if Wi = (Wi1, . . . , WiN) and Wi+1 = (W(i+1)1, . . . , W(i+1)N), then
there are at most two indexes j1, j2 such that Wij1 −W(i+1)j1 6= 0 and Wij2 −W(i+1)j2 6= 0 (and
analogously for µW1 and WN).

Finally, with this claim at hand, we are going to prove

Claim 3: There exists a function h : {1, . . . , N} → {1, . . . , N} and numbers ai, i ∈ {1, . . . , N},
such that

xi = aixh(i) (2.64)

with the property

ai =

{
1, if h(i) > i,
µ, if h(i) ≤ i.

Let us show how the proof of the Lemma follows from Claim 3, and postpone the proofs of the
claims. Fix i ∈ {1, . . . , N} and use (2.64) recursively to find

xi = aiah(i) . . . ah(n−1)(i)xh(n)(i),

where h(n) denotes the function obtained by applying h to itself n times. We will also use the
notation h(0) to denote the identity function: h(0)(i) = i, ∀i ∈ {1, . . . , N}. By the properties of aj,
we have, ∀r ∈ {0, . . . , n− 1},

ah(r)(i) =

{
1, if h(r)(i) > h(r−1)(i),
µ, if h(r)(i) ≤ h(r−1)(i).

Fix k ∈N, and let r ∈ {k + 1, . . . , k + N + 1}. Then, h(r)(i) > h(r−1)(i) can occur at most N times
in this range, since otherwise we would find

1 ≤ h(k)(i) < h(k+1)(i) < h(k+2)(i) < · · · < h(k+N+1)(i) ≤ N,

and this is impossible since we would have N + 1 distinct elements in the set {1, . . . , N}. Now
clearly this observation implies that for every fixed l ∈N, there exists s ∈N such that

xi = µtxh(s)(i), for some t ≥ l.
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This can only happen if xi = 0. Since i is arbitrary, the conclusion follows.

Let us now turn to the proof of the claims.

Proof of claim 1: To prove the claim, we need to use the definition of Si. Let us recall the defini-
tion of Si, given in (2.60). To build Si what we do is consider the ordered set {ni, ni+1, . . . , ni+1−N}
and select from it a basis of span{n1, . . . , nN} starting from ni and then at the step i + 1 ≤ k ≤ N
deciding whether to insert the vector nk in our collection based on the fact that it is linear
dependent or not from the previous ones. Recall also that Si is the modulo N version of Si, see
(2.61), and that we define nj

.
= nj−N , for j ∈ {N + 1, . . . , 2N}. Hence now fix i ∈ {1, . . . , N} and

consider Si. If Si = {1, . . . , N}, then #Si = N, thus Sj = {1, . . . , N}, ∀1 ≤ j ≤ N and the claim
holds. Otherwise, let i + 1 < I = I(i) ≤ i + N − 1 be the first element in (Si)

c. There are two
cases:

1. nI ∈ span(ni, . . . , nI−1) \ span(ni+1, . . . , nI−1);

2. nI ∈ span(ni+1, . . . , nI−1).

At the same time, consider what happens in Si+1: the span in the (i + 1)-th case starts with one
vector less than the one of the i-th case, simply because the collection of indexes in Si+1 starts
from ni+1. Hence, since I is the first missing index in Si, I is also the first possible missing index
for Si+1. Therefore, consider the first case

nI ∈ span(ni, . . . , nI−1) \ span(ni+1, . . . , nI−1).

This implies that I ∈ Si+1. Moreover, we are now adding nI to the set of vectors ni+1, . . . , nI−1,
and nI ∈ span(ni, . . . , nI−1) \ span(ni+1, . . . , nI−1), hence nI adds to the previous vectors the
component relative to ni, in the sense that

span(ni+1, . . . , nI) = span(ni, . . . , nI−1).

This moreover implies that j ∈ Si ⇔ j ∈ Si+1, ∀I ≤ j < N + i− 1. Since ni ∈ span(ni+1, . . . , nI),
i /∈ Si+1. Thus Si and Si+1 differ by at most two elements, and we have i ∈ Si \ Si+1 and
I = I(i) ∈ Si+1 \ Si. This concludes the case

nI ∈ span(ni, . . . , nI−1) \ span(ni+1, . . . , nI−1).

If instead nI ∈ span(ni+1, . . . , nI−1), then we see that I /∈ Si+1, and we can iterate this reasoning
from there, in the sense that we look for the next index I′ such that I′ /∈ Si and divide again into
the two cases above. Clearly, for the indexes i + 1 ≤ j < I′1, we have j ∈ Si+1 and j ∈ Si. Either
this iteration enters in case 1 of the previous subdivision for some element I /∈ Si, or we conclude
Si = Si+1. This concludes the proof of the claim.

Proof of claim 2:

Note that nonzero elements of Wi are found in positions corresponding to elements of Si. Hence
now fix i ∈ {1, . . . , N − 1} and consider Wi and Wi+1. If Si = Si+1, then Wij = 0⇔ W(i+1)j = 0.
Moreover, we introduce the modulo N counterpart of the number I(i) found in Claim 2, i.e.
I′(i) = I(i) if I(i) ∈ {1, . . . , N}, and I′(i) = I(i)− N if I(i) ∈ {N + 1, . . . , 2N}. Thus using the
definition of W, we can deduce

W(i+1)j = Wij = 0, if j /∈ Si

W(i+1)j = Wij = µ, if j ∈ Si, j < i
W(i+1)j = Wij = 1, if j ∈ Si, j > i
W(i+1)i = µ, Wii = 1, otherwise,

(2.65)
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and the claim holds in this case. Finally, if Si∆Si+1 = {i, I′(i)}, then:

W(i+1)j = Wij = 0, if j /∈ Si, j 6= I′(i)
W(i+1)j = 1, Wij = 0, if j = I′(i) > i + 1
W(i+1)j = µ, Wij = 0, if j = I′(i) < i− 1
W(i+1)j = Wij = µ, if j ∈ Si, j < i
W(i+1)j = Wij = 1, if j ∈ Si, j > i
W(i+1)i = 0, Wii = 1, otherwise.

(2.66)

This concludes the proof of the claim if i ∈ {1, . . . , N − 1}. If i = N, then we need to compare
WN with µW1, and we obtain two cases, in analogy with the previous situation:

if SN∆S1 = ∅, then :


µW1j = WNj = 0, if j /∈ SN

µW1j = WNj = µ, if j ∈ SN , j < N
µW1N = µ, WNN = 1, otherwise,

(2.67)

and

if SN∆S1 = {xN , xI′(N)}, then :


µW1j = WNj = 0, if j /∈ SN , j 6= I′(N)

µW1j = 0, WNj = µ, if j /∈ SN , j = I′(N)

µW1j = WNj = µ, if j ∈ SN , j < N
µW1N = 0, WNN = 1, otherwise.

(2.68)

Proof of Claim 3: Fix i ∈ {1, . . . , N}. We want to consider the equations given by

(Wi+1 −Wi)x = 0, if i ∈ {1, . . . , N − 1}, and (WN − µW1)x = 0.

If we consider i ∈ {1, . . . , N − 1}, we see from (2.65) and (4.6) that

0 = (Wi −Wi+1)x =
N

∑
j=1

(Wij −W(i+1)j)xj =


(1− µ)xi, if Si∆Si−1 = ∅
xi − xI′(i), if Si∆Si−1 = {i, I′(i)}, I′(i) > i + 1
xi − µxI′(i), if Si∆Si−1 = {i, I′(i)}, I′(i) < i− 1

and from (2.67) and (2.68) we infer

0 = (WN − µW1)x =

{
(1− µ)xN , if SN∆S1 = ∅
xN − xI′(N), if SN∆S1 = {N, I′(N)}.

From these equations we see that (2.64) holds with the choice h(i) .
= I′(i), when i is such that

Si∆Si+1 6= ∅, and h(i) .
= i otherwise.

We end this section by showing that Theorem 2.1 implies Theorem 2.2.

Proof of Theorem 2.2. Assume by contradiction that there exists a family of matrices

{A1, . . . , AN} ⊂ K f

inducing a T′N configuration of the form (2.45). We show that then there exists another T′N
configuration {B1, . . . , BN} such that Bi ∈ KF ⊂ CF, ∀1 ≤ i ≤ N for some strictly polyconvex F
with

F(X′i) ≥ 0, ∀1 ≤ i ≤ N,
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if

Bi =

 X′i
Y′i
Z′i

 , ∀1 ≤ i ≤ N.

This is a contradiction with Theorem 2.1. To accomplish this, it is is sufficient to define F(X)
.
=

f (X)−mini f (Xi). This function is clearly strictly polyconvex, since f is. Moreover, we define

X′i
.
= Xi, Y′i

.
= Yi and Z′i

.
= Zi −min

i
f (Xi) id .

In this way, Bi is still a T′N configuration. Moreover, Bi ∈ KF, ∀1 ≤ i ≤ N. To see this, it is
sufficient to notice that, since Ai ∈ K f ,

Y′i = Yi = D f (Xi) = DF(X′i), ∀1 ≤ i ≤ N,

and
Z′i = Zi + min

i
f (Xi) id = XT

i Yi − f (Xi) id+min
i

f (Xi) id = (X′i)
TY′i − F(Xi) id .

This finishes the proof.

Remark 2.26. It is a natural question to ask whether the hypothesis of positivity is actually
necessary in the hypothesis of Theorem 2.1. In [41], we will give an answer to this question, in
the sense that we will construct a polyconvex function such that C f contains a family of matrices
inducing a T′5 configuration, and from that we will deduce that the constancy Lemma is false for
geometric functionals that are allowed to change sign. We also remark that it is rather easy already
to violate Proposition 2.22 without the hypothesis of positivity of f .
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S TAT I O N A RY G R A P H S A N D S TAT I O N A RY VA R I F O L D S

The aim of this chapter is to provide the link between stationary points for energies defined on
graphs with multiplicity, that we recall being equivalent to the following system

�
Ω
〈D f (Du), Dv〉β dx = 0 ∀v ∈ C1

c (Ω, Rn)
�

Ω
〈D f (Du), DuDΦ〉β dx−

�
Ω

f (Du)div Φβ dx = 0 ∀Φ ∈ C1
c (Ω, Rm),

(3.1)

and stationary varifolds for geometric energies. In Section 3.1 we will give the definitions we will
need, and then in Section 3.2 we will prove, after having shown several technical lemmas, the
main result of this chapter:

Proposition. Assume that f ∈ C1(Rn×m) admits an extension Ψ ∈ C1(G(m, m + n)), in the sense that
(6.4) holds for every X ∈ Rn×m. Fix any m ≤ p ≤ +∞, 1 ≤ q < +∞ and a Lipschitz, bounded, open
set Ω ⊂ Rm. If a map u ∈ W1,p(Ω, Rn) and a Borel function β ∈ L∞(Ω, (0,+∞)) satisfy, for every
v ∈ C1

c (Ω, Rn) and Φ ∈ C1
c (Ω, Rm),

∣∣∣∣�
Ω
〈D f (Du), Dv〉β dx

∣∣∣∣ ≤ C‖vA
1
q (Du)β

1
q ‖q∣∣∣∣�

Ω
〈D f (Du), DuDΦ(x)〉β dx−

�
Ω

f (Du)div(Φ)βdx
∣∣∣∣ ≤ C‖ΦA

1
q (Du)β

1
q ‖q,

(3.2)

for some C ≥ 0, then the rectifiable varifold of Rm+n θJGuK, where θ(x, y) = β(x), satisfies

|δΨ(θJGuK)(g)| ≤ C′‖gθ
1
q ‖q,Gu ∀g ∈ C1

c (Ω×Rn, Rm+n), (3.3)

for some number C′ = C′(C, m, p, q) ≥ 0. Conversely, if (3.3) holds for some C′, then (3.2) holds for some
C = C(C′, m, p, q). Moreover, C′ = 0 if and only C = 0, namely u is satisfies (3.1) if and only if θJGuK is
stationary for the energy Σ.

3.1 notation and preliminary definitions

Recall that general m-dimensional varifolds in Rm+n (introduced by L.C. Young in [89] and
pioneered in geometric measure theory by Almgren [3] and Allard [1]) are nonnegative Radon
measures on the Grassmaniann of G(m, m + n) of (unoriented) m-dimensional planes of Rm+n.
In our specific case we are interested on a subclass, namely rectifiable varifolds, for which we can
take the simpler Definition 3.1 below. A quick reference for the terminology used in this section
is [16], whereas comprehensive introductions can be found in the foundational paper [1] and in
the book [78].

Definition 3.1. A rectifiable varifold V of dimension m is a couple (Γ, θ), where Γ ⊂ Rm+n is a
m-rectifiable set in RN , and θ : Γ→ (0,+∞) is a Borel map. If θ has values in N \ {0}, then the
varifold is called integer rectifiable.

It is customary to denote (Γ, θ) as θJΓK and to call θ the multiplicity of the varifold.

Definition 3.2. Let U be an open set of Rm+n, and let Φ : Rm+n → U be a diffeomorphism. The
pushforward of a rectifiable varifold V = θJΓK through Φ is defined as Φ#V = θ ◦Φ−1JΦ(Γ)K.

For a rectifiable varifold θJΓK, it is customary to introduce a notion of approximate tangent
plane, which exists for Hm-a.e. point of Γ, we refer to [78, Theorem 3.1.8] for the relevant details.

33
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Provided it exists, the tangent plane at the point y ∈ Γ will be denoted with TyΓ and it is an
element of G(m, m + n). In the following, we will identify the Grassmanian manifold with a
suitable subset of orthogonal projections, i.e. for every L ∈ G(m, m + n) we consider the linear
map P : Rm+n → Rm+n which is the orthogonal projection onto L. With this identification we
have

G(m, m + n) ∼
{

P ∈ R(m+n)×(m+n) : P = PT , P2 = P, rank(P) = tr (P) = m
}

.

We are interested in graphs of maps u : Ω ⊂ Rm → Rn, and we always consider Rm =
span{e1, . . . , em}, where {e1, . . . , en+m} is the canonical basis of Rn+m. In other words, we are
interested in sets of the form Γu = {z ∈ Rn+m : z = (x, u(x)), x ∈ Ω}. For this reason, we need
to characterize the space of orthogonal projections on tangent planes to graphs (on the plane
span{e1, . . . , em}). Since at the differentiability point x0, we have

D((x, u(x)))|x=x0 =

(
idm

Du(x0)

)
∈ R(m+n)×m,

it is convenient to introduce the following notation:

M(X)
.
=

(
idm
X

)
.

Therefore, every tangent plane to a graph Γu is of the form

τ(X) = span{M(X)Te1, . . . , M(X)Ten+m}. (3.4)

With the notation above, the tangent plane of Γu at x0 is τ(Du(x0)). The orthogonal projection on
τ(X) is given by the formula

h(X)
.
= M(X)S(X)M(X)T

where
S(X)

.
= (M(X)T M(X))−1,

or, more explicitely,

h(X) =

(
h1(X) h3(X)
h2(X) h4(X)

)
=

(
S(X) S(X)XT

XS(X) XS(X)XT

)
. (3.5)

In particular, using the notation above, we remark that Tx0 Γu = h(Du(x0)). This discussion
motivates the following

Definition 3.3. We denote by G0(m, m + n) .
= h(Rn×m) ⊂ G(m, m + n) the set of orthogonal

projections of tangent planes to graphs of maps defined on span{e1, . . . , em} ⊂ Rn+m.

We will use for any matrix M ∈ R(m+n)×(m+n) the same splitting as in (3.5):

M =

[
M1 M3
M2 M4

]
(3.6)

with M1 ∈ Rm×m, M4 ∈ Rn×n. Using this notation, it is not difficult to verify that

h−1(P) = P2P−1
1 . (3.7)

The map h is therefore a smooth diffeomorphism between Rn×m and the open subset G0.
In this section, we will use freely the following fact. Recall that, by (1.4), for every X ∈ Rn×m

the area element is given by

A(X) =
√

det(idm +XTX).
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By the Cauchy-Binet formula, [5, Proposition 2.69],

A(X) =

√√√√1 + ‖X‖2 +
min{m,n}

∑
r=2

∑
Z∈Ar

det(XZ)2,

where we used the notation introduced in Definition 2.13.
Finally, throughout the chapter, we use the following notation:

• if z ∈ Rm ×Rn, then we will write z = (x, y), x ∈ Rm, y ∈ Rn;

• π : Rm ×Rn → Rm denotes the projection on the first factor, i.e. π(z) = π((x, y)) = x.

3.1.1 Graphs and varifolds

If u ∈ W1,p(Ω, Rn), Ω ⊂ Rm and p > m, Morrey’s embedding theorem shows the existence
of a precise representative of u which is Hölder continuous. In what follows we will always
assume that the map u is given pointwise by such (Hölder) continuous precise representative. As
done above, we use the notation Γu for the (set-theoretic) graph {(x, u(x)) : x ∈ Ω}, which is a
relatively closed subset of Ω×Rn. The classical area formula (see for instance [38, Cor. 2, Ch. 3])
implies that Γu is m-rectifiable and its Hm measure is given by

�
Ω
A(Du) .

We can thus consider the corresponding varifold JΓuK.

If u ∈ W1,m(Ω, Rn), then u has a precise representative which is however defined only up
to a set of m-capacity 0 (but not everywhere). Moreover, if for maps u ∈ W1,m ∩ C(Ω, Rn), for
which the set-theoretic graph Γu could be defined classically, it can be proven that Γu does not
necessarily have locally finite Hm-measure, in spite of the fact that A(Du) belongs to L1

loc. In
particular the area formula fails. For this reason, following the notation and terminology of [38,
Sec. 1.5, 2.1], we introduce the rectifiable part of the graph of u, which will be denoted by Gu (the
notation in [38] is in fact Gu,Ω: we will omit the domain Ω since in our case it is always clear from
the context).

First we denote the set of Lebesgue points of u by Lu and we introduce the set

AD(u)
.
= {x ∈ Ω : u is approximately differentiable at x}.

For the definition of approximate differentiability, see [38, Sec. 1.4, Def. 3]. We also set

Ru
.
= AD(u) ∩ Lu.

Notice that, since u ∈W1,m(Ω, Rn), then |Ω \Ru| = 0. From now on, we always assume that u so
that u(x) is the Lebesgue value at every point x ∈ Ru. The rectifiable part of the graph of u is then

Gu
.
= {(x, u(x)) : x ∈ Ru} .

By [38, Sec. 1.5, Th. 4], Gu is m-rectifiable and

Hm(Gu) =

�
Ω
A(Du(x))dx . (3.8)

Since A(Du) ∈ L1, this allows us to introduce the integer rectifiable varifold 1 JGuK. When
u ∈ W1,p for p > m, the Lusin property (namely the fact that v(x) .

= (x, u(x)) maps sets of

1 In fact the Gu can be oriented to give an integer rectifiable current of multiplicity 1 and without boundary in Ω×Rn, see
[38, Pr. 1, Sec 2.1]. The varifold that we consider is then the one induced by the current in the usual sense.
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Lebesgue measure zero in sets of Hm-measure zero, cf. again [38]) and Morrey’s embedding
imply Gu ⊂ Γu and Hm(Γu \ Gu) = 0. In particular JGuK = JΓuK.

By [38, Sec. 1.5, Th. 5], the approximate tangent plane TyGu coincides for Hm-a.e. z0 =
(x0, u(x0)) ∈ Gu with the orthogonal projection on τ(Du(x0)), introduced in (3.4). Recall that
this orthogonal projection is denoted with h(Du(x0)). The following proposition allows then to
pass from functionals defined on varifolds to classical functionals in the vectorial calculus of the
variations (and viceversa). The proof of this result will be given in Appendix B.

Proposition 3.4. Let u ∈ W1,m(Ω, Rn), and define v(x) .
= (x, u(x)). Let β ∈ L∞(Ω, (0,+∞)) and

define θ(x, y) .
= β(x), ∀(x, y) ∈ Rm+n. The following holds

θJGuK(ϕ)
.
=

�
Gu

ϕ(z, TzGu)θ(z)dHm(z) =
�

Ω
ϕ(v(x), h(Du(x)))A(Du(x))β(x)dx (3.9)

for every ϕ ∈ Cb(Ω×Rn ×G0).

Consider therefore a functional

E(u, β)
.
=

�
Ω

f (Du(x))β(x)dx ,

for some f : Rn×m → R with
f (X)

A(X)
∈ Cb(R

n×m).

Define moreover F, G : G0 → R as

F(M)
.
= f (h−1(M)), G(M)

.
= A(h−1(M)).

Finally consider the map Ψ on the open subset G0 of the Grassmanian G(m, m + n) as

Ψ(h(X))
.
=

F(h(X))

G(h(X))
=

f (X)

A(X)
. (3.10)

We can apply (3.9) to write:
�

Ω
f (Du(x))β(x) dx =

�
Ω

F(h(Du(x)))β(x) dx

=

�
Ω

F(h(Du(x)))
G(h(Du(x)))

A(Du(x))β(x) dx =

�
Gu

Ψ(TzGu)θ(z)dHm(z).

We are thus ready to introduce the following functional

Definition 3.5. Let V = θJΓK be an m-dimensional rectifiable varifold in Rm+n with the property
that the approximate tangent TzΓ belongs to G0 for Hm-a.e. z ∈ Γ. Then

Σ(V) =

�
Γ

Ψ(TzΓ)θ(z)dHm(z) .

The above discussion then proves the following

Proposition 3.6. If Ω ⊂ Rm, u ∈ W1,m(Ω, Rn) and θ(x, u(x)) = β(x) ∈ L∞(Ω, (0,+∞)), then
Σ(θJGuK) = E(u, β). Moreover, if u ∈W1,p(Ω, Rn) with p > m, then Σ(θJΓuK) = E(u, β).

3.1.2 First variations

We do not address here the issue of extending the functional Σ to general varifolds (namely
of extending Ψ to all of G(m, m + n)). Rather, assuming that such an extension exists, we wish
to show that the usual stationarity of varifolds with respect to the functional Σ is equivalent to
stationarity with respect to two particular classes of deformations, which reduce to inner and
outer variations in the case of graphs. We start recalling the usual stationarity condition.
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Definition 3.7. Let Ψ : G(m, m + n) → [0, ∞] be a continuous function. Fix a vector field
g ∈ C1

c (R
m+n; Rm+n) and define Xε as the flow generated by g, namely Xε(x) = γx(ε), if γx is

the solution of the following system {
γ′(t) = g(γ(t))
γ(0) = x.

We define the variation of V with respect to the vector field g ∈ C1
c (R

m+n; Rm+n) as

[δΨV](g) .
= lim

ε→0

Σ((Xε)#V)− Σ(V)

ε
.

V is said to be stationary if [δΨV](g) = 0, ∀g ∈ C1
c (R

m+n; Rm+n).

Before continuing, let us give a rough explanation of why the equivalence of stationarity for
graphs and stationarity for varifolds should hold. Suppose for the moment β ≡ 1. Recall that the
first equation of (3.1) is given differentiating in ε the variation u(x)+ εv(x). The latter corresponds,
at the infinitesimal level, to the one-parameter family of deformations of the graph induced by
the vector field g(x, y) = (0, v(x)). Similarly, the second equation of (3.1) is given differentiating
the variation u ◦ Xε where Xε(x) = x + εΦ(x), which corresponds to the one-parameter family of
deformations of the graph induced by the vector field (−Φ(x), 0). These remarks can be used
in order to show rigorously that, if JGuK is stationary in the sense of varifolds (for the energy
corresponding to E), then u satisfies (3.1). The converse is less obvious: even though any vector
field g(x, y) can be decomposed into a horizontal and vertical part (g1(x, y), 0) + (0, g2(x, y)),
there is still the issue that the gi’s depend on the variable y as well. When the graph u is smooth,
we can simply argue that variations of the graph along the vector field g(x, y) are equal to
variations along g̃(x) .

= g(x, u(x)). This however creates several technical difficulties if we only
assume Sobolev regularity for u. Nonetheless the conclusion is still correct. We conclude this
section with a rather general equivalence statement between stationarity of graphs and stationarity
of varifolds, for which we need first some suitable terminology and notation. The (somewhat
lengthy) proof is postponed to the next section.

Given an orthogonal projection P ∈ G(m, m + n), we denote P⊥ .
= idm+n−P. The notation

P⊥ is due to the fact that, if P represents the orthogonal projection onto the m-plane τ ⊂ Rn+m,
idn+m−P is the element in G(n, m + n) representing the orthogonal projection onto the n-plane
τ⊥ ⊂ Rn+m. From [21, Lemma A.2], we know that, for V = θJΓK,

[δΨ(V)](g) =
�

Γ
〈BΨ(TxΓ), Dg(x)〉θ(x)dHm(x), ∀g ∈ C1

c (R
m+n, Rm+n) (3.11)

where BΨ(·) : G(m, m + n)→ R(m+n)×(m+n) is defined through the relation

〈BΨ(P), L〉 = Ψ(P)〈P, L〉+ 〈dΨ(P), P⊥LP + (P⊥LP)T〉,

∀P ∈ G(m, m + n), ∀L ∈ R(m+n)×(m+n),
(3.12)

We are now ready to state our desired equivalence between stationarity of the map u for the
energy E and stationarity of the varifold JGuK for the corresponding functional Σ. In what follows,
given a function g on Gu we will use the shorthand notation ‖g‖q,Gu for the norm ‖g‖Lq(HmxGu).

Proposition 3.8. Assume that f ∈ C1(Rn×m) admits an extension Ψ ∈ C1(G(m, m + n)), in the sense
that (6.4) holds for every X ∈ Rn×m. Fix any m ≤ p ≤ +∞, 1 ≤ q < +∞ and a Lipschitz, bounded,
open set Ω ⊂ Rm. If a map u ∈ W1,p(Ω, Rn) and a Borel function β ∈ L∞(Ω, (0,+∞)) satisfy, for
every v ∈ C1

c (Ω, Rn) and Φ ∈ C1
c (Ω, Rm),

∣∣∣∣�
Ω
〈D f (Du), Dv〉β dx

∣∣∣∣ ≤ C‖vA
1
q (Du)β

1
q ‖q∣∣∣∣�

Ω
〈D f (Du), DuDΦ(x)〉β dx−

�
Ω

f (Du)div(Φ)βdx
∣∣∣∣ ≤ C‖ΦA

1
q (Du)β

1
q ‖q,

(3.13)
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for some C ≥ 0, then the rectifiable varifold of Rm+n θJGuK, where θ(x, y) = β(x), satisfies

|δΨ(θJGuK)(g)| ≤ C′‖gθ
1
q ‖q,Gu ∀g ∈ C1

c (Ω×Rn, Rm+n), (3.14)

for some number C′ = C′(C, m, p, q) ≥ 0. Conversely, if (3.14) holds for some C′, then (3.13) holds for
some C = C(C′, m, p, q). Moreover, C′ = 0 if and only C = 0, namely u is satisfies (3.1) if and only if
θJGuK is stationary for the energy Σ.

Remark 3.9. As already noticed, when p > m we can replace JGuK with JΓuK. Moreover, under

such stronger assumption, the proposition holds also for q = ∞, provided we set A(Du)
1
q .
= 1 in

that case. Finally, if p = ∞, then we can drop the request that f admits a C1 extension Ψ, and the
same proof would work if we extended Ψ as in (6.4) as Ψ(T) ≡ +∞, if T /∈ G0(m, m + n).

The proof of the previous proposition is a consequence of a few technical lemmas and will be
given in the next section.

3.2 proof of proposition 3 .8

Let f ∈ C1(Rn×m) be of the form f (X) = Ψ(h(X))A(X). In the next lemma we study the
growth of the matrix-fields associated to the inner and the outer variations, i.e.

A(X)
.
= D f (X) (3.15)

B(X)
.
= f (X) idm−XT D f (X). (3.16)

Define also the matrix-field Vf : Rn×m → R(m+n)×(m+n) to be

Vf (X)
.
=

1
A(X)

(
B(X) B(X)XT

A(X) A(X)XT

)
. (3.17)

In Lemma 3.11, we will prove that

BΨ(h(X)) = Vf (X), ∀X ∈ Rn×m.

Combining Lemma 3.10 and 3.11 with the area formula we obtain Lemma 3.12, from which we
will infer Proposition 3.8.

Lemma 3.10. Let Ψ ∈ C1(G(m, m + n)) and let f (X) = Ψ(h(X))A(X), where h is the map defined in
(3.5). Then,

‖A(X)‖ . 1 + ‖X‖min{m,n}−1, ‖B(X)‖ . 1 + ‖X‖min{n,m−1}. (3.18)

In the statement of the Lemma and in the proof, the symbol Λ . Ξ means that there exist a
non-negative constant C depending only on n, m and on ‖Ψ‖C1(G(m,m+n) such that

Λ ≤ C Ξ .

The lemma above is needed to get reach enough summability in order to justify the integral
formulas in (the statement and the proof of) Lemma 3.12. In some sense it is thus less crucial than
the next lemma, which contains instead the core computations. For these reasons, the argument
of Lemma 3.10, which contains several lengthy computations is given in Appendix B.

Lemma 3.11. For every X ∈ Rn×m,

BΨ(h(X)) = Vf (X).

Lemma 3.12. Let f (X) = Ψ(h(X))A(X) be a function of class C1(Rn×m). Let moreover θ(x, u(x)) =
β(x) ∈ L∞(Ω, (0,+∞)). Then, for every g = (g1, . . . , gm+n) ∈ C1

c (Ω×Rn), the following equality
holds:

δΨ(θJGuK)(g)

=

�
Ω
〈B(Du(x)), D(g1(x, u(x)))〉β(x)dx +

�
Ω
〈A(Du(x)), D(g2(x, u(x)))〉β(x)dx,

(3.19)
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where g1(x, y) .
= (g1(x, y), . . . , gm(x, y)), g2(x, y) .

= (gm+1(x, y), . . . , gm+n(x, y)) and A(X) and
B(X) are as in (3.15) and (3.16).

We next prove Lemma 3.11 and Lemma 3.12 and hence end the section showing how to use
Lemma 3.12 to conclude the desired Proposition 3.8.

3.2.1 Proof of Lemma 3.11

For a map g : G(m + n, m) → R`, ` ≥ 1, of class C1, we denote the differential at the point
P ∈ G(m+ n, m) with the symbol dPg. For H ∈ TPG(m+ n, m), and for γ : (−1, 1)→ G(m+ n, m)
with γ(0) = P, γ′(0) = H, we denote

dPg(P)[H]
.
= lim

t→0

g(γ(t))− g(P)
t

.

If ` = 1, we identify dPg(P) with the R(m+n)×(m+n) associated matrix representing the differential,
and we denote dPg(P)[H] with 〈dPg(P), H〉. Moreover, we recall the splitting introduced in (3.6),
namely for any matrix M ∈ R(m+n)×(m+n) we denote

M =

(
M1 M3
M2 M4

)
with M1 ∈ Rm×m, M4 ∈ Rn×n. In this proof, we will use the following facts:

• The tangent plane of G(m, m + n) at the point P is given by

TPG(m, m+n) = {M ∈ R(m+n)×(m+n) : M = P⊥LP+(P⊥LP)T , for some L ∈ R(m+n)×(m+n)},

as proved in [21, Appendix A].

• Let h : Rn×m → G0 be the map defined in (3.5). Recall that its inverse is given by
h−1(P) = P2P−1

1 . For every H ∈ TPG(m, m + n), one has:

dP(h−1)(P)[H] = (H2 − P2P−1
1 H1)P−1

1 ∈ Rn×m. (3.20)

• Recall that the area functional is defined as

A(X) =
√

det(M(X)T M(X)) where M(X) =

(
idm
X

)
.

Hence, for every X, Y ∈ Rn×m, we have

〈DA(X), Y〉 = 1
2
A(X)tr [(M(X)T M(X))−1(YTX + XTY)]. (3.21)

Recall the definition of BΨ(P) given in (3.12). Since

Ψ(P) =
f (h−1(P))
A(h−1(P))

,

for every H ∈ TPG(m, m + n) we have

〈dPΨ(P), H〉

=
1
A(X)

〈D f (h−1(P)), dP(h−1)(P)[H]〉 − f (h−1(P))
A2(h−1(P))

〈DA(h−1(P)), dP(h−1)(P)[H]〉.
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When evaluated at P = h(X), the previous expression reads

〈dPΨ(h(X)), H〉

=
1
A(X)

〈D f (X), dP(h−1)(h(X))[H]〉 − f (X)

A2(X)
〈DA(X), dP(h−1)(h(X))[H]〉.

(3.22)

By (3.12), we know that, for every L ∈ R(m+n)×(m+n),

〈BΨ(h(X)), L〉 = Ψ(h(X))〈h(X), L〉+ 〈dPΨ(h(X)), h(X)⊥Lh(X) + (h(X)⊥Lh(X))T〉.

Therefore, we want to compute (3.22) when

H = h(X)⊥Lh(X) + (h(X)⊥Lh(X))T = Lh(X)− h(X)Lh(X) + h(X)LT − h(X)LTh(X).

We wish to find an expression for

dP(h−1)(h(X))[h(X)⊥Lh(X) + h(X)LTh(X)⊥] .

Using the decomposition introduced in (3.6) of L in 4 submatrices, we compute

Lh(X) =

(
L1 L3
L2 L4

)(
S SXT

XS XSXT

)
=

(
L1S + L3XS L1SXT + L3XSXT

L2S + L4XS L2SXT + L4XSXT

)
(3.23)

and

h(X)Lh(X) =(
S(L1 + L3X + XT L2 + XT L4X)S S(L1 + L3X + XT L2 + XT L4X)SXT

XS(L1 + L3X + XT L2 + XT L4X)S XS(L1 + L3X + XT L2 + XT L4X)SXT

) (3.24)

Combining (3.20) with (3.24), we get

dP(h−1)(h(X))[Lh(X)] = (L2S + L4XS− XSS−1L1S− XSS−1L3XS)S−1

= L2 + L4X− XL1 − XL3X,
(3.25)

dP(h−1)(h(X))[h(X)Lh(X)]

= XS(L1 + L3X + XT L2 + XT L4X− S−1SL1 − S−1SL3X

− S−1SXT L2 − S−1SXT L4X)SS−1

= XS(L1 + L3X + XT L2 + XT L4X− L1 − L3X− XT L2 − XT L4X) = 0

(3.26)

and

dP(h−1)(h(X))[h(X)LT ] = dP(h−1)(h(X))[(L ◦ h(X))T ]

= (XSLT
1 + XSXT LT

3 − XSLT
1 − XSXT LT

3 )S
−1 = 0.

