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INTRODUCTION

The Plateau Problem has been named after a Belgium Physicist, Joseph Pleateau (1801-
1883), who has been experimenting with soap films and soap bubbles. Already in
the 18th century, Weierstrass observed that (when neglecting the gravitational force)
such soap films are spanning surfaces of least area and calculated that they must have
mean curvature zero. Such surfaces are called minimal surfaces and have been a topic of
research ever since. The Plateau Problem can then be formulated as follows.

Question. For a fixed boundary (represented by a wire), is there a minimal surface (a
soap film) spanning this boundary?

In the 1930’s, T. Rad¢ [31] and J. Douglas [22] proved the existence of 2-dimensional
minimal surfaces in R® and for this work, Douglas was awarded the Fields medal. His
proof is based on the fact, that in three dimensions, minimizing the area functional is
equivalent to minimizing the Dirichlet functional. In higher dimensions, this no longer
holds and so his ideas do not allow to generalize his result. Instead, H. Federer and
W. Fleming introduced in the 1960’s more general objects than surfaces, the so called
integral currents and proved in [24] existence of area-minimizing currents. The latter
is then supported on a rectifiable set, thus a priori it can have many singularities. It
took many mathematicians to prove that the singularities are rather rare. Indeed, in the
interior of the support of an area minimizing current, we know thanks to the works of
E. Bombieri, E. De Giorgi, E. Giusti [6], W. Allard [1—-3] and ]. Simons [34], that the set of
singularities of an n-dimensional current in an (1 + 1)-dimensional ambient manifold
is of dimension at most n — 7. This result is sharp, as the so called Simons Cone

{x €R®:xf + x5+ x5+ x5 = 2% + x5+ x5 + 23}

is minimal and has the origin as a singular point. In the case of higher codimension
(i.e. when the dimension of the ambient manifold is greater than n 4 1), the dimension
bound is n — 2 which was first proven in Almgren’s Big regularity paper [5] and then
revisited and shortened by De Lellis and Spadaro in [12—16]. The sharpness of this
result is demonstrated by identifying C? with R* and looking at the two dimensional
holomorphic subvariety

{(zw) eC*: 22 =w’}.

In this thesis, we focus on the regularity of an area-minimizing current near its boundary.
The two parts are separately submitted for publication and their notation is independent
of each other.



INTRODUCTION

1.1 THE CODIMENSION ONE CASE

In his Ph.D. thesis [1], Allard proved that, in case the boundary is contained in the
boundary of a uniformly convex set and the ambient manifold is the euclidean space,
then all boundary points are regular (we explain more about this in Section 1.2). This
means, in a neighborhood of a boundary point, the support of the current is a regular
submanifold with boundary. Later, R. Hardt and L. Simon came to the same conclusion
in [27] when having replaced the assumption of the uniform convexity by the fact that
the current is of codimension 1. However, the result of Hardt and Simon is stated and
proved only in the euclidean ambient space. In [35] and the first part of this thesis, we
provide an adaptation of the arguments to the case of general Riemannian manifolds.
We show the following theorem.

Theorem 1.1. Let U C R™** be open and T an n-dimensional locally rectifiable current in U
that is area minimizing in some smooth (n + 1)-manifold M and such that 9T is an oriented
C? submanifold of U. Then for any point a € spt(3T), there is a neighborhood V of a in U
satisfying that V N spt(T) is an embedded Cli submanifold with boundary.

The theorem of Hardt and Simon is then a case of the one stated above, however we
follow their strategy of proof with a few modifications in order to deal with additional
error terms coming from the ambient manifold. The main difference to [27] is that
the blow-up procedure depends on the ambient manifold. On a technical level, even
though the current has codimension one compared to the ambient manifold, we embed
both in some higher dimensional euclidean space, and thus every point has many more
components which have to be estimated (compared to the arguments in [27]).

Notice that the complete absence of singular points only happens at the boundary
and only in codimension one. Indeed, in 2018, C. De Lellis, G. De Philippis, J. Hirsch
and A. Massaccesi showed in [21] that in the case of higher codimension and on a
general Riemannian manifold, there can be singular boundary points, but regardless,
the set of regular boundary points is dense.

1.1.1  Outline of the proof of part I

We would like to measure how flat a current T is. Therefore we introduce its excess in
a cylinder of radius r and denote it by Ec(T, ). It is the scaled version of the difference
between the mass of the current in a cylinder and the mass of its projection onto an
n-plane. The main ingredient to deduce the boundary regularity is the fact that this
excess scales (up to a small rotation) like r assuming that the curvature of both the
boundary of the current xr and the ambient manifold A are small.



1.1 THE CODIMENSION ONE CASE

Theorem 1.2 (Excess decay). Let M be a smooth manifold and let T be area minimizing

in M such that max{Ec(T,1),A,xr} < l Then there is a real number y such that for all

C
0 < r < R the following holds
Ec(yuT,r) < Cr.

The precise statement can be found in Theorem 4.2. In order to prove it, we first
analyze in Section 3 the current away from the boundary. There we can use results
from the interior regularity theory in order to find that the current is supported on the
union of graphs of functions fulfilling the minimal surface equation. When zooming
in (up to rescaling), the boundary (and the ambient manifold) become more flat and
therefore, we can find the interior graphs closer to the boundary. The point is then to
study what happens in the limit when the graphs on both sides of the boundary grow
together. These limiting rescaled functions we call the harmonic blow-ups and they are
introduced in section 4.

After proving the uniform convergence of the harmonic blow-ups also at boundary
points, we show in a first step that in case the harmonic blow-ups are linear, they
coincide on both sides of the boundary, see the Collapsing Lemma 5.4. Having proven
some technical estimates on the excess (Theorem 6.3), the assumption of linearity then
is dropped in Theorem 7.2. This follows by blowing up the harmonic blow-ups a second
time. To guarantee the existence of this second blow-up, we need first to prove some a
priori estimates (Lemma 7.1) .

Once we know that the harmonic blow-ups coincide and in fact merge together in a
smooth way, we prove the excess decay via a compactness argument: if the excess decay
did not hold, there would be a sequence of currents whose blow-ups cannot coincide.
Then this decay leads to a C Li-continuation up to the boundary of the functions whose
graphs describe the current (Corollary 4.3) assuming that the excess and the curvatures
are sufficiently small. In section 9 we then collect everything together and deduce that
either the current lies only on one side of the boundary or both sides merge together
smoothly. In case of a one-sided boundary, Allard’s boundary regularity theory [3]
covers the result.
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1.2 THE HIGHER MULTIPLICITY CASE

In the second part of this thesis, we consider an area-minimizing integral current T
of dimension m > 2 in R™*" and assume that dT is a smooth submanifold, namely
oT = ) ;Q;[I';], where Q; are (positive) integer multiplicites and I'; finitely many
pairwise disjoint oriented smooth and connected submanifolds of dimension m — 1.
We are focused on understanding how regular T can be at points p € U;I'; and our
primary interest is that the integer multiplicities are allowed to be larger than 1 and the
codimension 7 is at least 2. This has been done in the joint work [10] with C. De Lellis
and S. Nardulli. When the codimension m is 1, the situation is completely understood
(cf. [8, Problem 4.19]): first of all the coarea formula for functions of bounded variation
allows to decompose, locally, the current T into a sum of area minimizing integral
currents which take the boundary with multiplicity 1; hence we can apply the main
Theorem 9.1 of the first part of this thesis to each piece of the decomposition, which
guarantees the absence of any singularity.

A quite general boundary regularity theory was developed by Allard in the pio-
neering fundamental work [3], which covers any dimension and codimension and is
valid for more general objects than currents, namely stationary varifolds. In [3] Allard
restricts his attention to boundary points where the density, namely the limit of the
mass ratio

— i ITI(Bo(q))
O(T,q) := 15(1)1 o

4

is sufficiently close to 1. His Boundary Regularity Theorem guarantees then that, under
such assumption, g is always a regular point. Indeed this generalizes a similar statement
in his PhD thesis [1], which covered the case of area minimizing currents in codimension
1.

In the introduction to [1], Allard points out that when the multiplicity of the boundary
I is allowed to be an arbitrary natural number Q > 1, the assumption (T, q) < % +e
is empty and should be replaced by O(T,q) < % + . However, he quotes a possible
extension of his theorem as a very challenging problem. This basic question was raised
again by B. White in the collection of open problems [8], cf. Problem 4.19, where he also
explains that the nontrivial situation is in higher codimension, given the decomposition
through the coarea formula already explained a few paragraphs above. Our work gives
the very first result in that direction and solves Allard’s "higher multiplicity" question
for 2-dimensional integral currents. Before stating it, we wish to discuss what we mean
by "regularity at the boundary".

Definition 1.3. Assume T is an area minimizing 2-dimensional integral current in
U C R*™ such that 9T U = Q [I'] for some integer Q > 1 and some C! embedded arc
I'. p is called a regular boundary point if T consists, in a neighborhood of p, of the union
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of finitely many smooth submanifolds with boundary I', counted with appropriated
integer multiplicities, which meet at I' transversally. More precisely, if there are:

(i) a neighborhood U of p;

(ii) a finite number A4, ..., A; of C! oriented embedded 2-dimensional surfaces in U;
(iii) and a finite number of positive integers ki, ..., kj

such that:

(@) oA;NU =T NU =T;NU (in the sense of differential topology) for every j;

(b) Ajn Ay =TnNU for every j # [;

(c) forall j # [ and at each g € T the tangent planes to A; and A; are distinct;

(d) TLU = Y k; [[Aj]] (hence Y ki = Q).

The set Reg,(T) of boundary regular points is a relatively open subset of I' and its
complement in T will be denoted by Sing, (T).

Our main theorem reads as follows.

Theorem 1.4. Let U C R™"*? be an open set, I C U be a C3% embedded arc for some ag > 0,
and T be a 2-dimensional area-minimizing integral current such that 0T = Q[I']. If g € T and
O(T,q) < L, then T is regular at q in the sense of Definition 1.3.

Note that it is well known that there are smooth curves (counted with multiplicity 1)
in the Euclidean space, even in R3, which span more than one area-minimizing current.
In particular, if I' C R3 is such a curve and Tj, T» two area minimizing currents with
doT; = [I'],i = 1,2, then T := T; + T; is an area minimizing current with 0T = 2 [I'] (this
follows because any area-minimizing current S with boundary 9S = 2 [I'] must have
mass which doubles that of T;, and hence equals that of T). Let us analyze the above
example more accurately. In view of the interior and boundary regularity theory, both
T; and T; are smooth submanifolds up to the boundary, i.e. a standard argument using
Allard’s boundary regularity theorem [3] (cf. [4, Section 5.23]) implies that T; = [A;]
for two connected smooth submanifolds such that dA; = I' in the classical sense of
differential topology. Since any integral area-minimizing 2-dimensional current in R3
is an embedded submanifold (with integer multiplicity) away from the boundary, we
also conclude that A; and A; do not intersect except at their common boundary I'. The
Hopf boundary lemma then implies that at every point p € I the two currents have
distinct tangents, i.e. A1 and A; meet at their common boundary transversally.

In view of the above observation we cannot expect, in general, a "better" conclusion
than the one of Theorem 1.4 or, in other words, we cannot expect that the number | in
Definition 1.3 to be 1. However, an obvious corollary of Theorem 1.4 is the following.
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Theorem 1.5. Let U, T,T and q be as in Theorem 1.4. Then there is a neighborhood U’ of q in
which T = Q [A] for some smooth minimal surface A if and only if one tangent cone to T at g
is “flat”, i.e. contained in a 2-dimensional linear subspace of R*>*™.

Even though the assumption that ©(T,q) is sufficiently close to % seems, at a first

glance, very restrictive, we can either follow a lemma of Allard in [3] (valid in any
dimension and codimension) or a simple classificaton of the boundary tangent cones
(cf. [10]) to show that it holds when spt(dT) is contained in the boundary of a bounded
C? uniformly convex set Q). For this reason, complete regularity can be achieved when
there is a "convex barrier". Since this is an assumption which will be used often in some
sections of the work, we wish to isolate its statement.

Assumptions 1.6. Q) C R?>*" is a bounded C3*0 uniformly convex set for some ag > 0,
[ C 9Q) is the disjoint union of finitely many C>*0 simple closed curves {T;}i—1 . n. T isa
2-dimensional area-minimizing integral current in R>™" such that 9T = Y_; Q; [T].

Theorem 1.7. Let T, Q and T be as in Assumption 1.6. Then Sing, (T) is empty.

In fact we can give a suitable local version of the above statement from which
Theorem 1.7 can be easily concluded, cf. Theorem 10.5.

In the next section we will outline the arguments to prove Theorem 1.4, 1.5, and
1.7. Before coming to it we wish to point out two things. We are confident that the
methods used in this work generalize to cover the same statement as in Theorem 1.4
in an arbitrary smooth (i.e. C**0) complete Riemannian manifold, but in order to keep
the technicalities at bay we have decided to restrict our attention to Euclidean ambient
spaces. Even though the basic ideas behind this work are quite simple, the overall proof
of the theorems is quite lengthy. For instance before the recent paper [21], not even the
existence of a single boundary regular point was known, without some convex barrier
assumption and in a general Riemannian manifold. Part of the challenge is that several
crucial PDE ingredients are absent in codimension higher than 1. Let us in particular
mention three facts:

(@) There is no "soft" decomposition theorem which allows to reduce the general case
to that of multiplicity 1 boundaries;

(b) Boundary singularities occur even in the case of multipliciy 1 smooth boundaries;

(c) There is no maximum principle (and in particular no Hopf boundary lemma)
available even if we knew apriori that the minimizing currents are completely
smooth.

1.2.1  Outline of the proof of part 11

In the first step (cf. Section 10), we use the classical convex hull property to reduce
the statement of Theorem 1.7 to a local version, cf. Theorem 10.5. The latter statement
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will then focus only on a portion of the boundary, but under the assumption that the
support of the current is contained in a suitable convex region, cf. Assumption 10.4. The
crucial point is that this convex region forms a "wedge" at each point of the boundary,
cf. Definition 10.2.

In the second step (cf. Section 11) we recall the classical Allard’s monotonicity formula
and we appeal to a classification result for 2-dimensional area-minimizing integral
cones with a straight boundary (see [10]) to conclude that, in all the cases we are
dealing we can assume, without loss of generality, that all the tangent cones to T at
every boundary point p consist of a finite number of halfplanes with common boundary
T,T, counted with a positive integer multiplicity, cf. Theorem 11.5.

At this point, taking advantage of pioneering ideas of White, cf. [37], and of a recent
paper by Hirsch and Marini, cf. [29], the tangent cone can be shown to be unique at
each point p € I'. We need, strictly speaking, a suitable generalization of [29], but the
simple technical details are given in the shorter paper [11]. This uniqueness result has
two important outcomes:

(a) Atany point p € I' where the tangent cone is not flat (i.e. it is not contained in a
single half-plane) we can decompose the current into simpler pieces, cf. Theorem
12.3;

(b) the convergence rate of the current to the cone is polynomial (cf. also Corollary
23.1.

Point (a) reduces all our regularity statement to Theorem 1.5. In fact we will focus
on a slightly more technical version of it, cf. Theorem 12.6 Point (b) gives one crucial
piece of information which will allow us to conclude Theorem 12.6. The remaining part
of this work will in fact be spent to argue for Theorem 12.6 by contradiction: if a flat
boundary point p is singular, then the convergence rate to the flat tangent cone at p
must be slower than polynomial, contradicting thus (b).

We first address a suitable linearized version of Theorem 12.6: we introduce multival-
ued functions and define the counterpart of flat boundary points in that context, which
are called contact points. In Theorem 13.5, we then prove an analog of Theorem 12.6
in the case of multivalued functions minimizing the Dirichlet energy using a version
of the frequency function (see Definition 13.6) first introduced by Almgren. However,
while the proof of Theorem 13.5 might be instructive to the reader because it illustrates,
in a very simplified setting, the idea behind the "slow decay" at singular points, the
crucial fact which will be used to show Theorem 12.6 is contained in Theorem 13.3:
the latter states that, if a multi-function vanishes identically at a straight line and it is
I-homogeneous, either it is a multiple copy of a single classical harmonic function, or
the homogeneity equals 1.

The overall idea is that, if p is a singular flat point, then it can be efficiently ap-
proximated at small scales by an homogeneous harmonic (i.e. Dirichlet minimizing)
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multivalued function as above (not necessarily unique), which however cannot be a
multiple copy of a single classical harmonic function. Since the homogeneity of the
latter will be forced to be 1, we will infer from it the slow decay of the "cylindrical
excess" (cf. Definition 14.1). However, the work to accomplish the latter approximation
proves to be quite laborious and it will pass through a series of more and more refined
approximations.

First of all, in the Sections 14, 15, 16, and 17 we prove that the current can be
efficiently approximated by multivalued Lipschitz functions when sufficiently flat (cf.
Theorem 17.1) and that the latter approximation almost minimizes the Dirichlet energy
(cf. Theorem 15.3). These sections take heavily advantage of the tools introduced in [13,
14] and of some ideas in [21]. However these approximations are not sufficient to carry
on our program.

A new refined approximation is then devised in Section 18. At every sufficiently small
scale we can construct a center manifold (i.e. a classical C® surface with boundary TI') and
a multivalued Lipschitz approximation over its normal bundle (called normal approxima-
tion), which approximates the current as efficiently as the "straight" approximation in
Theorem 17.1, cf. Theorem 18.16 and Theorem 18.21 for the relevant statements. This
new normal approximation has however two important features:

(i) It approximates the current well not only at the "starting scale" but also across
smaller scales as long as certain decay conditions are ensured.

(ii) At all such scales the normal approximation has average close to 0 (namely it is
never close to a multiple copy of a single harmonic function, compared to its own
Dirichlet energy).

The Sections 19, 20, and 21 provide a proof of Theorem 18.16 and Theorem 18.21.
While the first center manifold was introduced in the monograph [4] by Almgren, our
constructions borrows from the ideas and tools introduced in [15] and [21].

Our proof would be at this point much easier if the validity of (ii) above would hold,
around the given singular flat point p, at all scales smaller than the one where we
start the construction of the center manifold. Unfortunately we do not know how to
achieve this. We are therefore forced to construct a sequence of center manifolds which
cover different sets of scales, cf. again Section 23.1. At certain particular scales we need
therefore to change approximating maps, i.e. to pass from one center manifold to the
next. Section 22 provides then important information about the latter "exchange scales".
Both sections are heavily influenced by similar considerations made in the papers [15,
16].

The remaining parts of the thesis are thus focused to show that, at a sufficiently
small scale around the flat point p, all these normal approximations are close to some
homogeneous Dir-minimizing function (not necessarily the same across all scales),
which by Theorem 13.3 will then result to be 1-homogeneous. The key ingredient to
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show this homogeneity is the almost monotonicity of the frequency function of the
normal approximation (a celebrated quantity introduced by Almgren in his pioneering
work [4]). In order to deal with the boundary we resort to an important variant
introduced in [21]. The key point is to show that, as r | 0, the frequency function I(r)
of the approximation at scale r converges to a limit. However, since our approximation
might change at some particular scales, the function I undergoes a possibly infinite
number of jump discontinuities, while it is almost monotone in the complement of
these discontinuities. In order to show that the limit exists we thus need:

(1) a suitable quantification of the monotonicity on each interval delimited by two
consecutive discontinuities;

(2) a suitable bound on the series of the absolute values of such jumps.

The relevant estimates, namely (23.13) and (23.14), are contained in Theorem 23.5. While
the proof of (23.13) takes advantage of similar cases handled in [16] and [21], (23.14)
is entirely new and we expect that the underlying ideas behind it will prove useful in
other contexts. The Sections 24 and 25 are dedicated to prove the respective estimates.

Finally, in Section 26 we carry on the (relatively simple) argument which, building
upon all the work of the previous sections, shows that the rate of convergence to the
tangent cone at a singular flat point must to be slower than any polynomial rate. As
already mentioned, since the convergence rate has to be polynomial at every point, this
shows that a singular flat point cannot exist.
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THE CODIMENSION ONE CASE






NOTATION AND PRELIMINARIES

2.1 NOTATION

In this part of the thesis, k, m and n denote fixed natural numbers with m > 1 and
n,k >2.Cy,...,Cg are positive constants depending only on n, k and m.

2.1.1 Notation associated to the domain

We define the following sets for y € R", j € {1,...,n} and any real numbers r > 0 and
0<o<l1

Bi(y) ={x e R": |x—y[ <1},

BI(y) = {xeR": [x—y| <1},
wn = L"(BY(0)),
L={x=(x1,...,x,) € B}(0) : x, =0},
V={x=(x1,...,x,) € B}(0) : x, >0},
W= {x=(x1,...,x4) € B/(0) : x, <0},
V, = {x € V:dist(x,0V) > 7},

W, = {x € W: dist(x,0W) > o},
Y;: R" — IR,Y]-(y) =Y.

1(
1(

2.1.2  Notation associated to the ambient space

We define the following sets for a € R"k, j€A{l,...,n+k} and any real numbers w
and r > 0

B, = {x ¢ R""": |x| < r},

B, = {x e R"": |x| <1},

C = {x e R |p(x)| < r} where p : R"™™* = R", p(x1,..., %pk) = (X1,..., %),

e = 0,...,0,1,0,...,0) where the 1 is at the j-th component,

X;: R™™ - R, X;(x) = xj,

X:i=(X1,..., Xutk),

13



14

NOTATION AND PRELIMINARIES

For the following maps, we identify R"** with R"*! x R¥-1,

7 R 5 R 7, (v, y) = (v,y) +a,
Yyt R"F — ]R“k,m(x,y) =r(xy),
'Yw . IRVl+k - ]R?l"rk/

Yo (X, ) = (x1,..., Xn—1, Xy cOS(w) — Xyy41 sin(w), Xy sin(w) + Xp41 cos(w), y) .
2.1.3 Notation associated to the current T

For any real number r > 0, we define the cylindrical excess as
Ec(T,r) =r "M(TLC,) —r "M(pu(TL_C;))
and the spherical excess as

Es(T,r) =r "M(TL B,) — w,©"(|[T],0),

T|(B
whenever ©"(||T||,0) = lifg H‘J(rnr) exists. Notice that this differs from
T n

1 o 2
ﬁ~/B ]T—el/\---/\en| dHT”,

which is in the literature also called the spherical excess.

