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1
I N T R O D U C T I O N

The Plateau Problem has been named after a Belgium Physicist, Joseph Pleateau (1801-
1883), who has been experimenting with soap films and soap bubbles. Already in
the 18th century, Weierstrass observed that (when neglecting the gravitational force)
such soap films are spanning surfaces of least area and calculated that they must have
mean curvature zero. Such surfaces are called minimal surfaces and have been a topic of
research ever since. The Plateau Problem can then be formulated as follows.

Question. For a fixed boundary (represented by a wire), is there a minimal surface (a
soap film) spanning this boundary?

In the 1930’s, T. Radó [31] and J. Douglas [22] proved the existence of 2-dimensional
minimal surfaces in R3 and for this work, Douglas was awarded the Fields medal. His
proof is based on the fact, that in three dimensions, minimizing the area functional is
equivalent to minimizing the Dirichlet functional. In higher dimensions, this no longer
holds and so his ideas do not allow to generalize his result. Instead, H. Federer and
W. Fleming introduced in the 1960’s more general objects than surfaces, the so called
integral currents and proved in [24] existence of area-minimizing currents. The latter
is then supported on a rectifiable set, thus a priori it can have many singularities. It
took many mathematicians to prove that the singularities are rather rare. Indeed, in the
interior of the support of an area minimizing current, we know thanks to the works of
E. Bombieri, E. De Giorgi, E. Giusti [6], W. Allard [1–3] and J. Simons [34], that the set of
singularities of an n-dimensional current in an (n + 1)-dimensional ambient manifold
is of dimension at most n− 7. This result is sharp, as the so called Simons Cone{

x ∈ R8 : x2
1 + x2

2 + x2
3 + x2

4 = x2
5 + x2

6 + x2
7 + x2

8
}

is minimal and has the origin as a singular point. In the case of higher codimension
(i.e. when the dimension of the ambient manifold is greater than n + 1), the dimension
bound is n− 2 which was first proven in Almgren’s Big regularity paper [5] and then
revisited and shortened by De Lellis and Spadaro in [12–16]. The sharpness of this
result is demonstrated by identifying C2 with R4 and looking at the two dimensional
holomorphic subvariety{

(z, w) ∈ C2 : z2 = w3} .

In this thesis, we focus on the regularity of an area-minimizing current near its boundary.
The two parts are separately submitted for publication and their notation is independent
of each other.
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2 introduction

1.1 the codimension one case

In his Ph.D. thesis [1], Allard proved that, in case the boundary is contained in the
boundary of a uniformly convex set and the ambient manifold is the euclidean space,
then all boundary points are regular (we explain more about this in Section 1.2). This
means, in a neighborhood of a boundary point, the support of the current is a regular
submanifold with boundary. Later, R. Hardt and L. Simon came to the same conclusion
in [27] when having replaced the assumption of the uniform convexity by the fact that
the current is of codimension 1. However, the result of Hardt and Simon is stated and
proved only in the euclidean ambient space. In [35] and the first part of this thesis, we
provide an adaptation of the arguments to the case of general Riemannian manifolds.
We show the following theorem.

Theorem 1.1. Let U ⊂ Rn+k be open and T an n-dimensional locally rectifiable current in U
that is area minimizing in some smooth (n + 1)-manifoldM and such that ∂T is an oriented
C2 submanifold of U. Then for any point a ∈ spt(∂T), there is a neighborhood V of a in U
satisfying that V ∩ spt(T) is an embedded C1, 1

4 submanifold with boundary.

The theorem of Hardt and Simon is then a case of the one stated above, however we
follow their strategy of proof with a few modifications in order to deal with additional
error terms coming from the ambient manifold. The main difference to [27] is that
the blow-up procedure depends on the ambient manifold. On a technical level, even
though the current has codimension one compared to the ambient manifold, we embed
both in some higher dimensional euclidean space, and thus every point has many more
components which have to be estimated (compared to the arguments in [27]).

Notice that the complete absence of singular points only happens at the boundary
and only in codimension one. Indeed, in 2018, C. De Lellis, G. De Philippis, J. Hirsch
and A. Massaccesi showed in [21] that in the case of higher codimension and on a
general Riemannian manifold, there can be singular boundary points, but regardless,
the set of regular boundary points is dense.

1.1.1 Outline of the proof of part I

We would like to measure how flat a current T is. Therefore we introduce its excess in
a cylinder of radius r and denote it by EC(T, r). It is the scaled version of the difference
between the mass of the current in a cylinder and the mass of its projection onto an
n-plane. The main ingredient to deduce the boundary regularity is the fact that this
excess scales (up to a small rotation) like r assuming that the curvature of both the
boundary of the current κT and the ambient manifold A are small.
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Theorem 1.2 (Excess decay). Let M be a smooth manifold and let T be area minimizing

inM such that max{EC(T, 1), A, κT} ≤
1
C

. Then there is a real number η such that for all
0 < r < R the following holds

EC(γη#T, r) ≤ Cr.

The precise statement can be found in Theorem 4.2. In order to prove it, we first
analyze in Section 3 the current away from the boundary. There we can use results
from the interior regularity theory in order to find that the current is supported on the
union of graphs of functions fulfilling the minimal surface equation. When zooming
in (up to rescaling), the boundary (and the ambient manifold) become more flat and
therefore, we can find the interior graphs closer to the boundary. The point is then to
study what happens in the limit when the graphs on both sides of the boundary grow
together. These limiting rescaled functions we call the harmonic blow-ups and they are
introduced in section 4.

After proving the uniform convergence of the harmonic blow-ups also at boundary
points, we show in a first step that in case the harmonic blow-ups are linear, they
coincide on both sides of the boundary, see the Collapsing Lemma 5.4. Having proven
some technical estimates on the excess (Theorem 6.3), the assumption of linearity then
is dropped in Theorem 7.2. This follows by blowing up the harmonic blow-ups a second
time. To guarantee the existence of this second blow-up, we need first to prove some a
priori estimates (Lemma 7.1) .

Once we know that the harmonic blow-ups coincide and in fact merge together in a
smooth way, we prove the excess decay via a compactness argument: if the excess decay
did not hold, there would be a sequence of currents whose blow-ups cannot coincide.
Then this decay leads to a C1, 1

4 -continuation up to the boundary of the functions whose
graphs describe the current (Corollary 4.3) assuming that the excess and the curvatures
are sufficiently small. In section 9 we then collect everything together and deduce that
either the current lies only on one side of the boundary or both sides merge together
smoothly. In case of a one-sided boundary, Allard’s boundary regularity theory [3]
covers the result.
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1.2 the higher multiplicity case

In the second part of this thesis, we consider an area-minimizing integral current T
of dimension m ≥ 2 in Rm+n and assume that ∂T is a smooth submanifold, namely
∂T = ∑i Qi JΓiK, where Qi are (positive) integer multiplicites and Γi finitely many
pairwise disjoint oriented smooth and connected submanifolds of dimension m− 1.
We are focused on understanding how regular T can be at points p ∈ ∪iΓi and our
primary interest is that the integer multiplicities are allowed to be larger than 1 and the
codimension n is at least 2. This has been done in the joint work [10] with C. De Lellis
and S. Nardulli. When the codimension m is 1, the situation is completely understood
(cf. [8, Problem 4.19]): first of all the coarea formula for functions of bounded variation
allows to decompose, locally, the current T into a sum of area minimizing integral
currents which take the boundary with multiplicity 1; hence we can apply the main
Theorem 9.1 of the first part of this thesis to each piece of the decomposition, which
guarantees the absence of any singularity.

A quite general boundary regularity theory was developed by Allard in the pio-
neering fundamental work [3], which covers any dimension and codimension and is
valid for more general objects than currents, namely stationary varifolds. In [3] Allard
restricts his attention to boundary points where the density, namely the limit of the
mass ratio

Θ(T, q) := lim
r↓0
‖T‖(Bρ(q))

ρm ,

is sufficiently close to 1
2 . His Boundary Regularity Theorem guarantees then that, under

such assumption, q is always a regular point. Indeed this generalizes a similar statement
in his PhD thesis [1], which covered the case of area minimizing currents in codimension
1.

In the introduction to [1], Allard points out that when the multiplicity of the boundary
Γ is allowed to be an arbitrary natural number Q > 1, the assumption Θ(T, q) < 1

2 + ε

is empty and should be replaced by Θ(T, q) < Q
2 + ε. However, he quotes a possible

extension of his theorem as a very challenging problem. This basic question was raised
again by B. White in the collection of open problems [8], cf. Problem 4.19, where he also
explains that the nontrivial situation is in higher codimension, given the decomposition
through the coarea formula already explained a few paragraphs above. Our work gives
the very first result in that direction and solves Allard’s "higher multiplicity" question
for 2-dimensional integral currents. Before stating it, we wish to discuss what we mean
by "regularity at the boundary".

Definition 1.3. Assume T is an area minimizing 2-dimensional integral current in
U ⊂ R2+n such that ∂T U = Q JΓK for some integer Q ≥ 1 and some C1 embedded arc
Γ. p is called a regular boundary point if T consists, in a neighborhood of p, of the union
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of finitely many smooth submanifolds with boundary Γ, counted with appropriated
integer multiplicities, which meet at Γ transversally. More precisely, if there are:

(i) a neighborhood U of p;

(ii) a finite number Λ1, . . . , ΛJ of C1 oriented embedded 2-dimensional surfaces in U;

(iii) and a finite number of positive integers k1, . . . , k J

such that:

(a) ∂Λj ∩U = Γ ∩U = Γi ∩U (in the sense of differential topology) for every j;

(b) Λj ∩Λl = Γ ∩U for every j 6= l;

(c) for all j 6= l and at each q ∈ Γ the tangent planes to Λj and Λl are distinct;

(d) T U = ∑j k j
q

Λj
y

(hence ∑j k j = Qi).

The set Regb(T) of boundary regular points is a relatively open subset of Γ and its
complement in Γ will be denoted by Singb(T).

Our main theorem reads as follows.

Theorem 1.4. Let U ⊂ Rn+2 be an open set, Γ ⊂ U be a C3,α0 embedded arc for some α0 > 0,
and T be a 2-dimensional area-minimizing integral current such that ∂T = Q JΓK. If q ∈ Γ and
Θ(T, q) < Q+1

2 , then T is regular at q in the sense of Definition 1.3.

Note that it is well known that there are smooth curves (counted with multiplicity 1)
in the Euclidean space, even in R3, which span more than one area-minimizing current.
In particular, if Γ ⊂ R3 is such a curve and T1, T2 two area minimizing currents with
∂Ti = JΓK, i = 1, 2, then T := T1 + T2 is an area minimizing current with ∂T = 2 JΓK (this
follows because any area-minimizing current S with boundary ∂S = 2 JΓK must have
mass which doubles that of Ti, and hence equals that of T). Let us analyze the above
example more accurately. In view of the interior and boundary regularity theory, both
T1 and T2 are smooth submanifolds up to the boundary, i.e. a standard argument using
Allard’s boundary regularity theorem [3] (cf. [4, Section 5.23]) implies that Ti = JΛiK
for two connected smooth submanifolds such that ∂Λi = Γ in the classical sense of
differential topology. Since any integral area-minimizing 2-dimensional current in R3

is an embedded submanifold (with integer multiplicity) away from the boundary, we
also conclude that Λ1 and Λ2 do not intersect except at their common boundary Γ. The
Hopf boundary lemma then implies that at every point p ∈ Γ the two currents have
distinct tangents, i.e. Λ1 and Λ2 meet at their common boundary transversally.

In view of the above observation we cannot expect, in general, a "better" conclusion
than the one of Theorem 1.4 or, in other words, we cannot expect that the number J in
Definition 1.3 to be 1. However, an obvious corollary of Theorem 1.4 is the following.
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Theorem 1.5. Let U, T, Γ and q be as in Theorem 1.4. Then there is a neighborhood U′ of q in
which T = Q JΛK for some smooth minimal surface Λ if and only if one tangent cone to T at q
is “flat”, i.e. contained in a 2-dimensional linear subspace of R2+n.

Even though the assumption that Θ(T, q) is sufficiently close to Q
2 seems, at a first

glance, very restrictive, we can either follow a lemma of Allard in [3] (valid in any
dimension and codimension) or a simple classificaton of the boundary tangent cones
(cf. [10]) to show that it holds when spt(∂T) is contained in the boundary of a bounded
C2 uniformly convex set Ω. For this reason, complete regularity can be achieved when
there is a "convex barrier". Since this is an assumption which will be used often in some
sections of the work, we wish to isolate its statement.

Assumptions 1.6. Ω ⊂ R2+n is a bounded C3,α0 uniformly convex set for some α0 > 0,
Γ ⊂ ∂Ω is the disjoint union of finitely many C3,α0 simple closed curves {Γi}i=1,...,N . T is a
2-dimensional area-minimizing integral current in R2+n such that ∂T = ∑i Qi JΓiK.

Theorem 1.7. Let Γ, Ω and T be as in Assumption 1.6. Then Singb(T) is empty.

In fact we can give a suitable local version of the above statement from which
Theorem 1.7 can be easily concluded, cf. Theorem 10.5.

In the next section we will outline the arguments to prove Theorem 1.4, 1.5, and
1.7. Before coming to it we wish to point out two things. We are confident that the
methods used in this work generalize to cover the same statement as in Theorem 1.4
in an arbitrary smooth (i.e. C3,α0) complete Riemannian manifold, but in order to keep
the technicalities at bay we have decided to restrict our attention to Euclidean ambient
spaces. Even though the basic ideas behind this work are quite simple, the overall proof
of the theorems is quite lengthy. For instance before the recent paper [21], not even the
existence of a single boundary regular point was known, without some convex barrier
assumption and in a general Riemannian manifold. Part of the challenge is that several
crucial PDE ingredients are absent in codimension higher than 1. Let us in particular
mention three facts:

(a) There is no "soft" decomposition theorem which allows to reduce the general case
to that of multiplicity 1 boundaries;

(b) Boundary singularities occur even in the case of multipliciy 1 smooth boundaries;

(c) There is no maximum principle (and in particular no Hopf boundary lemma)
available even if we knew apriori that the minimizing currents are completely
smooth.

1.2.1 Outline of the proof of part II

In the first step (cf. Section 10), we use the classical convex hull property to reduce
the statement of Theorem 1.7 to a local version, cf. Theorem 10.5. The latter statement



1.2 the higher multiplicity case 7

will then focus only on a portion of the boundary, but under the assumption that the
support of the current is contained in a suitable convex region, cf. Assumption 10.4. The
crucial point is that this convex region forms a "wedge" at each point of the boundary,
cf. Definition 10.2.

In the second step (cf. Section 11) we recall the classical Allard’s monotonicity formula
and we appeal to a classification result for 2-dimensional area-minimizing integral
cones with a straight boundary (see [10]) to conclude that, in all the cases we are
dealing we can assume, without loss of generality, that all the tangent cones to T at
every boundary point p consist of a finite number of halfplanes with common boundary
TpΓ, counted with a positive integer multiplicity, cf. Theorem 11.5.

At this point, taking advantage of pioneering ideas of White, cf. [37], and of a recent
paper by Hirsch and Marini, cf. [29], the tangent cone can be shown to be unique at
each point p ∈ Γ. We need, strictly speaking, a suitable generalization of [29], but the
simple technical details are given in the shorter paper [11]. This uniqueness result has
two important outcomes:

(a) At any point p ∈ Γ where the tangent cone is not flat (i.e. it is not contained in a
single half-plane) we can decompose the current into simpler pieces, cf. Theorem
12.3;

(b) the convergence rate of the current to the cone is polynomial (cf. also Corollary
23.1.

Point (a) reduces all our regularity statement to Theorem 1.5. In fact we will focus
on a slightly more technical version of it, cf. Theorem 12.6 Point (b) gives one crucial
piece of information which will allow us to conclude Theorem 12.6. The remaining part
of this work will in fact be spent to argue for Theorem 12.6 by contradiction: if a flat
boundary point p is singular, then the convergence rate to the flat tangent cone at p
must be slower than polynomial, contradicting thus (b).

We first address a suitable linearized version of Theorem 12.6: we introduce multival-
ued functions and define the counterpart of flat boundary points in that context, which
are called contact points. In Theorem 13.5, we then prove an analog of Theorem 12.6
in the case of multivalued functions minimizing the Dirichlet energy using a version
of the frequency function (see Definition 13.6) first introduced by Almgren. However,
while the proof of Theorem 13.5 might be instructive to the reader because it illustrates,
in a very simplified setting, the idea behind the "slow decay" at singular points, the
crucial fact which will be used to show Theorem 12.6 is contained in Theorem 13.3:
the latter states that, if a multi-function vanishes identically at a straight line and it is
I-homogeneous, either it is a multiple copy of a single classical harmonic function, or
the homogeneity equals 1.

The overall idea is that, if p is a singular flat point, then it can be efficiently ap-
proximated at small scales by an homogeneous harmonic (i.e. Dirichlet minimizing)
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multivalued function as above (not necessarily unique), which however cannot be a
multiple copy of a single classical harmonic function. Since the homogeneity of the
latter will be forced to be 1, we will infer from it the slow decay of the "cylindrical
excess" (cf. Definition 14.1). However, the work to accomplish the latter approximation
proves to be quite laborious and it will pass through a series of more and more refined
approximations.

First of all, in the Sections 14, 15, 16, and 17 we prove that the current can be
efficiently approximated by multivalued Lipschitz functions when sufficiently flat (cf.
Theorem 17.1) and that the latter approximation almost minimizes the Dirichlet energy
(cf. Theorem 15.3). These sections take heavily advantage of the tools introduced in [13,
14] and of some ideas in [21]. However these approximations are not sufficient to carry
on our program.

A new refined approximation is then devised in Section 18. At every sufficiently small
scale we can construct a center manifold (i.e. a classical C3 surface with boundary Γ) and
a multivalued Lipschitz approximation over its normal bundle (called normal approxima-
tion), which approximates the current as efficiently as the "straight" approximation in
Theorem 17.1, cf. Theorem 18.16 and Theorem 18.21 for the relevant statements. This
new normal approximation has however two important features:

(i) It approximates the current well not only at the "starting scale" but also across
smaller scales as long as certain decay conditions are ensured.

(ii) At all such scales the normal approximation has average close to 0 (namely it is
never close to a multiple copy of a single harmonic function, compared to its own
Dirichlet energy).

The Sections 19, 20, and 21 provide a proof of Theorem 18.16 and Theorem 18.21.
While the first center manifold was introduced in the monograph [4] by Almgren, our
constructions borrows from the ideas and tools introduced in [15] and [21].

Our proof would be at this point much easier if the validity of (ii) above would hold,
around the given singular flat point p, at all scales smaller than the one where we
start the construction of the center manifold. Unfortunately we do not know how to
achieve this. We are therefore forced to construct a sequence of center manifolds which
cover different sets of scales, cf. again Section 23.1. At certain particular scales we need
therefore to change approximating maps, i.e. to pass from one center manifold to the
next. Section 22 provides then important information about the latter "exchange scales".
Both sections are heavily influenced by similar considerations made in the papers [15,
16].

The remaining parts of the thesis are thus focused to show that, at a sufficiently
small scale around the flat point p, all these normal approximations are close to some
homogeneous Dir-minimizing function (not necessarily the same across all scales),
which by Theorem 13.3 will then result to be 1-homogeneous. The key ingredient to
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show this homogeneity is the almost monotonicity of the frequency function of the
normal approximation (a celebrated quantity introduced by Almgren in his pioneering
work [4]). In order to deal with the boundary we resort to an important variant
introduced in [21]. The key point is to show that, as r ↓ 0, the frequency function I(r)
of the approximation at scale r converges to a limit. However, since our approximation
might change at some particular scales, the function I undergoes a possibly infinite
number of jump discontinuities, while it is almost monotone in the complement of
these discontinuities. In order to show that the limit exists we thus need:

(1) a suitable quantification of the monotonicity on each interval delimited by two
consecutive discontinuities;

(2) a suitable bound on the series of the absolute values of such jumps.

The relevant estimates, namely (23.13) and (23.14), are contained in Theorem 23.5. While
the proof of (23.13) takes advantage of similar cases handled in [16] and [21], (23.14)
is entirely new and we expect that the underlying ideas behind it will prove useful in
other contexts. The Sections 24 and 25 are dedicated to prove the respective estimates.

Finally, in Section 26 we carry on the (relatively simple) argument which, building
upon all the work of the previous sections, shows that the rate of convergence to the
tangent cone at a singular flat point must to be slower than any polynomial rate. As
already mentioned, since the convergence rate has to be polynomial at every point, this
shows that a singular flat point cannot exist.





Part I

T H E C O D I M E N S I O N O N E C A S E





2
N O TAT I O N A N D P R E L I M I N A R I E S

2.1 notation

In this part of the thesis, k, m and n denote fixed natural numbers with m ≥ 1 and
n, k ≥ 2. C1, . . . , C80 are positive constants depending only on n, k and m.

2.1.1 Notation associated to the domain

We define the following sets for y ∈ Rn, j ∈ {1, . . . , n} and any real numbers r > 0 and
0 < σ < 1

Bn
r (y) = {x ∈ Rn : |x− y| < r},

Bn
r (y) = {x ∈ Rn : |x− y| ≤ r},

ωn = Ln(Bn
1(0)),

L = {x = (x1, . . . , xn) ∈ Bn
1(0) : xn = 0},

V = {x = (x1, . . . , xn) ∈ Bn
1(0) : xn > 0},

W = {x = (x1, . . . , xn) ∈ Bn
1(0) : xn < 0},

Vσ = {x ∈ V : dist(x, ∂V) > σ},
Wσ = {x ∈W : dist(x, ∂W) > σ},

Yj : Rn → R, Yj(y) = yj.

2.1.2 Notation associated to the ambient space

We define the following sets for a ∈ Rn+k, j ∈ {1, . . . , n + k} and any real numbers ω

and r > 0

Br = {x ∈ Rn+k : |x| < r},
Br = {x ∈ Rn+k : |x| ≤ r},
Cr = {x ∈ Rn+k : |p(x)| ≤ r} where p : Rn+k → Rn, p(x1, . . . , xn+k) = (x1, . . . , xn),

ej = (0, . . . , 0, 1, 0, . . . , 0) where the 1 is at the j-th component,

Xj : Rn+k → R, Xj(x) = xj,

X := (X1, . . . , Xn+k),

13
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For the following maps, we identify Rn+k with Rn+1 ×Rk−1.

τa : Rn+k → Rn+k, τa(x, y) = (x, y) + a ,

µr : Rn+k → Rn+k, µr(x, y) = r(x, y) ,

γω : Rn+k → Rn+k,

γω(x, y) =
(
x1, . . . , xn−1, xn cos(ω)− xn+1 sin(ω), xn sin(ω) + xn+1 cos(ω), y

)
.

2.1.3 Notation associated to the current T

For any real number r > 0, we define the cylindrical excess as

EC(T, r) = r−nM(T Cr)− r−nM(p#(T Cr))

and the spherical excess as

ES(T, r) = r−nM(T Br)−ωnΘn(‖T‖, 0),

whenever Θn(‖T‖, 0) = lim
r↓0
‖T‖(Br)

ωnrn exists. Notice that this differs from

1
2rn

∫
Br

|
→
T − e1 ∧ · · · ∧ en|2d‖T‖ ,

which is in the literature also called the spherical excess.
In Chapter 9, we will see that it suffices to consider only currents with compact

support and whose boundary lies on a (n− 1)-dimensional C2-graph going through
the origin. Namely, we define T to be the collection of pairs (T,M) where M is
an embedded (n + 1)-manifold and T ∈ Rn(Rn+k) is an absolutely area minimizing
integer rectifiable current for which there exist a positive integer m, ϕT, ψT ∈ C2({z ∈
Rn−1 : |z| ≤ 2}

)
and a smooth map ΦM : Bn+1

4 (0)→ Rk−1, such that

• {z ∈ C3 : z ∈ M} =
{
(x, ΦM(x)) : x ∈ Bn+1

3 (0)
}

,

• ΦM(0) = 0 and DΦM(0) = 0,

• A ≤ 1,

• spt(T) ⊂ B3 ∩M,

• M(T) ≤ 3n(1 + mωn
)
,

• Θn(‖T‖, 0) = m− 1/2,

• p#(T C2) = m
(
En {y ∈ Bn

2(0) : yn > ϕT(y1, . . . , yn−1)}
)

+ (m− 1)
(
En {y ∈ Bn

2(0) : yn < ϕT(y1, . . . , yn−1)}
)
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• ϕT(0) = 0 = ψT(0),

• ϕT(0) = 0 = ψT(0),

• DϕT(0) = 0 = DψT(0),

• (∂T)
{

x ∈ Rn+1 : |(x1, . . . , xn−1)| < 2, |xn| < 2
}

= (−1)n+k(FT)#
(
En−1 {z ∈ Rn−1 : |z| < 2}

)
,

• κT ≤ 1,

where

A := ‖D2ΦM‖C1(B2)
,

Ej := JRj × {0}K ∈ Rj(R
n+k) for all j ≤ n,

FT(z) :=
(
z, ϕT(z), ψT(z), ΦM(z, ϕT(z), ψT(z))

)
,

κT := ‖D2(ϕT, ψT)‖C0 .

Notice that A and κT are comparable to the second fundamental forms of M and
spt(∂T) respectively.

2.2 first variation and monotonicity

We start this section with the following monotonicity estimates. The first two can be
read in [21, Theorem 3.2] and the third one, we prove in the Appendix a.1.

Lemma 2.1 (Monotonicity Formula). For (T,M) ∈ T and 0 < r < s < 2, the following
holds

‖T‖(Bs)

sn − ‖T‖(Br)

rn −
∫

Bs\Br

|X⊥|2|X|−n−2d‖T‖

=
∫ s

r
ρ−n−1

(∫
Bρ

X⊥ ·
→
Hd‖T‖+

∫
spt(∂T)∩Bρ

X ·→ndHn−1
)

dρ,

where X⊥ denotes the component orthogonal to the tangent plane of T and
→
H the curvature

vector ofM.

Remark 2.2. There exists C1 such that |
→
H| ≤ C1AM.

Lemma 2.3. There is a dimensional constant C2 > 0 such that for (T,M) ∈ T and 0 < r < 2,
the map

r 7→ exp (C2 (AM + κT) r)
‖T‖(Br)

rnωn

is monotonously increasing.
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Corollary 2.4. For (T,M) ∈ T and 0 < r < s < 2, the following holds∣∣∣∣‖T‖(Bs)

sn − ‖T‖(Br)

rn −
∫

Bs\Br

|X⊥|2|X|−n−2d‖T‖
∣∣∣∣ ≤ C3(AM + κT)(s− r).

Letting r ↓ 0, we deduce the following corollary.

Corollary 2.5. For (T,M) ∈ T and 0 < r < 2, we have∣∣∣∣ES(T, r)−
∫

Br

|X⊥|2|X|−n−2d‖T‖
∣∣∣∣ ≤ C4(AM + κT).



3
I N T E R I O R S H E E T I N G A N D N O N PA R A M E T R I C E S T I M AT E S

In this chapter we prove that the minimizing current is, away from the boundary,
supported on graphs.

Definition 3.1. Let u : U ⊂ Rn → R. Then we define

graph(u, Φ) :=
{
(x, u(x), Φ(x, u(x))) : x ∈ U

}
.

Away from the boundary, the interior regularity theory
gives us functions whose graphs describe the current. More-
over they fulfill the Riemannian minimal surface equation
(see Definition 3.7) that is elliptic and therefore, we can
deduce estimates on the gradient of these functions. These
estimates are crucial as they guarantee the existence of the
harmonic blow-ups introduced in section 4.

b

σT
VT

WT

Theorem 3.2. Let (T,M) ∈ T and assume A ≤ 1/4. Then there are constants C5 ≥ 12,
C6 ≥ 1 such that if

EC(T, 1) + κT + A ≤ (4C5)
−2n−3

and we denote σT := C5
(
EC(T, 1) + κT + A

)1/(2n+3), VT := VσT and WT := WσT , then for
i ∈ {1, . . . , m}, j ∈ {1, . . . , m− 1} and k ∈ {1, 2, 3} there are smooth functions vT

i : VT → R

and wT
j : WT → R satisfying the Riemannian minimal surface equation and such that

(i.) vT
1 ≤ vT

2 ≤ · · · ≤ vT
m and wT

1 ≤ wT
2 ≤ · · · ≤ wT

m−1,

(ii.) p−1(VT) ∩ spt(T) =
m⋃

i=1

graph (vT
i , Φ) and

p−1(WT) ∩ spt(T) =
m−1⋃
i=1

graph (wT
i , Φ),

(iii.) |DkvT
i (y)| ≤ C7

√
EC(T, 1) + κT + A dist(y, ∂V)−k−n−1/2 for all y ∈ VT,

(iv.) |DkwT
j (y)| ≤ C7

√
EC(T, 1) + κT + Adist(y, ∂W)−k−n−1/2 for all y ∈WT,

17
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(v.)
∫

VT

(
∂

∂r
vT

i (y)
|y|

)2

|y|2−ndLn(y) +
∫

WT

(
∂

∂r

wT
j (y)

|y|

)2

|y|2−ndLn(y)

≤ 2n+7ES(T, 1) + C8(A + κT)

≤ 2n+7EC(T, 1) + C9(A + κT), where
∂

∂r
f (y) :=

y
|y| · D f (y).

For the existence of these graphs, we need to split the current into pieces and show
that each piece is supported on a graph. Then, once we have these graphs, we show the
estimates by using the regularity theory of elliptic PDEs. This will be done in detail in
section 3.3.

3.1 comparison between excess and height

To prove the estimate in Theorem 3.2(iii.), (iv.), we will deduce from the PDE theory
an estimate on the values of the functions vT

i , (wT
j respectively). This can be translated

into the height of the current in the (n + 1)-component. We wish to estimate the latter
quantity with the excess of T and hence, we need the following lemmata comparing
the (cylindrical) excess with the height. The proofs are given in chapter a.

First notice that as in the original paper [27, 1.4(1)], we infer that for 0 < r ≤ s ≤ 2,
the following holds

EC(T, r) ≤
( s

r

)n
EC(T, s) (3.1)

and

ES(T, r) ≤ EC(T, r) + mrκT. (3.2)

Lemma 3.3. There are positive constants C10 and C11 such that for all 0 < σ < 1 and
(T,M) ∈ T , the following holds

σ2

C10
EC(T, 1)− κT −A ≤

∫
C1+σ

X2
n+1d‖T‖ ≤ C11 sup

C1+σ∩spt(T)
X2

n+1.

Not only it is true, that the height bounds the excess, but also the other way around.
The following estimates rely on an area comparison lemma (Lemma a.1). Its proof will
give us a constant C12 which we will use to prove the following

Lemma 3.4. If 0 < σ < 1, A2 ≤ σ/8 and A ≤ (7C1 + C12 + 1)−1 then there are positive
constants C13 and C14 ≥ 2 such that for (T,M) ∈ T , the following holds

(i.)
σn

C13
sup

C1−σ∩spt(T)
X2

n+1 ≤
∫

C1−σ/2

X2
n+1d‖T‖+ κT.
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(ii.)
∫

C1−σ/2

X2
n+1d‖T‖ ≤ C14 − 1

σn+1 (EC(T, 1) + κT + A) .

In particular, we have

sup
C1−σ∩spt(T)

X2
n+1 ≤

C13C14

σ2n+1

(
EC(T, 1) + κT + A

)
.

3.2 splitting of the minimizing current T

Here we prove the fact, that if a current has no boundary, its excess is not too large and
the projection has multiplicity j, then it consists of j many layers whose projection are
of multiplicity 1.

Lemma 3.5. Let j ∈ N+, V ⊂ Rn be open and consider the cylinder Γ := {x ∈ Rn+1 :
(x1, . . . , xn) ∈ V} and the modified version Γ̃ := {(x, Φ(x)) ∈ M : p(x) ∈ V}. If S ∈ Rn(Γ̃)
satisfies

• (∂S) Γ̃ = 0

• p#S = j(En V)

• M(S)−M(p#S) < Hn(V),

then for all i ∈ {1, . . . , j} there exists Si ∈ Rn(Γ̃) such that

Γ̃ ∩ spt(∂Si) = ∅,

S =
j

∑
i=1

Si,

p#Si = En V,

‖S‖ =
j

∑
i=1
‖Si‖.

Proof. Denote by p̃ the projection to Rn+1 and consider S̃ := p̃#S. Then we have

• (∂S̃) Γ = ( p̃#(∂S)) Γ = p̃#((∂S) Γ̃) = 0

• p#S̃ = p#S = j(En V)

• M(S̃)−M(p#S̃) ≤M(S)−M(p#S) ≤ Hn(V).

Therefore, we can argue as in the original paper [27,
Lemma 5.1] to deduce a decomposition for S̃: There are
S̃i ∈ Rn(Rn+1) such that

Γ ∩ spt(∂S̃i) = ∅,

S̃ =
j

∑
i=1

S̃i,

p#Si = En V,

‖S̃‖ =
j

∑
i=1
‖S̃i‖.

M1

M2

S̃1

S̃2

V × {s}

We conclude by putting Si := (id, Φ)#S̃i.



20 interior sheeting and nonparametric estimates

In the situation of Theorem 3.2, each of these Si is area minimizing inM and so the
smallness of the excess implies that locally the function, whose graph describe spt(Si),
fulfills an elliptic equation. Thus, we can deduce the following Schauder estimate:

Lemma 3.6. Let U be an open neighborhood of 0 ∈ Rn and u : U → R such that u(0) = 0,
Du(0) = 0 and graph(u, Φ) ⊂M is a minimal surface inM. Then there is r0 > 0 such that
for all 0 < r < r0 we have

r‖Du‖C0(Br/2)
+ r2‖D2u‖C0(Br/2)

+ r2+α
[
D2u

]
Cα(Br/2)

≤ C15

(
‖u‖C0(Br) + ‖D2Φ‖∗Cα(Br)

)
,

where

‖ f ‖∗Cα(Ω) := sup
x∈Ω

dist(x, ∂Ω)2| f (x)|+ sup
x,y∈Ω
x 6=y

max
{

dist(x, ∂Ω), dist(y, ∂Ω)
}2+α | f (x)− f (y)|

|x− y|α .

Proof. We use the Euler-Lagrange equation in the form of Schoen-Simon in [32, Chapter
1]. Then we use Gilbarg-Trudinger [25, Theorem 6.2] to deduce the estimate. Indeed,
we define

F(z, ν(z)) :=
√

det
(
(id− ν⊗ ν)gM(id− ν⊗ ν)

)
=
√

det
(
〈ei + ∂iu, ej + ∂ju〉gM

)
= JgM(idRn , u) ,

where gM = (idRn+1 , Φ)#gRn+1+k = (δij + 〈∂iΦ, ∂jΦ〉)ij is the pullback metric on M.
Then ∫

graph(u)∩Cr0

F(z, ν(z))dHn(z) =
∫

Br0

JgM(idRn , u) = Vol(graph(u, Φ))

and we can apply [32] (in particular, [32, Remark 1] describes our situation perfectly).
The Euler-Lagrange equation then reads

div

(
Du√

1 + |Du|2

)
=

n

∑
i,j=1

aij(x)∂iju(x) + b(x), (3.3)

where

aij(x) =
∫ 1

0

n+1

∑
k=1

zk ∂zk pi pj F(tz,−Du, 1)dt ,

b(x) =
n+1

∑
i=1

∂zi ,pi F(z, p)

are evaluated in z = (x, u(x)), p = (−Du, 1). In order to use elliptic estimates, we
define

Aij :=
δij(1 + |Du|2)− ∂iu∂ju

(1 + |Du|2)3/2 − aij
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and notice that for r0 > 0 small enough, we have |Du|+ maxij |aij| ≤ 1/12 in Br0 and
therefore 1

2 id ≤ A ≤ 2id as a quadratic form. The only thing left to do is to notice that

‖b‖∗Cα ≤ C16‖D2Φ‖∗Cα .

Definition 3.7. We define (3.3) to be the Riemannian minimal surface equation.

3.3 proof of theorem 3 .2

Proof of Theorem 3.2.
Let ε > 0 be as in [23, Theorem 5.3.14] with λ, κ, m, n
replaced by 1, 1, n, n + 1 respectively and we choose the
parametric integrand to be the one associated toM:

Ψ : Rn ×R×Λn(R
n+k) −→ R,

((x, y), ζ) 7−→|ζ| h

((
id

DΦ(x, y)

) (
v1 · · · vn

))
,

b

σT
VT

WT

where h is the map from Lemma 3.6 and {v1, . . . , vn} are orthonormal and such that

v1 ∧ · · · ∧ vn =
ζ

|ζ| .

We require C5 to fulfil (4C5)−2n−3 ≤ Ln(VT) implying that spt(∂T) ∩ p−1(VσT/3 ∪
WσT/3) = ∅, because κT < 9−nσT. Indeed,

κT ≤
(

σT

C5

)2n+3

≤ σT

9n
9n

42n+2C2n+3
5

≤ σT

9n .

Then, we have

p#
(
T p−1(VσT/3)

)
= m(En VσT/3) and p#

(
T p−1(WσT/3)

)
= (m− 1)(En WσT/3)

and we can apply Lemma 3.5. We obtain for i ∈ {1, . . . , m}, j ∈ {1, . . . , m − 1} on
M-area minimizing currents Si and S̃j satisfying

m

∑
i=1

Si = T p−1(VσT/3) and
m−1

∑
j=1

S̃j = T p−1(WσT/3),

p#Si = En VσT/3 and p#S̃j = En WσT/3.

Denote again by p̃ the projection to Rn+1. Then p̃#Si and p̃#S̃j are absolutely Ψ-
minimizing. Now, we cover p−1(VσT/3) with cylinders CσT/3(x) for all x ∈ V2σT/3 ∩
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spt(p#(Si)). In each of these cylinders, we want to use [23, Corollary 5.3.15] replacing
λ, κ, m, n, r, S by 1, 1, n, n + 1, σT/3, τ−x# p̃#Si respectively. To do so, we must have
(4C5)−2n−3 ≤ (ε/2)n+1. As a result, we get in each cylinder C a solution uC of the
Riemannian minimal surface equation whose graph forms spt( p̃#Si) ∩ BσT/3(x) and
hence, graph(uC, Φ) ∩ BσT/3(x) = spt(Si) ∩ BσT/3(x) . These solutions yield a unique
function vT

i whose graph onM is spt(Si) ∩ p−1(V2σT/3). As the integrand is smooth in
(x, y), so are the solutions. In p−1(WσT/3) we argue analogously. By construction of the
splitting {Si}i, there is a numbering such that (i.) holds.

Now, we prove (iii.). We want to use Lemma 3.6 and Lemma 3.4 with σ = 2σT/3. To
do so, we notice that as C5 ≥ 12, we have

A2 ≤ C5

12
(
EC(T, 1) + κT + A

)1/(2n+3)
=

σT

12
=

1
8

(
2
3

σT

)
.

Thus,

sup
C1−2σT /3∩spt(T)

X2
n+1 ≤

C13C14( 2
3

)2n+1
σ2n+1

T

(
EC(T, 1) + κT + A

)
≤
(

3
2

)2n+1 C13C14

C2n+3
5

σ2
T.

(3.4)

Let y ∈ VT. We differ between two cases. Either y is near the boundary having distance
to ∂V which is comparable with σT, or y lies more in the inner of V, then σT is much
smaller than the distance, but on the other hand, we can choose larger balls. More
formally:
Case 1: σT < dist(y, ∂V) < 2σT.
We define δ := dist(y, ∂V2σT/3). Notice that

Bn
δ (y) ⊂ V2σT/3 and δ = dist(y, ∂V)− 2

3
σT ≥

1
3

dist(y, ∂V) ≥ 1
3

σT.

Lemma 3.6, (3.4) and Lemma 3.4 (with σ replaced by 2σT/3) then yield for k ∈ {1, 2, 3}

∣∣DkvT
i (y)

∣∣ ≤ 2kC15

δk

(
sup
Bn

δ (y)

|vT
i |+ ‖D2Φ‖∗C1(Bδ)

)

≤ 24C15

 1
σk

T
sup

C1−2σT /3∩spt(T)
|Xn+1|+

1
δk ‖D

2Φ‖∗C1(Bδ)


≤ 24C15

(√
C13C14( 2

3

)2n+2k+1
σ2n+1

T

(
EC(T, 1) + κT + A

)
+

1
δ3 ‖D

2Φ‖∗C1(Bδ)

)

≤ C7

dist(y, ∂V)n+k+1/2

√
EC(T, 1) + κT + A.
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Case 2: dist(y, ∂V) ≥ 2σT.
We choose δ := dist(y, ∂V)/2 ≥ σT. Notice that also in this case Bn

δ (y) ⊂ V2σT/3. Indeed,
the following holds

dist(y, ∂V2σT/3) = dist(y, ∂V)− 2
3

σT ≥ 2δ− 2
3

δ > δ.

also Bn
δ (y) ⊂ Vδ. Therefore, Lemma 3.6 and Lemma 3.4 (with σ replaced by δ) imply

∣∣DkvT
i (y)

∣∣ ≤ 2kC15

δk

(
sup
Bn

δ (y)

|vT
i |+ ‖D2Φ‖∗C1(Bδ)

)

≤ 16C15

 1
σk

T
sup

C1−2σT /3∩spt(T)
|Xn+1|+

1
δk ‖D

2Φ‖∗C1(Bδ)


≤ 16C15

(√
C13C14( 2

3

)2n+2k+1
σ2n+1

T

(
EC(T, 1) + κT + A

)
+

1
δ3 ‖D

2Φ‖∗C1(Bδ)

)

≤ C7

dist(y, ∂V)n+k+1/2

√
EC(T, 1) + κT + A.

This shows (iii.).
(iv.) is done as (iii.).
For (v), we fix i ∈ {1, . . . , m}, j ∈ {1, . . . , m − 1} and abbreviate v := vT

i , w :=
wT

j . Additionally to the conditions before, we now require for C5 to fulfil C2n+3
5 ≥

C13C14(22/(n+2) − 1)−1. Then Lemma 3.4 implies that

sup
C1−σT∩spt(T)

X2
n+1 ≤ σ2

T
C13C14

C2n+3
5

≤ σ2
T(2

2/(n+2) − 1).

In the following, let y ∈ VT (thus |y| ≥ yn > σT) and δ := dist(y, V2σT/3). Then we have∣∣(y, v(y), Φ(y, v(y)))
∣∣2 = |y|2 + v(y)2 + |Φ(y, v(y))|2
≤ (1− σT)

2 + σ2
T + |DΦ|2 ≤ 1 + |DΦ|2.

Denote by K := ‖DΦ‖C0(B1)
. Then p−1(VT) ∩ spt(T) ⊂ B1+K. (3.5)

Last, we let C5 also fulfil C2n+3
5 ≥ 144

( 3
2

)2n+1 C2
15C13C14. By Lemma 3.6, the following

holds∣∣(y, v(y), Φ(y, v(y)))
∣∣n+2

=
(
|y|2 + v(y)2 + |Φ(y, v(y))|2

)(n+2)/2

≤
(
|y|2 + (22/(n+2) − 1)|y|2|DΦ|2(1 + |Dv|2)|y|2

)(n+2)/2

≤ 22+n/2|y|n+2, (3.6)
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|Dv(y)|2 ≤
(

2C15

δ

)2 (
sup
Bn

δ (y)

|vT
i |+ ‖D2Φ‖∗C1(Bδ)

)2

≤ 8C2
15

( σT
3 )2

C13C14( 2
3

)2n+1
σ2n+1

T

(
EC(T, 1) + κT + A

)
+

8C2
15

δ2

(
‖D2Φ‖∗C1(Bδ)

)2

≤ 72C2
15

((
3
2

)2n+1 C13C14

C2n+3
5

+ ‖D2Φ‖Cα

)
≤ 1. (3.7)

Now, we compute

∂

∂r
v(y)
|y| =

y
|y|

(
Dv(y)
|y| − v(y)

y
|y|3

)
=

yDv(y)− v(y)
|y|2 . (3.8)

We notice that this is similar to the projection on span{(Dv(y),−1, 0)}. Let ζ(y) :=
1√

1+|Dv(y)|2
(Dv(y),−1, 0) ∈ Rn+k. Then

〈
(
y, v(y), Φ(y, v(y))

)
, ζ(y)〉 = 〈y, Dv(y)〉 − v(y)√

1 + |Dv(y)|2
. (3.9)

Moreover, the approximate tangent space of spt(T) at (y, v(y), Φ(y, v(y))) is spanned
by the vectors ∂iG(y) for i ≤ n and G(y) =

(
y, v(y), Φ(y, v(y))

)
. As (Dv(y),−1, 0) is

normal to all of the ∂iG(y), we have that ζ(y) is normal to the approximate tangent
space of spt(T) at (y, v(y), Φ(y, v(y))). In particular,∣∣〈(y, v(y), Φ(y, v(y))

)
, ζ(y)〉

∣∣ ≤ ∣∣(y, v(y), Φ(y, v(y))
)⊥∣∣, (3.10)

where X⊥ denotes the component orthogonal to the approximate tangent space of T.
Therefore, we deduce by using (3.8), (3.9), (3.7), (3.6), (3.10) and (3.5)

∫
VT

(
∂

∂r
v(y)
|y|

)2

|y|2−ndLn(y)

=
∫

VT

〈
(
y, v(y), Φ(y, v(y))

)
, ζ(y)〉2 1 + |Dv(y)|2

|y|n+2 dLn(y)

≤
∫

VT

∣∣(y, v(y), Φ(y, v(y))
)⊥∣∣2 22+n/2

√
2∣∣(y, v(y), Φ(y, v(y))

∣∣n+2

√
1 + |Dv(y)|2 dLn(y)

≤ 2(n+5)/2
∫

B1+K∩p−1(VT)
|X⊥|2|X|−n−2d‖T‖.

We argue in the same manner to extract

∫
WT

(
∂

∂r
w(y)
|y|

)2

|y|2−ndLn(y) ≤ 2(n+5)/2
∫

B1+K∩p−1(WT)
|X⊥|2|X|−n−2d‖T‖.
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By Corollary 2.5 and (3.2), we could conclude here the desired estimate but with radius
of the excess being 1 + K instead of 1. However, we use (a.1) to see∫

B1+K\B1

|X · ζT|2 |X|−n−2d‖T‖ ≤ 4‖T‖(B1+K \ B1)

≤ 4
(

C43(1 + K)n − 1
C43

)
≤ C17K ≤ C17A.

In total, we deduce

∫
VT

(
∂

∂r
vT

i (y)
|y|

)2

|y|2−ndLn(y) +
∫

WT

(
∂

∂r

wT
j (y)

|y|

)2

|y|2−ndLn(y)

≤ 2(n+5)/2(ES(T, 1) + C4(A + κT) + C17A
)

≤ 2(n+5)/2(EC(T, 1) + (C4 + m + C17)(A + κT)
)
.
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We now know that, away from the boundary, our minimizing current T is supported
on graphs. We would like to extend that fact up to the boundary. To do so, we use that
the functions describing the current are bounded by the square root of the excess such
that we can introduce a blow-up procedure by rescaling by the latter quantity. Notice
that the domain of the functions converges to the half ball as the excess tends to zero.

We aim to extend the graphs up to the boundary of T and such that they are merging
together smoothly. To do so, we will show that the harmonic blow-ups on V (or W
respectively) are all identical (see Theorem 7.2), which will lead to an excess decay
(Theorem 4.2) which will then lead to the extension of the graphs (Corollary 4.3).

First we describe the blow-up procedure.

Definition 4.1. For ν ∈N, ν ≥ 1, i ∈ {1, . . . , m}, j ∈ {1, . . . , m− 1} and (Tν,Mν) ∈ T ,
we define Aν := AMν

, εν :=
√

EC(Tν, 1), κν := κTν , v(ν)i := vTν
i 1VTν

: V → R and

w(ν)
j := wTν

j 1WTν
: W→ R. We call {(Tν,Mν)}ν≥1 a blowup sequence with associated

harmonic blow-ups fi, gj if the following holds as ν→ ∞,

(i.) εν → 0,

(ii.) ε−2
ν κν → 0,

(iii.) Aν → 0,

(iv.)
v(ν)i

max{εν, A1/4
ν }

−→ fi uniformly on compact subsets of V,

(v.)
w(ν)

j

max{εν, A1/4
ν }

−→ gi uniformly on compact subsets of W.

Notice that by the estimates of Theorem 3.2, the Riemannian minimal surface equation
and [23, Lemma 5.3.7], it follows that fi, gj are harmonic. Furthermore, by Lemma 3.4,
we have for 0 < ρ < 1

sup
V∩Bn

ρ (0)

| fi|2 + sup
W∩Bn

ρ (0)

|gj|2 ≤ lim sup
ν→∞

(
2

max{εν, A1/4
ν }2

sup
Cρ∩spt(Tν)

X2
n+1

)

≤ 4C13C14

(1− ρ)2n+1 . (4.1)

27
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Notice that by the Arzelà-Ascoli Theorem and Theorem 3.2, every sequence {(Sν,Mν)}ν≥1 ⊂
T satisfying

lim
ν→∞

(
EC(Sν, 1) +

κSν

EC(Sν, 1)
+ Aν

)
= 0 (4.2)

contains a blow-up subsequence.
The main result of this section is the following excess decay: We define C18, C19 and

θ later (in Remark 7.3, Remark 8.1 and Theorem 8.1) and claim

Theorem 4.2. Let (T,M) ∈ T and assume that max{EC(T, 1), A, C19κT} ≤
θ

C19
. Then

there is a real number |η| ≤ 2C18

√
θ

C19
such that for all 0 < r < θ/4 the following holds

EC(γη#T, r) ≤ θ−n−1

C19
r.

A direct consequence of the Theorem 4.2 is the following

Corollary 4.3. Let T,M, η, C5 and θ be as in Theorem 4.2 and Theorem 3.2. If we define the
real numbers β := 1

4n+10 and δ := θ2(1+n)(4C5)−(4n+6) and the sets

Ṽ :=
{

y ∈ Bn
δ (0) : yn > |y|1+β

}
and W̃ :=

{
y ∈ Bn

δ (0) : yn < −|y|1+β
}

,

then there are functions ṽi ∈ C1, 1
4 (Ṽ), w̃j ∈ C1, 1

4 (W̃) such that

(i.) p−1(Ṽ) ∩ spt(γη#T) =
m⋃

i=1

graph(ṽi, γη ◦Φ) and

p−1(W̃) ∩ spt(γη#T) =
m−1⋃
j=1

graph(w̃j, γη ◦Φ).

(ii.) ṽi|Ṽ , w̃j
∣∣
W̃ satisfy the Riemannian minimal surface equation.

(iii.) Dṽi(0) = 0 = Dw̃j(0).

(iv.) ṽ1 ≤ ṽ2 ≤ · · · ≤ ṽm and w̃1 ≤ w̃2 ≤ · · · ≤ w̃m−1.

In order to handle the rotations and scalings of T, we state the following computations
that we will prove in chapter a.

Remark 4.4. For C20 := C3 + 6n(1 + mωn), (T,M) ∈ T and r ≥ 3 the following holds:
if EC(T, 1) + κT + A ≤ 1

C3
, then

(
(µr#T) B3, µr(M)

)
∈ T , Aµr(M) ≤

AM
r

and κ(µr#T) B3
≤ κT

r
.
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Indeed, we apply Corollary 2.4 with r, s replaced by 3/r, 1:( r
3

)n
‖T‖(B3/r) +

∫
B1\B3/r

|X⊥|2|X|−n−2d‖T‖ ≤ ‖T‖(B1) + C3 (A + κT)

(
1− 3

r

)
.

Therefore, we have

M
(
(µr#T) B3

)
≤ rnM(T B3/r)

≤ 3n (‖T‖(B1) + C3 (A + κT)
)

≤ 3n(EC(T, 1) + mωn + C3 (A + κT)
)

≤ 3n(1 + mωn).

The estimate on κ(µr#T) B3
follows from classical differential geometry.

Remark 4.5. Let (T,M) ∈ T and |ω| ≤ 1/8 and assume that

A ≤ max
{

1
8

, (7C1 + C12 + 1)−1
}

Then, we have

(i.) if EC(T, 1) + κT + A ≤
(
C13C1442n+4)−1, then sup

C3/4∩spt(T)
|Xn+1| ≤ 1

8 .

(ii.) if EC(T, 1) + κT + A ≤ min
{

C−1
20 ,
(
C13C1442n+4)−1}, then

(µ4#γω#T) B3 = (γω#µ4#T) B3 ∈ T .

(iii.) if 12 ≤ r < ∞ and ω2 + EC(T, 1) + κT + |DΦ|2 + |D2Φ| ≤ C21
−1, where C21 =

42n+4C20C10(1 + C11)(1 + C13)C14, then (µr#γω#T) B3 ∈ T and

κ(µr#γω#T) B3
≤ κT

r
.