(3.27)

Combining (3.25), (3.26) and (3.27), we get that

dP(h−1)(h(X))[h(X)⊥Lh(X) + h(X)LTh(X)⊥] = dP(h−1)(h(X))(Lh(X))

= L2 + L4X− XL1 − XL3X.

Now define the matrix:
C .
= L2 + L4X− XL1 − XL3X.

To expand (3.22), we now need to rewrite

〈DA(X), dP(h−1)(h(X))[H]〉.
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First, we must compute the trace part coming from (3.21):

tr [S(CTX + XTC)] = tr [S(LT
2 X + XT LT

4 X− LT
1 XTX− XT LT

3 XTX)]

+ tr [S(XT L2 + XT L4X− XTXL1 − XTXL3X)]

= 2tr (SXT L2) + 2tr (SXT L4X)− 2tr (SXTXL1)− 2tr (SXTXL3X).

Hence, if H = h(X)⊥Lh(X) + h(X)LTh(X)⊥, we have just proved that:

〈dPΨ(h(X)), H〉 = 1
A(X)

〈D f (X), L2 + L4X− XL1 − XL3X〉

− f (X)

A(X)
(tr (SXT L2) + tr (SXT L4X)− tr (SXTXL1)− tr (SXTXL3X)).

(3.28)

To conclude, we also need to compute

Ψ(h(X))〈h(X), L〉 = f (X)

A(X)
(〈L1, S〉+ 〈L2, XS〉+ 〈L3, SXT〉+ 〈L4, XSXT〉)

=
f (X)

A(X)
(tr (SL1) + tr (SXT L2) + tr (XSL3) + tr (XSXT L4)).

(3.29)

Now we sum (3.28) and (3.29) to get 〈BΨ(h(X)), L〉. Using that S−1(X) = XTX + idm and the
invariance of the trace under cyclic permutations, we rewrite

tr (SL1) + tr (SXT L2) + tr (XSL3) + tr (XSXT L4)

− tr (SXT L2)− tr (SXT L4X) + tr (SXTXL1) + tr (SXTXL3X) = tr (L1) + tr (L3X).

Combining our previous computations, we find

〈BΨ(h(X)), L〉 = f (X)

A(X)
(tr (L1) + tr (L3X)) +

1
A(X)

〈D f (X), L2 + L4X− XL1 − XL3X〉

=
1
A(X)

[−〈XT D f (X) + f (X) idm, L1〉+ 〈D f (X), L2〉

+ 〈 f (X)XT − XT D f (X)XT , L3〉+ 〈D f (X)XT , L4〉].

Since L was arbitrary, we conclude that

BΨ(h(X)) =
1
A(X)

(
B(X) B(X)XT

A(X) A(X)XT

)
.

3.2.2 Proof of Lemma 3.12

Fix g as in the statement of the Lemma. By (3.11), we know that

δΨ(θJGuK)(g) =
�
Gu

〈BΨ(TzGu), Dg(z)〉θ(z)dHm(z).

Now define F(z, T) .
= 〈BΨ(T), Dg(z)〉 and F̄(x, u(x)) .

= 〈BΨ(h(Du(x))), Dg(x, u(x))〉. We have
F ∈ Cc(Gu ×G0) and we apply Proposition 3.4 to find the equality

�
Gu

〈BΨ(TzΓu), Dg(z)〉θ(z)dHm(z) =
�

Ω
A(Du(x))F̄(x, u(x))β(x)dx. (3.30)

By Lemma 3.11,
F̄(x, u(x)) = 〈Vf (Du(x)), Dg(x, u(x))〉
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a.e. in Ω. Moreover, since

A(Du(x))Vf (Du(x)) =
(

B(Du(x)) B(Du(x))Du(x)T

A(Du(x)) A(Du(x))Du(x)T

)
,

we have

A(Du(x))F̄(x, u(x)) = 〈Dxg1(x, u(x)), B(Du(x))〉+ 〈B(Du(x))DuT(x), Dyg1(x, u(x)))〉
+ 〈Dxg2(x, u(x)), A(Du(x))〉+ 〈A(Du(x))DuT(x), Dyg2(x, u(x)))〉
= 〈B(Du(x)), D(g1(x, u(x)))〉+ 〈A(Du(x)), D(g2(x, u(x)))〉.

The previous equality and (3.30) yield the conclusion.

3.2.3 Proof of Proposition 3.8

First, assume (3.13), and fix any g ∈ C1
c (Ω×Rn, Rm+n), g = (g1, . . . , gm+n). Define

Φ̄(x) .
= (g1(x, u(x)), . . . , gm(x, u(x))

v̄(x) .
= (gm+1(x, u(x)), . . . , gm+n(x, u(x)) .

We have Φ̄ ∈ L∞ ∩W1,m
0 (Ω, Rm) and v̄ ∈ L∞ ∩W1,m

0 (Ω, Rn). Notice that we require (3.13) to hold
only for C1 maps with compact support, but Lemma 3.10 implies through an approximation
argument that

∣∣∣∣�
Ω
〈A(Du), Dv〉β(x) dx

∣∣∣∣ ≤ C‖vA
1
q (Du)β

1
q ‖q, ∀v ∈ L∞ ∩W1,m

0 (Ω, Rn)∣∣∣∣�
Ω
〈B(Du), DΦ〉β(x)dx

∣∣∣∣ ≤ C‖ΦA
1
q (Du)β

1
q ‖q, ∀Φ ∈ L∞ ∩W1,m

0 (Ω, Rm).
(3.31)

Indeed, to prove, for instance, that the first inequality holds for any v ∈ L∞ ∩W1,m
0 , pick a sequence

vk ∈ C∞
c (Ω, Rn) such that ‖vk‖L∞ is equibounded and vk → v in W1,m, Lq and pointwise a.e.. The

fact that �
Ω
〈A(Du), Dvk〉β(x) dx→

�
Ω
〈A(Du), Dv〉β(x) dx

is an easy consequence of the W1,m convergence of vk to v and the fact that A(Du)β(x) ∈
W

m
m−1 (Ω, Rn×m) by Lemma 3.10. Moreover, the quantity

‖vkA
1
q (Du)β

1
q ‖q → ‖vA

1
q (Du)β

1
q ‖q

by the dominated convergence theorem. Indeed, we required the pointwise convergence of vk to
v and moreover we can bound for every k and almost every x ∈ Ω:

‖vkA
1
q (Du)β

1
q ‖q(x) ≤ sup

k
‖vk‖

q
L∞A(Du(x))β(x) ∈ L1(Ω).

Hence (3.31) with vk instead of v implies the same inequality for v by taking the limit as k→ ∞.
The proof of the second inequality of (3.31) is analogous. We combine (3.31) with (3.19) to write

|δΨ(θJGuK)(g)| ≤
∣∣∣∣�

Ω
〈A(Du), Dv̄〉β dx

∣∣∣∣+ ∣∣∣∣�
Ω
〈B(Du), DΦ̄〉βdx

∣∣∣∣
≤ C(‖v̄A

1
q (Du)β

1
q ‖q + ‖Φ̄A

1
q (Du)β

1
q ‖q).

Notice that, since v̄(·, u(·))β(·) ∈ L∞(Ω, Rn) and Φ̄(·, u(·))β(·) ∈ L∞(Ω, Rn), we have

‖v̄(·, u(·))‖qA(Du(·))β(·) + ‖Φ̄(·, u(·))‖qA(Du(·))β(·) ∈ L1(Ω).
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Now we use the trivial estimate ‖v̄(x, y)‖ ≤ ‖g(x, y)‖ for all x ∈ Ω, y ∈ Rn, and area formula
(3.9) to conclude

‖v̄A
1
q (Du)β‖q

q =

�
Ω
‖v̄(x, u(x))‖qA(Du(x))β(x)dx ≤

�
Ω
‖g(x, u(x))‖qA(Du(x))β(x)dx

=

�
Gu

‖g‖q(z)θ(z)dHm(z) = ‖gθ
1
q ‖q

Lq(Gu)
.

With analogous estimates, we also find

‖Φ̄A
1
q (Du)β

1
q ‖q

q ≤ ‖gθ
1
q ‖q

Lq(Gu)
.

Therefore, (3.14) holds with constant C′ = 2C. Now assume (3.14). Choose the following sequence
gk ∈ C1

c (Ω×Rn):
gk(x, y) .

= G(x)χk(y),

where G ∈ C1
c (Ω, Rn+m), and χk ∈ C∞

c (Rn) with 0 ≤ χk(y) ≤ 1, ∀y ∈ Rn, χk ≡ 1 on Bk(0),
χk ≡ 0 on Bc

2k(0) and ‖Dχk(y)‖ ≤ 1
k , for all y ∈ Rn. Using again area formula (3.9), we write

‖gkθ
1
q ‖q

Lq(Gu)
=

�
Ω
‖gk(x, u(x))‖qA(Du(x))β

1
q (x)dx.

Monotone convergence theorem implies

lim
k
‖gkθ

1
q ‖q

Lq(Gu)
= ‖GA

1
q (Du)β

1
q ‖q

q.

Now we want to use (3.19). Using the same notation as in the statement of Lemma 3.12, i.e.
splitting G into G1 = (G1, . . . , Gm) and G2 = (Gn+1, . . . , Gn+m), we have
�

Ω
〈B(Du(x)), D((gk)1(x, u(x)))〉β(x) dx =

�
Ω
〈B(Du(x)), D(χk(u(x))G1(x))〉β(x) dx

=

�
Ω

χk(u(x))〈B(Du(x)), DG1(x)〉β(x) dx+
�

Ω
〈B(Du(x)), G1(x)⊗ (Dχk(u(x))Du(x))〉β(x) dx

By Lemma 3.10 and the regularity of G1, we have that

‖DG1‖‖B(Du)‖β ∈ L1(Ω) and ‖G1‖‖B(Du)‖‖Du‖β ∈ L1(Ω). (3.32)

Since
χk(u(x))〈B(Du(x)), DG1(x)〉β(x)→ 〈B(Du(x)), DG1(x)〉β(x)

pointwise a.e. as k→ ∞, (3.32) tells us that we can apply dominated convergence theorem to infer

lim
k→∞

�
Ω

χk(u(x))〈B(Du(x)), DG1(x)〉β(x) dx =

�
Ω
〈B(Du(x)), DG1(x)〉β(x)dx.

Moreover using the pointwise bound ‖Dχk(u(x))‖ ≤ 1
k ,∣∣∣∣�

Ω
〈B(Du(x)), G1(x)⊗ (Dχk(x)Du(x))〉β(x) dx

∣∣∣∣ ≤ 1
k

�
Ω
‖B(Du(x))‖‖G1(x)‖Du(x)‖β(x)dx.

Again through (3.32), we infer that the last term converges to 0. This implies that
�

Ω
〈B(Du(x)), D((gk)1(x, u(x)))〉 dx→

�
Ω
〈B(Du(x)), DG1(x)〉 dx as k→ ∞.

In a completely analogous way,
�

Ω
〈A(Du(x)), D((gk)2(x, u(x)))〉β(x) dx→

�
Ω
〈A(Du(x)), DG2(x)〉β(x) dx as k→ ∞.
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Now (3.19) and the previous computations yield
�

Ω
〈A(Du(x)), DG2(x)〉β(x) dx+

�
Ω
〈B(Du(x)), DG1(x)〉β(x) dx

= lim
k→∞

[�
Ω
〈A(Du(x)), D(gk)2(x)〉β(x) dx+

�
Ω
〈B(Du(x)), D(gk)1(x)〉dxβ(x)

]
= lim

k→∞
δΨ(θJGuK)(gk) ≤ C′ lim

k
‖gkθ

1
q ‖Lq(Gu) = C′‖GA

1
q (Du)β

1
q ‖q,

and it is immediate to see that this implies (3.13) with constant C̄′ = C′.



4
T O WA R D S R E G U L A R I T Y I N T W O D I M E N S I O N S

In this chapter we study the differential inclusion associated to the area function A(X) in two
dimensions. The main result of this chapter is Theorem 4.20:

Theorem. For every R > 0, there exists α = α(R) > 0 such that, if f is a Ck(R2n+2×2) function, k ≥ 2,
with the property that

‖ f −A‖C2(B2R(0)) ≤ α, (4.1)

and U : Ω→ R2n+2 is a Lipschitz solution of

DU (x) ∈ C f , for a.e. x ∈ Ω (4.2)

with
‖DU‖∞ ≤ R,

then U ∈ Ck−1,ρ(Ω), for some positive ρ > 0.

This is obtained as a consequence of several preliminary results, in particular it relies on classical
regularity results for solutions of the Monge-Ampére equations, Proposition 4.4, the estimate
of algebraic nature of Theorem 4.6 and a slight generalization of the result of [88], Proposition
4.15. As a consequence of the aforementioned results, we will also prove a compactness result,
Theorem 4.10. In the final section, Section 4.6, we use an example of [51] to show that there
exist irregular points for the inner variation equations for the area functional, namely we show
Theorem 4.21.

4.1 two-dimensional differential inclusions and the area functional

In this section we rewrite the partial differential system defining a stationary graph for the area
functional as a differential inclusion. This is done in an analogous way to what we have done in
Section 2.1. The only technical difference is that, instead considering a mixed div-curl system, we
use the rotation given by the symplectic matrix

J .
=

(
0 1
−1 0

)
to translate the problem into a classical differential inclusion. This simply amounts to realizing
that, if v = (v1, v2) ∈ C∞(R2, R2), then

div(v) = curl(vJ). (4.3)

For this reason, we will study the following modification of (2.4) for any polyconvex f ∈ C2(Rn×2):

DU (x) ∈ C f =

 X
A f (X)
B f (X)

 , for a.e. x ∈ Ω (4.4)

where U : Ω→ R2n+2 is a function in a Sobolev space (its regularity will be discussed at the end
of this section) and1

A f (X) = D f (X)J, B f (X) = XT D f (X)J − f (X)J.

1 Notice that A f and B f already appeared in the previous chapter to denote the same matrices, up to the multiplication by
J. Here we want to remark the dependence on f in order to distinguish them from the fields A and B associated to the
area, so the notation differs slightly for the introduction of the subscript f .
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We will always use the following notation for a map U with the property (4.4):

U =

 u
v
w

 , u, v : Ω→ Rn, w : Ω→ R2,

so that U satisfies (4.4) if and only if Dv(x) = A f (Du(x)) and Dw(x) = B f (Du(x)) for a.e. x ∈ Ω.
Through (4.3), it is immediate to see that u solves (2.2) if and only if there exists U as above such
that DU (x) ∈ C f for a.e. x ∈ Ω. If f = A, then we drop the f in A f and B f and we simply write

DU (x) ∈ CA =

 X
A(X)
B(X)

 , for a.e. x ∈ Ω. (4.5)

We need to compute explicitely A(X) and B(X). Recall that the area on 2-dimensional graphs is
given by A : Rn×2 → R:

A(X) =
√

1 + ‖X‖2 + ∑
1≤a≤b≤n

det(Xab)2,

where Xab is the 2× 2 submatrix obtained from X considering just the a-th and the b-th rows. We
compute

DA(X) =
X + ∑1≤a≤b≤n det(Xab)Cab(X)

A(X)
, (4.6)

where2 Cab(X) denotes the n× 2 matrix defined as

(Cab(X))ij =

{
0, if i 6= a or i 6= b
(cof(Xab)T)ij, otherwise.

From (4.6), it also follows that

XT DA(X)−A(X) id =
XTX + ∑a≤b det(Xab)2 id−A2(X) id

A(X)
=

XTX− (1 + ‖X‖2) id
A(X)

.

Let us make some preliminary computations that we will need in the chapter. Namely:

Lemma 4.1. The following hold

1. ‖A(X)‖ ≤ 2‖X‖;

2. 1+‖X‖2

2A(X)
≤ ‖B(X)‖ ≤ 2(1 + ‖X‖).

Proof. In this proof, we will make use of the Cauchy-Binet Theorem (see [5, Proposition 2.69]),
that asserts the identity ∑1≤a≤b≤n det(Xab)2 = det(XTX). To prove 1, we write

‖A(X)‖2 =
‖X + ∑1≤a≤b≤n det(Xab)CT

ab(X)‖2

(1 + ‖X‖2 + det(XTX)

≤ 2
‖X‖2 + ∑1≤a≤b≤n det(Xab)2‖CT

ab(X)‖2

1 + ‖X‖2 + det(XTX)

≤ 2
‖X‖2 + ∑1≤a≤b≤n det(Xab)2‖Xab‖2

1 + ‖X‖2 + det(XTX)

≤ 2‖X‖2 1 + ∑1≤a≤b≤n det(Xab)2

1 + ‖X‖2 + det(XTX)

2 The notation introduced here for Cab differs from the one introduced in the proof of Proposition 2.19, but we prefer to
denote the matrix Cab in this way in this chapter since we deal with an explicit number of dimensions of the domain and
this allows for a simplified notation.
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= 2‖X‖2 1 + det(XTX)

1 + ‖X‖2 + det(XTX)
< 2‖X‖2.

To prove 2, we again write

‖B(X)‖2 =
‖XTX− (1 + ‖X‖2) id2 ‖2

1 + ‖X‖2 + det(XTX)

=
‖XTX‖2 + 2(1 + ‖X‖2)2 − 2‖X‖2 − 2‖X‖4

1 + ‖X‖2 + det(XTX)

=
‖XTX‖2 + 2 + 2‖X‖2

1 + ‖X‖2 + det(XTX)
.

It is easy to see that
1
4
‖X‖4 ≤ ‖XTX‖2 ≤ 4‖X‖4.

Therefore, we get the estimates

4−1‖X‖4 + 2 + 2‖X‖2

1 + ‖X‖2 + det(XTX)
≤ ‖B(X)‖2 ≤ 4‖X‖4 + 2 + 2‖X‖2

1 + ‖X‖2 + det(XTX)
,

and we deduce that

1
4
‖X‖4 + 1 + 2‖X‖2

1 + ‖X‖2 + det(XTX)
≤ ‖B(X)‖2 ≤ 4

‖X‖4 + 1 + 2‖X‖2

1 + ‖X‖2 + det(XTX)
.

Using the fact that det(XTX) ≥ 0, rewriting ‖X‖4 + 1 + 2‖X‖2 = (1 + ‖X‖2)2, and taking the
square root of the terms of the inequalities, we get

1 + ‖X‖2

2A(X)
≤ ‖B(X)‖ ≤

√
4

1 + ‖X‖2√
1 + ‖X‖2

= 2
√

1 + ‖X‖2.

Hence also the second estimate is proven.

With the previous lemma, we immediately get

Corollary 4.2. For any p ≥ 1, if u ∈W1,p(Ω), and U satisfies (4.5), then U ∈W1,p(Ω).

4.2 properties of B(·)

In this section, we prove some properties of the matrix field B(X). In Proposition 4.4 we show
how these imply the smoothness of the function w in (4.5). We recall that

B(X) =
XTXJ − (1 + ‖X‖2)J

A(X)
. (4.7)

Lemma 4.3. The following properties hold:

(i) tr (B(X)) = 0, ∀X;

(ii) B(X)12 < 0, B(X)21 > 0, ∀X;

(iii) det(B(X)) = 1.
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Proof. Let us write B(X) explicitely. Denote with X1, X2 the column vectors of Rn representing
the columns of the matrix X. First,

XTXJ =
(
‖X1‖2 (X1, X2)
(X1, X2) ‖X2‖2

)
J =

(
−(X1, X2) ‖X1‖2

−‖X2‖2 (X1, X2)

)
.

Therefore,

A(X)B(X) = XTXJ − (1 + ‖X‖2)J =
(
−(X1, X2) ‖X1‖2

−‖X2‖2 (X1, X2)

)
−
(

0 1 + ‖X‖2

−1− ‖X‖2 0

)
,

and

A(X)B(X) = XTXJ − (1 + ‖X‖2)J =
(
−(X1, X2) −1− ‖X2‖2

1 + ‖X1‖2 (X1, X2)

)
. (4.8)

Since A(X) is always positive, we can divide the previous expressions by A(X) to infer (i) and
(ii). In order to prove the third property, we compute:

A2(X)det(B(X)) = 1 + ‖X‖2 + ‖X1‖2‖X2‖2 − (X1, X2)2 = 1 + ‖X‖2 + det(XTX) = A2(X).

Again the positivity of A(X) implies the conclusion of (6.20).

We now consider properties of the differential inclusion

Dw(x) = B(Du(x)), for a.e. x ∈ Ω (4.9)

for w ∈ W1,2(Ω). By (i) of Lemma 4.3 we have div(w) = 0. Therefore, w = (w1, w2) can be
rewritten as

w = (−∂2z, ∂1z)

for some z ∈W2,2(Ω). Consequently, (4.9) is rewritten as(
−∂12z −∂22z
∂11z ∂12z

)
= B(Du).

Using properties (ii) and (6.20) of Lemma 4.3, we find that z enjoys the following properties
det(D2z) = 1 a.e.,
∆z > 0 a.e.,
z ∈W2,2(Ω).

(4.10)

In the next Proposition, we will exploit some fundamental results concerning solutions to the
Monge-Ampère equation. We refer the reader to [34] for the definitions and the results we will
use. In particular, we refer the reader to [34, Definition 2.1] for the definition of Monge-Ampère
measure.

Proposition 4.4. Suppose z solves (4.10). Then, z is smooth.

Proof. We just need to prove that z is an Alexandrov solution of the Monge-Ampère equation,
and then apply the classical regularity results for the Monge-Ampère equation. It is not restrictive
to prove the result on balls Br(x̄) ⊂ Ω such that Br(x̄) ⊂ BR(x̄) ⊂ Ω. Consider a standard
mollification kernel ρε, i.e. ρε ∈ C∞

c (R2), spt(ρε) ⊂ Bε(0), ρε ≥ 0,
�

R2 ρε(x) dx = 1 for every ε > 0.
Finally, define zε(x) .

= (z ? ρε)(x), for ε ≤ R−r
2 . We exploit the embedding

C0(Ω) ∩ L∞
loc(Ω) ⊂W2,2(Ω) (4.11)

to argue that z is continuous in Br(x̄). We also prove that it is convex on Br(x̄). For every
x ∈ Br(x̄) and for every v ∈ R2, we compute

(D2zε(x)v, v) =
�

R2
ρε(y + x)(D2z(y)v, v) dy > 0.
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Therefore, zε is a sequence of convex functions converging in the C0(Br(x̄)) topology to z. Thus,
z must be convex too. Denote with µz and µzε the Monge-Ampère measures associated to z and
zε respectively. We need to show that

µz = det(D2z)L2xBr(x̄).

To do so, first we notice that the W2,2 convergence of zε to z imply that det(D2zε)→ det(D2z) in
the L1- norm. Moreover we use [34, Proposition 2.6] to infer that the Monge-Ampère measures
associated to zε converge weakly in the sense of measures to the Monge-Ampère measure
associated to z. From the regularity of zε, we infer µzε = det(D2zε)L2xBr(x̄), hence for every
g ∈ Cc(Br(x̄)) we have:

�
Br(x̄)

gdµε =

�
Br(x̄)

g(x)det(D2zε)(x) dx→
�

Br(x̄)
g det(D2z) dx

and �
Br(x̄)

gdµε →
�

Br(x̄)
gdµ.

We infer µ = det(D2z)L2xBr(x̄) = L2xBr(x̄). Hence, z is an Alexandrov solution to det(D2z) = 1.
It follows that z is strictly convex by [34, Theorem 2.19] and smooth by [34, Theorem 3.10].

Let us conclude this section with another important property of B(X), that follows a direct
computation:

Proposition 4.5. For all R > 0, there exists µ = µ(R) > 0 such that if ‖X‖, ‖Y‖ ≤ R, then

det(B(X)− B(Y)) ≤ −µ‖B(X)− B(Y)‖2. (4.12)

4.3 bounds on the subdeterminants and regularity

Theorem 4.6. For every number k ≥ 0 there exists positive numbers C(k), δ(k) > 0 such that for every
couple (X, Y) ∈ Rn×2 ×Rn×2 the following holds:

−〈(A(X)− A(Y))J, X−Y〉+ C‖B(X)− B(Y)‖min{‖Y‖, ‖X‖}‖X−Y‖ ≥ δ‖X−Y‖2, (4.13)

provided that

max{‖B(X)‖, ‖B(Y)‖} ≤ k.

Remark 4.7. Let us use the following notation: α(X)
.
= −B12(X), β(X)

.
= B21(X), γ(X)

.
= −B11(X).

These functions were explicitly written in Lemma 4.3. Notice that, as it was proved in (6.20) of
Lemma 4.3:

α(X)β(X)− γ2(X) = det(B(X)) = 1, ∀X ∈ Rn×2 (4.14)

Proof. For a matrix M ∈ Rn×2, we use the notation

M =


m11 m12
m21 m22
. . . . . .

mn1 mn2

 ,

and we write M1, M2 for the first and second column of M, respectively, i.e.

M1 =


m11
m21
. . .

mn1

 and M2 =


m12
m22
. . .

mn2


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First of all, we compute

A(X)DA(X)j1 = xj1 −
j−1

∑
i=1

xi2(xi1xj2 − xi2xj1) +
n

∑
i=j

xi2(xj1xi2 − xj2xi1)

= xj1 −
j−1

∑
i=1

xi2(xi1xj2 − xi2xj1) +
n

∑
i=j

xi2(xj1xi2 − xj2xi1)

= xj1(1 + ‖X2‖2)− (X1, X2)xj2

and

A(X)DA(X)j2 = xj2 +
j−1

∑
i=1

xi1(xi1xj2 − xi2xj1)−
n

∑
i=j

xi1(xj1xi2 − xj2xi1)

= xj2(1 + ‖X1‖2)− (X1, X2)xj1.

Using the notation of Remark 4.7

DA(X)j1 = β(X)xj1 − γ(X)xj2 and DA(X)j2 = α(X)xj2 − γ(X)xj1.

Assume, without loss of generality, that ‖X‖ ≥ ‖Y‖. We can write

(DA(X)j1 − DA(Y)j1)(xj1 − yj1)

= (β(X)xj1 − β(Y)yj1)(xj1 − yj1)− (γ(X)xj2 − γ(Y)yj2)(xj1 − yj1)

= β(X)(xj1 − yj1)
2 + (β(X)− β(Y))yj1(xj1 − yj1)− (γ(X)xj2 − γ(Y)yj2)(xj1 − yj1)

= β(X)(xj1 − yj1)
2 + (β(X)− β(Y))yj1(xj1 − yj1)− γ(X)(xj2 − yj2)(xj1 − yj1)

+ (γ(Y)− γ(X))yj2(xj1 − yj1)

and

(DA(X)j2 − DA(Y)j2)(xj2 − yj2)

= (α(X)xj2 − α(Y)yj2)(xj2 − yj2)− (γ(X)xj1 − γ(Y)yj1)(xj2 − yj2)

= α(X)(xj2 − yj2)
2 + (α(X)− α(Y))yj2(xj2 − yj2)− (γ(X)xj1 − γ(Y)yj1)(xj2 − yj2)

= α(X)(xj2 − yj2)
2 + (α(X)− α(Y))yj2(xj2 − yj2)− γ(X)(xj1 − yj1)(xj2 − yj2)

+ (γ(Y)− γ(X))yj1(xj2 − yj2).

Therefore

− 〈(A(X)− A(Y))J, X−Y〉 = 〈DA(X)− DA(Y), X−Y〉

=
n

∑
j=1

(DA(X)j1 − DA(Y)j1)(xj1 − yj1) +
n

∑
j=1

(DA(X)j2 − DA(Y)j2)(xj2 − yj2)

= ∑
j

β(X)(xj1 − yj1)
2 − 2γ(X)(xj2 − yj2)(xj1 − yj1) + α(X)(xj2 − yj2)

2

+ (γ(Y)− γ(X))yj2(xj1 − yj1) + (α(X)− α(Y))yj2(xj2 − yj2)

+ (γ(Y)− γ(X))yj1(xj2 − yj2) + (β(X)− β(Y))yj1(xj1 − yj1).

(4.15)

First, we claim that there exists a constant δ = δ(k) independent of X such that, for every X for
which ‖B(X)‖ ≤ k and for every a, b ∈ R

−2|γ(X)|ab + β(X)a2 + α(X)b2 ≥ δ(a2 + b2). (4.16)
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Fix X. Since α(X) + β(X) ≥ 2, either β(X) ≥ 1 or α(X) ≥ 1. Without loss of generality, we
can suppose β(X) ≥ 1. Therefore, if b = 0, we can choose any δ < 1. If b 6= 0, we divide the
expression by b2 and claim (4.16) becomes equivalent to

(β(X)− δ)x2 − 2|γ(X)|x + (α(X)− δ) ≥ 0, ∀x ∈ R.

Taking into account (4.14), i.e. γ2 = αβ− 1, the discriminant of the previous equation becomes

∆(X)δ = 4γ2 − 4(α(X)− δ)(β(X)− δ) = −4− 4δ2 + 4δ(α(X) + β(X)).

Since β(X) and α(X) are both uniformly bounded, we can choose some small δ < 1 depending
only on k (so, in particular, independent of X) for which ∆(X)δ < 0 for every X such that
‖B(X)‖ ≤ k. This implies that the polynomial x 7→ (β(X)− δ)x2 − 2γ(X)x + (α(X)− δ) has no
real root. Since β(X) ≥ 1 > δ by assumption, then the polynomial is positive for large values
of x, therefore it is positive everywhere, as we wanted. Having shown the claim, we can apply

inequality (4.16) with a =
√

∑j(xj1 − yj1)2 and b =
√

∑j(xj2 − yj2)2 to deduce that

∑
j
(β(X)(xj1 − yj1)

2 − 2γ(X)(xj2 − yj2)(xj1 − yj1) + α(X)(xj2 − yj2)
2)

≥ β(X)∑
j
(xj1 − yj1)

2 + α(X)∑
j
(xj2 − yj2)

2 − 2|γ(X)|
√

∑
j
(xj1 − yj1)2

√
∑

j
(xj2 − yj2)2)

≥ δ ∑
j
((xj1 − yj1)

2 + (xj2 − yj2)
2) = δ‖X−Y‖2.

(4.17)

We also estimate:

(γ(Y)− γ(X))yj2(xj1 − yj1) ≥ −|γ(Y)− γ(X)|‖Y‖‖X−Y‖,
(α(X)− α(Y))yj2(xj2 − yj2) ≥ −|α(Y)− α(X)|‖Y‖‖X−Y‖,
(γ(Y)− γ(X))yj1(xj2 − yj2) ≥ −|γ(Y)− γ(X)|‖Y‖‖X−Y‖,
(β(X)− β(Y))yj1(xj1 − yj1) ≥ −|β(Y)− β(X)|‖Y‖‖X−Y‖.

(4.18)

By the definition of α, β and γ, 2|γ(Y)− γ(X)|+ |α(Y)− α(X)|+ |β(Y)− β(X)| ≤ C1‖B(X)−
B(Y)‖, where C1 > 0 is an universal constant. Combining (4.17) and (4.18), we finally estimate in
(4.15):

∑
j

(
β(X)(xj1 − yj1)

2 − 2γ(X)(xj2 − yj2)(xj1 − yj1) + α(X)(xj2 − yj2)
2
)

+ ∑
j
(γ(Y)− γ(X))yj2(xj1 − yj1) + ∑

j
(α(X)− α(Y))yj2(xj2 − yj2)

+ ∑
j
(γ(Y)− γ(X))yj1(xj2 − yj2) + ∑

j
(β(X)− β(Y))yj1(xj1 − yj1)

≥ δ‖X−Y‖2 − nC1‖B(X)− B(Y)‖‖Y‖‖X−Y‖.

This estimate completes the proof of (4.13).

4.3.1 Regularity of the Differential Inclusion

The regularity of W1,2 solutions of (4.5) is surely a well-known result to the experts of the field.
Since we could not find a reference of this fact in the literature and the argument is very short,
we give a proof here.

Proposition 4.8. Every W1,2 solution U of (4.5) is smooth.
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Proof. From the proof of the previous theorem, we know that

DA(X)j1 = β(X)xj1 − γ(X)xj2 and DA(X)j2 = α(X)xj2 − γ(X)xj1.

The equation
div(DA(Du)) = 0

reads, for every j ∈ {1, . . . , n},

∂1(β(Du)∂1uj − γ(Du)∂2uj) + ∂2(α(Du)∂2uj − γ(Du)∂1uj) = 0, (4.19)

where u = (u1, . . . , un). The previous equation has to be intended in the weak sense. In (4.4) it is
showed that α(Du), β(Du), γ(Du) are smooth functions. Moreover, the matrix

M(Du) = (BJ)T(Du) =
(

β(Du) −γ(Du)
−γ(Du) α(Du)

)
is locally bounded in the sense of quadratic forms above and below by

c1 id ≤ M(Du(x)) ≤ c2 id (4.20)

for two positive constants c1 ≤ c2. The argument to prove (4.20) is exactly the same as the one
used to prove (4.16). Therefore, every uj is the weak solution to a second order elliptic equation
with smooth coefficients, (6.12). It is well known that solutions to this class of equations are
smooth.