In Chapter 9, we will see that it suffices to consider only currents with compact
support and whose boundary lies on a (7 — 1)-dimensional C?-graph going through
the origin. Namely, we define 7 to be the collection of pairs (T, M) where M is
an embedded (1 + 1)-manifold and T € R, (R"*¥) is an absolutely area minimizing
integer rectifiable current for which there exist a positive integer m, 1, pr € C*({z €
R"1:|z| <2}) and a smooth map @, : B} "1(0) — R¥1, such that

e {z€Cyize M} = {(x,®p(x)): x € BSTH(0)},

e ®,,(0) =0and D®(0) =0,

A<,

spt(T) C BsNM,

M(T) < 3"(1+ mw,),

O ([[T[|,0) = m —1/2,

py(TLC2) = m(E"_{y € B5(0) : yu > @1(y1,---,Yn-1)})
+(m—=1)(E"{y € B5(0) : yu < @1(Y1,---,Yn-1)})



2.2 FIRST VARIATION AND MONOTONICITY

¢7(0) Pr(0),
¢7(0) Pr(0),
D(pT(O) =0= DIPT(O),

(OT)L {x € R"™™ ¢ |(x1,..., x01)| <2, |xa] <2}
= (=" (Fr)s(E" ' {ze R |z] < 2}),

:O:
:0:

A= [|D*® 15,

E = [R/ x {0}] € R]-(IR’H'k) forall j <m,
Fr(z) := (2, 91(2),¥1(2), @M (z, 97(2), ¥1(2))),

xr = |D*(¢r, 91) |0 -

Notice that A and xr are comparable to the second fundamental forms of M and
spt(dT) respectively.

2.2 FIRST VARIATION AND MONOTONICITY
We start this section with the following monotonicity estimates. The first two can be

read in [21, Theorem 3.2] and the third one, we prove in the Appendix a.1.

Lemma 2.1 (Monotonicity Formula). For (T, M) € T and 0 < r < s < 2, the following
holds

ITII(Bs) _ [ITII(B)

= Jo PEPXI T

:/ p1 </ XL Hd||T|| + x-ﬁdH“) dp,
r B, spt(aT)NB,

%
where X+ denotes the component orthogonal to the tangent plane of T and H the curvature
vector of M.

—
Remark 2.2. There exists C; such that |[H| < C1A .

Lemma 2.3. There is a dimensional constant C, > 0 such that for (T, M) € T and0 < r < 2,
the map
T||(B.
r— exp (Cz (A./\/l —|—KT) 1’) HT’J”(EJ,:)

is monotonously increasing.

15
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Corollary 2.4. For (T, M) € T and 0 < r < s < 2, the following holds

ITII(Bs) _ [ITII(B)

= Jog, PETXI 24T < CoAn )5 = 1),

Letting r | 0, we deduce the following corollary.

Corollary 2.5. For (T, M) € T and 0 < r < 2, we have

Es(T,n) — [ IX*PIX| " 2d|T]| < Ca(A+xr).




INTERIOR SHEETING AND NONPARAMETRIC ESTIMATES

In this chapter we prove that the minimizing current is, away from the boundary,
supported on graphs.

Definition 3.1. Let u : U C R" — R. Then we define

graph(u, ®) := {(x,u(x), ®(x,u(x))) : x € U}.
or
v
Away from the boundary, the interior regularity theory ’

gives us functions whose graphs describe the current. More-

over they fulfill the Riemannian minimal surface equation
(see Definition 3.7) that is elliptic and therefore, we can W,
deduce estimates on the gradient of these functions. These

estimates are crucial as they guarantee the existence of the

harmonic blow-ups introduced in section 4.

Theorem 3.2. Let (T, M) € T and assume A < 1/4. Then there are constants C5 > 12,
Ce > 1 such that if
Ec(T,1) 4+ xr+A < (4C5) 23

and we denote o1 := Cs (EC(T,l) + KT +A)1/(2n+3), Vr =V, and Wy := Wy, then for

ie{l,....m},je{l,...,m—1}and k € {1,2,3} there are smooth functions vl.T :Vr = R
and w]T : Wr — R satisfying the Riemannian minimal surface equation and such that
(i.)v}"gv{g.--gv; and w{ﬁwgg---gwﬂ,l,
m
(ii.) p~ (V1) Nspt(T) = | graph (v],®) and

i=1
m—1

pfl(WT) Nspt(T) = U graph (wiT,CD),
i=1

(iii.) |D*0I(y)] < C7\/EC(T, 1) + k7 + A dist(y, dV) * " V2 forall y € Vr,

(iv.) \Dkwjr(y)\ < C7\/EC(T,1) + k7 + Adist(y, 0OW) K712 for all y € Wr,

17
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d v/ (y) i 2 an'T(y) ’ 2
X 1 71’ld n e —nd n
@ [ (ar o ) s+ f (ar & ) [yPdL(y)

< 2n+7E5(T, 1) + Cg(A + KT)

< 2"7EC(T,1) + Co(A + 1), where —f( )= é‘ -Df(y).

For the existence of these graphs, we need to split the current into pieces and show
that each piece is supported on a graph. Then, once we have these graphs, we show the
estimates by using the regularity theory of elliptic PDEs. This will be done in detail in
section 3.3.

3.1 COMPARISON BETWEEN EXCESS AND HEIGHT

To prove the estimate in Theorem 3.2(iii.), (iv.), we will deduce from the PDE theory
an estimate on the values of the functions v/, (w].T respectively). This can be translated
into the height of the current in the (n + 1)-component. We wish to estimate the latter
quantity with the excess of T and hence, we need the following lemmata comparing
the (cylindrical) excess with the height. The proofs are given in chapter a.

First notice that as in the original paper [27, 1.4(1)], we infer that for 0 <r <s <2,
the following holds

Ec(T,r) < (;)nEC(T,s) (3.1)

and
Es(T,r) < Ec(T,r) + mrkr. (3.2)

Lemma 3.3. There are positive constants Cyg and Cqy such that for all 0 < o < 1 and
(T, M) € T, the following holds
o2

T E(T, 1) —kr —A < X AT € Cn sup X2,
Cio Ci40Nspt(T)

Not only it is true, that the height bounds the excess, but also the other way around.
The following estimates rely on an area comparison lemma (Lemma a.1). Its proof will
give us a constant Ci, which we will use to prove the following

Lemma 3.4. If0 < 0 < 1, A> < 0/8 and A < (7Cy + C1p + 1)~ then there are positive
constants Cy3 and C14 > 2 such that for (T, M) € T, the following holds

(i) C— sup Xﬁﬂ S/ X;%+1dHTH + KT
13 ¢ _,Nspt(T) Ci-or2



3.2 SPLITTING OF THE MINIMIZING CURRENT T

. Cua—1
(ii.) / X2 dI|T) < T2 2 (B (T,1) + 57+ A).
Cio/2 v
In particular, we have
Ci13Cu4

Sup Xi-l—] S W(EC<TI]-)+KT+A)
Cl,gﬁspt(T)

3.2 SPLITTING OF THE MINIMIZING CURRENT T

Here we prove the fact, that if a current has no boundary, its excess is not too large and
the projection has multiplicity j, then it consists of j many layers whose projection are
of multiplicity 1.

Lemma 3.5. Let j € N, V C R" be open and consider the cylinder T := {x € R"*! :
(x1,...,%4) € V} and the modified version T := {(x, ®(x)) € M : p(x) € V}.IfS € R,(T)
satisfies

e 3S)LT=0
* pyS=jE"LV)
. M(S) — M(p,S) < H'(V),
then foralli € {1,...,]} there exists S; € Ry (T) such that

rn Spt(asi) =Q, psSi=E"LV,
j j
s=Ys, Il =Yl
i=1 i=1

Proof. Denote by p the projection to R"*! and consider S := p4S. Then we have

* (0S)L.T = (px(9S)) L.T = pg((0S)L.T) =0 V x (s}
_ Ve
* py> =pyS = j(E'LV)
B B SN A
* M(5) = M(pyS) < M(S) —M(pyS) < H*(V).
Therefore, we can argue as in the original paper [27, 3 \\\ M,

Lemma 5.1] to deduce a decomposition for S: There are N A —

8; € Ry(R"1) such that \—/
I Nspt(3S;) = @, psSi=E'LV,

L4, o d
=15 131 = LIS
= 1=

1

We conclude by putting S; := (id, ®)4S;. O

19
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In the situation of Theorem 3.2, each of these S; is area minimizing in M and so the
smallness of the excess implies that locally the function, whose graph describe spt(S;),
fulfills an elliptic equation. Thus, we can deduce the following Schauder estimate:

Lemma 3.6. Let U be an open neighborhood of 0 € R" and u : U — R such that u(0) = 0,
Du(0) = 0 and graph(u, ®) C M is a minimal surface in M. Then there is rg > 0 such that
forall 0 < r < rog we have

rliDullcos, ) + r*1D?ull o, ) + 2 [D?u] pagp, ) < Cis (H“HCO(B,) + !|D2‘I’Héa(3,)) ,
where

1 £1|¢x(cay := sup dist(x, 00)?|f(x)| + sup max {dist(x,0Q), dist(y, E)Q)}ZMM.
xeQ) x,yeQ) |x -y |
XF#Y
Proof. We use the Euler-Lagrange equation in the form of Schoen-Simon in [32, Chapter
1]. Then we use Gilbarg-Trudinger [25, Theorem 6.2] to deduce the estimate. Indeed,
we define

F(z,v(z)) := \/det (d—vev)gm(id—vev))

= \/det ((81' +8iu,ej + aju>gM) = Joum (idRn, u),

where guq = (idger, ®)* g = (6 + (9:®,9;®));j is the pullback metric on M.
Then

[graph(u)mcro F(z,v(z))dH"(z / Jr (idwn, u) = Vol(graph(u, ®))

and we can apply [32] (in particular, [32, Remark 1] describes our situation perfectly).
The Euler-Lagrange equation then reads

Du
v (W) 21111] )oiu(x) + b(x), (33)
ij

where

1n+1
lZZ] / sz kalp] ,_Du,l)dt,

n+1

x) = Z aZirPiF(Z’ P)
i=1

are evaluated in z = (x,u(x)), p = (—Du,1). In order to use elliptic estimates, we

define
z](l -+ |Du\ ) aiua]-u

1+ |Dupyez i

Ai] .
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and notice that for ro > 0 small enough, we have |Du| + max;; |a;;| < 1/12 in B, and
therefore %id < A < 2id as a quadratic form. The only thing left to do is to notice that

1B1éx < Cugl| D@l

Definition 3.7. We define (3.3) to be the Riemannian minimal surface equation.

3.3 PROOF OF THEOREM 3.2

Proof of Theorem 3.2.
Let ¢ > 0 be as in [23, Theorem 5.3.14] with A, x, m, n o1

Vr
replaced by 1, 1, n, n + 1 respectively and we choose the
parametric integrand to be the one associated to M:
¥:R" X R x A,(R"™F) — R, Wr

id
((x,y),0) —IC| h (( D@ (x, 1) ) (o1 -vn)),

where & is the map from Lemma 3.6 and {vy,...,v,} are orthonormal and such that

We require Cs to fulfil (4Cs)~2"3 < £"(Vr) implying that spt(dT) Np (V3 U
Wy, /3) = @, because k1 < 97"o7. Indeed,

or m+3 or 9" or
Kk < | = <t~ <L
C5 gn 42n+2c§n+3 ogn

Then, we have
P+(Tp ' (Vor/3)) = m(E'"L Vg, y3) and py(TLp ' (Wep/3)) = (m—1)(E" W, 3)

and we can apply Lemma 3.5. We obtain for i € {1,...,m}, j € {1,...,m—1} on
M -area minimizing currents S; and S; satisfying

M

Il
—

m—1
Si=TLp '(Vos3) and ) §=TLp '(Wo3),
=1

p#S,' = EnLVUT/g, and p#.SN] = EnLWUT/g,.

Denote again by j the projection to R"*!. Then p4S; and p4S; are absolutely ¥-
minimizing. Now, we cover p~1(V,,,3) with cylinders C,,,3(x) for all x € Vy, /3N
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spt(px(Si)). In each of these cylinders, we want to use [23, Corollary 5.3.15] replacing
Ax,mon,r,Sby 1,1, n n+1, or/3, T_wpsS; respectively. To do so, we must have
(4C5)72"73 < (e/2)"*l. As a result, we get in each cylinder C a solution uc of the
Riemannian minimal surface equation whose graph forms spt(7S;) N B, /3(x) and
hence, graph(uc, ®) N B, /3(x) = spt(S;) N B, 3(x) . These solutions yield a unique
function v] whose graph on M is spt(S;) N p~!(Vas,/3). As the integrand is smooth in
(x,y), so are the solutions. In p~}(W,, ,3) we argue analogously. By construction of the
splitting {S;};, there is a numbering such that (i.) holds.

Now, we prove (iii.). We want to use Lemma 3.6 and Lemma 3.4 with o = 207/3. To
do so, we notice that as Cs > 12, we have

C 1/(2n+3) _or 1 (2
222 =L _Z(Z5).
A- < 12(Ec(T,1)—|—KT—|—A) B 3 30’T
Thus,

C13C14 3\ C13C, ’
—(2)2n+1 T (EC(T,1)+KT+A) < E C§n+3 or-
3 T

(3-4)

2
sup Xn+1 <
C],QUT/:*,ﬁSpt(T)

Let y € V1. We differ between two cases. Either y is near the boundary having distance
to 0V which is comparable with o7, or y lies more in the inner of V, then ot is much
smaller than the distance, but on the other hand, we can choose larger balls. More
formally:

Case 1: op < dist(y, V) < 207.

We define ¢ := dist(y, 9Vy,,/3). Notice that

B;(y) C Voo, /3 and 0 = dist(y,oV) — EUT > 1dist(y, aV) > —or.

3 3

W[ =

Lemma 3.6, (3.4) and Lemma 3.4 (with ¢ replaced by 207 /3) then yield for k € {1,2,3}

2kCy5

Do (y)] < (sup [of | + [ID*®@]|¢a ,))

Bj (y)

1 1 .
<24C;5 [~ sup  |Xupl+ ﬁHDz‘DchBﬁ)
T Ci207/30spt(T)

C13C4 | BT
= 20 (\/ o 21+ 2k+1 2+ (EC(T’l) +Kr+ A) + EHD <I>HCI(Ba)
T

3

< C7
~ dist(y,0V)

n+k+1/2 \/EC(T' 1) +xr + A
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Case 2: dist(y,0V) > 207.

We choose 6 := dist(y,dV) /2 > or. Notice that also in this case By (y) C V,, /3. Indeed,

the following holds
. . 2 2
dist(y, 0Vay,/3) = dist(y,0V) — 30T > 26 — 55 > 0.

also B; (y) C V5. Therefore, Lemma 3.6 and Lemma 3.4 (with ¢ replaced by &) imply

2kC
I3 (sup [o] | + D@3 )
B;(y)

Dol (y)] <

1 1 *
<16C;5 [ —  sup  |Xul+ ﬁllqu’Hcl(BJ)
T C172¢7T/305Pt(T)

C13C14 | .
< 16Cy5 (\/(2)2n+2k+1 e (Ec(T,1) +xr+ A) + ﬁHD (I)HCl(B,;)
3 T

< &
— dist(y, av) n+k+1/2

\/Ec(T,l) + k7 + A.

This shows (iii.).

(iv.) is done as (iii.).

For (v), we fix i € {1,...,m}, j € {1,...,m — 1} and abbreviate v := viT, w =
w]-T. Additionally to the conditions before, we now require for Cs to fulfil Cé"” >
C13C14(22/(”+2) —1)~!. Then Lemma 3.4 implies that

sup XA, < o} O < 3@/ 1),
leuvaSpt(T) 5

In the following, let y € Vr (thus |y| > y, > o7) and ¢ := dist(y, Vo, /3). Then we have

(v, o), @y, o)) = Iyl + o) + @y, 0(y))
< (1-or)*+0%+ |D®* <1+ D@

Denote by K := ||[D®||co(5,)- Then p 1(Vr) Nspt(T) C Byyk. (3-5)
Last, we let Cs also fulfil C2"*> > 144 (%)zn+1 C?.C13C14. By Lemma 3.6, the following
holds
2 2)/2
(v, 0(y), @, o))" = (ly2+ 0 ()* + @y, 0() ) "™
(n+2)/
< (JyP + @¥ 2 — 1)y 2 D@2(1 + |Dof?) [y )"
< 22+n/2|y|n+2 (3'6)

23
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2Cs5\ 2 “ 2
Dol < (552 (sup lof |+ D],
B (y)
SC%S C13Cq4

3 2n+1 C13C14
< 72C3 <<2> o + || D?®|¢x | < 1. (3.7)

< I (|D2@] )

(Ec(T,1) +xr + A) +

Now, we compute

o) _ vy <Dv(y) ~o(y) Y > _ yDoly) —o(y)

)
or ly[ vl \ |yl v ly|?

(3-8)

We notice that this is similar to the projection on span{(Dv(y), —1,0)}. Let {(y) :=
1 (Dou(y), —1,0) € Rk, Then

1+[Do(y) |2
{y, Do(y)) —o(y)

(v, o(y), @y, 0(1))),l(y) = DG

(3-9)

Moreover, the approximate tangent space of spt(T) at (v, v(y), ®(y,v(y))) is spanned
by the vectors 9,G(y) for i < n and G(y) = (y,v(y), ®(y,v(y))). As (Dov(y), —1,0) is
normal to all of the 9;G(y), we have that {(y) is normal to the approximate tangent
space of spt(T) at (y,v(y), ®(y,v(y))). In particular,

(v, 0(y), @, o)), S| < | (v, o), @, 0(y))) "

where X+ denotes the component orthogonal to the approximate tangent space of T.
Therefore, we deduce by using (3.8), (3.9), (3.7), (3.6), (3.10) and (3.5)

2
L (552 werac)
= [, (o, 000w s D )

Vr
22+n/2 \@

[y, o(y), @ (y,0(y))|
: | XX T

, (3.10)

< /VT (v, 0(y), ®(y, o)) 1+ |Do(y)[2 dL" ()

< p(nt5)/2 /

n—+2

By kNp~1(Vr

We argue in the same manner to extract

/w (a w(y)>2 ly[>*"dL" (y) < 2(n+5)/2ﬁ

e | XX 2 T
or ‘y’ By, xNp~1(Wr)



3.3 PROOF OF THEOREM 3.2

By Corollary 2.5 and (3.2), we could conclude here the desired estimate but with radius
of the excess being 1 + K instead of 1. However, we use (a.1) to see

/B X TP IXT AT < 4TI (Brak \ By)

1+K\ 1

1
<4 <c43(1 LK) - C) < CiK < CyA.
43

In total, we deduce

2
d UzT(y) 2—n n 2—n n
/VT <8r ly| I aLn( +/ ar |y| dL*(

<2(Yl+5 /2 )+C4 A+KT)+C17A)
< 2(n+5)/ ( ( 1)+ (Cs+m+ Ci7) (A +x7)).

O]

25






BLOW-UP SEQUENCE AND STATEMENT OF THE EXCESS DECAY

We now know that, away from the boundary, our minimizing current T is supported
on graphs. We would like to extend that fact up to the boundary. To do so, we use that
the functions describing the current are bounded by the square root of the excess such
that we can introduce a blow-up procedure by rescaling by the latter quantity. Notice
that the domain of the functions converges to the half ball as the excess tends to zero.
We aim to extend the graphs up to the boundary of T and such that they are merging
together smoothly. To do so, we will show that the harmonic blow-ups on V (or W
respectively) are all identical (see Theorem 7.2), which will lead to an excess decay
(Theorem 4.2) which will then lead to the extension of the graphs (Corollary 4.3).
First we describe the blow-up procedure.

Definition 4.1. Forve N,v>1,ie {1,...,m},je{1,...,m—1} and (T, M,) € T,
we define A, := A, & = Ec(Ty, 1), xy = x7,, UZ(V) = UZ.TV]IVTV : V= R and

w") = w.TV]IWTV :W — R. We call {(T,, M,)},>1 a blowup sequence with associated
harmonic blow-ups f;, g; if the following holds as v — oo,

(i.) &, — 0,
(ii.) &,%x, — 0,
(i) A, — 0,

"
max{e,, A)/*}
ol

max{e,, Al/4}

(iv.) — fi uniformly on compact subsets of V,

(v.) — gi uniformly on compact subsets of W.

Notice that by the estimates of Theorem 3.2, the Riemannian minimal surface equation
and [23, Lemma 5.3.7], it follows that f;, ¢; are harmonic. Furthermore, by Lemma 3.4,
we have for 0 < p <1

. 2 2
sup ]f‘]2+ sup |g‘|2 < 11msup< sup X +1>
VB, (0) Z WNB,(0) : V00 max{ey, A11//4}2 CoNspt(Ty) !
4C13C14 (4.1)
= (1= p)tt 4

27
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Notice that by the Arzela-Ascoli Theorem and Theorem 3.2, every sequence {(S,, M, )},>1 C
T satisfying

. Ks, _
lim (EC(Svll) + Ec(Sy,1) + Av) =0 (4-2)
contains a blow-up subsequence.

The main result of this section is the following excess decay: We define C;3, C19 and
6 later (in Remark 7.3, Remark 8.1 and Theorem 8.1) and claim

Theorem 4.2. Let (T, M) € T and assume that max{Ec(T,1), A, Ciok7} < Ci Then
19

there is a real number 5| < 2Cyg Ci such that for all 0 < r < 6/4 the following holds
\/ Cuo

g—n—1

E T,r) <
clypT,r) < oF

r.

A direct consequence of the Theorem 4.2 is the following

Corollary 4.3. Let T, M, 1, Cs and 0 be as in Theorem 4.2 and Theorem 3.2. If we define the
real numbers B := i and § := 6021+ (4C5) ~4+0) and the sets

Vi={yeBj(0):yn>yl""P}  and  W:={yeBj(0):y. <[y},

then there are functions ; € CV4 (V), w; € CVi (W) such that

(i) p~ (V) Nspt(yuT) = U graph(a;, v, o ®) and
i=1
m—1

p~ (W) Nspt(yuT) = |J graph(@;, 1, o @).
j=1
(ii.) 3|y, zb]-\w satisfy the Riemannian minimal surface equation.
(iii.) Do;(0) =0 = Dw;(0).
(iv) 0y <Tp <+ <0y and W <Dy <+ < Wy1.

In order to handle the rotations and scalings of T, we state the following computations
that we will prove in chapter a.