Proof of Corollary 4.3. We only show it for ṽi, the argument for w̃j goes analogously.
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Let 0 < ρ < δ and define Sρ := (µ1/ρ#γη#T) B3, Mρ := µ1/ρ(M). By Remark 4.5
(Sρ,Mρ) ∈ T . Moreover, notice that by Theorem 3.2, Theorem 4.2 and Remark 4.5 the
following holds

σSρ
= C5

(
EC(Sρ, 1) + κSρ

+ AMρ

)1/(2n+3)

≤ C5
(
EC(γη#T, ρ) + ρ(κT + A)

)1/(2n+3)

≤ C5

(
θ−n−1 ρ

C19
+ ρ

2θ

C19

)1/(2n+3)

= C5ρ1/(4n+6)
(

ρ1/2 3θ−n−1

C19

)1/(2n+3)

≤ C5ρβ

(
δ1/2 4

C19
θ−n−1

)1/(2n+3)

= C5ρβ

(
42n+5

C19C2n+3
5

)1/(2n+3)

≤ ρβ

4
.

Now, we look for functions whose graph contain spt(γη#T). For a fixed ρ, we apply

Theorem 3.2 to (Sρ,Mρ) and get vSρ

1 ≤ vSρ

2 ≤ · · · ≤ vSρ
m whose ΦMρ

-graph form the
spt(Sρ). Using Theorem 3.2(iii.) (with T, M, k replaced by Sρ, Mρ, 1 and 2) for all
i ∈ {1, . . . , m}

sup
V 1

4 ρβ

∣∣DvSρ

i

∣∣ ≤ C7

√
EC(Sρ, 1) + κSρ

+ AMρ
sup

y∈V 1
4 ρβ

dist(y, ∂V)−1−n−1/2

≤ C7

√
3ρ θ−n−1

(
4
ρβ

)n+3/2

≤ C22ρ1/4,

sup
V 1

4 ρβ

∣∣D2vSρ

i

∣∣ ≤ C7

√
EC(Sρ, 1) + κSρ

+ AMρ
sup

y∈V 1
4 ρβ

dist(y, ∂V)−2−n−1/2

≤ C7

√
3ρ θ−n−1

(
4
ρβ

)n+5/2

≤ C22ρ1/4.

(4.3)

Define ρk :=
( 7

8

)k, k ∈ Z, and look at the annuli

Ak :=
{

y ∈ Ṽ :
1
2

ρk ≤ |y| ≤
2
3

ρk

}
.
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These annuli are overlapping as 1
2 ρk <

2
3 ρk+1 and moreover their union covers all of Ṽ.

Notice that for y ∈ Ak the following holds

yn

ρk
>
|y|1+β

ρk
≥
(ρk

2

)1+β 1
ρk
≥ ρ

β
k

4
≥ σSρk

.

Therefore, y/ρk ∈ VSρk
and we can define for y ∈ Ak

ṽi(y) = ρkv
Sρk
i

( y
ρk

)
.

Then

p−1(Ṽ) ∩ spt(γη#T) =
m⋃

i=1

graph(ṽi, γη ◦Φ),

because Sρ := (µ1/ρ#γη#T) B3. Moreover, all ṽi fulfil the Riemannian minimal surface
equation on Ṽ and ṽ1 ≤ ṽ2 ≤ · · · ≤ ṽm. The only thing we still have to prove is the
C1, 1

4 -regularity. By using the bounds in (4.3), we estimate for each y ∈ Ṽ

|Dṽi(y)| ≤ C22ρ1/4
k ≤ 2C22|y|1/4, (4.4)

|D2ṽi(y)| ≤
1
ρk

C22ρ1/4
k ≤ C22|y|−3/4. (4.5)

Let y, z ∈ Ṽ be arbitrary. We want to deduce that |Dṽi(y)− Dṽi(z)| ≤ 4C22|y− z|1/4.
We differ between the following cases:
Case 1: max

{
|y|, |z|

}
≤ 2|y− z|.

Then the following holds by (4.4)

|Dṽi(y)− Dṽi(z)| ≤ |Dṽi(y)|+ |Dṽi(z)|
≤ 2C22|y|1/4 + 2C22|z|1/4

≤ 4C22|y− z|1/4.

Case 2: max
{
|y|, |z|

}
> 2|y− z|.

Wlog max
{
|y|, |z|

}
= |y|. We claim that also the path between these two points fulfils

this inequality. Indeed, for every t ∈ [0, 1] we have

|y + t(y− z)| ≥
∣∣|y| − t|z− y|

∣∣ ≥ 2|y− z| − t|y− z| ≥ |y− z|
and

|y + t(y− z)|−3/4 ≤ |y− z|−3/4.

We use this together with (4.5) to infer

|Dṽi(y)− Dṽi(z)| ≤ |y− z|
∫ 1

0

∣∣D2ṽi(y + t(y− z))
∣∣dt ≤ C22|y− z|1/4.

Thus the Hölder regularity holds up to the boundary and by (4.4) we conclude (iii.).
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G L U E I N G O F H A R M O N I C B L O W- U P S A N D F I R S T C O L L A P S I N G
L E M M A

We aim to prove that under certain conditions, the harmonic blow-ups agree in order
to deduce later that the graphs are equal on V and W respectively. The first step in this
direction is to show that if we glue them together, the result is weakly differentiable.

Lemma 5.1. Let {(Tν,Mν)}ν≥1 ⊂ T be a blow-up sequence with associated harmonic blow-
ups fi, gj. Define h, µ : Bn

1(0)→ R by

h(x) =


∑m

i=1 fi(x), if x ∈ V

∑m−1
j=1 gj(x), if x ∈W

0, if x ∈ L

and

µ(x) =

min
{
| f1(x)|, . . . , | fm(x)|

}
, if x ∈ V

0, if x ∈W∪ L.

Then h and µ are in W1,2
loc (B

n
1(0)).

Remark 5.2. Consider the notion of trace as in [36, Chapter 26]. The previous lemma
implies that µ|V has zero trace on L.

Proof of Leamm 5.1. Let {(Tν,Mν)}ν≥1 ⊂ T be a blow-up sequence with associated
harmonic blow-ups fi, gj and denote Aν, εν, κν as in the Definition 4.1 and Φν := ΦMν

.
Observe that

√
1 + t ≥ 1 + 1

2 t − 1
9 t2 for all 0 ≤ t ≤ 1. We use Theorem 3.2(iii.) to

estimate for any i ∈ {1, . . . , m}
ε2

ν = M(Tν C1)−M
(
p#(Tν C1)

)
≥M

(
Tν p−1(V√σν

)
)
−M

(
p#(Tν p−1(V√σν

))
)

≥
∫

V√σν

(√
1 + |Dv(ν)i |2 − 1

)
dLn

≥
∫

V√σν

(
1
2
|Dv(ν)i |2 −

1
9
|Dv(ν)i |4

)
dLn

≥ 1
2

∫
V√σν

|Dv(ν)i |2
(

1− 2
9

C2
7(ε

2
ν + κν + Aν)σν

−n−3/2
)

dLn

=
1
2

∫
V√σν

|Dv(ν)i |2
(

1− 2
9

C−n−3/2
5 C2

7

√
ε2

ν + κν + Aν

)
dLn.

33
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Hence, for ν large enough, it follows that∫
V√σν

|Dv(ν)i |2dLn ≤ 3ε2
ν.

Moreover, fix δ > 0. For all ν such that σν ≤ δ2 the following holds

∫
Vδ

|Dv(ν)i |2
max{ε2

ν, A1/2
ν }

dLn ≤
∫

Vδ

|Dv(ν)i |2
ε2

ν

dLn ≤ 3

and by locally uniform convergence, we deduce∫
Vδ

|D fi|2dLn ≤ 3.

As δ was arbitrary, we can conclude the integrability of the weak derivative of fi in all
of V and analogously for gj in W. The fact that the trace is zero, we deduce in the same
manner as in [27, Lemma 6.2] (which is based on [23, Lemma 5.3.7]). Thus, we also
conclude that h and µ are in W1,2

loc .

As a next step, we see that also around boundary points, we have local uniform
convergence. In fact, the proof of the original paper [27, Lemma 6.3] carries over and
thus, we omit the details here.

Lemma 5.3. Let 0 < σ < 1/2, a ∈ L ∩ Bn
1−2σ(0), U := Bn

σ(a), B := ∂U, C ⊂ p−1(U)

compact and {(Tν,Mν)}ν≥1 ⊂ T a blowup sequence with associated harmonic blowups fi and
gj. Denote εν :=

√
EC(Tν, 1) and mν := max{εν, A1/4

ν }. Then, the following holds

lim sup
ν→∞

sup
C∩spt(Tν)

Xn+1

mν
≤ max

{
sup
B∩V

fm, sup
B∩W

gm−1, 0
}

,

lim inf
ν→∞

inf
C∩spt(Tν)

Xn+1

mν
≥ min

{
inf
B∩V

f1, inf
B∩W

g1, 0
}

.

As a first step to the fact, that the harmonic blow-ups coincide, we prove it under the
strong assumptions that they are linear. This will be useful, as for the excess decay we
will use a blow-up argument in which the inequality of Theorem 3.2(v.) forces them to
be linear. The argument for the equality of the blow-ups relies on the fact, that in case
they are not equal, we find a better competitor for the minimization problem.
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Lemma 5.4 (Collapsing lemma). Let {(Tν,Mν)}ν≥1 ⊂ T be a blowup sequence and
denote εν :=

√
EC(Tν, 1) and mν := max{εν, A1/4

ν }.
Assume the harmonic blowups are of the form

fi = βi Yn|V , gj = γj Yn|W ,

for some real numbers β1 ≤ · · · ≤ βm and
γ1 ≥ · · · ≥ γm−1. Then the following holds

β1 = · · · = βm = γ1 = · · · = γm−1

and for every 0 < ρ < 1

lim
ν→∞

sup
Cρ∩spt(Tν)

∣∣∣∣Xn+1

mν
− β1Xn

∣∣∣∣ = 0.

graph(f1)

graph(f2)

graph(f3)

graph(g1)

graph(g2)

R

Rn−1

Rk

Proof. Let v(ν)i and w(ν)
j be as in Definition 4.1, define ζ := max

{
|β1|, |βm|, |γ1|, |γm−1|

}
,

δ := min
{
{1} ∪ {βi+1 − βi : βi+1 6= βi} ∪ {γi − γi+1 : γi 6= γi+1}

}
and let 0 < σ <

min{δ/2, 1/16}. By Theorem 3.2(iii.), (iv.), Definition 4.1(i.)-(v.) and the previous
Lemma 5.3, we can choose Nσ > 0 such that for all ν ≥ Nσ the following holds for all
0 ≤ i ≤ m and 0 ≤ j ≤ m− 1

b

2σ

3
4 + σ σTν <

σ

4
, m2

ν < σ , κTν < σ3m2
ν , (5.1)

sup
Vσ/2

∣∣v(ν)i −mνβiYn
∣∣2 ≤ σn+4m2

ν , (5.2)

sup
Wσ/2

∣∣w(ν)
j −mνγjYn

∣∣2 ≤ σn+4m2
ν , (5.3)

sup
C3/4+σ∩spt(Tν)\p−1(V2σ∩W2σ)

|Xn+1| ≤ 2ζσmν + σmν. (5.4)

The grey area in the sketch stands for the set where the supremum in (5.4) is taken. We
divide the proof into several steps.
Step 1: For all i ∈ {1, . . . , m}, j ∈ {1, . . . , m− 1} the following holds

sup
Vσ

∣∣D(v(ν)i −mνβiYn)
∣∣2 , sup

Wσ

∣∣D(w(ν)
j −mνγjYn)

∣∣2 ≤ C23σ2m2
ν. (5.5)

Step 2: There is a Lipschitzian map Fσ
ν such that

M(Fσ
ν #Tν)−M(Tν) ≤ C24(1 + ζ)2σm2

ν.

The maps Fσ
ν are constructed by performing the blowup process backwards:

we multiply the harmonic blowups with εν and move it by σ to the origin.
These compressed sheets then almost recreate the original currents.
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Step 3: With the help of Fσ
ν , we show that

η : Bn
1/2(0)→ R, η(y) =

βmYn(y), if y ∈ Bn
1/2(0) ∩V

γm−1Yn(y), if y ∈ Bn
1/2(0) ∩W

is harmonic in Bn
1/2(0). In particular, η is differentiable in 0 and hence, βm = γm−1. We

argue similarly to deduce that also β1 = γ1.

Step 4: lim
ν→∞

sup
Cρ∩spt(Tν)

∣∣∣∣Xn+1

mν
− β1Xn

∣∣∣∣ = 0.

Proof of step 1:
Away from the boundary, we want to use [25, Corollary 6.3] on the function u :=

v(ν)i −mνβiYn. Recall the coefficients aij and b of (3.3) and define a(ν)ij , b(ν) accordingly.
Then for

Akl :=
δk,l√

1 + |Dv(ν)i |2
− Dkv(ν)i Dlv

(ν)
i

(1 + |Dv(ν)i |2)3/2
− akl .

we have
n

∑
k,l=1

Akl∂klu =
n

∑
k,l=1

Akl∂klv
(ν)
i = b(ν) and for ν large enough, Akl are elliptic in

Vσ/3. Hence, we have

sup
Vσ

∣∣D(v(ν)i −mνβiYn
)∣∣2 ≤ C25

σ2

(
sup
Vσ/3

∣∣v(ν)i −mνβiYn
∣∣2 + ‖b(ν)‖2

C1(Vσ/3)

)

≤ C23

2
(
σ2m2

ν +m
8
ν

)
≤ C23σ2m2

ν.

In the same manner we show that

sup
Wσ

∣∣D(w(ν)
j −mνγjYn)

∣∣2 ≤ C23σ2m2
ν.

Proof of step 2: Fix i ∈ {1, . . . , m}, j ∈ {1, . . . , m− 1} and define the following subsets
of Rn+1:

Hσ := {x ∈ Rn+1 : |xn| ≤ σ},

Iσ
i :=

{
x ∈ Rn+1 : (x1, . . . , xn) ∈ Vσ and |xn+1 − βixn| <

δσ

2

}
,

Jσ
j :=

{
x ∈ Rn+1 : (x1, . . . , xn) ∈Wσ and |xn+1 − γjxn| <

δσ

2

}
.
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Notice that Iσ
i ∩ Iσ

k = ∅ for all βi 6= βk and Jσ
j ∩

Jσ
l = ∅ for all γj 6= γl by the definition of δ. Addi-

tionally, define the maps βr : Rn+1 → Rn+1, (x, y) 7→
(x1, . . . , xn, rxn+1) for r > 0. We define

Gσ
ν := Hσ ∪ βmν

( m⋃
i=1

Iσ
i

)
∪ βmν

( m−1⋃
j=1

Jσ
j

)
,

λσ
ν : Gσ

ν → Rn+1

x 7→


(x1, . . . , xn, 0), if x ∈ Hσ(
x1, . . . , xn,mνβi(xn − σ)

)
, if x ∈ βmν

(Iσ
i )(

x1, . . . , xn,mνγj(xn − σ)
)
, if x ∈ βmν

(Jσ
j ),

xn

xn+1

Iσ
3

Iσ
2

Iσ
1Jσ

1

Jσ
2

σ−σ 1 − σσ − 1

Hσ

xn

xn+1

βmν(Jσ
1 )

βmν(Jσ
2 )

σ−σσ − 1
βmν(Iσ

2 )

βmν(Iσ
3 )

βmν(Iσ
1 )

1 − σ

Hσ

xn

xn+1

λσ
ν ◦ βmν(Iσ

3 )

λσ
ν ◦ βmν(Iσ

2 )

λσ
ν ◦ βmν(Jσ

1 )

λσ
ν ◦ βmν(Jσ

2 )
−σ σ

λσ
ν (Hσ)

1 − σσ − 1

λσ
ν ◦ βmν(Iσ

1 )

Now, we want to construct a homotopy between λσ
ν and the identity map. For this

we take a C1 function µ : Bn
1(0)→ [0, 1] satisfying µ|Bn

1/2(0)
≡ 0, µ|Bn

1 (0)\Bn
3/4(0)

≡ 1 and
sup
Bn

1 (0)

|Dµ| ≤ 5. Then, we define

Λσ
ν := Gσ

ν ∪ (Rn+1 \C3/4) −→ Rn+1

x 7→

x, if x ∈ Rn+1 \C3/4(
1− µ ◦ p(x)

)
λσ

ν(x) +
(
µ ◦ p(x)

)
x, if x ∈ Gσ

ν

and finally map everything toMν with

Fσ
ν : (Gσ

ν ×Rk−1) ∪ (Rn+k \C3/4) −→Mν ⊂ Rn+k

(x, y) 7→
(
Λσ

ν(x), Φν(Λσ
ν(x))

)
.

We know that in p−1(Vσ), spt(Tν) lives on the Φν-graphs of v(ν)i . As v(ν)i m
−1
ν converges

to βiYn, for ν big enough, graph(v(ν)i , Φν) ⊂ (id, Φν) ◦ βmν
(Iσ

i ). Therefore

p−1(Vσ) ∩ spt(Tν) =
m⋃

i=1

graph(v(ν)i , Φν) ⊂ (id, Φν)(Gσ
ν ).
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Now, we compute the functions whose Φν-graph describes spt(Fσ
ν #Tν) ∩ p−1(Vσ):

u(ν)
i = (1− µ)mνβi(Yn − σ) + µv(ν)i

= (1− µ)mνβiYn + µv(ν)i − (1− µ)mνβiσ

= µ(v(ν)i −mνβiYn) +mνβiYn − (1− µ)mνβiσ.

Then the following holds

u(ν)
i − v(ν)i = µ(v(ν)i −mνβiYn)− (v(ν)i −mνβiYn)− (1− µ)mνβiσ.

Recall ζ := max
{
|β1|, |βm|, |γ1|, |γm−1|

}
. We bound by step 1 and (5.2)

sup
Vσ

|Du(ν)
i | ≤ sup

Vσ

(
|Dµ||v−mνβiYn|+ |D(v(ν)i −mνβiYn)|+mν|βi|+mνσ|βiDµ|

)
≤ 5σmν +

√
C23σmν +mνζ + 5mνζσ

≤ C26mν(1 + ζ),

sup
Vσ

|Dv(ν)i | ≤ sup
Vσ

(
|D(v(ν)i −mνβiYn)|+ |D(mνβiYn)|

)
≤ C26mν(1 + ζ),

sup
Vσ

|Du(ν)
i − Dv(ν)i |

≤ sup
Vσ

(
|Dµ||v−mνβiYn|+ |1 + µ||D(v(ν)i −mνβiYn)|+mνσ|βiDµ|

)
≤ 5σ + 2

√
C23σmν + 5mνζσ

≤ C26σmν(1 + ζ).

With this we can estimate

M
(

Fσ
ν #
(
Tν p−1(Vσ)

))
−M

(
Tν p−1(Vσ)

)
≤

m

∑
i=1

√
1 + |DΦν|2

∫
Vσ

(√
1 + |Du(ν)

i |2 −
√

1 + |Dv(ν)i |2
)

dLn

≤ 2
m

∑
i=1

∫
Vσ

(
1 + |Du(ν)

i |2 − 1− |Dv(ν)i |2
)

dLn

≤ 2
m

∑
i=1

∫
Vσ

|Du(ν)
i − Dv(ν)i |

(
|Du(ν)

i |+ |Dv(ν)i |
)

dLn

≤ C27(1 + ζ)2m2
νσ.

(5.6)

In the same manner, we deduce

M
(

Fσ
ν #
(
Tν p−1(Wσ)

))
−M

(
Tν p−1(Wσ)

)
≤ C27(1 + ζ)2m2

νσ. (5.7)
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Outside of p−1(Vσ ∪Wσ) we notice that Fσ
ν is the identity inMν ∩

(
(Hσ ×Rk−1) \

C3/4
)

and hence

M
(

Fσ
ν #
(
Tν ((Hσ ×Rk−1) \C3/4)

))
= M

(
Tν ((Hσ ×Rk−1) \C3/4)

)
. (5.8)

In (Hσ ×Rk−1) ∩C3/4, the following holds

Fσ
ν (x, y) =

(
x1, . . . , xn, µ(x1, . . . , xn)xn+1, Φν(x1, . . . , xn, µ(x1, . . . , xn)xn+1)

)
.

Hence, we can use Lemma a.1 (with A = (Hσ ×Rk−1) ∩C3/4, τ = σ, ρ = 5σ) to bound

M
(

Fσ
ν #(T (Hσ ×Rk−1))

)
−M(T (Hσ ×Rk−1))

(5.8)
= M

(
Fσ

ν #
(
T ((Hσ ×Rk−1) ∩C3/4)

))
−M

(
T ((Hσ ×Rk−1) ∩C3/4)

)
≤ C44

σ2

(
κ2

Tν
+ 2

∫
(H2σ×Rk−1)∩C3/4+σ

X2
n+1d‖Tν‖+ 27Aν

)
(5.4)
≤ C44

σ2

(
κ2

Tν
+ 27Aν + 2‖Tν‖

(
(H2σ ×Rk−1) ∩C3/4+σ

)
(2ζσmν + σmν)

2
)

.

Further, we see that by the monotonicity property (3.1) and the projection property of
currents in T , the following holds

‖Tν‖
(
(H2σ ×Rk−1) ∩C3/4+σ

)
=

(
3
4
+ σ

)n

EC
(
Tν,

3
4
+ σ

)
+ M

(
p#
(
Tν ((H2σ ×Rk−1) ∩C3/4+σ)

))
≤ ε2

ν + mσ

(
3
4
+ σ

)n−1

≤ C28σ,

where we used (5.1) in the last inequality.
Therefore,

M
(

Fσ
ν #(T (H2σ ×Rk−1))

)
−M(T (H2σ ×Rk−1))

≤ C44

σ2

(
κ2

Tν
+ 27Aν + 2C28σ(2ζσmν + σmν)

2)
(5.1)
≤ C29(1 + ζ)2m2

νσ.

Putting this toghether with (5.6) and (5.7) yields

M(Fσ
ν #Tν)−M(Tν) ≤ C24(1 + ζ)2m2

νσ

for all ν ≥ Nσ.

R

2σ−2σ

3
4 + σ

−3
4 − σ

m

m − 1

Rn−1
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Proof of step 3: We define

η : Bn
1/2(0)→ R, η(y) =

βmYn(y), if y ∈ Bn
1/2(0) ∩V

γm−1Yn(y), if y ∈ Bn
1/2(0) ∩W.

To show that η is harmonic, we prove that it minimizes the Dirichlet integral. To do
so, we take some arbitrary Lipschitz function θ : Bn

1/2(0) → R satisfying θ|∂Bn
1/2(0)

=

η|∂Bn
1/2(0)

. Then we notice that
∫
|Dη|2 −

∫
|Dθ|2 is comparable to the difference of the

Hausdorff measure of the graphs of η and θ. These graphs, we express as currents and
use the minimality of Tν to deduce that

∫
|Dη|2−

∫
|Dθ|2 ≤ 0. To make this precise, we

approximate both of these functions. Indeed, let {σk}k≥1 be a monotonously decreasing
null sequence with σ1 < min{δ/2, 1/16}. For each k ≥ 1, let νk = Nσk ,

ηk : Bn
1/2(0)→ R, ηk(y) =


βm(Yn(y)− σk), if y ∈ Bn

1/2(0) ∩Vσk

γm−1(Yn(y) + σk), if y ∈ Bn
1/2(0) ∩Wσk

0, if y ∈ Bn
1/2(0) \ (Vσk ∪Wσk),

and choose some C1 function θk : Bn
1/2(0)→ R with θk|∂Bn

1/2(0)
= ηk|∂Bn

1/2(0)
,

lim sup
k→∞

sup
Bn

1/2(0)

|Dθk| < ∞ and lim
k→∞

∫
Bn

1/2(0)
|Dθk − Dθ|2dLn = 0.

With this, we define two auxiliary currents associated to the Φν-graphs of mνηk and
mνθk respectively:

Rk :=
((

idn,mνk θk, Φνk(idn,mνk ηk)
)

#(E
n Bn

1/2)
) ◦

C1/2,

Sk :=
((

idn,mνk θk, Φνk(idn,mνk θk)
)

#(E
n Bn

1/2)
) ◦

C1/2.

Notice that Rk, Sk are supported inMνk and moreover, in C1/2 ∩Gσ
ν the following holds

Fσk
νk = (id, Φν) ◦Λσk

νk = (id, Φν) ◦ λσk
νk and hence,

M
(

Fσk
νk #(Tνk C1)

)
= M

(
Fσk

νk #(Tνk C1)− Rk
)
+ M(Rk). (5.9)

In addition, we define q(t, x) = (id, Φ)(x1, . . . , xn−1, txn, txn+1) and Qνk := q#
(
[0, 1]×

((∂Tνk) C2)
)

C1. This is the filling between Bn−1
1 × {0} and spt(∂Tν) ∩C1 mapped

onto Mνk . Then we consider Pk := Qνk − (Fσk
νk )#Qνk . Because Fσk

νk

∣∣
∂C1

= (id, Φ)|∂C1
,
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θk|∂Bn
1/2(0)

= ηk|∂Bn
1/2(0)

and the homotopy formula [23, Section 4.1.9], the following
holds

∂Rk = ∂Sk,

∂Pk = ∂Qνk − ∂(Fσk
νk #Qνk)

= (∂Tνk) C1 − (id, Φνk)#
(
(En−1 × {0}) C1

)
− Fσk

νk #

(
(∂Tνk) C1

)
+ (id, Φνk)#

(
(En−1 × {0}) C1

)
= (∂Tνk) C1 − Fσk

νk #

(
(∂Tνk) C1

)
= ∂(Tνk C1)− ∂

(
Fσk

νk #(Tνk C1)
)
.

Moreover, the area minimality of Tνk inMνk implies

M(Tνk C1) ≤M
(

Fσk
νk #(Tνk C1) + Pk − Rk + Sk

)
≤M

(
Fσk

νk #(Tνk C1)− Rk
)
+ M(Pk) + M(Sk).

Together with step 2 and (5.9), we deduce

M(Rk)−M(Sk) = M
(

Fσk
νk #(Tνk C1)

)
−M

(
Fσk

νk #(Tνk C1)− Rk
)
−M(Sk)

≤M
(

Fσk
νk #(Tνk C1)

)
−M(Tνk C1) + M(Pk)

≤M(Pk) + C24(1 + ζ)2m2
νk

σνk .

Notice that again by the homotopy formula [23, Section 4.1.9], M(Qνk) ≤ C30(κTνk
+m4

νk
).

Then the condition (ii.) in Definition 4.1 yields

lim sup
k→∞

M(Pk)

m2
νk

≤ lim sup
k→∞

(
1 + Lip(Fσk

νk )
n)M(Qνk)

m2
νk

= 0.

Thus,

0 ≥ lim sup
k→∞

M(Rk)−M(Sk)

m2
νk

= lim sup
k→∞

∫
Bn

1/2(0)

√
1 +m2

νk
|Dηk|2

m2
νk

dLn −
∫

Bn
1/2(0)

√
1 +m2

νk
|Dθk|2

m2
νk

dLn − C31
|DΦνk |
m2

νk


= lim sup

k→∞

∫
Bn

1/2(0)

(
1 +m2

νk
|Dηk|2

)
− (1 +m2

νk
|Dθk|2)

m2
νk

(√
1 +m2

νk
|Dηk|2 +

√
1 +m2

νk
|Dθk|2

)dLn

=
1
2

∫
Bn

1/2(0)

(
|Dη|2 − |Dθ|2

)
dLn.

As θ was arbitrary, η minimizes the Dirichlet integral and hence, is a harmonic function.
In particular, η is differentiable in 0 and thus, βm = γm−1. We argue similarly to deduce
that also β1 = γ1.
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Step 4: Let 0 < ρ < 1 and assume 0 < σ < (1− ρ)/2. Then by Definition 4.1(iii.),(iv.),
it follows that

lim sup
ν→∞

sup
spt(Tν)\Hσ/2

∣∣∣∣Xn+1

mν
− β1Xn

∣∣∣∣ = 0

and by Lemma 5.3

lim sup
ν→∞

sup
spt(Tν)∩Hσ/2∩Cρ

∣∣∣∣Xn+1

mν
− β1Xn

∣∣∣∣ ≤ lim sup
ν→∞

sup
spt(Tν)∩Hσ/2∩Cρ

∣∣∣∣Xn+1

mν

∣∣∣∣+ |β1|
σ

2

≤ |β1|σ.

Letting σ ↓ 0 concludes the proof.
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C O M PA R I S O N B E T W E E N S P H E R I C A L A N D C Y L I N D R I C A L
E X C E S S

In some situations it is more convenient to work with the spherical excess rather than
with the cylindrical one. However, in the context of blow-ups, we see that they are in
fact comparable.

Lemma 6.1. There exist positive constants C32, C33, C34 such that if (T,M) ∈ T satisfies

EC(T, 1) + κT + A ≤ 1
C32

and sup
C1/4∩spt(T)

X2
n+1 ≤

EC(T, 1
3 )

C33
,

then
EC(T,

1
3
) ≤ C34

(
ES(T, 1) + κT + A

)
.

We will give the very technical proof for this in chapter a. It follows by computing
the first variation of a suitable vectorfield.

Instead of asking X2
n+1 to be small, we now only assume that T is optimal with respect

to rotations. We will argue by contradiction, finding a suitable blow-up sequence and
then we will reduce it to the case when the harmonic blow-ups are linear (in order to
use Lemma 5.4). Here, we give a sufficient condition for this to happen.
Remark 6.2. Let h : V→ R be a harmonic function such that for all y ∈ V and 0 < ρ < 1
the following holds h(ρy) = ρh(y). Then it follows

(i.) If h ≥ 0, then h has zero trace on L.

(ii.) If h has zero trace on L, then there is some β ∈ R satisfying h = β Yn|V.

The proof of this fact can be read in the original paper [27, Remark 7.2].

Theorem 6.3. Let (T,M) ∈ T and recall C32 and C34 from Lemma 6.1. Then there is a
positive constant C35 such that if for all real numbers |η| < 1/8 the following holds

• EC(T, 1) + κT + A ≤ 1
2C32

,

• EC(T,
1
3
) +

κT

EC(T, 1
3 )
≤ 1

C35
,

• EC(T,
1
4
) ≤ 2EC(γη#T,

1
4
),

then
EC(T,

1
4
) ≤ C35

(
ES(T, 1) + κT + A

)
.

43
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Proof. We argue by contradiction. Assume that no matter how large C35 is, there is
a current satisfying the four conditions but not the fifth one. This means, there is a
sequence {(Tν,Mν)}ν≥1 ⊂ T such that for every ν ≥ 1 and |η| < 1/8 the following
holds

EC(Tν, 1) + κTν + Aν ≤
1

2C32
,

EC(Tν,
1
4
) ≤ 2EC(γη#Tν,

1
4
), (6.1)

lim
ν→∞

(
EC(Tν,

1
3
) +

κTν

EC(Tν, 1
3 )

)
= 0, (6.2)

lim
ν→∞

(
ES(Tν, 1) + κTν + Aν

EC(Tν, 1
4 )

)
= 0. (6.3)

We define Sν := (µ3#Tν) B3, εν :=
√

EC(Sν, 1), κν := κSν
and mν := max

{
εν,
( 1

3 Aν

)1/4
}

.
By Remark 4.4 (Sν, µ3(Mν)) ∈ T and moreover,

εν =

√
EC

(
Tν,

1
3

)
and κν ≤ κTν .

Up to subsequence (which we do not relabel) is {(Sν, µ3(Mν))}ν≥1 a blowup sequence
(see (4.2)) with harmonic blowups fi and gj. We want to show that they are of the form
βYn. Then we will be able to deduce that β 6= 0 which will make it impossible for
EC(Tν, 1

4 )ε
−2
ν to converge to zero. This then leads to a contradiction to (6.1). Notice that

by Lemma 2.3, the following holds

e
C2
3 (Aν+κTν )3n‖Tν‖(B1/3) ≤ eC2(Aν+κTν )‖Tν‖(B1).

From this, it follows

ES(Sν, 1) = ES

(
Tν,

1
3

)
≤ 3n‖Tν‖(B1/3)−ων

(
m− 1

2

)
≤ e

2
3 C2(Aν+κTν )‖Tν‖(B1)−ων

(
m− 1

2

)
≤ e

2
3 C2(Aν+κTν )ES(Tν, 1) +

(
e

2
3 C2(Aν+κTν ) − 1 + κTν

)
ων

(
m− 1

2

)
≤
(

eC2/C32 + 2
C2

C32

) (
ES(Tν, 1) + κTν

)
and hence,

lim sup
ν→∞

ES(Sν, 1)
ε2

ν

≤
(

4
3

)n (
eC2/C32 + 2

C2

C32

)
lim sup

ν→∞

ES(Tν, 1) + κTν

EC(Tν, 1
4 )

= 0, (6.4)

where we used (6.3).
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We can apply Theorem 3.2(v.) (with T replaced by Sν) combined with Definition
4.1(iv.),(v.) (with Tν replaced by Sν), (6.2) and (6.4) to infer

∫
VT

(
∂

∂r
fi(y)
|y|

)2

|y|2−ndLn(y) +
∫

WT

(
∂

∂r
gj(y)
|y|

)2

|y|2−ndLn(y)

≤ 2n+7 lim sup
ν→∞

ES(Sν, 1) + C8(Aν + κTν)

m2
ν

= 0.

Hence, both terms must vanish and therefore the following holds for all 0 < ρ < 1

fi(ρy) = ρ fi(y) for y ∈ V and gj(ρy) = ρgj(y) for y ∈W.

This allows us to use Remark 6.2(i.) to the nonnegative functions fm − f1, gm−1 − g1

having vanishing trace on L. We notice that

| fi| =
(
| fi| −min{| f1|, · · · , | fm|}

)
+ min{| f1|, · · · , | fm|}

≤ ( fm − f1) + min{| f1|, · · · , | fm|}

and so, also each fi has zero trace on L by Lemma 5.1. Remark 6.2(ii.) gives that
fi = βi Yn|V for some βi ∈ R. The analogues statement holds for gj because Lemma 5.1
implies that also ∑m−1

l=1 gl has zero trace on L and we can bound

(m− 1)|gj| =
∣∣∣∣∣m−1

∑
l=1

(gj − gl) +
m−1

∑
l=1

gl

∣∣∣∣∣ ≤ (m− 1)(gm−1 − g1) +

∣∣∣∣∣m−1

∑
l=1

gl

∣∣∣∣∣ .

Then we can apply Lemma 5.4 to deduce

β1 = · · · = βm = γ1 = · · · = γm−1 and

lim
ν→∞

sup
C7/8∩spt(Sν)

∣∣∣∣Xn+1

mν
− β1Xn

∣∣∣∣ = 0. (6.5)

Next, we infer β1 6= 0. Indeed, if this were not the case, then Lemma 6.1 would imply
that

0 = lim sup
ν→∞

(
ES(Tν, 1) + κTν

EC(Tν, 1
4 )

)
≥ lim sup

ν→∞

( 1
C34

EC(Tν, 1
3 )−Aν

EC(Tν, 1
4 )

)

≥ 3n

4nC34
> 0,

where we used (6.3) for the last inequality.
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Now, we rotate Tν such that the new blowup sequence has a vanishing harmonic
blowups. To do so, let ην := arctan(β1mν) and consider Rν := (µ4#γην#Tν) B3. From
Remark 4.5(ii.), we know that (Rν, (µ4 ◦ γην)(Mν)) ∈ T for ν large enough. We use
again Lemma 3.3 (with T, σ replaced by Rν, 1/6) and Lemma 5.3 to obtain

lim sup
ν→∞

EC(γην#Tν, 1
4 )

m2
ν

= lim sup
ν→∞

EC(Rν, 1)
m2

ν

≤ lim sup
ν→∞

36C10

(
C11 sup

C7/6∩spt(Rν)

X2
n+1

m2
ν

+
κTν + Aν

m2
ν

)
= 0.

(6.6)

But by Lemma 3.4 (with T, σ replaced by Rν, 7/8)

lim inf
ν→∞

EC(Tν, 1
4 )

m2
ν

= lim inf
ν→∞

EC(µ4#Tν, 1)
m2

ν

≥ lim inf
ν→∞

(7
8

)2n+1 1
C13C14

(
sup

C1/8∩spt(µ4#Tν)

X2
n+1

m2
ν

− κTν + Aν

m2
ν

)

=
72n+1

82n+1C13C14

(
β1

8

)2

> 0.

For ν large enough, together with (6.6), this contradicts (6.1).



7
C O I N C I D E N C E O F T H E H A R M O N I C S H E E T S

As mentioned before, the excess decay will follow from the fact, that the harmonic
blow-ups coincide on V and W respectively. To see this, we want to blow-up the
harmonic blow-ups in a homogeneous way. Thus, we need to make sure that the limit
exists, i.e. we prove that the harmonic blow-ups are C0,1 up to the boundary. The proof
uses suitable rotations of Tν and the uniform convergence of the blow-up sequence at
the boundary.

Lemma 7.1. Let {(Tν,Mν)}ν≥1 ∈ T be a blow-up sequence with harmonic blow-ups fi and
gj. Then for all 0 < ρ < 1, i ∈ {1, . . . , m} and j ∈ {1, . . . , m− 1} the following holds

sup
V∩Bn

ρ (0)

| fi(y)|
|y| < ∞ and sup

W∩Bn
ρ (0)

|gj(y)|
|y| < ∞.

Proof. For ν ∈ N with ν ≥ 1, we define εν :=
√

EC(Tν, 1) and κν := κTν . Let 0 < σ ≤
1/12 and ω(ν, σ) ∈ R such that for all |η| ≤ 1/8

EC(γω(ν,σ)#Tν,
σ

4
) ≤ 2EC(γη#Tν,

σ

4
). (7.1)

Notice that by the monotonicity of the excess (3.1) and Definition 4.1(i.), it follows
limν→∞ EC(Tν, σ) = 0. As (7.1) also must hold for η = 0, it follows by Lemma 3.3 that
also

lim
ν→∞

ω(ν, σ) = 0. (7.2)

This implies that

lim
ν→∞

EC(γω(ν,σ)#Tν, σ) = 0. (7.3)

In a first step, we show that there is a constant C36 such that for infinitely many ν the
following holds

sup
Cσ/5∩spt(γω(ν,σ)#Tν)

|Xn+1| ≤ C36mνσ.

To do so, we first bound EC(γω(ν,σ)#Tν, σ
4 ) by looking at two different cases:

Case 1: EC(γω(ν,σ)#Tν, σ
3 ) < ε2

ν for infintely many ν.
We use the monotonicity of the excess (3.1) to deduce

EC(γω(ν,σ)#Tν,
σ

4
) ≤

(
4
3

)n

EC(γω(ν,σ)#Tν,
σ

3
) ≤

(
4
3

)n

ε2
ν

for infinitely many ν.

47
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Case 2: EC(γω(ν,σ)#Tν, σ
3 ) ≥ ε2

ν for all ν ≥ N for some N large enough.
We define Sν := (γω(ν,σ)#µ 1

σ #Tν) B3 and M̃ν := γω(ν,σ) ◦ µ 1
σ
(Mν). By Remark 4.5(iii.)

is (Sν, M̃ν) ∈ T . Recall the constants C32 and C35 of Theorem 6.3. By (3.1), (a.28), (7.3),
(7.1) and Definition 4.1, there is an integer Nσ such that for all ν ≥ Nσ the following
holds

• κν ≤ ε2
ν,

• EC(Sν, 1) + κSν
+ AM̃ν

≤ EC
(
(γω(ν,σ)#Tν) B3, σ

)
+ σ(κν + Aν) ≤

1
2C32

,

• EC(Sν,
1
3
) +

κSν

EC(Sν, 1
3 )
≤ 3nEC

(
(γω(ν,σ)#Tν) B3, σ

)
+ σ

κν

ε2
ν

≤ 1
C35

,

• EC(Sν,
1
4
) ≤ 2EC(γη#Sν,

1
4
) for all |η| ≤ 1

8
.

Therefore, we can apply Theorem 6.3 (with T replaced by Sν for ν ≥ Nσ) to deduce

EC(γω(ν,σ)#Tν,
σ

4
) = EC(Sν,

1
4
) ≤ C35

(
ES(Sν, 1) + κSν

+ AM̃ν

)
≤ C35

(
ES(Tν, σ) + σ(κν + Aν)

)
.

(7.4)

Notice that by Lemma 2.3, the following holds

eC2(Aν+κν)σσ−n‖Tν‖(Bσ) ≤ eC2(Aν+κν)‖Tν‖(B1).

Therefore,

ES(Tν, σ) = σ−n‖Tν‖(Bσ)− (m− 1
2
)α(n)

≤ eC2(Aν+κν)
(
‖Tν‖(B1)− (m− 1

2
)ωn

)
+
(

eC2(Aν+κν) − 1
)
(m− 1

2
)ωn.

With this and (3.2), we can continue to estimate (7.4) with

C35
(
ES(Tν, σ) + σ(κν + Aν)

)
≤ C35

(
EC(Tν, 1) + κν + Aν

)
≤ C37m

2
ν.

Hence, in both cases we have infinitely many ν satisfying

EC(γω(ν,σ)#Tν,
σ

4
) ≤ C38m

2
ν.

For these ν we apply Lemma 3.4 (with σ, T replaced by 1/5, (γω(ν,σ)#µ4/σ#Tν) B3) and
infer

sup
Cσ/5∩spt(γω(ν,σ)#Tν)

|Xn+1| = sup
C4/5∩spt(γω(ν,σ)#µ4/σ#Tν)

σ

4
|Xn+1|

≤ σ

4

√
C13C1452n+1

(
EC(γω(ν,σ)#Tν,

σ

4
) +

σ

4
(κν + Aν)

)
≤ C39mνσ.
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With this, we now prove the bound on fi and gj.
To be able to jump between V and W, we
define for y ∈ Rn the map y 7→ ȳ :=
(y1, . . . , yn−1,−yn). Denote by v(ν)i and w(ν)

j the
maps whose Φν-graphs form the spt(Tν) as
in Definition 4.1. By the previous inequality
and (7.2), we can bound for infintely many
ν, arbitrary 0 < τ < 1, i ∈ {1, . . . , m} and
j ∈ {1, . . . , m− 1}

spt(γω(ν,σ)#T )

2C74mνσ

xn

xn+1

∣∣v(ν)i (y) + w(ν)
j (ȳ)

∣∣ ≤ 2C39mνσ for y ∈ Vτ ∩ Bn
σ/5(0).

Consider now any 0 6= y ∈ V ∩ Bn
1/60(0). Then let σ := 5|y| ≤ 1/12. The previous

bounds imply that ∣∣∣∣∣∣v
(ν)
i (y)
mν

+
w(ν)

j (ȳ)

mν

∣∣∣∣∣∣ ≤ 2C39σ = 10C39|y|

for infintely many ν. Hence, by local uniform convergence,

| fi(y) + gj(ȳ)| ≤ 10C39|y| for y ∈ V∩ Bn
1/60(0). (7.5)

Moreover, by (4.1), for y ∈ V∩
(
Bn

ρ(0) \ Bn
1/60(0)

)
, i ∈ {1, . . . , m} and j ∈ {1, . . . , m−

1}, the following holds

| fi(y)|2 + |gj(ȳ)|2 ≤
4C13C14

(1− ρ)2n+1 (60|y|)2. (7.6)

Now, we define the following auxiliary functions

h : Bn
1(0)→ R, h(y) =


∑m

i=1 fi(y), for y ∈ V

∑m−1
j=1 gj(y), for y ∈W

0, for y ∈ L

,

H : Bn
1(0)→ R, H(y) = h(y)− h(ȳ).

By Lemma 5.1, these two functions have locally square integrable weak gradients.
Moreover, H is odd in the n-th variable and H|V∪W is harmonic. The weak version of
the Schwarz reflection principle implies that H is harmonic on all Bn

1(0). Therefore, the
following holds for all 0 < ρ < 1

sup
Bn

ρ (0)

|H(y)|
|y| < ∞. (7.7)
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Notice that for y ∈ V, we can write

fi(y) = H(y)−
i−1

∑
k=1

(
fk(y) + gk(ȳ)

)
−

m

∑
k=i+1

(
fk(y) + gk−1(ȳ)

)
,

gj(ȳ) =
(

f1(y) + gj(ȳ)
)
− f1(y).

(7.5), (7.6) and (7.7) then imply the lemma.

Now, we are ready to prove that all harmonic blowups coincide even if they are not
linear. The definition of the homogeneous blow-up of the harmonic blow-ups and the
estimate in Theorem 3.2(v.) will imply that they are linear, and hence, coincide with
each other. Then we will use the E.Hopf boundary point Lemma for harmonic functions
to deduce that also the harmonic blow-ups need to coincide themselves.

Theorem 7.2. Let {(Tν,Mν)}ν≥1 ⊂ T be a blowup sequence with harmonic blowups fi, gj.
Then

(i.) f1 = · · · = fm and g1 = · · · = gm−1.

(ii.) The functions

f : V∪ L→ R, y 7→

 f1(y), for y ∈ V

0, for y ∈ L

g : W∪ L→ R, y 7→

g1(y), for y ∈W

0, for y ∈ L

are C2.

(iii.) D f (0) = Dg(0).

Proof. We first blow fi, gj up and show the equality of these limiting functions. Then
we deduce that also the fi, gj coincide.

Let i ∈ {1, . . . , m}, j ∈ {1, . . . , m− 1}, 4 ≤ ρ < ∞ and define the functions f (ρ)i :=

ρ fi(
·
ρ ) and g(ρ)j := ρgj(

·
ρ ). Then f (ρ)i and g(ρ)j are harmonic and by Lemma 7.1 uniformly

bounded.
Indeed, for all 4 ≤ ρ < ∞

sup
V
| f (ρ)i | = ρ sup

V

∣∣∣∣ fi

(y
ρ

)∣∣∣∣ = ρ sup
V∩Bn

1/ρ(0)

| fi| ≤ sup
V∩Bn

1/ρ(0)

| fi(y)|
|y| ≤ sup

V∩Bn
1/4(0)

| fi(y)|
|y| < ∞.
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Then [25, Theorem 2.11] implies that, up to subsequence, they converge pointwise to
a harmonic function. This means, there exist a strictly increasing sequence ρk → ∞
as k→ ∞ and harmonic functions f ∗1 , . . . , f ∗m on V, g∗1 , . . . , g∗m−1 on W such that for all
i ∈ {1, . . . , m}, j ∈ {1, . . . , m− 1}

lim
k→∞

f (ρk)
i (y) = f ∗i (y) and lim

k→∞
D f (ρk)

i (y) = D f ∗i (y) for y ∈ V,

lim
k→∞

g(ρk)
j (y) = g∗j (y) and lim

k→∞
Dg(ρk)

j (y) = Dg∗j (y) for y ∈W.

We want to deduce their equality by using Lemma 5.4. To do so, we first must show
that f ∗i , g∗j are of the form βYn for some β ∈ R. A sufficient condition for this is the

following identity
∂

∂r
f ∗i (y)
|y| = 0 =

∂

∂r
g∗i (ȳ)
|ȳ| , as we have seen in the proof of Theorem

6.3. By Theorem 3.2(v.), we have

∫
V

(
∂

∂r
fi(y)
|y|

)2

|y|2−ndLn(y) +
∫

W

(
∂

∂r
gj(y)
|y|

)2

|y|2−ndLn(y) ≤ 2n+5C40 < ∞,

and hence, Fatou’s Lemma implies that

∫
V

(
∂

∂r
f ∗i (y)
|y|

)2

|y|2−ndLn(y) +
∫

W

(
∂

∂r

g∗j (y)

|y|

)2

|y|2−ndLn(y)

≤ lim inf
k→∞

∫
V

(
∂

∂r
f (ρk)
i (y)
|y|

)2

|y|2−ndLn(y) +
∫

W

 ∂

∂r

g(ρk)
j (y)

|y|

2

|y|2−ndLn(y)


≤ lim inf

k→∞

( ∫
V∩Bn

1/ρk
(0)

(
∂

∂r
fi(y)
|y|

)2

|y|2−ndLn(y)

+
∫

W∩Bn
1/ρk

(0)

(
∂

∂r
gj(y)
|y|

)2

|y|2−ndLn(y)

)
= 0.

Therefore, there exist real numbers β1 ≤ · · · ≤ βm, γ1 ≥ · · · ≥ γm−1 such that
f ∗i = βi Yn|V, g∗j = γj Yn|W . Now, we show that all these numbers coincide.
This must hold by Lemma 5.4, if we find a blowup sequence whose associated harmonic
blowups are exactly f ∗i , g∗j . For k ∈N, k ≥ 1, we define

Sk
ν := (µρk Tν) B3.
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Then there is an N > 0 such that for ν ≥ N the following holds EC(Tν, 1) + κν + Aν ≤
1

C20
and hence, by Remark 4.4, (Sk

ν, µρk(Mν)) ∈ T . Moreover, by Definition 4.1(iv.), (v.)
for all i ∈ {1, . . . , m}, j ∈ {1, . . . , m− 1} we have

lim
ν→∞

vSk
ν

i
mν

= f (ρk)
i on compact subsets of V,

lim
ν→∞

wSk
ν

j

mν
= g(ρk)

j on compact subsets of W.

We choose now for every k an νk ≥ max{N, k} satisfying the following three properties:

1. max
{

sup
V∩B1/2

∣∣ f (ρk)
1

∣∣, sup
V∩B1/2

∣∣ f (ρk)
m
∣∣, sup

W∩B1/2

∣∣g(ρk)
1

∣∣, sup
W∩B1/2

∣∣g(ρk)
m−1

∣∣}

≤ sup
C1/2∩sptSk

νk

|Xn+1|
mνk

+
1
k

.

2. sup
C3/2∩spt(Sk

νk
)

|Xn+1|
mνk

≤ 3 max
{

sup
V

∣∣ f (ρk/3)
1

∣∣ , sup
V

∣∣ f (ρk/3)
m

∣∣ , sup
W

∣∣g(ρk/3)
1

∣∣ , sup
W

∣∣g(ρk/3)
m−1

∣∣}+
1
k

.

This is possible by Lemma 5.3, where {(Tν,Mν)}ν≥1, a, σ are replaced by
{(µρk/3#Tνk , µρk/3(Mνk)}k≥1, 0, 1/2) and because

sup
C3/2∩spt(Sk

νk
)

|Xn+1|
mνk

= sup
C1/2∩spt(µ1/3#Sk

νk
)

3
|Xn+1|
mνk

= 3 sup
C1/2∩spt(µρk/3#Tk

νk
)

|Xn+1|
mνk

.

3. We define the (blowup) sequence {(S∗k ,M∗
k )}k≥1 by S∗k := Sk

νk
and M∗

k :=
µρk(Mνk) and notice

lim
k→∞

vS∗k
i
mνk

= f ∗i and lim
k→∞

wS∗k
j

mνk

= g∗j . (7.8)

If all f ∗i , g∗j vanish, then also 0 = β1 = · · · = βm = γ1 = · · · = γm−1. If not, we want
to see whether {S∗k}k≥1 is a blowup sequence to f ∗i , g∗j . Hence, we aim for (7.8) with
mνk replaced by mS∗k . Therefore, we shall compare these two quantities. First, we notice
that by Remark 4.4,

0 ≤
κS∗k + AM∗

k

m2
νk

≤ κνk + Aνk

ρkm
2
νk

→ 0 as k→ ∞.
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Then by Lemmas 3.3 and 3.4 (with T,M, σ replaced by S∗k ,M∗
k 1/2) and the conditions

1. and 2., it follows that

lim sup
k→∞

EC(S∗k , 1)
m2

νk

≤ lim sup
k→∞

4C10

(
C11

m2
νk

sup
C3/2∩spt(S∗k )

X2
n+1 +

κS∗k + AM∗
k

m2
νk

)
≤ 36C10C11 max

{
sup

V
( f ∗i )

2, sup
W

(g∗j )
2 : i, j

}
,

lim inf
k→∞

EC(S∗k , 1)
m2

νk

≥ lim inf
k→∞

(
1

22n+1C13C14
sup

C1/2∩spt(S∗k )

X2
n+1

m2
νk

−
κS∗k + AM∗

k

m2
νk

)

≥ 1
22n+1C13C14

max
{

sup
V

( f ∗i )
2, sup

W
(g∗j )

2 : i, j
}

.

Hence,

0 < lim inf
k→∞

max
{

EC(S∗k , 1), A1/2
S∗k

}
m2

νk

≤ lim sup
k→∞

max
{

EC(S∗k , 1), A1/2
S∗k

}
m2

νk

< ∞,

and we can find a subsequence {(S∗kl
,M∗

kl
)}l≥1 which is a blowup sequence and whose

associated harmonic blowups are γ f ∗i , γg∗j for some fixed γ ∈ R by (7.8). As they are
of the form as in Lemma 5.4 it follows that there is a β ∈ R satisfying

f ∗1 = · · · = f ∗m = β Yn|V and g∗1 = · · · = g∗m−1 = β Yn|W .

From this, we want to deduce that also f1 = · · · = fm and g1 = · · · = gm−1. Notice that
f1 − fm and g1 − gm−1 are nonpositive and harmonic functions. By Lemma 5.1, fi and
gj have zero trace on L. Hence,

sup
V

( f1 − fm) = 0 = sup
W

(g1 − gm−1).

Moreover, the E. Hopf boundary point Lemma [25, Lemma 3.4] implies that if y0 ∈ L
is a strict maximum point, then the outer normal derivative at y0 (if it exists) must be
positive. But at zero, the following holds

∂( f1 − fm)

∂ν
(0) = lim

t↓0
( f1 − fm)(0, . . . , 0, t)

t
= ( f ∗1 − f ∗m)(0, . . . , 0, 1) = 0,

∂(g1 − gm−1)

∂ν
(0) = lim

t↓0
(g1 − gm−1)(0, . . . , 0,−t)

t
= (g∗1 − g∗m−1)(0, . . . , 0,−1) = 0.