Remark 4.9. This is not the first time that regularity results for the Monge-Ampère equation
have been exploited to obtain regularity for the minimal surface equation. In [69], this connec-
tion is used to prove Bernstein’s theorem (i.e., that the only solution to the minimal surface
equation/system in the whole R2 are affine functions) for 2-dimensional minimal graphs in R3.
We remark that, in view of the well-known Bernstein property for solutions of Monge-Ampère
equation (see [69]), Proposition 4.4 and Proposition 4.8 immediately give Bernstein’s property for
W1,∞ 2-dimensional minimal graphs in Rn+2.

4.4 compactness of the differential inclusion in W1,p , p > 2

The main result of this section is Theorem 4.10, where we prove the compactness of the
differential inclusion (4.5). We will make use of the following identity, that can be easily checked
by direct computation

〈X, YJ〉 = −
m

∑
i=1

det
(

Xi
Yi

)
(4.21)

for every X, Y ∈ Rm×2, where Xi, Yi are the i-th rows of the matrices X and Y.

Theorem 4.10 (Compactness of the differential inclusion). Suppose Un : Ω → R2n+2 is an equi-
bounded sequence in W1,p(Ω; R2n+2) for p > 2. If

�
Ω

d(DUn(x), CA)η(x)→ 0, ∀η ∈ C∞
c (Ω), (4.22)

then, up to a (non-relabeled) subsequence, Un converges strongly in W1,p̄ to a function U : Ω→ R2n+2,
for every 1 ≤ p̄ < p. Moreover, DU (x) ∈ CA for a.e. x ∈ Ω.

Proof. Throughout the proof, we will use the splitting

Λ =

 Λ1
Λ2
Λ3

 , Λ1, Λ2 ∈ Rn×2, Λ3 ∈ R2×2 (4.23)
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for every Λ ∈ R(2n+2)×2. We can assume that Un converges weakly in W1,p to U , and that DUn
converges in the sense of Young measures to {νx}x. We claim that, for almost every x ∈ Ω, we
have

(i) spt(νx) ⊆ CA;

(ii)
�

R2n+2 det(Λab)dνx(Λ) = det
((�

R2n+2 Λdνx
)ab
)

, ∀1 ≤ a ≤ b ≤ 2n + 2.

To prove the previous claim, it just suffices to apply the definition of Young measure generated
by Un. Indeed to show (i) consider the function f ∈ C(R(2n+2)×2) defined as f (Λ)

.
= d(Λ, CA).

The proof of (ii) is analogous to the one given in [88, Theorem 1]. Moreover, using the equality

det(M1 + M2) = det(M1) + det(M2) + 〈M1, cofT(M2)〉, (4.24)

valid for every matrices M1, M2 ∈ R2×2, and (ii) of the previous claim, it is easy to see that
�

R(2n+2)×2×R(2n+2)×2
det((Λ− Γ)ab)d(νx(Λ)⊗ νx(Γ)) = 0 for a.e. x ∈ Ω,

where νx ⊗ νx denotes the standard product measure constructed with νx. Clearly this implies
that for any collection of numbers tab ∈ R,

∑
1≤a≤b≤2n+2

tab

�
R(2n+2)×2×R(2n+2)×2

det((Λ− Γ)ab)d(νx(Λ)⊗ νx(Γ)) = 0. (4.25)

First, we choose tab = 0 for every 1 ≤ a ≤ b ≤ 2n and tab = 1 if a = 2n + 1, b = 2n + 2. Using (i)
of the claim and (4.12), we infer that νx ⊗ νx is supported in the set of matrices

CA × CA ∩ {(Λ′, Λ′′) ∈ R(2n+2)×2 ×R(2n+2)×2 : Λ′3 = Λ′′3 }.

Thus, we obtain the existence of a 2× 2 matrix Bx such that B(Λ1) = Bx for a.e. x ∈ Ω and for
νx-a.e. Λ ∈ R2n+2. Let us remark that the matrix Bx possibly depends on x ∈ Ω but not on
Λ ∈ R(2n+2)×2. To finish the proof, apply (4.21) to find coefficients tab such that

∑
1≤a≤b≤2n+2

tab det((Λ− Γ)ab) = 〈(A(Λ1)− A(Γ1))J, Λ1 − Γ1〉, ∀Λ, Γ ∈ R(2n+2)×2.

Now we can use (4.13) to infer that for a.e. x ∈ Ω, there exists a number δ(x) > 0

0 =

�
R(2n+2)×2×R(2n+2)×2

〈(A(Λ1)− A(Γ1))J, Λ− Γ〉d(νx(Λ)⊗ νx(Γ))

≥
�

R(2n+2)×2×R(2n+2)×2
δ(x)‖Λ1 − Γ1‖2d(νx(Λ)⊗ νx(Γ)).

This yields νx = δDU (x) for a.e. x ∈ Ω. Corollary A.3 implies that DUn converges in measure to
DU and therefore strongly for every 1 ≤ p̄ < p.

4.5 perturbative result

We will prove that solutions with fixed Lipschitz constant of the differential inclusion (4.4)
for functionals sufficiently near to the area functional are actually as smooth as the functional
under consideration. The strategy is the following. In Lemma 4.11, we prove inequality (4.26),
through which we bound the norm of the difference of two matrices with a linear combination
of subdeterminants of CA. Next, in Lemma 4.13, we show that, if we fix R > 0, there exists a
number ε(R) > 0 such that, if f : Rn×2 → R is a C2 functional with ‖ f −A‖C2(B2R)

≤ ε(R), then
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for f the same kind of inequality holds (see (4.27)). In Theorem 4.14 and Proposition 4.15, we
show how inequality (4.27) implies Hölder continuity of gradients of functions U satisfying

DU (x) ∈ C f , for a.e. x ∈ Ω.

Finally, in Subsection 4.5.1, we will improve the Hölder continuity of the gradient of the solution
to higher regularity.

Lemma 4.11. For every R > 0, there exist constants λ(R), δ(R) > 0 such that, ∀X, Y ∈ B 3R
2
(0), we

have
−〈(A(X)− A(Y))J, X−Y〉 − λ det(B(X)− B(Y)) ≥ δ‖X−Y‖2, (4.26)

Proof. We note that for (X, Y) ∈ B 3R
2
(0)× B 3R

2
(0) the assumptions of Theorem 4.6 are fulfilled.

Therefore, we find constants C = C(R) and c = c(R) such that

−〈(A(X)− A(Y))J, X−Y〉+ C‖B(X)− B(Y)‖min{‖Y‖, ‖X‖}‖X−Y‖ ≥ c‖X−Y‖2.

Using the hypothesis, we estimate min{‖Y‖, ‖X‖} ≤ max{‖Y‖, ‖X‖} ≤ 3R
2 . Moreover Young

inequality yields

−〈(A(X)− A(Y))J, X−Y〉+ 3CRτ

4
‖X−Y‖2 +

3CR
4τ
‖B(X)− B(Y)‖2 ≥ c‖X−Y‖2.

Clearly, we can choose τ = τ(R) such that c− 3CRτ
4 ≥ c

2 . Therefore, define δ
.
= c

2 . Finally by
(4.12) we find a constant µ = µ(R) ≥ 0 such that

‖B(X)− B(Y)‖2 ≤ − 1
µ

det(B(X)− B(Y)), ∀X, Y ∈ B 3R
2
(0).

This finally concludes the proof of the present Lemma, with λ(R) .
= 3CR

4τµ .

Remark 4.12. Notice that inequality (4.26) can be interpreted as some sort of generalized convexity
of the area functional. Indeed, for a function f ∈ C2(Rn×2), the inequality

〈D f (X)− D f (Y), X−Y〉 = −〈(A f (X)− A f (Y))J, X−Y〉 ≥ δ‖X−Y‖2

is equivalent to convexity. It can be checked that when n > 1, the area functional is not convex,
hence the previous inequality cannot hold. The previous Lemma shows that adding the term
−λ det(B(X)− B(Y)) we can nonetheless bound from above the quantity ‖X − Y‖2. The key
point here is that the determinant is a null Lagrangian and therefore it still allows to prove a
regularity result as Proposition 4.15.

Lemma 4.13. Fix R > 0. Recall that A f (X) = D f (X)J and B f (X) = XT D f (X)J − f (X)J. There
exists ε = ε(R) and c = c( f , R) > 0 such that if

‖ f −A‖C2(B2R)
≤ ε,

then, for the same constant λ of formula (4.26),

−〈(A f (X)− A f (Y))J, X−Y〉 − λ det(B f (X)− B f (Y)) ≥ c‖X−Y‖2, for every X, Y ∈ B 3R
2
(0).
(4.27)

Proof. The proof is by contradiction. Assume we can find a sequence of functions fn, a sequence
of numbers cn and sequences of matrices Xn and Yn such that

(i) ‖ fn −A‖C2(B2R)
≤ 1

n ;

(ii) cn → 0;
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(iii) Xn → X, Yn → Y, Xn−Yn
‖Xn−Yn‖ → Z;

(iv) −〈(A fn(Xn)− A fn(Yn))J, Xn −Yn〉 − λ det(B fn(Xn)− B fn(Yn)) ≤ cn‖Xn −Yn‖2.

First, suppose X 6= Y. Then, in the limit we find a contradiction with (4.26)

δ‖X−Y‖2 ≤ −〈(A(X)− A(Y))J, X−Y〉 − λ det(B(X)− B(Y)) ≤ 0.

Now suppose X = Y. Define

Tn
.
=

A fn(Xn)− A fn(Yn)

‖Xn −Yn‖
and Bn

.
=

B fn(Xn)− B fn(Yn)

‖Xn −Yn‖
.

Then, for every n, (iv) yields:

−
〈

Tn J,
Xn −Yn

‖Xn −Yn‖

〉
− λ det(Bn) ≤ 0. (4.28)

We have

Tn =
A fn(Xn)− A fn(Yn)

‖Xn −Yn‖
=

� 1
0 DA fn(tXn + (1− t)Yn)[Xn −Yn]dt

‖Xn −Yn‖
→ DA(X)[Z]

and, analogously,
Bn → DB(X)[Z].

The convergence of Tn and Bn are a direct consequence of (i). Consequently, in the limit (4.28)
becomes

−〈DA(X)[Z]J, Z〉 − λ det(DB(X)[Z]) ≤ 0. (4.29)

Now, by (4.26) and for every n,

−〈(A(Xn)− A(Yn))J, Xn −Yn〉 − λ det(B(Xn)− B(Yn)) ≥ δ‖Xn −Yn‖2,

so that, if we divide by ‖Xn−Yn‖2 and pass to the limit, we obtain a contradiction with (4.29).

Theorem 4.14. Let k ≥ 2. For every R > 0, there exists ε = ε(R) > 0 for which, if f : Rn×2 → R is a
function of class Ck with

‖ f −A‖C2(B2R)
≤ ε,

then, for every U ∈W1,∞(Ω; R2n+2), ‖DU‖L∞ ≤ R, such that

DU (x) ∈ C f for a.e. x ∈ Ω,

it holds U ∈W2,2+ρ(Ω), for some positive ρ.

The proof of the previous Theorem is a consequence of the following result, that in turn is a
simple generalization of [88, Theorem 3].

Proposition 4.15. Consider differential inclusions of the following form, for V ∈W1,∞
loc (Ω; Rr+m),

DV(x) ∈ C =

{
Y ∈ Rr+m,2 : Y =

(
X

F(X)

)}
, for a.e. x ∈ Ω, (4.30)

where F ∈ Ck(Rr×2; Rm×2), k ≥ 1. Consider moreover the splitting V =

(
u
v

)
, with u : Ω→ Rr and

v : Ω→ Rm. Suppose there exist constants cab ∈ R such that

‖X−Y‖2 ≤ ∑
1≤a≤b≤m+r

cab det(Mab − Nab), (4.31)

for every couple of M, N ∈ K of the form

M =

(
X

F(X)

)
, N =

(
Y

F(Y)

)
.

Then, u ∈W2,2+ρ
loc (Ω; Rn), for some ρ > 0.
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Proof. From now on, we fix open sets Ω′ ⊂ Ω′′ ⊂ Ω, each with compact closure in the other.

For any couple a, b with 1 ≤ a ≤ b ≤ m + r, denote wab
.
=

(
Va
Vb

)
. Take any nonnegative

η ∈ C∞
c (Ω′′), qab ∈ R2 constant vectors, and h ∈ R2 with ‖h‖ ≤ d(∂Ω′′ ,∂Ω)

2 , and moreover denote,
for any function g : Ω′ → Rm,

gh(x) =
g(x + h)− g(x)

‖h‖ .

Since the determinant is a null Lagrangian and η has compact support

∑
ab

cab

�
Ω

det(D(η(x)(wh
ab(x)− qab)) dx = 0.

Equation (4.24) yields

0 = ∑
ab

cab

�
Ω

det(D(η(x)wh
ab(x)− qab)) dx =

= ∑
a,b

cab

�
Ω

η2(x)det(Dwh
ab(x)) dx+∑

a,b
cab

�
Ω

η(x)〈cofT((wh
ab(x)− qab)⊗ Dη(x)), Dwh

ab(x)〉.

Hence, by (4.31) and our previous computation, we can write
�

Ω
η2(x)‖Duh(x)‖2 dx =

1
‖h‖2

�
Ω

η2(x)‖D(u(x + h)− u(x))‖2 dx

≤ 1
‖h‖2 ∑

ab
cab

�
Ω

η2(x)det(D(wab(x + h)− wab(x))) dx

= −∑
a,b

cab

�
Ω

η(x)〈cofT((wh
ab(x)− qab)⊗ Dη(x)), Dwh

ab(x)〉 dx

≤∑
a,b
|cab|

�
Ω

η(x)‖wh
ab(x)− qab‖‖Dη(x)‖‖Dwh

ab(x)‖ dx .

Since F is C1, it is locally Lipschitz. In particular, if ‖u‖W1,∞ ≤ R, this implies that, for some
constant c ≥ 0 depending on R,

‖Dwh
ab(x)‖ ≤ c‖Duh(x)‖, a.e. .

From now on, we will not keep track of the constants, and we will simply denote them by C.
Continuing our computation, we readily obtain through Hölder’s inequality that

�
Ω

η2(x)‖Duh(x)‖2 dx ≤ C ∑
a,b

�
Ω
‖wh

ab(x)− qab‖2‖Dη(x)‖2 dx . (4.32)

Choose qab = 0 for every a, b and η ≡ 1 on Ω′. Using the fact that V is Lipschitz, we get
�

Ω′
‖Duh(x)‖2 dx ≤ C(R, Ω′), for every sufficiently small h.

By standard results about Sobolev spaces (see [9, Proposition 9.3]), this implies that u ∈ W2,2
loc (Ω).

To conclude the proof, we show higher integrability of the Hessian of u, namely D2u ∈ L2+ρ, for
some ρ > 0. To do so, consider again (4.32). This time, consider any square Q ⊂ Ω′ such that
2Q ⊂ Ω′, where 2Q is the square of side s centered at the center of Q but with twice the side. We
take η ∈ C∞

c (
√

2Q) with η ≡ 1 on Q, and

η ≡ 1 on Q and ‖Dη‖(x) ≤ C
s

on
√

2Q,
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for some C > 0 independent on x and s. Then, (4.32) becomes
�

Q
‖Duh(x)‖2 dx ≤ C ∑

a,b

�
√

2Q
‖wh

ab(x)− qab‖2‖Dη(x)‖2 dx ≤ C
s2 ∑

a,b

�
√

2Q
‖wh

ab(x)− qab‖2 dx .

(4.33)
Now, using [50, Theorem 3.6], we can estimate the last term with a Sobolev-type inequality, using
p = 2 and p∗ = 1, once we have chosen suitably qab:

∑
a,b

�
√

2Q
‖wh

ab(x)− qab‖2 dx ≤ C ∑
a,b

(�
2Q
‖Dwh

ab‖ dx
)2

.

Once again, ‖Dwh
ab‖ ≤ C‖Duh‖ pointwise a.e., where C depends only on the Lipschitz constant

of F (that in turn depends only on the Lipschitz constant of α). In this way, (4.33) can be rewritten
as �

Q
‖Duh‖2 dx ≤ C

s2

(�
2Q
‖Duh‖ dx

)2
.

Passing to the limit as h→ 0, we finally get( 
Q
‖D2u‖2 dx

) 1
2
≤ C

 
2Q
‖D2u‖ dx .

We can apply Gehring’s Lemma as stated, for instance, in [49, Theorem 1.5], to deduce the higher
integrability of the Hessian of our function.

4.5.1 Higher regularity

By Theorem 4.14, we know that for every R, there exists ε(R) > 0 such that

DU ∈ C f ⇒ DU ∈W2,2+ρ
loc (Ω)

provided that ‖ f −A‖C2(B2R)
≤ ε. In this subsection, we show that, possibly taking a smaller

ε, if f ∈ Ck, for k ≥ 2, then U ∈ Ck−1. The procedure here is quite stardard (see, for instance,
[88, Corollary]) and we describe it for the reader’s convenience. To show the improvement of
regularity, we exploit the results of [57, 58]. Suppose that

f ∈ Ck(Rn×2, R), k ≥ 2

satisfies the following Legendre-Hadamard condition (briefly, LH), i.e. there exists a constant
µ > 0 such that

D2 f (X)[Y, Y] ≥ µ‖Y‖2, ∀X, Y ∈ Rn×2, rank(Y) = 1, (4.34)

where

D2 f (X)[Y, Y] .
=

d2

dt2 |t=0 f (X + tY).

Then, applying [58, Theorem 6.2.5], we infer that the W2,2+ρ solutions of

div(D f (Du)) = 0

belong to Ck−1,α
loc , for some α depending on ρ. In order to apply [58, Theorem 6.2.5], we need to

prove that functionals close to the area satisfies the LH condition. In Lemma 4.16 we prove that
the area satisfy a local LH condition, and in Lemma 4.17 we extend this to functions close to the
area. To apply Morrey’s [58, Theorem 6.2.5], we need to prove a global LH condition for these
functionals. Nevertheless, since we are just interested in Lipschitz solution of constant R > 0, it
will be sufficient to prove that there exists an extension of the function f under consideration to
the whole Rn×2 that satisfies the LH condition. This extension is the content of Lemma 4.19.
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Lemma 4.16. For every R > 0, there exists a constant τ(R) > 0 such that

D2A(X)[Y, Y] ≥ τ‖Y‖2, ∀X, Y ∈ Rn×2, X ∈ B 3R
2
(0), rank(Y) = 1.

Proof. Fix X ∈ Rn×2, ‖X‖ ≤ R, and Y ∈ Rn×2 with ‖Y‖ = 1 and rank(Y) = 1. Define the
function

g(t) .
= A(X + tY).

The thesis is equivalent to
g′′(0) ≥ τ(R).

Since rank(Y) = 1

g(t) =
√

1 + ‖X + tY‖2 + ∑
a,b
(det(Xab) + t〈Xab, cofT(Yab)〉)2.

Therefore,

g′(t) =
s(t)
g(t)

,

where
s(t) = 〈X + tY, Y〉+ ∑

a,b
(det(Xab) + t〈Xab, cofT(Yab)〉)〈Xab, cofT(Yab)〉.

This implies

g′′(t) =
s′(t)
g(t)

− s(t)g′(t)
g2(t)

=
s′(t)
g(t)

− s2(t)
g3(t)

=
s′(t)g2(t)− s2(t)

g3(t)
.

Finally:

g′′(0) =
s′(0)g2(0)− s2(0)

g3(0)
.

We will now show that s′(0)g2(0)− s2(0) ≥ 1, and this concludes the proof. To simplify the
notation, define

A .
= ∑

a,b
〈Xab, cofT(Yab)〉2,

B .
= ∑

a,b
det(Xab)〈Xab, cofT(Yab)〉.

Recall that we are assuming ‖Y‖ = 1, and that ∑a,b(det(Xab))2 = det(XTX). Therefore:

s′(0)g2(0)− s2(0) = 1 + ‖X‖2 + det(XTX) + A + A‖X‖2 + A det(XTX)− (〈X, Y〉+ B)2, (4.35)

and

‖X‖2 + det(XTX) + A‖X‖2 + A det(XTX)− (〈X, Y〉+ B)2

= (‖X‖2 − 〈X, Y〉2) + (A det(XTX)− B2) + (det(XTX) + A‖X‖2 − 2〈X, Y〉B).

We claim that the terms in brackets of the previous expression are all nonnegative. This would
conclude the proof, since then, considering (4.35)

s′(0)g2(0)− s2(0) ≥ 1 + A

and A ≥ 0. Let us prove the claim. First, we need to show that

‖X‖2 − 〈X, Y〉2 ≥ 0.

Cauchy-Schwartz inequality and the fact that ‖Y‖ = 1 imply

‖X‖2 − 〈X, Y〉2 ≥ ‖X‖2 − ‖X‖2‖Y‖2 = ‖X‖2 − ‖X‖2 = 0.
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The second inequality we need is
B2 ≤ A det(XTX).

By the definition of B and applying again Cauchy-Schwartz inequality:

B2 =

(
∑
a,b

det(Xab)〈Xab, cofT(Yab)〉
)2

≤∑
a,b

det(Xab)2 ∑
a,b
〈Xab, cofT(Yab)〉2 = A det(XTX).

Finally, we prove that
2〈X, Y〉B ≤ A‖X‖2 + det(XTX).

By Cauchy-Schwartz and Young inequality:

2〈X, Y〉B = 2〈X, Y〉∑
a,b
(det(Xab)〈Xab, cofT(Yab)〉)

≤ 2|〈X, Y〉|
√

∑
a,b

det(Xab)2
√

∑
a,b
〈Xab, cofT(Yab)〉2

= 2|〈X, Y〉|det(XTX)
1
2 A

1
2

≤ A|〈X, Y〉|2 + det(XTX) ≤ A‖X‖2 + det(XTX).

Lemma 4.17. For every R > 0, there exists ε′(R) > 0 such that, if f ∈ C2(Rn×2) and

‖ f −A‖C2(B2R)
≤ ε′(R),

then there exists a constant τ′ = τ′(R) such that

D2 f (X)[Y, Y] ≥ τ′‖Y‖2, ∀X, Y ∈ Rn×2, ‖X‖ ≤ 3R
2

, rank(Y) = 1.

Proof. Suppose by contradiction that the thesis is false. Then, we can find a sequence of functions
fn, a sequence of positive numbers cn and sequences of matrices Xn, Yn such that:

(i) ‖ fn −A‖C2(B2R)
≤ 1

n ;

(ii) cn → 0;

(iii) Xn → X;

(iv) ‖Yn‖ = 1, rank(Yn) = 1, and Yn → Y ∈ Rn×2, ‖Y‖ = 1, rank(Y) = 1

(v) D2 fn(Xn)[Yn, Yn] ≤ cn.

Passing to the limit in (v), we immediately get a contradiction with Lemma 4.16.

In order to prove the next lemma we need to introduce a new:

Definition 4.18. Let µ ≥ 0. The function h : Rn×2 → R is µ-rank-one convex if and only if for
every X, Y ∈ Rn×2, rank(Y) = 1,

φ(t) .
= h(X + tY)

is a uniformly convex function with constant µ, i.e.

φ(at1 + bt2) ≤ t1φ(a) + t2φ(b)− t1t2µ|a− b|2, ∀a, b, t1, t2 ∈ R, t1 + t2 = 1, t1, t2 ≥ 0.

If µ = 0, the function h is simply called rank-one convex.
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It is not difficult to see that if h ∈ C2(Rn×2), then h is µ-rank-one convex if and only if it
satisfies the LH condition with constant µ (i.e., (4.34) holds). Therefore we will say that a C2

function h is µ- rank-one convex in Br(0) for some r > 0 if and only if (4.34) holds for every
X ∈ Br(0) ⊂ Rn×2 and for every Y ∈ Rn×2 with rank(Y) = 1.

Lemma 4.19. Let f ∈ Ck(B2R), k ≥ 2, be a µ-rank-one convex function on B2R. Then, there exists a
function F such that

• F = f on B 3R
2

;

• F ∈ Ck(Rn×2);

• F is µ
2 rank-one convex.

Proof. Choose any R1 ∈
(

3R
2 , 2R

)
. Moreover, define f ′(X)

.
= f (X)− 3µ‖X‖2

4 . Notice that, by our

hypothesis, f ′ is still rank-one convex on B2R(0). Apply [62, Lemma 2.3] to find a rank one
convex function F′ : Rn×2 → R such that F′ coincides with f ′ on BR1 . The function

F′′(X)
.
= F′(X) +

3µ‖X‖2

4

is 3µ
4 - rank-one convex on the whole Rn×2 and on BR1 it coincides with f (X). We take any family

of mollifiers ρε on Rn×2 with spt(ρε) ⊂ Bε(0) and ρε(X) ≥ 0 for every X ∈ Rn×2, and define

Fε(X)
.
= (F′′ ? ρε)(X), ∀X ∈ Rn×2.

The convolution is well defined since rank-one convexity implies that F′′ is locally Lipschitz.
Through a direct computation, it is easy to see that Fε is still 3µ

4 -rank one convex. Consider any

R2 ∈
(

3R
2 , R1

)
and take a function η ∈ C∞

c (Rn×2) such that 0 ≤ η(X) ≤ 1, ∀X, η ≡ 1 on BR2+δ

and η ≡ 0 on Bc
R1−δ, with 0 < δ

.
= R1−R2

10 . Next, define

Gε(X)
.
= η(X)F′′(X) + (1− η(X))Fε(X).

We claim that there exists ε > 0 such that Gε(X) has the desired properties. Indeed, for every
ε > 0, Gε is a Ck(Rn×2) function that coincides with F′′ and therefore f on B 3R

2
. Moreover, by the

properties of the support of η and the 3µ
4 -rank one convexity of F′′ and Fε, it holds

D2Gε(X)[Y, Y] ≥ 3µ

4
‖Y‖2

for every ε > 0, Y ∈ Rn×2 with rank(Y) = 1 and X ∈ B .
= B̄R2+

δ
2
∪ Bc

R1− δ
2
. Therefore, to conclude

the proof, we need to show that for ε > 0 sufficiently small,

D2Gε(X)[Y, Y] ≥ µ

2
‖Y‖2, for X ∈ Bc.

Take ε < R1−R2
100 . In this case, we see that for every X ∈ Bc

DFε(X) = (DF′′ ? ρε)(X) and D2Fε(X) = (D2F′′ ? ρε)(X), (4.36)

since F′′ coincides with the Ck (k ≥ 2) function f on BR1 . We obtain

D2Gε = F′′D2η + (Dη ⊗ DF′′ + DF′′ ⊗ Dη) + ηD2F′′

− FεD2η − (Dη ⊗ DFε + DFε ⊗ Dη) + (1− η)D2Fε.

Define

Vε
.
= F′′D2η + (Dη ⊗ DF′′ + DF′′ ⊗ Dη)
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− FεD2η − (Dη ⊗ DFε + DFε ⊗ Dη).

For every tensor W = (Wabcd), a, c ∈ {1, . . . n}, b, d ∈ {1, 2}, denote with

W[Y, Y] .
= ∑

a,b,c,d
Wabcdyabycd, ∀Y = (yij) ∈ Rn×2.

Exploiting (4.36) and the regularity of F′′, we see that there exists a constant C > 0 independent
of X such that

|Vε(X)[Y, Y]| ≤ Cε‖Y‖2,

for every X ∈ Bc and every Y ∈ Rn×2 (non necessarily with rank(Y) = 1). We can choose any
number 0 < ε ≤ µ

4C . Let it be ε0, and call F(X)
.
= Gε0(X). F has the three properties listed in the

statement of the Lemma.

We can summarize the result of this section in the following

Theorem 4.20. For every R > 0, there exists α = α(R) > 0 such that, if f is a Ck(R2n+2×2) function,
k ≥ 2, with the property that

‖ f −A‖C2(B2R(0)) ≤ α, (4.37)

and U : Ω→ R2n+2 is a Lipschitz solution of

DU (x) ∈ C f , for a.e. x ∈ Ω (4.38)

with
‖DU‖∞ ≤ R,

then U ∈ Ck−1,ρ(Ω), for some positive ρ > 0.

Proof. Fix R > 0. Choose α(R) .
= min{ε(R), ε′(R)}, where ε and ε′ are defined in Lemma 4.13

and Lemma 4.17 respectively. Take any f satisfying (4.37) and a R-Lipschitz U satisfying (4.38).
By our choice of α, U belongs to W2,2+ρ

loc (Ω) by Theorem 4.14. Again, by the choice of α, by
Lemma 4.17 we have that f satisfies the LH condition in B2R. Using Lemma 4.19, we can consider
F ∈ Ck(Rn×2) that extends f outside B 3R

2
and that satisfies the LH condition on the whole Rn×2.

Since ‖DU‖∞ ≤ R,
div(DF(Du)) = div(D f (Du)) = 0, a.e. in Ω.

U has the desired regularity by [58, Theorem 6.2.5], as described at the beginning of this
subsection.

4.6 irregular critical points for inner variations

The purpose of this section is to show the following

Theorem 4.21. Let Ω be an open and bounded subset of R2. There exists a map ψ ∈ W1,p(Ω, R2) for
some p > 2 that solves

curl(B(Dψ)) = 0,

and such that for every open V ⊂ Ω, ψ is not in C1(V).

The proof of this Theorem is achieved by combining a simple Linear Algebra lemma, Lemma
4.22, with the counterexample constructed in [51, Example 4.41]. First, let us define

H1
.
=

{
X ∈ R2×2 : X =

(
a b
b −a

)}
and

H2
.
=

{
X ∈ R2×2 : X =

(
a −b
b a

)}
.
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Lemma 4.22. For every X ∈ H1 ∪ H2, we have

A(X) = XJ

and
B(X) = J

Proof. Let us consider the matrix

X =

(
a αb
b βa

)
,

with α = ±1, αβ = −1, a, b ∈ R. Clearly, every matrix in H1 ∪ H2 is of this form. We have

‖X‖2 = 2(a2 + b2), det(X)2 = (a2 + b2)2,

hence
A(X) = 1 + a2 + b2.

Moreover,

cof(X)T =

(
βa −b
−αb a

)
,

thus

X + det(X) cof(X)T =

(
a αb
b βa

)
+ (βa2 − αb2)

(
βa −b
−αb a

)
= A(X)

(
a αb
b βa

)
= A(X)X.

Therefore, A(X) = XJ. We now prove that B(X) = −J. To do so, we compute

XTX =

(
a b

αb βa

)(
a αb
b βa

)
= (a2 + b2) id =

‖X‖2

2
id .

Hence

A(X)B(X) = −
(

1 +
‖X‖2

2

)
J = −A(X)J.

This concludes the lemma.

Remark 4.23. Similar computations show that the previous Theorem holds true also in the case
f (X) = ‖X‖2, i.e. when considering the Dirichlet energy.

In [51, Example 4.41] it is shown that there exists a Sobolev map ψ ∈ W1,p(Ω, R2), p > 2, such
that Dψ belongs, at almost every point of Ω, to H1 ∪ H2, and moreover

|{x ∈ Ω : Dψ(x) = 0}| > 0

but ψ is non-constant. By Lemma 4.22, we immediately deduce that this function ψ solves

curl(B(Dψ(x))) = curl(−J) = 0,

hence it is a solution to the inner variations equations for the area function. We want to construct
such a ψ by using the same methods of [51, Example 4.41], but we moreover want to construct it
in such a way that for every open subset V ⊂ Ω

|{y ∈ V : Dψ(y) = 0}| > 0

but ψ is non-constant in V . In this way, we would deduce that ψ cannot be C1 on any open set. In
fact, suppose by contradiction that there exists a connected open set V such that ψ ∈ C1(V). Let
W ⊂ V be an open, compactly contained subset of V . Since H1, H2 are closed, we obtain that

Ai
.
= {y ∈ W : Dψ(y) ∈ Hi}



4.6 irregular critical points for inner variations 63

are closed sets, contained inW , for i = 1, 2, and that moreover

W = A1 ∪ A2.

There are two cases: A1 does not contain any ball or there exists Br(y) ⊂ A1. If int(A1) = ∅, then
A2 is dense inW . Since it is also closed, thenW = A2. In particular, on the open setW , one has
Dψ ∈ H2. This implies that ψ is harmonic and smooth. It is well-known, see for instance [66],
that for a non-constant harmonic function ψ

|{y ∈ W : Dψ(y) = 0}| = 0,

which is a contradiction with |{y ∈ W : Dψ(y) = 0}| > 0. Therefore, we are left with the case
Br(y) ⊂ A1. But then, exactly the same reasoning applied with Br(y) instead of W yields the
same contradiction.

This discussion motivates the fact that, in order to conclude that we can find a solution that is not
C1 in any open set of Ω, we need the following

Lemma 4.24. There exists an open set Ω and a W1,p, p > 2, map ψ : Ω → R2 with the property for
every open set V ⊂ Ω,

• ψ is non-constant on V ;

• |V ∩ {y ∈ Ω : Dψ(y) = 0}| > 0.

To prove Lemma 4.24, it is sufficient to show the following Lemma:

Lemma 4.25. There exists a Lipschitz map f : B1(0) ⊂ R2 → R2 with the following properties:

• D f (x) ∈ {A1, . . . , A5} for five 2× 2 matrices A1, . . . , A5 (explicitely written in [51, Example
4.41]), for a.e. x ∈ B1(0);

• If Ai
.
= {x ∈ B1(0) : Du(x) = Ai}, then for every open subset of B1(0), B, it holds

|B ∩Ai| 6= 0, ∀i = 1, . . . , 5.

If Lemma 4.24 holds, then the previous discussion constitutes the proof of Theorem 4.21. Let
us now explain how Lemma 4.25 implies Lemma 4.24.

Proof of Lemma 4.24. This proof is exactly the same described in [51, Example 4.41], and we report
it here for the reader’s convenience. Suppose a map f as the one of Lemma 4.25 exists. We
can define the mapping ψ as in [51, Example 4.41], i.e. ψ(x) .

= f (F−1(x)), where F : R2 → R2

is a suitable W1,p, p > 2 quasiregular homeomorphism. Since we do not need to explicitely
introduce quasiregular maps or Beltrami equations, we will not enter in the details of this theory.
We refer the interested reader to the references given in [51, Example 4.41]. The open set Ω is
Ω .