Remark 4.4. For Cyo := C3 + 6" (1 + mwy,), (T, M) € T and r > 3 the following holds:
if Ec(T,1)+xr+A< C%’ then

(D) B, pp(M)) €T, Ay <——  and  Kp,m)ie, < —



BLOW-UP SEQUENCE AND STATEMENT OF THE EXCESS DECAY

Indeed, we apply Corollary 2.4 with r, s replaced by 3/r, 1:

r\" = o = 3
(5) 1N B+ [, IXHPIXI 2T < ITIGB) + Ca (At e (1-2).
B1\By/, r

Therefore, we have

M ((.”r#T) L§3) < r"M(TL_Bs,,)
< 3" (IIT||(B1) + C3 (A +x7))
< 3"(Ec(T,1) + mwy + C3 (A + 7))
<31+ mwy).

The estimate on «(, 1) g, follows from classical differential geometry.

preT)
Remark 4.5. Let (T, M) € T and |w| < 1/8 and assume that

1
A < max {8' (7C1 + Cip + 1)1}

Then, we have

(i) if Ec(T,1) + 57+ A < (C13C14424) ™' then  sup  |X,p1| < L.
Cs/4Nspt(T)

(i) if Bo(T,1) + %7 + A < min {Cy, (C13C144%"+4) ™'}, then
(HasvworT) B3 = (YowupasT) B3z € T.

(iii.) if 12 < r < oo and w? + Ec(T, 1) + k1 + |D®|? + |D*®| < Cp; 7!, where Cy; =
42n+4C20C10(1 + Cll)(l + C13)C14, then (,ur#'yw#T) L B3 € T and

KT

K(

prsvT) By S 7

Proof of Corollary 4.3. We only show it for 7;, the argument for @; goes analogously.
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BLOW-UP SEQUENCE AND STATEMENT OF THE EXCESS DECAY

Let 0 < p < ¢ and define S, := (p1/p4vyT) B3, My := p1/,(M). By Remark 4.5
(Sp, M,) € T. Moreover, notice that by Theorem 3.2, Theorem 4.2 and Remark 4.5 the

following holds

) 1/(2H+3)

s, =G5 Sp,l +K5 + A

(Ec

(Ec(vy#T,p) + p(xr + A))
1 p 20 1/(2n+3)

<G(o L veg)

< Cs 1/(2n+3)

397,,[71 1/(2n+3)
_ Cypl/ (410 <p1/2 — >

4
< CSP'B <51/2Cl99n1

42045 1/(2n+3)

) 1/(2n+3)

2n+3
C19C2

p
<P
4

Now, we look for functions whose graph contain spt(7,#T). For a fixed p, we apply

Theorem 3.2 to (S,, M,) and get vf” < vg" < e < v,s,f whose @ ,-graph form the
spt(Sy). Using Theorem 3.2(iii.) (with T, M, k replaced by S,, M,, 1 and 2) for all

ie{l,...,m}

sup ‘Dv "l < C7\/EC Sp/1) +xs, + A, sup dist(y,dV) "2

erl
n+3/2
o )

1P

< C22p1/4
sup‘D2 ”‘ <C7\/Ec So,1) +Ks, + Apm, sup dist(y,dV)” —2-n-1/2
1oP yGVl
4 n+5/2
< / -n—-1 [ __
=Gy o <95>
< C22P1/4

Define py := (%)k, k € Z, and look at the annuli

1 y)
= =0 < < — .
Ak {ye Voo s ly| < 3pk}

(4-3)
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These annuli are overlapping as 3 < %pk+1 and moreover their union covers all of V.

Notice that for y € Ay the following holds

2 0s,, -

148 1 B
%«>\y\><9k> L
Pk Pk 2 pr — 4
Therefore, y/pi € Vs, and we can define for y € Ay
5.(1) = oo (L
%) = o ()
Then
- m
p~ (V) Nspt(yT) = | graph(d;, vy o @),
i=1
because S, := (p1 /p#'yﬂ#T) L_Bs. Moreover, all 3; fulfil the Riemannian minimal surface

equation on V and 9; < 9, < --- < 3. The only thing we still have to prove is the
Cli-regularity. By using the bounds in (4.3), we estimate for each y € V
IDi(y)| < Caapp/* < 2Cay['*, (4-4)
1 _
ID*5i(y)| < aszp}{M < Cooly| /%, (4.5)

Let y, z € V be arbitrary. We want to deduce that |D%;(y) — Do;(z)| < 4Cply — z|/*.

We differ between the following cases:
Case 1: max {|y|,|z|} < 2]y —z|.
Then the following holds by (4.4)
|D3i(y) — Do;(z)| < [D3i(y)| + |Dvi(2)]

S 2C22|y|1/4 + 2C22|Z|1/4

< 4C22’y — 2’1/4.
Case 2: max {|y|,|z|} > 2]y —z|.
Wilog max {|y|, |z|} = |y|. We claim that also the path between these two points fulfils
this inequality. Indeed, for every t € [0,1] we have

y+ty =2 = [lyl = tlz—yl| = 2ly —z[ = tly — 2| > |y — 2]
and
y+ty =) <y — 27

We use this together with (4.5) to infer

1
ID3(y) — D) < ly—=| | [D*3i(y + Hy —2))|dt < Caaly [

Thus the Holder regularity holds up to the boundary and by (4.4) we conclude (iii.).
O
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GLUEING OF HARMONIC BLOW-UPS AND FIRST COLLAPSING
LEMMA

We aim to prove that under certain conditions, the harmonic blow-ups agree in order
to deduce later that the graphs are equal on V and W respectively. The first step in this
direction is to show that if we glue them together, the result is weakly differentiable.

Lemma 5.1. Let {(T,, My)}y>1 C T be a blow-up sequence with associated harmonic blow-
ups fi, g;. Define h, y : Bf(0) — R by

Yiti filx),  ifxevV
h(x) = T/ gi(x), ifxew
0, ifxeL
and
y@{M%mwwwmmL fFrev
0, ifx € WUL.

Then h and y are in W-*(B}(0)).

loc

Remark 5.2. Consider the notion of trace as in [36, Chapter 26]. The previous lemma
implies that y|,, has zero trace on L.

Proof of Leamm 5.1. Let {(T,, My)}y>1 C T be a blow-up sequence with associated
harmonic blow-ups f;, gj and denote A, €y, ky as in the Definition 4.1 and ®, := ® .
Observe that /1+t > 1+ 3t — 42 for all 0 < t < 1. We use Theorem 3.2(iii.) to
estimate for any i € {1,...,m}

e =M(T,L_C;) — M(py(T,_C1))
>M(T,Lp ' (Vys)) —M(py(T,Lp ' (V &)))

)2 n
> 1+ |Do: —1)dL
> [, (Vieipofe 1)

(n

= <1|Dv§”>|2— 1|Dv§“>|4) dc’
\N 2 9

1 2
= Do) |2 (1 - §C§(s% + 1y + AV)UV_”_3/2) dc”
N
1 2
= Do) |2 (1 — S "3CE 2 4k, +Av> dcn.
Vom 9
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GLUEING OF HARMONIC BLOW-UPS AND FIRST COLLAPSING LEMMA

Hence, for v large enough, it follows that
/ Do) 2L < 362
N
Moreover, fix 6 > 0. For all v such that o, < 62 the following holds

D(V)Z D(V)Z
/Wd£”</ Do 71 g < 5
A" Vs

» max{e2, Al/2} - €2

and by locally uniform convergence, we deduce
/ IDf,2dL" < 3.
Jv;

As § was arbitrary, we can conclude the integrability of the weak derivative of f; in all
of V and analogously for g; in W. The fact that the trace is zero, we deduce in the same
manner as in [27, Lemma 6.2] (which is based on [23, Lemma 5.3.7]). Thus, we also
conclude that /1 and y are in W2 O

loc*

As a next step, we see that also around boundary points, we have local uniform
convergence. In fact, the proof of the original paper [27, Lemma 6.3] carries over and
thus, we omit the details here.

Lemma 5.3. Let 0 < ¢ < 1/2,a € LNBY_, (0), U := B%(a), B := 93U, C C p~1(U)
compact and {(T,, My ) }y>1 C T a blowup sequence with associated harmonic blowups f; and
gj- Denote e, := \/Ec(Ty,,1) and m, := max{sV,A]l,/4}. Then, the following holds

Xn+1

limsup sup < max { sup fm, sup gm_l,O},
v—co Crspt(T,) "W BNV BNW

Iminf inf X1 > min { inf f1, inf g1,0} .
V=00 Cnspt(T,) My BNV BNW
As a first step to the fact, that the harmonic blow-ups coincide, we prove it under the
strong assumptions that they are linear. This will be useful, as for the excess decay we
will use a blow-up argument in which the inequality of Theorem 3.2(v.) forces them to
be linear. The argument for the equality of the blow-ups relies on the fact, that in case
they are not equal, we find a better competitor for the minimization problem.
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Lemma 5.4 (Collapsing lemma). Let {(T,, M,)}y>1 C T be a blowup sequence and
denote ¢, := \/Ec(T,,1) and m, := max{e,, Al/*}.

Assume the harmonic blowups are of the form R*

fi=Bi Yn|V/ 8i = Yn|w/ graph(go) graph(f3)

for some real numbers B < --- < By and

Y1 > -+ > Ym_1. Then the following holds graph(f)

ﬁlz...:ﬁm:rylz...:/)/m_l

and for every 0 < p < 1 graph(f)

graph(gp)

Xn+] . ‘le Rn—l
n

my

lim sup =0.

Ve CpNspt(Ty)

Proof. Let vl@) and w](V) be as in Definition 4.1, define { := max {|B1, |Bul, 1], [Ym-1]},

6= min{{l} U {ﬁiJrl —Bi : Bi+1 # ‘31} U {’)/i —Yit1 i F 'Yi+l}} and let 0 < 0 <
min{6/2,1/16}. By Theorem 3.2(iii.), (iv.), Definition 4.1(i.)-(v.) and the previous
Lemma 5.3, we can choose N, > 0 such that for all v > N, the following holds for all
0<i<mand0<j<m-—-1

o
%Jrg UTV<1, m§<a, KTV<(T3m5, (5.1)
20 ﬂ [ sup [o") — mBiY,|* < o"Fim?, (5-2)
I { ‘} Vor2
sup [w!") — m, Y, |* < o Fim?, (53)
Wv/z
sup | Xpt1| < 2omy +omy.  (5.4)

C3/440Nspt(Ty)\p 1 (V2rNWay)

The grey area in the sketch stands for the set where the supremum in (5.4) is taken. We
divide the proof into several steps.
Step 1: For alli € {1,...,m},j€{1,...,m — 1} the following holds

2 2
sup ‘D(USV) —myB;iYy)|", sup |D(w](v) — m,,’)/]-Yn)| < C230‘2m12,. (5.5)
Vs W,

Step 2: There is a Lipschitzian map F;] such that

M(FJ,T,) = M(T,) < Cos(1 + )*om.

The maps F; are constructed by performing the blowup process backwards:
we multiply the harmonic blowups with ¢, and move it by ¢ to the origin.

These compressed sheets then almost recreate the original currents.
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36 GLUEING OF HARMONIC BLOW-UPS AND FIRST COLLAPSING LEMMA

Step 3: With the help of F, we show that

BuYu(y), ify e E111/2(0) nv

7 :B1,5(0) > R, 7(y) = { ' _ o
')/m—lyn (y); if VRS B1/2(0) NW

is harmonic in B /2(0). In particular, 7 is differentiable in 0 and hence, B, = y;,—1. We
argue similarly to deduce that also 1 = 7.

X
n+1 _ﬁlxn —0.

14

Step 4: lim  sup
Ve C,Nspt(Ty)
Proof of step 1:
Away from the boundary, we want to use [25, Corollary 6.3] on the function u :=
o) myB;Yy. Recall the coefficients 4;; and b of (3.3) and define al(;/) , b accordingly.

1

Then for

5k,l DkUZ(V)DIUEV)
(v) B D (v)12y3/2 -
V1+ Doz (14D )

n n
we have Z Ay du = Z Ak,aklvl@) = b™) and for v large enough, Ay are elliptic in
kI=1 kI=1
V, /3. Hence, we have

Akl =

C
sup ID(0") —m,B;Y,) | < f (iup \vf”) —my B Y|t + \Ib(“)\lél(va/3)>
o o/3

Ca3
< C23(72m12/.

In the same manner we show that

V) 2

2
sup ‘D(w](. - mV'yan)‘ < Coao?m?,
W,

Proof of step 2: Fixi € {1,...,m}, j € {1,...,m — 1} and define the following subsets
of R"t1:
H” :={x e R"™ : |x,| < 0},

1
I7 = {x €R"M : (xq,...,x,) € Vyand |x,41 — Bixn| < 20},

0
]]7 = {x ER™: (xq,...,x,) € W, and |x,41 —YjXa| < 2(7}
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Notice that I[ NI = Oforall B; # P and ]]‘-fﬁ
Ji = @forally; # 7 by the definition of 6. Addi-
tionally, define the maps B, : R""1 — R"!, (x,y) — HO

IO’
(x1,...,%n,7xy41) for r > 0. We define 1o / 3
J9

m m—1
Gri=H U (UL) Ubn (U T) oot —o |27 1o
i=1 j=1 '

Ay Gy — R

(x1,...,%,,0), if x € H?
X Q (1, X,y Bi(xy — 0)),  if x € By, (I7)

(X1, g, myyj(xy —0)), ifxe ,Bmv(]]‘T),

Tpt1 Tnt1
HC°
) /Bml/([g)
B (JS) / A7 0 B, (I9)
) A7 0 By, (JT) i
"'))mu<]5> g o )\ﬁ o 3m <]g>
UL\OI\\\ ":::Ji'liax c—1 —0 Uélo’ m_
—_— ' r !
1 A (H) l

Now, we want to construct a homotopy between AY and the identity map. For this
we take a C! function y : By (0) — [0, 1] satisfying y|§;«/2(0) =0, ‘u|§;11(0)\3§/4(0) =1and
sup |Du| < 5. Then, we define
B1(0)

A = GJ U (R™1\ Cayq) — R¥1

x»—){x’ if x € R"1\ C3)4
(1—pop(x))AY(x) + (pop(x))x, ifxeGy
and finally map everything to M, with

FJ: (G x RN U (R Cg/4) — M, C R™HF

(x,y) = (AY(x), @u (A7 (x))).
We know that in p~1(V,), spt(T,) lives on the ®,-graphs of UZ(V). As vgv)m; ! converges
to B;Yy, for v big enough, graph(vfy), ®,) C (id, @,) o By, (I]). Therefore
p (Vo) Nspt(T,) = | graph(v}”), @) C (id, ,)(GY).
i=1
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Now, we compute the functions whose ®,-graph describes spt(FJ,T,) Np~1(V,):
ufh = (1= pmpi(Y — o) + pof”

= (1= Yo+ o) = (1= p)mfio

= u(0" = myBiYn) + myBiYy — (1— p)m,Bio.
Then the following holds

uf ol = (el —mpY) = (0" —mupY) — (1= pymro.

i

Recall { := max {|B1], |Bml|, |71], |[Ym-1] }. We bound by step 1 and (5.2)
sup [Du("’| < sup (|Dul[o — m,B,Yu| +D(0}") = m,BiY,)| +my|B] +m,o ;D)
Vv, Vo

< 5omy, + / Cyzomy, +m, ¢ + 5m, (o
< Coemy(140),

sup|Do{”| < sup (D (v —m,B¥,)| + D(m,BiYy)] )
V, V.,

< Coemy (1 +0),

sup|Du§V) — Dvl@ |
Vo

< sup (1Dpl[o = mofiYa| + [1+ plID(ef") — myiY,)| +mucr|fi D

<50 +2+/Cyzom, + 5m, o
S C26Um1,(1 + C)
With this we can estimate

M(Fg#(TvLP_l(VU))) _]M(TVLP_l(VU))
<V 2 M _ v) 2) n
_;,/H\qu /V (\/1+|Dul 2— 1+ Do) dc

szz/ (1+1Dul2 =1~ Do) dc (5.6)
i=17/Ve

< zz/ IDu” — Do | (|1Du”| + |Do")]) d.L”
i=1 4

< C27(1 -+ C)Zmﬁa.
In the same manner, we deduce

M (E[y(T,Lp ™ (Wo))) = M(T,Lp~ ' (Wo)) < Cor(1+)*mio. (5.7)
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Outside of p~!(V, UW,) we notice that F{ is the identity in M, N ((H? x RF1)\
C;/4) and hence
M (F(To (HT x RED)\ Caza))) = M(T, L ((HT x R\ o). (58)
In (H? x R¥1) N C3,4, the following holds
FI(x,y) = (1, X, (21, X)X, @u (1, .o, X, (X1, -0, X)X ) ).
Hence, we can use Lemma a.1 (with A = (H? x R¥"1) N C3,4, T = 0, p = 50) to bound

M (FJ,(TL (H” x RF1))) = M(TL (H” x R¥1))

(58) _ B
Z M (FO, (T ((HY x RF1) N Csy4))) = M(TL ((H” x R N Cs4))
Cyy < 2 ) )
< tu +2/ X2,,d||T,|| + 27A
= o2 Ty (H2 X RE1)1Cs 4 o wdl Tl v
(5-4) Cyy B
S 2 (K%V +27A, + 2| Ty || (H* x R N C3/440) (2§Umv—|—am1,)2).

Further, we see that by the monotonicity property (3.1) and the projection property of
currents in 7, the following holds

IT || (H* x R 1) N Cs/440)
3 " 3 _
_ <4 + a> Ec(T,; +0) +M (p#(TVL((HZU x RE-1yn C3/4+U)))
3 n—1
< s% + mo (4 + a)
< Caso,

where we used (5.1) in the last inequality.

Therefore, R 3,4
M (FZ,(TL (H* x R*1))) = M(TL (H¥ x R*1))
< % (17, + 27A, + 2Cos0(2gomy + om,)?)
% Cool1 + 0)mier — A
Putting this toghether with (5.6) and (5.7) yields
M(E7,T,) — M(T,) < Cog(1+Q)*mic
forallv > N,. i
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Proof of step 3: We define

B Yu(y), ify e §;l/z(o) nv

7:B1,5(0) = R,7(y) = { U o
Tn1Yu(y), ify €Bi;(0) NW.

To show that 7 is harmonic, we prove that it minimizes the Dirichlet integral. To do
so, we take some arbitrary Lipschitz function 6 : By ,(0) — R satisfying 6| 9B! »(0) =
n ’aﬁf/z(o)' Then we notice that [ |Dy|> — [ |D6|? is comparable to the difference of the
Hausdorff measure of the graphs of 7 and 6. These graphs, we express as currents and
use the minimality of T, to deduce that [ |Dy|*> — [ |D6]?* < 0. To make this precise, we
approximate both of these functions. Indeed, let {c} }1>1 be a monotonously decreasing
null sequence with 07 < min{d/2,1/16}. For each k > 1, let vy = Ng,,

Bu(Ya(y) — i), ify € By (0)NVy,
i B1/2(0) = Ry () = 4 s (Ya(y) + 1), if y € BY2(0) N W,
0’ if y € ET/Z(O) \ (VUk U WO’k)l

and choose some C! function 6; : By »(0) — R with 9k|a§’f/2(o) = 1k| 3B ,(0)7
limsup sup |Df| <coand lim | |D§ — DO|*dL" = 0.
k=0 B} ,(0) k=00 /By /(0)
With this, we define two auxiliary currents associated to the ®,-graphs of m,7; and
m, 0 respectively:

Ry = ((idn,mvkek, @, (i, my, 17¢)) #(E”L§¥/2)> L Cija,
Sici= ( (ichn, my, B, By, (i, m,,05)) (BB 2) ) L Cao,

Notice that Ry, Sk are supported in M,, and moreover, in C;,, N Gy the following holds
ngf = (id, ®,) o AL’f = (id, ®,) o )\5,’: and hence,

M (F¥4(Ty, - Cq)) = M(F)},(Ty, - C1) — Ri) + M(Ry). (5.9)
In addition, we define g(t,x) = (id, ®)(x1, ..., Xp—1, txp, txy41) and Qy, := g#([0,1] x
((9Ty,)L_Cz)) L_C;. This is the filling between ﬁ;l*l x {0} and spt(dT,) N C; mapped

onto M,,. Then we consider P := Q,, — (F})#Q,,. Because F| ac, = (id, ®)l5c, ,
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Ok | 9B (0) ’7k’a§;‘/2(o) and the homotopy formula [23, Section 4.1.9], the following
holds
ORy = 95,

dP = 0Q,, — I(F},Qy,)
= (9T, )L Cy — (id, @y, )4 (B! x {0})L_Cy)
— B ((0Ty,) L C1) + (id, @y, )¢ ((E"" x {0}) 1 Cy)
= (aTvk)Lcl vk#((aTvk)Lcl)
= (T | Cy) — 9(Ffu(Ty L Cq)).

Moreover, the area minimality of T,, in M,, implies

M(T,

k

LCl) < M(F&k#(Tvk LC1> + Py — R + Sk)
< M(F}, (T, L C1) — R) + M(Pe) + M(Sg).

Together with step 2 and (5.9), we deduce

M (Rg) = M(Sk) = M(FFy(Ty, L C1)) = M(F} (T, - C1) — Re) — M(Sk)
<M(F} (T, - C)) — ]M(TVkLQ) +M(P)
< M(Pk) —|—C24(1—|—€) O'Vk

Notice that again by the homotopy formula [23, Section 4.1.9], M(Qy,) < Cso(xT, + mﬁk).

Then the condition (ii.) in Definition 4.1 yields

M
lim sup ]M(zpk) < limsup (1 + Lip(F})") (gvk) = 0.
k—o0 ka k—so00 mvk
Thus,
0 > limsup M(Ry) —ZM(Sk)
k—o0 m
1+ mZ | Dy |2 1+ m3, | D62 D®
= lim sup /ﬂ, ;" dﬁ"—/fﬂ n_C31%
k—s00 By/2(0) LA Bi/2(0) Vk Vg
1+m2|D 1+m2|D6
Cimenp [ (EmRIDNE) (w8

k—oo  /Bi/2(0) m%k <\/1 + mﬁk\anP + \/1 + mvk\DBk\z)

-1 (IDy[2 — |D6P) dc™.

T2 B{,(0)

As 8 was arbitrary, 7 minimizes the Dirichlet integral and hence, is a harmonic function.