Hence, 0 is not a strict maximum point and there must be a point in V (W respectively)
reaching 0 (i.e. the maximum) as well. Then [25, Theorem 3.5] implies that f1 − fm, and
g1 − gm−1 must be constant. In fact, by the vanishing trace, f1 − fm = 0 = g1 − gm−1.
Therefore, (i.) must hold. Also by the vanishing trace and weak version of the Schwarz
reflection principle, there are harmonic functions f ∈ C2(V ∩ L), g ∈ C2(W ∪ L)
satisfying (ii.) and (iii.).



54 coincidence of the harmonic sheets

Remark 7.3. Let f , g denote harmonic blow-ups as in Theorem 7.2(ii.). Then there are
constants C41, C18 such that

(i.) |D f (0)| = |Dg(0)| ≤ C41 min

{√∫
V∩Bn

1/2(0)
| f |2dLn,

√∫
W∩Bn

1/2(0)
|g|2dLn

}
≤ C18.

(ii.) For all y ∈ Bn
1/4(0) the following holds

| f (y)− y · D f (0)| ≤ C41|y|2
√∫

V∩Bn
1/2(0)

| f |2dLn ≤ C18|y|2.

(iii.) For all y ∈ Bn
1/4(0) the following holds

|g(y)− y · Dg(0)| ≤ C41|y|2
√∫

W∩Bn
1/2(0)

|g|2dLn ≤ C18|y|2.

Proof. (i.) By the Schwarz reflection principle, we can extend f to an harmonic function
f̃ defined on Bn

1/2(0). Then by the interior estimates for harmonic functions [25, Theorem
2.10], the mean value property and Hölder’s inequality, it follows that

|D f (0)| ≤ 8n sup
Bn

1/4

| f̃ | ≤ 8n
2n

ωn

∫
Bn

1/2

| f̃ |dLn ≤ 8n
(

2n

ωn

)2
√∫

Bn
1/2

| f |2dLn.

Moreover, by Lemma 3.4(ii.) (with σ replaced by 1/2) and Definition 4.1(iii.), this
integral is bounded by 2n+1C14. The same holds for g.
(ii.) By the Taylor formula, | f (y)− y · D f (0)| ≤ C|D2 f (0)||y|2. Also by [25, Theorem

2.10], the following holds

|D2 f (0)| ≤ n2

16
sup
Bn

1/4

| f̃ |.

The inequalities follow then as in (i.).
(iii.) Similar to (ii.).



8
E X C E S S D E C AY

With the C2 functions from Theorem 7.2, we prove the following inequalities of the
excess. We will use them to prove Theorem 4.2 by constructing inductively a sequence
of currents which will show that the excess of the (slightly rotated) original current
decays at most proportional to the radius.

Theorem 8.1. Let (T,M) ∈ T and define θ :=
(
C21(1 + C18)

)−2 (see Remarks 4.5(iii.) and
7.3). There is a constant C19 ≥ 1 such that if T fulfils max{EC(T, 1), C19κT,

√
A} ≤ 1

C19
, then

there is a real number ω satisfying

|ω|2 ≤ C2
18 max

{
EC(T, 1),

√
A
}

and EC(γω#T, θ) ≤ θ max
{

EC(T, 1), C19κT,
√

A
}

.

Proof. We argue by contradiction. If the theorem did not hold, then there would be a
sequence {(Tν,Mν)}ν≥1 ⊂ T such that for all |ω| ≤ C18mν the following holds

max{ε2
ν,
√

Aν, νκν} ≤
1
ν

, (8.1)

EC(γω#Tν, θ) > θ max{ε2
ν,
√

Aν, νκν}, (8.2)

where εν :=
√

EC(Tν, 1), κν := κTν and Aν := AMν
. Notice that by the monotonicity of

the excess (3.1), the condition (8.2) (with ω = 0) implies

θνκν ≤ θ max{EC(Tν, 1),
√

Aν, νκν} < EC(Tν, θ) ≤ ε2
ν

θn .

Hence, by (8.1), we can assume that

ε2
ν +

κν

ε2
ν

+ Aν <
2
ν
+

1
νθn+1 .

Therefore, we notice that as in (4.2), {(Tν,Mν)}ν≥1 is, up to subsequence, a blowup
sequence with associated harmonic blowups fi, gj. Let f , g denote the C2-functions

as in Theorem 7.2(ii.). As they vanish on L, for every 0 < σ < 1 the functions ε−1
ν v(ν)i ,

ε−1
ν w(ν)

j converge uniformly on Vσ, Wσ. Thus, we derive from Lemma 5.3 that

lim sup
ν→∞

sup
C1/2∩p−1(V)∩spt(Tν)

∣∣∣Xn+1

mν
− f ◦ p

∣∣∣ = 0,

lim sup
ν→∞

sup
C1/2∩p−1(W)∩spt(Tν)

∣∣∣Xn+1

mν
− g ◦ p

∣∣∣ = 0.
(8.3)

55
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From Remark 7.3 and the proof of Theorem 7.2, we deduce the existence of some
β ∈ [−C18, C18] satisfying D f (0) = (0, . . . , 0, β) = Dg(0). Therefore, by applying
Remark 7.3(ii.), (iii.), it follows∣∣ f (x)− βxn

∣∣ = ∣∣ f (x)− xD f (0)
∣∣ ≤ C18|x|2 for x ∈ V∩ Bn

1/4(0),∣∣g(x)− βxn
∣∣ = ∣∣g(x)− xDg(0)

∣∣ ≤ C18|x|2 for x ∈W∩ Bn
1/4(0).

(8.4)

Then we rotate the currents such that the new differential vanishes. Indeed, let ων :=
arctan(βmν). Then

|ων| ≤ |β|mν ≤ C18mν. (8.5)

Consider now Sν := (µ1/θ#γων#Tν) B3 and M̃ν := µ1/θ/Mν). By (8.1), the assump-
tions of Remark 4.5(iii.) are fulfilled for ν large enough, and hence, (Sν,M̃ν) ∈ T
and

κSν
≤ θκν, AM̃ν

≤ θAν. (8.6)

By (8.3), (8.4) and the Remark 7.3(ii.), (iii.), it follows

lim sup
ν→∞

sup
C2∩spt(Sν)

∣∣∣∣Xn+1

mν

∣∣∣∣ ≤ lim sup
ν→∞

sup
C3∩spt(µ1/θ#Tν)

∣∣∣Xn+1

mν
− βXn

∣∣∣
≤ 1

θ
lim sup

ν→∞
sup

C3θ∩spt(Tν)

∣∣∣Xn+1

mν
− βXn

∣∣∣
≤ 1

θ
lim sup

ν→∞

(
sup

C3θ∩V
∩spt(Tν)

| f ◦ p− βYn|+ sup
C3θ∩W
∩spt(Tν)

|g ◦ p− βYn|
)

≤ 1
θ

C18
(
(3θ)2 + (3θ)2)

= 18C18θ.

Together with Lemma 3.3 (with σ ↑ 1 and T replaced by Sν), (8.6) and Definition
4.1(iii.), we yield

lim sup
ν→∞

EC(γων#Tν, θ)

m2
ν

= lim sup
ν→∞

EC(Sν, 1)
m2

ν

≤ lim sup
ν→∞

C10

(
C11 supC2∩spt(Sν)

X2
n+1

m2
ν

+
κSν

+ AM̃ν

m2
ν

)

≤ C10

(
C11 lim sup

ν→∞
sup

C2∩spt(Sν)

X2
n+1

m2
ν

+ θ lim sup
ν→∞

κν + Aν

m2
ν

)
≤ (18)2C10C11C2

18θ2

< θ.

As ων is bounded (see (8.5)), the latter inequality contradicts (8.2) for ν large enough.
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8.1 proof of theorem 4 .2

Proof. We construct a sequence of currents {(Tν,Mν)}ν∈N ⊂ T and real numbers
{ων}ν≥1 inductively. We start with (T0,M0) := (T,M). Assume that for some fixed j ∈
N, we already have (Tj,Mj) ∈ T . Denote by Aj;= AMj and mj := max{

√
EC(Tj, 1), A1/4

j }.
By Theorem 8.1, there is a real number |ωj+1| ≤ C18mj such that if we define

Tj+1 := (µ1/θ#γωj+1#Tj) B3 and Mj+1 := µ1/θ(Mj)

then (Tj+1,Mj+1) ∈ T and by Remark 4.5(iii.)

max
{

EC(Tj+1, 1), Aj+1, C19κTj+1

}
≤ θ max

{
EC(Tj, 1), Aj, C19κTj

}
.

Using this inequality j times, we deduce

max
{

EC(Tj+1, 1), Aj, C19κTj+1

}
≤ θ j+1 max

{
EC(T, 1), A, C19κT

}
≤ θ j+2

C19
.

Moreover, the following holds

|ωj+1| ≤ C18

√
θ j+1

C19
, (8.7)

EC(Tj, 1) + κTj + Aj ≤ 3 max
{

EC(Tj, 1), Aj, κTj

}
≤ 3

θ j+1

C19
. (8.8)

Then we define ηj :=
j

∑
k=1

ωk and η := lim
j→∞

ηj. This is a valid choice for η as (8.7) and the

fact that θ1/2 ≤ 1/2 implies

|η| ≤ C18

∞

∑
k=1

√
θk

C19
=

C18√
C19

∞

∑
k=1

(θ1/2)k =
C18√
C19

θ1/2

1− θ1/2 ≤ 2
C18√
C19

θ1/2.

Fix 0 < r < θ/4 and choose an appropriate j ∈ N such that θ j+1 ≤ 4r < θ j. Then we
use the inequalities (8.7), (8.8) together with (a.28) from the proof of Remark 4.5(iii.)
(with T,M, ω replaced by Tj,Mj, η − ηj) and the excess monotonicity (3.1) to derive

EC(γη#T, r) ≤
(

θ j

4r

)n

EC
(
γη#T,

θ j

4
)
≤ θ−nEC

(
γη#T,

θ j

4
)

= θ−nEC
(
µ4#γη#T, θ j)

= θ−nEC
(
γηj#µ4#γη−ηj#T, θ j)

= θ−nEC
(
µ(1/θ)j#γηj#µ4#γη−ηj#T, 1

)
= θ−nEC

(
µ4#γη−ηj#Tj, 1

)
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and

θ−nEC
(
µ4#γη−ηj#Tj, 1

)
≤ θ−n C21

C20

(( ∞

∑
k=j+1

ωk

)2
+ EC(Tj, 1) + κTj + Aj

)

≤ θ−n C21

C20

(
∞

∑
k=j+1

ω2
k + 3

θ j+1

C19

)

≤ θ−n C21

C20

(
C2

18
C19

θ j+1

1− θ
+ 3

θ j+1

C19

)
≤ θ−n C21

C20

3(C2
18 + 1)
C19

θ j+1

≤ θ−n C21

C20

3(C2
18 + 1)
C19

(4r)

≤ θ−n−1

C19
r.
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T H E B O U N D A RY R E G U L A R I T Y T H E O R E M

Theorem 9.1. Let U ⊂ Rn+k be open and T an n-dimensional locally rectifiable current in U
that is area minimizing in some smooth (n + 1)-manifoldM and such that ∂T is an oriented
C2 submanifold of U. Then for any point a ∈ spt(∂T), there is a neighborhood V of a in U
satisfying that V ∩ spt(T) is an embedded C1, 1

4 submanifold with boundary.

Hardt and Simon found out, that it is enough to consider currents whose tangent
cones at boundary are in fact a tangent planes. Once we have this tangent plane, we
can parametrize the support of the current with graphs over the plane.

Lemma 9.2. Let Q ∈ Rloc
n (Rn+1) be an absolutely area minimizing cone with ∂Q = En−1 ×

δ0 × δ0. Then, the support of Q is contained in a hyperplane.

Proof. This can be read in the original paper [27, Theorem 11.1, Step II].

Lemma 9.3. Let U, T and M be as in Theorem 9.1 and assume further that for every
a ∈ spt(∂T), there is a tangent cone C at a such that spt(C) is contained in a hyperplane. Then
for any point a ∈ spt(∂T), there is a neighborhood V of a in U satisfying that V ∩ spt(T) is
an embedded C1, 1

4 submanifold with boundary.

Proof. After some translation, reflection and rotation, we can assume wlog that a = 0
and the hyperplane is {(y, 0) : y ∈ Rn} ⊂ Rn+k. Hence, for m = Θn(‖T‖, 0) + 1

2 ∈N,(
m
(
En {y ∈ Rn : yn > 0}

)
+ (m− 1)

(
En {y ∈ Rn : yn < 0}

))
× δ0

is an oriented tangent cone of T at 0 by [23, 4.1.31(2)]. Therefore, we find a nullsequence
{rk}k≥1 ⊂ R+ such that µ1/rk#T converges in Rloc

n (Rn+k) to this cone as k → ∞.
Moreover, we assume that for every k we have 3rk < dist(0, ∂U). Then it follows that

lim
k→∞

sup
Brk∩spt(T)

Xn+1

rk
= lim

k→∞
sup

B1∩spt(µ1/rk#T)
Xn+1 = 0. (9.1)

By [23, Section 5.4.2], also the associated measures converge weakly and hence,

lim
k→∞

r−n
k M

(
T (B3rk ∩Crk)

)
= lim

k→∞
M
(
(µ1/rk#T) (B3 ∩C1)

)
= mLn(V) + (m− 1)Ln(W) = (m− 1

2
)ωn,

59
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which implies that

lim
k→∞

∣∣∣∣r−n
k M

(
p#
(
T (B3rk ∩Crk)

))
− (m− 1

2
)ωn

∣∣∣∣
≤ lim

k→∞

∣∣M(
p#
(
(µ1/rk#T) (B3 ∩C1)

))
−M

(
(µ1/rk#T) (B3 ∩C1)

)∣∣
= 0,

where we also have used (9.1).
Thus, if we define Tk := (µ1/rk#T) B3 andMk := µ1/rk(M), then for k large enough,
we have (Tk,Mk) ∈ T and

max
{

EC(Tk, 1), C19κTk , Ak
}
≤ θ

C19
.

Then we can apply Theorem 4.2 (with T replaced by Tk) and notice that we can choose
η to be zero, to find the decay

EC(Tk, r) ≤ θ−n−1

C19
r.

Now, we differ between two cases.
Case 1: m = 1. This is a corollary of Allard’s interior regularity theorem. However, a
self-contained proof could be given from the results of the previous chapters. Observe
first that, by Corollary 4.3, in a sufficiently small neighborhood of x, the current T is
supported in the Φ-graph of ṽ1 and so we can assume, wlog, that spt(T) \ spt(∂T) is
connected. By the Constancy Lemma, it follows that the density Θ is an an integer
constant k at every interior point of such neighborhood. So the current is actually k
times the one induced by the Φ-graph of ṽ1. However, since the boundary of T is a
current with multiplicity 1 we easily conclude that k is actually 1. The current T is
thus the current induced by the Φ-graph of the C1, 1

4 function ṽ1. Notice that there is a
neighborhood U of 0 such that Θn(‖T‖, y) = 1

2 for all y ∈ U ∩ spt(∂T).
Case 2: m > 1. We fix k and use Corollary 4.3 with γη#T replaced by Tk. Hence, we

get functions ṽi, w̃j whose Φ-graphs around zero form spt(Tk). Moreover, we know
that Dṽi(0) = 0 = Dw̃j. Hence, similar to the proof of Theorem 7.2, by the E. Hopf
boundary point Lemma for quasilinear equations [30, Theorem 2.7.1], we deduce that
ṽm − ṽ1 ≡ 0 ≡ w̃m−1 − w̃1. Therefore, they all coincide.

Notice that the regular points of

Brk ∩ (spt(T) \ spt(∂T)) = µrk

(
B1∩ (spt(Tk) \ spt(∂Tk))

)
⊇ µrk

(
graph(ṽ1)∪ (graph(w̃1)

)
consist of at least two connected components. Let G denote that component of the
regular points containing µrk

(
graph(ṽ1)

)
and consider

S :=
1
m
(T G).



the boundary regularity theorem 61

Notice that by [23, 4.1.31(2)], the density Θ(‖T‖, x) is constantly m for all x ∈ G.
We will show later that on some open neighborhood V of 0 in U, we have that
spt(T) = spt(T− S), T− S has no boundary in W and then, we apply interior regularity
theory.
First notice that as T, S are area minimizing inM and ‖T‖ = ‖S‖+ ‖T − S‖ holds, is
follows that T − S is also area minimizingM.
Then, we denote W := Brk ∩Cδrk , where δ is as in Corollary 4.3, and aim to show that

(∂S) W = (∂T) W. (9.2)

Notice that
spt(∂S) ⊂ spt

(
(∂T) G

)
∪ spt

(
T (∂G)

)
and hence,

spt
(
(∂S) W

)
⊂ spt

(
(∂T) W

)
∪ spt

(
T (∂G ∩W)

)
= spt

(
(∂T) W

)
.

Moreover, we can use the Constancy Theorem [23, Section 4.1.7] to derive

p#
(
(∂S) W

)
=
(

∂
( 1

m
p#
(
T (G ∩W)

)))
p(W)

=
(

∂
(
En {rky ∈ p(W) : yn > ϕTk(y1, . . . , yn−1)}

)
p(W)

=
(
∂
(
p#(T W)

))
p(W)

= p#
(
(∂T) W

)
.

As the map p|spt((∂T) W) is a C2-diffeomorphism, (9.2) must hold. Then T − S has no
boundary in W and by (9.1), a tangent cone of T − S at 0 is contained in X−1

n+1(0).
Therefore, we can apply [23, Theorem 5.3.18] to p#(T − S) and deduce that there is an
open neighborhood V of 0 in U such that

V ∩ spt(T) = V ∩ spt(T − S)

is a smooth embedded submanifold ofM.

Putting the previous two lemmas together, we deduce the boundary regularity
theorem:

Proof of Theorem 9.1. Let a ∈ spt(∂T). Then by [9, Theorem 3.6], T has an absolutely area
minimizing tangent cone Q ∈ Rloc

n (TaM) at a. After some rotation, we can assume that
∂Q = (−1)nEn−1 × δ0 × δ0. By Lemma 9.2, the cone is contained in some hyperplane
and by Lemma 9.3, we conclude that T is regular at a.
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C O N V E X H U L L P R O P E RT Y A N D L O C A L S TAT E M E N T

We start recalling the following well known fact:

Proposition 10.1. Assume T is an area minimizing m-dimensional current in Rm+n with
spt(∂T) compact. Then spt(T) is contained in the convex hull of spt(∂T).

Proof. The statement can be concluded from much stronger ones, for instance we can
use that ‖T‖ is an integral stationary varifold in Rm+n \ spt(T) and invoke [33, Theorem
19.2].

We then take advantage of a simple and elementary fact which combines the regular-
ity of Γ with the uniform convexity of the barrier Ω. We will state this fact in higher
generality than we actually need in this manuscript.

Definition 10.2. First of all, given an (m− 1)-dimensional plane V ⊂ Rm+n we denote
by pV the orthonogonal projection onto V. Given additionally a unit vector ν normal to
V and an angle ϑ ∈ (0, π

2 ) we then define the wedge with spine V, axis ν and opening
angle ϑ as the set

W(V, ν, ϑ) :=
{

y : |y− pV(y)− (y · ν)ν| ≤ (tan ϑ)y · ν
}

. (10.1)

Figure 1: An illustration of the wedge where V is the tangent TqΓ to Γ at some boundary point
q, whereas ν the interior unit normal ν(q) to the convex barrier Ω at q.

In particular we have the following lemma.

65
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Lemma 10.3. Let Ω ⊂ Rm+n be a C2 bounded open set with uniformly convex boundary and
Γ a C2 (m− 1)-dimensional submanifold of Ω without boundary. Then there is a 0 < ϑ < π

2
(which depends only on Γ and Ω) such that the convex hull of Γ satisfies

ch (Γ) ⊂
⋂
q∈Γ

(q + W(TqΓ, ν(q), ϑ)) .

We postpone the proof of the lemma to the end of the section Using Proposition 10.1
and Lemma 10.3 we can reduce Theorem 1.7 to a suitable local statement. In particular
we will replace Assumption 1.6 with the following one:

Assumptions 10.4. Q ≥ 1 is an arbitrary integer and ϑ a given positive real number smaller
than π

2 . Γ is a C3,α arc in U = B1(0) ⊂ R2+n with endpoints lying in ∂B1(0)1. Moreover
ν : Γ → Sn+1 is a C2,α map such that ν(q) ⊥ TqΓ. T is a 2-dimensional area-minimizing
integral current in U such that:

(∂T) U = Q JΓK , (10.2)

spt(T) ⊂
⋂
q∈Γ

(q + W(TqΓ, ν(q), ϑ)) . (10.3)

Moreover,

A := ‖κ‖L∞ + ‖ν̇‖L∞ ≤ 1 , (10.4)

where κ denotes the curvature of Γ and ν̇ is the derivative, in the arclength parametrization, of
ν.

Theorem 10.5. Let Γ and T be as in Assumption 10.4. Then Singb(T) is empty.

Proof of Lemma 10.3. Since q + W(V, ν, ϑ) is a convex set, we just need to show the
existence of a 0 < ϑ < π

2 such that Γ ⊂ (q + W(TqΓ, ν, ϑ)) for every q ∈ Γ. The latter is
equivalent to show the existence of a constant C > 0 such that

|(p− q)− ((p− q) · ν(q))ν(q)− pV(p− q)| ≤ C((p− q) · ν(q)) ∀p, q ∈ Γ . (10.5)

The strict convexity of ∂Ω ensures that for every ε > 0 there is a constant C such that
(10.5) holds if additionally |p− q| ≥ ε. Thus we just have to show the inequality for a
sufficiently small ε. In order to do that, fix q and assume w.l.o.g. that it is the origin,
while at the same time we assume that TqΓ = T0Γ = {xm = . . . = xm+n = 0} and
ν = ∂

∂xm+n
. We will use accordingly the coordinates (y, z, w), with y ∈ Rm−1, z ∈ Rn,

and w ∈ R. By the C2 regularity of Ω and Γ, in a sufficiently small ball Bε(q) = Bε(0)
the points p in Γ are described by

p = (y, z, w) = (y, f (y), g(y, f (y))) (10.6)

1 I.e. Γ = γ̂([0, 1]) where γ̂ : [0, 1]→ B1(0) is a C3,α diffeomorphism onto its image.



convex hull property and local statement 67

for some f and g which are C2 functions. Observe that f (0) = 0, D f (0) = 0, g(0) = 0,
and Dg(0) = 0. Moreover ‖D2 f ‖C0 ≤ C0 and D2g ≥ c0Id for constants c0 > 0 and C0,
which depend only on Γ and Ω. Similarly, the size of the radius ε in which the formula
(10.6) and the estimates are valid depends only on Ω and Γ and not on the choice of
the point q. Next, compute

((p− q) · ν(q)) = g(y, f (y)) ≥ c0(|y|2 + | f (y)|2) ≥ c0|y|2

and

|(p− q)− ((p− q) · ν(q))ν(q)− pV(p− q)| = | f (y)| ≤ C0|y|2 .

The desired inequality is then valid for C := C0
c0

.
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TA N G E N T C O N E S

We start recalling Allard’s boundary monotonicity formula. More specifically, we first
define

Definition 11.1. For every point p ∈ B1, we define the density of T at the point p

Θ(T, p) := lim
r↓0
‖T‖(Br(p))

πr2 ,

whenever the latter limit exists.

Next, we introduce the notation κ for the curvature of Γ and we consider the functions
Θi(T, p, r) and Θb(T, p, r) given by

Θi(T, p, r) :=
‖T‖(Br(p))

πr2 , (11.1)

Θb(T, p, r) := exp (C0‖κ‖0r)
‖T‖(Br(p))

πr2 , (11.2)

where C0 = C0(n) is a suitably large constant.

Theorem 11.2. Let T be as in Assumption 10.4.

(a) If p ∈ B1 \ Γ, then r 7→ Θi(T, p, r) is monotone on (0, min{dist(p, Γ), 1− |p|}),

(b) if p ∈ B1 ∩ Γ, then r 7→ Θb(T, p, r) is monotone on (0, 1− |p|).
Thus the density exists at every point of B1. Moreover, the restrictions of the map p 7→ Θ(T, p)
to Γ ∩ B1 and to B1 \ Γ are both upper semicontinuous.

If X ∈ C1
c (B1, R2+n), then the first variation of T with respect to X satisfies

δT(X) = Q
∫

Γ
X ·~n(x) dH1(x) (11.3)

where ~n is a Borel vector field with |~n| ≤ 1.
Moreover, if p ∈ Γ and 0 < s < r < 1− |p|, we then have the following precise monotonicity

identity

r−2‖T‖(Br(p))− s−2‖T‖(Bs(p))−
∫

Br(p)\Bs(p)

|(x− p)⊥|2
|x− p|4 d‖T‖(x)

= Q
∫ r

s

∫
Γ∩Bρ(p)

(x− p) ·~n(x) dH1(x) dρ , (11.4)

where Y⊥(x) denotes the component of the vector Y(x) orthogonal to the tangent plane of T at
x (which is oriented by ~T(x)).
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Note that δT(X) = 0 for X ∈ C1
c (B1 \ Γ) follows in a straightforward way from the

minimality property of T. In particular ‖T‖ is a stationary integral varifold in B1 \ Γ
and (a) and (b) are consequences of the celebrated works of Allard, cf. [2] and [3]. Next
note that (11.3) follows from (11.4) arguing, for instance, as in [7] for [7, Eq. (31)] (see [2,
3] as well). Coming to (11.3), note first that the derivation of [21, (3.8)] is valid under our
assumptions, with the additional information δT = δTs (following the terminology and
notation of [21, Section 3]). We then just need to show that ‖δTs‖ ≤ Q · H1 Γ. The latter
follows easily arguing as in [21, Section 3.4] once we have shown that Θ(T, p) = Q

2 at
every p ∈ Γ, see below.

As in [21, Section 3] we introduce the following notation and terminology.

Definition 11.3. Fix a point p ∈ spt(T) and define for all r > 0

ιp,r(q) :=
q− p

r
.

We denote by Tp,r the currents

Tp,r := (ιp,r)]T .

We call the current Tp,r the blow up at the point p and scale r of T. Let T0 be a current
such that there exists a sequence rk → 0 of radii such that Tp,rk → T0, we say that T0 is
a tangent cone to T at p.

We recall the following consequence of the Allard’s monotonicity formula, cf. [3].

Theorem 11.4. Let T be as in Assumption 10.4 or as in Theorem 1.4. Fix p ∈ spt(T) and take
any sequence rk ↓ 0. Up to subsequences Tp,rk is converging locally in the sense of currents to
an area-minimizing integral current T0

(a) T0 is a cone with vertex 0 and ‖T0‖(B1(0)) = πΘ(T, p);

(b) if p ∈ spt (T) \ Γ, then ∂T0 = 0;

(c) if p ∈ Γ, then ∂T0 = Q
q

TpΓ
y

.

Moreover ‖Tp,rk‖ converges, in the sense of measures, to ‖T0‖.

We next show the following elementary fact:

Theorem 11.5. Let T be as in Assumption 10.4 and p ∈ Γ. Any tangent cone T0 at p ∈ Γ has
then the following properties:

(a) spt(T0) is contained in W(TpΓ, ν(p), ϑ) (where ν(p) and ϑ are the vector and the
constant given in Assumption 10.4);



tangent cones 71

(b) There are k1, . . . kN ∈N\ {0} and 2-dimensional distinct oriented half-planes V1, . . . , VN

with ∂ JViK =
q

TpΓ
y

such that

T0 = ∑
i

ki JViK . (11.5)

Note in particular that 2Θ(T, p) = Q = ∑i ki, and thus 1 ≤ N ≤ Q.
Conclusion (b) holds under the assumptions of Theorem 1.4 provided we choose p sufficiently

close to q.

The first part of the theorem is in fact at the same time a particular case of a more
general theorem of Allard in higher dimensions (under Assumption 10.3) and of a
general classification of all 2-dimensional area-minimizing cones with ∂T0 = Q J`K,
where ` is a straight line, given [10]. In particular since point (a) is obvious, point
(b) is a direct corollary of [10, Proposition 4.1] and of (a). As for the second part of
the statement, observe that, by [10, Proposition 4.1], 2Θ(T, p) is always an integer
no smaller than Q. Recalling that Γ 3 p 7→ Θ(T, p) is upper semicontinuous, under
the assumptions of Theorem 1.4 we must necessarily have Θ(T, P) = Q

2 for every p
sufficiently close to q. Then conclusion (b) follows again from [10, Proposition 4.1].
Since it will be useful later, we introduce a notation for the cones as in (11.5).

Definition 11.6. Let ` ⊂ R2+n be a 1- dimensional line passing through the origin and
let Q ∈ N \ {0}. We denote by BQ(`) the set of area minimizing cones of the form
T = ∑N

i=1 ki JViK, for any finite collection of distinct half-planes Vi such that ∂ JViK = J`K
and any finite collection of positive integers {ki}N

i=1 such that ∑N
i=1 ki = Q. Moreover

we will call such cones open books.
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U N I Q U E N E S S O F TA N G E N T C O N E S A N D F I R S T
D E C O M P O S I T I O N

In this section we appeal to [10, Theorem 1.1], which follows the ideas of Hirsch and
Marini in [29], in order to claim that the tangent cone to T at p ∈ Γ is unique.

Theorem 12.1. Let T and Γ be as in Assumption 10.4. Then the tangent cone at each p ∈ Γ
is unique and from now on will be denoted by Tp,0. The same conclusion holds under the
assumptions of Theorem 1.4 provided q is sufficiently close to p.

In fact such a uniqueness theorem comes with a power-law decay (cf. [10, Theorem
2.1]), which in turn allows us to decompose the current at any point p ∈ Γ where the
tangent cone is not contained in a single half-plane. Before coming to its statement, we
introduce the following terminology.

Definition 12.2. Let T and Γ be as in Assumption 10.4. If the tangent cone Tp,0 to T at
p ∈ Γ is of the form Q JVK for some 2-dimensional half-plane V, then p is called a flat
boundary point.

Theorem 12.3 (Decomposition). Let T and Γ be:

• either as in Assumption 10.4,

• or either as in Theorem 1.4.

Assume that p ∈ Γ is not a flat boundary point and in the second case assume further that p is
sufficiently close to q. Then there is ρ > 0 with the following property. There are two positive
integers Q1 and Q2 and two area-minimizing currents T1 and T2 in Bρ(p) such that:

(a) T1 + T2 = T Bρ(p) (thus Q1 + Q2 = Q),

(b) ∂Ti Bρ(p) = Qi
q

Γ ∩ Bρ(p)
y

,

(c) spt(T1) ∩ spt(T2) = Γ ∩ Bρ(p),

(d) at each point q ∈ Bρ(p) the tangent cones to T1 and T2 have only the line TqΓ in common,
i.e., (T1)q,0 ∈ Cmin,Q1(TqΓ) and to (T2)q,0 ∈ Cmin,Q2(TqΓ).

At flat points we are not able to decompose the current further and in fact the final
byproduct of the regularity theory of this paper is that in a neighborhood of each flat
point, the current is supported in a single smooth minimal sheet. For the moment the
uniqueness of the tangent cones (and the corresponding decay from which we derive
it) allows us to draw the following conclusion.
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Theorem 12.4. Let T and Γ be as in Assumption 10.4 or as in Theorem 1.4. Assume that
p ∈ Γ is a flat boundary point, that Q JVK is the unique tangent cone of T at p, and, in the case
of Theorem 1.4 that p is sufficiently close to q. Let n(p) ∈ V be the unit normal to Γ at p and
define in a neighborhood of p

n(q) =
n(p)− n(p) · τ(q)τ(q)
|n(p)− n(p) · τ(q)τ(q)| (12.1)

where τ is the unit tangent vector to Γ orienting it.
Then, for every θ > 0 there is a ρ > 0 such that

spt(T) ∩ Bρ(p) ⊂
⋂

q∈Bρ(p)∩Γ

(q + W(TqΓ, n(q), θ)) . (12.2)

The previous two theorems allow us to reduce both Theorem 10.5 and Theorem 1.4
to the following simpler statement. We postpone the proof to Section 12.3.

Assumptions 12.5. Q ≥ 1 is an arbitrary integer and ϑ a given positive real number smaller
than π

2 . Γ is a C3,α arc in B1(0) ⊂ R2+n with endpoints lying in ∂B1(0). T is a 2-dimensional
area-minimizing integral current in U such that (∂T) U = Q JΓK. 0 ∈ Γ is a flat point, Q JVK
is the unique tangent cone to T at 0 and we let n be as in (12.1). Moreover

spt(T) ⊂
⋂

q∈B1(0)∩Γ

(q + W(TqΓ, n(q), ϑ)) , (12.3)

where ϑ is a small constant.

Theorem 12.6. Let T and Γ be as in Assumption 12.5. Then there is a neighborhood U of 0
and a smooth minimal surface Σ in U with boundary Γ such that T U = Q JΣK.

Obviously the latter theorem implies as well Theorem 1.5.

12.1 decay towards the cone

We first state a more precise version of Theorem 12.1. To that end we recall the flat
norm F and the definition of spherical excess. Given an integral 2-dimensional current
S we set

F (S) := inf{M(P) + M(R) : S = ∂P + R, R ∈ I2, P ∈ I3} .

Moreover, for T as in Assumption 10.4 and p ∈ Γ we define the spherical excess e(p, r)
at the point p and with radius r by

e(p, r) :=
‖T‖(Br(p))

πr2 −Θ(T, p) =
‖T‖(Br(p))

πr2 − Q
2

. (12.4)

We are now ready to state the main decay theorem. Its proof follows the ideas of [29],
but it is in fact a consequence of a more general result, which is proved separately in
our work [10], cf. [10, Theorem 2.1].
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Theorem 12.7. Let T and Γ be as in Theorem 12.1. Then there are positive constants ε0, C and
α with the following property. If p ∈ Γ and e(p, r) ≤ ε2

0 for some r ≤ dist(p, ∂B1), then:

(a) |e(p, ρ)| ≤ C|e(p, r)|
( ρ

r

)2α
+ Cρ2α for every ρ ≤ r,

(b) There is a unique tangent cone Tp,0 to T at p,

(c) The following estimates hold for every ρ ≤ r

F (Tp,ρ B1, Tp,0 B1) ≤ C(r)|e(p, r)|1/2
( ρ

r

)α
+ Cρα, (12.5)

distH(spt(Tp,ρ) ∩ B1, spt(Tp,0) ∩ B1) ≤ C
( ρ

r

)α . (12.6)

12.2 from theorem 12 .7 to theorem 12 .3

We fix a point p as in the statement of Theorem 12.3, we choose a radius r0 so that
B2r0(p) ⊂ B1(0). We fix thus ε0, α and C given by Theorem 12.7. Moreover, in order to
simplify the notation, we write Tp rather than Tp,0 for the unique tangent cone to T and
p.

First of all we observe that

e(q, r0) =
‖T‖(Br0(q))

πr2
0

− Q
2
≤
‖T‖(Br0+|p−q|(p))

πr2
0

− Q
2

=

(
r0 + |p− q|

r0

)2

e(p, r0 + |p− q|) +
((

r0 + |p− q|
r0

)2

− 1

)
Q
2

In particular, if r0 is chosen sufficiently small, we can assume that e(q, r0) ≤ 5ε2
0 for

every point q ∈ Γ ∩ Br0(p). The rest of the proof is divided into three steps
In a first step we compare tangent cones between different points and prove

F (Tq B1, Tp B1) ≤ C|q− p|α ∀q ∈ Br0(p) . (12.7)

Next, since Tp is not flat by assumption and because of the classification of tangent
cones, we can find half-planes V and V1, . . . VN all distinct, such that

Tp = Q1 JVK+ ∑
i

Q̄i JViK , (12.8)

where Q1 < Q and Q2 := Q−Q1 = ∑i Q̄i > 0. Let n be the unit vector in V which is
orthogonal to TpΓ. We then infer the existence of a positive ϑ0 with the property that⋃

i

Vi ⊂ R2+n \W(TpΓ, n, 8ϑ0) =: Wc(TpΓ, n, 8ϑ0) . (12.9)

For every point q ∈ Γ sufficiently close to p we project n onto the orthogonal comple-
ment of TqΓ and normalize it to a unit vector n(q). (12.7) will then be used to show the
existence of r > 0 such that

spt(Tq) ⊂W(TqΓ, n(q), 2ϑ0) ∪Wc(TqΓ, n(q), 7ϑ0) ∀q ∈ Γ ∩ Br(p) . (12.10)
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Hence we use (12.5) to show the existence of r̄ > 0 such that

spt(T) ∩ Br̄(q) ⊂ (q + W(TqΓ, n(q), 3ϑ0)) ∪ (q + Wc(TqΓ, n(q), 6ϑ0)) . (12.11)

(12.11) allows us to define

T1 := T

(
Br̄(p) ∩

⋂
q
(q + W(TqΓ, n(q), 3ϑ0))

)
, (12.12)

T2 := T

(
Br̄(p) ∩

⋂
q
(q + Wc(TqΓ, n(q), 6ϑ0))

)
, (12.13)

and to show that T1 + T2 = T Br̄(p) and that each of the Ti is area-minimizing. The
final step is then to prove that

∂T1 Br̄(p) = Q1 JΓ ∩ Br̄(p)K . (12.14)

Step 1. Proof of (12.7) In order to prove (12.7) set ρ0 := |p− q| and observe that, it
suffices to show the estimate

F (Tp B1, Tq,ρ B1) ≤ Cρα

for some ρ ∈ [ρ0, 2ρ0], whose choice will be specified later. For v ∈ R2+n, denote by
τv the translation by the vector v. If we choose v := (q− p)/ρ it is easy to see that
Tq,ρ B1 = (τ−v)](Tp,ρ B1(v)) and since the flat norm is invariant under translations,
we get

F (Tp B1, Tq,ρ B1) = F ((τv)](Tp B1(0)), Tp,ρ B1(v)) .

On the other hand, observe that Tp is invariant by translation along TpΓ and that, if we
write v = w + pTpΓ(v) =: w + z, then |w| ≤ Cρ. Hence we have

F (Tp B1, Tq,ρ B1) = F ((τw)](Tp B1(z)), Tp,ρ B1(v))

≤ F ((τw)](Tp B1(z)), Tp B1(z)) +F (Tp B1(z), Tp B1(v))

+F (Tp B1(v), Tp,ρ B1(v)) .

The first two summands can be easily estimated with Cρ. Indeed for the first term we
write

(τw)](Tp B1(z))− Tp B1(z) = ∂((Tp B1(z))× J[0, w]K) =: ∂Z

and we estimate M(Z) ≤ C|w| ≤ Cρ, whereas for the second term we can estimate
directly

M(Tp B1(z)− Tp B1(v)) ≤ C|w| .



12.2 from theorem 12 .7 to theorem 12 .3 77

It remains to bound the third summand. To that end we employ the fact that we are
free to choose ρ ∈ [ρ0, 2ρ0] appropriately. Note that the point v depends on ρ: we will
therefore write v(ρ) from now on and use v0 for v(ρ0), while we define σ := ρ

ρ0
. By a

simple rescaling argument we observe that

F (Tp B1(v(ρ)), Tp,ρ B1(v(ρ)) ≤ CF (Tp Bσ(v0), Tp,ρ0 Bσ(v0)) for all σ ∈ [1, 2] .

We complete the proof by showing that, if σ is chosen appropriately, then

F (Tp Bσ(v0), Tp,ρ0 Bσ(v0)) ≤ CF (Tp B3(0), Tp,ρ0 B3(0)) , (12.15)

since, again using a simple scaling argument, we can estimate

F (Tp B3(0), Tp,ρ0 B3(0)) ≤ CF (Tp B1(0), Tp,3ρ0 B1(0))

and take advantage of (12.5). In order to show (12.15), fix currents R and S such that
(Tp − Tp,ρ0) B3(0) = R + ∂S with

M(R) + M(S) ≤ 2F (Tp B3(0), Tp,ρ0 B3(0)) .

Let now d(x) := |x − v0| and for every σ we can then use the slicing formula [33,
Lemma 28.5] to write

(Tp − Tp,ρ0) Bσ(v0) = R Bσ(v) + ∂(S Bσ(v0))− 〈S, d, σ〉 .

Since ∫ 2

1
M(〈S, d, σ〉) dσ ≤M(S B2(v0)) ≤M(S) ,

it suffices to choose a σ for which M(〈S, d, σ〉) ≤ 2M(S).

Step 2. Proof of (12.11) The latter is a simple consequence of the estimates proved in
the previous two steps and of (12.6) and is left to the reader.

Step 3. Proof of (12.14) Observe that ∂T1 Br̄(p) is supported in Γ ∩ Br̄(p) and is a
flat chain without boundary in Br̄(p). By the Constancy Lemma of Federer [23, Section
4.1.7], it follows that ∂T1 Br̄(p) = Θ JΓ ∩ Br̄(p)K for some constant Θ. In particular
T1 is integral and thus Θ is an integer. Since it is area minimizing, it follows from
our analysis that T1 has a unique tangent cone (T1)p at p and that πΘ equals twice
the mass of (T1)p in B1(0). On the other hand the latter cone is the restricion of Tp

to W(TpΓ, n(p), 3ϑ0), which by assumption is Q1 JVK for a fixed half-plane V with
boundary TpΓ. Thus Θ = Q1, which completes the proof.
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12.3 from theorem 12 .6 to theorem 10 .5

In this subsection we show how to conclude Theorem 10.5 from Theorem 12.6 and
Theorem 12.3. We argue by induction on Q. We start observing that for Q = 1 there
are no boundary singular points, as it can be concluded by [3]. Assume therefore that
Theorem 10.5 holds for all Q strictly smaller than some fixed positive integer Q̄: our
aim is to show that it holds for Q = Q̄. First of all observe that by Theorem 12.3 we
know that the set F := {p ∈ Γ : p is a flat boundary point} is closed in Γ. If F = Γ, then
T has no boundary singularities. Otherwise, by Theorem 12.6(a), it suffices to show
that the dimension of Singb(T) \ F is 0. It then suffices to show that for every p ∈ Γ \ F
there is a radius ρ such that Singb(T) ∩ Bρ(p) has dimension 0. Fix ρ as in Theorem
12.3 and let T1 and T2 satisfy the conclusion of that theorem. We claim that

Singb(T) ∩ Bρ(p) ⊂ Singb(T1) ∪ Singb(T2) . (12.16)

Since by the induction hypothesis each Singb(Ti) has dimension 0, the latter claim
would conclude the proof. In order to show (12.16), consider a point q which is a
boundary regular point for both T1 and T2: we aim to prove that q is a regular point
for T as well. By the very definition of boundary regular point, for each i there is a
neighborhood Ui ⊂ Bρ(p) of p, minimal surfaces Λi

j, and integer coefficients ki
j such

that:

• Ti Ui = ∑j ki
j

r
Λi

j

z
;

• Λi
j ∩Λi

k ⊂ Γ for every j 6= k;

• the tangents of Λi
j at every point q̄ ∈ Γ ∩U are all distinct.

Now, in U := U1 ∩U2 we clearly have

T U =
2

∑
i=1

∑
j

ki
j

r
Λi

j ∩U
z

.

Note that, by Theorem 12.3(c) Λ1
j ∩ Λ2

k ⊂ spt(T1) ∩ spt(T2) ⊂ Γ for every j 6= k.

Moreover, if q̄ ∈ Γ ∩U, then (T1)q̄,0 = ∑j k1
j

r
Tq̄Λ1

j

z
and (T2)q̄,0 = ∑k k2

k

q
Tq̄Λ2

k

y
. We

conclude from Theorem 12.3(d) that for every j and k the half planes Tq̄Λ1
j and Tq̄Λ2

k are
distinct, i.e. intersect only in Tq̄Γ. This shows that q is then a boundary regular point of
T.
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M U LT I - VA L U E D F U N C T I O N S

The next step of our proof is a detailed study of the boundary behaviour of Dir-
minimizing multi-valued functions. In this section we consider maps u : Bρ(x) ∩ D →
AQ(R

n) where D ⊂ R2 is a planar domain such that ∂D is C2. We will be interested
in maps which take a preassigned value Q J f K at ∂D ∩ Bρ(x). Since by subtracting the
average η ◦ u we still get a Dir-minimizer, we can without loss of generality, assume
that f vanishes identically. We summarize the relevant assumptions in the following

Assumptions 13.1. D ⊂ R2 is a C2 open set, U is a bounded open set and u ∈ W1,2(D ∩
U,AQ(R

n)) a multivalued function such that u|∂D∩U ≡ Q J0K and η ◦ u ≡ 0. u is Dir mini-
mizing in the sense that, for every K ⊂ U compact and for every v ∈W1,2(D ∩U,AQ(R

n))

which coincides with u on (U \ K) ∩ D and vanishes on ∂D ∩U, we have

Dir (u) ≤ Dir (v) .

Observe that under our assumptions, we can apply the regularity theory of [12] and
[28] to conclude that u is Hölder continuous in K ∩ D for every compact set K ⊂ U.
More precisely we have the following

Theorem 13.2. There is a geometric constant α(Q) > 0 and a constant C which depends only
on Q and D such that, if u and D are as in Assumption 13.1, then

[u]0,α,Bρ(x)∩D ≤ Cρ−α
(
Dir(u, B2ρ(x) ∩ D)

) 1
2

for every B2ρ(x) ⊂ U.

In the final blow-up in Section 26, we will prove that the limit of a suitable ap-
proximating sequence is a homogeneous Dir-minimizer. The following theorem will
then exclude the existence of singular boundary points. It is a consequence of the
classification of tangent functions (Theorem 13.9).

Theorem 13.3. Assume D = {x2 > 0}, U = B1(0) and u : D ∩U → AQ(R
n) is a Dir-

minimizing I-homogeneous map such that u|∂D = Q J0K. Either u is a single harmonic function
with multiplicity Q (i.e. u = Q Jη ◦ uK) or I = 1.

Observe that under the additional information that η ◦ u ≡ 0, the first alternative
would imply that u vanishes identically.

In case that the approximating sequence consisted of Dir-minimizers (which it does
not in our case), we mention for completeness here the analouge definition of singular
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boundary points for Dir-minimizers (i.e. points at the boundary where the order of
“vanishing” of the Dir-minimizer is larger than 1) and prove its absence. Even though
we will not need Definition 13.4 nor Theorem 13.5 for our analysis, it illustrates the
ideas of our argument.

Definition 13.4. Let D, u and U be as in Assumption 13.1. x ∈ ∂D will be called a
contact point if there is a positive δ > 0 such that

lim inf
ρ↓0

1
ρ2+δ

∫
Bρ(x)∩D

|Du|2 = 0 . (13.1)

In section 13.3 we will show the following multi-valued counterpart of Theorem 12.6.

Theorem 13.5. Let D, u and U be as in Assumption 13.1. If x ∈ ∂D is a contact point, then u
vanishes identically on the connected component of D ∩U whose boundary contains x.

13.1 monotonicity of the frequency function

We introduce here the basic tool of our analysis, the frequency function, pioneered by
Almgren. The version of the Almgren’s frequency function used here is an extension
introduced for the first time in the literature in [21] to deal with boundary regularity.
One of the outcomes of our analysis is that the limit of the frequency function exists at
every boundary point x unless u vanishes identically in a neighborhood of it.

We recall the definition of the frequency function as in [21, Definition 4.13].

Definition 13.6. Consider u ∈ W1,2
loc (D,AQ(R

n)) and fix any cut-off φ : [0, ∞[→
[0, ∞] which equals 1 in a neighborhood of 0, it is non increasing and equals 0 on
[1, ∞[. We next fix a function d : R2 → R+ which is C2 on the punctured space R2\{0}
and satisfies the following properties:

(i) d(x) = |x|+ O
(
|x|2

)
,

(ii) ∇d(x) = x
|x| + O(|x|),

(iii) D2d(x) = |x|−1 (Id − |x|−2x⊗ x
)
+ O(1).

By [21, Lemma 4.25], we deduce the existence of such a d satisfying also that ∇d is
tangent to ∂D. We define the following quantities:

Dφ,d(u, r) :=
∫

D
φ

(
d(x)

r

)
|Du|2(x)dx,

Hφ,d(u, r) := −
∫

D
φ′
(

d(x)
r

)
|∇d(x)|2 |u(x)|2

d(x)
dx.

The frequency function is then the ratio

Iφ,d(u, r) :=
rDφ,d(u, r)
Hφ,d(u, r)

.
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This quantity is essentially monotone.

Theorem 13.7. Let D, U and u be as in Assumption 13.1. Then there is a function d satisfying
the requirements of Definition 13.6 such that the following holds for every φ as in the same
definition. Either u ≡ Q J0K in a neighborhood of 0, or Dφ,d(u, r) is positive for every r (hence
Iφ,d(u, r) is well defined) and the limit

0 < lim
r↓0

Iφ,d(u, r) < +∞

exists and it is a positive finite number. In fact, there is an r0 > 0 and C such that r 7→
eCr Iφ,d(u, r) is monotone for all 0 < r < r0.

We first recall the following identities (compare [21, Proposition 4.18]).

Proposition 13.8. Let φ and d be as in Definition 13.6 and assume in addition that φ is
Lipschitz. Let Ω, D, U and u be as in Assumption 13.1. Then, for every 0 < r < 1, we have

D′(r) = −
∫

D
φ′
( |d(x)|

r

) |d(x)|
r2 |Du|2dx, (13.2)

H′(r) =
(

1
r
+ O(1)

)
H(r) + 2E(r), (13.3)

where

E(r) := −1
r

∫
D

φ′
(

d(x)
r

)
∑

i
ui(x) · (Dui(x) · ∇d(x)) dx, (13.4)

and the constant O(1) appearing in (13.3) depends on the function d but not on φ.

Theorem 13.7 follows as in [21], as soon as we can show the validity of the above
identities. In turn the latter can be proved following also the computations in [21],
provided we prove that both the outer variations gε(x) := ∑i

r
ui(x) + εϕ

(
d(x)

r

)
ui(x)

z

and the inner variations u ◦ ψt, with ψt being the flow of Y(x) := ϕ
(

d(x)
r

)
d(x)∇d(x)
|∇d(x)|2 , are

competitors to our problem. This is however obvious. Clearly the outer variations are
well defined and preserve the condition that u|∂D∩U ≡ Q J0K. As for the inner variations
note that, since ∇d is tangent to ∂D, so is Y and thus its flow maps ∂D onto itself and D
into itself. This shows that the inner variations are well defined and provide admissible
competitors too.

13.2 classification of tangent functions

Following a common path which started with Almgren’s monumental work (see [21],
but also [12–15, 17–20]) we use the monotonocity of the frequency function to define
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tangent functions to u. Let D, u, U and f be as in Assumption 13.1. Let x ∈ ∂D and
denote by n(x) the interior unit normal to ∂D. If we denote by V+ the half space
{y : n(x) · y > 0}, the tangent functions to u at x are multivalued functions defined on
V+, which turn out to be locally Dir-minimizing and in fact satisfy Assumption 13.1
with D = V+ for any bounded open set U.

The central result is the following theorem of which Theorem 13.3 is a direct corollary.

Theorem 13.9. Let D, U and u be as in Assumption 13.1. Let x ∈ ∂D and assume that, for
some ρ > 0, D ∩ Bρ(x) is connected and u does not vanish identically on Bρ(x) ∩ D. Define

ux,ρ(y) := ∑
i

s
ui(x + ρy)

Dir(u, Bρ(x))1/2

{
.

Then I0(x) := limr→0 I(u(· − x), r) = 1 and, for every sequence ρk ↓ 0, there is a subsequence
(not relabeled) such that ux,ρk converges locally uniformly on V+ to a Dir-minimizer ux,0 =

∑i JviK satisfying the following properties:

(a) each vi : V+ → Rn is a linear function that vanishes at ∂V+;

(b) for every i 6= j, either vi ≡ vj, or vi(y) 6= vj(y) for every y ∈ V+;

(c) Dir(ux,0, B1) = 1 and η ◦ ux,0 = 0.

Proof. First of all we let I := I0(x). It follows from the same arguments of [21, Lemma
4.28] that a subsequence, not relabeled, of ux,ρk converges to a Dir-minimizer ux,0 =

∑i JviK which has the property (c) and which is I-homogeneous. Up to a rotation of the
system of coordinates we can assume that V+ = {x1 > 0} (and hence ∂V+ is the x2-axis).
From now on we use polar coordinates on V+ and in particular we identify ∂B1 ∩V+

with (−π
2 , π

2 ). Let g = ∑i JgiK be the restriction of ux,0 on ∂B1 ∩V+. We can then use [12,
Proposition 1.2] to conclude the existence of Hölder maps g1, . . . , gQ : (−π, π)→ Rn

such that

g(θ) = ∑
i

Jgi(θ)K .

In particular

ux,0(θ, r) = ∑
i

r
rI gi(θ)

z
,

and each ui(θ, r) = rI gi(θ) is an harmonic polynomial. In particular I must be an
integer. Since however ux.0 ≡ Q J0K on {x1 = 0} and Dir(ux,0, B1) > 0, it must be a
positive integer.