= F(B1(0)). The map F satisfies a suitable Beltrami equation, introduced in such a way that
for a.e. y ∈ F(A1 ∪A2), we have Dψ(y) ∈ H1, while for a.e. y ∈ F(A2 ∪A3 ∪A4 ∪A5), we have
Dψ(y) ∈ H2. Moreover, by the computations of [51, Example 4.41] (in particular, by the equation
following (4.10)), we find that

y ∈ F(A1)⇒ Dψ(y) 6= 0. (4.39)

Now V ⊂ Ω open. We want to show that ψ is non-constant on V and

|{x ∈ V : Dψ(x) = 0}| > 0.

We claim
|V ∩ F(Ai)| > 0, ∀i ∈ {1, . . . 5}. (4.40)

Indeed, if for some i we had
|V ∩ F(Ai)| = 0,
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then, making repeated use of the fact that F is bijective,

0 = |F(F−1(V)) ∩ F(Ai)| = |F(F−1(V) ∩Ai)|. (4.41)

From [7, Corollary 3.7.6] we have that F has the N−1 property, i.e. for every Borel set A,

|A| = 0⇒ |F−1(A)| = 0.

With this, we can infer from (4.41) that there exists i such that

|F−1(V) ∩Ai| = 0.

Since F−1 is an open mapping, then F−1(V) is an open set, hence the previous equality is
in contradiction with the properties of the map f . Using (4.40), we immediately see that on
V ψ cannot be constant since, as noted in (4.39), Dψ 6= 0 on F(A1). On the other hand,
y ∈ F(A2) ⇒ DF(y) = 0. This implies, again by (4.40), that DF(y) = 0 on a set of positive
measure inside V , but F is not constant on V .

In the next and final subsection we will show Lemma 4.25.

4.6.1 Convex integration: proof of Lemma 4.25

To prove Lemma 4.25, we use the Baire Cathegory arguments of [51]. First, we need to recall
the following:

Definition 4.26. Let U ⊂ Rn×m be bounded and K ⊂ Rn×m be closed. We say that gradients in
U are stable only near K if for every ε > 0, one can find δ = δ(ε) > 0 such that, if A ∈ U and
d(A, K) > ε, then there exists a piecewise affine map ϕ ∈ Lip(Rn, Rm) with bounded support
such that

• Dϕ(x) + A ∈ U for a.e. x ∈ Rn;

•
�
‖Dϕ‖ dx ≥ δ| spt(ϕ)|.

The reason why this definition is useful is given by the following result, see [51, Proposition
3.17, Corollary 3.18]. Let

P .
= {u ∈ Lip(Ω, Rn) : u piecewise affine, Du(x) ∈ U a.e. in Ω}

and define the complete metric space

X .
= P‖·‖L∞ . (4.42)

Proposition 4.27. Let the gradients of U be stable only near a closed set K. Then the typical map u ∈ X
has the property

Du ∈ K a.e..

We now show Lemma 4.25, but first we need to explain how to obtain the matrices {A1, . . . , A5}
in the statement of the Lemma. These matrices are obtained from another set of five symmetric
matrices K .

= {PF0 , PB0 , PR0 , PL0 , PH0} simply by considering M(K− PF0) = {A1, . . . , A5}, where
M is a suitable 2× 2 matrix. The importance of the set K, found by Kirchheim and D. Preiss in
[51, Construction 4.38], is due to the fact that it is the first example in the literature of a set of five
non-rigid matrices, i.e. such that there exists a non-affine map u ∈ Lip(B1(0), R2) that fulfills

Du(x) ∈ K

for a.e. x ∈ B1(0). The strategy they use is to find an open subset U of Sym(2) such that gradients
of U are stable only near K, see [51, Construction 4.38]. We can now start the:
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Proof of Lemma 4.25. Following the previous notation we consider K = {PF0 , PB0 , PR0 , PL0 , PH0}
and U be the open subset of Sym(2) found by Kirchheim and D. Preiss in [51, Construction 4.38].
We consider X defined as in (4.42). Now enumerate the points with rational coordinates in B1(0),
{qi}i∈N, and define the sets

Xqi ,r,j
.
= {u ∈ X : u is affine in Br(qi)}.

for rational 0 < r < d(qi, ∂B1(0)) and 1 ≤ j ≤ 5. We aim to show Y .
=
⋃

i,r,j Xqi ,r,j is meager. If this
is the case, then Z .

= Yc ∩ {u ∈ X : Du(x) ∈ K, for a.e. x ∈ Ω} is residual in X. Baire Theorem
A.4 tells us that the latter set is non-empty, and obviously for any u ∈ Z, one has

Du(x) ∈ K = {PF0 , PB0 , PR0 , PL0 , PH0}, for a.e. x ∈ Ω.

Considering f (x) .
= M(u(x)− PF0 x), where M was introduced before the proof of the present

Lemma, we get
D f (x) ∈ {A1, A2, A3, A4, A5}, a.e..

Moreover, for every 1 ≤ j ≤ 5, q ∈ Q2 ∩Ω, rational radius 0 < r < d(x, ∂Ω),

|Aj ∩ Br(q)| > 0. (4.43)

Indeed, if |Aj ∩ Br(q)| = 0, by the rigidity for the four gradients problem, see [51, Theorem 4.33],
we get that f is necessarily affine on Br(q), against the definition of Z. Since (4.43) is clearly
equivalent to

|Aj ∩ V| > 0

for every open subset V ⊂ Ω and 1 ≤ j ≤ 5, we would then conclude the proof. In order to show
that Y is meager, we prove that Xqi ,r,j are closed sets with empty interior. The closedness inside
the complete metric space X is straighforward, since a sequence of affine functions converging
in L∞ need to converge to an affine function. Now suppose by contradiction that for some i, r, j,
Xqi ,r,j has non-empty interior. In particular, we suppose we have that for some α > 0 and u ∈ X,

{v ∈ X : ‖u− v‖∞ < α} ⊂ Xqi ,r,j.

Since u ∈ X, we can pick a function ū ∈ P such that ‖ū− u‖ ≤ α
4 and Dū ∈ U . We also know, by

assumption, that ū is affine on Br(qi), say ū = Ax + b on Br(qi) with A ∈ U . Since A ∈ U , that
is an open subset of Sym(2), as follows by the construction of [51], then we can easily find two
matrices B and C in U such that rank(B− C) = 1 and B+C

2 = A. For instance, one can take

B .
= A + λE11, C .

= A− λE11,

where λ > 0 is a sufficiently small parameter and

E11
.
=

(
1 0
0 0

)
.

By [51, Proposition 3.4], recalled below, for every ε > 0 we can find a Lipschitz and piecewise
affine map w : B r

2
(qi)→ R2 with

• Dw(x) ∈ U a.e.;

• w(x) = Ax on ∂Br/2(qi);

• ‖w− A‖∞ ≤ ε.

Of course, if we traslate w with w̄ .
= w + b, we have

• Dw̄(x) ∈ U a.e.;

• w̄(x) = ū(x) on ∂Br/2(qi);
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• ‖w̄− ū‖L∞(Br/2(qi))
≤ ε.

Moreover, the same proposition yields the following property

|{x ∈ Br/2(qi) : Dw̄(x) = B}| ≥ (1− ε)

2
|Br/2(qi)|

and

|{x ∈ Br/2(qi) : Dw̄(x) = C}| ≥ (1− ε)

2
|Br/2(qi)|.

In particular, this implies that w̄ cannot be affine on Br/2(qi). We finally get a contradiction,
because the map

z(x) .
=

{
ū(x), if x ∈ Ω \ Br/2(qi)

w̄(x), if x ∈ Br/2(qi)

is piecewise affine, Lipschitz, ‖z− ū‖L∞(Ω ≤ ε and Dz(x) ∈ U , for a.e. x ∈ Ω. If ε < α
4 , then

we would obtain that z is affine on Br/2(qi), against the construction of w̄. This concludes the
proof.

We recall here [51, Proposition 3.4],

Proposition 4.28. Let A, B, C ∈ Sym(n), with rank(B− C) = 1, and A = tB + (1− t)C, for some
t ∈ [0, 1]. Let also Ω ⊂ Rn be a fixed open domain. Then, for every ε > 0, one can find a Lipschitz
piecewise affine map f : Ω→ Rn such that

• f (x) = Ax on ∂Ω and ‖ f − A‖∞ ≤ ε;

• D f (x) ∈ Sym(n) ∩ Bε([B, C]);

• |{x ∈ Ω : D f (x) = B}| ≥ (1− ε)t|Ω| and |{x ∈ Ω : D f (x) = C}| ≥ (1− ε)(1− t)|Ω|.

Remark 4.29. Notice that Proposition (4.28) asserts the construction of the simple laminates (with
the simmetry constraint on the gradient matrix) that we have already mentioned in Section 1.4.

Remark 4.30. To the best of our knowledge, there are various open problems related to the one of
this proof. For instance, one might ask whether a solution u ∈ Lip(Ω, R2) to

curl(A(Du)) = 0

needs to be regular or not. Moreover, in our example we have essentially used that {Dψ = 0} is a
set of positive Lebesgue measure. It is unclear to us if one can find a counterexample satisfying
‖Dψ‖ ≥ δ > 0 at a.e. point, or det(Dψ) > 0 a.e..
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In this chapter we give negative answer to [76, Open Question 2.1], that we recall here:

Open Question 2.1: Let x 7→ A(x) be Γ-periodic, taking values in Sym+(n). Let A and div(A)
belong to Lp(Rn/Γ) with 1 < p < n. Defining 1

p′ =
1
p −

1
n , is it true that

det(A)
1
n ∈ Lp′(Rn/Γ) ?

The answer is the content of the main theorem of this chapter, Theorem 5.1. Let us first introduce
some notation that we will need in the next two chapters.

notations

For symmetric matrices A, B ∈ Sym+(n), we use the standard partial order relation

A ≥ B⇔ (Av, v) ≥ (Bv, v), ∀v ∈ Rn.

Recall the basic monotonicity property of the determinant

A ≥ B⇒ det(A) ≥ det(B).

For a matrix A, we denote with PA(λ) its characteristic polynomial, i.e.

PA(λ)
.
= det(λ id−A).

Let us define, for a matrix A ∈ Sym+(n) with eigenvalues λ1, . . . , λn,

Mi(A)
.
= ∑

1≤j1≤···≤ji≤n
λj1 . . . λji , ∀i ∈ {1, . . . , n}, M0(A)

.
= 1.

It is a basic Linear Algebra fact that, if 0 ≤ i ≤ n the i-th coefficient of PA(λ) is given by
(−1)i+n Mn−i(A). Notice in particular that Mn(A) = det(A).

5.1 main result

Let Ω be an open subset of Rn. Let

Yp,K
.
= {A ∈ Lp(Ω, Sym+(n)) : div(A) ∈ Lp(Ω, Rn),

A ≡ Ā outside K, for some fixed Ā ∈ Sym+(n)},

for any compact K ⊂ Ω with clos(int(K)) = K 6= ∅. We consider the following distance on Yp,K,
that turns it into a complete metric space:

d(A, B) .
= ‖A− B‖Lp + ‖div(A− B)‖Lp .

We prove the following

Theorem 5.1. Let p∗ .
= max

{
0, p(n−1)−n

p(n−1)

}
. The set

Dp,K
.
= {A ∈ Yp,K : det(A)

1
n−1 ∈ L

1
1−p∗ (Ω) \ L

1
1−p∗ +ε

(Ω), ∀ε > 0}

is residual in Yp,K.

69
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Remark 5.2. The same result (without modifying the proof) would have held if we had required
div(A) = 0 in the definition of Yp,K, or if we had chosen instead of Yp,K,

Xp = {A ∈ Lp(Ω, Sym+(n)) : div(A) ∈ Lp,

Aν ≡ Āν on ∂Ω, for some fixed Ā ∈ Sym+(n)},

or, as in Serre’s original question

Sp = {A ∈ Lp(Rn/Γ, Sym+(Rn)) : div(A) ∈ Lp(Rn/Γ, Sym+(Rn))}.

Let us explain how this result gives negative answer to [76, Open Question 2.1]. If p ≤ n
n−1 , we

obtain the existence of one (in fact, many) divergence free, non-negative definite tensor fields A
such that

det(A)
1

n−1 ∈ L1 \ L1+ε, ∀ε > 0,

thus proving the optimality of Serre’s results. The existence of this tensor field is guaranteed by
Baire Theorem, Theorem A.4. Moreover, also in the supercritical case, i.e. p > n

n−1 , Theorem 5.1

tells us that for many divergence free, non-negative definite A, det
1

n−1 (A) ∈ L
p(n−1)

n \ L
p(n−1)

n +ε,
thus proving that there can be no general gain in the integrability of the determinant with respect
to the general estimate det(A) ∈ L

p
n .

In order to prove Theorem 5.1, we make use of the classical fact that div(cofT(Du)) = 0, for
u ∈ C∞(Ω, Rn). This is proved in [30, Ch. 8, Th. 2]. By approximation, it is easy to see that
this holds also for maps u ∈ W1,n−1(Ω, Rn). We exploit this result when building approximate
counterexamples to Open Question 2.1, in Lemma 5.3. In that Lemma, we consider a suitable
family of convex functions of class W2,p(n−1), denoted by ϕβ,δ,ε,x0 . The matrix-field obtained by
taking x 7→ cof(Hϕβ,δ,ε,x0)(x) will then be non-negative definite, by convexity, and divergence-free,
by the aforementioned result. With this family we are also able to show the optimal integrability
of x 7→ det(Hφ)(x), where φ is a convex function in the Sobolev class. Since this Chapter is
devoted to the study of divergence-free tensor fields, we have moved this discussion in Appendix
C.

Lemma 5.3. Fix p ≥ 1. For every β > 0, δ > 0, ε > 0, x0 ∈ Ω there exists a convex function
ϕβ,δ,ε,x0 ∈W2,p(n−1)

loc (Ω) and a matrix Sβ,δ,ε,x0 ∈ Sym+(n) such that

(i) ϕβ,δ,ε,x0 ≡ xTSβ,δ,ε,x0 x outside Bβ(x0);

(ii) ‖ cof(Hϕβ,δ,ε,x0)‖Lp(Ω) ≤ δ;

(iii) det
1

n−1 (cof(Hϕβ,δ,ε,x0)) /∈ L
1

1−p∗ +ε
(Br(x0)), ∀r > 0.

Proof. We divide the proof in four steps:

Step 1: Definition and properties of the starting function.

For α ≥ 0, define the function

fα(x) .
=

{
‖x‖1+α + b, if ‖x‖ ≤ 1,
a‖x‖2, if ‖x‖ > 1,

where a, b ∈ R are chosen in such a way that the function fα is in C1(Rn \ {0}), i.e. we need to
solve

1 + b = a and 1 + α = 2a.

Therefore

fα(x) .
=

{
‖x‖1+α + α−1

2 , if ‖x‖ ≤ 1,
1+α

2 ‖x‖2, if ‖x‖ > 1.
(5.1)
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It is easy to see that fα defined in this way is convex. We compute its pointwise Hessian (except
for the points x ∈ Rn such that ‖x‖ = 0 or ‖x‖ = 1):

H fα(x) .
=

{
(1 + α)

(
‖x‖α−1 idn +(α− 1)‖x‖α−3x⊗ x

)
, if 0 < ‖x‖ < 1,

(1 + α) idn, if ‖x‖ > 1.
(5.2)

Step 2: Lp estimates on H fα.

We can estimate, for some constant Cα,n > 0,

‖H fα‖(x) ≤
{

Cα,n‖x‖α−1, if 0 < ‖x‖ < 1,
(1 + α)

√
n, if ‖x‖ > 1.

(5.3)

The Matrix Determinant Lemma, Lemma 2.17, tells us that:

det(A + B) = det(A) + 〈B, cofT(A)〉, ∀A, B ∈ Rn×n, rank(B) = 1.

We can use it to compute explicitely the pointwise determinant of the Hessian of fα:

det(H fα)(x) =

{
α(1 + α)n‖x‖n(α−1), if 0 < ‖x‖ < 1,
(1 + α)n, if ‖x‖ > 1.

(5.4)

From (5.3), we find that H fα ∈ Lp
loc(R

n) for every α ≥ 0 if p < n and for α > p−n
p if p ≥ n. For

these values of α, we also get fα ∈W2,p
loc (R

n), as proved in Lemma 5.4, and that H fα is not only
the pointwise Hessian of fα but also its distributional Hessian.

Step 3: Integrability of the determinant and the cofactors of H fα.

Define
Aα(x) .

= cof(H fα)(x). (5.5)

In view of the equality det
1

n−1 (Aα) = det(H fα) and (5.4),

det
1

n−1 (Aα) ∈ L
1

1−α−ε

loc (Rn), ∀ε > 0, (5.6)

but
det

1
n−1 (Aα) /∈ L

1
1−α (Br(0)) for any r > 0. (5.7)

Moreover, by (5.3),

‖Aα‖(x) = ‖ cof(H fα)‖(x) ≤ cn‖H fα‖n−1(x)
(5.3)
≤ C′α,n max{‖x‖(n−1)(α−1), 1},

for some constant C′α,n > 0. Hence, if (n− 1)(1− α)p < n, i.e. if α > p∗, then Aα ∈ Lp
loc(R

n). The

same computation shows, in particular, that for α > p∗ one has fα ∈W2,p(n−1)
loc (Rn).

Step 4: Construction of ϕβ,δ,ε,x0 .

Fix p, β, δ, ε, x0 as in the statement of the Lemma. Choose α = α(ε) > 0 such that

1
1− α

=
1

1− p∗
+ ε,

that in particular implies α > p∗. Finally define, for a constant cβ,δ,ε > 0 to be fixed later,

ϕβ,δ,ε,x0(x) .
= cβ,δ,ε

[
fα

(
2
β
(x− x0)

)
− 2

(
1 + α

β2

)
(‖x0‖2 − 2(x, x0))

]
. (5.8)
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By the definition of fα, we get (i). Moreover, (iii) is a consequence of our choice of α and (5.7).
Finally, since α > p∗, Aα belongs to Lp

loc(R
n), as proved in the previous step. Therefore, we can

choose cβ,δ,ε small enough so that (ii) is fulfilled.

Lemma 5.4. The function fα defined in (5.1) is in W2,p
loc (R

n) for every α ≥ 0 if p < n and for α > p−n
p

if p ≥ n. Moreover, its pointwise Hessian, computed in (5.2), coincides with its distributional Hessian.

Proof. To see this write, for any η ∈ C∞
c (Rn) and i, j ∈ {1, . . . , n},

�
Rn

fα∂2
ijη = lim

R→0

[�
Rn\(BR(0)∪SR)

fα∂2
ijη

]
,

where SR = Bc
1−R(0) ∩ B1+R(0). Integrating by parts we get

�
Rn

fα∂2
ijη = lim

R→0

[�
∂SR∪∂BR(0)

fα ∂iη νj −
�

Rn\(BR(0)∪SR)
∂j fα∂iη

]
,

and since fα ∈ C0(Rn) the first term vanishes. Thus we are left with the second one, which again
integrating by parts can be written as

lim
R→0
−
�

Rn\(BR(0)∪SR)
∂j fα∂iη = lim

R→0

[
−
�

∂SR∪∂BR(0)
∂j fα η νi +

�
Rn\(BR(0)∪SR)

η ∂2
ij fα

]
.

Note that for every α ≥ 0, ∂j fα ∈ L∞
loc(R

n) and ∂j fα is continuous in Rn \ {0}. Thus we have

lim
R→0

�
∂SR∪∂BR(0)

∂j fα η νi = lim
R→0

[�
∂SR

∂j fα η νi +

�
∂BR(0)

∂j fα η νi

]
= 0 .

Finally by Step 2 of Lemma 5.3, we know that ∂2
ij fα is in Lp

loc(R
n) for every α ≥ 0 if p < n and for

α > p−n
p if p ≥ n. Thus, for the ranges of α and p we are considering, we have H fα ∈ Lp

loc(R
n),

and by dominated convergence we conclude
�

Rn
fα∂2

ijη = lim
R→0

�
Rn\(BR(0)∪SR)

η ∂2
ij fα =

�
Rn

η ∂2
ij fα .

We can finally prove our main result.

Proof of Theorem 5.1. First observe that

Dc
p,K = {A ∈ Yp,K : det(A)

1
n−1 ∈ L

1
1−p∗ +ε for some ε > 0},

which is true for p < n
n−1 because of Serre’s result [76, Theorem 2.4], while for p ≥ n

n−1 it is just a

consequence of the definition of p∗ and the fact that det(A)
1

n−1 ∈ L
p(n−1)

n , ∀A ∈ Yp,K.

We want to write Dc
p,K as a countable union of closed sets with empty interior. To do so, consider

Ck,j = {A ∈ Yp,K : ‖det(A)
1

n−1 ‖ 1
1−p∗ +

1
k
≤ j}.

For every k, j, Ck,j is closed in (Yp,K, d), as can be easily seen through Fatou’s Lemma. Moreover,⋃
k,j

Ck,j = Dc
p,K.
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Finally, suppose that for some k, j, Ck,j has non-empty interior. This means that we can find
Ā ∈ Ck,j and a ball (in the d-topology on Yp,K) of radius ρ, Nρ(Ā), such that Nρ(Ā) ⊂ Ck,j. In
particular this implies that

det(B)
1

n−1 ∈ L
1

1−p∗ +
1
k (Ω), ∀B ∈ Nρ(Ā). (5.9)

Fix x0 ∈ int(K) ⊂ Ω and let r > 0 be such that Br(x0) ⊂ int(K). Consider ϕβ,δ,ε,x0 of Lemma 5.3,
with ε = 1

k , β = r
2 and δ = ρ

2 . Define also

Mβ,δ,ε,x0(x) .
= cof(Hϕβ,δ,ε,x0),

and finally take
B .
= Ā + Mβ,δ,ε,x0 .

Observe that Mβ,δ,ε,x0 is a divergence-free non-negative definite tensor field, that is constant
outside K. The fact that Mβ,δ,ε,x0 is divergence-free is because it is the cofactor matrix of the Hessian

of a map ϕ ∈W2,p(n−1)
loc (Rn). Therefore, our choice of β, δ and (5.9) imply det(B)

1
n−1 ∈ L

1
1−p∗ +

1
k .

Since the determinant is monotone on the cone of non-negative symmetric matrices, we have

det(B) = det(Ā + Mβ,δ,ε,x0) ≥ det(Mβ,δ,ε,x0) ≥ 0,

that would imply det(Mβ,δ,ε,x0)
1

n−1 ∈ L
1

1−p∗ +
1
k (Bβ(x0)) but this contradicts (iii) of Lemma 5.3 by

our choice of ε.

Remark 5.5. The situation for diagonal matrices is less rigid. If A = diag( f1, . . . , fn), fi ∈ Lp(Rn),

compactly supported, and div(A) ∈ Lp(Rn), then |det |
1

n−1 (A) ∈ Lp(Rn), and

‖(det A)
1

n−1 ‖Lp ≤ C‖div(A)‖
n

n−1
Lp ,

for some constant C > 0 which depends on the size of the support of A. Note that one does not
even need the non-negativity of A to be satisfied. The proof of the inequality is as follows. We
have that ∂i fi ∈ Lp(Rn). Therefore

| fi|(x1, . . . , xn) =

∣∣∣∣� xi

−∞
∂i fi(x1, . . . , xi−1, t, xi+1, . . . , xn)dt

∣∣∣∣
and

| fi|p(x1, . . . , xn) ≤ C
� ∞

−∞
|∂i fi|p(x1, . . . , xi−1, t, xi+1, . . . , xn)dt,

where C = C(p, diam(spt(A))). Define

gi(x̂i)
.
=

� ∞

−∞
|∂i fi|p(x1, . . . , xi−1, t, xi+1, . . . , xn)dt.

We have gi ∈ L1(Rn−1), hence g
1

n−1
i ∈ Ln−1. Therefore

�
Rn
|det(A)|

p
n−1 (x) dx ≤ C

�
Rn

∏
i

g
1

n−1
i (x̂i) dx

≤ C ∏
i
‖gi‖

1
n−1
L1(Rn−1)

≤ C‖div(A)‖
np

(n−1)
Lp .

The second inequality can be found in [9, Lemma 9.4]. Since this inequality is sharp, it is easy to
find counterexamples to the statement det(A) ∈ Lq

loc(R
n) for exponents q > p

n−1 .
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In this chapter we show weak upper-semicontinuity of the functional

D(A)
.
=

�
Tn

det(A(x))
1

n−1 dx

in the space
Xp

.
=
{

A ∈ Lp(Tn, Sym+(n)) : div A ∈ M(Tn, Rn)
}

,

with respect to its weak topology, when p > n
n−1 . This is the content of Theorem 6.1. In

Proposition 6.6, we show its failure for p ≤ n
n−1 , and at the end we discuss some applications to

the multi-dimensional Burgers equation.

6.1 the case p > n
n−1

In this section we prove weak upper semi-continuity of the functional D(·). Fix p ∈ [1, ∞].
Consider the space

Xp
.
=
{

A ∈ Lp(Tn, Sym+(n)) : div A ∈ M(Tn, Rn)
}

.

We say that Ak ⇀ A in Xp if Ak ⇀ A in Lp (Ak
∗
⇀ A if p = ∞) and div Ak

∗
⇀ div A inM(Tn, Rn).

We prove the following

Theorem 6.1. Let p > n
n−1 and {Ak}k ⊂ Xp be such that Ak ⇀ A in Xp. Then

lim sup
k

D(Ak) ≤ D(A).

To prove Theorem 6.1 we follow the argument of [36], indeed we will prove that the Young
measure ν = (νx)x∈Tn generated by the sequence {Ak}k, satisfies

〈νx, det(·)
1

n−1 〉 ≤ det(A(x))
1

n−1 , (6.1)

for almost every x ∈ Tn. Indeed, by the Fundamental Theorem of Young Measures, Theorem A.1,
and (6.1), we would conclude

lim sup
k

D(Ak) = lim
k

D(Ak) =

�
Tn
〈νx, det(·)

1
n−1 〉 dx

(6.1)
≤ D(A),

i.e. the weak upper semi-continuity of D(·) on Xp, where in the first equality we used the fact that
up to a subsequence we can further suppose that lim supk D(Ak) = limk D(Ak). The argument
to obtain (6.1) is different to the one given in [36] and heavily relies on the ideas of [76, Proof of
Theorem 2.2]. First we make the following remarks of technical nature.

Remark 6.2. Iit is sufficient to prove the theorem in the case in which Ak, A ≥ ε idn for some ε > 0.
Indeed, in the general case one can consider Aε

k = Ak + ε idn, for which one proved weak upper
semi-continuity of D, meaning that

lim sup
k

D(Aε
k) ≤ D(Aε).

By monotonicity of the determinant on the cone of positive definite matrices, we also have

lim sup
k

D(Ak) ≤ lim sup
k

D(Aε
k) ≤ D(Aε),

thus the theorem in the general case follows by letting ε→ 0.

75
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Remark 6.3. We can also suppose that the sequence {Ak}k is smooth. Indeed for any Ak ∈ Xp
there exists a smooth matrix field Ãk ∈ Xp such that

(i) ‖Ak − Ãk‖Lp(Tn) ≤ 1
k ;

(ii)
�

Tn ‖div(Ãk)‖(x) dx ≤ ‖div(Ak)‖M(Tn ,Rn) for every k;

(iii) Ãk ⇀ A in Xp.

To construct it, consider a standard family of mollifiers ρε(x) = 1
εn ρ
( x

ε

)
, where

ρ ∈ C∞
c (B1(0)),

�
Rn

ρ(x) dx = 1, ρ(x) ≥ 0, ∀x ∈ Rn

and consequently Ak,ε(x) .
= Ak ∗ ρε(x). Clearly Ak,ε ∈ Xp and is smooth ∀k, ε. As ε→ 0, we have

that Ak,ε → Ak for fixed k in Lp(Tn, Sym+(n)). Hence, for every k we can choose εk such that (i)
is fulfilled. Define Ãk

.
= Ak,εk

. We need to show (ii) and (iii). Since mollification does not increase
the total mass, we have

‖Ãk‖Lp ≤ ‖Ak‖Lp , ‖div(Ãk)‖M(Tn ,Rn) ≤ ‖div(Ak)‖M(Tn ,Rn), ∀k ∈N.

The second inequality is exactly (ii). Moreover, by the weak convergence in Xp, both ‖Ak‖Lp and
‖div Ak‖M(Tn ,Rn) are equibounded sequences, hence Ãk is precompact in Xp, in the sense that
for every subsequence, there exists a further subsequence converging in Xp to some tensor field
B ∈ Xp. By (i), any limit point of this sequence with respect to the topology of Xp must be the
same as the one of Ak, namely A, hence (iii) follows. Thus, if Theorem 6.1 is true for a smooth
sequence, we have

lim sup
k

D(Ak) = lim sup
k

(
D(Ak)−D(Ãk) + D(Ãk)

)
≤ lim sup

k

(
D(Ak)−D(Ãk)

)
+ lim sup

k
D(Ãk) ≤ D(A).

(6.2)

Let us justify the last inequality. We can estimate, using the Hölder property of t 7→ t
1

n−1 ,

|D(Ak)−D(Ãk)| ≤
�

Tn
|det(Ak(x))

1
n−1 −det(Ãk(x))

1
n−1 | dx ≤

�
Tn
|det(Ak(x))−det(Ãk(x))|

1
n−1 dx .

Moreover, a simple estimate valid for every couple of matrices X, Y ∈ Rn×n gives, for some
dimensional constant c > 0,

|det(X)− det(Y)| ≤ c(‖X‖n−1 + ‖Y‖n−1)‖X−Y‖.

Therefore, using this inequality and the subadditivity of t 7→ t
1

n−1

�
Tn
|det(Ak(x))− det(Ãk(x))|

1
n−1 dx

≤ c
1

n−1

�
Tn

(
‖Ak(x)‖n−1 + ‖Ãk(x)‖n−1

) 1
n−1 ‖Ak(x)− Ãk(x))‖

1
n−1 dx

≤ c
1

n−1

�
Tn

(
‖Ak(x)‖+ ‖Ãk(x)‖

)
‖Ak(x)− Ãk(x))‖

1
n−1 dx

≤ c
1

n−1

(�
Tn

(
‖Ak(x)‖+ ‖Ãk(x)‖

) n
n−1 dx

) n−1
n
(�

Tn
‖Ak(x)− Ãk(x))‖

n
n−1 dx

) 1
n

,

the last inequality being Hölder inequality with exponents n
n−1 and n. The previous inequality

and (i) justify the last estimate of (6.2).
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Proof of Theorem 6.1. First notice that up to (non-relabeled) subsequences we can suppose

lim sup
k

D(Ak) = lim
k

D(Ak)

and that {Ak}k generates the Young measure ν = (νx)x∈Tn . From Remark 6.2 and Remark 6.3,
we can further suppose that both Ak, A ≥ ε idn for some ε > 0 and Ak are smooth.

Step 1: definition of the main objects

Let µk ∈ M+(Tn) be the finite Radon measures defined by µk(E) .
=
�

E ‖div(Ak)‖(x) dx and call
µ its weak-∗ limit (that we can always suppose to exist up to further subsequences). Notice that,
for every i ∈ {1, . . . , n}, the map

x 7→ M
1

n−1
i (Ak(x))

is equibounded in L
p(n−1)

i (Tn). Since p > n
n−1 and i ≤ n, these sequences fulfill the hypotheses of

Theorem A.1, hence

M
1

n−1
i (Ak(x)) ⇀ 〈νx, M

1
n−1
i (·)〉 in L1(Tn).

Consider T′ ⊂ Tn to be the set of points a ∈ Tn such that

• ‖A(a)‖ < ∞;

• 〈νa, M
1

n−1
i (·)〉 < +∞, ∀i ∈ {0, . . . , n};

• a is a Lebesgue point for x 7→ A(x);

• a is a Lebesgue point for x 7→ 〈νx, M
1

n−1
i (·)〉, for i ∈ {1, . . . , n}.

Since these are L1(Tn) functions, we get |Tn \ T′| = 0. Let µ = g dx+µs be the Lebesgue
decomposition of the weak-* limit of µk, and define T′′ ⊂ Tn to be the set of points that are both
Lebesgue points for g and density 0 points for µs. By [31, Theorem 1.31], |Tn \ T′′| = 0. Finally,
define T .

= T′ ∩ T′′ ∩ (0, 1)n. As explained before the proof of the theorem, we want to prove
(6.1), namely

〈νa, det(·)
1

n−1 〉 ≤ det(A(a))
1

n−1 , ∀a ∈ T.

Therefore, from now on we fix a ∈ T. Consider a cut-off function ϕ ∈ C∞
c ((0, 1)n), 0 ≤ ϕ ≤ 1. For

k ∈N and R > 0, we define Bk,R over (0, 1)n by

Bk,R(x) .
= ϕ(x)Ak(a + Rx) + (1− ϕ(x))A(a).

Remark that Bk,R ≡ A(a) over the boundary of [0, 1]n, therefore Bk,R can be extended smoothly by
periodicity to Rn. This defines Bk,R over Tn. Notice moreover that Bk,R takes values in Sym+(n).

Step 2: Monge-Ampère and the main inequality

The argument of this step is the same as the one of [76, Theorem 2.2]. Let φk,R : Tn → R

be the solution of
det(Hφk,R + Sk,R) = det(Bk,R)

1
n−1

.
= fk,R, (6.3)

where Hφk,R(x) + Sk,R(x) ∈ Sym+(n), ∀x ∈ Tn, with the constraint

det(Sk,R) =

�
Tn

fk,R(x) dx . (6.4)

From [55, Theorem 2.2], it is known that the latter is a necessary and sufficient condition to solve
the Monge Ampère type equation (6.3). Note that (6.3) is equivalent to

det(Hψk,R) = fk,R, (6.5)
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where Hψk,R(x) is positive definite ∀x ∈ Tn and ψk,R(x) .
= 1

2 xTSk,Rx + φk,R(x). We can, and will,
assume that

ψk,R(a) = φk,R(a) = 0, ∀k, R, (6.6)

since the solution of (6.5) is determined up to constants (see again [55, Theorem 2.2]). We have

fk,R = ( fk,R det(Bk,R))
1
n = (det(Hψk,RBk,R))

1
n .