In particular, 7 is differentiable in 0 and thus, B, = y,—1. We argue similarly to deduce
that also 81 =
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Step 4:Let 0 < p < 1 and assume 0 < ¢ < (1 — p)/2. Then by Definition 4.1(iii.),(iv.),

it follows that

X
limsup  sup il B1Xu| =0
V=00 gpt(T, )\ Ho/2 my
and by Lemma 5.3
X X
lim sup sup "1 _ g1 X,| < limsup sup )y |,B1!g
V=0 spt(T,)NH/2NC, my V= spt(T,)NH/2NC, v 2
< Bl

Letting ¢ | 0 concludes the proof.



COMPARISON BETWEEN SPHERICAL AND CYLINDRICAL
EXCESS

In some situations it is more convenient to work with the spherical excess rather than
with the cylindrical one. However, in the context of blow-ups, we see that they are in
fact comparable.

Lemma 6.1. There exist positive constants Cz, Cz3, Caq such that if (T, M) € T satisfies

1 =
Ec(T,1)+xr+A< — and sup X%H < —
Ca C1/4Nspt(T)

then .
Ec(T, g) < Cyy (Es(T, 1) + KT + A)

We will give the very technical proof for this in chapter a. It follows by computing
the first variation of a suitable vectorfield.

Instead of asking X2 ; to be small, we now only assume that T is optimal with respect
to rotations. We will argue by contradiction, finding a suitable blow-up sequence and
then we will reduce it to the case when the harmonic blow-ups are linear (in order to
use Lemma 5.4). Here, we give a sufficient condition for this to happen.

Remark 6.2. Let h : V — R be a harmonic function such that forally € Vand 0 < p < 1
the following holds h(py) = ph(y). Then it follows

(i.) If h > 0, then h has zero trace on L.

(ii.) If & has zero trace on L, then there is some B € R satisfying h = Yy |y
The proof of this fact can be read in the original paper [27, Remark 7.2].
Theorem 6.3. Let (T, M) € T and recall Cs; and Csy from Lemma 6.1. Then there is a
positive constant Css such that if for all real numbers |n| < 1/8 the following holds

1
° Ec(T,l)—i—KT—i—A < —

= 2C32/

1 KT 1
* Ec(T,3)+ — < =
c(T.3) Ec(T,3) ~ Gss

1 1
* EC(T/ E) S ZEC(’YV]#T/ i)/

then .
EC(T’i) < C35(E5(T,1) + KT +A).
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Proof. We argue by contradiction. Assume that no matter how large Css is, there is
a current satisfying the four conditions but not the fifth one. This means, there is a
sequence {(T,, M,)},>1 C T such that for every v > 1 and |5| < 1/8 the following
holds

1
Ec(TV,l) +xr, + Ay < ——

>~ 2C32’
1 1
EC(TV/ 1) S ZEC(')/?]#TI// 1)1 (61)
. 1 KT,
Iim [ Ec(T,, =)+ ——%—] =0, 6.2
%W<C(”9 EdR%J 7
fim [ Bs(Tw 1)+ L TAG o, (6.3)
v—00 EC(TV/ 1)
) 1 \1/4
We define Sy := (p34T,)_Bs, &, := \/Ec(Sy, 1), k, := ks, and m, := max {SV, (3Av) }
By Remark 4.4 (Sy,pu3(M,)) € T and moreover,
1
e, =1/ Ec (TV, 5) and Ky < KT,

Up to subsequence (which we do not relabel) is {(S,, u3(M,)) },>1 a blowup sequence
(see (4.2)) with harmonic blowups f; and g;. We want to show that they are of the form
BY,. Then we will be able to deduce that B # 0 which will make it impossible for
Ec(T,, 1)€,2 to converge to zero. This then leads to a contradiction to (6.1). Notice that
by Lemma 2.3, the following holds

C — —
e A3 T, || (Brjs) < €A )| T, || (B).

From this, it follows
1
ES(SVI 1) = ES (TV/ 3)

— 1
sywnwmmy«w(m—)

2
_ 1
< e%Cz(AVJrKTV) HTVH(B1> — wy <m — 2)
< AAERIES (T, 1) + (A — 1k ) (m - D

C
< <6C2/C32 + 22> (Es(Twl) + KTU)
Ca2

and hence,

n

V300 S% 3 32 v—r00 EC(Tw 41;)

where we used (6.3).



COMPARISON BETWEEN SPHERICAL AND CYLINDRICAL EXCESS

We can apply Theorem 3.2(v.) (with T replaced by S,) combined with Definition
4.1(iv.),(v.) (with T, replaced by S,), (6.2) and (6.4) to infer

/VT (aaf|<yy|)> WAL (y +/ (;f&ﬁ))jwzndm(}/)

S 2n+7 hm Sup (SVI 1) + C;S (AV + KT‘I/) — 0.
v—00 mv

Hence, both terms must vanish and therefore the following holds forall 0 < p < 1

filey) = pfily) foryeV — and  gj(py) =pgi(y) foryeW.

This allows us to use Remark 6.2(i.) to the nonnegative functions f,;, — f1, gm-1 — 1
having vanishing trace on L. We notice that

fil = (Ifil =min{[fil, - |ful}) +min{[fal, - [ ful}
< (fu = fr) +oin{| fil, -+ | ful ¥
and so, also each f; has zero trace on L by Lemma 5.1. Remark 6.2(ii.) gives that

fi = Bi Yuly for some B; € R. The analogues statement holds for g; because Lemma 5.1
implies that also Y)";' ¢/ has zero trace on L and we can bound

m—1 — m—1
(m—1)gil = | }_ (8 E D(gm-1-81)+| ) &
=1 =1 =1
Then we can apply Lemma 5.4 to deduce
X
lim sup ntl B1Xn| = 0. (6.5)
* Cygnspt(s,) | MY

Next, we infer B; # 0. Indeed, if this were not the case, then Lemma 6.1 would imply

that
—Ec(T,3)—A
0 = lim sup <ES(TV’1)+KT‘> Zlimsup<c34 c(Ty 3)) V)

V—00 EC(TV, %) V—00 EC(TVI All
3n
> 0,
- 4”C34 -

where we used (6.3) for the last inequality.
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COMPARISON BETWEEN SPHERICAL AND CYLINDRICAL EXCESS

Now, we rotate T, such that the new blowup sequence has a vanishing harmonic
blowups. To do so, let 7, := arctan(Bim,) and consider R, := (p4syy,4T,)_B3. From
Remark 4.5(ii.), we know that (Ry, (s 0 7,,)(M,)) € T for v large enough. We use
again Lemma 3.3 (with T, o replaced by R,, 1/6) and Lemma 5.3 to obtain

E Ty, }
lim sup %21/4) = lim sup %2”1)
v—00 ny, v v
X2 A .
<limsup36Cyo [ C;1  sup ”il — i - (60
v—00 Cy/6Nspt(R,) My my,
=0.

But by Lemma 3.4 (with T, o replaced by R,, 7/8)

Ec(T,, 1 E T, 1
liminfic( ; 4) zliminfi(:(ﬂ‘}#z v1)
vV—00 ml/ vV—00 mv

7\ 2n+1 X2
> lim inf <7> ! < sup :l;rl _ -I;AV>

V—00 C13C14 C1/sNspt(uasTy) v m,
72n+1 2
= i <ﬁ1> > 0.
8211t1C13C14 \ 8

For v large enough, together with (6.6), this contradicts (6.1).



COINCIDENCE OF THE HARMONIC SHEETS

As mentioned before, the excess decay will follow from the fact, that the harmonic
blow-ups coincide on V and W respectively. To see this, we want to blow-up the
harmonic blow-ups in a homogeneous way. Thus, we need to make sure that the limit
exists, i.e. we prove that the harmonic blow-ups are C%! up to the boundary. The proof
uses suitable rotations of T, and the uniform convergence of the blow-up sequence at
the boundary.

Lemma 7.1. Let {(T,, M) },>1 € T be a blow-up sequence with harmonic blow-ups f; and
gj- Then forall0 < p <1,i€{1,...,m}andj€ {1,...,m — 1} the following holds

sup Wl 0 g 8wl _
VOB (0) vl WAL (0) vl
Proof. For v € IN with v > 1, we define ¢, := \/Ec(Ty,1) and «, := «kr,. Let 0 < 0 <
1/12 and w(v,0) € R such that for all || <1/8
o o
EC('Yw(V,U)#TV/ Z) < 2EC('Y’7#TV/ Z) (7.1)

Notice that by the monotonicity of the excess (3.1) and Definition 4.1(i.), it follows
lim, e Ec(Ty, ) = 0. As (7.1) also must hold for # = 0, it follows by Lemma 3.3 that
also

}ero}ow(v, o) =0. (7.2)

This implies that
lim Be (Yoo Tv, o) = 0. (73)

In a first step, we show that there is a constant Cz¢ such that for infinitely many v the
following holds

sup | X11| < Caemyo.
C(f/5 ﬂspt(’)’w(v,ﬂ)#TV)

To do so, we first bound EC(’)’w(v,a)#Tw 7) by looking at two different cases:
Case 11 Ec(YowowTv, 5) < €2 for infintely many v.
We use the monotonicity of the excess (3.1) to deduce

o 4 n o 4 n
EC(W‘U(VW)#TV’Z) < <3) EC(W(U(V,U)#TV/ g) < <3> E]z/

for infinitely many v.
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COINCIDENCE OF THE HARMONIC SHEETS

Case 2: Ec(YowowTv 5) = ¢2 for all v > N for some N large enough.

We define S, := ('yw(vra)#y%#Ty) Bz and My := 74,0 op1 (My). By Remark 4.5(iii.)
is (Sy, My) € T. Recall the constants Cz; and Css of Theorem 6.3. By (3.1), (a.28), (7.3),
(7.1) and Definition 4.1, there is an integer N, such that for all v > N, the following
holds

* Ky < 8%//
1
* Ec(Sy,1) +xs, + Ayy, < Ec((Yo(owTv) B3, o) +0(ky +Ay) < 2Ca
o Ec(Su2) + 8 < 3"Ec((Vu(uowTy) L B, 0) +0s <
V/3 EC(SV/%) N wlvapy ’ 8%/ a C35,

1 1 1
. EC(SVIi) < 2EC('Y;7#SV,1) for all |5| < g

Therefore, we can apply Theorem 6.3 (with T replaced by S, for v > N;) to deduce

o 1
Ec(YoowTv 7) = Ec(Su, 7) < Cas(Bs (S, 1) + x5, + Ay, )

< Css (ES<T1//(7) + U<KV + Av))

(7-4)

Notice that by Lemma 2.3, the following holds
CAARITG | T, ||(By) < BRI T, ||(By).

Therefore,

- _ 1
Es(Tv,0) = o7 "||Tv[|(Bo) — (m — 5 )a(n)
< CHATO (T (B) = (= ) + (€A 1) (= 3o

With this and (3.2), we can continue to estimate (7.4) with
Css (Es(Ty, 0’) + O'(KV + A]/)) < Css (Ec(Tv, 1) + Ky + Ay) < C37m§.
Hence, in both cases we have infinitely many v satisfying
o
EC(’)’w(v,a)#TV/ Z) < C38m3'

For these v we apply Lemma 3.4 (with o, T replaced by 1/5, (Yu(,0)4t4/04Tv) | B3) and
infer

g
swp [Xeal=  sup IJXea
CU/Snspt(')/w(v,a)#TV) C4/5mspt(7w(V,U)#f"‘l/a#Tv)
(o (o o
< 4_-\/(:13(:1452”+1 (EC(’YW(V,U)#TVI Z) + Z (Kv + Av) )

< Czgmy0.



COINCIDENCE OF THE HARMONIC SHEETS

With this, we now prove the bound on f; and g;.

To be able to jump between V and W, we Tnt1 2C74my0
define for y € R" the map y — 7 := e \!
(Y1, Yu-1,~Yn). Denote by o\") and w!") the " Ot T)

maps whose ®,-graphs form the spt(T,) as ,,/'—_ Tn
in Definition 4.1. By the previous inequality =  #= ~

and (7.2), we can bound for infintely many
v, arbitrary 0 < 7 < 1,i € {1,...,m} and
je{l,...,m—1}

[0} ) + 0" ()] <2Como fory € Vo By5(0).

Consider now any 0 # y € VN By 4(0). Then let o := 5|y| < 1/12. The previous

bounds imply that

< 2C390' = 10C39|y|

for infintely many v. Hence, by local uniform convergence,

fi(y) +8j(7)| <10Cxly|  fory € VB 4(0).

Moreover, by (4.1), fory € VN (ﬁz(O) \B},60(0)),i€{1,...,m}andj€ {1,...

1}, the following holds

)P+ gy (0) < s (60l

Now, we define the following auxiliary functions

1fily),  foryeV
h:B{(0) = R, h(y) = Z}”;ll gi(y), forye W,
0, foryeL
H:B}(0) = R, H(y) = h(y) — k(7).

(7.5)

(7.6)

By Lemma 5.1, these two functions have locally square integrable weak gradients.
Moreover, H is odd in the n-th variable and H |VUW is harmonic. The weak version of
the Schwarz reflection principle implies that H is harmonic on all B} (0). Therefore, the

following holds for all 0 < p < 1
sup

[H{)|
EZ(O) |y|

< 0.

(7.7)
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COINCIDENCE OF THE HARMONIC SHEETS

Notice that for y € V, we can write

i—1 m

i) =Hy) - Y () +a@) - L (Al +g-1(D),

k=1 k=i+1

8i(@) = (hly) + @) — fily).

(7.5), (7.6) and (7.7) then imply the lemma.
O

Now, we are ready to prove that all harmonic blowups coincide even if they are not
linear. The definition of the homogeneous blow-up of the harmonic blow-ups and the
estimate in Theorem 3.2(v.) will imply that they are linear, and hence, coincide with
each other. Then we will use the E.Hopf boundary point Lemma for harmonic functions
to deduce that also the harmonic blow-ups need to coincide themselves.

Theorem 7.2. Let {(T,, My)}y>1 C T be a blowup sequence with harmonic blowups f;, g;.
Then
(i) i=-=fuand g = - = gm-1.

(ii.) The functions

fily), foryeV

f:VUL—=R, y—
0, foryeL

¢1(y), foryew

g:WUL - R, y—
0, foryeL

are C2.
(iii.) Df(0) = Dg(0).
Proof. We first blow f;, g up and show the equality of these limiting functions. Then
we deduce that also the f;, gj coincide.
Letie {1,...,m},je{1,...,m—1},4 < p < oo and define the functions fl.(p) =

pfi(5) and g](p) := pgj(5)- Then fl.(p) and g](.p ) are harmonic and by Lemma 7.1 uniformly
bounded.
Indeed, for all 4 < p < o

< 0.

ﬁ(g)‘zp wp 1< sup SOl o g L)

VrBy,,(0) VNBj,(0) vl VNBj,4(0) vl

sup || = psup
A" A%



COINCIDENCE OF THE HARMONIC SHEETS

Then [25, Theorem 2.11] implies that, up to subsequence, they converge pointwise to
a harmonic function. This means, there exist a strictly increasing sequence py — o0
as k — oo and harmonic functions f},..., f, onV, g7,..., ¢, 1 on W such that for all
ie{l,....m},jed{l,...,m—1}

lim () = ff(y)  and  Lm D™ () =Df(y) foryeV,

lim g( U(y) = g(y)  and lim Dg( Hiy) = Dgi(y)  foryeW.
300 k—o0

We want to deduce their equality by using Lemma 5.4. To do so, we first must show
that f7, g7 are of the form BY; for some p € RR. A sufficient condition for this is the

following identity — 5 9 fi | (| y) =0= aargZ]];j]V) , as we have seen in the proof of Theorem

6.3. By Theorem 3.2(v.), we have

/v <aarfl\(yy!)>2 ly[FdL(y) + /w (aarg]\(j)f y|*"dL" (y) < 2"Cyg < oo,

and hence, Fatou’s Lemma implies that

O F )\ g 05 W\ o g
L (G50 wirac) + /w (ar " ) YL )

) ) () \ 2
afp |2 nd/:n _|_/ (ag] (y)) |y|2—nd£n(y)

ly|

k— 00
< liminf / B (8
k—o0 VﬂB’f/p (0) 0

'WQET/pk(O) 81’ | |

< liminf (

() 2—n n
,)|| dc'(y)

=0.

Therefore, there exist real numbers f; < --- < By, Y1 > -+ > Jm—1 such that
fi = Bi Yulv, & = 7j Yulw - Now, we show that all these numbers coincide.

This must hold by Lemma 5.4, if we find a blowup sequence whose associated harmonic
blowups are exactly f;, g]’-k. For k € N, k > 1, we define
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52 COINCIDENCE OF THE HARMONIC SHEETS

Then there is an N > 0 such that for v > N the following holds Ec(T,,1) 4+, + A, <
C%O and hence, by Remark 4.4, (S¥, 11, (M,)) € T. Moreover, by Definition 4.1(iv.), (v.)
forallie {1,...,m},je{1,...,m—1} we have

Sk
;Z) . v

lim = fl-(p k) on compact subsets of V,
v—00 1,
N

lim m—] = g](p 2 on compact subsets of W.
V—00 v

We choose now for every k an v, > max{N, k} satisfying the following three properties:

1. max{ sup [£*], sup |£i”] sup [gf"], sup [git*)|}
VNBy/» VNBy,» WNBy» WNBy ),
X 1
< sup [ X + -
C1/2NsptSf, Mg k
X
> sup | n+1|
C3/zﬂspt(SV ) mvk
1
< 3max { Sup |f1pk/3 sup ‘f /) sup }glpk/ sup ‘g pk/ |} + Kk

This is possible by Lemma 5.3, where {(T,, M,)},>1, a, 0 are replaced by
{1038 T o 3(My, ) }i=1, 0, 1/2) and because

X 1 X 1 X 1
sp Kl g el g g Kl
m m m
Cs/2Mspt(Sh) V% C1/2Nspt(pr /3455, ) Vk C1/2Nspt(pp /o Th) %k

3. We define the (blowup) sequence {(Sj, Mj)}i=1 by S; := Sk and M :=
o, (My,) and notice

St Sk
Koy my, Ji an koo my, & 7
If all f*, g7 vanish, then also 0 = f1 = --- = pu = 71 = - - - = Ym—1. If not, we want

to see Whether {5} }k>1 is a blowup sequence to f}, 8j- Hence, we aim for (7.8) with
my, replaced by ms:. Therefore, we shall compare these two quantities. First, we notice
that by Remark 4.4,

Ks; T AM; _ Ky + Ay

2

0< < >
ml/k P kmi/k

—0 as k — oo.
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Then by Lemmas 3.3 and 3.4 (with T, M, ¢ replaced by S;, M 1/2) and the conditions
1. and 2., it follows that

Ec(S;,1 . C Ko+ + Apgx
lim sup # < lim sup 4Cjy % sup X%H + "72/\4"
k— o0 ka k—o0 Vg Cg/zﬂspt(SZ) mvk

< 36C19C11 max { sup(fF)?, sup(g]’-‘)2 1,7},
v W

Si1 X2 Ksr + A
lim inf ( 2" ) > liminf 2%1; sup ";’ 1_ "5 5 Mi
k—o0 ka k—o0 2 C13C14 Cy/2Mspt(S}) ka mvk
1 *\2 *\2 , + -
2 mmax{szp(ﬁ ) /S‘Vilp(gj) : z,]}.
Hence,
. max {EC(S*,I),Aé{2 . max{Ec(S*,l),Aéf2
0 < liminf 3 £ — < limsup 5 k o,
k—o0 my, k—s00 my,

and we can find a subsequence {(SZZ, MZ{)} 1>1 which is a blowup sequence and whose
associated harmonic blowups are yf/, 'yg]’f‘ for some fixed v € R by (7.8). As they are
of the form as in Lemma 5.4 it follows that there is a f € R satisfying

From this, we want to deduce that also f; = --- = f;; and g1 = - - - = gm—1. Notice that
fi — fm and g1 — gm—1 are nonpositive and harmonic functions. By Lemma 5.1, f; and
gj have zero trace on L. Hence,

sup(f1 — fm) = 0= sup(g1 — gm-1)-
VvV W

Moreover, the E. Hopf boundary point Lemma [25, Lemma 3.4] implies that if yo € L
is a strict maximum point, then the outer normal derivative at yo (if it exists) must be
positive. But at zero, the following holds

WA ) — g P IO 0 o, 01y =0,
a(glgfm“m) =y 812800 020 (o 0,01 =0

Hence, 0 is not a strict maximum point and there must be a point in V (W respectively)
reaching 0 (i.e. the maximum) as well. Then [25, Theorem 3.5] implies that f; — f;;, and

g1 — §m—1 must be constant. In fact, by the vanishing trace, fi — fiu = 0 = g1 — gm—1.

Therefore, (i.) must hold. Also by the vanishing trace and weak version of the Schwarz
reflection principle, there are harmonic functions f € C?(VNL), g € C}((WUL)
satisfying (ii.) and (iii.).

O
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54 COINCIDENCE OF THE HARMONIC SHEETS

Remark 7.3. Let f, g denote harmonic blow-ups as in Theorem 7.2(ii.). Then there are
constants Cy7, Cqg such that

(i) IDF(0)] = [Dg(0)] < Ca mm{\/ fore o 1AL ¢ [ \grzcw} < Cps.

1/2 1/2

(ii.) For all y € B ,4(0) the following holds

£) ~y-DFO)| < c41|yrz\/ K o P87 < ol

NBY/,(0)

(iii.) For ally € By,4(0) the following holds

8() ~ v+ Dg(0)] < C41W\2\/ e 574" < ol

NBY,(0)

Proof. (i.) By the Schwarz reflection principle, we can extend f to an harmonic function
f defined on B} /2(0). Then by the interior estimates for harmonic functions [25, Theorem
2.10], the mean value property and Holder’s inequality, it follows that

5 on _ on 2
IDF(O)| < Snsup |f| <8n=— [ |fldL" < 8n () [, Irpdce
o wy JB Wy B
B} 1/2 1/2

Moreover, by Lemma 3.4(ii.) (with ¢ replaced by 1/2) and Definition 4.1(iii.), this
integral is bounded by 2"*1Cy,. The same holds for g.
(ii.) By the Taylor formula, |f(y) —y - Df(0)| < C|D?£(0)||y|>. Also by [25, Theorem

2.10], the following holds

n2

ID2f(0)] < T sup ||

/!
By

The inequalities follow then as in (i.).
(iii.) Similar to (ii.). O



EXCESS DECAY

With the C? functions from Theorem 7.2, we prove the following inequalities of the
excess. We will use them to prove Theorem 4.2 by constructing inductively a sequence
of currents which will show that the excess of the (slightly rotated) original current
decays at most proportional to the radius.