Observe that, if i 6= j and θ0 ∈ (−π
2 , π

2 ) is a point where gi(θ0) = gj(θ0), then gi and gj
must coincide in a neighborhood of θ0, otherwise the whole halfline {(r cos θ0, r sin θ0)}
consists of singularities of ux,0, contradicting [12, Theorem 0.11]. In particular by the
unique continuation principle for harmonic functions we have
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(Alt)’ either ui(r, θ) 6= uj(r, θ) for every (r, θ) ∈]0,+∞[×(π
2 , π

2 ), or ui(r, θ) = uj(r, θ)

for every (r, θ) ∈]0,+∞[×(π
2 , π

2 ),

so

(Alt) either gi(θ) 6= gj(θ) for every θ ∈ (−π
2 , π

2 ), or gi(θ) = gj(θ) for every θ ∈ (−π
2 , π

2 ).

Next, using the classification of 2-dimensional harmonic polynomials, we know that
there are coefficients ai, bi ∈ Rn such that

gi(θ) = ai cos(Iθ) + bi sin(Iθ) .

If I were even, since gi(
π
2 ) = gi(−π

2 ) = 0, we conclude that ai = 0. But then all the
gi’s would vanish at θ = 0 and (Alt) would imply that they all coincide everywhere.
This would however contradict (c). Likewise, if I were odd and larger than 1, then we
would have bi = 0 and all the gi’s would vanish at θ = π

2I . We thus conclude that I is
necessarily equal to 1. This proves then (a), while (Alt) shows (b).

13.3 proof of theorem 13 .5

Fix a point x ∈ ∂D and assume that u does not vanish in any neighborhood of x. Then
Theorem 13.9 implies that the frequency function I0(x) is 1. Arguing as in [21, Corollary
4.27] we conclude however that, for every δ > 0, there is a radius ρ > 0 such that

D(r)
r2+δ

≥ (1− δ)
D(ρ)

ρ2+δ
> 0 ∀r < ρ .

This shows that x cannot be a contact point.
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F I R S T L I P S C H I T Z A P P R O X I M AT I O N

In this section we consider a neighborhood of a flat point and we introduce the
cylindrical excess E(T, Cr(p, V)) as in [21, Definition 5.1]. Then, under the assumption
that E(T, Cr(p, V)) is sufficiently small, we produce an efficient approximation of the
current with a multivalued graph. One important point is that the graph of such
approximation, considered as an integral current, will also have boundary Q JΓK. From
now on, given a point p and a plane V through the origin, Br(p, V) will denote the
disk Br(p) ∩ (p + V), V⊥ the orthogonal complement of V and Cr(p, V) the cylinder
Br(p, V) + V⊥. We then denote by pV and p⊥V the orthogonal projections respectively
on V and its orthogonal complement.

Definition 14.1. For a current T in a cylinder Cr(p, V) we define the cylindrical excess
E(T, Cr(p, V)) and the excess measure eT of a set F ⊂ B4r(pV(p), V) as

E(T, Cr(p, V)) :=
1

2πr2

∫
Cr(p,V)

|~T − ~V|2 d‖T‖,

eT(F) :=
1
2

∫
F+V⊥

|~T − ~V|2 d‖T‖ .

The height in a set G ⊂ R2+n with respect to a plane V is defined as

h(T, G, V) := sup{|p⊥V (q− p)| : q, p ∈ spt(T) ∩ G} . (14.1)

If p and V are omitted, then we understand that Cr = Cr(0, R2 × {0}) and V =

R2 × {0}.
Assumptions 14.2. Let Γ and T be as in Assumption 12.5. q is a fixed point, which without
loss of generality we assume to be the origin, r an arbitrary radius such that (∂T) C4r =

Q JΓK C4r and

(i) q = (0, 0) ∈ Γ and TqΓ = R× {0} ⊂ V0 = R2 × {0};

(ii) γ = p(Γ) divides B4r in two disjoint open sets D and B4r \ D;

(iii) p#T C4r = Q JDK.

Observe that thanks to (iii) we have the identities

E(T, C4r) =
1

2π(4r)2 (‖T‖(C4r)−Q|D|) , (14.2)

eT(F) = ‖T‖(F×Rn)−Q|D ∩ F| . (14.3)
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Following a classical terminology we define noncentered maximal functions for
Radon measures µ and (Lebesgue) integrable functions f : U → R+ by setting

m f (z) := sup
z∈Bs(y)⊂U

1
πs2

∫
Bs(y)

f ,

mµ(z) := sup
z∈Bs(y)⊂U

µ(Bs(y))
πs2 .

Remark 14.3. Observe that by our assumptions there is an interval I ⊂ R containing
(−5r, 5r) and function ψ : I → Rn+1 with the property that C5r ∩ Γ = {(t, ψ(t)) : t ∈ I}.
Moreover ψ(0) = 0, ψ̇(0) = 0 and ‖ψ̈‖C0 ≤ CA for a geometric constant C(n). In
particular |ψ(t)| ≤ CAt2 and |ψ̇(t)| ≤ CAt. Finally observe that, if we write ψ = (ψ1, ψ̄),
then ∂D = (t, ψ1(t)) and Γ can be written as the graph of a function g on ∂D defined
by g(t, ψ1(t)) = ψ̄(t).

Figure 2: An illustration of the maps describing the boundary.
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Proposition 14.4 (First Lipschitz approximation). There are positive constants C and c0

(depending only on Q and n) with the following properties. Assume T satisfies Assumption
14.2, E := E(T, C4r) ≤ c0. Then, for any δ∗ ∈ (0, 1), there are a closed set K ⊂ D ∩ B3r and a
Q-valued function u on D ∩ B3r with the following properties:

u|∂D∩B3r = Q JgK (14.4)

Lip(u) ≤ C(δ1/2
∗ + rA) (14.5)

osc(u) ≤ Ch(T, C4r) + CrE1/2 + Cr2A (14.6)

K ⊂ B3r ∩ {meT ≤ δ∗} (14.7)

Gu [K×Rn] = T [K×Rn] (14.8)

|(D ∩ Bs) \ K| ≤ C
δ∗

eT

(
{meT > 4−1δ∗} ∩ Bs+r1r

)
+ C

A2

δ∗
s2 ∀s ≤ 3r + r1r

(14.9)
‖T −Gu‖(C2r)

r2 ≤ C
δ∗
(E + A2r2) (14.10)

where r1 = c
√

E+A2r2

δ∗
and c is a geometric constant.

Proof. Since the statement is invariant under dilations we assume w.l.o.g. that r = 1.
Consider the extension ĝ of the function g defined in Remark 14.3 which is simply
given by ĝ(x1, x2) = ψ̄(x1). In order to simplify our notation, we drop the hat symbol
and denote the extension by g as well. Consider next the current T̂ ∈ I2(C4) which
consists of T̂ = T C4 + QGg ((B4 \ D) × Rn), where we use notation Gg for the
integer rectifiable current naturally associated to the graph of a function g : B4 → Rn.
More formally, if ḡ(x) = (x, g(x)), then

Gg ((B4 \ D)×Rn) = ḡ](JB4 \ DK). (14.11)

In particular from (14.11) and the classical theory of currents we see that

(∂T̂) C4 =Q JΓK C4 −Qḡ](J∂D ∩ B4K) = Q JΓK C4 −Q JΓK C4 = 0 , (14.12)

p]T̂ =Q JDK+ Q JB4 \ DK = Q JB4K . (14.13)

Moreover, we can use [14, Corollary 3.3] to estimate

‖T̂‖(C4)−Qπ42 = E(T, C4) + Q(‖Gg‖((B4 \ D)×Rn)− |D|)
≤ E(T, C4) + Q

∫
B4\D
|Dg|2 ≤ E + CA2 . (14.14)

Similarly, we can define for F ⊂ B4

eT̂(F) = ‖T̂‖(F×Rn)−Q|F|
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and the same considerations give

eT̂(F) ≤ eT(F ∩ D) + CA2|F \ D| .

Moreover, we can apply [13, Proposition 3.2] to T̂ to obtain a closed set K̂ ⊂ B3

and û ∈ Lip (B3,AQ (Rn)) which satisfy all the estimates (14.5)-(14.10), with the only
relevant differences in (14.9), which becomes

|Bs \ K̂| ≤ C
δ∗

eT

(
{meT > 4−1δ∗} ∩ Bs+r1r(x)

)
+C

A2

δ∗
s2 for every s ≤ 3r . (14.15)

In order to show (14.4), we define an “almost reflection” h on the boundary ∂D in the
following way:

h(x1, x2) = (x1, 2ψ1(x1)− x2)

and set K := h(K̂) ∩ K̂. We now take the map û, restrict it to K̂ and then extend it again
to a Lipschitz map u with the additional property that (14.4) holds. In fact we first
define u : K ∪ (∂D ∩ B2)→ AQ(R

n) as

u(y) =

Q Jg(y)K , if y ∈ ∂D

û(y) , else.

Note that in principle a point y could belong to both K and ∂D: in that case we are
ignoring the value given by û and force such value to be the one given by Q JgK.
However a byproduct of the next elementary argument is that in fact û(y) = Q Jg(y)K
for every y ∈ ∂D.

We now wish to show that the bound on Lip(u) and osc(u) becomes worse only by
a geometric factor. In fact, since the oscillation of Q JgK is controlled by A, we just need
to focus on the Lipschitz bound. Consider p ∈ ∂D, q ∈ K. By construction of h, let σ be
the vertical segment joining q and h(q) and let q̃ be the only intersection of σ with ∂D.
Thus

G(u(p), u(q)) ≤ G(u(q), u(h(q))) + G(u(h(q)), u(p))

≤ G(u(q), u(h(q))) + CG(u(q̃), u(p))

≤ G(u(q), u(h(q))) + CQ|g(p)− g(q̃)|
≤ 2|q− p|Lip(û) + CQA|p− q|.

Now we can use the Lipschitz Extension Theorem [12, Theorem 1.7] to extend u to
the whole domain B2, while enlarging the Lipschitz constant and the oscillation by a
geometric factor.

So far our map satisfies (14.4), (14.5), and (14.6). However, (14.7) and (14.8) are
obvious because K ⊂ K̂.
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Next we show (14.9) holds with a slightly larger constant. First of all notice that,
provided A is sufficiently small, h is a diffeomorphism and that h−1(Bs) ⊂ Bs+CAs2 ,
because h(0) = 0 and ‖Dh− Id ‖C(Bs) = ‖Dh− Dh(0)‖C(Bs) ≤ CAs. In particular we
can estimate

|(Bs ∩ D) \ K| ≤ |Bs \ K̂|+ |Bs \ h(K̂)|
≤ |Bs \ K̂|+ C|h−1(Bs) \ K̂| ≤ C|h(Bs+CAs2 \ K̂)| .

Finally we conclude

‖T −Gu‖(C2) ≤ ‖T −Gû‖(C2) + ‖Gu −Gû‖(C2).

For the first summand, we already have the desired estimate from [13, Proposition 3.2].
For the second we observe

‖Gu −Gû‖(C2) = ‖Gu −Gû‖((B2 \ K)×Rn) ≤ C|B2 \ K| ,

and we then use (14.9). This shows (14.10).
The proof would be complete, except that our approximation and estimates hold

on slightly smaller balls than claimed. It can however easily be checked that in [13,
Proposition 3.2], we just need to reduce slightly the size of the radius from 4 to a fixed
smaller one, while the argument is literally the same: the price to pay are just worse
constants in the estimates.
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H A R M O N I C A P P R O X I M AT I O N

Definition 15.1 (Eβ-Lipschitz approximation). Let β ∈ (0, 1) and T be as in Proposition
14.4. After setting δ∗ = (E + A2)2β, the corresponding map u given by the proposition
will be called the Eβ-Lipschitz approximation of T in C3r and will be denoted by f .

In this section we use the minimimizing assumption on T to show that the Eβ-
Lipschitz approximation is close to a Dir-minimizing function w. We first introduce
some notation.

Assumptions 15.2. D ⊂ R2 is a C2 open set, U is a bounded open set and u ∈ W1,2(D ∩
U,AQ(R

n)) a multivalued function such that u|∂D∩U ≡ Q JgK, where g is as in Remark
14.3. u is Dir-minimizing in the sense that, for every K ⊂ U compact and for every v ∈
W1,2(D ∩U,AQ(R

n)) which coincides with u on (U \ K) ∩ D and v|∂D∩U ≡ Q JgK we have

Dir (u) ≤ Dir (v) .

Theorem 15.3 (First harmonic approximation). For every η > 0 and every β ∈ (0, 1), there
exist a constant ε = ε(η, β) > 0 with the following property. Let T and Γ be as in Assumption
14.2 in C4r (in particular T is area minimizing in C4r). If E = E(T, C4r) ≤ ε and rA ≤ εE

1
2 ,

then the Eβ-Lipschitz approximation f in C3r satisfies∫
B2r∩D\K

|D f |2 ≤ ηEπ(4r)2 = η eT(B4r). (15.1)

Moreover, there exists a Dir-minimizing function w such that w|∂D∩B2r = Q JgK and

r−2
∫

B2r∩D
G( f , w)2 +

∫
B2r∩D

G(D f , Dw)2 ≤ ηE π (4 r)2 = η eT(B4r) , (15.2)

∫
B2r∩D

|D(η ◦ f )− D(η ◦ w)|2 ≤ ηEπ(4r)2 = ηeT (B4r) . (15.3)

The following proposition provides a Taylor expansion of the mass of the current
associated to the graph of a Q-valued function. It is proven in [14, Corollary 3.3]
(although the corollary is stated for V open, the proof works obviously when V is
merely measurable).

Proposition 15.4. (Taylor expansion of the mass, see [14, Corollary 3.3]). There are dimensional
constants c, C > 0 such that the following holds. Let V ⊂ R2 be a bounded measurable set
and let u : V → AQ (Rn) be a Lipschitz function with Lip(u) ≤ c. Denote by Gu the integer
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rectifiable current associated to the graph of u as in [14, Definition 1.10]. Then, the following
Taylor expansion of the mass of Gu holds:

M (Gu) = Q|V|+ 1
2

∫
V
|Du|2 +

∫
V

∑
i

R (Dui) ,

where R : Rn×2 → R is a C1 function satisfying |R(D)| = |D|3L(D) for some positive
function L such that L(0) = 0 and Lip(L) ≤ C.

Remark 15.5. We write here the analog of ([13, Remark 5.5]). There exists a dimensional
constant c > 0 such that, if E ≤ c, then the Eβ -Lipschitz approximation satisfies the
following estimates:

Lip( f ) ≤ C(E + CA2)β, (15.4)∫
B3s(x)∩D

|D f |2
(14.9)
≤ C(E + A2)s2. (15.5)

Indeed (15.4) follows from Proposition 14.4, by the choice of β and the scaling of A.
While (15.5) follows from Proposition 15.4 since for E sufficiently small∫

B3s(x)∩D
∑

i
R (D fi) ≤ CE2β

∫
B3s(x)∩D

|D f |2 <
1
4

∫
B3s(x)∩D

|D f |2,

and therefore∫
B3s(x)∩D

|D f |2 ≤ C
(
M
(
G f C3s(x) ∩ (D×Rn)−Q|D|

)
≤ C (M (T C3s(x))−Q|D|) + CM

(
G f (B3s(x) ∩ D \ K)×Rn)

≤ CEs2 + C(E + A2)2β |B3s(x) ∩ D \ K| ≤ C(E + A2)s2.

Proof of Theorem 15.3. By rescaling, it is not restrictive to assume that r = 1. The proof of
(15.1) is by contradiction. Assume there exist a constant c1 > 0, a sequence of currents
(Tk)k∈N satisfying Assumption 14.2 and corresponding Eβ

k -Lipschitz approximations
( fk)k∈N which violate (15.1) for η = c1 > 0. At the same time ∂T C4(0) = Q JΓkK,
where Γk is a sequence of C2 curves. For the latter we have T0Γk = R× {0} and a
parametrization ψk : R→ Rn+1 of the form

ψk(t) = (ψk
1(t), ψ̄k(t)) .

Moreover we assume ‖ψk‖C2 ≤ CAk ≤ CεkE
1
2
k . The domain of definition of the map fk

is a set Dk which can be explicitly written as

Dk = {(x1, x2) ∈ B3 : x2 > ψk
1(x1)} .
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Summarizing, our currents satisfy the following:

E (Tk, C4) ≤ εk → 0, Ak ≤ εkE
1
2
k and

∫
Dk\Kk

|D fk|2 ≥ c1Ek (15.6)

where Kk :=
{

x ∈ B3 : meTk(x) < E2β
k

}
. Set Λk :=

{
x ∈ Dk : meTk(x) ≤ 2−2E2β

k

}
and

observe that Λk ∩ B3 ⊂ Kk. From Proposition 14.4 it follows that for every r ≤ 3

Lip ( fk) ≤ CEβ
k (15.7)

|Br ∩ Dk \ Kk| ≤ CE−2β
k eTk

(
Br+r0(k) \Λk

)
+ Cε2

kE2(1−β)
k (15.8)

where r0(k) = 16E(1−2β)/2
k < 1

2 . Then, (15.6), (15.7), and (15.8) give

c1Ek ≤
∫

B2∩Dk\Kk

|D fk|2 ≤ CeTk (Bs \Λk) + Cε2
kE2

k for every s ∈
[

5
2

, 3
]

. (15.9)

Setting c2 := c1/(2C), we have

2c2Ek ≤ eTk (Bs ∩ Dk \Λk) = eTk (Bs ∩ Dk)− eTk (Bs ∩Λk) ,

implying

eTk (Λk ∩ Bs) ≤ eTk (Dk ∩ Bs)− 2c2Ek . (15.10)

Next observe that 2π42Ek = eTk (B4 ∩ Dk) ≥ eTk (Bs ∩ Dk). Therefore, by the Taylor
expansion in [13, Remark 5.4], (15.10) and the fact that Ek ↓ 0, it follows that for every
s ∈ [5/2, 3] and k large enough so that CE2βk ≤ c2, we have

1
2

∫
Λk∩Bs

|D fk|2
Taylor
≤

(
1 + CE2β

k

)
eTk (Λk ∩ Bs)

(15.10)
≤

(
1 + CE2β

k

)
(eTk (Bs ∩ Dk)− 2c2Ek)

≤ eTk (Bs ∩ Dk)− c2Ek . (15.11)

Our aim is to show that (15.11) contradicts the minimality of Tk. To construct a
competitor, we write fk(x) = ∑iJ f i

k(x)K ∈ AQ (Rn). We consider hk := E−1/2
k fk. Observe

that hk|∂Dk = QJE−1/2
k ψ̄kK and that in turn ‖ψ̄k‖C2 ≤ CεkE

1
2
k . In particular E−1/2

k ψ̄k

converges strongly to 0 in C2. Extend ψ̄k to B3 ∩Dk by keeping it constant in the variable
x2. Thus G(hk, QJE−1/2

k ψ̄kK) is a classical W1,2 function that vanishes on ∂Dk. Since by
[13, Remark 5.5(5.5)] we have supk Dir (hk, B3 ∩ D) < ∞, the Poincaré inequality gives

‖G(hk, QJE−1/2
k ψ̄kK)‖L2(Dk∩B3) ≤ C ,

which in turn implies ‖G(hk, Q J0K)‖L2(Dk∩B3) ≤ C. Hence {hk} is bounded in W1,2. Even
though the domains of the hk depend on k, we can extend the maps identically equal to
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Q{ψ̄k} on their complement, and thus treat them as maps on B3. Up to a subsequence,
not relabeled, we can thus assume that the maps converge to some h ∈W1,2. Observe
that h vanishes identically on the lower half disk B−3 := {(x1, x2) ∈ B3 : x2 < 0} and
thus we will also consider it as a map defined on the upper half disk B+

3 , taking the
value Q J0K on the x1-axis.

Since

‖G (hk, h)‖L2(B3)
→ 0 (15.12)

and the following inequalities hold for every open Ω′ ⊂ B3 and any sequence of
measurable sets Jk with |Jk| → 0,

lim inf
k→+∞

(∫
Ω′\Jk

|Dhk|2 −
∫

Ω′
|Dh|2

)
≥ 0, (15.13)

lim sup
k→+∞

∫
Ω
(|Dhk| − |Dh|)2 ≤ lim sup

k→+∞

∫
Ω

(
|Dhk|2 − |Dh|2

)
. (15.14)

Applying the first inequality with Jk being the complement of Λk we reach the following
inequality

1
2

∫
B+

s

|Dh|2 ≤ lim inf
k→∞

E−1
k eTk(Bs ∩ Dk)− c2 for every s < 3. (15.15)

Now we wish to find a radius r ∈ [ 5
2 , 3] and a competitor function Hk such that

• Hk|(B3\Br)∩Dk
= hk|(B3\Br)∩Dk

;

• Hk|∂Dk∩B3
= hk|∂Dk∩B3

;

• The following estimates hold for a subsequence (not relabeled)

lim
k→∞

Dir (Hk, Br) ≤ Dir (h, Br) +
c2

4
, (15.16)

Lip (Hk) ≤ C∗Eβ−1/2
k , (15.17)

‖G(Hk, hk)‖L2(B+
r ) ≤ CDir(hk, B+

r ) + CDir(Hk, B+
r ) ≤ M < +∞, (15.18)

where C∗ is a constant independent of k.

After proving that such a function exists, we can then follow the proof of [13, Theorem
5.2] mutatis mutandis.

In order to show our claim we will use (15.12), the Lipschitz bound Lip(hk) ≤
CEβ−1/2

k , the bound supk Dir(hk, B3) ≤ C, and (15.15). Note next that, since ‖ψ̄k/E1/2‖C2 ↓
0, all these facts remain true if we replace hk with the map

h̄k(x) := ∑
i

r
(hk)i − ψ̄k

z
.
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The advantage of the latter is that h̄k|∂Dk = Q J0K. Assuming that we find corresponding
maps H̄k satisfying all the properties above, we can then simply get Hk by adding back
ψ̄k:

Hk(x) = ∑
i

r
(H̄k)i + ψ̄k

z

(because the difference in the Dirichlet energies of Hk and H̄k and the difference in the
Lipschitz constants are both infinitesimal).

The next issue is that the domains Dk ∩ Bs are curved compared to B+
s . To resolve

this, we invoke Lemma 15.6 below. For each k we apply the lemma to ψk
1 and get a

corresponding diffeomorphism Φk which maps each Bs ∩ Dk diffeomorphically onto
B+

s . Observe that

lim
k→∞

(
‖Φk − Id ‖C1 + ‖Φ−1

k − Id ‖C1

)
= 0 (15.19)

because ‖ψk
1‖C1 → 0. For this reason the maps h̃k := h̄k ◦Φ−1

k satisfy the same assump-
tions as h̄k (and hence as hk). Indeed, after having built the corresponding competitors
H̃k, we can then define H̄k := H̃k ◦Φk. Again the desired conclusion follows because
the difference of the Lipschitz constants and Dirichlet energies are infinitesimal.

Summarizing, we have reduced the proof of the proposition to showing that the
competitor Hk can be constructed, without loss of generality, under the additional
assumptions that all hk’s are defined on the same domain B+

3 and that they all vanish
on {(x1, x2) ∈ B+

3 : x2 = 0}. This is accomplished in Proposition 15.7 below. Now that
we have illustrated how to construct suitable competitors we can proceed with the
proof of the theorem. We restart observing that, when k is large enough, (15.13) implies
the following inequalities

Dir (h, Br) ≤ Dir (hk, Br ∩ Γk) +
c2

4

(5.11)
≤ eTk (Br)

Ek
− 3c2

4
Ek . (15.20)

Note that (15.17) follows from (15.27) as Eβ−1/2
k ↑ ∞. Thus C∗ depends on c2 and

on the choice of the two sequences, but not on k. From now on, although this and
similar constants are not dimensional, we will keep denoting them by C, with the
understanding that they do not depend on k. Note that, from (15.7) and (15.8), one gets∥∥Tk −G fk

∥∥ (C3) ≤ ‖Tk‖ ((B3 \ Kk)×Rn) +
∥∥G fk

∥∥ ((B3 \ Kk)×Rn)

≤ Q |B3 \ Kk|+ Ek + Q |B3 \ Kk|+ C |B3 \ Kk|Lip ( fk)

≤ Ek + CE1−2β
k ≤ CE1−2β

k .

Let (z, y) denote the coordinates on R2 ×Rn and consider the function ϕ(z, y) = |z|
and the slice

〈
Tk −G fk , ϕ, r

〉
. Observe that, by the coarea formula and Fatou’s lemma,∫ 3

r
lim inf

k
E2β−1

k M
(〈

Tk −G fk , ϕ, s
〉)

ds ≤ lim inf
k

E2β−1
k

∥∥Tk −G fk

∥∥ (C3) ≤ C.
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Therefore, for some r̄ ∈ (r, 3), up to subsequences (not relabeled) M
(〈

Tk −G fk , ϕ, r̄
〉)

≤ CE1−2β
k . Let now vk := E1/2

k Hk|Br̄ and consider the current Zk := Gvk Cr̄. Since
(vk)|∂Br̄ = fk|∂Br̄

, one gets ∂Zk =
〈
G fk , ϕ, r̄

〉
and hence, M (∂ (Tk Cr̄ −Zk)) ≤ CE1−2β

k .
We define

Sk = Tk (C4 \Cr̄) + Zk + Rk , (15.21)

where (cp. [13, Remark 5.3]) Rk is an integral current such that

∂Rk = ∂ (Tk Cr̄ − Zk) and M (Rk) ≤ CE(1−2β)2
k .

In particular, we have ∂Sk = ∂ (Tk C4). We now show that, since β < 1
4 , for k large

enough, the mass of Sk is strictly smaller than the one of Tk. To this aim we write

Dir (vk, Br̄)−Dir ( fk, Br̄ ∩Λk) =
∫

Br̄

|Dvk|2 −
∫

Br̄∩Λk

|D fk|2 =: I1 .

The first term is estimated by (15.16) and (15.13). Indeed, recall that vk = E1/2
k Hk and

fk = E1/2
k hk (but also that the two functions coincide on Br̄ \ Br ). We thus deduce that

I1 ≤ c2
2 Ek for k large enough. Hence, by using (15.11) we observe

M (Sk)−M (Tk) ≤M (Zk) + CM (Rk)−M (Tk Cr̄)

≤ Q |Br̄|+
∫

Br̄

|Dvk|2
2

+ CE1+2β
k + CE(1−2β)2

k −Q |Br̄| − eTk (Br̄)

≤
∫

Br̄∩Λk

|D fk|2
2

+
1
2

c2Ek + CE1+2β
k + CE(1−2β)2

k − eTk (Br̄)

≤ − c2Ek

2
+ CE1+β

k + CE(1−2β)2
k < 0, (15.22)

as soon as Ek is small enough, i.e., k large enough. This gives the desired contradiction
and proves (15.1).

Now, we come to the proof of (15.2) and (15.3). To this aim, we argue again by
contradiction using similar constructions of competitors. Without loss of generality, we
assume x = 0 and s = 1. Suppose (Tk)k is a sequence with Ek := E (Tk, C4) satisfying

E (Tk, C4) ≤ εk → 0, Ak ≤ εkE
1
2
k , (15.23)

but contradicting (15.2) or (15.3). Let us denote by fk the Eβ
k -Lipschitz approximation

of Tk. We know that, for any sequence of Dir-minimizing functions ūk which we might
choose, we will have by the contradiction assumption that

lim inf
k

E−1
k

∫
B2

(
G ( fk, ūk)

2 + (|D fk| − |Dūk|)2 + |D (η ◦ fk − η ◦ ūk)|2
)

︸ ︷︷ ︸
=:I(k)

> 0. (15.24)
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As in the previous argument, we introduce the auxiliary normalized functions hk =

E−1/2
k fk and, after extraction of a subsequence, the function h satisfies (15.13) and

(15.14). Moreover ‖G (hk, h)‖L2(B3)
→ 0. We next claim (and prove)

(i) limk
∫

B2
|Dhk|2 =

∫
B2
|Dh|2,

(ii) h is Dir-minimizing in B2.

Indeed, if (i) were false, then there is a positive constant c2 such that, for any
r ∈ [5/2, 3],

∫
Br

|Dh|2
2
≤
∫

Br

|Dhk|2
2
− c2 ≤

eTk (Br)

Ek
− c2

2
, (15.25)

provided k is large enough (where the last inequality is again an effect of the Taylor
expansion of [13, Remark 5.4]). We next define the competitor currents Sk as in the
argument leading to (15.22). Replacing in the argument above (15.11) and (15.20) by
(15.25), we deduce again (15.22). On the other hand (15.22) contradicts the minimality
of Tk. So we conclude that (i) is true.

If (ii) were false, then h is not Dir-minimizing in B2. Thus, we can find a competitor
h̃ ∈ W1,2(B3,AQ(R

n)) with less energy in the ball B2 than h and such that h̃ = h on
B3 \ B5/2. So for any r ∈ [5/2, 3], the function h̃ satisfies

∫
Br

∣∣Dh̃
∣∣2

2
≤
∫

Br

|Dh|2
2
− c2 = lim

k→∞

∫
Br

|Dhk|2
2
− c2 ≤

eT (Br)

Ek
− c2

2
, (15.26)

provided k is large enough (here c2 > 0 is some constant independent of r and k). On
the other hand, h̃ = h on B3 \ B5/2 and therefore

∥∥G (h̃, hk
)∥∥

L2(B3\B5/2)
→ 0. We then

construct the competitor current Sk of (15.21). This time however, we use the map
h̃ in place of h to construct Hk via Proposition 15.7 and we reach the contradiction
(15.22) using (15.26) in place of (15.11) and (15.20). We next set ūk := E1/2

k h and we
will show that I(k) → 0, violating (15.24). Observe first that as ‖G (hk, h)‖L2 → 0, we
have D (ξ ◦ hk)− D (ξ ◦ h) → 0 weakly in L2 (recall the definition of ξ = ξBW in [13,
Section 2.5]). So, (i) and the identities |D (ξ ◦ hk)| = |Dhk|, |D (ξ ◦ h)| = |Dh| imply that
D (ξ ◦ hk)−D (ξ ◦ h) converges strongly to 0 in L2. If we next set ĥ = ∑iJhi − η ◦ hK and
ĥk = ∑iJhi

k − η ◦ hkK, we obviously have
∥∥∥G (ĥ, ĥk

)∥∥∥
L2
+ ‖η ◦ h− η ◦ hk‖L2 → 0. Recall

however that the Dirichlet energy enjoys the splitting

Dir (hk) = Q
∫
|D (η ◦ hk)|2 + Dir(ĥk), Dir (h) = Q

∫
|D (η ◦ h)|2 + Dir(ĥ).

So (i) implies that the Dirichlet energy of η ◦ hk and ĥk converge, respectively, to the
one of η ◦ h and ĥ (which, we recall again, are independent of k because the hk ’s are
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translating sheets). We thus infer that D (η ◦ h)− D (η ◦ hk) converges to 0 strongly in
L2. Coming back to ūk we observe that ūk is Dir-minimizing and

E−1
k

∫
B2

G (ūk, fk)
2 =

∫
B2

G (h, hk)
2 → 0.

So,
lim sup

k
I(k) ≤ lim sup

k

∫
B2

(|Dhk| − |Dh|)2 + |D (η ◦ hk − η ◦ h)|2 .

Thus I(k)→ 0, which contradicts (15.24).

15.1 technical lemmas

Lemma 15.6. There is a positive geometric constant c > 0 with the following property. Consider
a C1 function ψ1 : [0, 4]→ R such that ψ1(0) = ψ′1(0) = 0 and ‖ψ1‖C1 ≤ c. Then there is a
map Φ : B4 → B4 such that

• Φ maps Bs diffeomorphically onto itself for every s ∈ (0, 4];

• if we set D := {(x1, x2) : |x1| ≤ 4, x2 > ψ1(x1)} then Φ maps D∩ Bs diffeomorphically
onto B+

s for every s ∈ (0, 4];

• ‖Φ−1 − Id‖C1 + ‖Φ− Id‖C1 ≤ C‖ψ1‖C1 .

Proof. We use polar coordinates (θ, r) and let the angle θ vary from −π
2 (included) to

3π
2 (excluded). It is in fact easier to define the map Φ−1. If c is sufficiently small, each

circle ∂Bs intersects the graph of ψ1 in exactly two points, given in polar coordinates by
(θr(s), s) and (θl(s), s), with θl(s) > θr(s). Furthermore, again assuming c is sufficiently
small, |θr(s)| ≤ π

4 and |θl(s) − π| ≤ π
4 . In polar coordinates the map Φ−1 is then

defined on B+
4 by the formula

Φ−1(θ, s) =
(

θr(s)(π − θ) + θl(s)θ
π

, s
)

.

The verification that ‖Φ−1 − Id‖C1 ≤ C‖ψ1‖C1 is left to the reader.
We then need to extend the map to the lower half disk keeping the same estimate.

This could be reached for instance by the formula

Φ−1(θ, s) =
(

2π − (θl − θr)

π
θea(θ−π)(θ−2π) + 2θl − θr, s

)
for π < θ < 2π,

where a = a(s) := π−2(1− θl(s)−θr(s)
2π−(θl(s)−θr(s))

).

In the next proposition we want to “patch” functions defined on the upper half
disk B+

s which vanish on the x1-axis. For convenience we introduce the notation Hs

horizontal boundary for Hs = {(x1, 0) : |x1| < s}.
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Proposition 15.7. Consider two radii 1 ≤ r0 < r1 < 4 and maps hk, h ∈W1,2(B+
r1

,AQ(R
n))

satisfying

sup
k

Dir(hk, B+
r1
) < +∞ and ‖G(hk, h)‖L2(B+

r1\Br0 )
→ 0

and hk|Hr1
= h|Hr1

= Q J0K. Then for every η > 0, there exist r ∈]r0, r1[, a subsequence of
{hk}k (not relabeled) and functions Hk ∈W1,2(B+

r1
,AQ(R

n)) such that:

• Hk|B+
r1\B

+
r
= hk|B+

r1\B
+
r

;

• Hk|Hs = Q J0K and

• Dir(Hk, B+
r1
) ≤ Dir(h, B+

r1
) + η.

Moreover, there is a dimensional constant C and a constant C∗ (depending on η and the two
sequences, but not on k) such that

Lip(Hk) ≤ C∗ (Lip(hk) + 1) , (15.27)

‖G(Hk, hk)‖L2(B+
r ) ≤ CDir(hk, B+

r ) + CDir(Hk, B+
r ) , (15.28)

‖η ◦ Hk‖L1(B+
r1 )
≤ C∗ ‖η ◦ hk‖L1(B+

r1 )
+ C‖η ◦ h‖L1(B+

r1 )
. (15.29)

Before coming to the proof of the proposition we state the following variant of the
Lipschitz approximation in [13, Lemma 4.5]. Observe that the only difference is that our
functions are defined on the upper half disks and vanish on the horizontal boundary.
We need the Lipschitz approximation fε to satisfy the same requirement.

Lemma 15.8 (Lusin type Lipschitz approximation). Let f ∈ W1,2(B+
r ,AQ) be such that

f |Hr = Q J0K. Then for every ε > 0 there exists fε ∈ Lip(B+
r ,AQ) satisfying fε|Hr = Q J0K

and ∫
B+

r

G( f , fε)
2 +

∫
B+

r

(
|D f | − |D fε|

)2
+
∫

B+
r

(
|D(η ◦ f )| − |D(η ◦ fε)|

)2 ≤ ε . (15.30)

If in addition f |∂B+
r \Hr

∈W1,2(∂Br,AQ), then fε can be chosen to satisfy also∫
∂B+

r \Hr

G( f , fε)
2 +

∫
∂B+

r \Hr

(
|D f | − |D fε|

)2 ≤ ε. (15.31)

Now we need the following interpolation lemma.

Lemma 15.9 (Interpolation). There exists a constant C0 = C0(n, Q) > 0 with the fol-
lowing property. Assume r ∈]1, 3

[
, f ∈W1,2 (Br,AQ) satisfies f |Hr = Q J0K and f |∂Br

∈
W1,2 (∂Br,AQ), and g ∈ W1,2 (∂B+

r ,AQ) is such that g|Hr∩∂B+
r

= Q J0K.
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Then, for every ε ∈] 0, r[, there exists a function hε ∈ W1,2 (Br,AQ) such that hε|∂Br
= g,

hε|Hr = Q J0K and∫
B+

r

|Dhε|2 ≤
∫

B+
r

|D f |2 + ε
∫

∂B+
r

(
|Dτ f |2 + |Dτg|2

)
+

C0

ε

∫
∂B+

r

G( f , g)2 , (15.32)

Lip(hε) ≤ C0

{
Lip( f ) + Lip(g) + ε−1 sup

∂B+
r

G( f , g)

}
, (15.33)

∫
B+

r

|η ◦ hε| ≤ C0

∫
∂B+

r

|η ◦ g|+ C0

∫
B+

r

|η ◦ f | , (15.34)

where Dτ denotes the tangential derivative.

Proof. The proof is the same as in [13, Lemma 4.6], because the map constructed there
by the linear interpolation on the annulus and taking f in the interior disk vanishes on
Hr1 .

Proof of Lemma 15.8. We can apply directly [21, Lemma 5.5] to obtain a Lipschitz func-
tion f̃ε satisfying ( f̃ε)|Hr = Q J0K and (15.30).

Proof of Proposition 15.7. The proof goes along the same lines as the proof of [13, Propo-
sition 4.4] using Lemmas 15.8 and 15.9 instead of [13, Lemma 4.5, Lemma 4.6], taking
into account that the situation here is simpler because we do not have translating
sheets. For the sake of completeness we report here the details. Set for simplicity
Ak := ‖G (hk, h)‖L2(B+

r1\B
+
r0)

and Bk := ‖η ◦ hk‖L1(B+
r1)

. If for any k large enough Ak ≡ 0,
then there is nothing to prove and so we can assume that, for a subsequence (not
relabeled) Ak > 0. In case that for yet another subsequence (not relabeled) Bk > 0, we
consider the function

ψk(r) :=
∫

∂Br

(
|Dhk|2 + |Dh|2

)
+ A−2

k

∫
∂Br

G (hk, h)2 + B−1
k

∫
∂Br

|η ◦ hk| . (15.35)

By assumption lim infk
∫ r1

r0
ψk(r)dr < ∞. Hence by Fatou’s Lemma, there is an r ∈] r0, r1[

and a subsequence (not relabeled) such that limk ψk(r) < ∞. Thus, for some M > 0 we
have ∫

∂B+
r

G (hk, h)2 → 0 , (15.36)

Dir
(
h, ∂B+

r
)
+ Dir

(
hk, ∂B+

r
)
≤ M , (15.37)∫

∂B+
r

|η ◦ hk| ≤ M ‖η ◦ hk‖L1(Br1)
. (15.38)

In case Bk = 0 for all k large enough, we define ψk by dropping the last summand in
(15.35) and reach the same conclusion. We apply Lemma 15.8 with f = h, r = r1 and find
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a Lipschitz function hε̄1 satisfying the conclusion of the lemma with ε̄1 = ε̄1(η, M) > 0
(which will be chosen later). In particular we have

‖G (hk, hε̄1)‖L2(B+
r1\B

+
r0 )
≤ ‖G (hk, h)‖L2(B+

r1\B
+
r0 )

+ ‖G (h, hε̄1)‖L2(B+
r1\B

+
r0 )
≤ o(1) + ε̄1 ,

Dir
(
hε̄1 , ∂B+

r
)
≤ Dir

(
h, ∂B+

r
)
≤ M + ε̄1 .

To obtain also the estimate (15.29), which will be required in the construction of the
center manifold, we argue along the same lines of [13, Proposition 4.4]. For hε̄1 =

∑Q
i=1 J(hε̄1)iK we set h̄ε̄1 := ∑Q

i=1

q
(hε̄1)i − η ◦ hε̄1 + (η ◦ h) ∗ ϕρ

y
, where ϕρ(x) := 1

ρn ϕ( x
ρ ),

and ϕ(x) = ϕ̄(x− z0) with ϕ̄ being the standard bump function with support in B1(0),
z0 := (0,−2) and ρ will be chosen small enough later. Observe that spt(ϕρ) = Bρ(ρz0) ⊆
B−r for every ρ small enough and spt(ϕ) = B1(z0). The reason to introduce this
convolution kernel ϕρ with support contained in B−r is that we need to preserve the zero
boundary condition on Hr. Indeed, we claim that such an h̄ε̄1 satisfies (h̄ε̄1)|Hr = Q J0K
in addition to all the other conclusion of the proposition. The fact that (h̄ε)|Hr = Q J0K
is a simple consequence of the definitions and we leave it to the reader. Observe that
the standard approximation properties of mollifiers reinterpreted suitably extends to
this new kind of kernel. In particular, we can choose ρ small enough to have

Q2‖η ◦ h− (η ◦ h) ∗ ϕρ‖2
L2 ≤ ε̄1 , (15.39)

‖D(η ◦ h)− D((η ◦ h) ∗ ϕρ)‖2
L2 ≤ ε̄1 , (15.40)

for some small ε̄1. These last two inequalities combined with (15.36), (15.37), (15.38)
imply

•
∥∥G (hk, h̄ε̄1

)∥∥
L2

(15.39)
≤ ‖G (hk, h)‖L2 + 2

∥∥G (h, h̄ε̄1

)∥∥
L2 + ε̄1 ≤ o(1) + 3ε̄1 ,

• Dir
(
h̄ε̄1 , ∂Br

)
≤ 2M + 2ε̄1 ,

• Dir
(
h̄ε̄1 , Br

)
= ∑

i

∫
Br

∣∣D (h̄ε̄1

)
i − D

(
η ◦ h̄ε̄1

)
+ D

(
(η ◦ h) ∗ ϕρ̄

)∣∣2
=
∫

Br

(∣∣Dh̄ε̄1

∣∣2 −Q
∣∣D (η ◦ h̄ε̄1

)∣∣2 + Q
∣∣D ((η ◦ h) ∗ ϕρ̄

)∣∣2)
= Q

∫
Br

(
|D (η ◦ h)|2 −

∣∣D (η ◦ h̄ε̄1

)∣∣2 + ∣∣D (η ◦ h ∗ ϕρ̄

)∣∣2 − |D (η ◦ h)|2
)

+ Dir
(
h̄ε̄1 , Br

)
≤ Dir (hε̄1 , Br) + 2Qε̄1 ,

where we used (15.30),(15.40) in the last inequality. We can then apply the interpolation
Lemma 15.9 with f = h̄ε̄1 and g = hk |∂B+

r
, and ε = ε̄2 = ε̄2(η, M) > 0 to get maps Hk



102 harmonic approximation

satisfying Hk|∂B+
r
= hk|∂B+

r
, Hk|B+

r1\B
+
r
= hk|B+

r1\B
+
r

. Now, we use (15.36), (15.37), (15.38)
(15.30) and (15.31) to deduce

Dir
(

Hk, B+
r
) (15.32)
≤ Dir

(
h̄ε̄1 , B+

r
)
+ ε̄2 Dir

(
h̄ε̄1 , ∂B+

r
)
+ ε̄2 Dir

(
hk, ∂B+

r
)

+
C0

ε̄2

∫
∂B+

r

G
(
h̄ε̄1 , hk

)2

(15.31)
≤ Dir

(
h, B+

r
)
+ ε̄1 + 2Qε̄1 + 3ε̄2

[
Dir

(
h, ∂B+

r
)
+ ε̄1

]
+ ε̄2M

+
C0

ε̄2

[∫
∂B+

r

G (h, hk)
2 +

∫
∂B+

r

G (hε̄1 , h)2
]

≤ Dir
(
h, B+

r
)
+ ε̄1(1 + 2Q) + ε̄2(4M + 3ε̄1) + C0 ε̄−1

2 [o(1) + ε̄1] .

An appropriate choice of the parameters ε̄1 and ε̄2 gives the desired bound Dir (Hk, Br) ≤
Dir (h, Br) + η for k large enough. Observe next that, by construction, Lip

(
h̄ε̄1

)
depends

on η and h, but not on k. Moreover, we have∥∥G (h̄ε̄1 , hk
)∥∥

L∞(∂Br)
≤ C

∥∥G (h̄ε̄1 , hk
)∥∥

L2(∂Br)
+ C Lip (hk) + C Lip

(
h̄ε̄1

)
.

To prove the last inequality put F(x) := G
(
h̄ε̄1(x), hk(x)

)
and observe that F(x) ≤

F(y) + Lip(F)|x− y|, then integrate in y and use the Cauchy-Schwarz inequality com-
bined with the fact that Lip(F) ≤ C(Lip(h̄ε̄1) + Lip(hk)). Thus (15.27) follows from
(15.33). Finally, (15.28) follows from the Poincaré inequality applied to G (Hk, hk) (which
vanishes identically on ∂B+

r ), in fact we have

‖G (Hk, hk) ‖2
L2(B+

r1 )
≤ C‖∇G (Hk, hk) ‖2

L2(B+
r1 )
≤ CDir(hk, B+

r1
) + CDir(Hk, B+

r1
).

(15.29) follows from (15.34), because of (15.38) and
∥∥η ◦ h̄ε̄1

∥∥
L1(Br)

=
∥∥(η ◦ h) ∗ ϕρ̄

∥∥
L1(Br)

≤
‖η ◦ h‖L1(Br1)

if ρ̄ is also chosen small enough such that r + ρ̄ < r1. Indeed, observe that

‖η ◦ Hk‖L1(B+
r1 )

= ‖η ◦ Hk‖L1(B+
r ) + ‖η ◦ hk‖L1(B+

r1\B
+
r )

(15.34)
≤ C0

∫
∂B+

r

|η ◦ hk|+ C0

∫
B+

r

|η ◦ h̄ε̄1 |+ ‖η ◦ hk‖L1(B+
r1\B

+
r )

(15.38)
≤ C0‖η ◦ hk‖L1(B+

r ) + C0

∫
B+

r

|(η ◦ h) ∗ ϕρ|+ ‖η ◦ hk‖L1(B+
r1\B

+
r )

(15.39)
≤ C0‖η ◦ hk‖L1(B+

r ) + C‖η ◦ h‖L1(B+
r ) + ‖η ◦ hk‖L1(B+

r1\B
+
r )

≤ C‖η ◦ hk‖L1(B+
r1 )

+ C‖η ◦ h‖L1(B+
r1 )

,

provided ρ is chosen so small that r̄ + ρ < r.
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We consider the density dT of the measure eT with respect to the Lebesgue measure
| · |, i.e.

dT(y) = lim sup
s→0

eT(Bs(y))
πs2 .

We will drop the subscript T when the current in question is clear from the context.
Clearly, under the assumptions of Proposition 14.4, ‖dT‖L1 ≤ CE. Now, following the
approach of [13], we wish to prove an Lp estimate for a p > 1, which is just a geometric
constant.

Theorem 16.1. There exist constants p > 1, C, and ε > 0 (depending on n and Q) such that,
if T is as in Proposition 14.4, then∫

{d≤1}∩B2

dp ≤ C
(
E + A2)p

. (16.1)

16.1 higher integrability for dir-minimizers

We start with an analogous estimate for the gradient of Dir-minimizers.

Proposition 16.2. There are constants q > 1, δ > 0 and C (depending only on Q and n) with
the following property. Consider a connected domain D in R2 such that:

• the curvature κ of ∂D enjoys the bound ‖κ‖∞ ≤ δ;

• ∂D ∩ B16(x) is connected for every x.

Let 0 < ρ ≤ 1 and u : B8ρ(x) ∩ D → AQ(R
n) be a Dir-minimizing function such that

u|∂D∩Bρ(x) = Q JgK for some C1 function g. Then(
−
∫

Bρ(x)∩D
|Du|2q

) 1
q

≤ C−
∫

B8ρ(x)∩D
|Du|2 + C‖Dg‖2

∞ . (16.2)

Proof. First of all, the claim follows from [13, Theorem 6.1] when B2ρ(x) ⊂ D, while it is
trivial if B2ρ(x) ⊂ int (Dc). We can thus assume, without loss of generality, that B2ρ(x)
intersects ∂D. Let y be a point in such intersection and observe that Bρ(x) ⊂ B4ρ(y).
The claim thus follows if we can show(

−
∫

Br(y)∩D
|Du|2q

) 1
q

≤ C−
∫

B2r(y)∩D
|Du|2 + C‖Dg‖2

∞ , (16.3)

103
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for every y ∈ ∂D and every r ≤ 4. We now define

ū(z) = ∑
i

Jui(z)− η ◦ u(z)K ,

and observe that |Du| ≤ |Dū|+ Q|Dη ◦ u|, while η ◦ u is a classical harmonic function
such that η ◦ u|∂D∩B2 = g, and ū is a Dir-minimizing function such that ū|∂D∩B2 = Q J0K.
Observe that(

−
∫

Br(y)∩D
|Dη ◦ u|2q

) 1
q

≤ C−
∫

B2r(y)∩D
|Dη ◦ u|2 + C‖Dg‖2

∞

is a classical estimate for (single-valued) harmonic functions and that |Dη ◦ u| ≤ |Du|.
Hence, it suffices to prove (16.3) when g = Q J0K. Moreover without loss of generality
we can assume that y = 0 and r = 1. Our goal is thus to show

‖|Du|‖L2q(B1∩D) ≤ C‖|Du|‖L2(B2∩D) ,

under the assumption that u|∂D∩B2 = Q J0K. If we extend |Du| trivially to the com-
plement of D, by setting it identically equal to 0, the inequality is just an higher
integrability estimate for the function |Du| on B1. By Gehring’s lemma, it suffices to
prove the existence of a constant C such that

‖|Du|‖L2(Bρ(x)) ≤ C‖|Du|‖L1(B8ρ(x)) (16.4)

whenever B8ρ(x) ⊂ B2. However, in the “interior case” B2ρ(x) ⊂ D, the stronger

‖|Du|‖L2(Bρ(x)) ≤ C‖|Du|‖L1(B2ρ(x))

is already proved in [13, Proposition 6.2]. Hence, arguing as above, it suffices to prove
(16.4), with the ball B4ρ(x) replacing Bρ(x) in the left hand side, under the additional
assumption x ∈ ∂D. Again by scaling, we are reduced to prove the following estimate

‖|Du|‖L2(B1∩D) ≤ C‖|Du|‖L1(B2∩D) if 0 ∈ ∂D. (16.5)

First of all observe that, by our assumptions, if δ is sufficiently small, for every r ∈ (1, 2)
the domain D ∩ Br is biLipschitz equivalent to the half disk Br ∩ {(x1, x2) : x2 > 0},
with uniform bounds on the Lipschitz constants of the homeomorphism and its inverse.
In particular, we recall that, by classical Sobolev space theory, we have

min
c∈R
‖ f − c‖H1/2(∂(Br∩D)) ≤ C‖D f ‖L1(∂(Br∩D))

for every classical function f ∈ W1,1(∂Br, R). Moreover there is an extension F ∈
W1,2(Br ∩ D) of f such that

‖DF‖L2(Br∩D) ≤ C‖ f − c‖H1/2(∂(Br∩D)) ≤ C‖D f ‖L1(∂(Br∩D)) . (16.6)
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Thus, using Fubini and (16.6), under our assumptions on u, we find a radius r ∈ (1, 2)
and an extension v of the classical function ξ ◦ u|∂(Br∩D) to Br ∩ D such that

‖Dξ ◦u‖L2(Br∩D) ≤ C‖Dξ ◦u‖L1(∂(Br∩D)) ≤ C‖Dξ ◦u‖L1(B2∩D) ≤ C|Du|‖L1(D∩B2) . (16.7)

If we consider the multivalued function ξ−1 ◦ ρ ◦ v, the latter has trace w := ξ−1 ◦ ξ ◦ u
on ∂(Br ∩ D). Therefore, by minimality of u,

‖|Du|‖L2(Br∩D) ≤ ‖Dw‖L2(Br∩D) ≤ C‖Dv‖L2(Br∩D) .

Combining the latter inequality with (16.7) we achieve (16.5).

16.2 improved excess estimates

Proposition 16.3 (Weak excess estimate). For every η > 0, there exists ε > 0 with the
following property. Let T be area minimizing and assume it satisfies Assumption 14.2 in C4s(x).
If E = E (T, C4s(x)) ≤ ε, then

eT(A) ≤ η10Es2 + CA2s4 (16.8)

for every A ⊂ Bs(x) ∩ D Borel with |A| ≤ ε |Bs(x)|.

Proof. Without loss of generality, we can assume s = 1 and x = 0. We distinguish the
two regimes: E ≤ A2 and A2 ≤ E. In the former, clearly eT(A) ≤ CE ≤ CA2. In the
latter, we let f be the E

1
8 -Lipschitz approximation of T in C3 and, arguing as for the

proof of [13, Theorem 5.2] we find a radius r ∈ (1, 2) and a current R such that

∂R =
〈

T −G f , ϕ, r
〉

and

M(R) ≤
(

C
δ∗
(E + A2r2)

)2

≤ CE2− 1
2 .