Since, for every x ∈ Tn, k ∈ N, R > 0, Hψk,R(x)Bk,R(x) is the product of two symmetric and
positive definite matrices, their product is diagonalizable with positive eigenvalues (see [75,
Proposition 6.1]). Dropping the dependence of k, R, x, if we call these eigenvalues λ1, . . . , λn we
can write

fk,R = (det(Hψk,RBk,R))
1
n = (λ1 . . . λn)

1
n ≤ ∑n

i=1 λi

n
,

where in the last inequality we use the arithmetic-geometric mean inequality. Hence,

fk,R ≤
tr (Hψk,RBk,R)

n
.

Using the definition of ψk,R and rewriting

tr (Hφk,RBk,R) = div(Bk,RDφk,R)− (div(Bk,R), Dφk,R),

we finally get

fk,R ≤
1
n
(tr (Bk,RSk,R) + div(Bk,RDφk,R)− (div(Bk,R), Dφk,R)). (6.7)

We consider Sk,R of the form

Sk,R = λk,R cof
(�

Tn
Bk,R(x) dx

)
.

By (6.4)

λk,R =

(�
Tn det(Bk,R)

1
n−1 (x) dx

) 1
n

(
det(

�
Tn Bk,R(x) dx)

) n−1
n

. (6.8)

Observing that
�

Tn div(Bk,RDφk,R) dx = 0, we integrate (6.7), getting
�

Tn
det(Bk,R)

1
n−1 dx ≤ 1

n

�
Tn

tr (Bk,RSk,R) dx− 1
n

�
Tn
(div(Bk,R), Dφk,R)) dx . (6.9)

We rewrite
�

Tn
tr (Bk,RSk,R) dx = tr

((�
Tn

Bk,R dx
)

Sk,R

)
= λk,Rtr

((�
Tn

Bk,R dx
)

cof
(�

Tn
Bk,R(x) dx

))
= nλk,R det

(�
Tn

Bk,R(x) dx
)

(6.8)
= n

(�
Tn

det(Bk,R)
1

n−1 (x) dx
) 1

n
(

det
(�

Tn
Bk,R(x) dx

)) 1
n

.

Finally, define also γk,R
.
=
(�

Tn det(Bk,R)
1

n−1 (x) dx
) 1

n . By the monotonicity of the determinant
and the fact that Ak(x) ≥ ε idn, ∀x ∈ Tn, ∀k ∈ N, and A(a) ≥ ε idn, we have Bk,R ≥ ε idn, ∀k, R,
that implies

γk,R ≥ ε
1

n−1 , ∀k, R. (6.10)
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We divide by γk,R in (6.9), to obtain:

(�
Tn

det(Bk,R)
1

n−1 (x) dx
) n−1

n
≤
(

det
(�

Tn
Bk,R(x) dx

)) 1
n
− 1

nγk,R

�
Tn
(div(Bk,R), Dφk,R)) dx

(6.11)
By monotonicity of the determinant we have

�
Tn

ϕ(x)
n

n−1 det(Ak(a + Rx))
1

n−1 dx ≤
�

Tn
det(Bk,R)

1
n−1 (x) dx,

so that (6.11) becomes(�
Tn

ϕ(x)
n

n−1 det(Ak(a + Rx))
1

n−1 dx
) n−1

n

≤
(

det
(�

Tn
Bk,R(x) dx

)) 1
n
− 1

nγk,R

�
Tn
(div(Bk,R), Dφk,R)) dx

(6.12)

thus by denoting

Ik,R
.
=

�
Tn

ϕ(x)
n

n−1 det(Ak(a + Rx))
1

n−1 dx,

I Ik,R
.
= det

(�
Tn

Bk,R(x) dx
)

,

I I Ik,R
.
=

�
Tn
(div(Bk,R), Dφk,R)) dx,

we can put (6.12) in a more compact form:

I
n−1

n
k,R ≤ I I

1
n
k,R −

1
nγk,R

I I Ik,R. (6.13)

We will first let k→ +∞ and then R→ 0. To this aim, we study separately the three terms.

Step 3: Ik,R

Denoting QR = a + [0, R]n we have

Ik,R =

�
QR

ϕ
n

n−1

(
y− a

R

)
det(Ak(y))

1
n−1

dy
Rn .

Since the sequence Ak generates the Young measure ν, by letting k→ ∞, we get

lim
k→∞

Ik,R =

�
QR

ϕ
n

n−1

(
y− a

R

)
〈νy, det(·)

1
n−1 〉 dy

Rn =

�
Tn

ϕ
n

n−1 (x) 〈νa+Rx, det(·)
1

n−1 〉 dx .

Finally, since a ∈ (0, 1)n was a Lebesgue point for the function x 7→ 〈νx, det(·)
1

n−1 〉, letting R→ 0
we achieve

lim
R→0

lim
k→∞

Ik,R = 〈νa, det(·)
1

n−1 〉
�

Tn
ϕ

n
n−1 (x) dx .

Step 4: I Ik,R

Since Ak ⇀ A in Lp(Tn), we have

lim
k→∞

I Ik,R = det
(�

Tn
ϕ(x)A(a + Rx) dx+A(a)

�
Tn

1− ϕ(x) dx
)

, (6.14)
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and since �
Tn

ϕ(x)A(a + Rx) dx =

�
QR

ϕ

(
y− a

R

)
A(y)

dy
Rn

and |ϕ(x)| ≤ 1 ∀x ∈ Tn, we also get that∥∥∥∥�
Tn

ϕ(x)A(a + Rx) dx−A(a)
�

Tn
ϕ(x) dx

∥∥∥∥ ≤ �
QR

‖A(y)− A(a)‖ dy
Rn .

The last expression tends to 0 as R → 0+, since a is a Lebesgue point for x 7→ A(x). Thus, by
letting R→ 0 in (6.14), we conclude that

lim
R→0

lim
k→∞

I Ik,R = det(A(a)).

Step 5: I I Ik,R

To prove (6.1), we are just left to show that limR→0 limk→∞ I I Ik,R = 0. To do this, we first
compute

div(Bk,R) = ϕ(x)R div(Ak)(a + Rx) + (Ak(a + Rx)− A(a))Dϕ(x).

Therefore:

I I Ik,R = R
�

Tn
ϕ(x)(div(Ak)(a + Rx), Dφk,R) dx

+

�
Tn
((Ak(a + Rx)− A(a))Dϕ, Dφk,R) dx .

We can use the divergence theorem to rewrite more conveniently the second term:
�

Tn
((Ak(a + Rx)− A(a))Dϕ, Dφk,R) dx =

∑
i,j

�
Tn
((Ak)ij(a + Rx)− Aij(a))∂j ϕ∂iφk,R dx =

−∑
i,j

�
Tn

∂i((Ak)ij(a + Rx)− Aij(a))∂j ϕφk,R dx

−∑
i,j

�
Tn
((Ak)ij(a + Rx)− Aij(a))∂ij ϕφk,R dx =

−R ∑
i,j

�
Tn
(∂i Ak)ij(a + Rx)∂j ϕφk,R dx

−∑
i,j

�
Tn
((Ak)ij(a + Rx)− Aij(a))∂ij ϕφk,R dx =

−R
�

Tn
((div Ak)(a + Rx), Dϕ)φk,R dx

−
�

Tn
(Ak(a + Rx)− A(a)), Hϕ)φk,R dx.

Summarizing, we have

I I Ik,R = R
�

Tn
ϕ(x)(div(Ak)(a + Rx), Dφk,R) dx

−R
�

Tn
((div Ak)(a + Rx), Dϕ)φk,R dx

−
�

Tn
(Ak(a + Rx)− A(a)), Hϕ)φk,R dx .
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We will denote with:

I I I1
k,R

.
= R

�
Tn

ϕ(x)(div(Ak)(a + Rx), Dφk,R) dx,

I I I2
k,R

.
= R

�
Tn
((div Ak)(a + Rx), Dϕ)φk,R dx,

I I I3
k,R

.
=

�
Tn
(Ak(a + Rx)− A(a)), Hϕ)φk,R dx .

Step 6: estimates on φk,R

As remarked in [76, Section 5.2], ψk,R is convex, for every k, R, and moreover the estimate

‖Dφk,R‖L∞(Tn) ≤ C‖Sk,R‖ (6.15)

holds for every k ∈N and R > 0. We will now show that

lim sup
R→0+

lim sup
k→+∞

‖Sk,R‖ < +∞. (6.16)

If we do this, we find, through a diagonal argument, a subsequence k j such that φkj , 1
m

converges
uniformly to a function φ 1

m
as j→ ∞. Moreover we find a constant λ > 0 such that

‖φ 1
m
‖C0(Tn) ≤ λ, ∀m ∈N. (6.17)

Let us first show how (6.16) implies this last claim. By (6.6) we have φk, 1
m
(a) = 0, ∀k, m, and the

estimate (6.15) combined with (6.16) tells us that for every fixed m, {φk, 1
m
}k∈N is a precompact

subset of C0(Tn), hence there exists a diagonal subsequence φkj , 1
m

that converges uniformly to
φ 1

m
for every m as j→ ∞. Moreover, estimate (6.15) implies that

‖φkj , 1
m
‖C0(Tn) ≤ C‖Skj , 1

m
‖, ∀j, m.

Therefore, in the limit as j→ ∞, we also infer

‖φ 1
m
‖C0(Tn) ≤ C lim sup

k→∞
‖Sk, 1

m
‖, ∀m

and finally

lim sup
m→∞

‖φ 1
m
‖C0(Tn) ≤ C lim sup

m→∞
lim sup

k→∞
‖Sk, 1

m
‖

(6.16)
< +∞,

which finally implies (6.17). Let us prove (6.16). By its definition, we have

Sk,R = λk,R cof
(�

Tn
Bk,R(x) dx

)
.

Therefore it suffices to prove separately that

lim sup
R→0

lim sup
k→∞

∥∥∥∥cof
(�

Tn
Bk,R(x) dx

)∥∥∥∥ < +∞ (6.18)

and
lim sup

R→0
lim sup

k→∞
λk,R < +∞. (6.19)

We start with (6.18). The weak convergence of Ak implies, as in (6.14) and the subsequent
computations, that

lim
R→0

lim
k→∞

�
Tn

Bk,R(x) dx = A(a),
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since a ∈ T′. Hence

lim sup
R→0

lim sup
k→∞

∥∥∥∥cof
(�

Tn
Bk,R(x) dx

)∥∥∥∥ = lim
R→0

lim
k→∞

∥∥∥∥cof
(�

Tn
Bk,R(x) dx

)∥∥∥∥ = ‖ cof(A(a))‖ < +∞,

where the last inequality is again justified by a ∈ T′. Finally, we compute (6.19). By definition

λk,R =

(�
Tn det(Bk,R)

1
n−1 (x) dx

) 1
n

(
det(

�
Tn Bk,R(x) dx)

) n−1
n

.

Analogously to the estimate of γk,R of (6.10), we have(
det

(�
Tn

Bk,R(x) dx
)) n−1

n
≥ εn−1.

Therefore, to conclude the proof, we just need to show that

lim sup
R→0

lim sup
k→∞

�
Tn

det(Bk,R)
1

n−1 (x) dx < +∞.

First note that
A(a) ≤ ‖A(a)‖ idn,

and consequently estimate

det(Bk,R) ≤ det(ϕ(x)Ak(a + Rx) + (1− ϕ(x))‖A(a)‖ id)

= P−ϕ(x)Ak(a+Rx)((1− ϕ(x))‖A(a)‖),

where P−ϕ(x)Ak(a+Rx) is the characteristic polynomial of −ϕ(x)Ak(a + Rx). By the structure of

the characteristic polynomial and the subadditivity of the function t 7→ t
1

n−1 , we can bound

det(Bk,R)
1

n−1 (x) ≤ |P|
1

n−1
−ϕ(x)Ak(a+Rx)((1− ϕ(x))‖A(a)‖)

≤
n

∑
i=0

[
(1− ϕ(x))i‖A(a)‖i Mn−i(ϕ(x)Ak(a + Rx))

] 1
n−1 .

Since Mn−i is n− i homogeneous, Mn−i(ϕ(x)Ak(a + Rx)) = ϕn−i(x)Mn−i(Ak(a + Rx)). Hence

det(Bk,R)
1

n−1 (x) ≤
n

∑
i=0

[
(1− ϕ(x))i‖A(a)‖i ϕn−i(x)Mn−i(Ak(a + Rx))

] 1
n−1 .

Now observe that, for every i ∈ {0, 1, . . . , n},
�

Tn

[
(1− ϕ)i ϕn−i Mn−i(Ak(a + Rx))

] 1
n−1 dx→

�
Tn

[
(1− ϕ)i ϕn−i

] 1
n−1 〈νa+Rx, M

1
n−1
n−i (·)〉 dx

as k → ∞, by the Fundamental Theorem of Young measures. Letting R → 0+, since a is a

Lebesgue point for x 7→ 〈νx, M
1

n−1
n−i (·)〉, we find that

lim sup
R→0+

lim sup
k→∞

�
Tn

det(Bk,R)
1

n−1 (x) dx ≤
n

∑
i=0
〈νa, M

1
n−1
n−i (·)〉

�
Tn

[
(1− ϕ(x))i‖A(a)‖i ϕn−i(x)

] 1
n−1 dx

≤
n

∑
i=0
〈νa, M

1
n−1
n−i (·)〉‖A(a)‖i,

the last inequality being true since 0 ≤ ϕ(x) ≤ 1, ∀x ∈ Tn. Clearly the last term is equibounded
by our choice a ∈ T′. We are now going to prove that the three terms of I I Ikj , 1

m
converge to 0 as
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j→ ∞ and m→ ∞.

Step 7: I I I1
kj , 1

m
and I I I2

kj , 1
m

By (6.15), we know that ‖Dφkj , 1
m
‖L∞(Tn) ≤ C‖Skj , 1

m
‖. Hence

|I I I1
kj , 1

m
| =

∣∣∣∣ 1
m

�
Tn

ϕ(x)(div(Akj
)
(

a +
x
m

)
, Dφkj , 1

m
) dx

∣∣∣∣
≤
‖Dφkj , 1

m
‖

m

 
Q 1

m
(a)

ϕ (m(x− a)) ‖div(Akj
)‖(x)dx

≤
C‖Skj , 1

m
‖

m

 
Q 1

m
(a)
‖div(Akj

)‖(x)dx.

Recall that we use the notation µk(E) =
�

E ‖div(Ak)‖(x) dx, for every Borel set E ⊂ Tn and for
every k ∈N. By weak-* convergence of measures, since Q 1

m
(a) is a compact set, we have (see [31,

Theorem 1.40])

lim sup
j→∞

C
m

µkj
(Q 1

m
(a))

( 1
m )n

≤ C
m

µ(Q 1
m
(a))

( 1
m )n

≤ C′

m
µ(B√2/m(a))
|B√2/m(a)|

=
C′

m

 
B√2/m(a))

g(x) dx+
C′

m
µs(B√2/m(a))
|B√2/m(a)| ,

for some positive constant C′. Since we chose a ∈ T′′, we get that the previous expression
converges to 0 as m→ ∞. Finally, by (6.16), we also know that

lim sup
R→0+

lim sup
j→∞

‖Skj ,R‖ < +∞,

hence lim supm→∞ lim supj→∞ I I I1
kj , 1

m
= 0. The term I I I2

kj , 1
m

is completely analogous.

Step 8: I I I3
kj , 1

m

We finally prove that limm→∞ limj→∞ I I I3
kj , 1

m
= 0. We have

I I I3
kj , 1

m
=

�
Tn

(
Akj

(
a +

x
m

)
− A(a)), Hϕ

)
φkj , 1

m
dx

=

�
Tn

(
Akj

(
a +

x
m

)
− A(a), Hϕ

)
(φkj , 1

m
− φ 1

m
) dx

+

�
Tn

(
Akj

(
a +

x
m

)
− A(a), Hϕ

)
φ 1

m
dx .

The first term can be estimated as∣∣∣∣�
Tn

(
Akj

(
a +

x
m

)
− A(a), Hϕ

)
(φkj , 1

m
− φ 1

m
) dx

∣∣∣∣
≤ ‖φkj , 1

m
− φ 1

m
‖C0(Tn)‖Hϕ‖C0(Tn)

�
Tn

∥∥∥Akj

(
a +

x
m

)
− A(a)

∥∥∥ dx

= ‖φkj , 1
m
− φ 1

m
‖C0(Tn)‖Hϕ‖C0(Tn)m

n
�

Q 1
m
(a)

∥∥∥Akj
(x)− A(a)

∥∥∥ dx .

Since hj(x) .
= ‖Akj

(x)− A(a)‖ is equibounded in Lp(Q 1
m
(a)) and by the uniform convergence of

φkj , 1
m

to φ 1
m

, we infer that the last term converges to 0 as j→ ∞. On the other hand, by weak Lp

convergence,�
Tn

(
Akj

(
a +

x
m

)
− A(a), Hϕ

)
φ 1

m
dx→

�
Tn

(
A
(

a +
x
m

)
− A(a), Hϕ

)
φ 1

m
dx
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as j→ ∞. Now, since a is a Lebesgue point for A, and we can estimate for some constant γ > 0∣∣∣∣�
Tn

(
A
(

a +
x
m

)
− A(a), Hϕ

)
φ 1

m
dx
∣∣∣∣ ≤ γ

�
Tn

∥∥∥A
(

a +
x
m

)
− A(a)

∥∥∥ dx .

By definition of Lebesgue point, the last term converges to 0 as m→ ∞. This concludes the proof
that limm→∞ limj→∞ I I Ikj , 1

m
= 0.

Step 9: conclusion

Taking the limits in (6.13), we achieve

〈νa, det(·)
1

n−1 〉
�

Tn
ϕ

n
n−1 (x) dx ≤ det(A(a))

1
n−1 .

By letting the cut-off function ϕ converge to the characteristic function of the torus, we conclude
the validity of (6.1) almost everywhere.

Remark 6.4. By analyzing the proof, it is moreover clear that one could slightly relax the as-
sumptions of the Theorem. Indeed it would suffice to take a sequence Ak ⇀ A in L

n
n−1 (Tn) and

div(Ak)
∗
⇀ div(A) such that the sequence of Radon measures defined by

νk(E) =
�

E
det(Ak(x))

1
n−1 dx, ∀ Borel E ⊂ Tn

weakly-∗ converges in the sense of measures to a measure ν that is absolutely continuous with
respect to the Lebesgue measure. In this case, calling f the density of ν with respect to the
Lebesgue measure on Tn, one would prove that

f (x) ≤ det(A(x))
1

n−1 for a.e. x ∈ Tn,

and conclude as in the proof of Theorem (6.1). In particular the sequence {Ak}k does not need to
be equibounded in Lp for some p > n

n−1 .

As a simple consequence of the proof of Theorem 6.1, we obtain the following

Corollary 6.5. Let p > n
n−1 and {Ak}k ⊂ Xp be such that Ak ⇀ A in Xp. Suppose further that

det(Ak)
1

n−1 ⇀ g in L1(Tn). Then we have

g(x) ≤ det(A(x))
1

n−1 ,

for almost every x ∈ Tn.

Proof. Fix ϕ ∈ C∞(Tn) with ϕ ≥ 0 and note that the sequence Ãk
.
= ϕAk is in Xp for every k,

and Ãk ⇀ ϕA in Xp. Using the hypothesis det
1

n−1 (Ak) ⇀ g and applying Theorem 6.1 to the
sequence Ãk, we get

�
Tn

g(x)ϕ
n

n−1 (x) dx = lim
k

�
Tn

det(Ak)
1

n−1 ϕ
n

n−1 (x) dx = lim
k

D(ϕAk)

= lim
k

D(Ãk) ≤ lim sup
k

D(Ãk) ≤ D(ϕA)

=

�
Tn

det(A(x))
1

n−1 ϕ
n

n−1 (x) dx .

Since ϕ was arbitrary, we conclude the proof.
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6.2 the case p ≤ n
n−1

In this section we prove the optimality of the assumptions of Theorem 6.1 and Remark 6.4, by
providing an explicit counterexample. In particular, we prove the following

Proposition 6.6. For every ε > 0 and for every x0 ∈ Rn, there exists a sequence of matrix fields Ak such
that

(i) Ak is compactly supported in Bε(x0), ∀k ∈N;

(ii) Ak ⇀ 0 in L
n

n−1 (Rn, Sym+(n)) and strongly in Lp(Rn, Sym+(n)), ∀p < n
n−1 ;

(iii) div(Ak) ∈ M(Tn, Rn), ∀k and supk∈N ‖div(Ak)‖M(Tn ,Rn) ≤ 1;

(iv) D(Ak) = ωn, ∀k, so that in particular D(0) = 0 < lim supk D(Ak) = ωn.

Proof. Fix a point x0 ∈ Rn and consider

fk(x) .
= 2k(n−1)χB2−k (x0)

.

Define Ak(x) .
= fk(x) idn. First we note that spt(Ak) ⊂ B2−k (x0), ∀k, so that once ε > 0 is fixed,

we can pick k0 such that if k ≥ k0, then (i) is fulfilled by choosing as a sequence {Ak+k0}k∈N.
Now note that the Hölder conjugate exponent of n

n−1 is n. Hence, to see (ii), we compute for any
ϕ ∈ Ln(Rn)

∣∣∣∣�
Rn

fk(x)ϕ(x) dx
∣∣∣∣ = 2k(n−1)

∣∣∣∣∣
�

B2−k(p)

ϕ(x) dx

∣∣∣∣∣ ≤
(�

B2−k(p)

|ϕ|n(x) dx

) 1
n

→ 0, as k→ ∞ (6.20)

and, if 1 ≤ p < n
n−1 ,

‖ fk‖
p
Lp(Rn)

= 2k(n−1)2−k n
p = 2−k( n

p−n+1). (6.21)

The last expression converges to 0 as k → ∞ if p < n
n−1 , thus proving (ii). We turn to (iii). We

observe that
div(Ak) = D fk,

where D fk is the BV derivative of fk. To compute it, we use the definition. For every Φ ∈
C∞(Tn, Rn) and for every k ∈N,

�
Rn

fk(x)div(Φ(x)) dx = 2k(n−1)
�

B2−k (x0)
div(Φ(x)) dx

= 2k(n−1)
�

∂B2−k (x0)
(Φ(z), νk(z))dσ(z),

where νk(z) =
z−x0
‖z−x0‖

is the normal to ∂B2−k (x0). The previous expression can be bounded with∣∣∣∣�
Tn

fk(x)div(Φ(x)) dx
∣∣∣∣ ≤ ‖Φ‖C0 ,

hence also (iii) is fulfilled. Finally, we prove (iv):

�
Rn

det(Ak(x))
1

n−1 dx =

�
Rn

f
n

n−1
k (x) dx =

�
B2−k

(
2k(n−1)

) n
n−1 dx = ωn, ∀k.

This concludes the proof.
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6.3 application : scalar conservation law whose datum is a bounded measure

In a recent work [77], Serre and L. Silvestre considered the Cauchy problem for the multi-
dimensional Burgers equation

∂

∂t
u +

∂

∂y1

u2

2
+ · · ·+ ∂

∂yd

ud+1

d + 1
= 0, t > 0, y ∈ Rd. (6.22)

Recall that when the initial datum u(0, ·) is bounded and measurable, then the Cauchy problem
admits a unique bounded entropy solution, see Kruzkhov [53]. The semi-group (St)t≥0 enjoys
several properties, among which a comparison principle:

(a ≤ b) =⇒ (Sta ≤ Stb).

Above all, we have the contraction in L1-distance:

(b− a ∈ L1(Rd)) =⇒
{

Stb− Sta ∈ L1(Rd)

‖Stb− Sta‖L1 ≤ ‖b− a‖L1 .

The latter property, plus the fact that L1 ∩ L∞ is dense in L1, allows us to extend by continuity the
semigroup to the whole space L1(Rd). At this stage, it is however unclear if t 7→ u(t) = Stu(0) is
an entropy, or even a distributional solution of (6.22); the problem is whether the fluxes uk

k are
locally integrable or not.

This question was solved in [77], where the authors proved even more. For every p ∈ [1, ∞),
the Kruzkhov’s semi-group St extends continuously from Lp ∩ L∞(Rd) to Lp(Rd). Instead of
using the contraction property in the L1-norm, their result was based upon dispersive estimates

‖u(t)‖Lq ≤ cp,q,dt−β(p,q)‖u(0)‖α(p,q)
Lp , ∀q > p, (6.23)

for some exponents α, β > 0. In particular, u(t) is a genuine solution of the Cauchy problem in
the distributional sense, since every flux uk

k is locally integrable. In addition, this solution satisfies
the entropy inequalities associated with Kruzkhov’s entropies.

Going a step further, we may ask whether the Cauchy problem for (6.22) is still well-posed
when the initial data are bounded measures, u(0) ∈ M(Rd). This is a delicate question. For
instance, it is known (see [56]) that in one space dimension, d = 1, the solution for u(0) = δ,
the Dirac mass at the origin, is not unique. Instead, it is parametrized by a pair (m−, m+) with
m+ − m− = 1 and m± ≥ 0 ; each solution is a so-called N-wave, with mass m+ travelling to
the right, and mass −m− to the left (see [56, Remark 1.2] and references therein). However
uniqueness can be recovered whenever u(0) is a non-negative measure, by making the natural
requirement that the solution be non-negative too (see [56, Theorem 1.1]).

6.3.1 Non-uniqueness in several space dimensions

When d ≥ 2, the uniqueness faces another obstacle. Equation (6.22) admits a scale invariance:
if u is a solution of (6.22), and λ > 0 is a parameter, then

uλ(t, y) .
= λu(λα−1t, λα−2y1, . . . , λα−d−1yd)

is another one, with the same mass provided that

α =
(d + 1)(d + 2)

2d
.

In particular the semi-group is equivariant with respect to this scaling. If it admitted an extension,
say by weak-star continuity (for the vague topology) to M(Rd), then the unique solution
associated with the datum u(0) = δ would be self-similar,

u(t, y) = t
1

1−α U(t
α−2
1−α y1, . . . , t

α−d−1
1−α yd).
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Because of (6.23), the profile U = u(1) would belong to L1 ∩ L∞(Rd). Unfortunately, this
description is not compatible with an initial data such as u(0) = δ. For a given test function
φ ∈ D(Rd), we have

�
Rd

u(t, y)φ(y) dy =

�
Rd

U(z)φ(t
α−2
α−1 z1, . . . , t

α−d−1
α−1 zd) dz.

Let us make t→ 0+. When d = 2, the quantity above tends to
�

R2
U(z)φ(0, z2) dz

and one finds u(0) = g(z2)δz1=0, where

g(z2) =

� +∞

−∞
U(z1, z2) dz1.

If instead d ≥ 3, then the exponent α−d−1
α−1 is negative and one has

φ(t
α−2
α−1 z1, . . . , t

α−d−1
α−1 zd)→ 0

almost everywhere as t→ 0+. Therefore the integral tends to 0. This means that the mass of the
solution escapes at infinity, instead of concentrating at the origin. We have thus proved

Proposition 6.7. If d ≥ 2, the multi-D Burgers equation with initial datum u(0) = δy=0 does not admit
a self-similar solution.

Corollary 6.8. If an entropy solution exists for the initial datum δ, then it is not unique, unless d = 1.

Proof. Just apply the scaling transformations u 7→ uλ to such a solution.

Corollary 6.9. If d ≥ 2, the semi-group (St)t>0 does not admit a weak-star continuous extension to
M(Rd).

In other words, the operators St are not continuous over L1(Rd) equipped with the vague
topology.

6.3.2 Towards existence

Although uniqueness fails, there remains the question of whether a solution exists when the
datum u(0) is a bounded measure (not necessarily positive). Moreover we will assume that

�
Rd

d

∑
j=1
|yj|

q−1
j d‖u(0)‖ < ∞, (6.24)

for some q ∈ (1, 3+d
2 + 1

d ). This is due to some technical issues regarding Proposition 6.10. A
natural strategy is to consider a sequence of approximate initial data um(0) ∈ L1 ∩ L∞(Rd), such
that um(0)

∗
⇀ u(0) in the vague topology, namely the weak-* topology in the space of measures,

and to try to show that solutions um(t) also converge in some topology to a solution of the
equation with initial datum u(0). We may assume that the approximating sequence um(0) has
compact support and that the mass is preserved in the limit process, namely

lim
m→∞

�
Rd

um(0, y) dy = u(0)(Rd) (6.25)

Moreover, by (6.24), we may also assume that

sup
m

�
Rd

d

∑
j=1
|yj|

q−1
j |um(0, y)| dy < ∞ (6.26)
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Such a sequence is also bounded in L1, and the dispersion inequalities (6.23) guarantee that the
associated solutions um form a bounded sequence in the spaces Lp

loc(R+ ×Rd) and p ∈ [1, ∞].
Moreover, since for every t > 0, um(t) has compact support, by integrating the Burgers equation
all over Rd, we get �

Rd
um(t, y) dy =

�
Rd

um(0, y) dy ∀t > 0. (6.27)

Up to the extraction of a subsequence, we may assume that for every continuous function
f : R→ R, the sequence f ◦ um converges to some f̄ in the weak-* topology of L∞

loc. Its limit f̄ is
given by a Young measure (νt,y)t>0,y∈Rd ,

f̄ (t, y) = 〈νt,y, f 〉

almost everywhere.
The following proposition will imply that the sequence (um)m∈N is tight, where we stress that

the exponents κj
.
= q−1

j are positive. We also define n .
= d + 1.

Proposition 6.10. Let a ∈ L1 ∩ L∞(Rd) be a function with compact support. Then for q ∈
(

1, 3+d
2 + 1

d

)
,

the functional

Iq[z]
.
=

�
Rd

d

∑
j=1
|yj|

q−1
j |z(y)| dy

satisfies
Iq(Sta) ≤ ecd,qt(Iq[a] + cd,qts), ∀t > 0, (6.28)

where

s = 1− 2d(q− 1)
2 + dn

> 0.

Hereabove cd,q < ∞ is a universal constant.

Proof. Let us denote u(t) = Sta. We start from the entropy inequality

∂|u|
∂t

+
∂

∂y1

u|u|
2

+ · · ·+ ∂

∂yd

ud|u|
d + 1

≤ 0,

which we multiply by the weight function w(y) = ∑d
j=1 |yj|κj . Integrating by parts, we obtain

d
dt

Iq[u(t)] ≤
d

∑
j=1

κj

j + 1

�
Rd
|yj|κj−1|u|j+1 dy.

Using Hölder and Young Inequalities, we infer

d
dt

Iq[u(t)] ≤
d

∑
j=1

κj

j + 1
Iq[u(t)]

1− 1
κj ‖u(t)‖

q
κj
Lq ≤ cd,q(Iq[u(t)] + ‖u(t)‖q

Lq).

We now apply the dispersion inequality (6.23) with p = 1, where we have

α(1, q) =
2q + dn
2 + dn

β(1, q) =
2d(q− 1)
q(2 + dn)

.

We obtain
d
dt

Iq[u(t)] ≤ cd,q(Iq[u(t)] + t−r), r .
=

2d(q− 1)
2 + dn

.

We conclude by remarking that 0 < r < 1, so that t−r is integrable over (0, T) for every finite T,
thus the estimate (6.28) is just a consequence of the Grönwall’s inequality.
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We use the previous Proposition to show that the mass does not escape at infinity in Rd in the
limit process, and therefore to deduce the following:

Corollary 6.11. Let u(0) be a finite measure of Rd satisfying (6.24). Let um(0) ∈ L1 ∩ L∞(Rd) be a
sequence of functions with compact support, for which (6.25), (6.26) and (6.27) hold. If um(t, y) is the
solution of (6.22) and ū(t, y) is its vague limit, then we have

�
Rd

ū(t, y)g(y) dy = lim
m→+∞

�
Rd

um(t, y)g(y) dy, ∀g ∈ C0 ∩ L∞(Rd), ∀t > 0. (6.29)

Moreover �
Rd

ū(t, y) dy = u(0)(Rd). (6.30)

Proof. Note that, by (6.26), we get that Iq[um] is uniformly bounded, which implies that the
sequence um(t) is tight, i.e. fixed t > 0, ∀ε > 0, there exists a number r = r(ε) > 0 such that, if
R > r, then

‖um(t)‖(Rd \ BR(0)) =
�

Rd\BR(0)
|um(t, y)| dy ≤ ε, ∀m ∈N.

To see this, simply use (6.28) to see that, choosing r > 1,

cr
q−1

d

�
Rd\Br(0)

|um(t, y)| dy ≤
�

Rd\Br(0)

d

∑
j=1
|yj|

q−1
j |um(t, y)| dy

≤ Iq(um(t, ·)) = Iq(Stum(0)) ≤ ecd,qt(Iq[um(0)] + cd,qts),

where c > 0 is a universal constant. Thanks to (6.26), we see that the right hand side of
the previous inequality stays uniformly bounded in m, hence we deduce the tightness of the
sequence. Now (6.29) is rather easy to check. For any R > 0 and any ϕ ∈ C∞

c (B2R(0)) with
0 ≤ ϕ(y) ≤ 1, ∀y ∈ Rd and ϕ ≡ 1 on BR(0). Fix moreover g ∈ C0 ∩ L∞(Rd) and t > 0. We have∣∣∣∣�

Rd
ū(t, y)g(y)ϕ(y) dy−

�
Rd

um(t, y)g(y)ϕ(y) dy
∣∣∣∣→ 0,

by definition of vague limit, and∣∣∣∣�
Rd

ū(t, y)g(y)(1− ϕ(y)) dy−
�

Rd
um(t, y)g(y)(1− ϕ(y)) dy

∣∣∣∣
≤
�

Rd
|ū(t, y)g(y)(1− ϕ(y))| dy +

�
Rd
|um(t, y)g(y)(1− ϕ(y))| dy

≤ ‖g‖C0

(�
BR(0)c

|ū(t, y)| dy +

�
BR(0)c

|um(t, y)| dy

)

can be made arbitrarily small by choosing R suitably and by applying the definition of tightness.
Therefore, also ∣∣∣∣�

Rd
ū(t, y)g(y) dy−

�
Rd

um(t, y)g(y) dy
∣∣∣∣→ 0, as m→ ∞.