Theorem 8.1. Let (T, M) € T and define 6 := (Cp (1 + C]g))iz (see Remarks 4.5(iii.) and

7.3). There is a constant Cr9 > 1 such that if T fulfils max{Ec(T,1), CioxT, \/Z} < % then
there is a real number w satisfying

|w]? < C2g max {EC(T,l),\/Z} and  Ec(y,4T,0) < O max {EC(T,l),CngT, \/Z} .

Proof. We argue by contradiction. If the theorem did not hold, then there would be a
sequence {(T,, My)}y>1 C T such that for all |w| < Cigm, the following holds

1
max{e%, VA, VK, < o (8.1)
Ec(vwsTy,0) > 0 max{e?, VA, vk, }, (8.2)
where ¢, := \/Ec(T,,1), x, := k1, and A, := A 4,. Notice that by the monotonicity of
the excess (3.1), the condition (8.2) (with w = 0) implies
2
€
Ovr, < O max{Ec(T,,1), VA, vk, } < Ec(T,,0) < 0—2

Hence, by (8.1), we can assume that

s . Ky 2 1
€V+g+AV<;+W

Therefore, we notice that as in (4.2), {(T,, My)},>1 is, up to subsequence, a blowup
sequence with associated harmonic blowups f;, g;. Let f, ¢ denote the C?-functions

4

as in Theorem 7.2(ii.). As they vanish on L, for every 0 < ¢ < 1 the functions e;lvl@

s;lw]@ converge uniformly on V,, W,. Thus, we derive from Lemma 5.3 that

lim sup sup ‘X”H —fo p‘ =0,
Voo Cpppnpt (V)nspt(Ty) | MY
x (8.3)
lim su su ‘ "l sop| =0
P p ", gop

V=% CyNp~1(W)Nspt(Ty)
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56 EXCESS DECAY

From Remark 7.3 and the proof of Theorem 7.2, we deduce the existence of some
B € [—Cis,Cis] satisfying Df(0) = (0,...,0,8) = Dg(0). Therefore, by applying
Remark 7.3(ii.), (iii.), it follows

|f(x) = Bxa| = |f(x) — xDf(0)| < Cis|x|? for x € VN By ,4(0),
|g(x) — Bxn| = |g(x) — xDg(0)| < Ciglx|? for x € WN By 4(0).

Then we rotate the currents such that the new differential vanishes. Indeed, let w, :=
arctan(pm, ). Then

|w1/| < |,B‘mv < Cigmy. (8'5)

(8.4)

Consider now S, := (p1,/08Vw,#Tv) Bz and M, := py,9/M,). By (8.1), the assump-
tions of Remark 4.5(iii.) are fulfilled for v large enough, and hence, (S,, M,) € T
and

Ks, < QKV, AMV < QAV. (86)
By (8.3), (8.4) and the Remark 7.3(ii.), (iii.), it follows

limsup sup

' Xn+1
V=00 CyNspt(Sy)

y

. X
< limsup sup ‘ﬂ — BXx
V=00 CyNspt(p e Ty) | MY

1 X
< —limsup sup ‘ 2
0 e Conspt(T,) | v

—_

v—r00 CzpNV C3pNW
Nspt(Ty) Nspt(Ty)

< élimsup ( sup |[fop—BYul+ sup |gop —,BYn|>
1

< acls((39)2 +(36)%)

= 18Cy56.

Together with Lemma 3.3 (with ¢ 1 1 and T replaced by S,), (8.6) and Definition
4.1(iii.), we yield

E T, E 1
lim sup —C(’Yw@f v9) = lim sup 7C(S;' )
V—$00 m, V—$00 my,
Cq1su X2 K + A
< lim sup Cro ( pczﬂsgt(sv) n+ Sy M,
v—00 mv
. Xn A
< Cyo | Ci1limsup sup L 4 6lim sup
v—00  CyNspt(Sy) mv v—ro0
< (18)%Cy9Cy1C346?
< 0.

As wy is bounded (see (8.5)), the latter inequality contradicts (8.2) for v large enough.
O
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8.1 PROOF OF THEOREM 4.2

Proof. We construct a sequence of currents {(T,, M,)},en C 7T and real numbers
{wy }y>1 inductively. We start with (Tp, My) := (T, M). Assume that for some fixed j €

IN, we already have (T;, M;) € T Denote by Aj; = A, and m; := max{/Ec(T}, 1),A]1-/4}.
By Theorem 8.1, there is a real number |w; 1| < Cigm; such that if we define

Tjt1 2= (B1/68Vw;1#7Tj) L B3 and M1 = p1/9(M;)
then (T;11, Mj41) € T and by Remark 4.5(iii.)
max {Ec(T]'Jrl, 1), A]'+1, C19KTJ.+1 } < 0 max {Ec(Tj, 1),Aj, C19KT]. }

Using this inequality j times, we deduce

. Qj+2
max {Ec(Tj11,1),Aj, Cokr,,, } < /! max {Ec(T,1), A, Cioxr } < o
19
Moreover, the following holds
C —Gjﬂ 8
. < .
lwj1| < Cig oo 8.7)
g/+1
Ec(T]‘,l) —+ KT]. + A]' < 3maX{Ec(Tj,1),Aj,KTj} < 3(:7 (88)
19

j
Then we define 7 := Z wy and 77 := lim ;. This is a valid choice for 77 as (8.7) and the
k=1 ]—00
fact that 61/2 < 1/2 implies

=, ok Cig &, Cis 02 Cis
<C — = g1/2)k — <2 01/2.
Il < 18,; Cro Cio k;( ) V/Ci9 1 —61/2 VCr9

Fix 0 < r < 6/4 and choose an appropriate j € N such that 6/7! < 4r < ¢/. Then we
use the inequalities (8.7), (8.8) together with (a.28) from the proof of Remark 4.5(iii.)
(with T, M, w replaced by T;, M;, 1 —1;) and the excess monotonicity (3.1) to derive

. . )
Ec(ypuT, 1) < <Z;> EC('yn#T,%]) < g—nEc(fy,?#T,%)
— 0 "B,
— 0 "E.
— 0 "E,
— 0 "E¢

panyyT, 07)
YojtanYy—na 1, o/ )
H1y0)sYyptasYy T, 1)
pasYy—n#Tj, 1)

T~ /N /N
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and
_ . C
0 "Ec (pasyy—nsTj, 1) < 07" 21 <
20\ “k=j+1
© j+1
<o Can Y wi 438
20 \k 51 Cio
< g (C%S o+’ QJH)
- 20 \Ci91 -0 Cro
< g C21 3(C%8 + 1) 6j+1
- Co Cpo
< 9,nc213(cfs+1)(4 )
Co Coo
9—11—1

)



THE BOUNDARY REGULARITY THEOREM

Theorem 9.1. Let U C R"** be open and T an n-dimensional locally rectifiable current in U
that is area minimizing in some smooth (n + 1)-manifold M and such that 0T is an oriented
C? submanifold of U. Then for any point a € spt(3T), there is a neighborhood V of a in U
satisfying that V N spt(T) is an embedded C L submanifold with boundary.

Hardt and Simon found out, that it is enough to consider currents whose tangent
cones at boundary are in fact a tangent planes. Once we have this tangent plane, we
can parametrize the support of the current with graphs over the plane.

Lemma 9.2. Let Q € RI9°(R"*1) be an absolutely area minimizing cone with 9Q = E"~! x
S0 % &¢. Then, the support of Q is contained in a hyperplane.

Proof. This can be read in the original paper [27, Theorem 11.1, Step II]. O

Lemma 9.3. Let U, T and M be as in Theorem 9.1 and assume further that for every
a € spt(0T), there is a tangent cone C at a such that spt(C) is contained in a hyperplane. Then
for any point a € spt(9T), there is a neighborhood V of a in U satisfying that V N spt(T) is
an embedded CVi submanifold with boundary.

Proof. After some translation, reflection and rotation, we can assume wlog that a2 = 0
and the hyperplane is {(y,0) : y € R"} C R"**. Hence, for m = ©@"(||T||,0) + 3 € N,

(m(E”L{y ER":y, >0}) + (m—1)(E"{y € R" :y, < 0})) x 8

is an oriented tangent cone of T at 0 by [23, 4.1.31(2)]. Therefore, we find a nullsequence
{re}k>1 € Ry such that py,,4T converges in RIo¢(R"™K) to this cone as k — oo.
Moreover, we assume that for every k we have 3r; < dist(0,0U). Then it follows that

X
— fim sup Xny1 = 0. (9.1)

lim sup . Jim
k B1Nspt(p1/7,47T)

ko0 ﬁ'k Nspt(T)

By [23, Section 5.4.2], also the associated measures converge weakly and hence,

lim 7, "M(TL (B3, NCy,)) = kh_r)gM((M/rk#T) L (B3N Cy))

k—o0

1

=mL"(V)+ (m—1)L"(W) = (m— 5

)wn/
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which implies that
1

kh_{f}o 1 "M (py(TL (Bar, N Cy,))) — (m — E)w"
< lim [M(py ((#1/r#T) L (B3N C1))) = M((p1/sT) L (B3N C1))|

=0,

where we also have used (9.1).
Thus, if we define Ty := (p1/,4T)L Bz and My := py,, (M), then for k large enough,
we have (Ty, M) € T and

0
max {Ec (T, 1), Ciokr, Ax} < o
19
Then we can apply Theorem 4.2 (with T replaced by Tj) and notice that we can choose
1 to be zero, to find the decay
g—"-1

Cro

Ec (Tk ’ 7’) < r.

Now, we differ between two cases.

Case 1: m = 1. This is a corollary of Allard’s interior regularity theorem. However, a
self-contained proof could be given from the results of the previous chapters. Observe
tirst that, by Corollary 4.3, in a sufficiently small neighborhood of x, the current T is
supported in the ®-graph of 7; and so we can assume, wlog, that spt(T) \ spt(dT) is
connected. By the Constancy Lemma, it follows that the density © is an an integer
constant k at every interior point of such neighborhood. So the current is actually k
times the one induced by the ®-graph of 7;. However, since the boundary of T is a
current with multiplicity 1 we easily conclude that k is actually 1. The current T is
thus the current induced by the ®-graph of the Cli function ;. Notice that there is a
neighborhood U of 0 such that ©"(||T||,y) = 3 for ally € U Nspt(aT).

Case 2: m > 1. We fix k and use Corollary 4.3 with 74T replaced by T;. Hence, we
get functions 9;, @; whose ®-graphs around zero form spt(Tj). Moreover, we know
that D3;(0) = 0 = D®;. Hence, similar to the proof of Theorem 7.2, by the E. Hopf
boundary point Lemma for quasilinear equations [30, Theorem 2.7.1], we deduce that
Om — 01 = 0 = Wy,—1 — Wy. Therefore, they all coincide.

Notice that the regular points of

B, N (spt(T) \spt(dT)) = par, (B1 N (spt(Ti) \ spt(0Tx))) 2 pr, (graph(?s) U (graph(ar))

consist of at least two connected components. Let G denote that component of the
regular points containing p, (graph(?;)) and consider

1
§:=—(TLG).



THE BOUNDARY REGULARITY THEOREM

Notice that by [23, 4.1.31(2)], the density O(||T||,x) is constantly m for all x € G.

We will show later that on some open neighborhood V of 0 in U, we have that
spt(T) = spt(T —S), T — S has no boundary in W and then, we apply interior regularity
theory.

First notice that as T, S are area minimizing in M and ||T|| = ||S|| + ||T — S|| holds, is
follows that T — S is also area minimizing M.

Then, we denote W := B,, N Cs,, where J is as in Corollary 4.3, and aim to show that

(0S)L.W = (oT)L_W. (9-2)

Notice that
spt(9S) C spt((dT)L_G) Uspt(TL (9G))

and hence,
spt((9S)LW) C spt((dT)L_W) Uspt(TL (G NW)) = spt((aT)__W).

Moreover, we can use the Constancy Theorem [23, Section 4.1.7] to derive

= (a E'L {rryep(W) 1y, > (ka(y1,~--,yn—1)}) Lp(W)

(P+(TLW)))Lp(W)
=py((QT)LW).

As the map p| spt((dT)_w) is @ C2-diffeomorphism, (9.2) must hold. Then T — S has no

boundary in W and by (9.1), a tangent cone of T — S at 0 is contained in X! (0).

n+1
Therefore, we can apply [23, Theorem 5.3.18] to p4(T — S) and deduce that there is an

open neighborhood V of 0 in U such that
VNspt(T) = VNspt(T —S)
is a smooth embedded submanifold of M. O

Putting the previous two lemmas together, we deduce the boundary regularity
theorem:

Proof of Theorem 9.1. Leta € spt(dT). Then by [9, Theorem 3.6], T has an absolutely area
minimizing tangent cone Q € RY°(T, M) at a. After some rotation, we can assume that
9Q = (—1)"E"! x & x 8. By Lemma 9.2, the cone is contained in some hyperplane
and by Lemma 9.3, we conclude that T is regular at a. O
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THE HIGHER MULTIPLICITY CASE






CONVEX HULL PROPERTY AND LOCAL STATEMENT

We start recalling the following well known fact:

Proposition 10.1. Assume T is an area minimizing m-dimensional current in R™*" with
spt(0T) compact. Then spt(T) is contained in the convex hull of spt(9T).

Proof. The statement can be concluded from much stronger ones, for instance we can
use that || T|| is an integral stationary varifold in R"*" \ spt(T) and invoke [33, Theorem
19.2]. O

We then take advantage of a simple and elementary fact which combines the regular-
ity of I with the uniform convexity of the barrier (). We will state this fact in higher
generality than we actually need in this manuscript.

Definition 10.2. First of all, given an (m — 1)-dimensional plane V C R™*" we denote
by py the orthonogonal projection onto V. Given additionally a unit vector v normal to
V and an angle ¢ € (0, ) we then define the wedge with spine V, axis v and opening
angle ¥ as the set

W(V,v,9):={y:ly—pv(y) — (y-v)v| < (tand)y - v}. (10.1)

q+ W(T,I',v(q),0)

Figure 1: An illustration of the wedge where V is the tangent T;I" to I at some boundary point
g, whereas v the interior unit normal v(g) to the convex barrier Q) at g.

In particular we have the following lemma.
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Lemma 10.3. Let QO C R™"" be a C? bounded open set with uniformly convex boundary and
I a C? (m — 1)-dimensional submanifold of Q without boundary. Then thereis a 0 < ¢ < Z
(which depends only on I and () such that the convex hull of I satisfies

ch(T) € (V(q+W(T,L,v(q),9)).

ger

We postpone the proof of the lemma to the end of the section Using Proposition 10.1
and Lemma 10.3 we can reduce Theorem 1.7 to a suitable local statement. In particular
we will replace Assumption 1.6 with the following one:

Assumptions 10.4. Q > 1 is an arbitrary integer and ¢ a given positive real number smaller
than Z.T is a C>* arc in U = By1(0) C R*™ with endpoints lying in 9B1(0)". Moreover
v:T — S is a C** map such that v(q) L T,I. T is a 2-dimensional area-minimizing
integral current in U such that:

0T)LU =Q[I7, (10.2)
spt(T) C () (9 +W(T,T,v(q),9)). (10.3)
gel
Moreover,
A= [l + 7l <1, (10.4)

where x denotes the curvature of I and v is the derivative, in the arclength parametrization, of
v.

Theorem 10.5. Let I and T be as in Assumption 10.4. Then Sing, (T) is empty.

Proof of Lemma 10.3. Since q + W(V,v,9) is a convex set, we just need to show the
existence of a 0 < ¢ < 7 such that I' C (g + W(T,T, v, 9)) for every q € I. The latter is
equivalent to show the existence of a constant C > 0 such that

(p—q)—((p—q)-v(@)v(g) —pvip—9)| <C((p—9q)-v(g)) Vpq€eT. (105)

The strict convexity of d() ensures that for every & > 0 there is a constant C such that
(10.5) holds if additionally |p — q| > €. Thus we just have to show the inequality for a
sufficiently small e. In order to do that, fix g and assume w.Lo.g. that it is the origin,
while at the same time we assume that T,I' = ToI' = {x;, = ... = X1, = 0} and
V= Bxiﬂ‘ We will use accordingly the coordinates (y,z,w), with y € R"7!, z € R”,

and w € R. By the C? regularity of Q and T, in a sufficiently small ball B.(q) = B¢(0)
the points p in I are described by

p=Wzw) =y fy) ey fy)) (10.6)

1 Le. T = 4([0,1]) where 4 : [0,1] — B1(0) is a C>* diffeomorphism onto its image.




CONVEX HULL PROPERTY AND LOCAL STATEMENT

for some f and ¢ which are C? functions. Observe that f(0) = 0, Df(0) =0, g(0) =0,
and Dg(0) = 0. Moreover ||D?f||co < Co and D?g > cold for constants ¢y > 0 and Cy,
which depend only on I' and (). Similarly, the size of the radius € in which the formula
(10.6) and the estimates are valid depends only on () and I' and not on the choice of
the point . Next, compute

((p—q)-v(@) =8, fv) = colly*+ |f W) ) > colyl?

and

(p—q)—((p—q)-v(@)v(g) —pvip —a)| = If ()] < Colyl*.

The desired inequality is then valid for C := S—g O
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TANGENT CONES

We start recalling Allard’s boundary monotonicity formula. More specifically, we first
define

Definition 11.1. For every point p € By, we define the density of T at the point p

O(T, ) 1 tmm I TI(B-P)

70 7Tr2

7

whenever the latter limit exists.

Next, we introduce the notation « for the curvature of I' and we consider the functions
Oi(T,p,r) and O,(T, p,r) given by

Oi(T,p,r) := M , (11.1)

7tr?
1T (Br(p))

O (T, p, 1) := exp (Col[xllor) 5, (11.2)

where Cy = Cy(n) is a suitably large constant.

Theorem 11.2. Let T be as in Assumption 10.4.
(a) If p € By\ T, then r — ©i(T, p, r) is monotone on (0, min{dist(p,T),1— |p|}),
(b) if p € By NT, then r — Oy (T, p, ) is monotone on (0,1 — |p|).

Thus the density exists at every point of By. Moreover, the restrictions of the map p — ©O(T, p)
to I' N By and to By \ T are both upper semicontinuous.
If X € CL(By,R?>*™), then the first variation of T with respect to X satisfies

O0T(X) = Q/FX-ﬁ(x) dH (x) (11.3)

where i is a Borel vector field with |#| < 1.
Moreover, if p € T and 0 < s < r < 1 — |p|, we then have the following precise monotonicity
identity
-2 -2 [(x—p)*"?
r T (B (p)) — sl T (Bs( ))—/ Eapap- T
P P e x— bl

-of [ TP AH @) dp, (11.4)

d||T|[ (x)

where Y=+ (x) denotes the component of the vector Y (x) orthogonal to the tangent plane of T at
x (which is oriented by T (x)).
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Note that §T(X) = 0 for X € C!(By \T') follows in a straightforward way from the
minimality property of T. In particular ||T| is a stationary integral varifold in B; \ T
and (a) and (b) are consequences of the celebrated works of Allard, cf. [2] and [3]. Next
note that (11.3) follows from (11.4) arguing, for instance, as in [7] for [7, Eq. (31)] (see [2,
3] as well). Coming to (11.3), note first that the derivation of [21, (3.8)] is valid under our
assumptions, with the additional information 6T = 4T (following the terminology and
notation of [21, Section 3]). We then just need to show that ||6T;|| < Q- H!L T. The latter
follows easily arguing as in [21, Section 3.4] once we have shown that ©(T, p) = % at
every p € I, see below.

As in [21, Section 3] we introduce the following notation and terminology.

Definition 11.3. Fix a point p € spt(T) and define for all » > 0

q9—P
.

‘p,r(q ) =
We denote by T),, the currents

Tp,r = (lp,r)ﬁT .

We call the current T),, the blow up at the point p and scale r of T. Let Ty be a current
such that there exists a sequence rx — 0 of radii such that T}, — To, we say that Tj is
a tangent cone to T at p.

We recall the following consequence of the Allard’s monotonicity formula, cf. [3].

Theorem 11.4. Let T be as in Assumption 10.4 or as in Theorem 1.4. Fix p € spt(T) and take
any sequence 1y | 0. Up to subsequences Ty, is converging locally in the sense of currents to
an area-minimizing integral current Ty

(a) Ty is a cone with vertex 0 and || To||(B1(0)) = mO(T, p);
(b) if p € spt (T)\T, then 0Ty = 0;
(c) ifp €T, then 0Ty = Q [T,I].

Moreover || Ty, || converges, in the sense of measures, to || Ty||.
We next show the following elementary fact:

Theorem 11.5. Let T be as in Assumption 10.4 and p € I'. Any tangent cone Ty at p € T has
then the following properties:

(a) spt(Ty) is contained in W(T,I,v(p),¢) (where v(p) and ¢ are the vector and the
constant given in Assumption 10.4);
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(b) Thereareky,...kny € N\ {0} and 2-dimensional distinct oriented half-planes V1, ..., Vy
with 9 [Vi] = [T,T'] such that

Ty = Zki vi - (11.5)

Note in particular that 20(T,p) = Q = Y ; k;, and thus 1 < N < Q.
Conclusion (b) holds under the assumptions of Theorem 1.4 provided we choose p sufficiently
close to q.

The first part of the theorem is in fact at the same time a particular case of a more
general theorem of Allard in higher dimensions (under Assumption 10.3) and of a
general classification of all 2-dimensional area-minimizing cones with 0Ty = Q [¢],
where / is a straight line, given [10]. In particular since point (a) is obvious, point
(b) is a direct corollary of [10, Proposition 4.1] and of (a). As for the second part of
the statement, observe that, by [10, Proposition 4.1], 20(T, p) is always an integer
no smaller than Q. Recalling that I' 5 p — O(T, p) is upper semicontinuous, under
the assumptions of Theorem 1.4 we must necessarily have @(T, P) = % for every p
sufficiently close to g. Then conclusion (b) follows again from [10, Proposition 4.1].
Since it will be useful later, we introduce a notation for the cones as in (11.5).