Therefore, by the Taylor expansion in Remark 5.4 and the minimality of T, we observe

‖T‖ (Cr) ≤M
(
G f Cr + R

)
≤
∥∥G f

∥∥ (Cr) + CE
3
2

≤ Q |Br|+
∫

Br

|D f |2
2

+ CE
5
4 . (16.9)

On the other hand, using again the Taylor expansion for the part of the current which
coincides with the graph of f , we deduce as well that

‖T‖ ((Br ∩ K)×Rn) ≥ Q |Br ∩ K|+ 1
2

∫
Br∩K
|D f |2 − CE

5
4 . (16.10)
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Subtracting (16.10) from (16.9), we deduce

eT (Br ∩ D \ K) ≤ 1
2

∫
Br∩D\K

|D f |2 + CE
5
4 . (16.11)

If ε is chosen small enough, we infer from (16.11) and (15.1) in Theorem 15.3 that

eT (Br ∩ D \ K) ≤ η̄E + CE1+γ,

for a suitable η̄ > 0 to be chosen. Let now A ⊂ B1 be such that |A| ≤ επ. If ε is small
enough, we can again apply Theorem 15.3 and so by (16.2) there is a Dir-minimizing
w such that |D f | is close in L2 (with an error η̄E) to |Dw| and by [13, Remark 5.5]
Dir(w) ≤ CE. By Proposition 16.2 we have ‖|Dw|‖Lq(B1) ≤ CE

1
2 . Therefore, using (15.1)

and (15.2), we can deduce

eT(A) ≤
∫

A
|Dw|2 + 3ηE + CE1+γ

≤ C‖Dg‖2
∞|A|1−2/q + C

(
|A|1−2/q + η̄

)
E + CE1+γ

≤ C
(
|A|1−2/q + η̄

)
E + CE

5
4 .

Hence, for a suitable choice of ε and η, (16.8) follows.

16.3 proof of theorem 16 .1

The proof follows from Proposition 16.3 arguing exactly as in [13, Section 6.3].



17
S T R O N G L I P S C H I T Z A P P R O X I M AT I O N

In this section we show how Theorem 16.1 gives a simple proof of the following
approximation result analogous to [13, Theorem 2.4].

Theorem 17.1 (Boundary Almgren Strong Approximation). There are geometric constants
γ1 > 0, εA > 0, and C > 0 with the following properties. Let T and Γ be as in Assumption
14.2 with ε = εA, let f be the Eγ-Lipschitz approximation and K ⊂ B3r the corresponding set
where G f and T coincide. Then:

Lip( f ) ≤ C(E + r2A2)γ1 (17.1)

osc ( f ) ≤ Ch(T, C4r) + Cr(E + r2A2)
1
2 (17.2)

|Br \ K|+ eT(Br \ K) ≤ Cr2(E + r2A2)1+γ1 (17.3)∣∣∣∣‖T‖(A×Rn)−Q|A ∩ D| − 1
2

∫
A
|D f |2

∣∣∣∣ ≤ Cr2(E + r2A2)1+γ1 (17.4)

for every closed set A ⊂ Br.

We postpone the proof till the end of this section however we anticipate that it goes
along the same line of [13, Theorem 2.4] using Theorems 17.2 and 17.4 below instead of
[13, Theorem 7.1] and [13, Theorem 7.3] respectively. The substantial changes necessary
to adapt the argument of the interior case, i.e., [13, Theorem 2.4] concerns mainly the
proof of Theorem 17.4 while the proof of Theorem 17.2 is essentially the same as that
of [13, Theorem 7.1]. So we start by stating the Almgren’s boundary strong excess
estimate.

Theorem 17.2 (Almgren’s boundary strong excess estimate). There are constants ε11, γ11 >

0 and C > 0 (depending on n, Q) with the following property. Assume T satisfies Assumption
14.2 in C4 and is area minimizing. If E = E (T, C4) < ε11, then

eT(A) ≤ C
(
(E + A2)γ11 + |A|γ11

) (
E + A2) , (17.5)

for every Borel set A ⊂ B 9
8
.

This estimate complements (16.1) enabling to control the excess also in the region
where d > 1. We call it boundary strong Almgren’s estimate because a similar formula
in the interior case can be found in the big regularity paper (cf. [5, Sections 3.24-3.26 and
3.30(8)]) and is a strengthened version of Proposition 16.3 that we called weak excess
estimate. To prove (17.5) we construct a suitable competitor to estimate the size of the
set K̃ where the graph of the Eβ Lipschitz approximation f differs from T. Following
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Almgren, we embed AQ(R
n) in a large Euclidean space, via a bilipschitz embedding ξ.

We then regularize ξ ◦ f by convolution and project it back onto Q = ξ (AQ(R
n)) . To

avoid loss of energy we need a rather special "almost projection" ρ?
δ that preserves zero

boundary data, i.e., ρ?
δ(0) = 0.

Proposition 17.3. (Analogue to [13, Proposition 7.2]) For every n, Q ∈ N \ {0} there are
geometric constants δ0, C > 0 with the following property. For every δ ∈]0, δ0[ there is
ρ?

δ : RN(Q,n) → Q = ξ (AQ(R
n)) such that ρ?

δ(0) = 0, |ρ?
δ(P)− P| ≤ Cδ8−nQ

for all P ∈ Q
and, for every u ∈W1,2 (Ω, RN), the following holds∫

|D (ρ?
δ ◦ u)|2 ≤

(
1 + Cδ8−nQ−1

) ∫
{dist(u,Q)≤δnQ+1}

|Du|2 + C
∫
{dist(u,Q)>δnQ+1}

|Du|2.

(17.6)

Proof. ρ?δ is the projection obtained in [13, Proposition 7.2].

Here we show the Strong Excess Approximation of Almgren in our version that
takes into account the non-homogeneous boundary value problem, concluding in this
way the proof of Theorem 17.1. Theorem 16.1 enters crucially in the argument when
estimating the second summand of (17.6) for the regularization of ξ ◦ f .

17.1 regularization by convolution with a non centered kernel

Here we construct the competitor preserving the boundary conditions.

Proposition 17.4. Let β1 ∈
(
0, 1

4

)
and T be an area minimizing current satisfying Assumption

14.2 in C4. Let f be its Eβ1-Lipschitz approximation. Then, there exist constants ε̄12, γ12, C > 0
and a subset of radii B ⊂ [9/8, 2] with |B| > 1/2 with the following properties. If E (T, C4) ≤
ε̄12, for every σ ∈ B, there exists a Q-valued function h ∈ Lip (Bσ ∩ D,AQ(R

n)) such that

h|Bσ∩∂D = g ,

h|∂Bσ∩D = f |∂Bσ∩D ,

Lip(h) ≤ C(E + A2)β1 ,∫
Bσ∩D

|Dh|2 ≤
∫

Bσ∩K∩D
|D f |2 + C

(
E + A2)1+γ12 . (17.7)

Proof. Since |D f |2 ≤ CdT ≤ CE2β1 ≤ 1 on K, by Theorem 16.1 there is q1 = 2p1 > 2
such that

‖|D f |‖2
Lq1 (K∩B2)

≤ C
(
E + A2) . (17.8)

Given two (vector-valued) functions h1 and h2 and two radii 0 < r̄ < r, we denote by
lin (h1, h2) the linear interpolation in Br \ B̄r̄ between h1|∂Br

and h2|∂Br̄
. More precisely,

if (θ, t) ∈ Sm−1
+ × [0, ∞) are spherical coordinates, then

lin (h1, h2) (θ, t) =
r− t
r− r̄

h2(θ, t) +
t− r̄
r− r̄

h1(θ, t).
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Next, let δ > 0 and ε > 0 be two parameters and let 1 < r1 < r2 < r3 < 2 be three radii,
all to be chosen suitably later. First of all extend the function g to the whole disk B3

by making it coinstant in the direction x2, i.e. g(x1, x2) = g(x1, ψ1(x1)). We then extend
the Eβ1-Lipschitz approximation to a function f ∗ defined on the entire B3 by setting

f ∗(x) =

{
f (x) if x ∈ B3 ∩ D

Q Jg(x)K if x ∈ B3 ∩ D− .

From now to keep our notation simpler we denote f ∗ as well by f . Observe moreover
that

(η ◦ f )|D− = g .

We next define a translation operator ⊕ : AQ
(
RN)×RN → AQ

(
RN) setting

T ⊕ t =
Q

∑
i=1

Jti + tK for T =
Q

∑
i=1

JtiK .

We then introduce f̃ := f ⊕ (−η ◦ f ), so that f̃ |D− = Q J0K and η ◦ f̃ = 0.
Next we define, as in the proof of Proposition 15.7, ϕε(x) := 1

εn ϕ( x
ε ), and ϕ(x) =

ϕ̄(x− z0) with ϕ̄ being the standard bump function with support in B1(0) and z0 :=
(0,−2). We therefore set

h̃ε := (η ◦ f ) ∗ ϕε − g ∗ ϕε + g .

We easily see that (h̃ε)|∂D∩Br3
= g|∂D∩Br3

, and

Lip(h̃ε) ≤ C(E + A2)β1 .

Recall the maps ρ?
δ and ξ of [LS11 b, Theorem 2.1] and observe that ξ(Q J0K) = 0 and

ρ?
δ(0Rn) = 0Rn . We then set f̃ ′1 := ξ ◦ f̃

g̃′δ,ε,s :=


√

E + A2ρ ◦Φ ◦ lin
(

f̃ ′1◦Φ−1
√

E+A2 , ρ?
δ

(
f̃ ′1◦Φ−1
√

E+A2

))
, in (Br3 \ Br2) ∩ D,

√
E + A2ρ ◦Φ ◦ lin

(
ρ?

δ

(
f̃ ′1◦Φ−1
√

E+A2

)
, ρ?

δ

(
(

f̃ ′1∗ϕε)◦Φ−1
√

E+A2

))
, in (Br2 \ Br1) ∩ D,

√
E + A2ρ?

δ

(
f̃ ′1∗ϕε√
E+A2

)
, in Br1 ∩ D,

where Φ is the diffeomorphism constructed in Proposition 15.6. Now, we define

ĥδ,ε,s :=
Q

∑
i=1

r(
ξ−1 ◦ g̃′δ,ε,s

)
i
− η ◦

(
ξ−1 ◦ g̃′δ,ε,s

)z
, in Br3 ∩ D, (17.9)

and

hδ,ε,s :=
Q

∑
i=1

r(
ξ−1 ◦ g̃′δ,ε,s

)
i
− η ◦

(
ξ−1 ◦ g̃′δ,ε,s

)
+ h̃ε

z
, in Br3 ∩ D. (17.10)
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Notice that the convolution of any function u satisfying u|B3\D ≡ 0 with ϕε for ε small
enough always produces smooth function u ∗ ϕε satisfying (u ∗ ϕε)|B3\D ≡ 0, because
we have assumed that ∂D is the graph of a Lipschitz function and so it stays inside a
cone with fixed angles. With this last fact in mind it is easy to see that (g̃′δ)|∂D = 0, and
(hδ)|∂D = g, η ◦ ĥδ,ε,s = 0. We will prove that, for σ := r3 in a suitable set B ⊂ [9/8, 2]
with |B| > 1/2, we can choose r2 = r3 − s and r1 = r2 − s so that h satisfies the
conclusion of the proposition. Our choice of the parameters will imply the following
inequalities:

δ2·8−nQ ≤ s, ε ≤ s, and E1−2β1 ≤ ε2. (17.11)

We estimate the Lipschitz constant of g̃′δ. This can be easily done observing that

• in Br1 ∩ D, we have

Lip
(

g̃′δ
)
≤ C Lip

(
f̃ ′1 ∗ ϕε

)
≤ C Lip

(
f̃ ′1
)
≤ C(E + A2)β1 ,

• in (Br2 \ Br1) ∩ D, we have

Lip
(

g̃′δ
)
≤ C Lip

(
f̃ ′1
)
+C

∥∥ f̃ ′1 − f̃ ′1 ∗ ϕε

∥∥
L∞

s
≤ C

(
1 +

ε

s

)
Lip

(
f̃ ′1
)
≤ C(E+A2)β1 ,

• in (Br3 \ Br2) ∩ D, we have

Lip
(

g̃′δ
)
≤ C Lip

(
f̃ ′1
)
+ C(E + A2)

1/2 δ8−nQ

s
≤ CEβ1 + C(E + A2)

1/2 ≤ C(E + A2)β1 . (17.12)

In the first inequality of the last line we have used that, since Q is a cone, (E +

A2)−1/2 f̃ ′1(x) ∈ Q for every x, hence∣∣∣∣∣ρ?
δ

(
f̃ ′1√

E + A2

)
− f̃ ′1√

E + A2

∣∣∣∣∣ ≤ Cδ8−nQ
.

From (17.12) and (17.11) we deduce easily that g̃′δ is continuous and piecewise Lipschitz
and so globally Lipschitz and furthermore that

Lip(hδ,ε,s) ≤ C(E + A2)β1 . (17.13)

In the following Steps 1-3 we estimate the Dirichlet energy of hδ,ε,s and finally in Step
4 we obtain the desired estimate (17.7) of Theorem 17.4 for a suitable choice of δ, ε, s
depending on some powers of the infinitesimal quantity E (see (17.39) below). Before
we realize this program, we recall that for every f ∈W1,2(Ω,AQ(R

n)) we have

0 ≤ Dir( f ⊕ (−η ◦ f )) = Dir( f )−QDir(η ◦ f ). (17.14)
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We write here the estimate of the Dirichlet energy of h̃ε which will be useful in
combination with (17.14).∫

|Dg ∗ ϕε − Dg|2 ≤ CA2ε2, (17.15)

‖Dg ∗ ϕε − Dg‖∞ ≤ C‖D2g‖∞ε ≤ CAε,∣∣∣∣∫ (Dg ∗ ϕε − Dg) (D(η ◦ f ) ∗ ϕε)

∣∣∣∣ ≤ CAε
∫
|D(η ◦ f ) ∗ ϕε|

≤ CAε(E + A2)
1
2

≤ Cε(E + A2) ., (17.16)

where we used Young’s inequality and Remark 15.5. Summing (17.16), (17.15), we
obtain∫

|Dh̃ε|2 =
∫
|D(η ◦ f ) ∗ ϕε|2 +

∫
|Dg ∗ ϕε − Dg|2

− 2
∫

(Dg ∗ ϕε − Dg) (D(η ◦ f ) ∗ ϕε)

≤
∫
|D(η ◦ f )|2 + CA2ε2 + Cε(E + A2)

≤ C
∫
|D f |2 + Cε(E + A2) .

Step 1. Energy in Br3 \ Br2 . By Proposition 17.3, we have |ρ?
δ(P)− P| ≤ Cδ8−nQ

for all
P ∈ Q := ξ(AQ(R

n)). Thus, elementary estimates on the linear interpolation give

∫
(Br3\Br2 )∩D

∣∣Dg̃′δ
∣∣2 ≤ C(E + A2)

(r3 − r2)
2

∫
(Br3\Br2 )∩D

∣∣∣∣∣ f̃ ′1√
E + A2

− ρ?
δ

(
f̃ ′1√

E + A2

)∣∣∣∣∣
2

+C
∫
(Br3\Br2 )∩D

∣∣D f̃ ′1
∣∣2 + C

∫
(Br3\Br2 )∩D

∣∣D (ρ?
δ ◦ f̃ ′1

)∣∣2
≤ C

∫
(Br3\Br2 )∩D

∣∣D f̃ ′1
∣∣2 + C(E + A2)s−1δ2·8−nQ

. (17.17)

Hence, using that Lip(ξ) ≤ 1 and (17.14), we estimate∫
(Br3\Br2 )∩D

|Dhδ,ε,s|2 =
∫
(Br3\Br2 )∩D

∣∣∣Dĥδ,ε,s

∣∣∣2 + Q
∫
(Br3\Br2 )∩D

∣∣Dh̃ε

∣∣2
≤
∫
(Br3\Br2 )∩D

∣∣Dg̃′δ
∣∣2 −Q

∫
η+ C

∫
(Br3\Br2 )∩D

∣∣Dh̃ε

∣∣2
≤ C

∫
(Br3\Br2 )∩D

|D f |2 + C(E + A2)
(

ε + s−1δ2·8−nQ
)

. (17.18)
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Step 2. Energy in Br2 \ Br1 . Here, using the same interpolation inequality and a
standard estimate on convolutions of W1,2 functions, we get∫

(Br2\Br1 )∩D

∣∣Dg̃′δ
∣∣2 ≤ C

∫
(Br2+ε\Br1−ε)∩D

∣∣D f̃ ′1
∣∣2 + CCΦ

(r2 − r1)
2

∫
Br2\Br1

∣∣ f̃ ′1 − ϕε ∗ f̃ ′1
∣∣2

≤ CCΦ

∫
(Br2+ε\Br1−ε)∩D

∣∣D f̃ ′1
∣∣2 + CCΦε2s−2

∫
B3∩D

∣∣D f̃ ′1
∣∣2

≤ C
∫
(Br2+ε\Br1−ε)∩D

∣∣D f̃ ′1
∣∣2 + Cε2(E + A2)s−2

≤ C
∫
(Br2+ε\Br1−ε)∩D

|D f |2 + Cε2(E + A2)s−2.

So coming back to the energy estimate on hδ,ε,s we get∫
(Br2\Br1 )∩D

|Dhδ,ε,s|2 =
∫
(Br2\Br1 )∩D

∣∣∣Dĥδ,ε,s

∣∣∣2 + Q
∫
(Br2\Br1 )∩D

∣∣Dh̃ε

∣∣2
≤
∫
(Br2\Br1 )∩D

∣∣Dg̃′δ
∣∣2 + C

∫
(Br2\Br1 )∩D

∣∣Dh̃ε

∣∣2
≤ C

∫
(Br2+ε\Br1−ε)∩D

|D f |2 + Cε2(E + A2)s−2 + Cε(E + A2) .

(17.19)

Step 3. Energy in Br1 . Define Z :=
{

dist
(

f̃ ′1√
E
∗ ϕε,Q

)
> δnQ+1

}
⊆ D and use (17.6)

to get ∫
Br1∩D

∣∣Dg̃′δ
∣∣2

≤
(

1 + Cδ8−n̄Q−1
) ∫

(Br1∩D)\Z

∣∣D ( f̃ ′1 ∗ ϕε

)∣∣2 + C
∫

Z

∣∣D ( f̃ ′1 ∗ ϕε

)∣∣2 (17.20)

=: I1 + I2.

We consider I1 and I2 separately. For I1 we first observe the elementary inequality∥∥D
(

f̃ ′1 ∗ ϕε

)∥∥2
L2 ≤

∥∥(D f̃ ′1) ∗ ϕε

∥∥2
L2

≤
∥∥(∣∣D f̃ ′1

∣∣1K
)
∗ ϕε

∥∥2
L2 +

∥∥(∣∣D f̃ ′1
∣∣1Kc

)
∗ ϕε

∥∥2
L2

+ 2
∥∥(∣∣D f̃ ′1

∣∣1K
)
∗ ϕε

∥∥
L2

∥∥(∣∣D f̃ ′1
∣∣1Kc

)
∗ ϕε

∥∥
L2 , (17.21)

where Kc is the complement of K in D. Recalling r1 + ε ≤ r1 + s = r2 we estimate the
first summand in (17.21) as follows∥∥(∣∣D f̃ ′1

∣∣1K
)
∗ ϕε

∥∥2
L2(Br1∩D) ≤

∫
Br1+ε∩D

(∣∣D f̃ ′1
∣∣1K
)2 ≤

∫
Br2∩K

∣∣D f̃ ′1
∣∣2. (17.22)
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In order to treat the other terms, recall that Lip
(

f̃ ′1
)
≤ C(E + A2)β1 and |Kc| ≤ C(E +

A2)1−2β1 . Thus, we have∥∥(∣∣D f̃ ′1
∣∣1Kc

)
∗ ϕε

∥∥2
L2(Br1∩D) ≤ C(E + A2)2β1 ‖1Kc ∗ ϕε‖2

L2

≤ C(E + A2)2β1 ‖1Kc‖2
L1 ‖ϕε‖2

L2

≤ C(E + A2)2−2β1

ε2 . (17.23)

Putting (17.22) and (17.23) in (17.21) and recalling (E + A2)1−2β1 ≤ ε2 and
∫ ∣∣D f̃ ′1

∣∣2 ≤
C(E + A2), we get

I1 ≤
∫

Br2∩K

∣∣D f̃ ′1
∣∣2 + Cδ8−n̄Q−1

(E + A2) + Cε−1(E + A2)3/2−β1 . (17.24)

For what concerns I2, first we argue as for I1, splitting in K and Kc, to deduce that

I2 ≤ C
∫

Z

((∣∣D f̃ ′1
∣∣1K
)
∗ ϕε

)2
+ Cε−1(E + A2)3/2−β1 . (17.25)

Then, regarding the first summand in (17.25), we note that

|Z|δ2nQ+2 ≤
∫

Br1∩D

∣∣∣∣∣ f̃ ′1√
E + A2

∗ ϕε −
f̃ ′1√

E + A2

∣∣∣∣∣
2

≤ Cε2. (17.26)

Next, we recall that q1 = 2p1 > 2 and use (17.8) to obtain∫
Z

((∣∣D f̃ ′1
∣∣1K
)
∗ ϕε

)2 ≤ |Z|
p1−1

p1
∥∥(∣∣D f̃ ′1

∣∣1K
)
∗ ϕε

∥∥2
L4

≤ C
( ε

δnQ+1

) 2(p1−1)
p1

∥∥∣∣D f̃ ′1
∣∣∥∥2

Lq1 (K)

≤ C
( ε

δnQ+1

) 2(p1−1)
p1

(
E + A2) . (17.27)

Gathering all the estimates together (17.20), (17.24), (17.25) and (17.27) gives∫
Br1∩D

∣∣Dg̃′δ
∣∣2 ≤ ∫

Br1∩K

∣∣D f̃ ′1
∣∣2 + C(E + A2)δ8−nQ−1

+ C
(E + A2)3/2−β1

ε

+ C(E + A2)
( ε

δnQ+1

) 2(p1−1)
p1

=
∫

Br1∩K
|D f |2 −Q

∫
Br1∩K

|D(η ◦ f )|2 + C(E + A2)δ8−nQ−1

+ C
(E + A2)3/2−β1

ε
+ C(E + A2)

( ε

δnQ+1

) 2(p1−1)
p1 (17.28)
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Define Z :=
{

dist ((η ◦ f ) ∗ ϕε,Q) > δnQ+1} to get∫
Br1∩D

|D(η ◦ f ) ∗ ϕε|2 ≤
∫

Br1∩D\Z
|D ((η ◦ f ) ∗ ϕε)|2 +

∫
Z
|D ((η ◦ f ) ∗ ϕε)|2

(17.29)

=: Î1 + Î2.

We consider Î1 and Î2 separately. For Î1 we first observe the elementary inequality

‖D ((η ◦ f ) ∗ ϕε)‖2
L2 ≤ ‖(D(η ◦ f )) ∗ ϕε‖2

L2

≤ ‖(|D(η ◦ f )| 1K) ∗ ϕε‖2
L2 + ‖(|D(η ◦ f )| 1Kc) ∗ ϕε‖2

L2

+ 2 ‖(|D(η ◦ f )| 1K) ∗ ϕε‖L2 ‖(|D(η ◦ f )| 1Kc) ∗ ϕε‖L2 .
(17.30)

Recalling r1 + ε ≤ r1 + s = r2, we estimate the first summand in (17.30) as follows

‖(|D(η ◦ f )| 1K) ∗ ϕε‖2
L2(Br1∩D) ≤

∫
Br1+ε∩D

(|D(η ◦ f )| 1K)
2 ≤

∫
Br2∩K

|D(η ◦ f )|2 . (17.31)

In order to treat the other terms, recall that Lip (η ◦ f ) ≤ C(E + A2)β1 and |Kc| ≤
C(E + A2)1−2β1 . We thus have

‖(|D(η ◦ f )| 1Kc) ∗ ϕε‖2
L2(Br1∩D) ≤ C(E + A2)2β1 ‖1Kc ∗ ϕε‖2

L2

≤ C(E + A2)2β1 ‖1Kc‖2
L1 ‖ϕε‖2

L2

≤ C(E + A2)2−2β1

ε
. (17.32)

Putting (17.31) and (17.32) in (17.30), and recalling E1−2β1 ≤ ε2 and
∫
|D(η ◦ f )|2 ≤ CE

we get

Î1 ≤
∫

Br2∩D∩K
|D(η ◦ f )|2 + Cε−1(E + A2)3/2−β1 . (17.33)

For what concerns Î2, first we argue as for Î1 (splitting in K and Kc) to deduce that

Î2 ≤ C
∫

Z
((|D(η ◦ f )| 1K) ∗ ϕε)

2 + Cε−1(E + A2)3/2−β1 . (17.34)

Then, regarding the first summand in (17.34), we note that

|Z|δ2nQ+2 ≤
∫

Br1∩D

∣∣∣∣ (η ◦ f )√
E + A2

∗ ϕε −
(η ◦ f )√
E + A2

∣∣∣∣2 ≤ Cε2. (17.35)
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Recalling that q1 = 2p1 > 2, we use (17.8) to obtain∫
Z
((|D(η ◦ f )| 1K) ∗ ϕε)

2 ≤ |Z|
p1−1

p1 ‖(|D(η ◦ f )| 1K) ∗ ϕε‖2
L4

≤ C
(

ε

δn̄Q + 1

) 2(p1−1)
p1 ‖|D(η ◦ f )|‖2

Lq1 (K)

≤ C
(

ε

δnQ + 1

) 2(p1−1)
p1 (

E + A2) . (17.36)

Gathering all the estimates together, (17.29), (17.33), (17.34) and (17.36) gives∫
Br1∩D

|D(η ◦ f ) ∗ ϕε|2 ≤
∫

Br1∩K
|D(η ◦ f )|2 + C

(E + A2)3/2−β1

ε

+ C(E + A2)
( ε

δnQ+1

)2− 1
p1 . (17.37)

So combining (17.28) and (17.37) yields∫
Br1∩D

|Dhδ,ε,s|2 =
∫

Br1∩D

∣∣∣Dĥδ,ε,s

∣∣∣2 + Q
∫

Br1∩D

∣∣Dh̃ε

∣∣2
≤
∫

Br1∩D

∣∣Dg̃′δ
∣∣2 + Q

∫
Br1∩D

∣∣Dh̃ε

∣∣2
≤
∫

Br1∩K
|D f |2 −Q

∫
Br1∩K

|D(η ◦ f )|2 + Q
∫

Br1∩K
|Dη ◦ f |2 + Cε(E + A2)

+ C

(
(E + A2)δ8−nQ−1

+
(E + A2)3/2−β1

ε
+ (E + A2)

( ε

δnQ+1

) 2(p1−1)
p1

)

≤
∫

Br1∩K
|D f |2 + C(E + A2)δ8−nQ−1

+ C
(E + A2)3/2−β1

ε

+ C(E + A2)
( ε

δnQ+1

) 2(p1−1)
p1 + Cε(E + A2). (17.38)

Step 4. Final estimate. This part is analogue to [13, Step 4 of Proposition 7.3].
Summing (17.18), (17.19), (17.38), and recalling that ε < s, we conclude∫

Br3∩D
|Dhδ,ε,s|2 ≤

∫
Br1∩K

|D f |2 + C
∫
(Br1+3s\Br1−s)∩D

∣∣D f ′
∣∣2 + C(E + A2)

(
ε + δ8−nQ−1

)
+ C(E + A2)

(
ε2

s2 +
δ2·8−nQ

s
+

(E + A2)1/2−β1

ε
+
( ε

δnQ+1

) 2(p1−1)
p1

)
.

We set ε = (E + A2)a, δ = (E + A2)b and s = (E + A2)c, where

a =
1− 2β1

4
, b =

1− 2β1

8(nQ + 1)
, and c =

1− 2β1

8nQ8(nQ + 1)
(17.39)
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and we finally let h be the corresponding function hδ,ε,s. This choice respects (17.11).
Assume (E + A2) is small enough so that s ≤ 1

16 . Now, if C > 0 is a sufficiently large
constant, there is a set B′ ⊂

[ 9
8 , 29

16

]
with |B′| > 1/2 such that,∫

(Br1+3s\Br1−s)∩D

∣∣D f ′
∣∣2 ≤ Cs

∫
B2∩D

∣∣D f ′
∣∣2 ≤ C(E + A2)1+c for every r1 ∈ B′.

For σ = r3 ∈ B = 2s + B′ we then conclude the existence of a γ̄ (β1, n, Q) > 0 such that∫
Bσ∩D

|Dh|2 ≤
∫

Bσ∩K
|D f |2 + C

(
E + A2)1+γ̄

.

Proof of Theorem 17.2. Here we proceed as in the proof of [13, Theorem 7.1]. Choose
β1 = 1

8 and consider the set B ⊂ [9/8, 2] given in Proposition 17.4. Using the coarea
formula and the isoperimetric inequality (the argument and the map ϕ are the same in
the proof of Theorem 15.3 and that of Proposition 16.3), we find s ∈ B and an integer
rectifiable current R such that

∂R =
〈

T −G f , ϕ, s
〉

and M(R) ≤ CE
3
2 .

Since h|∂(D∩Bs) = f |∂(D∩Bs) we can use h in place of f in the estimates and, arguing as
before (see e.g. the proof of Proposition 16.3), we get, for a suitable γ > 0

‖T‖ (Cs) ≤ Q |Bs ∩ D|+ 1
2

∫
Bs∩D
|Dg|2 + C(E + A2)1+γ̄

(17.7)
≤ Q |Bs ∩ D|+ 1

2

∫
Bs∩K
|D f |2 + C

(
E + A2)1+γ̄

. (17.40)

On the other hand, by Taylor’s expansion in [13, Remark 5.4],

‖T‖ (Cs) = ‖T‖ ((Bs ∩ D \ K)×Rn) +
∥∥G f

∥∥ ((Bs ∩ K)×Rn)

≥ ‖T‖ ((Bs ∩ D \ K)×Rn) + Q |K ∩ Bs|

+
1
2

∫
K∩Bs

|D f |2 − C(E + A2)1+γ̄. (17.41)

Hence, from (17.40) and (17.41), we get eT (Bs ∩ D \ K) ≤ C
(
E + A2)1+γ̄. This is enough

to conclude the proof. Indeed, let A ⊂ B9/8 ∩ D be a Borel set. Using the higher
integrability of |D f | in K (see (17.8)) and possibly selecting a smaller γ̄ > 0, we get

eT(A) ≤ eT(A ∩ K) + eT(A \ K)

≤ 1
2

∫
A∩K
|D f |2 + C

(
E + A2)1+γ̄

≤ C|A ∩ K|
p1−1

p1

(∫
A∩K
|D f |q1

)2/q1

+ C
(
E + A2)1+γ̄

≤ C|A|
p1−1

p1
(
E + A2)+ C

(
E + A2)1+γ̄

.
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Proof of Theorem 17.1. Here we proceed exactly as in the proof of [13, Theorem 2.4].
Assume r = 1 and x = 0. Choose β11 < min

{
1
4 , γ11

2(1+γ11)

}
, where γ11 is the con-

stant in Theorem 17.4. Let f be the Eβ11 -Lipschitz approximation of T. Clearly
(17.1) and (17.2) follow directly from Proposition 14.4, if γ < β11. Set next A :={

meT > 2−m(E + A2)2β11
}
∩ B9/8. By Proposition 14.4 we have |A| ≤ C(E + A2)1−2β11 .

If εA > 0 is sufficiently small, apply (14.9) and the estimate (17.5) to A in order to
conclude

|B1 ∩ D \ K| ≤ C(E + A2)−2β11eT(A) ≤ C(E + A2)γ11−2β11(1+γ11)
(
E + A2) .

By our choice of γ11 and β11, this last inequality gives (17.3) for some positive γ1. Finally,
set S = G f . Recalling the strong Almgren estimate (17.5) and the Taylor expansion in
[13, Remark 5.4] we conclude for every 0 < σ ≤ 1∣∣∣∣‖T‖ (Cσ)−Q|D| −

∫
Bσ∩D

|D f |2
2

∣∣∣∣ (17.42)

≤ eT (Bσ ∩ D \ K) + eS (Bσ ∩ D \ K) +
∣∣∣∣eS (Bσ ∩ D)−

∫
Bσ∩D

|D f |2
2

∣∣∣∣ (17.43)

≤ C
(
E + A2)1+γ11 + C |Bσ ∩ D \ K|+ C Lip( f )2

∫
Bσ∩D

|D f |2 (17.44)

≤ C
(
E + A2)1+γ11 . (17.45)

We conclude the proof by noticing that the L∞ bound follows from Proposition 14.4.
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C E N T E R M A N I F O L D A N D N O R M A L A P P R O X I M AT I O N

This section is devoted to prove an analog of [21, Theorem 8.13], namely to construct,
in a neighborhood of a flat point p, a smooth C3,α submanifold with boundary Γ and a
normal multivalued map N on it. The first is, roughly, an approximation of the average
of the sheets lying over the unique tangent plane V to T at p. The second is a more
accurate approximation of the current T, which compared to the one in Section 14 has
the additional property of having (almost) zero average.

We start by introducing the spherical excess and the cylindrical excess with respect
to a general plane.

Definition 18.1. Given a current T as in Assumption 12.5 and 2-dimensional planes
V, V ′, we define the excess of T in balls and cylinders with respect to planes V, V ′ as

E(T, Br(x), V) :=
(
2π r2)−1

∫
Br(x)
|~T − ~V|2 d‖T‖,

E(T, Cr(x, V), V ′) :=
(
2π r2)−1

∫
Cr(x,V)

|~T − ~V ′|2 d‖T‖ .

Definition 18.2 (Optimal planes). For the case of balls we define the spherical excess
as follows. The optimal spherical excess at some x ∈ spt(T) \ Γ is given by

E(T, Br(x)) := min
V

E(T, Br(x), V), (18.1)

but in the case of x ∈ Γ we define the optimal boundary spherical excess as

E[(T, Br(x)) := min{E(T, Br(x), V) : V ⊃ TxΓ}.

The plane V which minimizes E, resp. E[, is not unique but since for notational purposes
it is convenient to define a unique “height” h(T, Br(x)) we set

h(T, Br(x)) := min
{

h(T, Br(x), V) : V optimizes E (resp. E[)
}

. (18.2)

In the case of cylinders we denote by E(T, Cr(x, V)) = E(T, Cr(x, V), V) and
h(T, Cr(x, V)) = h(T, Cr(x, V), V).

We recall that under the above assumptions C5R0 = C5R0(0, V0) and p]T C5R0 =

Q JDK, where D ⊂ B5R0 is one of the two connected components in which B5R0

is subdivided by the curve γ = p(Γ). Moreover T0Γ = R × {0} and in particu-
lar Γ ∩ C5R0 = {(t, ψ(t))} = {(t, ψ1(t), ψ̄(t))}, where ψ1 : (−5R0, 5R0) → R and
ψ̄ : (−5R0, 5R0)→ Rn. In particular γ is the graph of ψ1 and without loss of generality
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we assume that D = {(x1, x2) ∈ B5R0 : x2 > ψ1(x1)}, namely it is the upper half of
B5R0 \ γ.

In this section we will then work under the following assumptions.

Assumptions 18.3. p = q = (0, 0), V = V0 = R2 × {0}, Q, T, and Γ are as in Assumption
14.2 in the cylinder C5R0 , where R0 ≥ 1 +

√
2 is a sufficiently large geometric constant which

will be specified later. Moreover Q JV0K is the (unique) tangent cone to T at 0. We moreover
assume in the sequel that

E(T, C5R0(0, V0)) + A2 ≤ εCM,

for some small positive parameter εCM = εCM(n, Q, R0).

Under the above assumptions we show now that the height of T in C4R0 is also under
control.

Lemma 18.4. There are constants εCM, C depending on Q, n and R0 such that, if Assumption
18.3 holds, then for all p ∈ Γ and r > 0 such that C5r(p, V0) ⊂ C5R0 , we have

h(T, C4r(p, V0)) ≤ Cr(E(T, C5r(p, V0)) + rA)
1
2 . (18.3)

Proof. We divide the proof into two steps.

Step 1: sup
z∈spt(T)∩C4r(p,V0)

|p⊥V0
(z− p)|2 ≤ Cr−2

∫
C9r/2(p,V0)

|p⊥V0
(z− p)|2d‖T‖(z) + C0A2r4.

This is shown in [21, Lemma 6.6] and carries over word by word to our setting as
the only part where the stationarity of the associated integral varifold is needed, is
for the harmonicity of the coordinate functions. This however is true, as we test with
functions which are supported away from the boundary of T. We use this to apply a
Moser iteration scheme and estimate the L∞ norm by the limsup of the Lp norms as
p→ ∞.

Step 2: r−2
∫

C9r/2(p,V0)
|p⊥V0

(z− p)|2d‖T‖(z) ≤ C E(T, C5r(p, V0))r2 + CAr3.

Also for this, the proof of [21, Lemma 6.7] carries over as the difference to our
situation is a factor Q in the monotonicity formula (Theorem 11.2). From there, we
estimate the remainder term by r2(E(T, C5r(0, V0)) + A).

18.1 whitney decomposition

We specify next some notation which will be recurrent when dealing with squares
inside V0. For each j ∈N, Cj denotes the family of closed squares L of V0 of the form

[a1, a1 + 2`]× [a2, a2 + 2`]× {0} ⊂ V0 (18.4)
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which intersect D, where 2 ` = 21−j =: 2 `(L) is the side-length of the square, ai ∈ 21−jZ

∀i and we require in addition −4 ≤ ai ≤ ai + 2` ≤ 4. To avoid cumbersome notation,
we will usually drop the factor {0} in (18.4) and treat each squares, its subsets and
its points as subsets and elements of R2. Thus, for the center xL of L we will use the
notation xL = (a1 + `, a2 + `), although the precise one is (a1 + `, a2 + `, 0, . . . , 0). Next
we set C :=

⋃
j∈N Cj. If H and L are two squares in C with H ⊂ L, then we call L an

ancestor of H and H a descendant of L. When in addition `(L) = 2`(H), H is a child
of L and L the parent of H. Moreover, if H ∩ L 6= ∅ but they are not contained in each
other, we call them neighbours.

Definition 18.5. A Whitney decomposition of D ∩ [−4, 4]2 ⊂ V0 consists of a closed set
∆ ⊂ [−4, 4]2 ∩ D and a family W ⊂ C satisfying the following properties:

(w1) ∆ ∪⋃L∈W L ∩ D = [−4, 4]2 ∩ D and ∆ does not intersect any element of W ;

(w2) the interiors of any pair of distinct squares L1, L2 ∈ W are disjoint;

(w3) if L1, L2 ∈ W have nonempty intersection, then 1
2`(L1) ≤ `(L2) ≤ 2 `(L1).

Remark 18.6. Because of (w1) we will assume that any L ∈ W intersects D.

Observe that (w1) - (w3) imply

sep (∆, L) := inf{|x− y| : x ∈ L, y ∈ ∆} ≥ 2`(L) for every L ∈ W , (18.5)

since there is an infinite chain of neighbouring squares {Li}i∈N with L0 = L, dist(∆, Li)→
0 and `(Li) ≥ 2`(Li+1) for all i. However, we do not require any inequality of the form
sep (∆, L) ≤ C`(L), although this would be customary for what is commonly called a
Whitney decomposition in the literature.

Assumptions 18.7. In the rest of this section we will use several different parameters:

(a) δ1 and β1 are two small geometric constants which depends only on Q, n, the constant
γ1 of Theorem 17.1, in fact they will be chosen smaller than γ1

8 and δ1 ≤ β1
2 ;

(b) M0 is a large geometric constant which depends only on δ1, while N0 ≥ ln(132
√

2)
ln(2) is a

large natural number which will be chosen depending on β1, δ1, and M0;

(c) C[
e is a large constant C[

e(β1, δ1, M0, N0), while C\
e is larger and depends also on C[

e ;

(d) Ch is large and depends on β1, δ1, M0, N0, C[
e and C\

e ;

(e) the small threshold εCM is the last to be chosen, it depends on all the previous parameters
and also on the constant εA of Theorem 17.1.
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Definition 18.8. For each square L ∈ C we set rL :=
√

2M0`(L) and we say that L is an
interior square if dist(xL, γ) ≥ 64rL, otherwise we say that L is a boundary square and
we use, respectively, the notation C \ for the interior squares contained in D and C [ for
the boundary squares. Next, we define a corresponding (n + 2)-dimensional balls BL,
resp. B[

L, for such L’s:

(a) If L ∈ C \, we pick a point pL = (xL, yL) ∈ spt(T) ∩ ({xL} ×Rn) and we set
BL := B64rL(pL);

(b) If L ∈ C [, we pick x[L = (t, ψ1(t)) ∈ γ such that dist(xL, γ) = |x[L − xL|, define
p[L = (t, ψ(t)) ∈ Γ ∩ ({x[L} ×Rn) and set B[

L = B2764rL
(p[L).

We are now ready to prescribe N0: we require the inequality

2764rL ≤ 2764
√

2M02−N0 ≤ 1 , (18.6)

so that, in particular, all the balls BL and B[
L considered above are contained in the

cylinder C4R0 .
The following remark will be useful in the sequel.

Remark 18.9. If L ∈ C [ and J is the parent of L, then J ∈ C [, while if L ∈ C \, then
every child of L is an element of C \. In fact, if H and L are two squares with nonempty
intersection, `(H) < `(L) and H is a boundary cube, then necessarily L is a boundary
cube too.

Remark 18.10. Fix L ∈ C [ and subdivide it into the canonical four squares M with
half the sidelength. For M any of the following three cases can occur: M might be
a boundary square, an interior square, or might simply not belong to C [ ∪ C \ (i.e.
M ∩ D = ∅). However, because of the enlarged radius for boundary squares, it still
holds that the ball of a child is contained in the ball of its parent (compare to Proposition
19.1(i)). Moreover, B[

L ⊃ L for any boundary square L.

We are now ready to define the refining procedure leading to the desired Whitney
decomposition.

Definition 18.11. First of all we set m0 := E(T, C5R0) + ‖ψ‖2
C3,α(]−5R0,5R0[)

. We start with

all L ∈ C [ ∪ C ] with `(L) = 2−N0 and we assign all of them to S . Next, inductively,
for each j > N0 and each L ∈ C [

j ∪ C \
j such that its parent belongs to S we assign to

S or to W = W e ∪W h ∪W n in the following way:

(EX) L ∈ W e if E(T, BL) > C\
e m0`(L)2−2δ1 , resp. if E[(T, B[

L) > C[
e m0`(L)2−2δ1 ;

(HT) L ∈ W h if L 6∈ W e and h(T, BL) ≥ Chm
1
4
0 `(L)1+β1 , resp. h(T, B[

L) ≥ Chm
1
4
0 `(L)1+β1 ;

(NN) L ∈ W n if L 6∈ W h ∪ W e but there is a J ∈ W such that `(J) = 2`(L) and
L ∩ J 6= ∅;
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(S) L ∈ S if none of three conditions above are satisfied.

We denote by C [
j := C [ ∩Cj, C

]
j := C ] ∩Cj, Sj := S ∩Cj, Wj := W ∩Cj, W e

j := W e ∩Cj,
W h

j := W h ∩ Cj and W n
j := W n ∩ Cj. Finally, we set

∆ := ([−4, 4]2 ∩ D) \
⋃

L∈W

L =
⋂

j≥N0

⋃
L∈Sj

L . (18.7)

A simple consequence of our refining procedure is the following proposition which
we will prove in the next section.

Proposition 18.12. Let V0, Q, T, and Γ be as in Assumption 18.3 and assume the parameter
N0 satisfies (18.6). Then (∆, W ) is a Whitney decomposition of D ∩ [−4, 4]2. Moreover, for any
choice of M0 and N0, there is C?(M0, N0) such that, if C[

e , and C\
e /C[

e , Ch/C\
e , are larger than

C?, then

(a) WN0 = ∅;

(b) if L ∈ C \ ∩W e then the parent of L belongs to C \.

Moreover, the following estimates hold for some geometric constant C depending on β1 and
δ1, provided εCM is sufficiently small (depending on all the previous parameters as detailed in
Assumption 18.7)

E[(T, B[
L) ≤ CC[

e m0`(L)2−2δ1 , and h(T, B[
L) ≤ CChm

1
4
0 `(L)1+β1 , ∀L ∈ W ∩ C [ , (18.8)

E(T, BL) ≤ CC\
e m0`(L)2−2δ1 and h(T, BL) ≤ CChm

1
4
0 `(L)1+β1 , ∀L ∈ W ∩ C \ . (18.9)

18.2 construction of the center manifold

First of all for each BL and B[
L, we let VL be the choice of optimal plane for the excess

and the height in the sense of Definition 18.2: note that for boundary squares, namely
in B[

L, the plane VL optimizes the excess E[, and thus it is constrained to contain the
line Tp[L

Γ. The following key lemma allows us to apply Theorem 17.1 (and its interior
version [13, Theorem 2.4]) to corresponding cylinders.

Lemma 18.13. For any choice of the other parameters, if εCM is sufficiently small, the following
holds for every L ∈ S ∪W .

(a) If L ∈ C \, then T satisfies the assumptions of [13, Theorem 2.4] in C32rL(pL, VL).

(b) If L ∈ C [, then T satisfies the assumptions of Theorem 17.1 in C2732rL
(p[L, VL).

The corresponding Q-valued strong Lipschitz approximations will be denoted by fL and will be
called VL-approximations.



124 center manifold and normal approximation

Given a square L ∈ C [ which belongs to S ∪W , we denote by DL ⊂ B2724rL
(p[L, V[

L)

the domain of the function fL, which coincides with the orthogonal projection on
p[L + V[

L of spt(T) ∩C2724rL
(p[L, V[

L). Note in particular that ∂DL ∩ B2724rL
(p[L, V[

L) is the
projection of Γ∩C2724rL

(p[L, V[
L) onto p[L +V[

L , which we will denote by γL. Likewise, we
denote by gL the function over γL whose graph gives Γ ∩C2724rL

(p[L, V[
L). In particular,

Theorem 17.1 implies that fL|γL = Q JgLK. We now regularize the averages η ◦ fL to
suitable harmonic functions hL in the following fashion.

Definition 18.14. We denote by hL the harmonic function on B16rL(pL, VL), resp. DL ∩
B2716rL

(p[L, VL), for L ∈ C \, resp. L ∈ C [, such that the boundary value of hL on the
respective domain is given by η ◦ fL (in particular it coincides with gL on γL). hL will
be called tilted harmonic interpolating function.

In order to complete the description of our algorithm we need a second important
technical lemma.

Lemma 18.15. Consider L ∈ S ∪W . For every L ∈ C [, resp. L ∈ C \, there is a smooth
function uL : D ∩ B278rL

(p0(p[L), V0)→ V⊥0 , resp. uL : B8rL(p0(pL), V0)→ V⊥0 , such that

GuL C8rL(p[L, V0) = GhL C8rL(p[L, V0), resp. (18.10)

GuL C8rL(pL, V0) = GhL C8rL(pL, V0). (18.11)

The function uL will be called interpolating function.

The center manifold is the result of gluing the interpolating functions appropriately.
To that we fix a bump function ϑ ∈ C∞

c ((− 3
2 , 3

2 )
2) which is identically 1 on [−1, 1]2 and

define

ϑL(x) := ϑ

(
x− xL

`(L)

)
.

Hence, for any fixed j ≥ N0 we define

P j := Sj ∪
⋃
i≤j

Wi (18.12)

and the following function ϕj, defined over D ∩ [−4, 4]2 ⊂ V0 and taking values in V⊥0

ϕj(x) :=
∑L∈P j ϑL(x)uL(x)

∑H∈P j ϑH(x)
. (18.13)

The center manifold is the graph of the function ϕ which is the limit of ϕj as explained
in the statement of the next theorem.

Theorem 18.16 (Center manifold). Let T be as in Assumption 18.3 and assume that the
parameters satisfy the conditions of Assumption 18.7. Then there is a positive ω (depending
only on δ1 and β1), with the following properties:
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(a) ϕj|γ = g for every j;

(b) ‖ϕj‖C3,ω ≤ Cm
1
2
0 for some constant C which depends on β1, δ1, M0, N0, C\

e , C[
e , and Ch,

but not on εCM;

(c) For every k, k′ ≥ j + 2, ϕk = ϕk′ on every cube L ∈ Wj;

(d) ϕj converges uniformly to a C3,ω function ϕ.

Definition 18.17. The graph of the function ϕ will be called center manifold and
denoted byM. We will define Φ(x) := (x,ϕ(x)) as the graphical parametrization ofM
over [−4, 4]2 ∩ D̄. The set Φ(∆) will be called the contact set, while for every L ∈ W

the corresponding L := Φ(L ∩ D) will be called Whitney region.

18.3 the M-normal approximation and related estimates

In what follows we assume that the conclusions of Theorem 18.16 apply. For any Borel
set V ⊂ M we will denote by |V| its H2-measure and will write

∫
V f for the integral of

f with respect to H2. Br(q) denotes the geodesic balls inM. Moreover, we refer to [14]
for all the relevant notation pertaining to the differentiation of (multiple valued) maps
defined onM, induced currents, differential geometric tensors and so on.

Assumptions 18.18. We fix the following notation and assumptions.

(U) U :=
{

x + y : x ∈ M, |y| < 1, and y ⊥M
}

.

(P) p : U→M is the map defined by (x + y) 7→ x.

(R) For any choice of the other parameters, we assume εCM to be so small that p extends to
C2,κ(Ū) and p−1(y) = y + B1(0, (TyM)⊥) for every y ∈ M.

(L) We denote by ∂lU := p−1(∂M) the lateral boundary of U.

The following is then a corollary of Theorem 18.16 and the construction algorithm.

Corollary 18.19. Under the hypotheses of Theorem 18.16 and of Assumption 18.18 we have:

(i) spt(∂(T U)) ⊂ ∂lU, spt(T [− 7
2 , 7

2 ]
2 ×Rn) ⊂ U and p](T U) = Q JMK;

(ii) spt(〈T, p, Φ(q)〉) ⊂
{

y : |Φ(q)− y| ≤ Cm1/4
0 `(L)1+β1

}
for every q ∈ L ∈ W , where

C depends on all the parameters except εCM;

(iii) 〈T, p, p〉 = Q JpK for every p ∈ Φ(∆) ∪ (Γ ∩ ∂M).

The main reason for introducing the center manifold of Theorem 18.16 is that we are
able to pair it with a good approximating map defined on it.
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Definition 18.20 (M-normal approximation). An M-normal approximation of T is
given by a pair (K, F) such that

(A1) F :M→ AQ(U) is Lipschitz (with respect to the geodesic distance onM) and
takes the special form F(x) = ∑i Jx + Ni(x)K, with Ni(x) ⊥ TxM.

(A2) K ⊂M is closed and TF p−1(K) = T p−1(K).

(A3) K contains Φ
(
∆ ∩ [− 7

2 , 7
2 ]

2) and Γ ∩Φ(D̄ ∩ [− 7
2 , 7

2 ]
2), and on the latter two sets

the map N equals Q J0K.

The map N = ∑i JNiK :M→ AQ(R
2+n) is the normal part of F.

Theorem 18.21 (Existence and local estimates for theM-normal approximation). Let
γ2 := γ1

4 , with γ1 the constant of Theorem 17.1. Under the hypotheses of Theorem 18.16
and Assumption 18.18, if εCM is suitably small (depending upon all other parameters but
not the current T), then there is anM-normal approximation (K, F) such that the following
estimates hold on every Whitney region L associated to a cube L ∈ W , with constants
C = C(β1, δ1, M0, N0, C\

e , C[
e , Ch) > 0 :

Lip(N|L) ≤ Cmγ2
0 `(L)γ2 and ‖N|L‖C0 ≤ Cm1/4

0 `(L)1+β1 , (18.14)

|L \ K|+ ‖TF − T‖(p−1(L)) ≤ Cm1+γ2
0 `(L)4+γ2 , (18.15)∫

L
|DN|2 ≤ Cm0 `(L)4−2δ1 . (18.16)

Moreover, for any a > 0 and any Borel V ⊂ L, we have (for C = C(β1, δ1, M0, N0, C[
e , C\

e , Ch))

∫
V
|η ◦N| ≤ Cm0

(
`(L)5+β1/3 + a `(L)2+γ2/2|V|

)
+

C
a

∫
V
G
(

N, Q Jη ◦ NK
)2+γ2 . (18.17)

From (18.14) - (18.16) it is not difficult to infer analogous “global versions” of the
estimates.

Corollary 18.22 (Global estimates for the M-normal approximation). Let M′ be the
domain Φ

(
D ∩ [− 7

2 , 7
2 ]

2) and N the map of Theorem 18.21. Then, there is a constant C =

C(β1, δ1, M0, N0, C\
e , C[

e , Ch) such that

Lip(N|M′) ≤ Cmγ2
0 and ‖N|M′‖C0 ≤ Cm1/4

0 , (18.18)

|M′ \ K|+ ‖TF − T‖(p−1(M′)) ≤ Cm1+γ2
0 , (18.19)∫

M′
|DN|2 ≤ Cm0 . (18.20)

In addition, since N = Q J0K on Γ ∩M′, we also get∫
M′
|N|2 ≤ Cm0 . (18.21)
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18.4 additional L1
estimate

While the estimates claimed so far have all appropriate counterparts in the papers
[15] and [21], we will need an additional important estimate which is noticed here for
the first time, even though it is still a consequence of the same arguments leading to
Theorem 18.16 and Theorem 18.21.