By choosing g ≡ 1 in (6.29) and by using (6.25) together with (6.27), we finally achieve

�
Rd

ū(t, y) dy = lim
m→∞

�
Rd

um(t, y) dy = lim
m→∞

�
Rd

um(0, y) dy = u(0)(Rd)

which concludes the proof.
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Applying Corollary 6.5

Of course, the tightness is too weak a property to imply a pointwise convergence of the
sequence (um)m∈N. Thus passing to the limit in (6.22) tells us only that ν = (νt,y)t>0,y∈Rd is a
so-called measure-valued solution, but it does not tell us whether the vague limit ū is a true
entropy solution of (6.22), or not. To go further, we need to establish a compactness property.
This is where Corollary 6.5 might be useful, in the spirit of Tartar’s strategy by Compensated
Compactness [85].

We begin by defining a family of symmetric tensors of size (d + 1) × (d + 1). For every
continuous function g : R→ R, we form the map

s 7→ Tg(s)
.
=
(

fij(s)
)

0≤i,j≤d ∈ Sym(n), fij(s) =
� s

0
ri+jg(r) dr.

Our tensors are Ag,m
.
= Tg ◦ um. Each row of Ag,m is an entropy-entropy flux pair of the Burgers

equation, and it is proved in [77] that the sequence divt,y Ag,m is bounded in M(R+ × Rd).
Because of the L∞-bound in (6.23), Ag,m is also bounded in L∞

loc(R+ ×Rd). The tensors are
positive semi-definite whenever g has the property that the quadratic forms

P ∈ Rd[X] 7−→
� s

0
P(r)2g(r) dr

is positive semi-definite, for every s ∈ R. Hereabove, Rd[X] denotes the space of polynomials of
degree ≤ d. The set of such functions g is denoted by Z+

d .
Applying Corollary 6.5 to the sequence (Ag,m)m∈N in R+×Rd (in particular, we have n = 1+ d),

we find that the Young measure satisfies

〈νt,y, (det Tg)
1
d 〉 ≤

(
det〈νt,y, fij〉0≤i,j≤d

) 1
d , for a.e. t > 0, y ∈ Rd. (6.31)

Remembering that 〈νt,y, 1〉 = 1 (νt,y is a probability measure), the inequality above can be rewritten
in terms of the tensor product ν⊗ · · · ⊗ ν of n copies of ν, which acts on functions of the variable
(s0, . . . , sd) ∈ Rn. To illustrate this claim, we consider the case d = 1 (hence n = 2) ; then the
inequality above rewrites as

〈ν⊗ ν, [ f00][ f11]− [ f01]
2〉 ≤ 0, (6.32)

where the brackets mean [ f ](s0, s1)
.
= f (s1)− f (s0). We point out that

[ fij](s0, s1) =

� s1

s0

ri+jg(r) dr.

As observed by several authors, including L. Tartar or G.Q. Chen & Y.-G. Lu, (6.32) can
be exploited as follows: if g does not vanish on any interval, then the function (s0, s1) 7→
[ f00][ f11]− [ f01]

2 is positive away from the diagonal ∆. Thus the support of ν⊗ ν is contained in
∆, and this implies that ν is a Dirac mass. Hence the sequence (um)m∈N converges strongly in
every space Lp

loc for 1 ≤ p < ∞. We notice that in this case, it is sufficient to work with a single
function g.

When the space dimension d is larger, we still have an inequality of the form

〈ν⊗n, Fg〉 ≤ 0, ∀ g ∈ Z+
d , (6.33)

where Fg is a symmetric function, defined in terms of g. The map g 7→ Fg is homogeneous of
degree n. By construction, Fg vanishes along the diagonal ∆. Because of the symmetry, we infer
that DFg ≡ 0 along ∆, and that

D2Fg(s, . . . , s) = α(s)In + β(s)M,
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where Mij
.
= 1, ∀1 ≤ i, j ≤ n, and for some α, β that satisfy α(s) + nβ(s) = 0. The latter matrix

is positive or negative semi-definite, depending on the sign of α(s). For d ≥ 2, α(s) turns out
to be negative, thus Fg is negative in a neighborhood of ∆. Therefore we cannot argue as in the
one-dimensional case.

The situation described above resembles that encountered in the analysis of hyperbolic 2× 2
systems of conservation laws, where compensated compactness implies a family of identity,
parametrized by the entropy-flux pairs. A single identity does not imply that the Young measure
is a Dirac mass, but the whole family does, under a hypothesis of genuine nonlinearity, see [26].
Here a single inequality cannot imply that the Young measure is a Dirac mass, but there is some
hope that the whole family (6.33) does.
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C O N V E X I N T E G R AT I O N A N D E N E R G Y R E G U L A R I T Y F O R E U L E R
E Q UAT I O N S

This chapter is devoted to the study of the sharp energy regularity for solutions of the
incompressible Euler Equations in the spatial periodic setting T3:{

∂tv + div(v⊗ v) + Dp = 0,
div v = 0,

in T3 × [0, T], (7.1)

where v : T3 × [0, T]→ R3 represents the velocity of an incompressible fluid, p : T3 × [0, T]→ R

is the hydrodynamic pressure, with the constraint
�

T3 p dx = 0 which guarantees its uniqueness.
The kinetic energy of a weak solution v ∈ L2(T3 × [0, T]; R3) to (7.1) is defined as

ev(t)
.
=

�
T3
‖v‖2(x)dx.

Isett proved in [43] that, given any solution v ∈ L∞((0, T); Cθ(T3)), the associated kinetic energy
ev satisfies

|ev(t)− ev(s)| ≤ C |t− s|
2θ

1−θ , ∀t, s ∈ [0, T], (7.2)

Isett and Oh conjectured in [46, Conjecture 1] that this exponent is optimal:

Conjecture. For any θ < 1
3 , there exists a solution to (7.1) in the class v ∈ Cθ(R×Tn) whose energy

profile e(t) fails to have any regularity above the exponent 2θ
1−θ , in the sense that ev(t) /∈W

2θ
1−θ +ρ,p(I), for

every ρ > 0, p ≥ 1 and every open time interval I ⊂ R. Furthermore, the set of all such solutions v with
the above property is residual (in the sense of category) within the space of all weak solutions to (7.1) in the
class ev ∈ Cθ(R×Tn) when the latter space is endowed with the topology from the Cθ norm.

The main result of this part is Theorem 7.5, where Baire Theorem A.4 is applied similarly to
Theorem 5.1 to construct the desired counterexample. To construct approximate counterexamples
to the statement in Theorem 7.4, we use a convex integration scheme very close to the one
introduced in [11]. We will first give the statement of the main inductive Proposition 7.3, and
use it to prove the aforementioned theorems in Section 7.2. After this, we prove the inductive
proposition. Finally, in Section 7.5, we explain why the results presented are not sufficient to
prove the second part of the above Conjecture, i.e. the residuality in Cθ .

7.1 preliminaries

We start by introducing the notation and some basic properties of the incompressible Euler
equations.

7.1.1 Notation

In the following N ∈ N, α ∈ (0, 1) and κ is a multi-index. We introduce the usual (spatial)
Hölder norms as follows. First of all, the supremum norm is denoted by ‖ f ‖0

.
= supT3×[0,T] | f |.

We define the Hölder seminorms as

[ f ]N = max
|κ|=N

‖Dκ f ‖0 ,

[ f ]N+α = max
|κ|=N

sup
x 6=y,t

|Dκ f (x, t)− Dκ f (y, t)|
|x− y|α ,

95
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where Dκ are space derivatives only. The Hölder norms are then given by

‖ f ‖N =
N

∑
j=0

[ f ]j

‖ f ‖N+α = ‖ f ‖N + [ f ]N+α.

Moreover, we will write [ f (t)]α and ‖ f (t)‖α when the time t is fixed and the norms are computed
for the restriction of f to the t-time slice. On the other hand we will explicitly write ‖ f ‖Cα

x,t
when

the Hölder norm is computed in both the space and time variables.

Let ϕ ∈ C∞
c (B1(0)) be a standard non negative kernel such that

�
B1(0)

ϕ(x) dx = 1. For any
δ > 0 we define ϕδ

.
= δ−3 ϕ

( x
δ

)
and we denote the mollifications of a function f as usual as

fδ
.
= f ∗ ϕδ.

We recall the following standard estimates on the mollification of both Hölder continuous
functions and vector fields.

Proposition 7.1. For any θ ∈ (0, 1) we have

‖ fδ − f ‖0 ≤ δθ [ f ]θ . (7.3)

Moreover, for any N ≥ 0, there exists a constant C > 0 depending on N, such that

‖ fδ ∗ fδ − ( f ∗ f )δ‖N ≤ Cδ2θ−N [ f ]2θ , (7.4)

‖ fδ‖N+1 ≤ Cδθ−N−1[ f ]θ . (7.5)

In the proof of Theorem 7.5, we will make use of the following technical result that show
an improvement of the Hölder time regularity of weak solutions of (7.1). We defer its proof to
Appendix D.

Proposition 7.2. Let u, v : T3 × [0, T] → R3 be two weak solutions of (7.1) such that u, v ∈
C0(([0, T]; Cθ(T3)) for some θ ∈ (0, 1). Then there exists a constant C > 0, depending only on θ,
‖u‖θ and ‖v‖θ , such that

‖u− v‖Cθ
x,t
≤ C‖u− v‖θ .

Finally, we also recall that equations (7.1) are invariant under the following transformation

v(x, t) 7→ vΓ(x, t) .
= Γv(x, Γt) and p(x, t) 7→ pΓ(x, t) .

= Γ2 p(x, Γt), (7.6)

for any Γ > 0, meaning that if (v, p) solves (7.1) in T3 × [0, T] then (vΓ, pΓ) solves (7.1) in
T3 × [0, T/Γ].

7.1.2 Inductive proposition

As said, the proof of the main results are based on a modification of the convex integration
scheme of [11], that we are now going to explain.

Let q ≥ 0 be a natural number. At a given step q we assume to have a smooth triple (vq, pq, R̊q)
solving the Euler-Reynolds system, namely such that

∂tvq + div(vq ⊗ vq) +∇pq = div R̊q

div vq = 0 ,
(7.7)
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to which we add the constraints

tr R̊q = 0 , (7.8)�
T3

pq(x, t) dx = 0 . (7.9)

To measure the size of the approximate solution vq and the error R̊q, we use a frequency λq
and an amplitude δq, defined through these relations:

λq = 2πda(bq), e (7.10)

δq = λ
−2β
q , (7.11)

where dxe denotes the smallest integer n ≥ x, a > 1 is a large parameter, b > 1 is close to 1 and
0 < β < 1/3. The parameters a and b will depend on β and on other quantities. We proceed by
induction, assuming the estimates

‖R̊q‖0 ≤ δq+1λ−3α
q (7.12)

‖vq‖1 ≤ Mδ
1/2
q λq (7.13)

‖vq‖0 ≤ 1− δ
1/2
q (7.14)

δq+1λ−α
q ≤ e(t)−

�
T3
|vq|2 dx ≤ δq+1 (7.15)

where 0 < α < 1 is a small parameter to be chosen suitably, in dependence of β and other
quantities, and M is a universal constant.

For any real number 0 < β < 1/3 we will denote

β∗ =
2β

1− β
.

Note that β∗ is an increasing function of β and it satisfies 0 < β∗ < 1. We now state the main
inductive proposition

Proposition 7.3. There exists a universal constant M with the following property. Let 0 < β < η < 1/3,
E > 0, and

1 < b <

√
η∗

β∗
. (7.16)

Then there exists an α0 depending on β, η and b, such that for any 0 < α < α0 there exists an a0 depending
on β, b, α, η, E and M, such that for any a ≥ a0 the following holds: given a triple (vq, pq, R̊q) solving
(7.7)-(7.9) and satisfying the estimates (7.12)–(7.15) for some strictly positive e ∈ Cη∗([0, T]) with

‖e‖η∗ ≤ E,

there exists a solution (vq+1, pq+1, R̊q+1) to (7.7)-(7.9) satisfying (7.12)–(7.15) for the same function e
with q replaced by q + 1. Moreover, we have

‖vq+1 − vq‖0 +
1

λq+1
‖vq+1 − vq‖1 ≤ Mδ1/2

q+1. (7.17)

The reader may notice that there are four main differences with respect to [11, Proposition
2.1]. First of all the statement is fomulated in a slightly different way than in [11, Proposition
2.1], in order to highlight the fact that the parameter a0 is uniform once one has chosen the
Cη∗([0, T]) norm of e. Moreover, we drop the smoothness hypothesis on the function e, we allow
the parameter a0 to depend on E and finally we suppose in (7.16) a different relation between the
parameters b and β. Notice that our relation (7.16) is more restrictive than the one used in [11],
indeed we have

1 < b <

√
η∗

β∗
<

√
1
β∗

=

√
1− β

2β
<

1− β

2β
. (7.18)
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7.1.3 Main results

The first Theorem we state shows how it is possible to construct approximate counterexamples to

the fact that the energy is more regular than C
2θ

1−θ . This is, in Gromov’s terminology, an h-principle.

Theorem 7.4. Fix γ > 0 and θ ∈ (0, 1/3) such that 2θ
1−θ + γ < 1. For every strictly positive

e ∈ C
2θ

1−θ +γ([0, T]), there exists a vector field v ∈ Cθ(T3 × [0, T]) that solves (7.1) in the distributional
sense and such that

e(t) =
�

T3
|v|2(x, t) dx, ∀t ∈ [0, T].

This type of result already appeared in [45] for any θ ∈ (0, 1/5). Once again, Baire Theorem A.4
allows us to construct exact counterexamples. We define

Xθ =

{
v ∈

⋃
θ′>θ

Cθ′(T3 × [0, T]) : v weakly solves (7.1)

}‖·‖
Cθ

x,t

, (7.19)

endowed with the distance
d(u, v) .

= ‖u− v‖Cθ
x,t

.

It is clear that (Xθ , d) is a complete metric space. We also define

Yθ =

v ∈ Xθ : ev ∈ C
2θ

1−θ ([0, T]) \
⋃

γ>0
W

2θ
1−θ +γ,1(I), for any interval I ⊂ [0, T]

 . (7.20)

The main result is:

Theorem 7.5. For any θ ∈ (0, 1/3), the set Yθ is residual in Xθ .

An immediate corollary of Theorem 7.5 is that, for every θ ∈ (0, 1/3), there exists a weak
solution v of (7.1) such that ev ∈ Cθ∗([0, T]) is the sharp regularity of ev, or more precisely

ev /∈Wθ∗+γ,p(I),

for any γ > 0, p ≥ 1, subinterval I ⊂ [0, T], where we identify Wα,∞(I) = Cα(I). This can be
deduced from Theorem 7.5 by exploiting the simple embeddings

Wα+γ,p(I) ⊂Wα+ γ
2 ,1(I), ∀α ∈ (0, 1), p ≥ 1, γ > 0, I ⊂ R.

This result answers to the first part of [46, Conjecture 1].

7.2 proof of the main theorems

In this section we prove our two main theorems. As in [11], the proof of Theorem 7.4 is a
direct consequence of Proposition 7.3 and we are going to prove it for the reader’s convenience.
Theorem 7.5 will still be an application of the iterative proposition. indeed, through a h-principle
comparable to [11, Theorem 1.3], we will be able to write the set Yc

θ as a countable union of closed
set with empty interior.

7.2.1 Proof of Theorem 7.4

First of all, fix γ, θ and e as in the statement of the theorem. In order to apply Proposition
7.3 we choose η ∈ (0, 1/3) to be the only solution of η∗ = θ∗ + γ and β such that θ < β < η.
Consequently we also fix the parameters b and α appearing in the statement of Proposition 7.3,
the first satisfying (7.16) and the second lower than the threeshold α0. As done in [11, Proof of
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Theorem 1.1], by using the invariance of the Euler equations under the rescaling (7.6) we can
further assume that the energy profile satisfies

δ1λ−α
0 ≤ inf

t
e(t) ≤ sup

t
e(t) ≤ δ1.

Then we can apply inductively Proposition 7.3 starting with the triple (v0, p0, R̊0) = (0, 0, 0).
indeed v0 and R̊0 trivially satisfy estimates (7.12)-(7.14) and by the rescaling on the energy we
also get (7.15) for q = 0. By (7.17) we have

∞

∑
q=0
‖vq+1 − vq‖θ .

∞

∑
q=0
‖vq+1 − vq‖1−θ

0 ‖vq+1 − vq‖θ
1 .

∞

∑
q=0

δ
1/2
q+1λθ

q+1 .
∞

∑
q=0

λ
θ−β
q+1 < ∞ (7.21)

and hence vq converges in C0([0, T]; Cθ(T3)) to a function v. Moreover, by [12, Theorem 1.1], we
have that v ∈ Cθ(T3 × [0, T]). By taking the divergence of the first equation in (7.7), we get that
pq is the unique 0-average solution of

−∆pq = div div(vq ⊗ vq − R̊q)

and since vq ⊗ vq − R̊q → v⊗ v uniformly, pq is also converging to some function p in Lr(T3 ×
[0, T]), for any r < ∞. Hence it is clear that the limit couple (v, p) solves (7.1) in the distributional
sense. Finally, by (7.15), as q→ ∞, we also get

e(t) =
�

T3
|v|2(x, t) dx ∀t ∈ [0, T],

which concludes the proof of the theorem.

7.2.2 Proof of Theorem 7.5

We want to show that Yc
θ is meager in Xθ . First, enumerate the intervals with rational endpoints

inside [0, T], (Ir)r∈N. By (7.20) we can write

Yc
θ =

⋃
m,n∈N

Cm,n,r,

where

Cm,n,r
.
=

{
v ∈ Xθ : ‖ev‖Wθ∗+ 1

m ,1(Ir)
≤ n

}
.

It is easily seen that Cm,n,r are closed subsets of Xθ . Suppose, by contradiction, that there exist
m, n, r such that Cm,n,r has a nonempty interior. Thus there exists ε > 0 and u0 ∈ Cm,n,r such that

Bε(u0)
.
= {v ∈ Xθ : ‖v− u0‖Cθ

x,t
≤ ε} ⊂ Cm,n,r. (7.22)

By the definition of Xθ , we can find a solution of (7.1), u ∈ Cθ′(T3 × [0, T]), θ′ > θ, such that
‖u− u0‖Cθ

x,t
≤ ε

3 . Moreover, (7.22) implies that

B ε
2
(u) ⊂ Cm,n,r. (7.23)

From now on, we assume that

θ∗ < (θ′)∗ < θ∗ +
1

2m
. (7.24)

This can be done simply by choosing a possibly smaller θ′ and exploiting the embedding
Cα(T3 × [0, T]) ⊂ Cβ(T3 × [0, T]), for any β ≤ α. Now fix parameters θ′′, β, η > 0 such that
θ < θ′ < θ′′ < β < η and for which η∗ < θ∗ + 1

2m . This can be done in view of (7.24). Fix
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moreover a function (of time only) f ∈ Cη∗([0, T]) \⋃γ>0 Wη∗+γ,1(Ir), such that 1/2 ≤ f ≤ 1 and
set

e(t) =
�

T3
|u|2 dx+

ρ

2
f (t), (7.25)

for some small parameter ρ > 0. These choices imply that the energy e = e(t) satisfies

e 6∈Wθ∗+ 1
m ,1(Ir). (7.26)

Now we claim that, if ρ is chosen sufficiently small, depending on θ, θ′, θ′′, β, η and m̄, then there
exists a solution of (7.1) v ∈ Cθ′′(T3 × [0, T]) such that

‖u− v‖Cθ
x,t
≤ ε

3
, (7.27)

ev(t) = e(t), ∀t ∈ [0, T]. (7.28)

It is clear that the claim implies a contradiction with (7.23). indeed, since θ′′ > θ, we have v ∈ Xθ .
Therefore, by (7.23) and (7.27), we get ev ∈ Wθ∗+ 1

m ,1(Ir), but this is in contradiction with (7.28)
and (7.26). This would conclude the proof of the present theorem, hence we are only left with the
proof of the claim.

To prove the claim, we want to apply Proposition 7.3. First, as in the proof of Theorem
7.4, we use the rescaling (7.6) on u with Γ = min{(2‖u‖0)

−1, 1} to obtain a new solution
ũ ∈ Cθ′(T3 × [0, T/Γ]). If ‖u‖0 = 0, we work with the convention that Γ = 1. For every map
w ∈ Cθ′(T3 × [0, T]), we denote with w̃ map obtained through the rescaling (7.6) with Γ defined
above. Notice that there exist constants c1(‖u‖0), c2(‖u‖0) > 0 such that

c1‖w̃1 − w̃2‖Cθ′
x,t
≤ ‖w1 − w2‖Cθ′

x,t
≤ c2‖w̃1 − w̃2‖Cθ′

x,t
, ∀w1, w2 ∈ Cθ′(T3 × [0, T]), (7.29)

and that
ew̃(t) = Γ2ew(Γt), ∀t ∈ [0, T/Γ], ∀w ∈ Cθ′(T3 × [0, T]). (7.30)

Therefore, we also define
ẽ(t) .

= Γ2e(Γt), ∀t ∈ [0, T/Γ]. (7.31)

Moreover, Proposition 7.3 requires a smooth starting triple. For this reason we consider a
space-time mollification of ũ, uδ

.
= (ũ ∗ ϕδ) ∗ ψδ, where ϕδ and ψδ are standard mollifiers in space

and time respectively and δ > 0 is a parameter that will be fixed later on. Of course, uδ is smooth
and solves the following Euler-Reynolds system

∂tuδ + div(uδ ⊗ uδ) +∇pδ = div R̊δ,

where R̊δ
.
= uδ⊗̊uδ − (ũ⊗̊ũ)δ and the trace part of the commutator uδ ⊗ uδ − (ũ⊗ ũ)δ is inside

the pressure pδ.

We now want to take (uδ, pδ, Rδ) as a starting point for the iterative scheme given by Proposition
7.3. In order to do so, we need to guarantee estimates (7.12), (7.13), (7.14) and to find ρ > 0 for
which also (7.15) is satisfied with q = 0. Recall the definition of λq and δq of (7.11) and (7.10). We
make the following choice of the parameters

δ
.
=
(

δ1λ−4α
0

) 1
2θ′ and ρ

.
=

δ1

Γ2 .

Notice that with this choice, obviously both δ and ρ depend on the parameters appearing in
Proposition 7.3. In particular the energy profile depends on a, but this will not be a problem since
we will bound ‖e‖η∗ independently of a, see also Remark 7.6 for a more thorough explanation.
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Finally, we will use another parameter σ > 0 to measure the (small) distance between uδ and the
solution given by Proposition 7.3. We start with (7.14). Using (7.3) and the rescaling, we get

‖uδ‖0 ≤ ‖uδ − ũ‖0 + ‖ũ‖0 ≤ Cδθ′ +
1
2
≤ Cλ−2α

0 δ1/2
1 +

1
2

,

where C = C(‖u‖Cθ′
x,t
) > 0.It is clear that we can find a sufficiently large a such that

Cλ−2α
0 δ1/2

1 +
1
2
≤ 1− δ1/2

1 . (7.32)

Therefore, (7.14) is fulfilled. Let us now show (7.12) and (7.13). First, by (7.4), we have

‖R̊δ‖0 . δ2θ′ = δ1λ−4α
0 ,

so that again if α > 0 is fixed, then (7.12) holds for q = 0 if a is large enough. Moreover, through
(7.3),

‖uδ‖1 . δθ′−1 = (δ1λ−4α
0 )

θ′−1
2θ′ ,

and using the definition of δq and λq, one verifies that (7.13) holds if a is large enough and b > 1
is chosen in such a way that

b <
(θ′)∗

β∗
− 2α

β
. (7.33)

But since β < θ′, if α is sufficiently small (depending on b, β and θ′) there exists b > 1 sufficiently
close to 1 such that (7.33) holds. We are left with the estimate on the energy (7.15). By using (7.4),
we estimate

ẽ(t)−
�

T3
|uδ|2 dx =

�
T3
|ũ|2 dx+

δ1

2
f (Γt)−

�
T3
|uδ|2 dx =

�
T3

((
|ũ|2

)
δ
− |uδ|2

)
dx+

δ1

2
f (Γt)

≤ Cδ2θ′ +
δ1

2
≤ Cδ1λ−4α

0 +
δ1

2
,

where the second equality is true in view of the fact that the mollification preserves the mean of
every periodic function. If a is large enough,

Cδ1λ−4α
0 +

δ1

2
≤ δ1,

hence the upper bound of (7.15) holds. Similarly we have
�

T3

((
|ũ|2

)
δ
− |uδ|2

)
dx+

δ1

2
f (Γt) ≥ −Cδ2θ′ +

δ1

4
= −Cδ1λ−4α

0 +
δ1

2
≥ δ1λ−α

0 ,

where, to guarantee the last inequality, we took again the parameter a large enough. Now we
observe that, since δ1 ≤ 1 for any choice of the parameters,

‖ẽ‖η∗ . ‖eu‖η∗ + ‖ f ‖η∗ ,

hence independently of a, there exists a constant E > 0 such that

‖ẽ‖η∗ ≤ E, ∀a ∈ (0,+∞).

Therefore we are in place to apply Proposition 7.3 to get a solution ṽ ∈ Cθ′′(T3 × [0, T/Γ]) of
(7.1), for any θ < θ′′ < β. Moreover

eṽ(t) =
�

T3
|ṽ|2 dx = ẽ(t) (7.34)
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and, as already done in (7.21), we have the estimate

‖ṽ− uδ‖θ . ∑
q≥1

λ
θ−β
q < σ, (7.35)

provided a is chosen sufficiently large. Of course the choice of a depends on σ, that will be fixed
at the end of the proof. By the triangular inequality we also get

‖ṽ− ũ‖θ ≤ ‖ṽ− uδ‖θ + ‖uδ − ũ‖θ . σ, (7.36)

having once again estimated through (7.3)

‖uδ − ũ‖θ . δθ′−θ = (δ1λ−4α
0 )

θ′−θ
2θ′ ≤ σ,

the last estimate again being true if a is chosen large enough, depending on σ. Notice that this is
possible since θ′ > θ. By Proposition 7.2, we also get

‖ṽ− ũ‖Cθ
x,t

. σ. (7.37)

In order to finish the proof of the claim, we scale back the map ṽ and the energy ẽ through the
rescaling (7.6), with 1/Γ instead of Γ. We define v(x, t) .

= Γ−1ṽ(x, Γ−1t). Now (7.37) and (7.29)
yield

‖v− u‖Cθ
x,t

. σ.

We fix σ > 0 in such a way that

‖v− u‖Cθ
x,t
≤ ε

3
,

and this gives us (7.27). Moreover, as ṽ ∈ Cθ′′(T3 × [0, T/Γ]) was a solution of (7.1), then also
v ∈ Cθ′′(T3 × [0, T]) is a weak solution of (7.1). The last thing to check for the proof of the claim
is (7.28). By (7.34), we have

eṽ(t) = ẽ(t).

Using (7.30) and (7.31), we can write

Γ2ev(Γt) = eṽ(t) = ẽ(t) = Γ2e(Γt), ∀t ∈ [0, T/Γ],

so that
ev(t) = e(t), ∀t ∈ [0, T],

thus proving (7.28) and hence concluding the proof of the claim.

Remark 7.6. Since the choice in the previous proof of the energy profile depends on a, we wish
to clarify in this remark the dependences of the parameters appearing in the proof of the claim.
First, we fixed parameters 0 < β < θ′ < 1/3, and we chose b > 1 in such a way that at the same
time (7.33) and

b <

√
θ′∗

β∗

hold. By choosing α ∈ (0, α1), where α1 is small enough, this can be guaranteed. Note that in
this way α1 only depends on β, θ′ and b, as stated in Proposition 7.3. Therefore, we can always
consider α1 ≤ α0, where α0 is the number appearing in Proposition 7.3. Next, we have proved
that there exists a1 large enough such that for a ≥ a1, we can guarantee estimates (7.12), (7.13),
(7.14) and (7.15) for q = 0, for any function e of the form (7.25). This a1 only depends on β, b, α, θ′

and u. Moreover, in the last steps it is required to take a large enough so that inequality (7.35)
holds. This yields therefore a number a2 ≥ a1 that depends on ε, E .

= ‖eu‖η∗ + ‖ f ‖η∗ and the
universal constant C of Proposition 7.2. Therefore a2 now depends only on β, b, α, θ′ and E, since
u, ε and C are fixed from the start of the proof of the claim. We can therefore take any a2 ≥ a0,
where a0 is the parameter appearing in Proposition 7.3. Hence we take α

.
= α2

2 , a .
= 2a2. These

choices define uniquely e as in (7.25) and allows us to prove the claim.



7.3 preliminaries to the proof of proposition 7 .3 103

7.3 preliminaries to the proof of proposition 7 .3

The proof of the main iterative proposition given in [11] is subdivided in three steps

1. mollification: (vq, R̊q) 7→ (v`, R̊`);

2. gluing : (v`, R̊`) 7→ (vq, R̊q);

3. perturbation: (vq, R̊q) 7→ (vq+1, R̊q+1).

In the proof of [11, Proposition 2.1], the energy function e only appears in the perturbation step
and both the mollification and the gluing steps are independent on its choice. Thus, also in
our case, given the triple (vq, pq, R̊q) there will exists a new triple (vq, pq, R̊q) solving the Euler

Reynolds system such that the temporal support of R̊q is contained in pairwise disjoint intervals
Ii of length comparable to

τq =
`2α

δ
1/2
q λq

.

More precisely, for any n ∈ Z let

tn = τqn, In =

[
tn +

1
3

τq, tn +
2
3

τq

]
∩ [0, T], Jn =

[
tn −

1
3

τq, tn +
1
3

τq

]
∩ [0, T].

We have
supp R̊q ⊂

⋃
n∈Z

In ×T3.

Moreover the following estimates hold

‖vq − vq‖0 . δ
1/2
q+1λ−α

q (7.38)

‖vq‖1+N . δ
1/2
q λq`

−N (7.39)∥∥∥R̊q

∥∥∥
N+α

. δq+1`
−N+α (7.40)∥∥∥∂tR̊q + (vq · ∇)R̊q

∥∥∥
N+α

. δq+1δ
1/2
q λq`

−N−α (7.41)∣∣∣∣�
T3
|vq|2 − |v`|2 dx

∣∣∣∣ . δq+1`
α, (7.42)

for any N ≥ 0, where the small parameter ` is defined as

` =
δ

1/2
q+1

δ
1/2
q λ1+3α/2

q

and it comes from the mollification step. We observe that by choosing α sufficiently small and a
sufficiently large we can assume

λ−
3/2

q ≤ ` ≤ λ−1
q . (7.43)

We also state another inequality we will need in the following, that is a consequence of (7.4),(7.15),
and (7.42) :

δq+1

2λα
q
≤ e(t)−

�
T3
|vq|2 dx ≤ 2δq+1. (7.44)

Thus we can pass to the perturbation step. The aim is to find a triple (vq+1, pq+1, R̊q) which solves
(7.7) with the estimates

‖vq+1 − vq‖0 + λ−1
q+1‖vq+1 − vq‖1 ≤

M
2

δ
1/2
q+1 (7.45)
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∥∥R̊q+1
∥∥

α
.

δ
1/2
q+1δ

1/2
q λq

λ1−4α
q+1

(7.46)

∣∣∣∣∣e(t)−
�

T3
|vq+1|2 dx−

δq+2

2

∣∣∣∣∣ ≤ C
δ

1/2
q δ

1/2
q+1λ1+2α

q

λq+1
+

δq+2

4
. (7.47)

Note that estimates (7.45) and (7.46) are the same stated in [11], while (7.47) is slightly different
due to the term δq+2/4. This does not affect the iteration and Proposition 7.3 is still a direct
consequence of estimates (7.45)-(7.47). However, since estimate (7.47) is different than the one
used in [11], we give a complete proof of Proposition 7.3.

7.3.1 Proof of Proposition 7.3

By using (7.38) and (7.45) we estimate

‖vq+1 − vq‖0 ≤ ‖vq+1 − vq‖0 + ‖vq − vq‖0 ≤
M
2

δ
1/2
q+1 + Cδ

1/2
q+1λ−α

q ,

where the constant C depends only on α, β and M. Thus if a is chosen sufficiently large we can
guarantee

‖vq+1 − vq‖0 ≤ Mδ
1/2
q+1. (7.48)

Similarly, by using (7.13), (7.39) and (7.45), we have

‖vq+1 − vq‖1 ≤ ‖vq+1 − vq‖1 + ‖vq‖1 + ‖vq‖1 ≤
M
2

δ
1/2
q+1λq+1 + (C + M) δ

1/2
q λq.