Definition 11.6. Let £ C R?>"" be a 1- dimensional line passing through the origin and
let Q € IN'\ {0}. We denote by #, () the set of area minimizing cones of the form
T = YN, k; [Vi], for any finite collection of distinct half-planes V; such that 9 [V;] = [¢]
and any finite collection of positive integers {k;}, such that YN, k; = Q. Moreover
we will call such cones open books.
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UNIQUENESS OF TANGENT CONES AND FIRST
DECOMPOSITION

In this section we appeal to [10, Theorem 1.1], which follows the ideas of Hirsch and
Marini in [29], in order to claim that the tangent cone to T at p € I is unique.

Theorem 12.1. Let T and I be as in Assumption 10.4. Then the tangent cone at each p € T
is unique and from now on will be denoted by Tyo. The same conclusion holds under the
assumptions of Theorem 1.4 provided q is sufficiently close to p.

In fact such a uniqueness theorem comes with a power-law decay (cf. [10, Theorem
2.1]), which in turn allows us to decompose the current at any point p € I' where the
tangent cone is not contained in a single half-plane. Before coming to its statement, we
introduce the following terminology.

Definition 12.2. Let T and I' be as in Assumption 10.4. If the tangent cone T, to T at
p € I' is of the form Q [V] for some 2-dimensional half-plane V, then p is called a flat
boundary point.

Theorem 12.3 (Decomposition). Let T and T be:
* either as in Assumption 10.4,
e or either as in Theorem 1.4.

Assume that p € I' is not a flat boundary point and in the second case assume further that p is
sufficiently close to q. Then there is p > 0 with the following property. There are two positive
integers Q1 and Q, and two area-minimizing currents Ty and T, in B, (p) such that:

(@) T1+ T, = TLB,(p) (thus Q1+ Q2 = Q),
(b) T;LBy(p) = Qi [TNB,(p)],
(c) spt(T1) Nspt(T2) = TNBy(p),

(d) at each point q € B,(p) the tangent cones to Ty and T, have only the line T,T in common,
ie., (Tl)q,O S %min,Ql(TqF) and to (Tz)q,() S %mm,Qz(qu").

At flat points we are not able to decompose the current further and in fact the final
byproduct of the regularity theory of this paper is that in a neighborhood of each flat
point, the current is supported in a single smooth minimal sheet. For the moment the
uniqueness of the tangent cones (and the corresponding decay from which we derive
it) allows us to draw the following conclusion.
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UNIQUENESS OF TANGENT CONES AND FIRST DECOMPOSITION

Theorem 12.4. Let T and T be as in Assumption 10.4 or as in Theorem 1.4. Assume that
p € I is a flat boundary point, that Q [V] is the unique tangent cone of T at p, and, in the case
of Theorem 1.4 that p is sufficiently close to q. Let n(p) € V be the unit normal to T at p and
define in a neighborhood of p

n(p) —n(p) - t(q)t(q)

n(g) = (12.1)
D= Tty = nlp) @2
where T is the unit tangent vector to I orienting it.
Then, for every 0 > 0 there is a p > 0 such that
spt(T) NBy(p) C ﬂ (q+W(TI,n(q),0)). (12.2)

q€By(p)NT

The previous two theorems allow us to reduce both Theorem 10.5 and Theorem 1.4
to the following simpler statement. We postpone the proof to Section 12.3.

Assumptions 12.5. Q > 1 is an arbitrary integer and ¢ a given positive real number smaller
than %. T is a C3* arc in By (0) C R*™ with endpoints lying in 0By (0). T is a 2-dimensional
area-minimizing integral current in U such that (dT) LU = Q[I]. 0 € T is a flat point, Q [V]
is the unique tangent cone to T at O and we let n be as in (12.1). Moreover

spt(T) € () (9+W(T,T,n(q),9)), (12.3)
L]GB](O)QF
where ¥ is a small constant.

Theorem 12.6. Let T and I’ be as in Assumption 12.5. Then there is a neighborhood U of 0
and a smooth minimal surface ¥ in U with boundary T such that T U = Q [Z].

Obviously the latter theorem implies as well Theorem 1.5.

12.1 DECAY TOWARDS THE CONE

We first state a more precise version of Theorem 12.1. To that end we recall the flat
norm JF and the definition of spherical excess. Given an integral 2-dimensional current
S we set

F(S) :=inf{M(P)+M(R): S=0dP+R,Re, PeIz}.

Moreover, for T as in Assumption 10.4 and p € T we define the spherical excess e(p, )
at the point p and with radius r by

_ ITI(B,(p)) _ITIB(p)  Q
e(p,r) - T @(T,p) —_— T E-
We are now ready to state the main decay theorem. Its proof follows the ideas of [29],

but it is in fact a consequence of a more general result, which is proved separately in
our work [10], cf. [10, Theorem 2.1].

(12.4)



12.2 FROM THEOREM 12.7 TO THEOREM 12.3

Theorem 12.7. Let T and I be as in Theorem 12.1. Then there are positive constants gg, C and
o with the following property. If p € T and e(p,r) < &2 for some r < dist(p, dBy), then:

@ le(p,p)| < Cle(p,r)| (£)* + Cp™ for every p < r,
(b) There is a unique tangent cone Ty to T at p,
(c) The following estimates hold for every p < r

F(Tppl- By, TpoL Br) < C(r)le(p, )| (£)" + Cp", (12.5)
disty (spt(Typ) N By, spt(Tyo) NB1) < C(£)". (12.6)

12.2 FROM THEOREM 12.7 TO THEOREM 12.3

We fix a point p as in the statement of Theorem 12.3, we choose a radius ry so that
By, (p) C B1(0). We fix thus ¢, « and C given by Theorem 12.7. Moreover, in order to
simplify the notation, we write T}, rather than T, for the unique tangent cone to T and
p.
First of all we observe that
CITIBL @) Q@ _ ITI By aP)  Q
5 =

2 2
g TTrg 2

2 2
:<r0+’P ‘ﬂ) 6(p,ro+]p—q|)+<<r0+P ‘ﬂ) _1>Q
ro ro 2

In particular, if ry is chosen sufficiently small, we can assume that e(gq,r) < 55% for
every point 4 € I N B,,(p). The rest of the proof is divided into three steps
In a first step we compare tangent cones between different points and prove

F(T;LBy, T,LBy) < Clg —p|* Vg € By, (p). (12.7)

e(q,70)

Next, since T}, is not flat by assumption and because of the classification of tangent
cones, we can find half-planes V and Vj, ... Vy all distinct, such that

T, = Qi [VI+ L Qi[Vi], (12.8)

where Q1 < Qand Q> := Q — Q; = Y; Q; > 0. Let n be the unit vector in V which is
orthogonal to T,T'. We then infer the existence of a positive ¢ with the property that

U Vi c R*\ W(T,T,n,80) =: W(T,I',n,88). (12.9)

1

For every point g € I sufficiently close to p we project n onto the orthogonal comple-
ment of T,I" and normalize it to a unit vector n(q). (12.7) will then be used to show the
existence of r > 0 such that

spt(T;) C W(T,T,n(q),20)UW(T,T,n(q),7%) Vg e TNB:(p). (12.10)
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Hence we use (12.5) to show the existence of 7 > 0 such that
spt(T) NBz(q) C (g 4+ W(T,T,n(q),3%)) U (g + W(T,T,n(q),6%)). (12.11)

(12.11) allows us to define

T, :=TL (Bf(p) N((g+ W(TqF,n(q),Sﬂo))> , (12.12)
q

Ty:=TL ( )N ((g + W(T,T, n(q),6190))> , (12.13)
q

and to show that T; + T, = TL B;(p) and that each of the T; is area-minimizing. The
final step is then to prove that

dT1LBr(p) = Q1 [T N B:(p)]- (12.14)

Step 1. Proof of (12.7) In order to prove (12.7) set po := |p — q| and observe that, it
suffices to show the estimate

for some p € [po,200], whose choice will be specified later. For v € R*"", denote by
T, the translation by the vector v. If we choose v := (g — p)/p it is easy to see that
T;pLB1 = (T-0)#(Tp,LB1(v)) and since the flat norm is invariant under translations,
we get

f(Tp LBl, Tq,p LBl) = ./T"((Tv)ﬁ(Tp LBl(O)), Tp,p LBl(U)> .

On the other hand, observe that T), is invariant by translation along T,T" and that, if we
write v = w + pr,r(v) =: w + z, then |w| < Cp. Hence we have

F(TyL By, TyplBy) = F((Tw)s(Tp L B1(2)), Tpe - B1(v))
< F((tw)t(TyLB1(2)), TyLB1(z)) + F (T, LB1(z), T,LB1(v))
+.F(TPLB1( ),Tp,pLBl( ))

The first two summands can be easily estimated with Cp. Indeed for the first term we
write

(Tuw)s (T, L By (2)) — T,L By (2) = 3((T,LBy(2)) x [[0,w]]) =: 0Z

and we estimate M(Z) < C|w| < Cp, whereas for the second term we can estimate
directly

M(T,LBy(z) — T,L By (0)) < Cluw|.



12.2 FROM THEOREM 12.7 TO THEOREM 12.3

It remains to bound the third summand. To that end we employ the fact that we are
free to choose p € [po, 2p0] appropriately. Note that the point v depends on p: we will
therefore write v(p) from now on and use vy for v(pg), while we define ¢ := %. By a
simple rescaling argument we observe that

F(T,LB1(v(p)), Ty Bi(v(p)) < CF(TyLBy(v0), Tp,p,Bo(v0)) forall o € [1,2].
We complete the proof by showing that, if ¢ is chosen appropriately, then
F(TyLBy(v0), Tp,p, LBo(v0)) < CF(T,LB3(0), Ty, B3(0)), (12.15)
since, again using a simple scaling argument, we can estimate
F(T,LB3(0), Ty, B3(0)) < CF(T,LB1(0), Tp30,B1(0))

and take advantage of (12.5). In order to show (12.15), fix currents R and S such that

M(R) +M(S) < 2F(T,L B5(0), Ty, L B5(0)) .

Let now d(x) := |x — vg| and for every ¢ we can then use the slicing formula [33,
Lemma 28.5] to write

(T, — Tp,p) LB (v0) = RL B, (v) + d(SLB,(v9)) — (S,d,0).

Since
/12M((S,d,0)) do < M(SLBy(v0)) < M(S),

it suffices to choose a o for which M((S,d, o)) < 2M(S).

Step 2. Proof of (12.11) The latter is a simple consequence of the estimates proved in
the previous two steps and of (12.6) and is left to the reader.

Step 3. Proof of (12.14) Observe that 0T; L B;(p) is supported in I N Bz(p) and is a
flat chain without boundary in B;(p). By the Constancy Lemma of Federer [23, Section
4.1.7], it follows that 0T; L B;(p) = © [T NBz(p)] for some constant ©. In particular
Ty is integral and thus © is an integer. Since it is area minimizing, it follows from
our analysis that T; has a unique tangent cone (T7), at p and that 77O equals twice
the mass of (T1), in B1(0). On the other hand the latter cone is the restricion of T},
to W(T,T,n(p),30%), which by assumption is Q; [V] for a fixed half-plane V with
boundary T,I'. Thus ® = Q;, which completes the proof.
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12.3 FROM THEOREM 12.6 TO THEOREM 10.5

In this subsection we show how to conclude Theorem 10.5 from Theorem 12.6 and
Theorem 12.3. We argue by induction on Q. We start observing that for Q = 1 there
are no boundary singular points, as it can be concluded by [3]. Assume therefore that
Theorem 10.5 holds for all Q strictly smaller than some fixed positive integer Q: our
aim is to show that it holds for Q = Q. First of all observe that by Theorem 12.3 we
know that the set F := {p € I : p is a flat boundary point} is closed in I'. If F = T, then
T has no boundary singularities. Otherwise, by Theorem 12.6(a), it suffices to show
that the dimension of Sing, (T) \ F is 0. It then suffices to show that for every p € '\ F
there is a radius p such that Sing, (T) N B,(p) has dimension 0. Fix p as in Theorem
12.3 and let T; and T, satisfy the conclusion of that theorem. We claim that

Sing, (T) NB,(p) C Sing,(T1) USing, (7). (12.16)

Since by the induction hypothesis each Sing,(T;) has dimension 0, the latter claim
would conclude the proof. In order to show (12.16), consider a point 4 which is a
boundary regular point for both T; and T,: we aim to prove that g is a regular point
for T as well. By the very definition of boundary regular point, for each i there is a
neighborhood U; C B,(p) of p, minimal surfaces A;'-, and integer coefficients k;- such
that:

o« TLU =Yk [{A;i]];
. A;ﬂA}; C I for every j # k;
¢ the tangents of A;: at every point § € I' N U are all distinct.

Now, in U := U; N U, we clearly have
2 . .
TLu =Y Yk ainu] .
i=1 j

Note that, by Theorem 12.3(c) A} NAZ C spt(Ty) Nspt(Tz) C T for every j # k.
Moreover, if 7 € TN U, then (T1)z0 = k! | TyAl] and (Ta)z0 = Lk [TAZ]. We
conclude from Theorem 12.3(d) that for every j and k the half planes T;A} and T;A7 are

distinct, i.e. intersect only in T;I'. This shows that g is then a boundary regular point of
T.



MULTI-VALUED FUNCTIONS

The next step of our proof is a detailed study of the boundary behaviour of Dir-
minimizing multi-valued functions. In this section we consider maps u : Bo(x) "D —
Ag(R") where D C R? is a planar domain such that 9D is C?. We will be interested
in maps which take a preassigned value Q [f] at 9D N B, (x). Since by subtracting the
average 7 o u we still get a Dir-minimizer, we can without loss of generality, assume
that f vanishes identically. We summarize the relevant assumptions in the following

Assumptions 13.1. D C R? is a C? open set, U is a bounded open set and u € WY2(D N
U, Ag(R"™)) a multivalued function such that u|ypry = Q [0] and o u = 0. u is Dir mini-
mizing in the sense that, for every K C U compact and for every v € W2(DNU, Ag(R"))
which coincides with u on (U \ K) N D and vanishes on dD N U, we have

Dir (1) < Dir (v).

Observe that under our assumptions, we can apply the regularity theory of [12] and
[28] to conclude that u is Holder continuous in KN D for every compact set K C U.
More precisely we have the following

Theorem 13.2. There is a geometric constant «(Q) > 0 and a constant C which depends only
on Q and D such that, if u and D are as in Assumption 13.1, then

N—

[t]o,0,8,(x)np < Cp~* (Dir(u, By (x) N D))
for every Bay(x) C U.

In the final blow-up in Section 26, we will prove that the limit of a suitable ap-
proximating sequence is a homogeneous Dir-minimizer. The following theorem will
then exclude the existence of singular boundary points. It is a consequence of the
classification of tangent functions (Theorem 13.9).

Theorem 13.3. Assume D = {x, > 0}, U = B1(0) and u : DNU — Ag(R") is a Dir-
minimizing I-homogeneous map such that u|yp = Q [0]. Either u is a single harmonic function
with multiplicity Q (i.e. u = Qyou])or I =1.

Observe that under the additional information that # o u = 0, the first alternative
would imply that u vanishes identically.

In case that the approximating sequence consisted of Dir-minimizers (which it does
not in our case), we mention for completeness here the analouge definition of singular

79



8o

MULTI-VALUED FUNCTIONS

boundary points for Dir-minimizers (i.e. points at the boundary where the order of
“vanishing” of the Dir-minimizer is larger than 1) and prove its absence. Even though
we will not need Definition 13.4 nor Theorem 13.5 for our analysis, it illustrates the
ideas of our argument.

Definition 13.4. Let D, u and U be as in Assumption 13.1. x € dD will be called a
contact point if there is a positive 6 > 0 such that

1
liminf—/ Dul*>=0. 13.1
P»LO p2+5 BP(X)QD ’ | ( 3 )
In section 13.3 we will show the following multi-valued counterpart of Theorem 12.6.

Theorem 13.5. Let D, u and U be as in Assumption 13.1. If x € dD is a contact point, then u
vanishes identically on the connected component of D N U whose boundary contains x.

13.1 MONOTONICITY OF THE FREQUENCY FUNCTION

We introduce here the basic tool of our analysis, the frequency function, pioneered by
Almgren. The version of the Almgren’s frequency function used here is an extension
introduced for the first time in the literature in [21] to deal with boundary regularity.
One of the outcomes of our analysis is that the limit of the frequency function exists at
every boundary point x unless u vanishes identically in a neighborhood of it.

We recall the definition of the frequency function as in [21, Definition 4.13].

Definition 13.6. Consider u € W,"* (D, Ag(IR")) and fix any cut-off ¢ : [0,0c0[—

loc
[0, 00] which equals 1 in a neighborhood of 0, it is non increasing and equals 0 on

[1,00[. We next fix a function d : R> — R* which is C? on the punctured space R?\ {0}
and satisfies the following properties:

(@) d(x) = x| + O (]x),
(i) Vd(x) = &+ O(lx]),
(iii) D?d(x) = |x|7! (Id — |x|2x @ x) + O(1).

By [21, Lemma 4.25], we deduce the existence of such a d satisfying also that Vd is
tangent to dD. We define the following quantities:

[ (") ipup

2
Hgq(u,r) := —/Dcp’ <d(rx)> ]Vd(x)]z‘b;({;))| dx.

The frequency function is then the ratio

Dy,4 (u,r):

rDy,q (u,r)

Iy (u,r) = .
(P,d( ) H(p,d (1/!, 7’)



13.2 CLASSIFICATION OF TANGENT FUNCTIONS

This quantity is essentially monotone.

Theorem 13.7. Let D, U and u be as in Assumption 13.1. Then there is a function d satisfying
the requirements of Definition 13.6 such that the following holds for every ¢ as in the same
definition. Either u = Q [0] in a neighborhood of 0, or Dy, 4(u, ) is positive for every r (hence
Ip,a(u,r) is well defined) and the limit

0<limlyg(u,r) <—+oo

i pa(u,7) < +
exists and it is a positive finite number. In fact, there is an ro > 0 and C such that r —
e 1y 4(u,r) is monotone for all 0 < r < r.

We first recall the following identities (compare [21, Proposition 4.18]).

Proposition 13.8. Let ¢ and d be as in Definition 13.6 and assume in addition that ¢ is
Lipschitz. Let 3, D, U and u be as in Assumption 13.1. Then, for every 0 < r < 1, we have

D)=~/ ¢ ('d(rx”) ME;C)HDu]zdx, (13.2)

H'(r) = (71’ + O(l)) H(r) +2E(r), (13.3)
where

E(r):= —1/D(p’ <d(rx)> Zui(x) - (Duj(x) - Vd(x)) dx, (13.4)

and the constant O(1) appearing in (13.3) depends on the function d but not on ¢.

Theorem 13.7 follows as in [21], as soon as we can show the validity of the above
identities. In turn the latter can be proved following also the computations in [21],

provided we prove that both the outer variations g.(x) := }; [[ui(x) +eg (d(x)) ui(x)ﬂ

p
and the inner variations u o i;, with ¢; being the flow of Y(x) := ¢ (@) df?d?;j)(\;c) , are
competitors to our problem. This is however obvious. Clearly the outer variations are
well defined and preserve the condition that u|;pny = Q [0]. As for the inner variations
note that, since Vd is tangent to 9D, so is Y and thus its flow maps 0D onto itself and D
into itself. This shows that the inner variations are well defined and provide admissible

competitors too.

13.2 CLASSIFICATION OF TANGENT FUNCTIONS

Following a common path which started with Almgren’s monumental work (see [21],
but also [12-15, 17-20]) we use the monotonocity of the frequency function to define
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tangent functions to u. Let D, u, U and f be as in Assumption 13.1. Let x € dD and
denote by n(x) the interior unit normal to dD. If we denote by V* the half space
{y : n(x) -y > 0}, the tangent functions to u at x are multivalued functions defined on
VT, which turn out to be locally Dir-minimizing and in fact satisfy Assumption 13.1
with D = V' for any bounded open set U.

The central result is the following theorem of which Theorem 13.3 is a direct corollary.

Theorem 13.9. Let D, U and u be as in Assumption 13.1. Let x € 0D and assume that, for
some p > 0, D N By(x) is connected and u does not vanish identically on B,(x) N D. Define

B ui(x + py)
urp(y) =) |[Dir(u, Bp(x))l/zﬂ '

i

Then Iy(x) := lim,_o I(u(- — x),r) = 1 and, for every sequence py | 0, there is a subsequence
(not relabeled) such that uy,, converges locally uniformly on V* to a Dir-minimizer iy =
Y.i [vi]l satisfying the following properties:

(a) each v; : VT — R" is a linear function that vanishes at OV ™;
(b) for every i # j, either v; = vj, or v;(y) # v;(y) for everyy € V*;
(c) Dir(uyp,B1) =1land gouyy=0.

Proof. First of all we let I := Ip(x). It follows from the same arguments of [21, Lemma
4.28] that a subsequence, not relabeled, of uy,, converges to a Dir-minimizer u,o =
Y_i [vi] which has the property (c) and which is I-homogeneous. Up to a rotation of the
system of coordinates we can assume that V' = {x; > 0} (and hence 0V is the xy-axis).
From now on we use polar coordinates on V* and in particular we identify dB; N V"
with (=7, 7). Let ¢ = ¥, [g:] be the restriction of u, on 0By N V. We can then use [12,
Proposition 1.2] to conclude the existence of Holder maps g1,...,8¢ : (—m, ) — R”
such that

$(6) = Y [si(0)].
In particular

uxo(0,r) =Y [[rlgi(Q)ﬂ ,
1
and each u;(0,7) = rlg;(9) is an harmonic polynomial. In particular I must be an
integer. Since however u,o = Q[0] on {x; = 0} and Dir(u,p, B1) > 0, it must be a
positive integer.

Observe that, if i # jand 6y € (—7, 5 ) is a point where g;(60) = g;(6o), then g; and g;
must coincide in a neighborhood of 6, otherwise the whole halfline { (7 cos 6y, rsin6p) }
consists of singularities of u,, contradicting [12, Theorem o.11]. In particular by the
unique continuation principle for harmonic functions we have



13.3 PROOF OF THEOREM 13.5

(Alt)" either u;(r,0) # uj(r,0) for every (r,0) €]0,+oo[x(7,75), or u;(r,0) = uj(r,0)
for every (r,0) €]0, +oo[x (5, F),

SO

(Alt) either g;(0) # gj(0) for every 0 € (-7, %), or gi(0) = g;(0) forevery 0 € (—73, 7).