Proposition 18.23. Consider the function f : B3 → AQ(R
n) with the property that G f =

TF C3. For every L ∈ W e we then have the estimate

‖ϕ− η ◦ f ‖L1(L) ≤ Cm3/4
0 `(L)4 (18.22)

and in particular, as long as r ≤ 3 is a radius such that `(L) ≤ r for every L ∈ W with
L ∩ Br 6= ∅, we have the estimate

‖ϕ− η ◦ f ‖L1(Br) ≤ Cm3/4
0 r4 . (18.23)
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We estimate the changes of excess and height when tilting the reference planes of
nearby squares.

Proposition 19.1 (Tilting of optimal planes). Let Q, T and Γ be as in Assumption 18.3 and
recall the parameters of Assumption 18.7. There are constants C = C(β1, δ1, M0, N0, C\

e , C[
e) >

0 and C = C(β1, δ1, M0, N0, C\
e , C[

e , Ch) > 0 such that, if εCM = εCM(Q, n, R0, Ch) > 0 is
small enough, for any H, L ∈ S ∪W with H being equal or a descendant of L we have

(i) B2
H ⊂ B2

L ⊂ B4R0 ,

(ii) |VH −VL| ≤ Cm1/2
0 `(L)1−δ1 ,

(iii) |VH −V0| ≤ Cm1/2
0 ,

(iv)\ if H ∈ C \, then
h(T, C36rH (pH, V0)) ≤ Cm1/4

0 `(H) and spt(T) ∩C36rH (pH, V0) ⊂ BH,

(iv)[ if H ∈ C [, then
h(T, C2736rH

(p[H, V0)) ≤ Cm1/4
0 `(H) and spt(T) ∩C2736rH

(p[H, V0) ⊂ BH,

(v)\ if H, L ∈ C \, then
h(T, C36rL(pL, VH)) ≤ Cm1/4

0 `(L)1+β1 and spt(T) ∩C36rL(p, VH) ⊂ BL,

(v)[ if L ∈ C [, then
h(T, C2736rL

(p[L, VH)) ≤ Cm1/4
0 `(L)1+β1 and spt(T) ∩C2736rL

(p[L, VH) ⊂ BL.

where 2 = or 2 = [ depending on whether the square is a boundary square or not. Moreover,
(ii)− (v) also hold if H and L are neighbours with 1

2`(L) ≤ `(H) ≤ `(L).

Proof. We argue by induction on i = − log2(`(H)). The base step is when i = N0 and
H = L while we pass to children squares in the induction step. By the choice of M0

and N0, we notice that there are no squares with side length 2−N0 in W .
The second inclusion of (i), we already observed in (18.6) while the first inclusion of

(i) and the inequality in (ii) is redundant for H = L. Thus, we show now (iii). We use
(i), the optimality of VH , the monotonicity formula of Theorem 11.2 and the definition
of m0 to deduce

|VH −V0|2 ≤ Cr−2
H

∫
B2

H

|~T − ~VH |2d‖T‖(x) + Cr−2
H

∫
B2

H

|~T − ~V0|2d‖T‖(x)

≤ 2CE(T, B2
H, V0) ≤ CE(T, B5R0 , V0) ≤ Cm0. (19.1)

129
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For (iv) we use the height estimate (18.3) of Lemma 18.4. Notice that C36rH (p2H, V0) ⊂
C4R0(0, V0) and hence,

h(T, C36rH (p2H, V0)) ≤ h(T, C4R0(0, V0)) ≤ Cm1/4
0 = Cm1/4

0 `(H).

Then also the inclusion spt(T) ∩ C36rH (p2H, V0) ⊂ B2
H holds, as long as εCM is small

enough. For (v) we observe that as B2
H ⊂ C4R0(0, V0) we can estimate

|p2H |2 ≤ 9R2
0 + h(T, C(4R0, V0))

2 ≤ 9R2
0 + Cm0.

Thus if εCM (and thus m0) is small enough, then C36rH (p2H, VH) ∩ B4R0 ⊂ C4R0(0, V0).
Hence, also spt(T) ∩C36rH (p2H, VH) ⊂ C4R0(0, V0) and we can estimate

h(T, C36rH (p2H, VH)) ≤ h(T, C4R0(0, V0)) + C|VH −V0|
≤ Cm1/4

0 = Cm1/4
0 `(H)1+β1 ,

where we used (iii) and (iv).

Figure 3: An illustration of the various relevant points in the Whitney square.

Induction step: Let H ∈ Si+1 ∪Wi+1 for some i ≥ N0. Thus there is a chain of squares
such that Hi+1 := H ⊂ Hi ⊂ · · · ⊂ HN0 with Hj ∈ Sj for each j ≤ i. Assume the
validity of (i)− (v) for Hl and Hk with N0 ≤ l ≤ k ≤ i. We want to show (i)− (v) for
H = Hi+1 and L = Hj with N0 ≤ j ≤ i. For (i), we notice that it is enough to show
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the inclusion for j = i. Then we have |xHi − xH | ≤
√

2`(Hi) and hence, if εCM is small
enough, we use the induction hypothesis for (iv) to estimate

|p2Hi
− p2H |2 ≤ (

√
2`(Hi) + 96rHi)

2 + h(T, C2rHi
(p2Hi

, V0))
2

≤ `(Hi)
2(
√

2(1 + 96M0))
2 + Cm1/2

0 `(Hi)
2 ≤ 216M2

0`(Hi)
2.

Now we check that B2
H ⊂ B2

Hi
. Indeed, we have

2764rH + |p2Hi
− p2H | ≤ 2732

√
2M0`(Hi) + 28M0`(Hi)

≤ 2732
√

2M0`(Hi) + 2732
√

2M0`(Hi) = 2764rHi .

For (ii), we first show the special case where j = i. We notice that by (i), the fact that
2rH = rHi and Hi ∈ Si, we have by the monotonicity formula

|VH −VHi |2 ≤ C
r2

H
‖T‖(B2

H)

(
E2(T, B2

H) + E2(T, B2
Hi
)
)

≤ C
(
E(T, B2

H, VHi) + E2(T, B2
Hi
)
)

≤ 2CE2(T, B2
Hi
)

≤ CC2
e m0`(H)2−2δ1 .

Now for a general j ∈ {N0, . . . , i}, we use the geometric series to conclude

|VH −VHj | ≤
i

∑
l=j
|VHl+1 −VHl | ≤ CC2

e m0

i

∑
l=j

`(Hl)
1−δ1

≤ CC2
e m0

∞

∑
l=j

(2−l+j`(Hj))
1−δ1 ≤ CC2

e m0`(Hj)
1−δ1 .

(iii) follows by (ii) and (19.1). To prove (iv)\, we observe that by the induction hy-
pothesis, we already know spt(T) ∩C36rHi

(p2Hi
, VHi) ⊂ B2

Hi
. Now we want to see that

C36rH (p2H, V0) ⊂ C36rHi
(p2Hi

, V0). In case where Hi ∈ C \, we have |xH − xHi | ≤
√

2`(Hi),
hence

36rH + |xH − xHi | ≤ 36rHi .

On the other hand, if Hi ∈ C [, then we recall |pH − p[Hi
| ≤ 28M0`(Hi) which implies

36rH + |xH − x[Hi
| ≤ 36rH + |pH − p[Hi

| ≤ 2736rHi .

Thus the desired inclusion of the cylinders holds. We deduce

h(T, C36rH (pH, V0)) ≤ h(T, B2
Hi

, V0) ≤ h(T, B2
Hi
) + CrHi |VHi −V0|

≤ Chm1/4
0 `(Hi)

1+β1 + C`(Hi)m1/2
0

≤ CCh`(Hi)m
1/4
0 ,

where we used the induction hypothesis and that Hi ∈ Si.
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The previous estimate shows also that spt(T) ∩C36rH (pH, V0) ⊂ BH assuming that
εCM is small enough. The proof of (iv)[ is analogous because if H ∈ C [, then also
Hi ∈ C [ and so as before

2736rH + |x[H − x[Hi
| ≤ 2736rH + |p[H − p[Hi

| ≤ 2736rHi .

Now we show (v)\, (v)[ for H = Hi+1 and L = Hj for some j ∈ {N0, . . . , i} by induction
on j. For j = N0, we use the estimate on |VH −VHN0

| to deduce(
C2736rHN0

(p2HN0
, VH) ∩ B4R0

)
⊂
(

C2736rHN0
(p2HN0

, VHN0
) ∩ B5R0

)
⊂ C4R0(0, V0)

provided that εCM is small enough. Therefore, we have

h(T, C2736rHN0
(p2HN0

, VH)) ≤ h(T, C4R0(0, V0)) + C|VH −V0| ≤ Cm1/2
0 .

Again if εCM is small, this also implies that spt(T) ∩C2736rHN0
(p2HN0

, VH)) ⊂ B2
HN0

. Now

assume that (v)\, (v)[ hold for some j ≥ N0 and denote L = Hj+1. We first consider
the case where L ∈ C \. Then its parent Hj is still unknown, but in any case, BL ⊂ B2

Hj

and thus, C36rL(pL, VH) ⊂ C36rHj
(pHj , VH) or C36rL(pL, VH) ⊂ C2736rHj

(p[Hj
, VH) respec-

tively. Using the induction hypothesis, we find h(T, C36rHj
(pHj , VH)) ≤ h(T, BHj , VH) or

h(T, C2736rHj
(p[Hj

, VH)) ≤ h(T, B[
Hj

, VH) respectively. Moreover, using (ii), we deduce

h(T, B2
Hj

, VH) ≤ h(T, B2
Hj
) + CrHj |VH −VHj |

≤ CChm1/4
0 `(Hj)

1+β1 + Cm1/2
0 `(Hj)

2−δ1 ≤ CChm1/4
0 `(Hj).

Thus, we have also spt(T) ∩C36rL(pL, VH)) ⊂ BL and finally

h(T, C36rL(p, VH)) ≤ h(T, BL) + CrL|VH −VL| ≤ CChm1/4
0 `(L)1+β1 .

On the other hand, if L ∈ C [, then also Hj ∈ C [ and we can perform the same argument
since B[

L ⊂ B[
Hj

and C2736rL
(p[L, VH) ⊂ C2736rHj

(p[Hj
, VH). This shows both (v)\ and (v)[.

For neighbor squares, the argument works exactly the same as everything follows
from the smallness of |p2L − p2H | and the fact that B2

L ∪ B2
H ⊂ B2

J , where J is the parent
of L.

Very similarly we now prove the excess estimates using the fact, that the parent of
any square belongs to S .

Proof of Proposition 18.12. For squares L of side length 2−N0 , we know by Proposition
19.1 (i) that B2

L ⊂ B4R0 and so we can choose C\
e and C[

e large enough such that

E2(T, BL) ≤ C(R0, N0)E(T, B4R0 , V0) ≤ C(R0, N0)m0 ≤ C2
e m0`(L)2−2δ1 .
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Hence, L /∈ W e. Similarly we see that L /∈ W h. Indeed, we use Proposition 19.1 (ii) and
the height estimate of Lemma 18.4

h(T, B2
L ) ≤ h(T, B4R0 , V0) + C(R0, n, Q)|V2

L −V0| ≤ C(R0, n, Q)m1/4
0 .

Thus, we can choose Ch large enough such that h(T, B2
L ) ≤ Chm1/4

0 `(L)1+β1 . This shows
(a).

We claim that (b) holds as long as C\
e ≥ 16C[

e . Let L ∈ C \ and assume its parent
H ∈ C [. We want to show that L /∈ W e. Recall that |pL − p[H | ≤ 28M0`(L) and thus
BL ⊂ B[

H. Moreover, as H is a parent, it belongs to S , thus

E[(T, B[
H) ≤ C[

e m0`(H)2−2δ1 .

This then implies

E(T, BL) ≤ E(T, BL, VH) ≤ 4E[(T, B[
H) ≤ 16C[

e m0`(L)2−2δ1 .

Now let L ∈ W ∩ C [ and denote by H ∈ S the parent of L. As L is a boundary square,
so is H. By Proposition 19.1 (i) and (ii), we know that B[

L ⊂ B[
H and

E[(T, B[
L) ≤ 4E[(T, B[

H) ≤ CC[
e m0`(L)2−2δ1 ,

h(T, B[
L) ≤ h(T, B[

H) + CrL|VL −VH | ≤ CChm1/4
0 `(L)1+β1 .

On the other hand, for L ∈ W ∩ C \, the parent H of L could be either a boundary
square or an interior square. So we estimate

E(T, BL) ≤ 4E2(T, B2
H) ≤ C(C[

e + C\
e)m0`(L)2−2δ1 ,

h(T, BL) ≤ h(T, B2
H) + CrL|VL −V2

H | ≤ CChm1/4
0 `(L)1+β1 .
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We notice that our construction fulfills the estimates needed for the strong Lipschitz
approximation.

Proposition 20.1. Suppose that Assumption 18.3 holds true, recall the constants from As-
sumption 18.7 and assume that εCM is small enough. Let either H, L ∈ S ∪W be neighbors
with 1

2`(L) ≤ `(H) ≤ `(L) or let H be a descendant of L. Then we have

spt(T) ∩C32rL(pL, VH) ⊂ BL, if L ∈ C \, (20.1)

spt(T) ∩C2732rL
(p[L, VH) ⊂ B[

L, if L ∈ C [, (20.2)

and [13, Theorem 2.4] can be applied to T in the cylinder C32rL(pL, VH) and Theorem 17.1 in
C2732rL

(p[L, VH) respectively. The resulting strong Lipschitz approximation we call fHL.

Proof. The proof of Proposition 20.1 is completely analogous to [15, Proposition 4.2] for
interior squares and to [21, Proposition 8.25] for boundary squares.

Remark 20.2. Observe that if `(H) < `(L) and H is a boundary square, then L is
necessarily also a boundary square, since either H and L are neighbors or H ⊂ L. When
`(H) = `(L), in case H is a boundary square and L is an interior square, we can simply
swap their roles. In particular, without loss of generality, we will in the sequel ignore
the case in which H is a boundary square and L is an interior square.

Definition 20.3. We denote by fHL the strong Lipschitz approximation produced by
Proposition 20.1. We will however consider the domain of the function fHL a sub-
set of pH + VH, resp. p[H + VH. More precisely, for interior squares the domain is
C24rL(pL, VH)∩ (pH +VH), while for boundary squares it is DHL := DH ∩C2724rL

(p[L, VH),
where we recall that DH is the projection on p[H + VH of spt(T). Observe next that
C24rL(pL, VH)∩ (pH +VH) and C2724rL

(p[L, VH)∩ (p2H +VH) are discs, whose centers are
given by

pHL := pH + pVH (pL), resp.

p[HL := p2H + pVH (p[L).

(Note that, when L is a boundary square, H might be a boundary square but it might
also be an interior square).

Definition 20.4. We then let hHL be the harmonic function on B16rL(pHL, VH), resp.
DH ∩C2716rL

(p[HL, VH), such that the boundary value of hHL on the respective domain
is given by η ◦ fHL, in particular it coincides with gH on γH. hHL will be called the
(H, L)-tilted harmonic interpolating function.
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Lemma 18.15 will then be a particular case of the following more general lemma.

Lemma 20.5. Consider H and L as in Proposition 20.1. Then there is a smooth function
uHL : D ∩ B278rL

(p0(p[L), V0)→ V⊥0 , resp. uHL : B8rL(p0(pL), V0)→ V⊥0 , such that

GuHL C8rL(pL, V0) = GhHL C8rL(pL, V0),

GuHL C278rL
(p[L, V0) = GhHL C278rL

(p[L, V0), respectively.

The function uHL will be called interpolating function.

20.1 linearization and first estimates on hHL

Proposition 20.6. Under the Assumptions of Proposition 20.1 the following estimates hold for
every pair of squares H and L as in Proposition 20.1. First of all∫

D(η ◦ fHL) : Dζ ≤ Cm0r4+β1
L ‖Dζ‖0, (20.3)

for every function ζ in C∞
c (B8rL(pHL, VH), V⊥H ), resp. C∞

c (DH ∩ B278rL
(p[HL, VH), V⊥H ),

depending on whether L ∈ C \ or L ∈ C [. Moreover,

‖hHL − η ◦ fHL‖L1(B8rL (pHL,VH)) ≤ Cm0r5+β1
L , if L ∈ C \; (20.4)

‖hHL − η ◦ fHL‖L1(DH∩B278rL
(p[HL,VH))

≤ Cm0r5+β1
L , if L ∈ C [; (20.5)

‖DhHL‖L∞(B7rL (pHL,VH)) ≤ Cm
1
2
0 r1−δ1

L , if L ∈ C \; (20.6)

‖DhHL‖L∞(DH∩B277rL
(p[HL,VH))

≤ Cm
1
2
0 r1−δ1

L , if L ∈ C [. (20.7)

Proof. Proof of (20.3). Without loss of generality consider a system of coordinates (x, y)
with the property that p2HL is the origin, (x, 0) ∈ VH and (0, y) ∈ V⊥H . Fix ζ as in the
statement of the proposition and in the cylinder C ∈ {C32rL(pHL, VH), C2732rL

(p[HL, VH)}
we consider the vector field χ(x, y) = (0, ζ(x)). Observe that, by assumption, the vector
field vanishes on Γ. Observe that, though χ is not compactly supported, since the height
of the current in the cylinder C is bounded, we can multiply χ by a cut-off function
in the variable y but keeping its values the same on spt(T). The latter vector field is
a valid first variation for the area-minimizing current T and thus we have δT(χ) = 0.
Thus we can use Theorem 17.1 and Proposition 19.1 to estimate

|δG fHL(χ)| = |δ(T −G fHL)(χ)| ≤ ‖Dζ‖0‖T −G fHL‖(C)

≤ C‖Dζ‖0r2
L(E

2(T, C, VH) + A2r2
L)

1+γ1

≤ C‖Dζ‖0r2
L(E

2(T, B2
L ) + |VH −VL|2 + A2r2

L)
1+γ1

≤ C‖Dζ‖0r2
L(m0r2−2δ1

L )1+γ1 ≤ C‖Dζ‖0m0r4+β1
L ,
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provided δ1 and β1 are chosen small enough to satisfy (2− 2δ1)(1 + γ1) ≥ 2 + β1.
Next we use the Taylor expansion [14, Theorem 4.1] to estimate∣∣∣∣δG fHL(χ)−Q

∫
η ◦ D fHL : Dζ

∣∣∣∣ ≤ C‖Dζ‖0

∫
|D fHL|3

≤ C‖Dζ‖0Lip( fHL)
∫
|D fHL|2

≤ C‖Dζ‖0
(
E2(T, C, VH) + A2r2

L
)γ1r2

L
(
E2(T, C, VH) + A2r2

L
)

≤ C‖Dζ‖0r2
L(m0r2−2δ1

L )1+γ1 .

Proof of (20.4)-(20.5). Consider v := hHL − η ◦ fHL on its respective domain Ω which
equals either B8rL(pHL, VH) or DH ∩ B278rL

(p[HL, VH). Observe that v vanishes on the
boundary of Ω. For every w ∈ L2 we denote by ζ = P(w) the unique solution of
∆ζ = w in Ω with ζ|∂Ω = 0, which is an element of the Sobolev space W1,2

0 (Ω). Next
notice that by a simple density argument, the estimate (20.3) remains valid for any test
function ζ ∈W1,2

0 and recall also the standard estimate

‖D(P(w))‖0 ≤ Cr‖w‖0 .

Therefore we can write

‖v‖L1 = sup
w:‖w‖0≤1

∫
Ω

v · w = sup
w:‖w‖0≤1

∫
Ω

v · ∆(P(w))

= sup
w:‖w‖0≤1

(
−
∫

Ω
Dv : D(P(w))

)
= sup

w:‖w‖0≤1

∫
Ω

Dη ◦ fHL : D(P(w))

≤ C sup
w:‖w‖0≤1

m0r4+β1
L ‖DP(w)‖0 ≤ Cm0r5+β1

L .

Proof of (20.6). Using the mean-value inequality for harmonic functions we simply
get

‖DhHL‖L∞(B7rL (pHL,VH)) ≤
C
r2

L

∫
B8rL (pHL,VH)

|DhHL|

≤ C
rL

(∫
B8rL (pHL,VH)

|DhHL|2
)1/2

≤ C
rL

(∫
B8rL (pHL,VH)

|Dη ◦ fHL|2
)1/2

≤ C
rL

(
r2

L(E(T, C, VH) + A2r2
L)
) 1

2 ≤ Cm
1
2
0 r1−δ1

L .
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Proof of (20.7). Using standard Schauder estimates for harmonic functions, we get

‖DhHL‖L∞(DH∩B277rL
(p[HL,VH))

≤ C
r2

L

∫
DH∩B278rL

(p[HL,VH)
|DhHL|

+ C(‖DgH‖0 + r−α
L [gH ]α) ,

where we recall that gH : ∂DH ∩ B278rL
(p[HL, VH) is the graphical parametrization of

our boundary curve Γ and α is a positive number smaller than 1, to be chosen later.
The first summand on the right hand side is estimated as in the proof above of (20.6).
As for the second summand, recall that Tp[L

Γ is contained in the plane VL and that

|VL −VH | ≤ Cm1/2
0 r1−δ1

L . This implies that

|DgH(p[HL)| ≤ Cm1/2
0 r1−δ1

L .

In particular we have

‖DgH‖L∞(∂DH∩B278rL
(p[HL,VH))

≤ |DgH(p[HL)|+ CArL ≤ Cm1/2
0 r1−δ1

L .

On the other hand,

r−α
L [gH ]α ≤ Cr1−2α

L A ≤ Cm1/2
0 r1−2α

L ,

and thus it suffices to choose 2α < δ1.

20.2 tilted estimate

We follow here [21, Section 8.5] almost verbatim to establish a suitable comparison
between tilted interpolating functions which are defined in different system of coordi-
nates.

Definition 20.7. Four cubes H, J, L, M ∈ C make a distant relation between H and L if
J, M are neighbors (possibly the same cube) with same side length and H and L are
descendants respectively of J and M.

Lemma 20.8 (Tilted L1 estimate). Under the Assumptions of Theorem 18.16 the following
holds for every quadruple H, J, L and M in S ∪W which makes a distant relation between H
and L.

• If J ∈ C \, then there is a map ĥLM : B4rJ (pHJ , VH)→ V⊥H such that

GĥLM
= GhLM C4rJ (pHJ , VH)

and

‖hHJ − ĥLM‖L1(B2rJ (pHJ ,VH)) ≤ Cm0`(J)5+β1/2 . (20.8)
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• If both J and M belong to C [, then there is a map ĥLM : DHJ ∩ B274rJ
(p[HJ , VH)→ V⊥H

such that

GĥLM
= GhLM C274rJ

(p[HJ , VH)

and

‖hHJ − ĥLM‖L1(DHJ∩B272rJ
(p[HJ ,VH))

≤ Cm0`(J)5+β1/2 . (20.9)

The proof follows verbatim the arguments given in [21, Section 8.5]. The only dif-
ference is the absence of the “ambient Riemannian” manifold which in [21, Lemma
8.31] is the graph of a function Ψ. The case needed for our arguments is the clearly
simpler situation in which the linear subspaces v and v̄ in [21, Lemma 8.31] are given
by the trivial subspace {0}. The proof of this version of the lemma (which is in fact
[15, Lemma 5.6]) is even less complicated. However there is a direct way to conclude it
directly from the more general statement of [21, Lemma 8.31]: we can consider R2+n as
a subspace of R2+n+1 and apply [21, Lemma 8.31] to a generic choice of κ, κ̄, π, π̄ and
the specific choice of v = v̄ = {0} ×R and Ψ = Ψ̄ : π × κ = π̄ × κ̄ → v = v̄ given
by the trivial map Ψ ≡ 0.
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Proposition 21.1. There is a constant ω depending upon δ1 and β1 such that, under the
assumptions of Theorem 18.16, the following holds for every pair of squares H, L ∈ P j (cf.
(18.12)).

(a) ‖uH‖C3,ω(B4rH (xH) ≤ Cm1/2
0 , resp. ‖uH‖C3,ω(D∩B274rH

(x[H))
≤ Cm1/2

0 , for H ∈ C \, resp.

H ∈ C [;

(b) If H and L are neighbors, then we have for every i ∈ {0, 1, 2, 3}

‖uH − uL‖Ci(BrH (xH))
≤ Cm1/2

0 `(H)3+ω−i when H ∈ C \, (21.1)

‖uH − uL‖Ci(D∩B27rH
(x[H))

≤ Cm1/2
0 `(H)3+ω−i when H, L ∈ C [; (21.2)

(c) |D3uH(x2
H) − D3uL(x2

L )| ≤ Cm1/2
0 |x�H − x�L |ω, where � = if the corresponding

square is a non-boundary square and � = [ if it is a boundary square;

(d) if H ∈ C \, then ‖uH − p⊥V0
(pH)‖C0(B4rH (xH)) ≤ Cm1/2

0 `(H) and if H ∈ C [, then
uH |∂D∩B274rH

(x[H))
= g ;

(e) |VH − T(x,uH(x))GuH | ≤ Cm1/2
0 `(H)1−δ1 for every x ∈ B4rH (xH), resp. x ∈ D ∩

B274rH
(x[H);

(f) If H′ is the square concentric to H ∈ Wj with `(H′) = 9
8`(H), then we have for every

i ≥ j + 1

‖ϕi − uH‖L1(H′) ≤ Cm0`(H)5+β1/2 . (21.3)

21.1 proof of proposition 21 .1

Proof. We follow the proof of [21, Proposition 8.32] and often we drop here for simplicity
the domains where we estimate the norm in.

(a) By [13, Lemma B.1], it is enough to make the estimates on hH instead of uH . Fix any
square H ∈P j and consider the family tree H = Hi ⊂ Hi−1 ⊂ · · · ⊂ HN0 . We estimate

‖hH‖C3,ω ≤
i

∑
j=N0+1

‖hHHj − hHHj−1‖C3,ω + ‖hHHN0
‖C3,ω .
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As these are all harmonic functions, by the mean value property, it is enough to estimate
the L1 norms. Again using the harmonicity we see that

‖hHHj − hHHj−1‖L1(Ωj)
≤ ‖η ◦ fHHj − η ◦ fHHj−1‖L1(Ωj)

+ Cm0r5+β1
Hj−1

,

where Ωj either is B7rHj
(pHj , VH) if Hj ∈ C \ or DH ∩ B277rHj

(p[Hj
, VH) if Hj ∈ C [. Using

Theorem 17.1, we see that both fHHj and fHHj−1 describe spt(T) on a large set K, thus
their average agree on K. Together with the oscillation estimate we then deduce

‖η ◦ fHHj − η ◦ fHHj−1‖L1(Ωj)
≤ C`(Hj−1)

2
(

m0`(Hj−1)
2−2δ1

)1+γ1
m1/4

0 `(Hj−1)
1+β1

≤ Cm0`(Hj−1)
5+β1 .

For ‖hHHN0
‖C3,ω we argue similarly and use Proposition 20.6.

(b) By [13, Lemma C.2], we have

‖Dj(uH − uL)‖C0 ≤ CCr−2−j
L ‖uH − uL‖L1 + Cr3+ω−j

L ‖D3(uH − uL)‖Cω .

The second term is already bounded in (a), thus we are left with showing the L1

estimate. To do so, we again use [13, Lemma B.1] to replace uL and uH with functions
which have the same graph. It is enough to notice that, by Lemma 20.8

‖hH − ĥL‖L1 ≤ Cm1/2
0 `(H)5+δ1/2.

(c) Let H, L ∈ P j. In case that |xH − xL| ≥ 2−N0 , the statement follows from (a).
Otherwise, we can find ancestors J, M such that H, L are in a distant relation where
`(J) = `(M) is comparable to |x2

H − x2
L |. Then we estimate

|D3uH(x2
H)− D3uL(x2

L )| ≤ |D3uH(x2
H)− D3uHJ(x2

J )|+ |D3uLM(x2
M)− D3uL(x2

L )|
+ |D3uHJ(x2

J )− D3uLM(x2
M)|.

The bound on the last term is already shown in (b), while for the first two we argue
similarly as before. Consider the family tree H ⊂ Hi−1 ⊂ · · · ⊂ J. By the previous
arguments, we deduce

‖uHHi − uHHi−1‖C3 ≤ Cm1/2
0 `(Hi−1)

ω.

(d) The claim is obvious by construction for boundary cubes. For non-boundary cubes,
consider that the height bound for T and the Lipschitz regularity for fH give that∥∥∥p⊥VH

(pH)− η ◦ fH

∥∥∥
∞
≤ Cm1/4

0 `(H) .

We also get
∥∥∥p⊥VH

(pH)− η ◦ fH

∥∥∥
∞
≤ Cm1/4

0 `(H). On the other hand the Lipschitz

regularity of the tilted H -interpolating function hH and the L1 estimate on hH − η ◦ fH

easily gives
∥∥∥p⊥VH

(pH)− hH

∥∥∥
∞
≤ Cm1/4

0 `(H). The estimate claimed in (d) follows then
from [15, Lemma B.1].



21.2 proof of theorem 18 .16 143

(e) follows from the estimates on DhHL of Lemma 20.8.

(f) By definition of ϕj, it is enough to estimate that for L a neighbour square of H, we
have

‖uH − uL‖L1 ≤ Cm0`(H)5+δ1/2.

21.2 proof of theorem 18 .16

Proof. (a) is an immediate consequence of the definition of ϕj and the fact that uL

satisfies the correct boundary condition (for L ∈ C [). (b) follows exactly as in the proof
of [13, Theorem 1.17] and from Proposition 21.1. In fact, we are in the simpler situation
where our "ambient manifold" is just Rn+2 and thus, we can choose Ψ ≡ 0. (c) and (d)
are consequences of (b).

21.3 proof of corollary 18 .19 and theorem 18 .21

Proof. We extend ϕ to all of [−4, 4]2 changing the C3,ω-norm only by geometric constant
and call this extension ϕ̃. Then consider

T̃ := T + Q ·Gϕ̃|[−4,4]2\D
.

Then as ∂M = Γ, so ∂T̃ = 0. We cannot directly apply the corresponding interior
paper, [15, Corollary 2.2], to T̃ because the latter is not area-minimizing. However,
the argument given in [15, Proof of Corollary 2.2] does not use the area-minimizing
assumption. It uses only the height estimates of Proposition 19.1 (which can be trivially
extended to T̃ since the portion added to T is regular) and the constancy theorem
(which is valid in our case, since T̃ has no boundary).

As for the existence and estimates on the normal approximation, we also can follow
the same argument as in [15, Section 6.2] substituting the current T̃ to the current T in
there and the map ϕ̃ to the map ϕ in there. First of all notice that the extension is done
locally on each square and the ones surrounding it, and thus, even though the union
of the squares in our W and the set does not cover [−4, 4]2, this does not prevent us
from applying the same procedure. Next, the construction algorithm and the estimates
performed in [15, Section 6.2] depend only on the following two facts:

(a) The map ϕ in [15, Section 6.2] has, on every L ∈ W , the same control on the C3,ω

norm that we have for the map ϕ̃ (up to a constant).

(b) For each square L ∈ W (which in the case of [15, Section 6.2] corresponds to
an interior square for us) we have a Lipschitz approximation fL of the current
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T C8rL(pL, VL), which in turn coincides with the current T on a set KL × V⊥L ,
where |B8rL \ KL| is small and the Lipschitz constant and the height of fL are
both suitably small too. This is literally the case with the very same estimates
for our interior squares, because T̃ C8rL(pL, VL) = T C8rL(pL, VL). In the case of
boundary squares, we apply Theorem 17.1 and we extend the corresponding fL

to a map F̃L on the whole disk B278rL
(p[L, VL) by setting it equal to Q copies of the

graph of ϕ̃ outside of the domain DL ∩ B278rL
(p[L, VL). We then notice that such

extension satisfies the same estimates on the Lipschitz constant and the height.
Moreover, over the new region, by construction the extension coincides with the
current T. Hence, if we denote by K̃L the complement of the projection on VL of
the difference set spt(T̃)∆spt(GL( fL)), then

B278rL
(p[L, VL) \ K̃L = (B278rL

(p[L, VL) ∩ DL) \ KL .

In particular |B278rL
(p[L, VL) \ K̃L| has the desired estimate.

Finally, observe the following. By the construction of [15, Section 6.2] we have a specific
description of the set K consistsing of those points p in the center manifold for which we
know that the slice 〈T, p, p〉 coincides with the slice of the multivalued approximation,
namely ∑i JFi(p)K. First of all, K contains Φ( ). Secondly, for every Whitney region
L corresponding to some square L ∈ W , K ∩ L is defined in the following fashion.
First of all, we denote by D(L) the family of squares M ∈ W which have nonempty
intersection with L (i.e. its neighbors), hence we consider in each CM := C8rM(pM, VM),
resp. CM := C278rM

(pM, VM), the corresponding Lipschitz approximation fL and define

K ∩L :=
⋂

M∈D(L)

p(spt(T) ∩ gr ( fM)) .

Since for boundary cubes Γ ∩CM ⊂ spt(T) ∩ gr ( fM), we conclude that Γ ∩ L ⊂ K. On
the other hand every point of Γ ∩M which does not belong to some Whitney region is
necessarily contained in the contact set Φ( ). Thus we conclude that Γ ⊂ K. Observe,
moreover, that by construction the map N vanishes identically on the contact set, while
we also know that for each fM as above fM coincides with the function gM on pVM(Γ).
In particular this implies that N vanishes identically on the intersection of Γ with any
Whitney region.

21.4 proof of proposition 18 .23

(18.23) is an ovious consequence of (18.22) since on the complement of the squares
L ∈ W e the two functions ϕ and f coincide.

We now turn to (18.22) Observe next that, by Proposition 21.1(f), it suffices to show
the claim for the function uH in place of ϕ. Observe also that we already know from
the above argument that, if we replace uH with the tilted interpolating function hH and



21.4 proof of proposition 18 .23 145

f with the Lipschitz approximation fH = fHH, the estimate holds, as it is in fact just a
special case of (20.5) and (20.4). Fix now a point x ∈ H and the corresponding point let
y(x) := pVH (uH(x)) be the corresponding projection on the plane VH. We can use [15,
(5.4)] (where we identify the manifoldM in there with the affine plane VH +ϕ(p)) to
compute

|η ◦ f (x)− uH(x)| ≤ C|η ◦ fH(y)− hH(y)|+ C|VH −V0|Lip( f )h(T, BH) .

In particular we conclude

|η ◦ f (x)− uH(x)| ≤ C|η ◦ fH(y)− hH(y)|+Cm1/2
0 `(H)1−δ1 mγ2

0 `(L)γ2 m1/4
0 `(L)1+β1 .

Observing that x 7→ y(x) is a Lipschitz function with Lipschitz constant bounded by
|Dϕ|, i.e. by Cm1/2

0 and integrating in x, we easily conclude the claimed estimate.
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As in [15, Section 3] the aim of this section is to conclude suitable lower bounds for∫
|DN|2 and |N| over regions of the center manifold which are close (and sizable)

enough to some Whitney region L. Depending on the reason why the refinement was
stopped, we will either bound |N| from below in terms of `(L)1+β1 or we will bound∫
|DN|2 from below in terms of the excess of the current in BL

22.1 lower bound on N

We start with the following conclusion.

Proposition 22.1 (Separation because of the height). If L ∈ W h then L is necessarily
an interior square. Moreover, there is constant C̃ > 0 depending on M0 such that whenever
(Ch)

4 ≥ C̃C\
e and εCM > 0 is small enough, then every L ∈ W h fulfills

(S1) Θ(T, p) ≤ Q− 1
2 for all p ∈ B16rL(pL),

(S2) L ∩ H = ∅ for all H ∈ W n with `(H) ≤ 1
2`(L),

(S3) G(N(x), Q Jη ◦ N(x)K) ≥ 1
4 Chm1/4

0 `(L)1+β1 for all x ∈ Φ(B2
√

2`(L)(xL)).

Proof. We only have to prove that L ∈ C \ as the rest follows from the interior theory in
[15, Section 3]. We show that any boundary square H which did not stop because of
the excess, also did not stop because of the height. Fix such an H ∈ C [ \W e. Then we
know that its parent M ∈ C [ ∩S satisfies

E(T, B[
M) ≤ C[

e m0`(H)2−2δ1

and we want to show that

h(T, B[
H) ≤ Chm1/4

0 `(H)1+β1 .

To do so, we apply the height bound of Lemma 18.4 to a suitable rotated current
T̃ := O]T, where O is a rotation which maps V0 onto VH. Notice that the proof of this
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lemma is based on the first variation and thus on the minimality of T. As T̃ is area
minimizing (with respect to the tilted boundary O(Γ)), we can directly deduce

h(T, B[
H) ≤ h(T, C2764rH

(p[H, VH)) ≤ CrH
(
E(T, C2780rH

(p[H, VH) + ArH
)1/2

≤ CrH
(
E(T, B[

M) + C|VM −VH |2 + ArH
)1/2

≤ Cm1/2
0 r3/2

H

≤ Chm1/4
0 `(H)1+β1 ,

where we also used Proposition 19.1 and the sufficient small choice of εCM.

A simple corollary of the above proposition is that if a square stopped because of the
neighbor condition, then this originated from a larger nearby square which stopped
because of the excess.

Corollary 22.2. For every H ∈ W n, there is a chain of squares L0, L1, . . . , Lj = H such that

(a) Li ∈ W n for all i > 0 and L0 ∈ W e,

(b) they are all neighbors, i.e. Li ∩ Li−1 6= ∅ and `(Li) =
1
2`(Li−1).

In particular, H ⊂ B3
√

2`(L0)
(xL0 , V0).

Accordingly, we can collect all the squares H which have such a chain relating H
to a specific square L ∈ W e. The latter square is not necessarily unique, but it will be
convenient to fix a consistent choice of L.

Definition 22.3 (Domains of influence). First, let us fix an ordering {Ji}i∈N of W e such
that the side length is non-increasing. For J0, we define its domain of influence by

W n(J0) := {H ∈ W n : there is a chain as in Corollary 22.2 with L0 = J0 and Lj = H}.

Inductively, we define for k > 0 the domain of influence W n(Jk) of Jk by all H ∈
W n \⋃i<k W n(Ji) which have a chain as in Corollary 22.2 with L0 = Jk and Lj = H. As
it is easy to check using Corollary 22.2 we have W n =

⋃̊
k∈NW n(Jk).

22.2 lower bound on the dirichlet energy

Having handled the case of “height stopped” squares we turn to squares which were
stopped because they exceed the excess bound.

Proposition 22.4. (Splitting) There are constants C1(δ1), C2(M0, δ1), C3(M0, δ1) such that,
if M0 ≥ C1(δ1), C\

e ≥ C2(M0, δ1), C[
e ≥ C3(M0, δ1), if the hypotheses of Theorem 18.21

hold and if εCM is chosen sufficiently small, then the following holds. If L ∈ W e, q ∈ V0
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with dist(L, q) ≤ 4
√

2 `(L), B`(L)/4(q, V0) ⊂ D and Ω = Φ(B`(L)/4(q, V0)), then (with
C, C4 = C(β1, δ1, M0, N0, C\

e , C[
e , Ch)):

C2
e m0`(L)4−2δ1 ≤ `(L)2E(T, B2

L ) ≤ C
∫

Ω
|DN|2 , (22.1)∫

L
|DN|2 ≤ C`(L)2E(T, B2

L ) ≤ C4`(L)−2
∫

Ω
|N|2 . (22.2)

Before coming to the proof of the Proposition, let us first observe an important point.
Fix L as in the statement of the Proposition and consider its parent H and its ancestor J
6 generations before. If L is a boundary square, then H and J are both boundary squares.
On the other hand, if L is an interior square, since C\

e is chosen much larger than C[
e ,

we can ensure that both L and J are also interior squares. Indeed, when BL ⊂ B[
J and

J 6∈ W e, we have the obvious estimate

E(T, BL) ≤ 226E(T, B[
J) ≤ 226C[

e m0`(J)2−2δ1 ≤ 238C[
e m0`(L)2−2δ1 ,

which therefore, by choosing C\
e ≥ 238C[

e implies that L does not satisfy the excess
stopping condition.

Hence we can invoke [15, Proposition 3.4] to cover the case in which L ∈ W e ∩ C \,
since the proof given in [15, Section 7.3] just uses the fact that all squares L, H and J are
interior squares (i.e. the repsective balls BL, BH, and BJ do not intersect the boundary
Γ). We are thus left to handle the case in which L (and therefore also H and J) are
boundary squares.

To do so, we need analogues of three lemmas from [15].

Lemma 22.5. Let B+ ⊂ R2 be a half ball centered at the origin and w ∈W1,2(B+,AQ(R
n))

be Dir-minimizing with w = Q J0K on B+ ∩ (R× {0}). Denoting w̄ := w⊕ (−η ◦ w) =

∑i Jwi − η ◦ wK and u := η ◦ w, we have

Q
∫

B+
|Du− Du(0)|2 =

∫
B+
G(Dw, Q JDu(0)K)2 −Dir(w̄, B+).

Proof. We extend w in an odd way to all of the ball B. Notice that then also the extension
of u is harmonic in all of B. Now the proof is the same as in [15, Lemma 7.3], but
we repeat it here anyway. First notice, that u is a classical harmonic function and in
particular, fulfills the mean value property. We use it to deduce

Q
∫

B
|Du− Du(0)|2 = Q

∫
B

(
|Du|2 + |Du(0)|2 − 2Du · Du(0)

)
= Q

∫
B
|Du|2 + Q|B||Du(0)|2 − 2Q

(∫
B

Du
)
· Du(0)

= Q
∫

B
|Du|2 −Q|B||Du(0)|2.

(22.3)
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Similarly we compute

Q
∫

B
|Dw|2 = ∑

i

∫
B
|Dwi|2 = ∑

i

∫
B

(
|Dwi − Du(0)|2 − |Du(0)|2 + 2Dwi · Du(0)

)
=
∫

B
G(Dw, Q JDu(0)K)2 −Q|B||Du(0)|2 + 2Q

(∫
B

1
Q ∑

i
Dwi

)
· Du(0)

=
∫

B
G(Dw, Q JDu(0)K)2 + Q|B||Du(0)|2.

(22.4)

Last we split the Dirichlet energy of w into the average and the average-free part (as
already observed in (17.14)).∫

B
|Dw̄|2 = ∑

i

∫
B
|Dwi − Du|2 = ∑

i

∫
B

(
|Dwi|2 + |Du|2 − 2Dwi · Du

)
=
∫

B
|Dw|2 + Q

∫
B
|Du|2 − 2Q

∫
B

(
1
Q

Dwi

)
· Du

=
∫

B
|Dw|2 −Q

∫
B
|Du|2.

(22.5)

The three identities (22.3), (22.4), (22.5) and dividing everything by 2 conclude the
lemma.

An other important ingredient is the unique continuation for Dir-minimizers (com-
pare to [15, Lemma 7.1]).

Lemma 22.6 (Unique Continuation for Dir-minimizers). For every 0 < η < 1 and c > 0,
there is a δ > 0 such that whenever B+

2r ⊂ V0 is the half ball and w : B+
2r → AQ(R

n) is
Dir-minimizing with w = Q J0K on B+

2r ∩ (R× {0}), Dir(w, B+
2r) = 1, and Dir(w, B+

r ) ≥ c,
then

Dir(w, Bs(q)) ≥ δ for every Bs(q) ⊂ B+
2r with s ≥ ηr.

Proof. The qualitative statement (UC) of the proof of [15, Lemma 7.1] applies directly
to our situation while the quantitative statement follows from a blow-up argument that
goes analogously for us as Bs(q) ⊂ B+

2r.

The previous two lemmas imply the following energy decay for Dir-minimizers
(compare to [15, Proposition 7.2]) which itself implies the Proposition 22.4. First fix a
number λ > 0 such that

(1 + λ)4 < 2δ1 .
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Proposition 22.7 (Decay estimate for Dir-minimizers). For any η > 0 there is a δ > 0
such that whenever B+

2r ⊂ V0 is the half ball and w : B+
2r → AQ(R

n) is Dir-minimizing with
w = Q J0K on B+

2r ∩ (R× {0}) and satisfies∫
B+
(1+λ)r

G(Dw, Q JD(η ◦ w)(0)K)2 ≥ 2δ1−4Dir(w, B+
2r),

then we have for any Bs(q) ⊂ B+
2r with s ≥ ηr

δ Dir
(

w, B+
(1+λ)r

)
≤ Dir

(
w̄, B+

(1+λ)r

)
≤ 1

δr2

∫
Bs(q)
|w̄|2.

Here we used again the notation w̄ := w⊕ (−η ◦ w) = ∑i Jwi − η ◦ wK.

Proof. We follow word by word the proof of [15, Proposition 7.2] using Lemma 22.6 and
Lemma 22.5 instead of [15, Lemma 7.1] and [15, Lemma 7.3]. We reach the contradicting
inequality∫

B+
1+λ

|Du− Du(0)|2 ≥ 2δ1−4
∫

B+
2

|Du|2

which is false as one can see by reflecting such that u stays harmonic and then using
the classical decay for harmonic functions.
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In this section we take a further crucial step towards the proof of Theorem 12.6. We
recall our key Assumption 12.5 and we add a further one on the smallness of the excess.
Before doing that, we observe a corollary of the decay estimate in Theorem 12.7.

Corollary 23.1. Let T and Γ be as in Assumption 10.4 and assume that 0 ∈ Γ is a flat point
and that Q JVK is the unique tangent cone to T at 0. Then there is a geometric constant κ > 0
and constants C and r0 > 0 (depending on Γ and T) such that

E(T, Cr) ≤ Cr4κ ∀r ≤ r0 . (23.1)

Thus, upon rescaling the current appropriately, if 0 is a flat point we can assume,
without loss of generality, the following.

Assumptions 23.2. Let T and Γ be as in Assumption 10.4. 0 ∈ Γ is a flat point, Q JVK is the
unique tangent cone to T at 0, we let n be as in (12.1) and assume that (12.3) holds. In addition
we assume to have fixed a choice of the parameters so that Theorem 18.16 and Theorem 18.21
hold and that

E(T, C4R0ρ) + A2ρ2 ≤ εCMρ2κ for all ρ ≤ 1 . (23.2)

Observe that, by (23.2), we conclude that both Theorem 18.16 and Theorem 18.21 can
be applied to the current T0,ρ whenever ρ ≤ 1.

23.1 intervals of flattening

We start defining a decreasing set of radii {t1 > t2 > . . .} ⊂ (0, 1], which at the moment
can be both finite and infinite: in the first case one tN will be equal to 0, while in the
second case all tk’s are positive and tk ↓ 0.

t1 is defined to be equal to 2. We then let M̄1 = M1 be the center manifold and
N̄1 = N1 the corresponding normal approximation which results after we apply
Theorem 18.16 and Theorem 18.21 to the current T. Moreover we let W (1) be the squares
of the Whitney decomposition described in Definition 18.11. We then distinguish two
cases:

(Stop) There is a square H ∈ W (1) such that

dist(0, H) ≤ 64
√

2`(H) . (23.3)

(Go) There is no such square.
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Notice that every such square H satisfying (23.3) is a boundary square. In the first case
we select an H as in (Stop) which has maximal sidelength and we define t̄2 := 66

√
2`(H)

and t2 := t1 t̄2 = 132
√

2`(H). Otherwise we define t2 = 0. Observe that

t2

t1
≤ 66

√
22−N0 (23.4)

Before proceeding further, we record an important consequence of the Whitney
decomposition.

Corollary 23.3. If (Stop) holds, then the square H of maximal sidelength that satisfies (23.3)
must be an element of W e, i.e. it violates the excess condition.

Proof. Observe that if H is an (NN) square, then there is a neighboring square H′ of
double sidelength which also belongs to W and it is easy to see that the latter satisfies
(23.3) too, violating the maximilaity of H. Note next that (23.3) implies that H is a
boundary square, and as such it cannot belong to W h.

In case t2 > 0 we then apply Theorem 18.16 and Theorem 18.21 to T0,t2 and let M̄2

and N̄2 be the corresponding objects. The pair (M2, N2) will be derived by scaling back
the objects at scale t2, namely

M2 =
{

t2q : q ∈ M̄2
}

, (23.5)

N2(q) = t2N̄2

(
q
t2

)
. (23.6)

We then apply the procedure above to M̄2 in place of M̄1 and determine t̄3 analogously,
while we set t3 := t2 t̄3.

We proceed inductively and define M̄k,Mk, N̄k, Nk, t̄k, and tk := tk−1 t̄k: the procedure
stops when one tk equals 0, otherwise goes indefinitely. Observe that for every k we
have the estimate

tk

tk−1
≤ 66

√
22−N0 . (23.7)

23.2 frequency function

Observe that the conclusion of Theorem 12.6 is equivalent to T coinciding with Q JMkK
for some k in a neighborhood of the origin. A simple corollary of the interior regularity
is in fact the following

Corollary 23.4. If Nk ≡ Q J0K on some nontrivial open subset ofMk, then T = Q JMkK in a
neighborhood of 0 and in particular Theorem 12.6 holds.
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We next consider a function d which is C2 in the punctured ball B1(0), whose gradient
∇d is tangent to Γ and such that (i)-(ii)-(iii) of Definition 13.6 hold. Likewise we fix the
function φ : [0, ∞)→ [0, ∞) given by

φ(t) :=


1, if t ∈ [0, 1

2 ],

(1− 2t), if t ∈ [ 1
2 , 1],

0, if t ≥ 1 .

From now on we denote by D the classical Euclidean differentiation of functions,
tensors, and vector fields, which for objects defined on the manifold Mk will mean
that we compute derivatives along the tangents to the manifold. On the other hand
we use the notation ∇Mk , DMk , and divMk , respectively for the gradient, Levi-Civita
connection, and divergence of (respectively), functions, tensors, and vector fields on
Mk understood as a Riemannian submanifold of the Euclidean space R2+n.

We then define

D(r) :=
∫
Mk

φ

(
d(x)

r

)
|DNk|2(x) dH2(x), if r ∈ (tk+1, tk], (23.8)

H(r) := −
∫
Mk

φ′
(

d(x)
r

)
|∇Mk d(x)|2 |Nk(x)|2

d(x)
dH2(x), if r ∈ (tk+1, tk]. (23.9)

S(r) :=
∫
Mk

φ

(
d(x)

r

)
|Nk(x)|2 dH2(x). (23.10)

We are then ready to state our main estimate.

Theorem 23.5. Let T be as in Assumption 23.2. Either T = Q JMkK in a neighborhood of the
origin for some k (and in that case note that tk+1 = 0), or else H(r) > 0 and D(r) > 0 for
every r. In the latter case the function I(r) := rD(r)

H(r) satisfies the following properties for some
constants C and τ > 0:

(a) For all r > 0, we have

I(r) ≥ C−1, (23.11)

and

D(r) ≤ Cr2+τ . (23.12)

(b) I is continuous and differentiable on each open interval (tk+1, tk) and moreover

d
dr

(
log I(r) + CD(r)τ − Ct2τ−2

k
S(r)
D(r)

)
≥ −Crτ−1 for a.e. r ∈]tk+1, tk[.

(23.13)
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(c) At each tk the function I has one-sided limits

I(t+k ) = lim
t↓tk

I(t),

I(t−k ) = lim
t↑tk

I(t),

and moreover

∑
k
|I(t+k )− I(t−k )| < ∞. (23.14)

We will prove (a) and (b) in Section 24 while we devote Section 25 to show (c). An
obvious corollary of Theorem 23.5 is the following

Corollary 23.6. Let T be as in Assumption 23.2. Either 0 is a regular point, or else I(r) is well
defined for every r and the limit

I0 := lim
r↓0

I(r)

exists, is finite and positive.

Proof. First of all observe that, since I(r) ≥ C−1,

f (r) := log I(r)− Ct2τ−2
k

S(r)
D(r)

+ CD(r)τ + Crτ ≥ − log C .

We will also see below in Lemma 24.1 that S(r) ≤ Cr2D(r). Hence, since the Lipschitz
constant of log is bounded on [C−1, ∞[, we infer

| f (t+j )− f (t−j )| ≤ C|I(t+j )− I(t−j )|+ C(t+j )
τ. (23.15)

Next we show that the two bounds (23.14) and (23.13) imply that f is bounded from
above: considering ρ ∈]0, 1[, we let k the largest number such that ρ < tk and we can
estimate

f (1)− f (ρ) =
∫ tk

ρ
f ′ +

k−1

∑
j=1

∫ tj

tj+1

f ′ +
k

∑
j=2

( f (t+j )− f (t−j ))

which turns into

f (ρ) ≤ f (1)−
∫ tk

ρ
f ′ −

k−1

∑
j=1

∫ tj

tj+1

f ′ −∑
j
| f (t+j )− f (t−j )|

≤ f (1) + C
∫ 1

0
rτ−1 dr + C ∑

j
|I(t+j )− I(t−j )| < ∞

(note that in the last line we have used (23.15)).



23.2 frequency function 157

Next observe that the distributional derivative of f consists of a nonnegative measure
(on the union of the open intervals (tk+1, tk) and a purely atomic Radon measure which
has finite mass by (23.14). We thus conclude that the distributional derivative of f is a
Radon measure. Next fix any ρ ≤ 1 and let tk be such that 2tk+1 < ρ < 2tk. We then
have the bound

|D f |(]ρ, 1[) ≤ D f (ρ, t−k ) + ∑
1≤j≤k−1

D f (]t+j+1, t−j [) + ∑
2≤j≤k

| f (t+j )− f (t−j )|

≤ 2
∞

∑
j=1
| f (t+j )− f (t−j )|+ ‖ f ‖∞ < ∞ .