Again, if a is chosen sufficiently large, we can ensure

‖vq+1 − vq‖1 ≤ Mδ
1/2
q+1λq+1,

which, together with (7.48), gives (7.17). By (7.13), (7.14) and (7.17) we get

‖vq+1‖0 ≤ ‖vq+1 − vq‖0 + ‖vq‖0 ≤
M
2

δ
1/2
q+1 + 1− δ

1/2
q ≤ 1− δ

1/2
q+1,

‖vq+1‖1 ≤ ‖vq+1 − vq‖1 + ‖vq‖1 ≤
M
2

δ
1/2
q+1λq+1 + Mδ

1/2
q λq ≤ Mδ

1/2
q+1λq+1

where we also chose the parameter a sufficiently large to guarantee the last inequalities of the
previous estimates. In particular this shows that vq+1 obeys (7.13) and (7.14) in which q is replaced
by q + 1. Estimate (7.12) for R̊q+1 is a direct consequence of (7.46) and the parameters inequality

δ
1/2
q+1δ

1/2
q λq

λq+1
≤

δq+2

λ8α
q+1

. (7.49)

indeed, by taking the logarithms, the last inequality holds by choosing a sufficiently large if

−β− βb + 1− b + 2b2β + 8bα < 0,

but this is true since b < 1−β
2β (see (7.18)) and α is chosen sufficiently small. We are only left with

estimate (7.15) for vq+1. By (7.47) and (7.49) we have

e(t)−
�

T3
|vq+1|2 dx ≤

δq+2

2
+ C

δ
1/2
q δ

1/2
q+1λ1+2α

q

λq+1
+

δq+2

4
≤ 3

4
δq+2 + C

δq+2

λ6α
q+1

,

thus, for a sufficiently large a, we get

e(t)−
�

T3
|vq+1|2 dx ≤ δq+2. (7.50)
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Finally, again by (7.47) we have

e(t)−
�

T3
|vq+1|2 dx ≥

δq+2

2
− C

δ
1/2
q δ

1/2
q+1λ1+2α

q

λq+1
−

δq+2

4
≥
(

1
4
− C

λ6α
q+1

)
δq+2,

and, since for a sufficiently large a we can ensure that

1
4
− C

λ6α
q+1
≥ 1

λα
q+1

,

we end up with

e(t)−
�

T3
|vq+1|2 dx ≥ δq+2λ−α

q+1,

which together with (7.50) gives (7.15) and concludes the proof of the proposition.

7.4 perturbation

We will now outline the construction of the perturbation wq+1, where

vq+1
.
= wq+1 + vq .

The perturbation wq+1 is highly oscillatory and will be based on the Mikado flows introduced in
[14]. We recall the construction in the following lemma

Lemma 7.7. For any compact subset N ⊂⊂ S3×3
+ there exists a smooth vector field

W : N ×T3 → R3,

such that, for every R ∈ N 
divξ(W(R, ξ)⊗W(R, ξ)) = 0

divξ W(R, ξ) = 0,

(7.51)

and
 

T3
W(R, ξ) dξ = 0, (7.52)

 
T3

W(R, ξ)⊗W(R, ξ) dξ = R. (7.53)

Using the fact that W(R, ξ) is T3-periodic and has zero mean in ξ, we write

W(R, ξ) = ∑
k∈Z3\{0}

ak(R)eik·ξ (7.54)

for some smooth functions R→ ak(R) ∈ C3, satisfying ak(R) · k = 0. From the smoothness of W,
we further infer

sup
R∈N
|DN

R ak(R)| ≤ C(N , N, m)

|k|m (7.55)

for some constant C, which depends, as highlighted in the statement, on N , N and m.

Remark 7.8. Later in the proof the estimates (7.55) will be used with a specific choice of the
compact set N and of the integers N and m: this specific choice will then determine the universal
constant M appearing in Proposition 7.3.
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Using the Fourier representation we see that from (7.53)

W(R, ξ)⊗W(R, ξ) = R + ∑
k 6=0

Ck(R)eik·ξ (7.56)

where

Ckk = 0 and sup
R∈N
|DN

R Ck(R)| ≤ C(N , N, m)

|k|m (7.57)

for any m, N ∈N. It will also be useful to write the Mikado flows in terms of a potential. We note

curlξ

((
ik× ak
|k|2

)
eik·ξ

)
= −i

(
ik× ak
|k|2

)
× keik·ξ = − k× (k× ak)

|k|2 eik·ξ = akeik·ξ (7.58)

We define the smooth non-negative cut-off functions ηi = ηi(x, t) with the following properties

(i) ηi ∈ C∞(T3 × [0, T]) with 0 ≤ ηi(x, t) ≤ 1 for all (x, t);

(ii) supp ηi ∩ supp ηj = ∅ for i 6= j;

(iii) T3 × Ii ⊂ {(x, t) : ηi(x, t) = 1};

(iv) supp ηi ⊂ T3 × Ii ∪ Ji ∪ Ji+1;

(v) There exists a positive geometric constant c0 > 0 such that for any t ∈ [0, T]

∑
i

�
T3

η2
i (x, t) dx ≥ c0. (7.59)

The next lemma is taken from [11].

Lemma 7.9. There exists cut-off functions {ηi}i with the properties (i)-(v) above and such that for any i
and n, m ≥ 0

‖∂n
t ηi‖m ≤ C(n, m)τ−n

q

where C(n, m) are geometric constants depending only upon m and n.

Analogously to [11], we will now define the perturbations that are necessary to show (7.45)-
(7.47). Since the energy profile is not smooth, we will need to mollify it. To do so we will
henceforth consider e to be extended on the whole R as e(t) = e(0) for all t < 0 and e(t) = e(T)
for all t > T, in such a way that the extension is still in Cη∗(R). With this convention we define

eq(t)
.
= (e ∗ ψεq)(t),

where ψεq is a standard mollifier and

εq
.
=

(
δq+2

4E

) 1
η∗

. (7.60)

Define also

ρq(t)
.
=

1
3

(
eq(t)−

δq+2

2
−
�

T3
|vq|2 dx

)
and

ρq,i(x, t) .
=

η2
i (x, t)

∑j
�

T3 η2
j (y, t) dy

ρq(t)

Define the backward flows Φi for the velocity field vq as the solution of the transport equation
(∂t + vq · ∇)Φi = 0

Φi (x, ti) = x.
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Define
Rq,i

.
= ρq,i id−η2

i R̊q

and

R̃q,i =
∇ΦiRq,i(∇Φi)

T

ρq,i
. (7.61)

We note that, because of properties (ii)-(iv) of ηi,

• supp Rq,i ⊂ supp ηi;

• on supp ˚̄Rq we have ∑i η2
i = 1;

• supp R̃q,i ⊂ T3 × Ii ∪ Ji ∪ Ji+1;

• supp R̃q,i ∩ supp R̃q,j = ∅ for all i 6= j.

Lemma 7.10. For a� 1 sufficiently large we have

‖∇Φi − id ‖0 ≤
1
2

for t ∈ supp(ηi). (7.62)

Furthermore, for any N ≥ 0

δq+1

8λα
q
≤ |ρq(t)| ≤ δq+1 for all t , (7.63)

‖ρq,i‖0 ≤
δq+1

c0
, (7.64)

‖ρq,i‖N . δq+1 , (7.65)

‖∂tρq‖0 . δq+1δ
1/2
q λq , (7.66)

‖∂tρq,i‖N . δq+1τ−1
q . (7.67)

Moreover, for all (x, t)
R̃q,i(x, t) ∈ B1/2(id) ⊂ S3×3

+ ,

where B1/2(id) denotes the metric ball of radius 1/2 around the identity id in the space S3×3.

Proof. We write

ρq(t) =
1
3

(
eq(t)−

�
T3
|vq|2 dx−

δq+2

2

)
=

1
3

(
eq(t)− e(t) + e(t)−

�
T3
|vq|2 dx−

δq+2

2

)
,

thus by (7.44) we get

1
3

(
δq+1

2λα
q
−

δq+2

2
− |eq(t)− e(t)|

)
≤ |ρq(t)| ≤

1
3

(
|eq(t)− e(t)|+ 2δq+1 +

δq+2

2

)
. (7.68)

By using (7.3) and the fact that [e]η∗ ≤ E, we also get

|eq(t)− e(t)| ≤ [e]η∗ ε
η∗
q ≤ δq+2

and, by plugging it into (7.68), we achieve

δq+1

6λα
q
−

δq+2

2
≤ |ρq(t)| ≤

2
3

δq+1 +
δq+2

2
.

It is easy to show that by choosing a sufficiently large we can guarantee (7.63). Note that by
definition of the cut-off function ηi

c0 ≤∑
i

�
T3

η2
i (x, t) dx ≤ 2 (7.69)
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and hence we obtain (7.64). Since |∇Nηj| . 1, the bound (7.65) also follows. For the bound (7.62)
and the fact that R̃q,i(x, t) ∈ B1/2(id) ⊂ S3×3

+ we refer to [11, Lemma 5.4]. To prove (7.66), we first
use (7.39), (7.40) to estimate∣∣∣∣ d

dt

�
T3
|vq|2 dx

∣∣∣∣ = 2
∣∣∣∣�

T3
∇vq · R̊q dx

∣∣∣∣ . δq+1δ
1/2
q λq.

Moreover, by (7.5), we have

|∂teq| ≤ [e]η∗ ε
η∗−1
q ≤ Cδ1−1/η∗

q+2 ,

where the constant C depends on η and E. Thus (7.66) is implied by the following parameters
inequality

Cδ1−1/η∗

q+2 ≤ δq+1δ
1/2
q λq. (7.70)

Using the definition of the parameters δq and λq it can be checked that the last inequality holds if
one chose a big enough (depending on b, β, η and E) provided that(

1
η∗
− 1
)

b2 + b− 1
β∗

< 0.

Since b satisfies (7.16) we have(
1

η∗
− 1
)

b2 + b− 1
β∗

<

(
1

η∗
− 1
)

η∗

β∗
+

η∗

β∗
− 1

β∗
= 0,

thus (7.70) holds. Finally, since ‖∂tηj‖N . τ−1
q and τ−1

q ≥ δ
1/2
q λq, using (7.69), also the estimate

(7.67) follows.

7.4.1 The constant M

The principal term of the perturbation can be written as

wo
.
= ∑

i

(
ρq,i(x, t)

)1/2
(∇Φi)

−1W(R̃q,i, λq+1Φi) = ∑
i

wo,i , (7.71)

where Lemma 7.7 is applied with N = B1/2(id), namely the closed ball (in the space of symmetric
3× 3 matrices) of radius 1/2 centered at the identity matrix.

From Lemma 7.10 it follows that W(R̃q,i, λq+1Φi) is well defined. Using the Fourier series
representation of the Mikado flows (7.54) we can write

wo,i = ∑
k 6=0

(∇Φi)
−1bi,keiλq+1k·Φi ,

where
bi,k(x, t) .

=
(
ρq,i(x, t)

)1/2 ak(R̃q,i(x, t)).

By the definition of wo,i and (7.53) we compute

wo,i ⊗ wo,i = ρq,i∇Φ−1
i (W ⊗W)(R̃q,i, λq+1Φi)∇Φ−T

i

= ρq,i∇Φ−1
i R̃q,i∇Φ−T

i + ∑
k 6=0

ρq,i∇Φ−1
i Ck(R̃q,i)∇Φ−T

i eiλq+1k·Φi

= Rq,i + ∑
k 6=0

ρq,i∇Φ−1
i Ck(R̃q,i)∇Φ−T

i eiλq+1k·Φi . (7.72)

The following is a crucial point of the construction, which ensures that the constant M of Proposi-
tion 7.3 is geometric and in particular independent of all the parameters of the construction.
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Lemma 7.11. There is a geometric constant M̄ such that

‖bi,k‖0 ≤
M̄
|k|4 δ

1/2
q+1 . (7.73)

We are finally ready to define the constant M of Proposition 7.3: from Lemma 7.11 it follows
trivially that the constant is indeed geometric and hence independent of all the parameters of the
statement of Proposition 7.3.

We can now define the geometric constant M as

M = 64M̄ ∑
k∈Z3\{0}

1
|k|4 , (7.74)

where M̄ is the constant of Lemma 7.11.
We also define

wc
.
=
−i

λq+1
∑

i,k 6=0

[
curl

((
ρq,i
)1/2 ∇ΦT

i (k× ak(R̃q,i))

|k|2

)]
eiλq+1k·Φi =: ∑

i,k 6=0
ci,keiλq+1k·Φi .

Then by direct computations one can check that

wq+1 = wo + wc =
−1

λq+1
curl

(
∑

i,k 6=0
(∇Φi)

T
(

ik× bk,i

|k|2

)
eiλq+1k·Φi

)
, (7.75)

thus the perturbation wq+1 is divergence frE.

7.4.2 The final Reynolds stress and conclusions

In order to define the new Reynolds tensor, we recall the operator R from [11], which can be
thought of as an inverse divergence operator for symmetric tracefrE 2-tensors. The operator is
defined as

(R f )ij = Rijk f k

Rijk = −1
2

∆−2∂i∂j∂k −
1
2

∆−1∂kδij + ∆−1∂iδjk + ∆−1∂jδik.
(7.76)

when acting on vectors f with zero mean on T3, and has the property that R f is symmetric and
div(R f ) = f . Upon letting

Rq = ∑
i

Rq,i ,

we define the new Reynolds stress as follows

R̊q+1
.
= R

(
wq+1 · ∇vq + ∂twq+1 + vq · ∇wq+1 + div

(
−Rq + wq+1 ⊗ wq+1

))
(7.77)

With this definition one may verify that
∂tvq+1 + div(vq+1 ⊗ vq+1) +∇pq+1 = div(R̊q+1) ,

div vq+1 = 0 ,

where the new pressure is defined by

pq+1(x, t) = p̄q(x, t)−∑
i

ρq,i(x, t) + ρq(t). (7.78)

The following proposition is taken from [11].
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Proposition 7.12. For t ∈ Ii ∪ Ji ∪ Ji+1 and any N ≥ 0

‖(∇Φi)
−1‖N + ‖∇Φi‖N . `−N , (7.79)

‖R̃q,i‖N . `−N , (7.80)

‖bi,k‖N . δ
1/2
q+1|k|

−6`−N , (7.81)

‖ci,k‖N . δ
1/2
q+1λ−1

q+1|k|
−6`−N−1 . (7.82)

Moreover assuming a is sufficiently large, the perturbations wo, wc and wq satisfy the following estimates

‖wo‖0 +
1

λq+1
‖wo‖1 ≤

M
4

δ
1/2
q+1 (7.83)

‖wc‖0 +
1

λq+1
‖wc‖1 . δ

1/2
q+1`

−1λ−1
q+1 (7.84)

‖wq+1‖0 +
1

λq+1
‖wq+1‖1 ≤

M
2

δ
1/2
q+1 (7.85)

where the constant M depends solely on the constant c0 in (7.59). In particular, we obtain (7.45).

We are now ready to complete the proof of Proposition 7.3 by proving the remaining estimates
(7.47) and (7.46). We start with the energy increment

Proposition 7.13. The energy of vq+1 satisfies the following estimate∣∣∣∣∣e(t)−
�

T3
|vq+1|2 dx−

δq+2

2

∣∣∣∣∣ ≤ C
δ

1/2
q δ

1/2
q+1λ1+2α

q

λq+1
+

δq+2

4
.

In particular, (7.47) holds.

Proof. By definition we have vq+1 = vq + wq+1 = vq + wo + wc, thus we have∣∣∣∣e(t)− �
T3
|vq+1|2 dx−

δq+2

2

∣∣∣∣ ≤ ∣∣∣∣e(t)− �
T3
|wo|2 dx−

δq+2

2
−
�

T3
|vq|2 dx

∣∣∣∣
+

∣∣∣∣�
T3
|wc|2 dx+2

�
T3

wo · wc dx+2
�

T3
wq+1 · vq dx

∣∣∣∣ . (7.86)

The estimate on the second term in the right hand side of (7.86) is just a a consequence of (7.39)
and Proposition 7.12 and for a complete we refer to [11, Proposition 6.2], in which it is proved
that ∣∣∣∣�

T3
|wc|2 dx+2

�
T3

wo · wc dx+2
�

T3
wq+1 · vq dx

∣∣∣∣ . δ
1/2
q δ

1/2
q+1λ1+2α

q

λq+1
.

Now recall that from (7.72) and the definition of Rq,i we have

�
T3
|wo|2 dx = ∑

i

�
T3

tr Rq,i dx+
�

T3
∑

i,k 6=0
ρq,i∇Φ−1

i tr Ck(R̃q,i)∇Φ−T
i eiλq+1k·Φi dx

= 3 ∑
i

�
T3

ρq,i dx+
�

T3
∑

i,k 6=0
ρq,i∇Φ−1

i tr Ck(R̃q,i)∇Φ−T
i eiλq+1k·Φi dx

= 3ρq(t) +
�

T3
∑

i,k 6=0
ρq,i∇Φ−1

i tr Ck(R̃q,i)∇Φ−T
i eiλq+1k·Φi dx

= eq(t)−
δq+2

2
−
�

T3
|vq|2 dx+

�
T3

∑
i,k 6=0

ρq,i∇Φ−1
i tr Ck(R̃q,i)∇Φ−T

i eiλq+1k·Φi dx .
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As a consequence of (7.57), Lemma 7.10 and Proposition 7.12 we have∣∣∣∣∣
�

T3
∑

i,k 6=0
ρq,i∇Φ−1

i tr Ck(R̃q,i)∇Φ−T
i eiλq+1k·Φi dx

∣∣∣∣∣ . δ
1/2
q δ

1/2
q+1λ1+2α

q

λq+1
.

For a detailed proof of the previous estimate we again refer to [11, Proposition 6.2]. Thus we are
only left with estimating |e(t)− eq(t)|, but from (7.3), the definition of εq in (7.60) and the fact
that [e]Cη∗ ≤ E, we get

|e(t)− eq(t)| ≤ [e]η∗ ε
η∗
q ≤

δq+2

4
,

which concludes the proof of the proposition.

For the inductive estimate on R̊q+1 we refer to [11, Proposition 6.1]

Proposition 7.14. The Reynolds stress error R̊q+1 defined in (7.77) satisfies the estimate

‖R̊q+1‖0 .
δ

1/2
q+1δ

1/2
q λq

λ1−4α
q+1

. (7.87)

In particular, (7.46) holds.

7.5 final comments

In this section, we wish to comment on why we need to introduce the space Xθ (see (7.19)), since
clearly the most natural choice for Xθ would have simply been the space of all Cθ(T3 × [0, T])
or cθ(T3 × [0, T]) solutions of Euler equation. We believe that such a discussion highlights some
interesting features of the convex integration scheme.

The introduction of Xθ is related to the proof of Theorem 7.5 and to intrinsic properties of
the iterative scheme of [11]. The proof of Theorem 7.5 uses the following strategy, that is quite
standard in arguments involving Baire Theorem. As a first step, we rewrite Yc

θ as union of
closed sets Cm,n,r. The parameters m, n quantify an improvement in the regularity of elements
of Cm,n,r, while r only indicates its localization in space, hence it is not useful to the purpose
of this discussion. Secondly, one needs to prove that Cm,n,r has empty interior. Equivalently,
every element u0 ∈ Cm,n,r must be approximated in the Cθ(T3 × [0, T]) norm with elements
u ∈ Xθ \ Cm,n,r. This is where the convex integration scheme comes into play. The iterative
procedure of [11] tells us, roughly speaking, that given a smooth subsolution ū and a positive
and smooth (or Cθ∗+γ([0, T]), as proved in the present work) energy profile e, one can find an
arbitrarily close solution u such that e = eu, provided some initial estimates are verified. In order
to obtain the desired "less regular" approximating sequence, it seems therefore rather natural to
try to apply this result to the subsolution obtained by mollifying u0, and choose an energy profile
e ∈ Cθ∗+1/2m([0, T]) \Wθ∗+1/m,1([0, T]).

Since one wishes to approximate a Cθ(T3 × [0, T]) solution with a sequence of smooth func-
tions in the Cθ(T3 × [0, T]) topology, the first natural restriction is to take the complete metric
space in which to apply the Baire argument to be a closed subset of cθ(T3 × [0, T]). Once one can
guarantee the fact that the mollifications of u0 are close in the right topology to u0, the next step
is to use the convex integration scheme on a close enough space-time mollification of u0, let us
call it uδ, δ > 0 being the parameter of mollification. Let us moreover denote with Rδ the Reynold
stress tensor of uδ, i.e.

Rδ = uδ ⊗ uδ − (u0 ⊗ u0)δ.

In order to apply the scheme, one needs to guarantee step 0 of the inductive estimates, i.e.
(7.12),(7.13), (7.14), (7.15). We will now show that, by choosing any θ < β in order to have the
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Cθ(T3 × [0, T]) closeness of the resulting solution to uδ (and therefore to u0), (7.12) and (7.13)
become impossible to guarantee using the estimates of Proposition 7.1. Through these estimates,
one wishes to find δ > 0 and α > 0 for which

‖R̊δ‖0 . δ2θ ≤ δ1λ−3α
0 and ‖uδ‖1 . δθ−1 ≤ Mδ

1/2
0 λ0.

These relations are anyway incompatible for any δ, α > 0 if

δq = λ
−2β
q = a−2βbq

(7.88)

for a > 0, b > 1. To see this, notice that a solution δ would need to satisfy also

δ2θ . δ1 = λ
−2β
1 (7.89)

Moreover, the estimate on the C1 norm can be rewritten as

δ
− 1

2(1−θ)

0 λ
− 1

1−θ
0 . δ. (7.90)

Combining (7.88), (7.89) and (7.90), one obtains

a−
1−β
1−θ . a−b β

θ ,

hence that the function a 7→ ab β
θ−

1−β
1−θ is bounded. Since for every b > 1, one has b β

θ −
1−β
1−θ > 0

because of the inequality θ < β, we find that a can not be taken freely in an open unbounded in-
terval (a0,+∞), hence Proposition 7.3 can not possibly be true in this setting. Nonetheless, as it is
clearly stated in [11], we could have found many Cβ(T3 × [0, T]) solutions of (7.1) Cβ(T3 × [0, T])
close to uδ, for β < θ. This is obviously not sufficient for Theorem 7.5. This feature of the "θ − β
gap" was noticed also in the work [42], to which we refer the reader for interesting discussions.
On the other hand, if the starting point u0 can be approximated in the Cθ(T3 × [0, T]) topology
by more regular solutions, for instance in Cθ′(T3 × [0, T]), θ < θ′, then by the previous discussion
it becomes clear that we can now start the scheme from these more regular points obtaining the
desired estimates in Cθ(T3 × [0, T]). This is exactly the reason for introducing the space Xθ .

We conclude this discussion by noting that, even though it could not contain all the Cθ(T3× [0, T])
solutions of (7.1), Xθ contains many elements. indeed, by [11], for every smooth and positive
energy profile e and for every θ < θ′ < 1/3, we find a weak solution u ∈ Cθ′(T3 × [0, T]) of (7.1)
with e = eu. Since θ′ > θ, u ∈ Xθ .
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We collect here some of the known results and notations we use in this thesis. This list is
sufficient to read the introduction, but some objects will be defined in the next chapters when
needed.

a.1 domains

We always denote with Ω an open subset of an Euclidean space of finite dimension, for which
we use the symbols Rm, Rd and Rn. Tn is the n-dimensional torus identified with [0, 1]n ⊂ Rn,
and we work with the convention that every function f : Tn → R is actually a 1-periodic function
on Rn, and we do not denote differently this extension. In X = Rn or X = Tn, the ball of radius
r > 0 centered at x ∈ X is denoted with Br(x). If the ball is centered at 0, we use the shorter
notation Br. The same conventions are adopted for squares, denoted with Q instead of B. If X is
a more general metric space, we will use the notation Nr(x) to denote the ball of radius r > 0
around x ∈ X.

a.2 linear algebra

For any matrix A ∈ Rn×n, we denote with cof(A) the matrix defined as

cof(A)ij = (−1)i+j det(Aji),

where Aji is the (n− 1)× (n− 1) matrix obtained from A by eliminating the j-th row and the
i-th column. In particular

A cof(A) = det(A) idn, ∀A ∈ Rn×n,

where idn is the identity matrix of size n. If A ∈ Rn×m, then AT ∈ Rm×n denotes its transpose.
Sym(n) is the space of symmetric matrices of size n× n and Sym+(n) is the space of non-negative
definite symmetric matrices;

a.3 differentials and functional spaces

For functions f : Ω → Rn, we denote with D f the distributional gradient, and with H f or
D2 f its distributional Hessian, i.e. the matrix of the second derivatives of f . The Lebesgue and
Sobolev spaces are as usual denoted with Lp and Wk,p, respectively, and their local version by Lp

loc,

Wk,p
loc . Only in Part ii we will need to distinguish between the pointwise and the distributional

derivatives of f . We will always clarify which one of the two we are using, hence we do not
denote them differently. The fractional Sobolev space on an interval I ⊂ R is

Wα,p(I) :=

 f ∈ Lp(I) :
| f (x)− f (y)|

|x− y|
1
p +α

∈ Lp(I × I)

 .

The set Cθ(Ω) is the space of θ-Hölder functions in Ω, while the so-called little Hölder space
cθ(Ω) is the closure in the Cθ(Ω)-norm of the space of smooth functions on Ω. The space of
continuous functions is denoted by C0(Ω), the Lipschitz continuous functions by Lip(Ω). C0

c (Ω)
and C0

b(Ω) are the spaces of continuous functions with compact support and the one of bounded

113
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continuous functions respectively. We use the classical notation Cθ(Ω, Y) to denote the space of
Hölder spaces with values in Y, and analogously for the other function spaces.

We will denote by H1
loc(Ω) the local Hardy space. We only need to consider non-negative

functions f in this space that are constant outside of a compact set K ⊂ Ω. A function f : Ω→ R

with these properties belongs to H1
loc(Ω) if and only if (see [59, Lemma 3], that is a consequence

of [81])

‖ f ‖H1(Ω) =

�
Ω

f (x) log(1 + f (x)) dx < +∞.

a.4 measures and varifolds

Let X be a subset of Rn or Tn. M(X, Rm) is the space of bounded signed Radon measures
with values in Rm. When m = 1, we denote this space by M(X), and the space of positive
Radon measures byM+(X). Recall that an element µ ∈ M(X, Rm) is given by µ = ~T‖µ‖, where
‖µ‖ ∈ M+(X) and ~T is a ‖µ‖ measurable vector field on X with values in Rm and ‖~T‖ = 1. In
particular, we denote

µ(Φ) =

�
X
〈~T, Φ〉d‖µ‖, ∀Φ ∈ Cc(X, Rm).

M(X, Rm) is a normed space, with norm

‖µ‖M(X,Rm)
.
= sup{µ(Φ) : Φ ∈ C0

c (X, Rm), ‖Φ‖∞ ≤ 1},

The weak-∗ convergence of µk ∈ M(X, Rm) to µ ∈ M(X, Rm) is given by

µk
∗
⇀ µ⇔ µk(Φ)→ µ(Φ), ∀Φ ∈ C0

c (X, Rm).

If X is compact,M(X, Rm) is sequentially weak-∗ compact, (see [31, Section 1.9]).

For a set E ⊂ Rn or E ⊂ X, we denote with |E| its n-dimensional Lebesgue measure, and with
Hk the k-dimensional Hausdorff measure, so that Hn(E) = |E|. We let

spt(µ) :=
⋂
{C ⊂ Rn : C is closed and ‖µ‖(Rn \ C) = 0}

the support of µ. For a Borel set E ⊂ X we use the symbol µxE to denote the measure

µxE(A)
.
= µ(E ∩ A), ∀A Borel subset of X.

The terms absolutely continuous and singular part of a measure need to be intended with respect
to the Lebesgue measure. Analogously, when not specified, almost everywhere, abbreviated with
a.e., is intended with respect to the Lebesgue measure. For every µ ∈ M(X, Rm), we consider its
Lebesgue decomposition

µ = g dx+µs,

where g ∈ L1(X, Rm) and µs ∈ M(X, Rm) denotes a singular measure with respect to the
Lebesgue measure, i.e. there exists a Borel set A ⊂ X such that |A| = 0 and

µs(E) = µs(A ∩ E), for every Borel set E ⊂ X.

We recall that a Lebesgue point for a function g ∈ L1(X, Rm) is a point x such that
 

Br(x)
|g(y)− g(x)| dy→ 0 as r → 0+,

where  
E

f (y)dy =
1
|E|

�
E

f (y)dy,
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for every f ∈ L1(X), E Borel subset of X with |E| > 0. It is well known that the set of Lebesgue
points of such a function g is of full measure in X (see [31, Theorem 1.33]). More generally, if
µ ∈ M(X, Rm), we call its (upper) density the function

Dµ(x) .
= lim sup

r→0+

µ(Br(x))
ωnrn ,

where ωn
.
= |B1(0)|. If µ is singular with respect to the Lebesgue measure, then Dµ(x) = 0 for

a.e. point of X (see [31, Theorem 1.31]).

We will use the concept of Monge-Ampère measure associated to a convex function. For
every convex function ϕ : Ω→ R, Ω ⊂ Rn open and convex, this is defined as the locally finite
measure:

µϕ(E) .
=

∣∣∣∣∣⋃
x∈E

∂ϕ(x)

∣∣∣∣∣ ,

where ∂ϕ(x) denotes the subdifferential at x of ϕ. We refer the reader to [34, Section 2] for the
basic properties of µϕ.

Finally, we recall that an rectifiable varifold V of dimension m is a couple (Γ, θ), where Γ ⊂ Rm+n

is a m-rectifiable set in Rn+m, and θ : Γ → R+ \ {0} is a Borel map. It is customary to denote
(Γ, θ) as θJΓK and to call θ the multiplicity of the varifold. If θ has values in N \ {0}, we call the
varifold integer rectifiable.

a.5 young measures

For a comprehensive introduction to Young Measures, we refer the reader to [61, Section 3].
The results we report here are taken from this reference.

Theorem A.1 (Fundamental Theorem on Young measure). Let E ⊂ Rn be a Lebesgue measurable
set with finite measure. Consider a sequence zj : E ⊂ Rd → RN of measurable functions satisfying the
condition

sup
j∈N

�
E
‖zj‖s < +∞,

for some s > 0. Then there exists a subsequence zjk and a weak-* measurable map ν : E→M(RN) such
that for a.e. x ∈ E, νx ∈ M(RN) and in addition νx(RN) = 1. Moreover, for every A ⊂ E, and for every
f ∈ C(RN), if

f (zjk ) is relatively weakly compact in L1(A),

then,

f (zjk ) ⇀ f̄ in L1(A), where f̄ (x) = 〈νx, f 〉 =
�

RN
f (y)dνx(y).

In this case, we say that zjk generates the Young measure ν.

Corollary A.2. Let p > 1 and E ⊂ Rd be a Lebesgue measurable set with finite measure. If zj is weakly
convergent in Lp(E) to a function z ∈ Lp(E) and if it generates the Young measure ν, then, for every
f ∈ C(RN) such that

| f (y)| ≤ C(1 + ‖y‖q), for q < p,

the following holds

f (zj) ⇀ f̄ , weakly in L
p
q (E).

In particular, the choice f such that f (y) = y, ∀y ∈ RN yields

z(x) = 〈νx, f 〉.

Another result, fundamental to establish compactness, is the following [61, Corollary 3.2]:
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Corollary A.3. Suppose that a sequence zj of measurable functions from E to RN generates the Young
measure ν. Then

zj → z in measure if and only if νx = δz(x) for a.e x.

In particular, if zj ∈ Lp(E), for p > 1, and the following hold

(i) zj is weakly convergent in Lp(E) to a function z ∈ Lp(E),

(ii) zj generates the Young measure ν,

(iii) νx = δz(x) for a.e. x.

Then,
zj → z in Lq(E), for every 1 ≤ q < p.

a.6 baire category theorem

Let (X, d) be a complete metric space. We say that Y ⊂ X is meager if it is contained in the
union of countably many closed sets with empty interior. A set Z ⊂ X is residual if it contains
the intersection of countably many open and dense sets, or, equivalently, if X \ Z is meager. We
say that an element in the residual set Z is a typical element of X. The version of Baire Category
Theorem we will extensively use in the thesis is the following:

Theorem A.4 (Baire Theorem). A complete metric space X is not meager.
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In this appendix we give the proof of some results stated in the first part of this thesis, namely
Proposition 3.4 and Lemma 3.10.

b.1 proof of proposition 3 .4

First, by [38, Sec. 1.5,Th. 1], one has that if w ∈W1,m(Ω, Rm+n), then for every measurable set
A ⊂ Ω and every measurable function g : Rm+n → R for which

g(w(·))Jw(·) ∈ L1(A), (B.1)

it holds �
A

g(w(x))Jw(x) dx =

�
Rm+n

g(z)N(w, A, z)dHm(z),

where

Jw(x) =
√

det(Dw(x)T Dw(x)) and N(w, A, z) .
= #{x : x ∈ A ∩ AD(w), w(x) = z}.

We want to apply this result with

A = Lu, w(x) = v(x), g(x, y) .
= ϕ(v(x), Tv(x)Gu)θ(x, y), ∀x ∈ Ω, y ∈ Rn.

With θ appearing in the last equation we mean any representative of this Borel, L∞ function, so
that g is a well defined measurable function in Ω×Rn. We note that the fact that θ(x, u(x)) = β(x)
for a.e. x ∈ Ω does not depend on the choice of the representative. Indeed, if θ′ and β′ are any
representatives of θ and β respectively, then

{x ∈ Ω : θ′(x, u(x)) = β′(x)} ⊇ {x ∈ Ω : x is a Lebesgue point for β}.

This justifies the choice of any representative of θ in the definition of g, and our notation θ both
for the initial L∞ function and the representative. We will now proceed with the proof. It is
straightforward by the fact that Ru = Lu ∩ AD(u) and the definition of v(x) that N(v,Lu, z) = 1
for HmxGu-a.e. z ∈ Rm+n and N(v,Lu, z) = 0 if z /∈ Gu. Hence:

�
Rm+n

g(z)N(w, A, z)dHm(z) =
�
Gu

ϕ(z, TzGu)θ(z)dHm(z).

Moreover, since |Ω \ Lu| = 0, Jw(x) = A(Du(x)) and θ(x, u(x)) = β(x), we also find
�
Lu

g(w(x))Jw(x) dx =

�
Ω

ϕ(v(x), Tv(x)Gu)A(Du(x))β(x) dx .