Next, using the classification of 2-dimensional harmonic polynomials, we know that
there are coefficients a;,b; € R” such that

2i(0) = a;cos(16) + b; sin(I6) .

If I were even, since gi(%) = gi(—75) = 0, we conclude that a; = 0. But then all the

gi’s would vanish at 6§ = 0 and (Alt) would imply that they all coincide everywhere.

This would however contradict (c). Likewise, if I were odd and larger than 1, then we
would have b; = 0 and all the g;'s would vanish at 6 = 7;. We thus conclude that I is
necessarily equal to 1. This proves then (a), while (Alt) shows (b). O

13.3 PROOF OF THEOREM 13.5

Fix a point x € dD and assume that # does not vanish in any neighborhood of x. Then
Theorem 13.9 implies that the frequency function Iy(x) is 1. Arguing as in [21, Corollary
4.27] we conclude however that, for every § > 0, there is a radius p > 0 such that

D(r) D(p)
r2+‘52(1_(5)p2+‘5>0 Vr<op.

This shows that x cannot be a contact point.
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In this section we consider a neighborhood of a flat point and we introduce the
cylindrical excess E(T, C,(p, V)) as in [21, Definition 5.1]. Then, under the assumption
that E(T, C,(p, V)) is sufficiently small, we produce an efficient approximation of the
current with a multivalued graph. One important point is that the graph of such
approximation, considered as an integral current, will also have boundary Q [I']. From
now on, given a point p and a plane V through the origin, B,(p, V) will denote the
disk B,(p) N (p+ V), V* the orthogonal complement of V and C,(p, V) the cylinder
B.(p, V) + V. We then denote by py and pi; the orthogonal projections respectively
on V and its orthogonal complement.

Definition 14.1. For a current T in a cylinder C,(p, V) we define the cylindrical excess
E(T,C,(p,V)) and the excess measure er of a set F C By, (py(p), V) as

]. — —
BTG (pV)) = s [T = VP,
1 — —
er(F)i=5 [ |- VPd|T|.

The height in a set G C R*™ with respect to a plane V is defined as

h(T,G,V) :=sup{|pv(q — p)| : 4, p € spt(T) NG} . (14.1)

If p and V are omitted, then we understand that C, = C,(0,R? x {0}) and V =
R? x {0}.

Assumptions 14.2. Let I and T be as in Assumption 12.5. q is a fixed point, which without
loss of generality we assume to be the origin, r an arbitrary radius such that (0T)LCg =
Q[I']LCyy and

(i) g =(0,0) € Tand T,T = R x {0} C Vo =R? x {0},
(ii) v = p(T) divides By, in two disjoint open sets D and By, \ D;
(iii) psTL Cyq = Q[D].

Observe that thanks to (iii) we have the identities

1
W(HTH(CM —Q[D|), (14.2)

er(F) = [IT|[(F x R") = Q[D N F|. (14.3)

E(T,Cy) =

85



86

FIRST LIPSCHITZ APPROXIMATION

Following a classical terminology we define noncentered maximal functions for
Radon measures y and (Lebesgue) integrable functions f : U — R by setting

1

mf(z) = sup ¥z
z€Bs(y)cU s Bs(y
B
my(z) ;= sup V(;S(zy))
z€Bs(y)cU

Remark 14.3. Observe that by our assumptions there is an interval I C R containing
(—5r,5r) and function ¥ : I — R"*! with the property that Cs, N\T = {(t,¥(¢)) : t € I}.
Moreover ¢(0) = 0, ¥(0) = 0 and [|i||co < CA for a geometric constant C(n). In
particular |¢(#)| < CA#? and |¢(t)| < CAt. Finally observe that, if we write = (1, ),
then 0D = (¢, ¢ (t)) and T can be written as the graph of a function g on 9D defined
) =

by g(t, ¥1(t)) = $(t).

/
/\ )
r .
—1/ (t, fm/ (t, wn(t), (1)) -~/
/ D = (p, quu P
.’. i : - f
~=pll) / N __f' L /
0 LN A
S T TTT— A S /
/o e cip=(Eu(t])
/ e Ll \ /
R % { (]}/ . - ‘\rk\\\_\?_” B /’/,'/ E * /
/ ; 0 t /
'l i/
/
/
,
/
/
.-'f.

Figure 2: An illustration of the maps describing the boundary.
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Proposition 14.4 (First Lipschitz approximation). There are positive constants C and c
(depending only on Q and n) with the following properties. Assume T satisfies Assumption
14.2, E := E(T, C4;) < co. Then, for any 6, € (0,1), there are a closed set K C D N B3, and a
Q-valued function u on D N Bz, with the following properties:

ulapng, = Q[8] (14.4)
Lip(u) < C(3) +rA) (14.5)
osc(u) < Ch(T,Cy) + CrE"? 4+ Cr?’A (14.6)

K C Bs; N {mer < 4.} (14.7)
G, LK xR"| = TL[K x R"| (14.8)

C A2
(DNB)\K| < Ser ({meT > 47151 N BSW) +CTs Vs <rdnr
(14.9)

T — Gul[(Ca) (E+ A2?) (14.10)

r2

242 . .
where 1y = c\/ B2 and c is a geometric constant.
*

<
5

<

*

Proof. Since the statement is invariant under dilations we assume w.l.o.g. that r = 1.

Consider the extension ¢ of the function ¢ defined in Remark 14.3 which is simply
given by ¢(x1,x2) = ¢(x1). In order to simplify our notation, we drop the hat symbol
and denote the extension by g as well. Consider next the current T e I,(C4) which
consists of T = TLCy 4+ QGgL((Bs\ D) x R"), where we use notation G for the

integer rectifiable current naturally associated to the graph of a function g : By — R".

More formally, if g(x) = (x,¢(x)), then
GgL((B4\ D) x R") = g,([B4\ DI). (14.11)
In particular from (14.11) and the classical theory of currents we see that

(0T)LCy =Q[ITLCs — Qg:([0D N By]) = Q[I]LCs — Q[I[LCs =0,  (14.12)
p:T =Q[D] + Q[Bs\ D] = Q[B4] . (14.13)

Moreover, we can use [14, Corollary 3.3] to estimate
IT]/(Cs) — Qr4* = E(T, C4) + Q([IGg | (B4 \ D) x R") — |DJ)
< E(T,Cy) + Q/ |Dg|* < E + CAZ. (14.14)
B,\D
Similarly, we can define for F C By

er(F) = || T||(F x R") — Q|F|
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and the same considerations give
e+(F) <er(FND)+ CA?|F\D].

Moreover, we can apply [13, Proposition 3.2] to T to obtain a closed set K C Bj
and I € Lip (B3, Ag (R")) which satisfy all the estimates (14.5)-(14.10), with the only
relevant differences in (14.9), which becomes

N C A2
|Bs \ K| < 5. €T ({meT > 47151 N Bs+r1r(x)> + C(S—*s2 for every s < 3r. (14.15)
In order to show (14.4), we define an “almost reflection” i on the boundary 0D in the
following way:

h(x1,x2) = (x1,2¢1(x1) — x2)

and set K := h(K) N K. We now take the map 1, restrict it to K and then extend it again
to a Lipschitz map u with the additional property that (14.4) holds. In fact we first
define u : KU (0D N By) — Ap(R") as

u(y) = {Q[[g(y)]] ,ify €D
i(y) , else.

Note that in principle a point y could belong to both K and dD: in that case we are
ignoring the value given by 7 and force such value to be the one given by Q[g].
However a byproduct of the next elementary argument is that in fact (y) = Q[g(y)]
for every y € dD.

We now wish to show that the bound on Lip(u) and osc(u) becomes worse only by
a geometric factor. In fact, since the oscillation of Q [¢] is controlled by A, we just need
to focus on the Lipschitz bound. Consider p € dD, q € K. By construction of k, let o be
the vertical segment joining ¢ and /(g) and let § be the only intersection of o with dD.
Thus

G(u(p),u(q)) G(u(h(q)), u(p))

) +

) +CG(u(g),u(p))
)) +CQlg(p) — 5]
1) +CQAlp —q|.

IA AN IA TN

Now we can use the Lipschitz Extension Theorem [12, Theorem 1.7] to extend u to
the whole domain B,, while enlarging the Lipschitz constant and the oscillation by a
geometric factor.

So far our map satisfies (14.4), (14.5), and (14.6). However, (14.7) and (14.8) are
obvious because K C K.
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Next we show (14.9) holds with a slightly larger constant. First of all notice that,
provided A is sufficiently small, & is a diffeomorphism and that h~!(B;) C B, L CAs?/
because 1(0) = 0 and ||Dh —1d ||¢(p,) = [[Dh — Dh(0)||c(s,) < CAs. In particular we
can estimate

|(BsN D)\ K| < [Bs \ K| + |Bs \ h(K))]
< |Bs \ K|+ C|h™}(Bs) \ K| < Clh(Bsycae \ K)|.

Finally we conclude

IT = Gull(C2) < [T - Ga

(C2) + |Gy — Ga|(C2).

For the first summand, we already have the desired estimate from [13, Proposition 3.2].
For the second we observe

1Gu = Gall(C2) = [|Gu — Gal| (B2 \ K) x R") < C[B2\ K[,

and we then use (14.9). This shows (14.10).

The proof would be complete, except that our approximation and estimates hold
on slightly smaller balls than claimed. It can however easily be checked that in [13,
Proposition 3.2], we just need to reduce slightly the size of the radius from 4 to a fixed
smaller one, while the argument is literally the same: the price to pay are just worse
constants in the estimates. ]
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Definition 15.1 (EP-Lipschitz approximation). Let 8 € (0,1) and T be as in Proposition
14.4. After setting 6, = (E + A2)?, the corresponding map u given by the proposition
will be called the EP-Lipschitz approximation of T in Cs, and will be denoted by f.

In this section we use the minimimizing assumption on T to show that the EF-
Lipschitz approximation is close to a Dir-minimizing function w. We first introduce
some notation.

Assumptions 15.2. D C R? is a C? open set, U is a bounded open set and u € W2(D N
U, Ag(R")) a multivalued function such that ulypry = Q[gll, where g is as in Remark
14.3. u is Dir-minimizing in the sense that, for every K C U compact and for every v &
W2(D N U, Ap(R™)) which coincides with u on (U \ K) N D and v|ypry = Q [g] we have

Dir (1) < Dir (v).

Theorem 15.3 (First harmonic approximation). For every 5 > 0 and every p € (0,1), there
exist a constant € = €(n, B) > 0 with the following property. Let T and T be as in Assumption

14.2 in Cy, (in particular T is area minimizing in Cy,). IFE = E(T,Cyy) < e and rA < ¢E3,
then the EP-Lipschitz approximation f in Ca, satisfies

/ IDf|? < nEm(4r)? = yyer(By). (15.1)
Bo,ND\K
Moreover, there exists a Dir-minimizing function w such that w|ypnp, = Q [g] and

r /BzrﬁDg(f/ZU) + Bszg(Df,Dw) <nEm(4r)° =ner(Bs), (15.2)

[ 1D@o f) = Dlyow)P < yEm(4r) = per (By). (15:)
B>,ND

The following proposition provides a Taylor expansion of the mass of the current
associated to the graph of a Q-valued function. It is proven in [14, Corollary 3.3]
(although the corollary is stated for V open, the proof works obviously when V is
merely measurable).

Proposition 15.4. (Taylor expansion of the mass, see [14, Corollary 3.31). There are dimensional
constants ¢,C > 0 such that the following holds. Let V. C R? be a bounded measurable set
and let u : V. — Ag (R") be a Lipschitz function with Lip(u) < c. Denote by G, the integer
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rectifiable current associated to the graph of u as in [14, Definition 1.10]. Then, the following
Taylor expansion of the mass of G, holds:

1
M(G,) = QIVI+5 [ IDuP+ [ YR (Du),
i
where R : R™? — R is a C' function satisfying |R(D)| = |D]3L(D) for some positive
function L such that L(0) = 0 and Lip(L) < C.

Remark 15.5. We write here the analog of ([13, Remark 5.5]). There exists a dimensional
constant ¢ > 0 such that, if E < ¢, then the EF -Lipschitz approximation satisfies the
following estimates:

Lip(f) < C(E+CA?)P, (15.4)

(14.9)
/ IDf|> < C(E+ A?%)s% (15.5)
B35(X)QD

Indeed (15.4) follows from Proposition 14.4, by the choice of f and the scaling of A.
While (15.5) follows from Proposition 15.4 since for E sufficiently small

1
RDZ-<CE25/ D2<f/ Df2,
/Bgs(x)ﬂD; (Dfi) < B3s(x)ﬁD| fl 4 B3s(x)ﬁD| f

and therefore

2 ny
/Bss(X)ﬂD [DfI* < C(M(GflCss(x) N (D x R") = QD)

< C(M(TLCs(x)) — Q|D|) + CM (GyL (Bss(x) N D\ K) x R")
< CEs* + C(E + A%)* |Bss(x) N D\ K| < C(E + A?)s?.

Proof of Theorem 15.3. By rescaling, it is not restrictive to assume that r = 1. The proof of
(15.1) is by contradiction. Assume there exist a constant ¢; > 0, a sequence of currents

(Ti)ren satisfying Assumption 14.2 and corresponding Ef -Lipschitz approximations
(fi)ken Which violate (15.1) for # = ¢; > 0. At the same time 0TL C4(0) = Q[I'],
where T is a sequence of C? curves. For the latter we have ToI', = R x {0} and a
parametrization ¢ : R — R"*! of the form

Pr(t) = (¥ (1), §°(1)) -

1
Moreover we assume ||¢*||c2 < CAy < CexEZ. The domain of definition of the map f;
is a set Dy which can be explicitly written as

Dy = {(xl,xz) € B3z :xp > ll)llc(xl)} .
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Summarizing, our currents satisfy the following:

1
E(Ti,Cy) <& >0, Ar<eE! and / : DAL > oiE (15.6)
Dy\Kyi

where Kj := {x € B3 : mer, (x) < Eiﬁ}. Set Ay := {x € Dy :meg (x) < 2_2]3]%/3} and
observe that Ay N B3 C K. From Proposition 14.4 it follows that for every r <3

Lip(f) < CEf (157)

B, D\ K| < CE ey, (Br+r0(k)\Ak) +cgEXp) (15.8)

where (k) = 16E,§1_25)/2 < % Then, (15.6), (15.7), and (15.8) give

5
c1Ep < / IDfi|* < Cer, (Bs\ Ax) + Ce2E2  for every s € [,3] . (15.9)
BzﬂDk\Kk 2

Setting ¢, := ¢1/(2C), we have
2C2Ek < €T, (Bs N Dk \ Ak) = e (BS N Dk) —er, (Bs N Ak) ,

implying
er, (A¢N Bs) < eq, (Dx N Bs) — 2c2Ey. (15.10)
Next observe that 27142E;, = er, (B4 N Dy) > er, (Bs N Dy). Therefore, by the Taylor

expansion in [13, Remark 5.4], (15.10) and the fact that E; | 0, it follows that for every
s € [5/2,3] and k large enough so that CE?Px < ¢,, we have

1 Taylor

5/ IDARP < (14 CEF) er, (A1 By)
k! 1Ps

(15.10) 26
< (1+CEP) (er, (B, N Dy) —2c2E)
< er, (BsN D) — 2. (15.11)
Our aim is to show that (15.11) contradicts the minimality of T;. To construct a
competitor, we write fi(x) = ¥;[fi(x)] € Ag (R"). We consider hy := Ek_l/sz. Observe

that hlop, = Q[[Ek_l/zlﬁk]} and that in turn ||[¢¥|| < CskEk%. In particular Ek_l/zgﬁk
converges strongly to 0 in C2. Extend ¢/ to B3 N Dy by keeping it constant in the variable
x2. Thus G (h, Q[E, Y25K]) is a classical W'2 function that vanishes on dDy. Since by
[13, Remark 5.5(5.5)] we have sup, Dir (h, B3 N1 D) < oo, the Poincaré inequality gives

IG (h, QLE, **¢]) l2(pyrmy) < C,

which in turn implies ||G (hx, Q[0]) || 12(p,n5,) < C. Hence {h} is bounded in W12, Even
though the domains of the /i depend on k, we can extend the maps identically equal to
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Q{¢*} on their complement, and thus treat them as maps on Bs. Up to a subsequence,
not relabeled, we can thus assume that the maps converge to some h € W12, Observe
that /1 vanishes identically on the lower half disk B; := {(x1,x2) € B3 : x < 0} and
thus we will also consider it as a map defined on the upper half disk B, taking the
value Q [0] on the xj-axis.

Since

1G (hic, 1) 28, = O (15.12)

and the following inequalities hold for every open ()’ C Bz and any sequence of
measurable sets J; with |Jy| — 0,

1iminf</ |th|2—/ |Dh|2> > 0, (15.13)
kst \JorJ o

lim sup A (|Dhi| — |Dh|)*> < limsup A <|th|2 - \Dh]2> . (15.14)

k—+o0

V

Applying the first inequality with ] being the complement of A, we reach the following
inequality

1
5 /B+ |Dh|?* < li]gglek_leTk(Bs N D) —c2 for every s < 3. (15.15)

Now we wish to find a radius r € [%, 3] and a competitor function Hy such that
* Hil(s\p,)00, = Ml (8,185,000
° Hk|aDkﬂBg = hk|aDkﬁB3;
¢ The following estimates hold for a subsequence (not relabeled)

lim Dir (Hy, B,) < Dir (1, B,) + %, (15.16)

k—o0
Lip (Hy) < C*Ef_l/2, (15.17)
1G (Hi, h) || 125y < CDir(hy, B)) + CDir(Hy, B,") < M < +00, (15.18)

where C* is a constant independent of k.

After proving that such a function exists, we can then follow the proof of [13, Theorem
5.2] mutatis mutandis.

In order to show our claim we will use (15.12), the Lipschitz bound Lip(hy) <
CEffl/z, the bound sup, Dir(/, B3) < C, and (15.15). Note next that, since ||(¢*/E1/2| = |
0, all these facts remain true if we replace h; with the map

hu(x) == 1 | ()i — 9] -

i
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The advantage of the latter is that /x|yp, = Q [0]. Assuming that we find corresponding
maps Hy satisfying all the properties above, we can then simply get Hy by adding back

P*:
H(x) = ¥ | (Fo: + ]

1
(because the difference in the Dirichlet energies of Hy and Hy and the difference in the
Lipschitz constants are both infinitesimal).

The next issue is that the domains Dy N B; are curved compared to B;. To resolve
this, we invoke Lemma 15.6 below. For each k we apply the lemma to ¥ and get a
corresponding diffeomorphism ®; which maps each Bs N Dy diffeomorphically onto
B;. Observe that

lim (HCIDk—IdH@+Hq9k_1—1d||cl> =0 (15.19)
k—c0

because ||¢f||c1 — 0. For this reason the maps iy := i o ®, ! satisfy the same assump-
tions as /. (and hence as /). Indeed, after having built the corresponding competitors
H, we can then define Hy := Hj o ®;. Again the desired conclusion follows because
the difference of the Lipschitz constants and Dirichlet energies are infinitesimal.

Summarizing, we have reduced the proof of the proposition to showing that the
competitor Hy can be constructed, without loss of generality, under the additional
assumptions that all /;’s are defined on the same domain B; and that they all vanish
on {(x1,x2) € By : x, = 0}. This is accomplished in Proposition 15.7 below. Now that
we have illustrated how to construct suitable competitors we can proceed with the
proof of the theorem. We restart observing that, when k is large enough, (15.13) implies
the following inequalities

Co (5.11) €T, (Br) 3¢y

Dir (h,B,) < Dir (b, B, N\T) + — < — —E. (15.20)
4 Ex 4

Note that (15.17) follows from (15.27) as E,’f —1/2 1 co. Thus C* depends on c; and
on the choice of the two sequences, but not on k. From now on, although this and
similar constants are not dimensional, we will keep denoting them by C, with the
understanding that they do not depend on k. Note that, from (15.7) and (15.8), one gets

|Te — G || (C3) < | Tkl ((B3 \ Kx) x R") +||Gp,[| (B3 \ Kx) x R")
< Q|Bs \ Ki| + Ex + QB3 \ K| + C[Bs \ K¢| Lip (f¢)

< Ex+CE * <cg .

Let (z,y) denote the coordinates on R? x IR" and consider the function ¢(z,y) = |z]
and the slice <Tk =Gy, 0, r> . Observe that, by the coarea formula and Fatou’s lemma,

3
/r liminf E”"'M ((Ti = Gp,, 9,5)) ds < liminf B | T — G || (C5) < C.
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Therefore, for some 7 € (r,3), up to subsequences (not relabeled) M ((Ty — Gy,, ¢, 7))
< CE;fzﬁ. Let now v := E;/ZH;{]B? and consider the current Z; := Gy, L C;. Since

(vk)|aB, = fklsp, , One gets 9Z; = (Gy,, ¢, 7) and hence, M (9 (TxLC; —Z4)) < CEl %,
We define

Sk = Tl (Ca \ Cr) + Z + Ry, (15.21)
where (cp. [13, Remark 5.3]) R is an integral current such that
R, = (T(LC;r—Z) and M(R) < CE! 22

In particular, we have 9S; = 9 (T Cy4). We now show that, since g < 1, for k large
enough, the mass of Sy is strictly smaller than the one of Ti. To this aim we write

Dir oy, Br) — Dir (fi, B N Ay) :/ yka\z—/ DR =
B; B:NA

7

The first term is estimated by (15.16) and (15.13). Indeed, recall that vy = E; 172 Hj and
fi = E;/ 21 (but also that the two functions coincide on B; \ B, ). We thus deduce that
I; < ZE; for k large enough. Hence, by using (15.11) we observe

M (Sk) =M (Tyx) <M (Z) + CM (Ry) — M (T L Cy)

0
<Q|B|+/ Doyf* +CE "+ CE("P2 — Q|B;| — e, (Br)
IDfi/? 1+2p (1-2p)2
<[ I SeoEe+ CEP 4 CEL 2 ep (By)
CoE 1+8 (1-28)2
< - +CE,. "+ CE; <0, (15.22)

as soon as Ej is small enough, i.e., k large enough. This gives the desired contradiction
and proves (15.1).