Hence, letting ρ go to 0 we discover that |D f |(]0, 1[) < ∞, that is f ∈ BV(]0, 1[). This in
turn implies that f is a function of bounded variation and hence that limr↓0 f (r) exists
and is finite. Observe, moreover that by (24.11) we infer that f (r)− log(I(r)) converges
to 0 as r ↓ 0. We thus conclude that

lim
r↓0

e f (r) = lim
r↓0

I(r)

exists, it is finite, and it is positive.
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24.1 proof of (23 .11)

The claim is simply equivalent to the existence of a constant C such that H(r) ≤ CrD(r).
The latter is a consequence of a Poincaré-type inequality which uses the fact that
Nk vanishes identically on the boundary curve Γ. The proof will be reduced to [21,
Proposition 9.4]. However, in order to make the latter reduction, we employ a device
which will be used in several subsequent computations. Having fixed a positive r
different from any tj we let k be such that tk+1 < r < tk and we define the corresponding
rescaled quantities D̄k(t−1

k r), H̄k(t−1
k r), S̄k(t−1

k r), and Īk(t−1
k r). More precisely we define

the function dk(x) := t−1
k d(tkx) and set

D̄k(ρ) :=
∫
M̄k

φ

(
dk(x)

ρ

)
|DN̄k|2(x) dH2(x) , (24.1)

H̄k(ρ) := −
∫
M̄k

φ′
(

dk(x)
ρ

)
|∇M̄k

dk(x)|2 |N̄k(x)|2
dk(x)

dH2(x) , (24.2)

S̄k(ρ) :=
∫
M̄k

φ

(
dk(x)

ρ

)
|N̄k(x)|2 dH2(x). (24.3)

We then can immediately check the relations

D̄k(t−1
k r) = t−2

k D(r) , (24.4)

H̄k(t−1
k r) = t−3

k H(r) , (24.5)

S̄k(t−1
k r) = t−4

k S(r) , (24.6)

S̄′k(t
−1
k r) = t−3

k S′(r) , (24.7)

D̄′k(t
−1
k r) = t−1

k D′(r) . (24.8)

Lemma 24.1. There is a constant C such that

H(r) ≤ CrD(r) , (24.9)

S′(r) ≤ CrD(r) , (24.10)

S(r) ≤ Cr2D(r) . (24.11)

Proof. We observe that the corresponding inequalities for D̄k, H̄k, S̄k, and S̄′k follow from
[21, Proposition 9.4], since the center manifold M̄k, the functions dk, and Nk satisfy the
assumptions of the Proposition.
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24.2 derivatives of H and D

In order to prove (23.13) the first step consists in computing the derivatives of H and
D. In what follows we will use the usual convention of denoting by O(g) any function
f of the real variable r > 0 with the property that | f (r)| ≤ Cg(r). Moreover, in order to
avoid cumbersome notation, for r ∈ (tk+1, tk] we will drop the subscriptMk from the
gradient ∇Mk on the manifold.

Proposition 24.2. Under the assumptions of Theorem 23.5 we have, for every r ∈ (tk+1, tk],

D′(r) = −
∫

φ′
(

d(x)
r

)
d(x)

r2 |DN|2, (24.12)

H′(r) =
(

1
r
+ O(1)

)
H(r) + 2E(r), (24.13)

and

E(r) = −1
r

∫
φ′
(

d(x)
r

)
∑

i
Ni(x) · (DNi(x)∇d(x)) . (24.14)

Proof. The first derivative is a straightforward computation. For the second, we can
follow the computations of [21, Proof of Proposition 9.5] to conclude that

H′(r) = 2E(r)− 1
r

∫
φ′
(

d(x)
r

)
∆Mk d(x)|N|2(x) ,

where ∆Mk is the Laplace-Beltrami operator on the manifold Mk. Noticing that

φ′
(

d(x)
r

)
vanishes unless C−1r ≤ |x| ≤ Cr, our claim will follow once we show

that

∆Mk d(x) =
1

d(x)
+ O(1) =

1
d(x)

(1 + O(d(x))) .

In order to show the latter estimate, we fix a point x ∈ Mk and observe first that the
second fundamental form of the center manifold M̄k is bounded by C(E(T0,tk , 4R0)1/2 +

Atk), which in turn is bounded by Ctκ
k for some positive κ. By rescaling, the second

fundamental form AMk ofMk enjoys the bound ‖AMk‖∞ ≤ Ctκ−1
k . On the other hand,

recalling that |x|−1|Dd− D|x||+ |D2d− D2|x|| ≤ C it is easy to see that∣∣∣∣∆Mk d(x)− 1
d(x)

∣∣∣∣ ≤ ∣∣∣∣∆Mk |x| −
1
|x|

∣∣∣∣+ C + C|x|‖AMk‖∞

≤ C + C‖AMk‖∞ ≤ Ctκ
k + C ≤ C .
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24.3 first variations and approximate identities

We start by recalling that, since T0,tk is area-minimizing and ∂T0,2tk C4R0 = Q JΓkK C4R0 ,
then δT0,tk(X) = 0 for every X which is tangent to Γ. In what follows we fix a C3

extension ϕ̃k of the function ϕ̄k to [−4, 4]2 ⊂ V (by increasing the C3,ω estimate on ϕk
by a constant factor) whose graph is the center manifold M̄k and we denote by pk
the orthogonal projection onto the graph of ϕ̃k (which is of course defined only in a
suitable normal neighborhood of it). We then fix the two relevant vector fields with
which we will test the stationarity condition:

Xo(p) := φ

(
dk(pk(p))

r

)
(p− pk(p)),

Xi(p) := −Y(pk(p)) := −1
2

φ

(
dk(pk(p)))

r

) ∇d2
k

|∇dk|2
(pk(p))

(note that ∇ means the gradient ∇M̄k
here).

Note that Xi is tangent to both M̄k and Γk. Moreover, in [21, Sections 9.4 and 9.5],
the estimates are done separately on both sides of Γk. Thus, it applies to our situation
directly with M+ = M̄k. Note also that the fifth error terms vanish for us as our
"ambient manifold" is Rn+2. We summarize the statements here and first define the
following function

ϕk(p) := φ

(
dk(pk(p))

r

)
.

We also introduce the rescaled quantity

Ēk(ρ) := −1
ρ

∫
M̄k

φ′
(

dk(x)
ρ

)
∑

i
(N̄k)i(x) · (D(N̄k)i(x)∇dk(x))

and record the corresponding relation with E, namely

Ēk(t−1
k r) = t−2

k E(r) . (24.15)

Proposition 24.3 (Outer variations). Let Ak and HM̄k
denote the second fundamental form

and the man curvature of M̄k respectively. Assume tk+1
tk

< r < 1. Then we have

|D̄k(r)− Ēk(r)| =
∣∣∣∣∣
∫
M̄k

(
ϕk|DN̄k|2 + ∑

i
((N̄k)i ⊗ Dϕk) : D(N̄k)i

)∣∣∣∣∣ ≤ 4

∑
j=1
|Erro

j |,

(24.16)
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with

Erro
1 := −Q

∫
M̄k

ϕ〈HM̄k
, η ◦ N̄k〉,

|Erro
2| ≤ C

∫
M̄k

|ϕk||Ak|2|N̄k|2,

|Erro
3| ≤ C

∫
M
|ϕk|(|DN̄k|2|N̄k||Ak|+ |DN̄k|4)

+ C
∫
M
|Dϕk|(|DN̄k|3|N̄k|+ |DN̄k||N̄k|2|Ak|),

Erro
4 := δTF̄k

(Xo)− δT0,tk(Xo) = δTF̄k
(Xo).

For the inner variation, we introduce first a bit more of notation. First of all, we see
D(N̄k)j as a map from TM̄k to Rn+2. Denoting the components of (N̄k)j by (N̄k)j =

((N̄k)
1
j , . . . , (N̄k)

n+2
j ) and choosing a vector field Z tangent to M̄k, we write

D(N̄k)j(Z) = (DZ(N̄k)
1
j , . . . , DZ(N̄k)

n+2
j ).

Similarly, we have

D(N̄k)jDM̄kY(Z) = D(N̄k)j(DM̄kY(Z)) = (DDM̄k Y(Z)(N̄k)
1
j , . . . , DDM̄k Y(Z)(N̄k)

n+2
j ).

Thus, for the scalar product D(N̄k)j : D(N̄k)jDM̄kY, we choose an orthonormal frame
e1, e2 of TM̄k and express

D(N̄k)j : D(N̄k)jDM̄kY = ∑
`

〈De`(N̄k)j, DDM̄k Y(e`)
(N̄k)j〉 = ∑

`,i
De`(N̄k)

i
jDDM̄k Y(e`)

(N̄k)
i
j.

We further introduce the quantity

G(r) := −r−2
∫
Mk

φ

(
d
r

)
d
|∇d|2 ∑

j
|D(Nk)j · ∇d|2

and its correspoding rescaled version

Ḡk(ρ) = −ρ−2
∫
M̄k

φ

(
dk

ρ

)
dk

|∇dk|2 ∑
j
|D(N̄k)j · ∇dk|2 ,

while we record the corresponding relation as in (24.4)-(24.8)

Ḡk(t−1
k r) = t−1

k G(r) . (24.17)

Proposition 24.4 (Inner variations). Under the above assumptions we have∣∣D̄′k(r)−O(tκ
k)D̄k(r)− 2Ḡk(r)

∣∣
=

2
r

∣∣∣∣∣
∫
M̄k

(
∑

j
D(N̄k)j : D(N̄k)jDM̄kY− 1

2
|DN̄k|2divM̄k

Y

)∣∣∣∣∣
≤ 2

r

4

∑
j=1
|Erri

j|, (24.18)
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with

Erri
1 := Q

∫
M̄k

(
〈HM̄k

, η ◦ N̄k〉divM̄k
Y + 〈DY HM̄k

, η ◦ N̄k〉
)

,

|Erri
2| ≤ C

∫
M̄k

|Ak|2
(
|DY||N̄k|2 + |Y||N̄k||DN̄k|

)
,

|Erri
3| ≤ C

∫
M̄k

(
|DN̄k|2|Y||Ak|(|N̄k|+ |DN̄k|) + |DY|(|A||N̄k|2|DN̄k|+ |DN̄k|4)

)
Erri

4 := δTF̄k
(Xi)− δT0,tk(Xi) = δTF̄k

(Xi).

Proof. The arguments for the proposition are the same as in [21, Proposition 9.10] and
indeed they are based on the Taylor expansions of [14, Theorems 4.2 & 4.3]. However
some more care is required because the term O(tκ

k)D(r) appears in the corresponding
inequality (namely [21, (9.28)] as O(1)D(r). The reason for the improvement is based
on the computations [21, (9.29)] and [21, Lemma 9.2]: the improvement follows easily
from the fact that:

• The curvature of the rescaled boundary Γk is bounded by tk;

• The C3 norm of the function ϕ̄k (whose graph is the center manifold M̄k) is
bounded by (E(T0,tk , C4R0) + ‖ψk‖C3,α0 )

1/2, where ψk is the function whose graph
describes Γk; we thus have ‖ϕ̄k‖C3 ≤ Ctτ

k .

24.4 families of subregions for estimating the error terms

We want to estimate the error terms over the Whitney regions in order to use the sepa-
ration estimate (Proposition 22.1) and the splitting before tilting estimates (Proposition
22.4). To achieve this goal we goes along the same lines of [21, Section 9.6] and apply the
arguments of [21, Section 9.6] to the current T0,tk that gives rise to the center manifold
M̄k . Notice that in each error term, there is the cut-off φ(dk/r), thus it is enough to
consider squares which intersect B+

r := {x ∈ V0 ∩ D : dk(ϕ̄k(x)) < r}. However, to
sum the estimates over all squares, we prefer the regions over which we integrate to be
disjoint. For this purpose, we define a Besicovitch-type covering.

From now on we fix all the constants from Assumption 18.7 and treat them as
geometric constants. We are going to consider the Whitney decomposition and the
corresponding family W e, W h, W n of squares whose definition is detailed in Section
18. Note that the construction is not applied to the current T and the boundary Γ,
but rather to the rescaled current T0,tk and the rescaled boundary Γk. Note that the
assumptions for the construction apply for each k. For our notation to be more precise
we should add the dependence on k of the various families W , however, since k is fixed
at this stage, in order to make our formulas simpler we drop such dependence.
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First we consider all squares which stopped for the excess or the height and which
influence some square intersecting B+

r .

Definition 24.5. We define the family T to be

T :=
{

L ∈ W e ∪W h : L ∩B+
r 6= ∅

}
∪
{

L ∈ W e : there is an L′ ∈ W n(L) such that L′ ∩B+
r 6= ∅

}
.

Notice that because in a chain of squares in W n, the sidelengths always double, we
have for each L ∈ T

sep(L, B+
r ) := inf{|x− y| : x ∈ L, y ∈ B+

r } ≤ 3
√

2`(L).

To each such square L ∈ T , we associate a ball B(L) which we call satellite ball.
Preferably this ball is contained in the square and with radius comparable to the
sidelength. However, as not every square in T is contained in D, we choose instead
a nearby ball. Moreover we want that the concentric ball with twice the radius to be
contained in B+

r . Notice that because of the intervals of flattening (23.3), the largest
square L contributing to the center manifold and intersecting B+

r satisfies `(L) ≤ 1
64
√

2
r.

• If B`(L)/2(xL) ⊂ B+
r , we define B(L) := B`(L)/4(xL).

• If B`(L)/2(xL) * B+
r , we choose a point y ∈ ∂B+

r minimizing the distance to L.
Notice that the size length of the squares in the domain of influence of L vary by
a factor 2, we have |xL − y| ≤ 4

√
2`(L). The center of the satellite ball we want

to be a point inside B+
r and close to y (and thus close to xL). Indeed, first notice

that by the regularity assumption on Γk, ϕ̄k (Theorem 18.16) and dk (Definition
13.6) there is a C1-diffeomorphism Ψr : B̄+

r → B̄+
r with ‖Ψr − Id‖ ≤ Cm1/2

0 .
Moreover, we define for any ` < r

2 the vectorfield n` : ∂B+
r → B+

r describing
∂{y ∈ B+

r : dist(y, ∂B+
r ) > `} by

n`(x1, x2) :=



(x1, `), if |x1| < r− `, x2 = 0 ,

(r− `)(x1, x2), if x2 > ` ,

(r− `, `), if `− r < x1 < r, x2 ≤ ` ,

(−r + `, `), if − r < x1 < −r + `, x2 ≤ `.

Notice that if εCM is small enough, we have for any ` < r
2

B`/2
(
Ψr(n`(x))

)
⊂ Ψr

(
B`(n`(x))

)
⊂ B+

r .

Thus for the y ∈ B`(L)/2(xL) ∩ ∂B+
r , we define

qL := Ψr
(
n`(L)/2(Ψ

−1
r (y))

)
and observe that

B(L) := B`(L)/4(qL) ⊂ B+
r .
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By construction and the estimates on dk, we have if εCM is small enough,

|qL − xL| ≤ 5
√

2`(L) and thus dist(qL, L) ≤ 4
√

2`(L).

From this family T , we now choose a maximal subfamily T for which the satellite
balls are disjoint. Denote by S := sup{`(L) : L ∈ T }. We define T1 ⊂ {L ∈ T :
1
2 S ≤ `(L) ≤ S} to be a maximal subfamily for which the associated satellite balls are
pairwise disjoint. We inductively define Tk+1 ⊂ {L ∈ T : 2−k−1S ≤ `(L) ≤ 2−kS} to
be a maximal subfamily such that all the satellite balls B(L′) with L′ ∈ T1 ∪ · · · ∪Tk
are pairwise disjoint. Finally we define T to be the union of all the Tk. As we want to
cover all of B+

r , we associate to each square in L ∈ T the nearby squares of T whose
satellite balls intersect B(L) and the domain of influence W n(L). Indeed, by a standard
covering argument, notice that if H ∈ T , then there is at least one square L ∈ T such
that dist(H, L) ≤ 20

√
2`(L). We fix an arbitrary choice to partition T into families T (L)

such that L ∈ T , for any H ∈ T (L) we have `(H) ≤ 2`(L) and dist(H, L) ≤ 20
√

2`(L).
Now we add the rest of B+

r and define

W (L) :=
⋃

H∈T (L)

W n(H) ∪ {H}.

The associated Whitney regions will be called U (L) ⊂M,

U (L) :=
⋃

H∈W (L)

Φ̄k(H) ,

where the map Φ̄k is the parametrization of the center manifold induced by ϕ̄k, namely
Φ̄k(x) = (x,ϕ̄k(x)).

For simplicity of notation, we enumerate T = {Li}i and denote

B+
r := Φ̄k(B

+
r ) = M̄k ∩ {dk < r},

Ui := U (Li) ∩ B+
r ,

Bi := Φ̄k(B(Li)),

`i := `(Li).

Notice that by construction, every satellite ball B(Li) has distance at least `i/4 to
∂B+

r . In particular, there is a geometric constant c > 0 such that

c
`i

r
≤ inf

p−1
k (Bi)

ϕk = inf
Bi

ϕk.

As in [21, Section 9.6.2], we conclude that there is a geometric constant C > 0 such that

sup
p−1

k (Ui)

ϕk = sup
Ui

ϕk ≤ C inf
p−1

k (Ui)
ϕk = C inf

Ui
ϕk, (24.19)

∑
H∈W (Li)

`(H)2 ≤ C`2
i . (24.20)
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Applying the estimates of Theorem 18.21 and Corollary 18.19(ii) in each square of
W (Li) and summing over them yields

Lip(N̄k|Ui) ≤ Cmγ2
0 `γ2

i , (24.21)

‖N̄k‖C0(Ui) + sup
spt(T)∩p−1(Ui)

|p⊥| ≤ Cm1/4
0 `

1+β1
i , (24.22)

‖TF̄k
− T0,tk‖(p−1

k (Ui)) ≤ Cm1+γ2
0 `4+γ2

i , (24.23)∫
Ui

|DN̄k|2 ≤ Cm0 `
4−2δ1
i , (24.24)∫

Ui

|η ◦ N̄k| ≤ Cm0`
4+γ2/2

i + C
∫
Ui

|N̄k|2+γ2 . (24.25)

On the other hand, we can use the the Separation Proposition 22.1, the Splitting
Proposition 22.4 and the estimates (24.19), (24.20) to deduce estimates on the normal
approximation as stated in the next lemma.

Lemma 24.6. Assume the assumption 18.18 holds. Then there is a geometric constant C0
1

such that

m0 ∑
i

(
`

4+2β1
i inf

Bi
ϕk

)
≤ C0D̄k(r), (24.26)

m0 ∑
i
`

4+β1
i ≤ C0

∫
B+r
|DN̄k|2 ≤ C0(D̄k(r) + rD̄′k(r)). (24.27)

Moreover, we have

m0 sup
i

`i ≤ C0(rD̄k(r))1/(5+β1) and m0 sup
i

(
`i inf
Bi

ϕk

)
≤ C0D̄k(r)1/(4+β1),

(24.28)

and

D̄k(r) ≤ C0m0r4−2δ1 ≤ C0t2κ
k r4−2δ1 . (24.29)

Proof. The proof goes completely analogous to the one of [21, Lemma 9.13] and we
summarize it here. Fix an Li ∈ T . If Li ∈ W h, it is an interior square and we can use
Proposition 22.1 to deduce∫

Bi
|N̄k|2 ≥ c0m1/2

0 `
4+2β1
i . (24.30)

1 Here and in the sequel we call a constant geometric if it depends only on n, Q, N0, M0, C[
e , C\

e , Ch which
we fixed.
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On the other hand, if Li ∈ W e, then Li can be either a boundary square or an interior
square. However the satellite ball does not intersect the boundary and also we can
apply Proposition 22.4 in both situations. Thus, we have∫

Bi
|DN̄k|2 ≥ c0m0`

4−2δ1
i , (24.31)∫

Bi
ϕ|DN̄k|2 ≥ c0m0`

4−2δ1
i inf

Bi
ϕk. (24.32)

Summing over all squares and using (24.30), (24.31) and (24.32), we conclude

m0 ∑
i
`

4+2β1
i inf

Bi
ϕk ≤ C0

∫
B+r

(
|N̄k|2 + ϕk|DN̄k|2

)
,

m0 ∑
i
`

4+2β1
i ≤ C0

∫
B+r

(
|N̄k|2 + |DN̄k|2

)
≤ C0

∫
B+r
|DN̄k|2,

where we used the Poincaré inequality and the fact that N̄k vanishes on Γk. We conclude
by noticing that, as φ′ = −2 in [ 1

2 , 1], we have∫
{r/2<dk<r}∩M̄k

|DN̄k|2 ≤ rD̄′k(r) ,∫
{dk<r/2}∩M̄k

|DN̄k|2 ≤ D̄k(r) .

(24.29) is a consequence of (24.24).

We end this section with estimating the error terms (compare with [21, Proposition
9.14]).

Proposition 24.7. There are constants C, τ > 0 such that

|Erro
1|+ |Erro

3|+ |Erro
4| ≤ CD̄k(r)1+τ, (24.33)

|Erro
2| ≤ Ct2κ

k S̄k(r) ≤ Ct2κ
k r2D̄k(r) (24.34)

and

|Erri
1|+ |Erri

3|+ |Erri
4| ≤ CD̄k(r)τ

(
D̄k(r) + rD̄′k(r)

)
, (24.35)

|Erri
2| ≤ Ct2κ

k rD̄k(r). (24.36)

Proof. The detailed estimates can be found in the proof of [21, Proposition 9.14]. Notice
that as there it is done for either side of the boundary separately, and as we have the
same estimates on N, it applies directly to our situation. The idea is as follows. First we
notice that

|Y(p)| ≤ ϕ(p)dk(pk(p)) and |DY(p)| ≤ C1B+r (pk(p)).
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Then because of the Theorem 18.16, both the second fundamental form and the mean
curvature of M̄k are bounded (and their derivatives) are bouned by Ctκ

k . The remaining
terms in the errors can be split into the regions Uj and then be estimated by powers of
m0 and `j using (24.21) - (24.25). Choosing τ � δ1 and recalling that δ1 ≤ β1 ≤ γ1/8,
we see that the powers are higher than what we need for (24.26) and (24.27). Thus with
(24.28) we gain the additional D̄k(r)τ.

The only relevant difference in the estimates of [21, Proposition 9.14] is in the terms
Erri

2 and Eo
2, where our estimates have an improved factor Ct2κ

k in the right hand side.
But this follows easily from the fact that in our case we take advantage of ‖Ak‖∞ ≤ Ctκ

k ,
while in [21, Proposition 9.14] the second fundamental form of the center manifold is
only known to be bounded by a constant.

24.5 proof of (23 .12) and (23 .13)

In order to prove (23.12) we exploit (24.4) and (24.29): we assume tk+1 < r < tk and
estimate

D(r) = t2
k D̄k(t−1

k r) ≤ Ct2+2κ
k (t−1

k r)4−2δ1 ≤ Cr2+2κ .

In order to prove (23.13) we follow the computations of [21, Section 9.1], but in our
setting some additional complications are created by the fact that we need to scale back
our estimates for the rescaled quantities D̄k, H̄k, S̄k, Ḡk, and S̄k. First of all we recall
(24.13):

H′(r) = r−1H(r) + 2E(r) + O(1)H(r) . (24.37)

Next we combine (24.16), (24.33), and (24.34) to get

|D̄k(t−1
k r)− Ēk(t−1

k r)| ≤ CD̄k(t−1
k r)1+τ + Ct2τ

k S̄k(t−1
k r). (24.38)

We next can use (24.4), (24.6), and (24.15) to conclude

|D(r)− E(r)| ≤ CD(r)(t−2
k D(r))τ + Ct2τ−2

k S(r) . (24.39)

Next recall that D(r) ≤ Cr2+2κ. Since r ≤ tk we can write

t−2
k D(r) ≤ Ct−2

k r2D(r)1−2/(2 + 2κ) ≤ CD(r)1−1/(1 + κ) .

Thus, at the prize of choosing τ smaller, we can translate (24.39) into

|D(r)− E(r)| ≤ CD(r)1+τ + Ct2τ−2
k S(r) . (24.40)

The final ingredient is derived by first combining (24.18), (24.35), and (24.36) to get

|D̄′k(t−1
k r) + O(t2κ

k )D̄k(t−1
k r)− Ḡk(t−1

k r)|

≤ C
t−1
k r

D̄k(t−1
k r)τ

(
D̄k(t−1

k r) + t−1
k rD̄′k(t

−1
k r)

)
+ Ct2κ

k D̄k(t−1
k r) , (24.41)
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which in turn, using (24.4), (24.17), and (24.15) becomes

|D′(r) + O(t2κ−1
k )D(r)− 2G(r)| ≤ C(t−2

k D(r))τ(r−1D(r) + D′(r)) + Ct2κ−1
k D(r) .

But then, arguing as for (24.40) we can achieve

|D′(r)− 2G(r)| ≤ Ct2κ−1
k D(r) + CD(r)τ(r−1D(r) + D′(r)) . (24.42)

We are now ready to estimate d
dr log I(r). We start by writing

d
dr

log I(r) =
1
r
+

D′(r)
D(r)

− H′(r)
H(r)

.

Hence, using (24.37) we write

d
dr

log I(r) ≥ −C +
D′(r)
D(r)

− 2E(r)
H(r)

. (24.43)

Next recall (23.12) while Lemma 24.1 implies that for σ ∈]0, 1[ we have

t2σ−2
k S(r) ≤ Cr2t2σ−2

k D(r) ≤ Cr2σD(r) .

In combination with the last two bounds, (24.40) becomes (after possibly choosing a
new positive τ)

|D(r)− E(r)| ≤ CrτD(r) ,

which in turn implies

D(r)
2
≤ E(r) ≤ 2D(r) , (24.44)

provided r ≤ r0 is sufficiently small with r0 > 0 depending only on C and τ.
By (24.44) we can turn (24.40) into

|E(r)−1 − D(r)−1| ≤ CD(r)τ−1 + Ct2τ−2
k

S(r)
D(r)2 .

Inserting the latter into (24.43) (and considering that D′(r) ≥ 0) we then get

d
dr

log(I(r)) ≥ D′(r)
E(r)

− 2E(r)
H(r)

− C
D′(r)

D(r)1−τ
− Ct2κ−2

k
S(r)D′(r)

D(r)2 − C .

We can finally insert (24.42) to achieve

d
dr

log(I(r)) ≥2G(r)
E(r)

− 2E(r)
H(r)

− C
D(r)
E(r)

(
D(r)τ

r
+

D′(r)
D(r)1−τ

+ t2τ−2
k

)
− C

D′(r)
D(r)1−τ

− Ct2κ−2
k

S(r)D′(r)
D(r)2 − C .

Next note that:
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• G(r)H(r) ≥ E(r)2, by Cauchy-Schwarz;

• D(r)
E(r) ≤ C;

• D(r) ≤ Cr2+2κ.

• We can rewrite − S(r)D′(r)
D(r)2 = d

dr
S(r)
D(r) −

S′(r)
D(r) , and it is easy to see that S′ is positive.

So, after possibly choosing τ smaller, yet positive, we achieve

d
dr

(
log I(r) + CD(r)τ − Ct2τ−2

k
S(r)
D(r)

)
≥ −Crτ−1 .
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This section is devoted to prove (23.14). We observe that, by the continuity of the
functions

t 7→ H(Nk, t) and t 7→ D(Nk, t)

we have

I(t+k ) =
tkD(Nk−1, tk)

H(Nk−1, tk)
and I(t−k ) =

tkD(Nk, tk)

H(Nk, tk)
.

In order to simplify our notation we use the shortcut E(T, r) for E(T, Br). We will
show the following two propositions

Proposition 25.1. There is a constant C independent of k such that, if εCM is small enough
then

C−1t2
kE(T, 6tk) ≤ D(Nk−1, tk) ≤ Ct2

kE(T, 6tk) (25.1)

C−1t2
kE(T, 6tk) ≤ D(Nk, tk) ≤ Ct2

kE(T, 6tk) (25.2)

C−1t3
kE(T, 6tk) ≤ H(Nk−1, tk) ≤ Ct3

kE(T, 6tk) (25.3)

C−1t3
kE(T, 6tk) ≤ H(Nk, tk) ≤ Ct3

kE(T, 6tk) . (25.4)

Proposition 25.2. There is a positive exponent τ1 independent of k such that, if εCM is small
enough then

|D(Nk−1, tk)−D(Nk, tk)| ≤ Ct2
kE(T, 6tk)

1+τ1 , (25.5)

|H(Nk−1, tk)−H(Nk, tk)| ≤ Ct3
kE(T, 6tk)

1+τ1 . (25.6)

Observe that the estimates (25.2) (the second one), (25.3) (the first one), (25.4) (the
first one), (25.5), and (25.6) imply

|I(t+k )− I(t−k )| ≤ CE(T, 6tk)
τ1 ≤ Ct2κτ1

k . (25.7)

On the other hand, by the choice of N0 in Assumption 18.7, by (23.7), we get tk
tk−1
≤ 1

2 ,
which iterated implies tk ≤ 2−k. We therefore get

|I(t+k )− I(t−k )| ≤ C2−2κτ1k , (25.8)

which clearly implies (23.14).

171
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Proof of Proposition 25.1. As the center manifold M̄k−1 stopped, and we are close to the
boundary, it must have stopped for the excess and thus, there is a square L ∈ W e such
that c tk

tk−1
≤ `(L) ≤ C tk

tk−1
(recall section 23.1). Looking at its ancestors (as we did in

Proposition 18.12), we notice

E(T, ρtk) = E(T0,tk−1 , ρtk/tk−1) ≤ Cm0(k− 1)
(

ρ
tk

tk−1

)2−2δ1

, (25.9)

for every 1 ≤ ρ ≤ 5R0
tk−1

tk
and some geometric constant C. Here we denote by m0(k− 1)

and m0(k) the two quantities

m0(k− 1) = E(T0,tk−1 , C5R0) + ‖ψk−1‖2
C3,α(]−5R0,5R0[)

,

m0(k) = E(T0,tk , C5R0) + ‖ψk‖2
C3,α(]−5R0,5R0[)

,

where ψk and ψk−1 are the functions describing the rescaled boundaries Γk and Γk−1.
Observe that, since ψk(0) = ψk−1(0) = 0 and ψ′k(0) = ψ′k−1(0) = 0, it can be readily
checked that

‖ψk‖2
C3,α(]−5R0,5R0[)

≤ t2
k

t2
k−1
‖ψk−1‖2

C3,α(]−5R0,5R0[)
,

so that we have

m0(k) ≤ E(T, C5R0tk) +
t2
k

t2
k−1

m0(k− 1) ≤ Cm0(k− 1)
(

tk

tk−1

)2−2δ1

, (25.10)

where we also used (25.9). On the other hand, because of the stopping condition we
also know that

E(T, 6tk) = E(T0,tk−1 , 6tk/tk−1) ≥ C−1m0(k− 1)
(

tk

tk−1

)2−2δ1

. (25.11)

In particular, we infer by (25.10) that

E(T, 6tk) ≥ C−1m0(k) . (25.12)

Observe now that for D(N̄k, 1) we have the inequality

D(N̄k, 1) ≤ Cm0(k)

by construction of the center manifold (i.e. (18.20)). In turn, by rescaling, we can
conclude

D(Nk, tk) = t2
k D(N̄k, 1) ≤ Ct2

km0(k) ≤ Ct2
kE(T, 6tk) ,

namely the first of the two inequalities in (25.13). Then we observe that (25.1) and (25.3)
follow from the Splitting Proposition 22.4 applied to to the current T0,tk which in turn
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produces the center manifold M̄k−1 and the normal approximation N̄k−1 as we are
in the situation where the center manifold stopped. Moreover, we recall that by the
Poincaré inequality (as already observed in (23.11) and proved in Section 24), we have
for any r > 0

H(Nk, r) ≤ CrD(Nk, r) .

Thus (25.4) and (25.2) follow once we have shown the following inequalities

D(Nk, tk) ≤ Ct2
kE(T, 6tk) ≤ Ct−1

k H(Nk, 6tk) . (25.13)

For the second inequality in (25.13) we adapt the proof of [15, Proposition 3.7] as the
only difference to our situation is the cut-off function. We describe here the idea of the
argument, the details can be read in [15, Section 9]. Again recall the square L ∈ W e

which stopped in the construction of M̄k−1 according to the argument above. By the
splitting Proposition 22.4, we then have a nearby ball B`/4(z) not intersecting Γ0,tk−1

such that

m0(k− 1)
(

tk

tk−1

)6−2δ1

≤ C
∫

Φ̄k−1(B`/4(z))
|N̄k−1|2 .

The argument of [15, Section 9] provides now a similar bound for the ball B′ =
2 tk−1

tk
B`/4(z), which has radius comparable to 1, in the center manifold M̄k. More

precisely, since
(

tk−1
tk

)4
is exactly the scaling relating the L2 norm on B′ and B`/4(z),

while
(

tk−1
tk

)2−2δ1
is the scaling factor which makes m0(k) and m0(k− 1) comparable,

the corresponding estimate is given by

m0(k) ≤ C
∫

Φ̄k(B′)
|N̄k|2 .

Applying the rescaling which relates M̄k andMk, we find a corresponding rescaled
ball B′′ (of radius comparable to tk)

m0(k)t4
k ≤ C

∫
B′′∩Mk

|Nk|2 .

Using that the center z of the ball can be chosen arbitrarily as long as it is at a distance
from L compared to its diameter, we can ensure that −d(p)−1φ′(t−1

k d(p)) ≥ ct−1
k on B′′

(for some positive geometric constant c). We thus get

m0(k)t3
k ≤ −

∫
B′′∩Mk

|Nk|2
φ′(t−1

k d(p))
d(p)

≤ CH(Nk, tk) .

However Ek(T, 6tk) ≤ Cm0(k), and we have thus completed the proof of the second
inequality in (25.13).
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Proof of Proposition 25.2. Define for p ∈ Mk the map Fk(p) = ∑i Jp + (Nk)i(p)K and for
q ∈ Mk−1 the map Fk−1(q) = ∑i Jq + (Nk−1)i(q)K. Moreover denote by Ek := E(T, 6tk)

and Ck := C2tk(0, V0). In order to compare Nk and Nk−1, we first apply Theorem 18.21

to the rescaled currents T0,tk and T0,tk−1 to derive corresponding estimates for the normal
approximations N̄k and N̄k−1 of the currents on M̄k and M̄k−1. We then scale them
back to find corresponding estimates for Nk and Nk−1. During this process we also
observe that, by (25.9) and (25.10), we have

m0(k) + m0(k− 1)
(

tk

tk−1

)2−2δ1

≤ CEk . (25.14)

Moreover, we will prove later

‖ϕk−1‖C0(B2tk )
≤ CtkE1/2

k , (25.15)

‖Dϕk−1‖C0(B2tk )
≤ CE1/2

k (25.16)

‖D2ϕk−1‖C0(B4tk
) ≤ Ct−1

k−1m0(k− 1)1/2 ≤ Ct−1
k E1/2

k (25.17)

‖ϕk‖C0(B2tk )
≤ CtkE1/2

k , (25.18)

‖Dϕk‖C0(B5tk )
≤ Cm0(k)

1/2 ≤ CE1/2

k , (25.19)

‖D2ϕk‖C0(B5tk )
≤ Ct−1

k m0(k)
1/2 ≤ Ct−1

k E1/2

k , (25.20)

‖D(ϕk −ϕk−1)‖2
L2(B2tk )

≤ Ct2
kE1+2γ2 . (25.21)

In particular we get by (25.14), (18.18), and (18.20) after rescaling back

Lip(Nk) + Lip(Nk−1) ≤ CEγ2
k , (25.22)

M(TFk Ck − TFk−1 Ck) ≤M(TFk Ck − T Ck) + M(T Ck − TFk−1 Ck)

≤ Ct2
kE1+γ2

k . (25.23)

Thus, we set N̂k to be the Q-valued function defined onMk−1 satisfying

GN̂k
Ck = TFk Ck = GNk Ck =: S ,

where with GN̂k
we mean the current associated to the function p 7→ p + N̂k(p). By

comparing D(Nk, tk) with D(N̂k, tk) and H(Nk, tk) with H(N̂k, tk) we make an additional
error of size t2

kE1+γ2
k and size t3

kE1+γ2
k respectively. We will prove this later. With this
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aim in mind we change coordinates in the integrals of D and H to flat ones. Denote by
Φk(x) := (x,ϕk(x)) and Φk−1(x) := (x,ϕk−1(x)). We then estimate∣∣∣D(Nk, tk)−

∫
|DNk|2(Φk(x))φ

(
t−1
k d(Φk(x))

)
dx
∣∣∣

≤ C
∫

B2tk

|DNk|2(Φk(x))φ
(
t−1
k d(Φk(x))

)
|DΦk(x)− (Id , 0)| dx

≤ C‖Dϕk‖C0(B2tk )

∫
|DNk|2(Φk(x))φ

(
t−1
k d(Φk(x))

)
JΦk(x)dx

≤ Ct2
kE3/2

k ,

where we used (25.2) and (25.19) for the last inequality. Analogous estimates can be
employed for D(N̂k, tk), H(Nk, tk), and H(N̂k, tk).

Therefore, it is enough to prove∣∣∣∣∫ |DNk|2φ
(
t−1
k d(Φk(x))

)
dx−

∫
|DN̂k|2φ(t−1

k d(Φk−1(x)))dx
∣∣∣∣ ≤ Ct2

kE1+γ2
k ,

(25.24)∣∣∣∣∣
∫
|Nk|2

φ′(t−1
k d(Φk(x)))
d(Φk(x))

dx−
∫
|N̂k|2

φ′(t−1
k d(Φk−1(x)))
d(Φk−1(x))

dx

∣∣∣∣∣ ≤ Ct3
kE1+γ2

k .

(25.25)

For (25.24), notice that Nk(p) = ∑i J(Fk)i(p)− pK. Hence, each component of Nk satisfies

|D(Nk)i(Φk(x))| ≤ C |T(Fk)i(x)TFk − TΦk(x)Mk| .

By the Lipschitz bound of ϕk (25.19) and of Fk, we thus have∫
|DNk|2φ

(
t−1
k d(Φk(x))

)
≤C

∫
C
|~S(p)− ~Tpk(p)Mk|2φ(t−1

k d(pk(p)))d‖S‖(p) + O(t2
kE1+γ2

k ) ,∫
|DN̂k|2φ(t−1

k d(Φk−1(x)))

≤C
∫

C
|~S(p)− ~Tpk−1(p)Mk−1|2φ(t−1

k d(pk−1(p)))d‖S‖(p) + O(t2
kE1+γ2

k ) ,

where we denoted by pk and pk−1 the nearest point projection on Mk and Mk−1
respectively, while C is the vertical cylinder with base B2tk . As we have from Theorem
18.16 that ‖ϕk −ϕk−1‖C2 ≤ Ct−1

k E1/2

k , by the Lipschitz bound of φ, we deduce for any
p ∈ spt(S) and q, q′ ∈ Mk,

|φ(t−1
k d(pk(p)))− φ(t−1

k d(pk−1(p)))| ≤ CE1/2
k ,

|TqMk − Tq′Mk| ≤ Ct−1
k E1/2

k |q− q′| .
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Hence, we have∫
C
|~S(p)− ~Tpk(p)Mk|2|φ(t−1

k d(pk(p)))− φ(t−1
k d(pk−1(p))|d‖S‖(p) ≤ Ct2

kE3/2

k ,

|Tpk(p)Mk − Tpk−1(p)Mk−1| ≤ C|Dϕk(pV0(pk(p)))− Dϕk−1(pV0(pk−1(p)))|
≤ CEk + |D(ϕk −ϕk−1)|(pV0(p))

where we used (18.18) in the last inequality. We therefore can conclude∣∣∣∣∣
∫
|DNk|2φ

(
t−1
k d(Φk(x))

)
dx−

∫
B2tk

|DN̂k|2φ(t−1
k d(Φk−1(x)))dx

∣∣∣∣∣
≤ Ct2

kE1+γ2
k + C

∫
C
|~S(p)− ~Tpk(p)Mk|2|φ(t−1

k d(pk(p)))− φ(t−1
k d(pk−1(p)))| d‖S‖

+ C
∫

C

∣∣∣|~S(p)− ~Tpk(p)Mk|2 − |~S(p)− ~Tpk−1(p)Mk−1|2
∣∣∣ φ(t−1

k d(pk−1(p))) d‖S‖

≤ Ct2
kE1+γ2

k + C
∫

C
|~S(p)− ~Tpk(p)Mk||~Tpk(p)Mk − ~Tpk−1(p)Mk−1|φ(t−1

k d(pk(p))) d‖S‖

+ C
∫

C
|~S(p)− ~Tpk−1(p)Mk−1||~Tpk(p)Mk − ~Tpk−1(p)Mk−1|φ(t−1

k d(pk(p))) d‖S‖

≤ Ct2
kE1+γ2

k + CtkE1/2

k

(∫
C
|~Tpk(p)Mk − ~Tpk−1(p)Mk−1|2φ(t−1

k d(pk(p))) d‖S‖
) 1

2

≤ Ct2
kE1+γ2

k + CtkE1/2
k

(∫
B2tk

|Dϕk − Dϕk−1|2
) 1

2

≤ Ct2
kE1+γ2

k ,
where we used (25.21) for the last inequality.

We finally turn to (25.25). For x ∈ V0, denote by zk := (x,ϕk(x)) and ẑk :=
(x,ϕk−1(x)). Then we estimate∣∣|Nk|2(zk)− |N̂k|2(ẑk)

∣∣ ≤ |Nk|(zk)
∣∣|Nk|(zk)− |N̂k|(ẑk)

∣∣
+ |N̂k|(ẑ)

∣∣|Nk|(zk)− |N̂k|(ẑk)
∣∣ .

Moreover, using Cauchy-Schwarz and the fact that the L2 norm of Nk and N̂k is bounded
by t2

kE1/2
k , we have∣∣∣∣∣
∫
|Nk|2

φ′(t−1
k d(zk))

d(zk)
dx−

∫
|N̂k|2

φ′(d((ẑk))

d(ẑk)
dx

∣∣∣∣∣
≤ CtkE1/2

k

(∫
B2tk

∣∣|Nk|(zk)− |N̂k|(ẑk)
∣∣2 dx

) 1
2

. (25.26)
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If we now define pi := (Fk)i(x) and qi := (F̂k)i(x) := ẑk + (N̂k)i(ẑk), we have (up to
reordering the indices)

|Nk|(zk) =

(
∑

i
|pi − zk|2

) 1
2

, |N̂k|(ẑk) =

(
∑

i
|qi − ẑk|2

) 1
2

.

Now we use the triangle inequality to see

∣∣|Nk|(zk)− |N̂k|(ẑk)
∣∣2 =

∣∣∣∣∣(∑
i
|pi − zk|2

) 1
2 −

(
∑

i
|qi − ẑk|2

) 1
2

∣∣∣∣∣
2

≤ C ∑
i
|pi − qσ(i)|2 + C|zk − ẑk|2

= CG
(

∑
i

JpiK , ∑
i

JqiK
)2

+ C|ϕk(x)−ϕk−1(x)|2 ,

for σ the permutation realizing the distance G
(

∑i JpiK , ∑i JqiK
)

.

Note that, since ϕk and ϕk−1 agree on the boundary pV0(Γ), we can use (25.21) and
the Poincaré inequality to conclude

‖ϕk −ϕk−1‖L2(B2tk )
≤ Ctk‖Dϕk − Dϕk−1‖L2(B2tk )

≤ Ct3
kE1/2+γ2

k . (25.27)

Figure 4: An illustration of how Lemma 25.3 is used.

To estimate further we split the distance G
(

∑i JpiK , ∑i JqiK
)

into a horizontal and

vertical part in the following sense. We define V := ẑk + TẑkMk−1, Ṽ := zk + TzkMk,
V ′ := ẑk + TzkMk and ∑i

q
q′i

y
:= 〈S, pV′ , 0〉. Observe that V and V ′ differ by a rotation,
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while V ′ and Ṽ are parallel. We then apply the Lemma 25.3 to the shifted situation
where ẑk = 0 and deduce

G
(

∑
i

JqiK , ∑
i

q
q′i

y)
≤ CLip(Fk)‖Nk‖C0(|V −V0|+ |V ′ −V0|)

≤ CLip(Fk)‖Nk‖C0(|Dϕk|+ |Dϕk−1|)
≤ CtkE

3/4+γ2
k ,

where in the last inequality we used (25.16) and (25.19).

In order to estimate G
(

∑i JpiK , ∑i
q

q′i
y)

, we call fṼ : TzkMk → AQ(R
n) the function

having the same graph as Fk in C2tk . Observe that

|TzkMk −V0| ≤ Ctk‖D2ϕk‖C0 ≤ CE1/2

k

and by [14, Proposition 5.2]

Lip( fṼ) ≤ CEγ2
k .

Then we observe that ∑i JpiK = ∑i
q

fṼ i(zk)
y

and ∑i
q

q′i
y
= ∑i

r
fṼ i(pTpMk(ẑk))

z
. Thus

we have

G
(

∑
i

JpiK , ∑
i

q
q′i

y)
≤ Lip( fṼ)|zk − pTzkMk(ẑk)|

≤ Lip( fṼ)(||ϕk||C0 + ||ϕk−1||C0) ≤ CtkE
1/2+γ2
k .

Squaring and integrating (and using (25.27)), we deduce∫
B2tk

∣∣|Nk|(zk)− |N̂k|(ẑk)
∣∣2 ≤ Ct4

kE1+2γ2
k .

Inserting in (25.26) we conclude∣∣∣∣∣
∫
|Nk|2

φ′(t−1
k d(zk)

d(zk)
dx−

∫
|N̂k|2

φ′(t−1
k d((ẑ))
d(ẑ)

dx

∣∣∣∣∣ ≤ Ct3
kE1+γ2 .

It remains to prove (25.15)-(25.21).
(25.19) and (25.20) follow from Theorem 18.16 using a simple rescaling and (25.14).

Next, for ϕk−1 the estimate on the second derivative derived from Theorem 18.16

and (25.14) is favourable, as it gives directly (25.17). However the estimate on the first
derivative is not, as it would give

‖Dϕk−1‖C0(B5tk )
≤ Cm0(k− 1)1/2 ≤ C

(
tk−1

tk

)1−δ1

E1/2

k , (25.28)
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which is not good enough for our purposes.
Proof of (25.15), (25.16), and (25.18) In order to gain a more favorable estimate for

the first derivative (and the C0 norm of ϕk−1) we first observe that by Lemma 18.4

h(T, C10tk(0, V0)) ≤ CE1/2

k tk .

Arguing as in the proof of (25.3) it is not difficult to see that∫
C5tk (0,V0)∩Mk−1

|Nk−1|2 ≤ CEkt4
k . (25.29)

Since TFk−1 coincides with spt(T) on a large set we can also infer∫
B5tk

|ϕk−1|2 ≤ CEkt4
k . (25.30)

In order to see the latter estimate, consider first a point p ∈ Mk−1 with the property
that the support of Fk−1(p) is a subset of the support of T. By the height bound we
know that h(T, C10tk(0, V0)) ≤ CE1/2

k tk. In particular, if we let p⊥0 be the projection on
the orthogonal complement V0, we conclude

|p⊥0 ◦ Fk−1|(p) ≤ CE1/2
k tk .

Consider now that, if x is such that p = (x,ϕk−1(x)), since Fk(p) = ∑i
q

Fi
k(p)

y
=

∑i
q

Ni
k(p) + p

y
, we get

|ϕk−1(x)| ≤ |p⊥0 ◦ Fk−1|(x,ϕk−1(x)) + |p⊥0 ◦ Nk−1|(x,ϕk−1(x))

≤ CE1/2
k tk + |Nk−1|(x,ϕk−1(x)) . (25.31)

Let now K be the set of such points p (i.e. for which the support of Fk(p) is contained
in the support of T) and define K := p0(K) ∩ B5tk . Using the bounds (25.29) and (25.31)
we easily obtain∫

K
|ϕk−1(x)|2 ≤ CEkt4

k . (25.32)

In order to estimate the integral on the remaining portion (i.e. on B5tk \ K), we apply
(18.15) to M̄k−1, sum over all the stopped squares in B5tk \ K (which by the stopping
condition have side length comparable to tk/tk−1), scale it back toMk−1 and deduce

|B5tk \ K| ≤ H2(B6tk ∩Mk−1 \ K) ≤ C(m0(k− 1))1+γ2

(
tk

tk−1

)4+γ2

t2
k−1

≤ C
(

tk

tk−1

)2+γ2

. (25.33)
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Then we observe that, by (25.32) and the classical Chebyshev inequality, there is at least
one point x ∈ B5tk where |ϕk−1(x)| ≤ CE1/2

k tk, and we use (25.28) to conclude that for
all y ∈ B5tk we have

|ϕk−1(y)| ≤ CE1/2

k tk + CE1/2

k

(
tk−1

tk

)1−δ1

|x− y| ≤ CE1/2

k

(
tk−1

tk

)1−δ1

tk . (25.34)

Putting together (25.32), (25.33), and (25.34), we achieve

∫
B5tk

|ϕk−1|2 ≤ CEkt4
k + CEk

(
tk

tk−1

)2+γ2−2(1−δ1)

t4
k .

Since 2 + γ2 ≥ 2− 2δ1 and tk ≤ tk−1, the latter clearly implies (25.30).
We next use Gagliardo-Nirenberg interpolation inequality and from (25.29) and

(25.17) we get (25.15) and (25.16), namely

‖ϕk−1‖C0(B2tk )
≤ CtkE1/2

k , ‖Dϕk−1‖C0(B2tk )
≤ CE1/2

k .

We analogously conclude (25.18).
Proof of (25.21) We wish to show that

‖D(ϕk −ϕk−1)‖2
L2(B2tk )

≤ Ct2
kE1+2γ2

k .

We choose a suitable cut-off function ψ which equals 1 on B2tk and is compactly
supported in B3tk and write∫

B2tk

|D(ϕk −ϕk−1)|2 ≤
∫

B3tk

|D(ϕk −ϕk−1)|2ψ

Integrating by parts, we can estimate∫
|D(ϕk −ϕk−1)|2ψ =

∫
(ϕk −ϕk−1)∆(ϕk −ϕk−1)ψ

+
∫
(ϕk −ϕk−1)∇(ϕk −ϕk−1) · ∇ψ .

We next use that ‖∇ψ‖ ≤ Ct−1
k , (25.16), (25.17), (25.19), and (25.20) to estimate∫

B2tk

|D(ϕk −ϕk−1)|2 ≤ CE1/2
k t−1

k

∫
B3tk

|ϕk −ϕk−1| . (25.35)

We next consider the multivalued functions fk and fk−1 on B3tk and taking values into
AQ(R

n) with the properties that

G fk = TFk C0,3tk , G fk−1 = TFk−1 C0,3tk .
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Note that the values of fk and fk−1 coincide except for a set of measure at most t2
kE1+γ2

k
(again we use Theorem 18.21 and sum over the stopped squares). Moreover, because
Lip( fk), Lip( fk−1) ≤ CEγ2

k , we immediately draw the conclusion∫
B3tk

|η ◦ fk − η ◦ fk−1| ≤ E1+2γ2
k t3

k .

On the other hand, appealing to Proposition 18.23 (and rescaling appropriately) we get∫
B3tk

|η ◦ fk −ϕk| ≤ CE3/4
k t3

k ,

∫
B3tk

|η ◦ fk−1 −ϕk−1| ≤ C

((
tk−1

tk

)2−2δ1

Ek

)3/4 (
tk

tk−1

)4

t3
k−1 .

While the first estimate is already suitable for our purposes, the second require some
more care. We recall (25.10) to the effect that(

tk−1

tk

)2−2δ1

Ek ≤
(

tk−1

tk

)2−2δ1

m0(k) ≤ C

for a geometric constant C. Since 1
2−2δ1

≥ 3
4 , we can then estimate∫

B3tk

|η ◦ fk−1 −ϕk−1| ≤ CE
3
4
k t3

k .

By possible choosing γ2 sufficiently small we get∫
B3tk

|ϕk −ϕk−1| ≤ CE1/2+2γ2
k t3

k ,

which, by (25.35), gives (25.21).

25.1 lipschitz estimate using 2d-rotations

Lemma 25.3. There is a constant c > 0 such that the following holds. Let F : V0 → AQ(R
n)

be a Lipschitz map with Lip(F) < c, let V and V ′ be 2-dimensional subspaces with |V −V0|+
|V ′ −V0| < c and denote by p and p′ the orthogonal projection on V and V ′ respectively. Then
for P := 〈TF, p, 0〉 and P′ := 〈TF, p′, 0〉 it holds

G(P, P′) ≤ C Lip(F) ‖F‖C0(|V −V0|+ |V ′ −V0|) . (25.36)

Proof. We use an argument already observed in more generality in [15, Lemma D.1].
However, we repeat here the parts needed for the previous lemma. First of all, we
construct finitely many planes by using 2d-rotations that will allow us to reduce (25.36)
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to a one-dimensional situation. Recall the terminology: we say that R ∈ SO(n + 2) is a
2d-rotation if there are two orthonormal vectors e1, e2 and an angle θ such that

R(e1) = cos(θ)e1 + sin(θ)e2 ,

R(e2) = cos(θ)e1 − sin(θ)e2 ,

R(v) = v , for any v ∈ 〈e1, e2〉⊥.