Since u ∈W1,m(Ω, Rn), ϕ ∈ Cb(Ω×Rn ×G0) and θ ∈ L∞(Ω×Rn), (B.1) is fulfilled and we can
apply the aforementioned result [38, Sec. 1.5,Th. 1] to obtain the desired equality (3.9).

b.2 proof of lemma 3 .10

First of all we compute DA(X). Recall the notation on multi-indices introduced in Definition
2.13 and the definition of the matrix cof(XZ)T in the proof of Proposition 2.19. Then, since

A(X) =
√

1 + ‖X‖2 + ∑
2≤r≤min{m,n}

∑
Z∈Ar

det(XZ)2,
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we have

DA(X) =
X + ∑2≤r≤min{m,n} ∑Z∈Ar det(XZ)cof(XZ)T

A(X)
, ∀X ∈ Rn×m. (B.2)

Next, we observe that by the chain rule

D(Ψ(h(X))ij = ∑
1≤α,β≤m+n

(∂αβΨ)(h(X))∂ijhαβ(X),

hence
D(Ψ(h(X)) = ∑

1≤α,β≤m+n
(∂αβΨ)(h(X))Dhαβ(X). (B.3)

We can therefore write

A(X) = Ψ(h(X))DA(X) +A(X)D(Ψ(h(X))

= Ψ(h(X))DA(X) +A(X) ∑
1≤α,β≤m+n

(∂αβΨ)(h(X))Dhαβ(X)

and

B(X) = Ψ(h(X))(−XT DA(X) +A(X) idm) +A(X) ∑
1≤α,β≤m+n

(∂αβΨ)(h(X))XT Dhαβ(X).

Since G(m, m + n) is compact, we have that both Ψ(h(X)) and (DΨ)(h(X)) are bounded in
L∞(Rn×m) by a constant c > 0 and using (B.2), we can bound

Ψ(h(X))‖DA(X)‖ . ‖X‖min{m,n}−1.

Moreover, for every X ∈ Rn×m, 2 ≤ r ≤ min{m, n} and Z ∈ Ar, we have

XTcof(XZ)T = det(XZ)IZ,

where, if δab denotes Kronecker’s delta and Z has the form Z = (i1, . . . , ir, j1, . . . , jr), IZ is the
m×m matrix defined as

(IZ)ij =

{
0, if i 6= ia or j 6= jb, ∀a, b,
δab, if i = ia, j = jb.

Therefore

−XT DA(X) +A(X) idm = −
XTX + ∑2≤r≤min{m,n} ∑Z∈Ar det2(XZ)IZ −A2(X) idm

A(X)
. (B.4)

If n ≤ m− 1, then the best way to estimate the previous expression is simply

‖XT DA(X)−A(X) idm ‖ . 1 + ‖X‖n.

On the other hand, if n ≥ m, then for Z ∈ Am we have IZ = idm, hence (B.4) becomes

−XT DA(X) +A(X) idm = −
XTX + ∑2≤r≤min{m,n} ∑Z∈Ar det2(XZ)IZ −A2(X) idm

A(X)

= −
XTX− (1 + ‖X‖2) idm +∑2≤r≤m−1 ∑Z∈Ar det2(XZ)(IZ − idm)

A(X)
.

In this case
‖XT DA(X)−A(X) idm ‖ . 1 + ‖X‖m−1.

To conclude the proof of the Lemma, we still need to prove that for every 1 ≤ i, j ≤ m + n,

A(X)‖Dhij(X)‖ . 1 + ‖X‖min{n,m}−1, A(X)‖XT Dhij(X)‖ . 1 + ‖X‖min{m−1,n}. (B.5)
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To perform the computation, we need to divide it into cases corresponding to the four blocks of
the matrix h(X) as written in (3.5). To this end, recall the notation

S(X) = (idm +XTX)−1,

and moreover notice that h(X) is symmetric, therefore we just need to prove (B.5) in the case i ≤ j.
Another useful fact is the following. First notice that for every matrices N ∈ O(n), M ∈ O(m)
(O(k) is the group of orthogonal matrices of order k), one has

S(NXM) = MTS(X)M.

From an easy computation we then conclude that, for every 1 ≤ i, j ≤ m + n and for every
X ∈ Rn×m, N ∈ O(n), M ∈ O(m),

‖Dhij(X)‖ . ∑
1≤a,b≤m+n

‖Dhab(NXM)‖ (B.6)

‖XT Dhij(X)‖ . ∑
1≤a,b≤m+n

‖(NXM)T Dhab(NXM)‖. (B.7)

Since also A(X) = A(NXM), ∀X ∈ Rn×m, M ∈ O(m), N ∈ O(n), (B.6)-(B.7) tell us that we can
check estimates (B.5) just on matrices Y .

= NXM with two additional hypotheses. Fix X ∈ Rn×m,
define Z = XM and denote the j-th column of a matrix A ∈ Rn×m with Aj. First, by a suitable
choice of M, we can make sure that YTY = ZTZ = MTXTXM is diagonal. Once this choice is
made, if n ≥ m, then we choose N = idn. Otherwise, if n < m, then we observe that at most n
of the columns of Z are non-zero, let these be Zj1 , . . . , Zjn and let us define J .

= {j1, . . . , jn} with
1 ≤ j1 < j2 < · · · < jn ≤ m. If for some jk we have Zjk = 0, then we set N = idn. Otherwise, the
n× n matrix V formed using Zj1 , . . . , Zjn has columns that are pairwise orthogonal and nonzero,
hence there exists O ∈ O(n) such that

V = OD,

with D diagonal. In this case, we choose N = OT , so that the resulting Y has the property that

Y j =

{
y`e` if j = j`, j` ∈ {j1, . . . , jn},
0 otherwise,

where yj ∈ R and e` are the vectors of the canonical basis of Rn. Notice that this choice of M and
N also implies that

A(Y) =
√

m

∏
i=1

(1 + ‖Yi‖2) and S(Y) = diag((1 + ‖Y1‖2)−1, . . . , (1 + ‖Ym‖2)−1).

We call (HP) these assumptions on the matrix Y ∈ Rn×m.

First case, 1 ≤ i ≤ j ≤ m: In this case, hij = Sij. We have

∑
1≤k≤m

S−1
ik Skj = δij,

hence, taking a derivative,

∑
1≤k≤m

∂abS−1
ik Skj + ∑

1≤k≤m
S−1

ik ∂abSjk = 0.

We can invert the previous relation to get

∂abSkl = − ∑
1≤c,d≤m

SkcSld∂abS−1
cd . (B.8)
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Finally, since S−1
ik = δik + ∑1≤l≤m xlixlk, we have

∂abS−1
ik = ∑

1≤c≤m
δab

ci xck + ∑
1≤c≤m

δab
ck xci,

where the symbol δcd
αβ = 0 if α 6= c or β 6= d, otherwise δcd

αβ = δ
αβ
αβ = 1. We can therefore use (B.8)

to write

∂abSij = − ∑
1≤k,l≤m

SikSjl

(
∑

1≤c≤m
δab

ck xcl + ∑
1≤c≤m

δab
cl xck

)
= − ∑

1≤k,l,c≤m
SikSjlδ

ab
ck xcl − ∑

1≤k,l,c≤m
δab

cl xckSikSjl = − ∑
1≤l≤m

(
SibSjl xal + xalSilSjb

)
.

(B.9)

Moreover,

(XT DSij)cd = ∑
1≤a≤n

xac∂adSij = − ∑
1≤l≤m,1≤a≤n

(
SidSjl xal xad + xadxalSilSjd

)
.

Now we use our previous observation (B.6)-(B.7) to consider Y satisfying (HP), so that in particular
YTY is diagonal. In this case, we have

|∂abSij(Y)| ≤ ∑
1≤l≤m

(
|SibSjlyal |+ |yalSilSjb|

)
.

For every 1 ≤ i, b, j, l ≤ m, 1 ≤ a ≤ n,

A(Y)|SibSjlyal | ≤
√

m

∏
c=1

(1 + ‖Yi‖2)
|yal |

(1 + ‖Yb‖2)(1 + ‖Yl‖2)
.

Let us explain in detail how to get the desired estimate (B.5) in this case. Notice that either Yl is
0, and in this case there is nothing to prove, or Yl 6= 0. Thanks to (HP), in Y there are at most
min{m, n} non-zero columns. First let m ≤ n, then:√

m

∏
c=1

(1 + ‖Yc‖2)
|yal |

(1 + ‖Yb‖2)(1 + ‖Yl‖2)
.

√
m

∏
c=1

(1 + ‖Yc‖2)
1√

1 + ‖Yl‖2
. 1 + ‖Y‖m−1.

If n < m and J is the set on indices corresponding to non-zero columns, we are in the hypothesis
in which l ∈ J. Therefore we have√

m

∏
c=1

(1 + ‖Yc‖2)
|yal |

(1 + ‖Yb‖2)(1 + ‖Yl‖2)
.
√

∏
c∈J

(1 + ‖Yc‖2)
1√

1 + ‖Yl‖2
. 1 + ‖Y‖m−1.

This proves that
‖Dhij(Y)‖ . 1 + ‖Y‖min{m,n}−1 for 1 ≤ i, j ≤ m. (B.10)

We also have

A(Y)|(YT DSij)cd(Y)| ≤ A(Y) ∑
1≤l≤m,1≤a≤n

(
|SidSjlyalyad|+ |yadyalSilSjd|

)
.

Analogously to the previous case, we estimate for every 1 ≤ i, d, j, l ≤ m, 1 ≤ a ≤ n,

A(Y)|SidSjlyalyad| ≤
√

m

∏
c=1

(1 + ‖Yc‖2)
|yal ||yad|

(1 + ‖Yd‖2)(1 + ‖Yl‖2)
,

and the desired estimate is obtained with a reasoning completely analogous to the one of (B.10).
This concludes the proof of this case.
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Second case, 1 ≤ i ≤ m < m + 1 ≤ j ≤ m + n: From now on we use m + j rather than j for
the corresponding index. We thus have

hij+m(X) = (S(X)XT)ij =
m

∑
k=1

Sikxjk .

We compute the derivative using (B.9):

∂abhij+m(X) =
m

∑
k=1

δab
jk Sik +

m

∑
k=1

xjk∂abSik =
m

∑
k=1

δab
jk Sik − ∑

1≤l,k≤m

(
SibSkl xal xjk + xal xjkSilSkb

)
,

and also

(XT Dhij+m(X))ab = ∑
1≤c≤n

xca∂cbhij = ∑
1≤k≤m,1≤c≤n

xcaδcb
jk Sik

− ∑
1≤l,k≤m,1≤c≤n

(
xcaSibSkl xcl xjk + xcaxcl xjkSilSkb

)
= xjaSib − ∑

1≤l,k≤m,1≤c≤n

(
xcaSibSkl xcl xjk + xcaxcl xjkSilSkb

)
Since S−1(X) = idm +XTX,

δij = ∑
1≤k≤m

Sik(δkj + ∑
1≤c≤n

xckxcj) = Sij + ∑
1≤k≤m,1≤c≤n

Sikxckxcj, (B.11)

hence we can rewrite

(XT Dhij+m(X))ab = xjaSib − ∑
1≤l,k≤m,1≤c≤n

(
xcaSibSkl xcl xjk + xcaxcl xjkSilSkb

)
= xjaSib −

m

∑
k=1

(
Sibxjk ∑

1≤l≤m,1≤c≤n
xcaSkl xcl + xjkSkb ∑

1≤l≤m,1≤c≤n
xcaxclSil

)

= xjaSib −
m

∑
k=1

Sibxjk(δka − Ska)−
m

∑
k=1

xjkSkb(δai − Sai)

=
m

∑
k=1

SibxjkSka +
m

∑
k=1

xjkSkbδai +
m

∑
k=1

xjkSkbSai.

(B.12)

Now we evaluate the previous expressions at Y satisfying (HP). Using the fact that YTY is
diagonal, we simplify:

∂abhij+m(Y) =
m

∑
k=1

δab
jk Sik − ∑

1≤l,k≤m

(
SibSklyalyjk + yalyjkSilSkb

)
= δjaδibSii − ∑

1≤k≤m
δibSiiSkkyakyjk − yaiyjbSiiSbb

(B.13)

First, let m ≤ n. Then, using that for every 1 ≤ a, j, k ≤ n we have

|Skkyakyjk| ≤ 1,

we estimate

A(Y)|∂abhij+m(Y)| ≤ A(Y)|Sii|+A(Y) ∑
1≤k≤m

|SiiSkkyakyjk|+A(Y)yaiyjbSiiSbb
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.
A(Y)

1 + ‖Yi‖2 +
A(Y)√

1 + ‖Yi‖2
√

1 + ‖Yb‖2
. 1 + ‖Y‖m−1.

If n < m, let J = {j1, . . . , jn} be the set of indices defined in (HP). If there exists ` such that
Zj` = 0, then

A(Y) =
√

∏
t∈J

(1 + ‖Yt‖2) =
√

∏
t∈J\{jk}

(1 + ‖Yt‖2) . 1 + ‖Y‖n−1

and
|∂abhij+m(Y)| ≤ Sii + ∑

1≤k≤m
SiiSkk|yakyjk|+ |yaiyjb|SiiSbb . 1,

therefore
A(Y)|∂abhij(Y)| . 1 + ‖Y‖n−1.

Hence we are just left with the case n < m and Y j` 6= 0 for every 1 ≤ ` ≤ n. If this is the case,
(HP) implies that ykj` = δk`y`j` , for 1 ≤ k ≤ n, and ykj = 0 if j /∈ J and 1 ≤ k ≤ n. Therefore,
recalling (B.13),

∂abhij+m(Y) =

{
Sii − SiiSja ja y2

aja − yaiyjbSiiSbb if j = a, i = b,

−yaiyjbSiiSbb otherwise.

In the first case, if j = a, i = b, we have

Sja ja =
1

1 + ‖Y ja‖2 =
1

1 + y2
aja

,

hence

1− Sja ja y2
aja = 1−

y2
aja

1 + y2
aja

=
1

1 + y2
aja

=
1

1 + ‖Y ja‖2

that implies

∂abhij+m(Y) =
1

1 + ‖Y ja‖2 −
yaiyjb

(1 + ‖Yi‖2)(1 + ‖Yb‖2)
,

and it is now easy to see that

A(Y)|∂abhij+m(Y)| . 1 + ‖Y‖n−1.

Since if j 6= a or b 6= i, ∂abhij+m(Y) = −yaiyjbSiiSbb, the same estimate follows. To finish the
second case, we still need to show that

A(Y)|(YT Dhij+m(Y))ab| . 1 + ‖Y‖min{m,n}−1.

To do so, we recall (B.12) to estimate

|(YT Dhij+m(Y))ab| ≤
m

∑
k=1

Sib|yjk|Ska +
m

∑
k=1
|yjk|Skbδai +

m

∑
k=1
|yjk|SkbSai.

With similar computations to the one to prove (B.10), we estimate for 1 ≤ i, b, a, k ≤ m, 1 ≤ j ≤ n,

A(Y)Sib|yjk|Ska ≤

0 if Yk = 0 or k 6= a,√
∏l 6=k(1 + ‖Yl‖2) otherwise,

that implies
A(Y)Sib|yjk|Ska . 1 + ‖Y‖min{m,n}−1.
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Finally, since also for every 1 ≤ j ≤ n, 1 ≤ k, b ≤ m

A(Y)|yjk|Skb ≤

0 if Yk = 0 or k 6= b,√
∏l 6=k(1 + ‖Yl‖2) otherwise,

we find
A(Y)|yjk|Skb . 1 + ‖Y‖min{m,n}−1, ∀1 ≤ k, b ≤ m, 1 ≤ j ≤ n.

This completes the proof of the second case.

Third case, m + 1 ≤ i ≤ j ≤ m + n: As above we use m + i and m + j in place of i and j. The
indices i and j will then satisfy 1 ≤ i ≤ j ≤ n and we have

hi+m,j+m(X) = (XS(X)XT)ij = ∑
1≤l,k≤m

xilSlkxjk.

We compute the derivative using (B.9):

∂abhi+m,j+m(X) = ∑
1≤l,k≤m

δab
il Slkxjk + ∑

1≤l,k≤m
δab

jk Slkxil + ∑
1≤l,k≤m

xil∂abSlkxjk

= ∑
1≤k≤m

δiaSbkxjk + ∑
1≤l≤m

δjaSlbxil

− ∑
1≤l,k,c≤m

SlbSkcxacxil xjk − ∑
1≤l,k,c≤m

xacSlcSkbxil xjk.

Moreover,

(XT Dhi+m,j+m(X))ab = ∑
1≤d≤n

xda∂dbhij = ∑
1≤d≤n,1≤k≤m

δidxdaSbkxjk + ∑
1≤d≤n,1≤l≤m

δjdSlbxil xda

− ∑
1≤c,l,k≤m,1≤d≤n

SlbSkcxdcxil xjkxda

− ∑
1≤c,l,k≤m,1≤d≤n

xdaxdcSlcSkbxil xjk.

(B.14)

By (B.11), we have, for every 1 ≤ i, j ≤ m

∑
1≤k≤m,1≤d≤n

Sikxdkxdj = δij − Sij.

Hence we can rewrite in (B.14):

(XT Dhi+m,j+m(X))ab = ∑
1≤d≤n

xda∂dbhij = ∑
1≤d≤n,1≤k≤m

δidxdaSbkxjk + ∑
1≤d≤n,1≤l≤m

δjdSlbxil xda

− ∑
1≤l,k≤m

Slbxil xjk(δka − Ska)− ∑
1≤l,k≤n

Skbxil xjk(δla − Sla)

= ∑
1≤d≤n,1≤k≤m

δidxdaSbkxjk + ∑
1≤d≤n,1≤l≤m

δjdSlbxil xda

− ∑
1≤l,k≤m

Slbxil xjkδka − ∑
1≤l,k≤m

Skbxil xjkδla

+ ∑
1≤l,k≤m

Slbxil xjkSka + ∑
1≤l,k≤m

Skbxil xjkSla

= ∑
1≤k≤m

xiaSbkxjk + ∑
1≤l≤m

Slbxil xja

− ∑
1≤l≤m

Slbxil xja − ∑
1≤k≤m

Skbxiaxjk
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+ ∑
1≤l,k≤m

Slbxil xjkSka + ∑
1≤l,k≤m

Skbxil xjkSla

= ∑
1≤l,k≤m

Slbxil xjkSka + ∑
1≤l,k≤m

Skbxil xjkSla.

Consider once again Y fulfilling (HP). Then:

∂abhi+m,j+m(Y) = ∑
1≤k≤m

δiaSbkyjk + ∑
1≤l≤m

δjaSlbyil

− ∑
1≤l,k,c≤m

SlbSkcyacyilyjk − ∑
1≤l,k,c≤m

xacSlcSkbyilyjk.

Since YTY is diagonal, this expression simplifies as:

∂abhi+m,j+m(Y) = δiaSbbyjb + δjaSbbyib

− ∑
1≤c≤m

SbbSccyacyibyjc − ∑
1≤c≤m

yacSccSbbyicyjb.

For every 1 ≤ b ≤ m, 1 ≤ j ≤ n,

A(Y)Sbb|yjb| ≤

0 if Yb = 0,
A(Y)√
1+‖Yb‖2

otherwise. (B.15)

This yields
A(Y)Sbb|yjb| . 1 + ‖Y‖min{m,n}−1.

To prove that
A(Y)|∂abhi+mj+m(Y)| . 1 + ‖Y‖min{m,n}−1, (B.16)

we still need to estimate terms of the form

A(Y)SbbScc|yacyibyjc|,

for 1 ≤ b, c ≤ m, 1 ≤ a, i, j ≤ n. Anyway, observe that

Scc|yac||yjc| ≤ 1, ∀1 ≤ c ≤ m, 1 ≤ a, j ≤ n,

hence
A(Y)SbbScc|yacyibyjc| ≤ A(Y)Sbb|yib|

and we can therefore apply again estimate (B.15) to deduce (B.16). To finish the proof of this case
and of the present Lemma, we still need to show that

|(YT Dhi+m,j+m(Y))ab| . 1 + ‖Y‖min{m,n}−1. (B.17)

To do so, recall that

(YT Dhi+m,j+m(Y))ab = ∑
1≤l,k≤m

SlbyilyjkSka + ∑
1≤l,k≤m

SkbyilyjkSla

= SbbSaayibyja + SbbSaayiayjb,

but now, for every 1 ≤ a, b ≤ m, 1 ≤ i, j ≤ n,

A(Y)SbbSaa|yibyja| ≤

0 if Yb = 0 or Ya = 0,
A(Y)√

1+‖Yb‖2
√

1+‖Ya‖2
otherwise.

The proof of (B.17) is now analogous to the one of (B.16).
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In this appendix to Chapter ii, we use the family of functions of Lemma 5.3 to deduce optimal
integrability of the pointwise determinant of the Hessian of convex functions.

Instead of divergence-free tensor fields A, here we consider curl-free tensor fields A : Ω →
Sym+(n), where Ω ⊂ Rn is convex. The system curl(A) = 0 and the convexity of Ω, together
with the symmetry of A, defines the class of Hessians of functions. Once we also add the
non-negativity of the eigenvalues, we are led to consider exactly Hessians of convex functions. We
ask the following question: given Ω ⊂ Rn, an open and convex set, let ϕ ∈W2,p

loc (Ω), p ∈ [1,+∞),
be a convex function. What can be said about the integrability of det(Hϕ)? For a Sobolev convex
function the distributional Hessian Hϕ can also be computed with the classical definition of
the second derivatives almost everywhere, as proved in [31, Theorem 6.9]. On the other hand
there are various definitions of determinant of the Hessian. The one we are interested in is
the pointwise determinant of the Hessian matrix, and the results we are proving concern its
integrability. Another notion of determinant of the Hessian we will be using is the Monge-Ampère
measure associated to ϕ, defined in the introduction. The two notions are related by the fact
that det(Hϕ) is the density of the absolutely continuous part of the Monge-Ampère measure µϕ

associated to ϕ (see for instance [70, Lemma 1.18]). In particular by the Radon-Nikodym Theorem
we have

det(Hϕ) ∈ L1
loc(Ω) ∀ ϕ convex. (C.1)

Let us start with the analysis of the optimal integrability of x 7→ det(Hϕ)(x). The case p = n has
been covered (in a more general setting) by S. Müller in [59, 60] (see also [73] for the same result
for mappings with determinants of arbitrary sign). More precisely, it is proved in [59, Theorem 1]
that

det(Hϕ) ∈ H1
loc(Ω),

where H1
loc(Ω) is the local Hardy space, see Section A.3, and moreover that this is optimal in the

following sense. In [60, Counterexample 7.2], Müller finds a sequence of maps uj ∈ W1,n
loc (R

n)
such that for every function γ : R+ → R+ such that

γ(z)
z log(1 + z)

→ +∞, as z→ ∞,

one has
‖γ(det(∇uj))‖L1(B1(0)) → +∞, as j→ ∞.

It is immediate to see that this sequence uj is actually uj = ∇ϕj, for some convex function
ϕj ∈W2,n

loc (R
n), hence Müller’s results close the question in the case p = n. Theorem C.1 answers

the question in the case p ∈ [1, ∞) \ {n}. Let us first introduce the following space: for any
compact set K ⊂ Ω, with clos(int(K)) = K 6= ∅,

Hp,K
.
= {ϕ ∈W2,p(Ω) : ϕ is convex, Hϕ ≡ Ā outside K,

for some fixed Ā ∈ Sym+(n)}.

This is a complete metric space when endowed with the distance

d(ϕ1, ϕ2)
.
= ‖ϕ1 − ϕ2‖W2,p(Ω).

Theorem C.1. The following hold

(i) If p ∈ [1, n), then ∀ϕ ∈W2,p(Ω) convex, det(Hϕ) ∈ L1
loc(Ω), but there exists a convex function

ϕ̄ ∈W2,p(Ω) such that det(H ϕ̄) ∈ L1
loc(Ω) \ H1

loc(Ω);

125
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(ii) If p ∈ (n,+∞), then ∀ϕ ∈ W2,p(Ω) convex, det(Hϕ) ∈ L
p
n
loc(Ω), but there exists a convex

function ϕ̄ ∈W2,p(Ω) such that det(H ϕ̄) ∈ L
p
n
loc(Ω) \ L

p
n +ε

loc (Ω), ∀ε > 0;

Proof. The positive part of the statements of the Theorem are clear: if p < n, then it was written in

(C.1), while if p > n, det(Hϕ) ∈ L
p
n
loc(Ω) by Hölder inequality. Let us now show the optimality of

these results. The optimality for the case (i) is the content of Proposition C.2. To find a convex

function ϕ̄ ∈ W2,p
loc (Ω), p > n, such that det(H ϕ̄) ∈ L

p
n
loc(Ω) \ L

p
n +ε

loc (Ω) for every ε > 0, consider
again the family of functions fα defined in (5.1). As proved in Step 2 of Lemma 5.3 and Lemma
5.4, we find that if α > p−n

p , then fα ∈W2,p
loc (R

n) and for every ε > 0, we find α = α(ε) > 0 such

that fα ∈W2,p
loc (R

n) but

det(H fα) /∈ L
p
n +ε(Br(0)), for any r > 0.

With a construction analogous to the one of Lemma 5.3 and the same proof as in Theorem 5.1, it
is possible to prove that the set

{ϕ ∈ Hp,K : det(Hϕ) ∈ L
p
n (Ω) \

⋃
ε>0

L
p
n +ε(Ω)}

is residual in Hp,K. By Baire’s Theorem A.4, we then deduce the existence of such a function
ϕ̄.

We will now prove the optimality of (i) of Theorem C.1, namely

Proposition C.2. Let p ∈ [1, n). The set

Up,K
.
= {ϕ ∈ Hp,K : det(Hϕ) ∈ L1(Ω) \ H1(Ω)}

is residual in Hp,K.

To prove Proposition C.2, we first need the following result.

Lemma C.3. Let ϕ : Ω → R be a convex function such that its Monge-Ampère measure µϕ has a
non-trivial singular part with respect to the Lebesgue measure. Then, for every sequence of smooth and
convex functions ϕj converging locally uniformly to ϕ and for every z0 ∈ spt(µs

ϕ), we have

‖det(Hϕj)‖H1(Br(z0))
→ +∞, as j→ ∞,

for every Br(z0) compactly contained in Ω.

Proof. By contradiction, suppose there exists a sequence (ϕj)j, a point z0 ∈ spt(µs
ϕ) and r > 0 as

in the statement such that
sup

j
‖det(Hϕj)‖H1(Br(z0))

< +∞.

Equi-boundedness in H1 tells us that we can also assume, up to a non-relabeled subsequence,
that det(Hϕj) converges weakly in L1 to a function F ∈ L1(Br(z0)) (see [60, Theorem 4.1] for
a proof). By definition of the Monge-Ampère measure and the regularity of ϕj, we can write,
∀ f ∈ C0

c (Br(z0)), �
Ω

f (x)dµϕj(x) =
�

Ω
f (x)det(Hϕj)(x) dx .

Now, the uniform convergence ϕj → ϕ implies that µϕn
∗
⇀ µϕ (see [34, Proposition 2.9]), and

the weak convergence of det(Hϕj) to F combined with the previous equality implies that, in the
limit, �

Ω
f (x)dµϕ(x) =

�
Ω

F(x) f (x) dx , ∀ f ∈ C0
c (Br(z0)).

The last equality implies µϕxBr(z0) = FχBr(z0)
dx, contradicting the fact that z0 ∈ spt(µs

ϕ).
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Proof of Proposition C.2. Fix p ∈ [1, n). We consider the function f0 constructed in the Steps 1 and
2 of Lemma 5.3. By Lemma 5.4, f0 ∈ W2,p

loc (R
n) Analogously to Step 4 of the same lemma, for

every β, δ, ε > 0 and x0 ∈ int(K), we consider ϕβ,δ,ε,x0 defined as in (5.8). We choose x0 arbitrarily
and β such that B2β(x0) ⊂ K. For this proof we will not need ε, that we consider fixed. Therefore,
we will write ϕδ instead of ϕβ,δ,ε,x0 for the sake of readability. To prove the Proposition, we write
Uc

p,K as the countable union of closed sets:

Uc
p,K

.
=

⋃
m∈N

{
ϕ ∈ Hp,K : ‖det(Hϕ)‖H1(Ω) ≤ m

}
.

Each set Cm
.
=
{

ϕ ∈ Hp,K : ‖det(Hϕ)‖H1(Ω) ≤ m
}

is closed. To prove that it has empty interior
we reason by contradiction. Therefore, we find m, ρ > 0 and ϕ̄ such that the ball Nρ(ϕ̄) ⊂ Cm.
Now choose δ > 0 in such a way that ‖ϕδ‖W2,p(Ω) ≤

ρ
2 . This can be done in view of (5.3) (in the

case α = 0). If we now mollify ϕδ, we get a sequence of smooth convex functions ϕδ,j ∈ Hp,K such
that ‖ϕδ,j‖W2,p(Ω) ≤

ρ
2 , ∀j ∈ N. This sequence is also converging locally uniformly to ϕδ, since

real-valued convex functions are locally Lipschitz. By the definition of ϕδ in (5.8) and the fact (see
[34, Example 2.2(2)]) that

µ f0xB1(0) = ωnδ0,

we find that x0 ∈ spt(µs
ϕδ
) and, by Lemma C.3, that

‖det(Hϕδ,j)‖H1(Ω) → +∞, as j→ +∞. (C.2)

Now, by our choice of δ, for every j ∈N, we have that

ϕ̄ + ϕδ,j ∈ Nρ(ϕ),

hence

‖det(H ϕ̄ + Hϕδ,j)‖H1(Ω) =

�
Ω

det(H ϕ̄ + Hϕδ,j) log(1 + det(H ϕ̄ + Hϕδ,j)) ≤ m, ∀j ∈N. (C.3)

By the monotonicity of the determinant on the cone of non-negative definite symmetric matrices,
we have

det(Hϕδ,j) ≤ det(H ϕ̄ + Hϕδ,j),

and since the function x 7→ x log(1 + x) is increasing for x ≥ 0, then

‖det(Hϕδ,j)‖H1(Ω) ≤ ‖det(H ϕ̄ + Hϕδ,j)‖H1(Ω)

(C.3)
≤ m, ∀j ∈N.

The last inequality is in contradiction with (C.2).





DA P P E N D I X T O " S H A R P E N E R G Y R E G U L A R I T Y F O R E U L E R E Q UAT I O N S "

In this appendix to Part iii, we prove Proposition 7.2, a technical result concerning the improve-
ment in the regularity in time for solutions of the Euler Equations (7.1) that is necessary for the
proof of Theorem 7.5.

d.1 time estimates of euler equations

Using the same technique introduced in [12] to prove the time regularity for Hölder solutions
of Euler, we show Proposition 7.2:

Proposition D.1. Let u, v : T3 × [0, T] → R3 be two weak solutions of (7.1) such that u, v ∈
C0(([0, T]; Cθ(T3)) for some θ ∈ (0, 1). Then there exists a constant C > 0, depending only on θ,
‖u‖θ and ‖v‖θ , such that

‖u− v‖Cθ
x,t
≤ C‖u− v‖θ .

Proof. We define w .
= u− v. We start by noticing that the Hölder norm, in the space-time variables,

decouples as follows

|w(x, s)− w(y, t)|
|(x, s)− (y, t)|θ

≤ |w(x, s)− w(y, s)|
|x− y|θ

+
|w(y, s)− w(y, t)|

|t− s|θ
≤ ‖w‖θ +

|w(y, s)− w(y, t)|
|t− s|θ

.

Thus it is enough to show that there exists a constant C > 0, independent of y, t, s, such that

|w(y, s)− w(y, t)|
|t− s|θ

≤ C‖w‖θ . (D.1)

If p and q are the corresponding pressures associated to u and v respectively, one has that w
solves

∂tw + div(w⊗ u + v⊗ w) +∇(p− q) = 0. (D.2)

By taking the divergence of (D.2), we get

−∆(p− q) = div div(w⊗ u + v⊗ w),

from which, by Schauder estimates, we get

‖p− q‖θ ≤ ‖w‖θ (‖u‖θ + ‖v‖θ) ≤ C‖w‖θ . (D.3)

Let now wδ = w ∗ ϕδ the space mollification of w, for some δ > 0 that will be fixed at the end of
the proof. Since w ∈ C0([0, T]; Cθ(T3)) we have

|w(y, t)− wδ(y, t)| ≤ C‖w‖θδθ ∀t ∈ [0, T],

from which, by adding and subtracting wδ(y, s) and wδ(y, t), we can estimate

|w(y, s)− w(y, t)| ≤ C‖w‖θδθ + |wδ(y, s)− wδ(y, t)|. (D.4)

Moreover, since w solves (D.2), we get

|wδ(y, s)− wδ(y, t)| ≤ |t− s|‖∂twδ‖C0
x,t
≤ |t− s|

(
‖(w⊗ u + v⊗ w)δ‖1 + ‖(p− q)δ‖1

)
. (D.5)

By estimate (D.3) and (7.5), we have

‖(p− q)δ‖1 ≤ C‖w‖θδθ−1, ∀δ > 0,
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and also

‖(w⊗ u + v⊗ w)δ‖1 ≤ Cδθ−1‖w⊗ u + v⊗ w‖θ ≤ C‖w‖θδθ−1, ∀δ > 0.

Thus, by plugging these two last inequalities in (D.5), we get

|wδ(y, s)− wδ(y, t)| ≤ C|t− s|δθ−1‖w‖θ , ∀δ > 0,

from which, by (D.4), we conclude

|w(y, s)− w(y, t)| ≤ C(δθ + |t− s|δθ−1)‖w‖θ , ∀δ > 0.

By choosing δ = |t− s| we finally achieve (D.1), and this concludes the proof.
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