Now let us denote by W1 = V ∩V ′. If dim(W1) = 2, then V = V ′ and there is nothing
to prove. Otherwise dim(W1) < 2 = dim(V) = dim(V ′) and we can write

V = W1 ⊕ V̂, V ′ = W1 ⊕ V̂ ′,

for some subspaces V̂ and V̂ ′. Choose any unit vector e1 ∈ V̂ = V ∩W⊥1 and define

e′1 :=
p′(e1)

|p′(e1)|
∈ V ′ ∩W⊥1 .

Moreover, define R1 to be the 2d-rotation mapping e1 onto e′1 and

V2 := R1(V) ,

W2 := V2 ∩V ′ .

Notice that W1 ⊂ V1 is invariant under R1, so clearly W1 = (W1 ∩V ′) ⊂ (V2 ∩V ′) = W2.
Moreover, e′1 ∈ V2 ∩V ′, and hence

W2 ⊃ 〈W1, e′1〉 .

As e′1 ⊥ W1, we have dim(W2) ≥ dim(W1) + 1. Now, if dim(W2) = 2, then V2 =

R1(V1) = V ′ and we define R2 to be the identity. Otherwise dim(W2) = 1 and we can
again find a unit vector e2 ∈ V2 ∩W⊥2 , define

e′2 :=
p′(e2)

|p′(e2)|
∈ V ′ ∩W⊥1 ,

and define R2 to be the 2d-rotation mapping e2 onto e′2. As before, we denote by
V3 := R2(V2) and observe that W3 := V3 ∩V ′ has at least one dimension more than W2.
Thus, in both cases we have

V ′ = R2 ◦ R1(V) .

Next, denote by V1 := V and for j ∈ {1, 2, 3} the orthogonal projection onto Vj by pj
and Pj := 〈TF, pj, 0〉. Notice that for c > 0 small enough, spt(Pj) is a Q-valued point.
We claim

G(Pj, Pj+1) ≤ CLip(F) ‖F‖C0(|Vj −V0|+ |Vj+1 −V0|)
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concluding the lemma as |Vj −V0| ≤ |V −V ′|+ |V −V0| ≤ 2(|V −V0|+ |V ′ −V0|) for
every j. Indeed, for each j, fix a unit vector vj ∈ V0 such that

〈ej, e′j〉 ∩V0 = {t · vj : t ∈ R} .

Then we can apply the selection principle [12, Proposition 1.2] to the map Fj(t) := F(tvj)

to get a selection

Fj = ∑
i

r
Fj

i

z

for some Lipschitz functions Fj
i : [−1, 1]→ Rn satisfying

|DFj
i | ≤ |DF| ≤ Lip(F) a.e. (25.37)

We therefore conclude the existence of points sj
1, . . . , sj

Q, sj+1
1 , . . . , sj+1

Q ∈ [−1, 1] such that

G(Pj, Pj+1) ≤∑
i

∣∣∣Fj
i (s

j
i)− Fj

i (s
j+1
i )

∣∣∣
≤ Lip(F)∑

i

∣∣∣sj
i − sj+1

i

∣∣∣
≤ Lip(F)∑

i

(
|sj

i |+ |s
j+1
i |

)
≤ QC Lip(F) ‖F‖C0

(
|Vj −V0|+ |Vj+1 −V0|

)
,

where we also have used (25.37).
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In this section we complete the proof of Theorem 12.6, which in turn completes the
proof of Theorem 1.7. We recall the I0 from Corollary 23.6. The main point is the
following conclusion.

Theorem 26.1. Let T be as in Assumption 23.2 and assume that 0 is not a regular point. Then
I0 = 1 and for every ς > 0

lim
r↓0

D(r)
r2+ς

= ∞ . (26.1)

The latter is in contradiction with the estimate (23.12) (i.e. D(r) ≤ Cr2+τ) for some
positive constant τ which depends on the exponent α of Theorem 12.7.

26.1 blow-up analysis

As already mentioned, Theorem 26.1 is reached through a suitable “blow-up” analysis.
First of all, having fixed a sequence of sj ↓ 0 we define a suitable family of rescalings of
the maps N′ks. First of all we choose any k(j) with the property that

tk(j)+1 < sj ≤ tk(j) . (26.2)

Next we define the exponential map exk : T0Mk →Mk and we identify each tangent
T0Mk to R2 through a suitable rotation of the ambient Euclidean space which maps it
onto R2 × {0}. We then consider the rescaled maps

Ñj(x) :=
Nk(j)(exk(j)(sjx))

D(sj)
1/2

. (26.3)

The main conclusion of our blow-up analysis is the following

Theorem 26.2. Let T be as in Assumption 23.2 and assume that 0 is not a regular point. Let
sj ↓ 0 be an arbitrary vanishing sequence of positive radii, let k(j) be an arbitrary choice of
integers satisfying (26.2) and let Ñj : B+

1 → AQ(R
n), where B+

1 = B1 ∩ {(x1, x2) : x2 ≥ 0}.
Then a subsequence, not relabeled, converges strongly in W1,2(B+

1 ) to a map Ñ∞ satisfying the
following conditions:

(i) Ñ∞(x1, 0) = Q J0K for all x1;

(ii) Ñ∞ is Dir-minimizing;
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(iii) Ñ∞ is I0-homogeneous, where I0 is the positive number in Corollary 23.6.

(iv) η ◦ Ñ∞ ≡ 0;

(v)
∫

B+
1
|DÑ∞|2 = 1.

In particular I0 = 1.

Then the arguments of Theorem 13.9 apply to Ñ∞ and in particular give that I0 = 1.

Proof of Theorem 26.2. Observe first that, following the computations of [21, Section
10.1] we conclude that

e−Csj 81+I0 ≤ H(4sj)

H(sj/2)
≤ eCsj 81+4I0

as long as sj ≤ tk(j). Since I0 exists and is finite, there is a constant C (depending only
on I0) such that

D(4sj) ≤ CD(sj/2) .

On the other hand, arguing as in the proof of Proposition 25.1, we easily see that

D(tk(j)) ≥ C−1t2
k(j)E(T, 24tk(j))

(we just need to choose the constant M0 appropriately large to compensate for the
larger radius in the right hand side) while D(4tk(j)) ≤ Ct2

k(j)E(T, 24tk(j)). Now, since the
geodesic ball Btk(j) inMk(j) contains {d < tk(j)/2} while the geodesic ball B2tk(j) ⊂ {d <

4tk(j)}, using the fact that the rescaling of the manifolds converge smoothly to the flat
plane V0, we easily conclude that∫

B+
2

|DÑj|2 ≤ C
∫

B+
1

|DÑj|2 .

We can then follow the argument of [21, Section 10.3] to conclude that, up to subse-
quences, Ñj converges strongly in the W1,2(B+

1 ) topology to a Dir-minimizing map
Ñ∞. Likewise we can follow the argument of [21, Section 10.2] to conclude that η ◦ Ñ∞

vanishes identically. Recall that the maps Nk(j) vanish identically on Γ, while the rescal-
ings of the latter converge smoothly to T0Γ = {x2 = 0}. The strong convergence then
implies that Ñ∞ = Q J0K on {x2 = 0} ∩ B1. We have thus proved (i), (ii), (iv), and (v).
We can however also see that

r
∫

φ(r−1|x|)|DÑ∞(x)|2 dx
−
∫

φ′(r−1|x|)|x|−1|Ñ∞(x)|2 dx
= lim

j→∞

rsjD(rsj)

H(rsj)
= I0 ,

which means that the frequency function of Ñ∞ is constant. This however happens if
and only if Ñ∞ is I0-homogeneous.

As for the final statement, we invoke Theorem 13.3.
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Now that we know that I0 = 1, we can then conclude that by the strong convergence
of {Ñj}j in W1,2(B+

1 ), we have

Corollary 26.3. If T is as in Theorem 26.2, then

lim
r↓0

D(2r)
D(r)

= 4 .

26.2 proof of (26 .1) and conclusion

Fix ς > 0 and consider the sequence of radii rk := 2−k. We know from Corollary 26.3
that, for k sufficiently large

D(rk) ≥ 2−2−ς/2D(rk−1) .

In particular we conclude the existence of a k0 such that for every k ≥ k0, we have

D(2−k) ≥ 2−(2+ς/2)(k−k0)D(2−k0) .

In particular for every r ≤ 2−k0 we can write

D(r) ≥ D(2−k0)

22+ς/2 r2+ς/2

and since D(2−k0) > 0, (26.1) readily follows.
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a.1 proof of corollary 2 .4

Proof. By Lemma 2.3, we have for 0 < r < 2

‖T‖(Br) ≤ rnωn exp (C42 (AM + κT) (2− r))
‖T‖(B2)

2nωn
≤ 2−ne4CM(T)rn

and

‖T‖(Br) ≥ rnωn lim
s↓0

(
exp (C42 (AM + κT) (s− r))

‖T‖(Bs)

snωn

)
≥ ωne−4C42 mrn.

Hence, there is a constant C43 > 0 such that

1
C43

rn ≤ ‖T‖(Br) ≤ C43rn. (a.1)

Recall that C1 is such that |
→
H| ≤ C1AM. Then we use Lemma 2.1 to estimate∣∣∣∣‖T‖(Bs)

sn − ‖T‖(Br)

rn −
∫

Bs\Br

|X⊥|2|X|−n−2d‖T‖
∣∣∣∣

≤
∫ s

r
ρ−n−1 (C1ρAM‖T‖(Br) + ρωn−1ακTρn)dρ

≤ C3(AM + κT) (s− r) .

a.2 proof of lemma 3 .3

The proof of Lemma 3.3 is based on the rather technical area comparison lemma: if we
change slightly the (n + 1)-component of a current, then its new mass stays close to its
original mass.

In the following, we will denote points in Rn+k by (x, y), where x ∈ Rn+1 and
y ∈ Rk−1.

Lemma a.1. Let 0 < τ < 1, ρ > 0 and A ⊂ C1 be a Borel set which is a cylinder (i.e.
A = p−1(p(A))). Let µ : Rn → [0, 1] be a C1-function satisfying supp(A) |Dµ| ≤ ρ/τ and
consider the map

F :Rn+k → Rn+k,

(x, y) 7→
(
x1, . . . , xn, µ(x1, . . . , xn)xn+1, Φ(x1, . . . , xn, µ(x1, . . . , xn)xn+1)

)
.
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Then there is a constant C44 > 0 only depending on n, k and m such that for any current T
with (T,M) ∈ T the following holds

M
(

F#(T A)
)
−M(T A) ≤ C44

(
1 + ρ2

τ2

∫
A

X2
n+1d‖T‖+ κ2

T
τ2 +

(
2 +

ρ2

τ2

)
A
)

,

where Aτ := {x ∈ Rn+1 : dist(x, A) < τ} is an enlargement of A by τ.

Proof. By [23, Section 4.1.30], we infer that for any ω ∈ Dn(Rn+1)(
F#(T A)

)
(ω) =

∫
A
〈F#
→
T(x), ω(F(x))〉d‖T‖.

We expand the tangent vector in the following basis for T(x,Φ(x))M

vj(x) := (ej, ∂jΦ(x)) for j ∈ {1, . . . , n + 1}, (a.2)

where ej denotes the j-th standard basis vector in Rn+1. Then there are real numbers Tj
such that

→
T =

n+1

∑
j=1

Tj v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vn+1. (a.3)

We compute

F#
→
T(x, y) = Tn+1 v1(F(x)) ∧ · · · ∧ vn(F(x))

+
n

∑
j=1

(
Tjµ− Tn+1xn+1∂jµ

)
v1(F(x)) ∧ · · · ∧ v̂j(F(x)) ∧ · · · ∧ vn+1(F(x))

and therefore, we have

|F#
→
T |2 ≤

(
T2

n+1 +
n

∑
j=1

(
Tjµ− Tn+1Xn+1∂jµ

)2
)(

n+1

∑
j=1
|v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vn+1|2

)

≤
(

T2
n+1 +

n

∑
j=1

(
Tjµ− Tn+1Xn+1∂jµ

)2
) (

1 + C45|DΦ|2
)

≤ T2
n+1 +

n

∑
j=1

(
Tjµ− Tn+1Xn+1∂jµ

)2
+ C46|DΦ|2

(
1 +

ρ2

τ2

)
.

We argue as in the original paper [27, Lemma 3.1.1] to deduce

M
(

F#(T A)
)
−M(T A)

≤ 2
ρ2

τ2

∫
A

X2
n+1d‖T‖+

∫
A

(
1− T2

n+1
)
d‖T‖+ C46A2

(
1 +

ρ2

τ2

)
M(T).

(a.4)
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In order to bound the second integral, we compute the first variation of T with
respect the following vectorfield

Ξ : Rn+k → Rn+k, (x, y) 7→
(

xn+1 − ψT(x1, . . . , xn−1)
)
λ2(x)en+1,

where en+1 denotes the (n + 1)-th basis vector of Rn+k and λ : Rn+1 → [0, 1] is a
C1 cut-off function with spt(λ) ⊂ Aτ, λ|A = 1 and sup |Dλ| ≤ C47/τ. Notice that Ξ
vanishes on spt(∂T) and therefore, by [21, Theorem 3.2]∫

div→
T

Ξ d‖T‖ = −
∫

Ξ ·
→
HT(x) d‖T‖(x), (a.5)

where
→
HT is the mean curvature vector.

As spt(T) ⊂ M, we have div→
T

Ξ = divMΞ− divνΞ where ν ∈ T(x,Φ(x))M is the outer

normal vector to
→
T . We compute ν by expanding everything in the basis in (a.2):

ν =
n+1

∑
j=1

νjvj

→
T = τ1 ∧ · · · ∧ τn with τi =

n+1

∑
j=1

ti,jvj.

As ν is normal to
→
T , we can use the expansion (a.3) to find the following equalities for

all j ∈ {1, . . . , n + 1} and ti := (ti,1, . . . ti,n+1)
ᵀ with i ∈ {1, . . . , n}:

Tj = det1,..., ĵ,...,n+1
(

t1 · · · tn

)
, (a.6)

0 = 〈ν, τi〉 = 〈

 ν1

:

νn+1

 , g · ti〉, (a.7)

where g = (〈vi, vj〉i,j) = idn+1 + (〈∂iΦ, ∂jΦ〉i,j) =: idn+1 + B is the metric.
From (a.7), we deduce that

νj = ?
(
(g · ti) ∧ · · · ∧ (g · tn)

)
= (−1)jdet1,..., ĵ,...,n+1

(
g · t1 · · · g · tn

)
.

We compute

divνΞ =
n+k

∑
j=1

(DνΞj)j = (DνΞn+1)n+1

=

(
〈D
((

xn+1 − ψT(x1, . . . , xn−1)
)
λ2(x)

)
,

ν

|ν| 〉
ν

|ν|

)
n+1

=
1
|ν|2

(
λ2ν2

n+1 − λ2
n−1

∑
j=1

νn+1νj∂jψT + 2λ(Xn+1 − ψT)
n+1

∑
j=1

νn+1νj∂jλ

)
.

(a.8)
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On the other hand, we need to compute the divergence with respect to M. To
do so, we compute the projection on M: Let M be the matrix with column vectors
v1, . . . vn+1 ∈ Rn+k. Then we have

divMΞ

=
n+k

∑
j=1

(DMΞj)j = (DMΞn+1)n+1

=
(

M · g−1 ·MT · D
((

xn+1 − ψT(x1, . . . , xn−1)
)
λ2(x)

))
n+1

=




g1,1 · · · g1,n+1

: :

g1,n+1 · · · gn+1,n+1

? ? ?




1 0
. . .

0 1

∂1Φ · · · ∂n+1Φ


T



:

2λ(Xn+1 − ψT)∂iλ− λ2∂iψT

:

2λ(Xn+1 − ψT)∂nλ

2λ(Xn+1 − ψT)∂n+1λ− λ2

0




n+1

=




g1,1 · · · g1,n+1

: :

g1,n+1 · · · gn+1,n+1

? ? ?





:

2λ(Xn+1 − ψT)∂iλ− λ2∂iψT

:

2λ(Xn+1 − ψT)∂nλ

2λ(Xn+1 − ψT)∂n+1λ− λ2




n+1

= λ2gn+1,n+1 − λ2
n−1

∑
j=1

gn+1,j∂jψT + 2λ(Xn+1 − ψT)
n+1

∑
j=1

gn+1,j∂jλ.

This together with (a.8) yields

div→
T

Ξ = λ2

(
gn+1,n+1 − ν2

n+1

|ν|2

)
− λ2

n−1

∑
j=1

(
gn+1,j − νn+1νj

|ν|2
)

∂jψT

+ 2λ(Xn+1 − ψT)
n+1

∑
j=1

(
gn+1,j − νn+1νj

|ν|2
)

∂jλ.

(a.9)

Together with (a.5), we have

−
∫

Ξ ·
→
HT d‖T‖ =

∫
λ2

((
gn+1,n+1 − ν2

n+1

|ν|2

)
−

n−1

∑
j=1

(
gn+1,j − νn+1νj

|ν|2
)

∂jψT

)
d‖T‖

+ 2
∫

λ(Xn+1 − ψT)
n+1

∑
j=1

(
gn+1,j − νn+1νj

|ν|2
)

∂jλ d‖T‖.

(a.10)



a.2 proof of lemma 3 .3 195

In order to regain the term 1− T2
n+1, we first estimate νn+1

(−1)n+1νn+1

= det1,...,n
(

g · t1 · · · g · tn

)
= det1,...,n

((
id + (〈∂iΦ, ∂jΦ〉i,j)

)
·
(

t1 · · · tn

))
= ∑

σ∈Sn

sgn(σ)

(
t1,σ(1) +

n+1

∑
j=1

t1,j〈∂σ(1)Φ, ∂jΦ〉
)
· · ·
(

tn,σ(n) +
n+1

∑
j=1

tn,j〈∂σ(n)Φ, ∂jΦ〉
)

= ∑
σ∈Sn

sgn(σ)t1,σ(1) · · · tn,σ(n) + O(|DΦ|)

= T2
n+1 + O(|DΦ|).

Hence,

ν2
n+1 ≤ T2

n+1 + C48|DΦ|2. (a.11)

Now, we compute the norm of ν. We use that the Hodge star is norm-preserving and
therefore, we have for ν̃ := (ν1, . . . , νn+1)

|ν̃|2 = det
(
〈g · ti, g · tj〉i,j

)
= det

(
〈ti, g2tj〉i,j

)
= det

((
〈ti, tj〉+ 2〈ti, Btj〉+ 〈ti, B2tj〉

)
i,j

)
.

Notice that

〈ti, tj〉+ 2〈ti, Btj〉+ 〈ti, B2tj〉 ≥ 〈ti, tj〉 − 2‖B‖op|ti||tj| − ‖B‖2
op|ti||tj|

≥ 〈ti, tj〉 −
(
2‖B‖+ ‖B‖2) |ti||tj|

≥ 〈ti, tj〉 −
(

2
√

n + 1|DΦ|2 + (n + 1)|DΦ|4
)
|ti||tj|

≥ 〈ti, tj〉 − 2(n + 1)|DΦ|2,

(a.12)

where we used in the last inequality the fact

|ti|2 =
∣∣∣n+1

∑
j=1

ti,j(ej, ∂jΦ)
∣∣∣2 − ∣∣∣n+1

∑
j=1

ti,j∂jΦ
∣∣∣2 ≤ |τi|2 = 1 .

Therefore, we estimate

|ν̃|2 = ∑
σ∈Pn

n

∏
i=1

sgn(σ)〈g · ti, g · tσ(i)〉

≥ ∑
σ∈Pn

(
n

∏
i=1

sgn(σ)〈ti, tσ(i)〉 − 2n(2(n + 1))n|DΦ|2
)

≥ det
(
〈ti, tj〉i,j

)
− 22nn!(n + 1)n|DΦ|2.

(a.13)
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Now, we use that τ1, . . . τn are orthonormal to deduce that

δi,j = 〈τi, τj〉 = 〈
n+1

∑
k=1

ti,k(ek, ∂kΦ),
n+1

∑
l=1

ti,l(el , ∂lΦ)〉

= 〈
n+1

∑
k=1

ti,kek,
n+1

∑
l=1

ti,lel〉+ 〈
n+1

∑
k=1

ti,k∂kΦ,
n+1

∑
l=1

ti,l∂lΦ〉

= 〈ti, tj〉+
n+1

∑
k,l=1

ti,ktj,l〈∂kΦ, ∂lΦ〉

and hence,

|δi,j − 〈ti, tj〉| ≤ 2(n + 1)|DΦ|2.

By a similar argument as in (a.13), it follows that

det
(
〈ti, tj〉i,j

)
≥ 1− 2nn!(n + 1)n|DΦ|2.

Putting this into (a.13), we yield

|ν|2 =
∣∣∣n+1

∑
j=1

νjvj

∣∣∣2 = ν2
1 + · · ·+ ν2

n+1 +
∣∣∣n+1

∑
j=1

νj∂jΦ
∣∣∣2

≥ |ν̃|2 ≥ 1− 22n+1n!(n + 1)n|DΦ|2.

Therefore,

1
|ν|2 ≤

1
1− 22n+1n!(n + 1)n|DΦ|2 ≤ 1 + C49|DΦ|2. (a.14)

Now, we take care of g−1. By the geometric series and the fact g = id + (〈∂iΦ, ∂jΦ〉i,j),
we have

g−1 = id− (〈∂iΦ, ∂jΦ〉i,j) + ∑
l≥2

(−1)l(〈∂iΦ, ∂jΦ〉i,j)l (a.15)

and hence,

|gi,j| ≤ δi,j − 〈∂iΦ, ∂jΦ〉+ C12|DΦ|4. (a.16)

Now, we are ready to estimate piece by piece the right hand side of (a.10)

• We use (a.11), (a.14) and (a.16) to deduce∫
λ2

(
gn+,n+1 − ν2

n+1

|ν|2

)
d‖T‖

≥
∫

λ2
(

1− |∂n+1Φ|2 − C12|DΦ|4 − T2
n+1 − C50|DΦ|2

)
d‖T‖

≥
∫

λ2 (1− T2
n+1
)

d‖T‖ − C51M(T)A2.
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• We use (a.11), (a.14) and (a.16) to deduce∫
λ2

n−1

∑
j=1

(
gn+1,j − νn+1νj

|ν|2
)

∂jψT d‖T‖

≤
∫

λ2
(

C52|DΦ|2 + |(ν1, . . . , νn)|
|ν|

)
κT d‖T‖

≤ κT

∫
λ2

√
|ν̃|2 − ν2

n+1

|ν|2 d‖T‖+ C53M(T)|DΦ|2

≤ κT

∫
λ2
√

1− T2
n+1 + C54|DΦ|2

(
1 + C49|DΦ|2

)
d‖T‖+ C53M(T)A2

≤ κT

∫
λ2
√

1− T2
n+1 + C55|DΦ|2d‖T‖+ C53M(T)A2.

• We use (a.11), (a.14), (a.16) and a similar argument as in (a.13) to deduce

∫
2λ(Xn+1 − ψT)

n+1

∑
j=1

(
gn+1,j − νn+1νj

|ν|2
)

∂jλ d‖T‖

=
∫

2λ(|Xn+1|+ κT)

((
gn+1,n+1 − ν2

n+1

|ν|2

)
∂n+1λ +

n

∑
j=1

(
gn+1,j − νn+1νj

|ν|2
)

∂jλ

)
d‖T‖

≤ 2
∫

λ|Dλ|(|Xn+1|+ κT)

(
1− |∂n+1Φ|2 − T2

n+1 + C56|DΦ|2 + |(ν1, . . . , νn)|
|ν|

)
d‖T‖

≤ 2
C59

τ

∫ λ(|Xn+1|+ κT)

1− T2
n+1 +

√
|ν̃|2 − ν2

n+1

|ν|2

d‖T‖+ C57M(T)A2


≤ 2

C59

τ

∫
λ(|Xn+1|+ κT)

(
1− T2

n+1 +
√

1− T2
n+1 + C58|DΦ|2

(
1 + C49|DΦ|2

))
d‖T‖

+ C57
C59

τ
M(T)A2

≤ 2
C59

τ

(∫
λ(|Xn+1|+ κT)2

√
1− T2

n+1 + C60|DΦ|2d‖T‖+ C61M(T)A2
)

.

Putting all this into (a.5) yields∫
λ2(1− T2

n+1)d‖T‖

≤
∫

κTλ2
√

1− T2
n+1 + C55|DΦ|2d‖T‖+ C59

τ

∫
λ|Xn+1|

√
1− T2

n+1 + C60|DΦ|2d‖T‖

+
C59

τ

∫
κTλ

√
1− T2

n+1 + C60|DΦ|2d‖T‖+
∫

Ξ ·
→
Hd‖T‖+ C62M(T)A2.

(a.17)

Using three times the Cauchy inequality (2ab ≤ a2 + b2), we estimate
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•
∫

κTλ2
√

1− T2
n+1 + C55|DΦ|2d‖T‖

≤
∫

Aτ

λ2

4
(
1− T2

n+1 + C55|DΦ|2
)

d‖T‖+
∫

Aτ

κ2
Tλ2 d‖T‖,

•
C59

τ

∫
λ|Xn+1|

√
1− T2

n+1 + C60|DΦ|2d‖T‖

≤ 1
16

∫
Aτ

λ2 (1− T2
n+1 + C60|DΦ|2

)
d‖T‖+ C59

τ2

∫
Aτ

X2
n+1 d‖T‖,

•
C59

τ

∫
κTλ

√
1− T2

n+1 + C60|DΦ|2d‖T‖

≤ 1
16

∫
Aτ

λ2 (1− T2
n+1 + C60|DΦ|2

)
d‖T‖+ C59

τ2

∫
Aτ

κ2
Td‖T‖.

Again putting this into (a.17) yields∫
Aτ

λ2(1− T2
n+1
)
d‖T‖ ≤ 1

2

∫
Aτ

λ2 (1− T2
n+1
)

d‖T‖+ C59

τ2

∫
Aτ

X2
n+1 d‖T‖

+
∫

Aτ

Ξ ·
→
Hd‖T‖+ C63M(T)

(
A2 + κ2

T +
κ2

T
τ2

)
and hence,∫

A

(
1− T2

n+1
)
d‖T‖ ≤

∫
Aτ

λ2(1− T2
n+1
)
d‖T‖

≤ 2
C59

τ2

∫
Aτ

X2
n+1 d‖T‖+ C64M(T)

(
κ2

T +
κ2

T
τ2 + 2A

)
.

Using (a.4), we deduce the desired inequality

M
(

F#(T A)
)
−M(T A)

≤ C65
1 + ρ2

τ2

∫
A

X2
n+1d‖T‖+ C64M(T)

κ2
T

τ2 + C66M(T)A
(

2 +
ρ2

τ2

)
.

Now we have all the tools to estimate the excess of T with its height.

Proof of Lemma 3.3. The second inequality holds true with C11 ≥ 3n(1 + mωn) ≥M(T).
For the first inequality, we want to use Lemma a.1 for A := C1+τ\C1, ρ = 3 and
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τ = σ/2. Consider F as in the lemma for some C1-function µ : Rn → [0, 1] satisfying
sup
p(A)

|Dµ| ≤ ρ/τ and


µ(z) = 0 if |z| ≤ 1

µ(z) > 0 if 1 < |z| < 1 + τ

µ(z) = 1 if |z| ≥ 1 + τ.

Moreover, we define for t ∈ R and (x, y) ∈ Rn+k the homotopy

Ht(x, y) :=
(
p(x), ((1− t)µ ◦ p(x) + t)xn+1, Φ

(
p(x), ((1− t)µ ◦ p(x) + t)xn+1

))
.

Notice that F is the identity onM\C1+τ and F = (p, 0, Φ(p, 0)) on C1.
Then for RT := H#([0, 1]× ∂T) we have spt(RT) ⊂M and

∂
(
T C1+τ − F#(T C1+τ)− RT

)
= ∂(T − F#T − RT) = 0.

Hence, by the area minimality of T inM, we have

M(T C1+τ) ≤M
(

F#(T C1+τ)
)
+ M(RT).

Moreover, by [33, Remark 26.21(2)], the following holds

M(RT) ≤ sup
spt(∂T)

|∂tH| sup
spt(∂T)

|∂x H|M
(
(∂T) C2

)
.

Therefore, we compute

|∂tH| ≤ (Xn+1 − Xn+1µ ◦ p) + |DΦ| (Xn+1 − Xn+1µ ◦ p)

≤
(
1 + |DΦ|2

)
|Xn+1| (1− µ ◦ p)

≤ κT
(
1 + |DΦ|2

)
,

|∂x H| ≤ n + |Dµ|Xn+1 + |DΦ| (n + |Dµ|Xn+1) + (|µ|+ 1) + |DΦ|(|µ|+ 1)

≤ n +

(
6
σ

)
κT + |DΦ|

(
4 +

(
n +

6κT

σ

))
+ 4

≤ C67

(
1 +

κT

σ

)
,

M
(
(∂T) C2

)
≤ ωn−12n−1

√
n + κ2

T + A2(1 + κT) ≤ C68(1 + κT).

Thus, we have
M(RT) ≤ C69

κT

σ
(1 + A).
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Now, we argue as originally in [27, Lemma 4.1] and use Lemma a.1 to deduce

EC(T, 1) ≤M
(

F#(T A)
)
−M(T A) + C69

κT

σ
(1 + A)

≤ C10

σ2

(
κT +

∫
C1+σ

X2
n+1d‖T‖+ A

)
.

a.3 proof of lemma 3 .4

Proof. We call a function f T-subharmonic if∫
〈D→

T
f , D→

T
ζ〉d‖T‖ ≤ 0 for all ζ ∈ C1(Rn+k; R≥0) with spt(ζ) ∩ spt(∂T) = ∅.

The functions

hi : Rn+k → R, (x, y) 7→ (−1)ixn+1 + x2
n+1, for i ∈ {1, 2}

are T-subharmonic as∫
〈D→

T
hi, D→

T
ζ〉d‖T‖ =

∫
〈π · Dhi, π · Dζ〉d‖T‖ =

∫
〈Dhi, π · Dζ〉d‖T‖

=
∫
〈(−1)ien+1 + 2Xn+1en+1, π · Dζ〉d‖T‖

=
∫ (

div→
T

(
ζ
(
(−1)i + 2Xn+1

)
en+1

)
− 2ζπn+1,n+1

)
d‖T‖

=
∫ (
−ζ
(
(−1)i + 2Xn+1

)
en+1 ·

→
H − 2ζgn+1,n+1

)
d‖T‖,

≤
∫

ζ
(

7C1
∣∣D2Φ

∣∣− 2
(

1− |∂n+1Φ|2 − C12|DΦ|4
))

d‖T‖

≤
∫

ζ
(
7C1

∣∣D2Φ
∣∣− 2

(
1− (1 + C12)|DΦ|2

))
d‖T‖

≤ 0,

where π(x) denotes the orthogonal projection to the tangent plane of T at x and we used
(a.16), [21, Theorem 3.2] and the fact

(
spt(ζen+1) ∩ spt(∂T)

)
⊂
(
spt(ζ) ∩ spt(∂T)

)
= ∅.

Consider the nonnegative, convex function

f : R→ R, t 7→


t− 2κT, if t ≥ 2κT

−t− 2κT, if t ≤ −2κT

0, else

.

Notice that f ((−1)iXn+1 + X2
n+1) vanishes on spt(∂T). If f were additionally smooth,

than by [2, Lemma 7.5(3)] f ((−1)iXn+1 + X2
n+1) would be T-subharmonic. Therefore,
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we take a smooth nonnegative mollifier η satisfying spt(η) ⊂ (−1, 1) and
∫

R
η(x)dx = 1.

Define ηε(x) := 1
ε η(x/ε) and fε := f ∗ ηε. fε is smooth, convex and converges uniformly

to f when ε ↓ 0. Therefore fε ◦ ((−1)iXn+1 + X2
n+1) is T-subharmonic and by [2,

Theorem 7.5(6)]

sup
C1−σ∩spt(T)

f
(
(−1)iXn+1 + X2

n+1
)2

= sup
a∈p−1(0)

sup
τa(B1−σ)∩spt(T)

f
(
(−1)iXn+1 + X2

n+1
)2

= sup
a∈p−1(0)

lim
ε↓0

(
sup

τa(B1−σ)∩spt(T)
fε ◦

(
(−1)iXn+1 + X2

n+1
))2

≤ sup
a∈p−1(0)

lim
ε↓0

(
C70

σn

∫
τa(B1−σ/2)

( fε ◦
(
(−1)iXn+1 + X2

n+1
)
)2d‖T‖

)
≤ C70

σn

∫
C1−σ/2

f 2((−1)iXn+1 + X2
n+1
)
d‖T‖.

(a.18)

We deduce further that in B2 the following holds

X2
n+1 − 40κT ≤

(
|Xn+1|+ X2

n+1
)2 − 40κT

≤


(
Xn+1 + X2

n+1

)2 − 20κT, if |Xn+1 + X2
n+1| ≥ 2κT

0, else

+


(
− Xn+1 + X2

n+1

)2 − 20κT, if |Xn+1 − X2
n+1| ≥ 2κT

0, else

≤ f 2(Xn+1 + X2
n+1
)
+ f 2(− Xn+1 + X2

n+1
)

(a.19)

and

f 2(Xn+1 + X2
n+1
)
+ f 2(− Xn+1 + X2

n+1
)
≤ 2

((
Xn+1 + X2

n+1
)2

+
(
− Xn+1 + X2

n+1
)2

+ 8κ2
T

)
≤ 4

(
|Xn+1|+ X2

n+1
)2

+ 16κ2
T

≤ 36
(
X2

n+1 + κ2
T
)
.

(a.20)

Putting (a.18), (a.19) and (a.20), we conclude

sup
C1−σ∩spt(T)

X2
n+1 ≤

C70

σn

∫
C1−σ/2

(
f 2(Xn+1 + X2

n+1
)
+ f 2(− Xn+1 + X2

n+1
))

d‖T‖+ 40κT

≤ 36C70

σn

∫
C1−σ/2

(
X2

n+1 + κ2
T
)

d‖T‖+ 40κT

≤ C13

σn

(∫
C1−σ/2

X2
n+1d‖T‖+ κT

)
.
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For (ii.), we specify C71 later and let

C̃ := 12 · 33n+2 (7 + 2m + 2C4 + C71)C13
(
1 + mωn

)
.

Case 1: EC(T, 1) + κT + A ≥ 3n+2(1 + mωn
)σn+1

C̃
.

In this case, as spt(T) ⊂ B3, we can bound∫
X2

n+1d‖T‖ ≤ 3n+2(1 + mωn
)
≤ C̃

σn+1

(
EC(T, 1) + κT + A

)
.

Case 2: EC(T, 1) + κT + A < 3n+2(1 + mωn
)σn+1

C̃
(a.21).

Here, we aim to show that C1−σ/2 ∩ spt(T) ⊂ B1. If this were true, the following would
conclude the lemma. Namely, recall the normal vector ν from the proof of Lemma a.1.
Then, by Cauchy’s inequality, we can deduce∫

B1

X2
n+1d‖T‖ =

∫
B1

(
〈X,

ν

|ν| 〉+ 〈X, en+1 −
ν

|ν| 〉
)2d‖T‖

≤ 2
∫

B1

(
|X⊥|2 + |X|2

∣∣∣∣en+1 −
ν

|ν|

∣∣∣∣2
)

d‖T‖

≤ 2
∫

B1

(
|X⊥|2|X|−n−2 +

∥∥∥∥en+1 · e>n+1 −
1
|ν|2 ν · ν>

∥∥∥∥2
)

d‖T‖

(a.22)

Now, we recall that the cylindrical excess can also be expressed by

1
rn

∫
Cr

‖π − p‖2d‖T‖,

where π(x) still denotes the orthogonal projection to the tangent plane of T at x We
compute for (x, y) ∈ B1

(π − p) (x, y) =
(

M · g−1 ·MT(x, y)T − 〈(x, y),
ν

|ν| 〉
ν

|ν|

)
−

n

∑
j=1

xjej

= B(x, y) + xn+1en+1 − 〈(x, y),
ν

|ν| 〉
ν

|ν| ,

where
B(x, y) := M · g−1 ·MT(x, y)T − (x, 0)T.

Using (a.15) we estimate
|B(x, y)| ≤ C72|DΦ|.
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Hence, by Corollary 2.5 and the inequality (3.2), we can continue the estimate of (a.22)
in the following way:∫

B1

X2
n+1d‖T‖ ≤ 2

(
ES(T, 1) + C4(A + κT) +

∫
B1

2
(
‖π − p‖2 + ‖B‖2)d‖T‖

)
≤ 2ES(T, 1) + 2C4(A + κT) + 4EC(T, 1) + C72A2

≤ (6 + 2m + 2C4) (EC(T, 1) + κT) + (2C4 + C71)A.

(a.23)

As (6 + 2m + 2C4 + C71) ≤ C̃ ≤ C̃σ−n−1, we are left with proving that

C1−σ/2 ∩ spt(T) ⊂ B1.

First, we notice that due to a similar reasoning as we did for (i.) and using (a.23), we
have

sup
B1−σ/6∩spt(T)

X2
n+1 ≤

6n

σn C13

(∫
B1

X2
n+1d‖T‖+ κT

)
≤ 6nC13

σn ((7 + 2m + 2C4) (EC(T, 1) + κT) + (2C4 + C71)A)

≤ σ

12
. (a.24)

As a next step, we show that spt
(
(∂T) C1−σ/3

)
⊂ B1−σ/6. (a.25)

We argue by continuity: Assume by contradiction that this is not the case. Then we
would find a z ∈ Rn−1 such that

(
z, ϕT(z), ψT(z), Φ(z, ϕT(z), ψT(z))

)
∈ C1−σ/3\B1−σ/6,

hence, |(z, ϕT(z))| < 1 − σ/3 but
∣∣(z, ϕT(z), ψT(z), Φ(z, ϕT(z), ψT(z))

)∣∣ ≥ 1 − σ/6.
Then it must hold that

ψT(z)2 + |Φ(z, ϕT(z), ψT(z))| ≥
(

1− σ

6

)2
−
(

1− σ

3

)2
=

σ

3
− σ2

12
. (a.26)

Consider now for t ∈ [0, 1] the curve γ(t) :=
(
tz, ϕT(tz), ψT(tz), Φ(tz, ϕT(tz), ψT(tz))

)
∈

Rn+k. As γ(0) = 0 and γ(1) /∈ B1−σ/6, there is by the mean value Theorem a t ∈ [0, 1]
such that |γ(t)| = 1− σ/6. Let s̃ := min{t ∈ [0, 1] : |γ(t)| = 1− σ/6} > 0. Then for all
0 < s < s̃, we have γ(s) ∈ B1−σ/6 and by (a.24), ψT(sz)2 < σ/12. But then we get by
(a.26)

|γ(s̃)− γ(s)| ≥ |ψT(s̃z)− ψT(sz)|

≥
√

σ

3
− σ2

12
− |Φ(s̃z, ϕT(s̃z), ψT(s̃z))|2 −

√
σ

12

≥
√

σ

4
− |DΦ|2

(
1− σ

3

)2
−
√

σ

12

≥
√

σ

24
,
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where we used the assumption of the lemma in the last inequality. As 0 < s < s̃ was
arbitrary, this contradicts the continuity of γ. Hence, (a.25) holds true.

And then spt(T) C1−σ/2 stays in the unit ball: We denote by p to projection to Rn+1.
Then as T is minimizing in M, p#T is minimizing a parametric integrand described
Lemma 3.6. Then we can use [26, Corollary 4.2] to deduce that spt(p#T) is contained in
the convex hull of spt(∂(p#T)). Hence, spt(p#T C1−σ/2) ⊂ B1−σ/6. Using the fact that
T = (id, Φ)# p#T and |DΦ| ≤ σ/6, we conclude that spt(T) C1−σ/2 ⊂ B1.

a.4 proof of remark 4 .4

Proof. (i.) we choose σ = 1/4 in Lemma 3.4 and get that

sup
C3/4∩spt(T)

X2
n+1 ≤ 42n+1C13C14

(
EC(T, 1) + κT + A

)
≤
(

1
8

)2

.

(ii.) We first check, whether we created additional boundary while taking the inter-
section with B3. If this were the case, then for |ω| ≤ 1

8 , there is a point (u, v)
in

{x ∈ γω(M) : |(x1, . . . , xn−1)| ≤ 1
2 , |xn| < 1

2}∩γω

(
X−1

n+1

([
− 1

8 , 1
8

])
∩ ∂B3/4 ∩M

)
with

• u =
(
x1, . . . , xn−1, xn cos(ω)− xn+1 sin(ω), xn sin(ω) + xn+1 cos(ω)

)
• v = Φ

(
x1, . . . , xn−1, xn cos(ω)− xn+1 sin(ω), xn sin(ω) + xn+1 cos(ω)

)
• |xn+1| ≤

1
8

• x2
1 + · · ·+ x2

n+1 + |Φ(x1, . . . xn+1)|2 =
9

16

• x2
1 + · · ·+ x2

n−1 ≤
1
4

• |xn cos(ω)− xn+1 sin(ω)| < 1
2

.

This implies that x2
n ≥ 19

64 − |Φ(x1, . . . , xn+1)|2 ≥ 9
32 and hence,

1
2
> |xn cos(ω)− xn+1 sin(ω)|

≥
√

9
32

cos(ω) +
1
8
(cos(ω)− sin(ω))

≥
√

19− 1
8

cos
(

1
8

)
+

1
8

(
cos

(
1
8

)
− sin

(
1
8

))
>

1
2

.
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Hence, there is no such x and the intersection is trivial, thus we have

∂
(
(µ4#γω#T) B3

)
=
(
∂(µ4#γω#T)

)
B3.

The remaining conditions for (µ4#γω#T) B3 to belong to T follow like in the
original paper [27, Remark 2.3].

(iii.) We write (µr#γω#T) B3 = (µr/4#µ4#γω#T) B3 in order to use Remark 4.4. As in
the original paper [27, Remark 2.3], we deduce

sup
{

x2
n+1 : x ∈ spt

(
(γω#T) C1/2

)}
≤ 4

(
ω2 + sup

C3/4∩spt(T)
|Xn+1|

)
.

Hence, by using Lemma 3.3 (with σ ↑ 0 and Lemma 3.4, we have

EC
(
(µ4#γω#T) B3, 1

)
≤ C10

(
C11 sup

C2∩spt(µ4#γω#T)
X2

n+1 +
κT + A

4

)

≤ C10

(
16C11 sup

C1/2∩spt(γω#T)
X2

n+1 + κT + A

)

≤ C10

(
43C11ω2 + 43C11 sup

C3/4∩spt(T)
X2

n+1 + κT + A

)
(a.27)

≤ C21

C20

(
ω2 + EC(T, 1) + κT + A

)
(a.28)

≤ 1
C20

.

Thus, we can use Remark 4.4 and conclude.

a.5 proof of lemma 6 .1

Proof. The plan to prove this lemma is as follows: First, we bound the excess with∫
X2

n+1d‖T‖ by Lemma 3.3. Then, we construct a vectorfield and compute the associ-
ated first variation. By minimality of T this can be expressed by the mean curvature
vector. Moreover, by the choice of the vectorfield, we can bound

∫
X2

n+1d‖T‖ with∫
|X⊥|2|X|−2d‖T‖. By Corollary 2.5 this carries over to the spherical excess.

Let T be as in the lemma and C10 as in Lemma 3.3. Moreover, we define

C32 = 22n+2C13C14,

C33 = 32n+8C10(1 + mωn).
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We apply Lemma 3.4 with σ = 1/2 to deduce

sup
C1/2∩spt(T)

X2
n+1 ≤ 22n+1C13C14

(
EC(T, 1) + κT + A

)
≤ 1

2
.

Hence, for all x = (x̃, ỹ) ∈ C1/2 ∩ spt(T) the following holds

|x|2 ≤ (1 + |DΦ(x̃)|2)(|p(x)|2 + x2
n+1) ≤

4
3

(
1
4
+

1
2

)
= 1. (a.29)

For x = (x̃, ỹ) ∈ Rn+k the projection to the tangent space ofM at (x̃, Φ(x̃)) is given by

P = Px̃ := Mg−1MT =

(
id

DΦ

)
g−1

(
id DΦ

)
=

(
g−1 g−1 · DΦ

(g−1 · DΦ)T DΦT · g−1 · DΦ

)
.

Therefore

trn+1(P) :=
n+1

∑
i=1

Pii ≤ n + 1 + C73|DΦ|2 (a.30)

and ∣∣∣∣∣(P− id)

(
x̃

0

)∣∣∣∣∣ =
∣∣∣∣∣
(

g−1 x̃− x̃

DΦ(g−1 x̃)

)∣∣∣∣∣ ≤ C74|DΦ(x̃)|, (a.31)

where we used (a.15).
Denote by ν the outer unit normal vector being tangent to M and normal to the

approximate tangent space of T. As ν = (ν1, . . . , νn+k) ∈ span{(ei, ∂iΦ) : i ≤ n + 1},
we have

νn+1+j =
n+1

∑
i=1

νi∂iΦ
j for all j ≤ k− 1.

Denote by ν̃ = (ν1, . . . , νk+1). Then the following holds

|ν| ≤ (1 + |DΦ|) |ν̃| . (a.32)

Moreover, define A := B1 \ B1/4 where B1/4 = Bn+1
1/4 ×Rk−1. Denote κ := κT, ε :=√

EC(T, 1/3), β := 4C−1/2
33 and for all x ∈ Rn+k let

λ(x) := max
{

0,
xn+1

|x̃| − βε− κ

}
.



a.5 proof of lemma 6 .1 207

Then in A we have∣∣∣〈(X̃, 0), D→
T

λ〉
∣∣∣ ≤ ∣∣∣∣〈(X̃, 0), D→

T

(
Xn+1

|X̃|

)
〉
∣∣∣∣

=

∣∣∣∣〈(X̃, 0),
(
(P− ν⊗ ν)

(
en+1

|X̃| −
Xn+1

|X̃|3 (X̃, 0)
))
〉
∣∣∣∣

≤
∣∣∣∣νn+1

|X̃| 〈X̃, ν̃〉 − Xn+1

|X̃|3 〈X̃, ν̃〉2
∣∣∣∣+ 8C74|DΦ|

≤ 2
∣∣∣∣ 〈X̃, ν̃〉
|X̃|

∣∣∣∣+ 8C74|DΦ|.

(a.33)

Let k ∈ N with k ≥ 1 and choose a C1 function µk : R → R such that for t ≥ 1/4 we
have

µk(t) = max{0, t−n − 1}1+1/k.

Moreover, let hk : Rn+k → Rn+k be a C1 vectorfield satisfying hk|B1/4∩spt(T) ≡ 0 and

hk(x) = λ2(x)µk
(
|x̃|
)
(x̃, 0) for x /∈ B1/4.

Notice that for x ∈
(
spt(∂T) ∩ B2

)
⊂
{

x ∈ Rn+k : xn+1 ≤ |x̃|(βε + κ)
}

we have
λ(x) = 0, and when |x̃| ≥ 1, µk(|x̃|) = 0. Hence, hk vanishes on

spt(∂T) ∪
(

B1/4 ∩ spt(T)
)
∪
{

x ∈ Rn+k : xn+1 ≤ |x̃|(βε + κ)
}

and by [21, Thereom 3.2],
∫

B3

div→
T

hk d‖T‖ = −
∫

hk ·
→
HT d‖T‖. (a.34)

We compute

div→
T

hk =
n+1

∑
j=1

(
(P− ν⊗ ν)(2XjλµkDλ + Xjλ

2 µ′k
|X̃| (X̃, 0) + ejλ

2µk)

)
j

= 2λµk〈(X̃, 0), D→
T

λ〉+ λ2µ′k〈(X̃, 0), (P− ν⊗ ν)
(X̃, 0)
|X̃| 〉

+ trn+1(P− ν⊗ ν)λ2µk.

Using (a.34), (a.30), (a.31), (a.32) and (a.33) we find

lim
k→∞

∫
A

hk ·
→
HT d‖T‖

≤ lim
k→∞

∫
A

4λµk

∣∣∣∣ 〈X̃, ν̃〉
|X̃|

∣∣∣∣+ λ2µ′k〈X̃, (id− ν̃⊗ ν̃)
X̃
|X̃| 〉+ nλ2µkd‖T‖+ C75A

=
∫

A
4λ(|X̃|−n − 1)

∣∣∣∣ 〈X̃, ν̃〉
|X̃|

∣∣∣∣+ λ2n|X̃|−n − λ2n|X̃|−n−2〈X̃, ν̃〉2d‖T‖

+
∫

A
nλ2(|X̃|−n − 1)d‖T‖+ C75A

=
∫

A

(
4λ(|X̃|−n − 1)

∣∣∣∣ 〈X̃, ν̃〉
|X̃|

∣∣∣∣− λ2n|X̃|−n−2〈ν̃, X̃〉2 − nλ2
)

d‖T‖+ C75A
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and hence,

n
∫

A
λ2 d‖T‖ ≤

∫
A

(
4λ(|X̃|−n − 1)

∣∣∣∣ 〈X̃, ν̃〉
|X̃|

∣∣∣∣− λ2n|X̃|−n−2〈ν̃, X̃〉2
)

d‖T‖+ C76A

≤ C77

(∫
A

λ

∣∣∣∣ 〈X̃, ν̃〉
|X̃|

∣∣∣∣d‖T‖+ A
)

≤ n
2

∫
A

λ2 d‖T‖+ C78

2

(∫
A

∣∣∣∣ 〈X̃, ν̃〉
|X̃|

∣∣∣∣2 d‖T‖+ A

)
.

We conclude∫
A

λ2 d‖T‖ ≤ C78

(∫
A

∣∣∣∣ 〈X̃, ν̃〉
|X̃|

∣∣∣∣2 d‖T‖+ A

)
.

We argue in the same way to prove the same inequality for

λ̃ := min
{

0,
Xn+1

|X̃| + βε + κ

}
.

As the spt(λ) =
{

x ∈ Rn+k : xn+1 ≥ |x̃|(βε + κ)
}

and spt(λ̃) =
{

x ∈ Rn+k : xn+1 ≤
−|x̃|(βε + κ)

}
, we see that spt(λ2 + λ̃2) =

{
x ∈ Rn+k : |xn+1| ≥ |x̃|(βε + κ)

}
and hence∫

A
X2

n+1d‖T‖

≤
∫

A

X2
n+1

|X̃|2 d‖T‖

=
∫

A

(
Xn+1

|X̃| − (βε + κ)

)(
Xn+1

|X̃| + (βε + κ)

)
d‖T‖+ (βε + κ)2‖T‖(A)

≤
∫

A

∣∣∣∣Xn+1

|X̃| − (βε + κ)

∣∣∣∣ ∣∣∣∣Xn+1

|X̃| + (βε + κ)

∣∣∣∣1spt(λ2+λ̃2)d‖T‖+ (βε + κ)2‖T‖(A)

≤ 1
2

∫
A

(
λ2 + λ̃2)d‖T‖+ 2(β2ε2 + κ2)‖T‖(A)

≤ C79

(∫
A

∣∣∣∣ 〈X̃, ν〉
|X̃|

∣∣∣∣2 d‖T‖+ A

)
+ 2(β2ε2 + κ2)‖T‖(A)

≤ C78

(∫
A
|X⊥|2|X|−n−2d‖T‖+ A

)
+ 2(β2ε2 + κ2)‖T‖(A).

Notice that by the assumption of the lemma∫
B1/4

X2
n+1d‖T‖ ≤ EC(T, 1)

C33
‖T‖(B1/4) =

EC(T, 1)
16

β2‖T‖(B1/4)≤ ε2β2‖T‖(B1/4).
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We use Lemma 3.3 (with T, σ replaced by (µ3#T) B3, 1/2), (a.29) and Corollary 2.5
(with s = 1) to deduce

ε2 = EC
(
(µ3#T) B3, 1

)
≤ 4C10

(
κ(µ3#T) B3

+
∫

C3/2

X2
n+1d‖µ3#T‖+ Aµ3(M)

)
≤ 4 · 3nC10

(
κ +

∫
C1/2

X2
n+1d‖T‖+ A

)
≤ 3n+2C10

(
κ +

∫
B1

X2
n+1d‖T‖+ A

)
≤ 3n+2C10

(
C78

(∫
A
|X⊥|2|X|−n−2d‖T‖+ 2A

)
+ 2M(T)(β2ε2 + κ)

)
≤ 3n+2C10

(
C78 (ES(T, 1) + C4κ + (2 + C4)A) + 2M(T)(β2ε2 + κ)

)
≤ 32n+3C10

(
1 + mωn

)
16

32n+8
(
1 + mωn

)
C10

ε2 +
C34

2
(
ES(T, 1) + κ + A

)
≤ ε2

2
+

C34

2
(
ES(T, 1) + κ + A

)
.
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