Now, we come to the proof of (15.2) and (15.3). To this aim, we argue again by
contradiction using similar constructions of competitors. Without loss of generality, we
assume x = 0 and s = 1. Suppose (Tj), is a sequence with E; := E (T}, C4) satisfying

1
E (T, Cy) <& — 0, A < gEf, (15.23)
but contradicting (15.2) or (15.3). Let us denote by f; the Ef -Lipschitz approximation

of Ti. We know that, for any sequence of Dir-minimizing functions i, which we might
choose, we will have by the contradiction assumption that

hmme / (fo i) + (|Dfx| — |Ditg|)* + |D (g0 fr — noﬁk)|2) > 0. (15.24)

=:I(k)
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As in the previous argument, we introduce the auxiliary normalized functions hy =
E, 172 fr and, after extraction of a subsequence, the function / satisfies (15.13) and
(15.14). Moreover ||G (h, 1) | 12(5,) — 0. We next claim (and prove)

T 2 2
(i) limy [p, [Dhi|” =[5, |DR[7,
(ii) h is Dir-minimizing in B,.

Indeed, if (i) were false, then there is a positive constant ¢, such that, for any
re[5/2,3],

"~ |Dh|? |Dhy[? er, (Br) o
< 0 < —_ :
/, 2 Sy 2 =T E 2 (15.25)

provided k is large enough (where the last inequality is again an effect of the Taylor
expansion of [13, Remark 5.4]). We next define the competitor currents Sy as in the
argument leading to (15.22). Replacing in the argument above (15.11) and (15.20) by
(15.25), we deduce again (15.22). On the other hand (15.22) contradicts the minimality
of Ty. So we conclude that (i) is true.

If (ii) were false, then h is not Dir-minimizing in B,. Thus, we can find a competitor
h € W12(Bs, Ag(R")) with less energy in the ball B, than h and such that 7 = h on
B3\ Bs/,. So for any r € [5/2,3], the function / satisfies

7|2 2 2

[ e [ e g s
provided k is large enough (here c; > 0 is some constant independent of r and k). On
the other hand, 1 = h on B3\ Bs/, and therefore ||G (h, h) HL2(33\35/2) — 0. We then
construct the competitor current Sy of (15.21). This time however, we use the map
I in place of h to construct Hy via Proposition 15.7 and we reach the contradiction
(15.22) using (15.26) in place of (15.11) and (15.20). We next set iy := E;/zh and we
will show that I(k) — 0, violating (15.24). Observe first that as ||G (h, h)| . — 0, we
have D (o hi) — D (€oh) — 0 weakly in L? (recall the definition of & = &gy in [13,
Section 2.5]). So, (i) and the identities |D (& o hx)| = |Dhy/|, |D (¢ o h)| = |Dh| imply that
D (& o hy) — D (Z o h) converges strongly to 0 in L2, If we next set i = Y_;[h — 5o h] and
fy = Y[ — 17 0 ], we obviously have HQ (fl, fzk) HLZ + |[goh —noh|;» — 0. Recall
however that the Dirichlet energy enjoys the splitting

Dir () = Q./]D(qohk)|2+Dir(fzk), Dir (h) = Q/]D(qoh)|2+Dir(fz).

So (i) implies that the Dirichlet energy of # o h; and I converge, respectively, to the
one of 77 o h and /i (which, we recall again, are independent of k because the f; ’s are

97



98

HARMONIC APPROXIMATION

translating sheets). We thus infer that D (7o h) — D (5 o hi) converges to o strongly in
L2 Coming back to i1, we observe that iy is Dir-minimizing and

Ez;l/B G (i, fr)* =/B G (h, h)* — 0.

2

So,
limsup I(k) §limsup/ (|Dhy| — |Dh|)* + |D (o by — o h)|.
k k B,

Thus I(k) — 0, which contradicts (15.24). O

15.1 TECHNICAL LEMMAS

Lemma 15.6. There is a positive geometric constant ¢ > 0 with the following property. Consider
a C! function ¥y : [0,4] — R such that 1(0) = ¢} (0) = 0 and ||¢1]|c1 < c. Then there is a
map ® : By — By such that

e ® maps B diffeomorphically onto itself for every s € (0,4];

o ifweset D := {(x1,x2) : [x1] <4,x2 > ¢1(x1)} then O maps D N By diffeomorphically
onto B for every s € (0,4];

o | —Td||c + ||® — || < Cllyn]cr

Proof. We use polar coordinates (6, 7) and let the angle 6 vary from —7 (included) to
37” (excluded). It is in fact easier to define the map ®~!. If c is sufficiently small, each
circle dB; intersects the graph of ¢ in exactly two points, given in polar coordinates by
(6,(s),s) and (6;(s),s), with 6;(s) > 6,(s). Furthermore, again assuming c is sufficiently
small, |6,(s)] < F and |6,(s) — | < F. In polar coordinates the map ®~! is then
defined on B} by the formula

@—1(9,5) _ (97(5)(7( - 9) + 91(5)9,5) )

7T

The verification that |® ! — Id||c1 < C||¢1]|c1 is left to the reader.
We then need to extend the map to the lower half disk keeping the same estimate.
This could be reached for instance by the formula

7T

@ 1(8,5) = < ge(0-)(0=27) 4 20, 9r,s> for m < 6 < 2m,

where a = a(s) := 7{—2(1_%). -

In the next proposition we want to “patch” functions defined on the upper half
disk B;* which vanish on the x;-axis. For convenience we introduce the notation H;
horizontal boundary for Hs = {(x1,0) : |x1]| < s}.
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Proposition 15.7. Consider two radii 1 < ro < r; < 4 and maps hi,h € W'2(B}, Ag(R"))
satisfying

sup Dir(hy, B,) < 400 and Hg(hk,h)HLz(Bil\Byo) —0
k
and hily, = hly, = Q[0]. Then for every n > 0, there exist r €]ro, 1], a subsequence of
{hic} (not relabeled) and functions Hy € W'2(B/}, Ag(R")) such that:
. Hk‘Brl\Br = hk‘Brl\B,f/'
b Hk‘?-[s = Q [[0]] and
e Dir(Hy, B}) < Dir(l, Bj) + 1.

Moreover, there is a dimensional constant C and a constant C* (depending on 1 and the two
sequences, but not on k) such that

Lip(Hy) < C* (Lip(ht) +1), (15.27)
||Q(Hk, ]’lk) HLZ(BrJr) S CDiI‘(hk, B:_) + CDiI‘(Hk, B;‘—) , (1528)
70 Hilsse) < C 0 bl sy + Clly o bl (15.20)

Before coming to the proof of the proposition we state the following variant of the
Lipschitz approximation in [13, Lemma 4.5]. Observe that the only difference is that our
functions are defined on the upper half disks and vanish on the horizontal boundary.
We need the Lipschitz approximation f, to satisfy the same requirement.

Lemma 15.8 (Lusin type Lipschitz approximation). Let f € W?(B,", Aq) be such that
flu, = QIO]. Then for every € > 0 there exists f. € Lip(B;", Ag) satisfying fe|y, = Q[0]
and

L 9 s+ [ (UDAI=IDED*+ [ (IDte f)l =ID(ro f)))* <. (1530)

If in addition fyp+\5, € W'*(3B,, Ag), then fe can be chosen to satisfy also

2
Jopors G FP+ [ (DA~ IDAD < (1531

Now we need the following interpolation lemma.

Lemma 15.9 (Interpolation). There exists a constant Cy = Co(n, Q) > 0 with the fol-
lowing property. Assume r €]1,3 [, f € W' (B, Ag) satisfies fly, = Q[0] and fly, €
W'2 (9B, Ag), and g € W'Y (0B}, Ag) is such that gl opr = QIO
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Then, for every ¢ €]0,r|, there exists a function he € W¥* (B,, Ag) such that hy| 3B, = &
hel, = Q0] and

C
Joon< [ e [ (IDefP+ D)+ =2 [ (97, G532)

Lip(he) < Co {Lip(f) + Lip(g) + ¢ 'sup§ (f,g)} , (15.33)
9B;"
he| < , .
/W\no !_Co/aBr!ﬂogHCo/BjI'iOf! (15.34)

where D+ denotes the tangential derivative.

Proof. The proof is the same as in [13, Lemma 4.6], because the map constructed there
by the linear interpolation on the annulus and taking f in the interior disk vanishes on
Hrl . D

Proof of Lemma 15.8. We can apply directly [21, Lemma 5.5] to obtain a Lipschitz func-
tion f, satisfying ( fg)my = Q0] and (15.30). O

Proof of Proposition 15.7. The proof goes along the same lines as the proof of [13, Propo-
sition 4.4] using Lemmas 15.8 and 15.9 instead of [13, Lemma 4.5, Lemma 4.6], taking
into account that the situation here is simpler because we do not have translating
sheets. For the sake of completeness we report here the details. Set for simplicity
A =G (hk'h)HLZ(B,ﬁ\B%) and By := || o thL](Bm . If for any k large enough Ay =0,
then there is nothing to prove and so we can assume that, for a subsequence (not
relabeled) Ay > 0. In case that for yet another subsequence (not relabeled) By > 0, we
consider the function

— 2 2 -2 2 1
welr) = [ (1D +100P) + A2 [ G (4B [ lonl. (1535)

By assumption lim infy. | rgl Py (r)dr < co. Hence by Fatou’s Lemma, there is an r €] rg, 71|
and a subsequence (not relabeled) such that limy () < oo. Thus, for some M > 0 we

have
/ G (h h)? =0, (15.36)
9B;"
Dir (h,0B,") + Dir (h,dB,) < M, (15.37)
< . :
/aB,+ 170 hi| < Ml o byl 5, (15.38)

In case By = 0 for all k large enough, we define i, by dropping the last summand in
(15.35) and reach the same conclusion. We apply Lemma 15.8 with f = h, r = r; and find
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a Lipschitz function &, satisfying the conclusion of the lemma with & = &;(, M) > 0
(which will be chosen later). In particular we have

G (i he) | 2p8) < NG P Wl 2qpi vy + 19 (BB |2y < 0(1) + 1,
Dir (hs,, B;") < Dir (1,0B}) < M + &1 .

To obtain also the estimate (15.29), which will be required in the construction of the
center manifold, we argue along the same lines of [13, Proposition 4.4]. For hs, =
L2, [(he )] we set e, = £, [(he, )i — 10 he, + (50h) * gp], where g, (x) := Lo(2),
and ¢(x) = @(x — zg) with @ being the standard bump function with support in B;(0),
zg := (0, —2) and p will be chosen small enough later. Observe that spt(¢,) = B,(pzo) C
B, for every p small enough and spt(¢) = Bi(zp). The reason to introduce this
convolution kernel ¢, with support contained in B, is that we need to preserve the zero
boundary condition on H,. Indeed, we claim that such an &, satisfies (h, )|y, = Q[0]
in addition to all the other conclusion of the proposition. The fact that (k)|y, = Q[0]
is a simple consequence of the definitions and we leave it to the reader. Observe that
the standard approximation properties of mollifiers reinterpreted suitably extends to
this new kind of kernel. In particular, we can choose p small enough to have

Q*llpoh— (goh)* g,llf. < &1, (15.39)
ID(oh) = D((0h)* p)llf> < &1, (15.40)

for some small ;. These last two inequalities combined with (15.36), (15.37), (15.38)
imply

_ (15.39) _
e IG ()| 2 G )2 +2|G (e || 2 + 1 < 0(1) + 321,

* Dir (hg,0B,) <2M + 2z,
* Dir (F, B) = 1 [ |D (Ra), = D (gohe) + D (1) = )
- /Br (‘Dﬁil Z_Q}D(qoflgl)‘z—f—Q‘D ((qoh) *gop—)|2)
= [ (IDtromP =D (yohe) +|D (o= gp)|* = ID (o))

+ Dir (Fe,, B,)
S Dir (h§1/ Br) + ZQél ’

where we used (15.30),(15.40) in the last inequality. We can then apply the interpolation
Lemma 15.9 with f = iz, and ¢ = hijop;, and € = & = €2(17, M) > 0 to get maps Hy

101



102 HARMONIC APPROXIMATION

satisfying Hi[yp+ = hklyp: Hk|Bfg\B,+ = hk|B,+1\B,+- Now, we use (15.36), (15.37), (15.38)
(15.30) and (15.31) to deduce

(15:32) - -
Dir (Hy, BY) < Dir (e, B}) + & Dir (hie,, 9B, ) + & Dir (Iy, 9B;")

Co - 2

< Dir (h,B)") 4 & + 2Q&; + 3¢, [Dir (h,0B,") + & | + &M
Go 2 2
+— [/Wg(h,hk) +/agrg(hgl'h) ]

& f

IN

Dir (1, B") 4+ &1(1 +2Q) + &2(4M +381) + Cog; ' [o(1) +&1].

An appropriate choice of the parameters &; and &, gives the desired bound Dir (Hy, B,) <
Dir (h, B;) + 17 for k large enough. Observe next that, by construction, Lip (h, ) depends
on 77 and &, but not on k. Moreover, we have

1G (he,, 1) HLw(aB,) < C||G (e, ) HLz(aB,) + CLip (h) + CLip (he,) -

To prove the last inequality put F(x) := G (I (x), hx(x)) and observe that F(x) <
F(y) + Lip(F)|x — y|, then integrate in y and use the Cauchy-Schwarz inequality com-
bined with the fact that Lip(F) < C(Lip(hs, ) + Lip(hx)). Thus (15.27) follows from
(15.33). Finally, (15.28) follows from the Poincaré inequality applied to G (Hy, h) (which
vanishes identically on 9B;"), in fact we have

1G (Hi, he) 1225+ < CIIVG (Hi, hie) 1325+ < CDir(hy, B;") + CDir(Hy, B).
( 71) ( 71)

(15.29) follows from (15.34), because of (15.38) and || o Iz, HLl(Br) = ||(goh) ¢z HL](Br) <

1 oh| (8,) if p is also chosen small enough such that r + p < ry. Indeed, observe that
5!

lmo Hellpgsy = llwo Hell sy + 170 huell s\ 87
1 1

(1534) _
<o nomd +Co [ noel +lne s s

(15.38)
< Collnohellgssy +Co [ 10101)x @l + Imo el s

(15.39)
< C0||’70hk||L1(B,+)+C||’Ioh“L1(B,+)+||’7°thL1(B,+1\B,+)

< Cllyohllpgg) +Climo bl ),

provided p is chosen so small that 7 4+ p < r. O



HIGHER INTEGRABILITY ESTIMATE

We consider the density dr of the measure er with respect to the Lebesgue measure
|-, ie.

i er(Bs(y))
dr(y) —hr?jélp 2

We will drop the subscript T when the current in question is clear from the context.
Clearly, under the assumptions of Proposition 14.4, ||dr||;1 < CE. Now, following the
approach of [13], we wish to prove an L? estimate for a p > 1, which is just a geometric
constant.

Theorem 16.1. There exist constants p > 1, C, and € > 0 (depending on n and Q) such that,
if T is as in Proposition 14.4, then

d? < C (E+ A?)". 6.
/{dgl}mB2 o ( * ) (16.1)

16.1 HIGHER INTEGRABILITY FOR DIR-MINIMIZERS

We start with an analogous estimate for the gradient of Dir-minimizers.

Proposition 16.2. There are constants g > 1,6 > 0 and C (depending only on Q and n) with
the following property. Consider a connected domain D in R? such that:

* the curvature k of 0D enjoys the bound ||k || < ;
* 90D N Byg(x) is connected for every x.

Let 0 < p < 1and u : Bgy,(x) N D — Ag(R") be a Dir-minimizing function such that
”|aDme(x) = Q[g] for some C* function g. Then

1
<][ |Du]2‘7>q < c][ IDul? + C||Dg|13, - (16.2)
BP(X)QD Bsp(x)ﬁD

Proof. First of all, the claim follows from [13, Theorem 6.1] when By, (x) C D, while it is
trivial if By, (x) C int (D). We can thus assume, without loss of generality, that Ba,(x)
intersects dD. Let y be a point in such intersection and observe that B,(x) C By, (y).
The claim thus follows if we can show

1
(100 <cf ipu+cipglz, (163)
Br(y)mD BZr(y)mD
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for every y € 0D and every r < 4. We now define
1(z) = Y [u(z) ~ nou(2)],
1

and observe that |Du| < |Dii| + Q|Dn o u|, while 5 o u is a classical harmonic function
such that 7 o u|ypnp, = g, and 7 is a Dir-minimizing function such that i|3pnp, = Q [0].
Observe that

1
D ouzq)qgc][ Dyoul*+ C||Dgl
(£, IPn00 L Ipreufcipg]

is a classical estimate for (single-valued) harmonic functions and that |Dyo u| < |Dul.
Hence, it suffices to prove (16.3) when ¢ = Q [0]. Moreover without loss of generality
we can assume that y = 0 and r = 1. Our goal is thus to show

[1Dull| 248,70y < CllIDulll 128,y -

under the assumption that u|ypng, = Q[0]. If we extend |Du| trivially to the com-
plement of D, by setting it identically equal to 0, the inequality is just an higher
integrability estimate for the function |Du| on B;. By Gehring’s lemma, it suffices to
prove the existence of a constant C such that

11Dul [l 28, (x)) < ClIDu|[| 11 (g, (x)) (16.4)
whenever Bg,(x) C By. However, in the “interior case” By,(x) C D, the stronger

1Dull[ 128, (x)) < CllIDull[r1 (8, (x))

is already proved in [13, Proposition 6.2]. Hence, arguing as above, it suffices to prove
(16.4), with the ball By,(x) replacing B,(x) in the left hand side, under the additional
assumption x € dD. Again by scaling, we are reduced to prove the following estimate

I1Dullli2(8,npy < CllIDulllrrp,np) 10 € 9D. (16.5)

First of all observe that, by our assumptions, if J is sufficiently small, for every r € (1,2)
the domain D N B, is biLipschitz equivalent to the half disk B, N {(x1,x2) : xo > 0},
with uniform bounds on the Lipschitz constants of the homeomorphism and its inverse.
In particular, we recall that, by classical Sobolev space theory, we have

rcréi]lgl Hf — C||H1/2(a(BmD)) < CHDfHLl(a(BmD))

for every classical function f € Wlfl(aBr,]R). Moreover there is an extension F €
W12(B, N D) of f such that

IDF|2(8,npy < CIlf = cllm2@(s,npy) < CIIDS 1 ae8.0D)) - (16.6)



16.2 IMPROVED EXCESS ESTIMATES

Thus, using Fubini and (16.6), under our assumptions on u, we find a radius r € (1,2)
and an extension v of the classical function ¢ o M’a( D) to By N D such that

HDQ‘O”HLZ(B,mD) < CHDgOuHLl(a(BmD)) < CHD‘:O“HLl(BZmD) < C‘D”H‘Ll(mez)- (16.7)

If we consider the multivalued function ! o p o v, the latter has trace w := ¢ 1o&ou
on d(B, N D). Therefore, by minimality of u,

[1Dulll 280Dy < [IDW| 128,00y < ClIDY|12(8,nD) -
Combining the latter inequality with (16.7) we achieve (16.5). O

16.2 IMPROVED EXCESS ESTIMATES

Proposition 16.3 (Weak excess estimate). For every 1 > 0, there exists € > o with the

following property. Let T be area minimizing and assume it satisfies Assumption 14.2 in Cas(x).

IfE =E(T,Cys(x)) <, then
er(A) < noEs? + CA%s* (16.8)
for every A C Bs(x) N D Borel with |A| < €|Bs(x)]|.

Proof. Without loss of generality, we can assume s = 1 and x = 0. We distinguish the
two regimes: E < A2 and A? < E. In the former, clearly er(A) < CE < CAZ2. In the
latter, we let f be the Es -Lipschitz approximation of T in C3 and, arguing as for the
proof of [13, Theorem 5.2] we find a radius r € (1,2) and a current R such that

OR = (T -Gy, ¢,r)
and

2
M(R) < <§(E+A2r2)> < CE? 3.

Therefore, by the Taylor expansion in Remark 5.4 and the minimality of T, we observe
IT|[ (C) <M (GsLC, +R) < |Gy (C/) + CE?
. D 2
SQ!Br\-F/B |2f|+CE‘51. (16.9)

On the other hand, using again the Taylor expansion for the part of the current which
coincides with the graph of f, we deduce as well that

1
IT]| (B, NK) x R") > QIBrﬂK\+§/MK|Df|2—CE%. (16.10)
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Subtracting (16.10) from (16.9), we deduce

1
er (B,ND\K) < 7/ IDf|? + CEX. (16.11)
2 JB,nD\K

If & is chosen small enough, we infer from (16.11) and (15.1) in Theorem 15.3 that
er (B,ND\K) <7E+ CE™,

for a suitable 77 > 0 to be chosen. Let now A C Bj be such that |A| < ert. If € is small
enough, we can again apply Theorem 15.3 and so by (16.2) there is a Dir-minimizing
w such that |Df| is close in L? (with an error 7E) to |Dw| and by [13, Remark 5.5]
Dir(w) < CE. By Proposition 16.2 we have ||| Dw|||4(p,) < CE?. Therefore, using (15.1)
and (15.2), we can deduce

er(A) < /A |Dw|? + 3yE + CE*7
< CIDgIRIAI 1+ € (JA[2/0 4 ) B CEVY
<cC <|A|1‘2/‘7 + ;7) E + CES.
Hence, for a suitable choice of € and 7, (16.8) follows. O

16.3 PROOF OF THEOREM 16.1

The proof follows from Proposition 16.3 arguing exactly as in [13, Section 6.3].



STRONG LIPSCHITZ APPROXIMATION

In this section we show how Theorem 16.1 gives a simple proof of the following
approximation result analogous to [13, Theorem 2.4].

Theorem 17.1 (Boundary Almgren Strong Approximation). There are geometric constants
Y1 > 0,64 >0, and C > 0 with the following properties. Let T and I" be as in Assumption
14.2 with € = €4, let f be the E7-Lipschitz approximation and K C Bs, the corresponding set
where Gy and T coincide. Then:

Lip(f) < C(E + r*A%)n (17.1)
osc (f) < Ch(T,Cq4) + Cr(E+ rZAZ)% (17.2)
|B, \ K| + er(B, \ K) < Cr*(E+r*A%)1'm (17.3)
1
ITII(A x R") = QIAND| = 5 | [DfP| < Cr(E+r*A%)HM (17.4)
A

for every closed set A C B,.

We postpone the proof till the end of this section however we anticipate that it goes
along the same line of [13, Theorem 2.4] using Theorems 17.2 and 17.4 below instead of
[13, Theorem 7.1] and [13, Theorem 7.3] respectively. The substantial changes necessary
to adapt the argument of the interior case, i.e., [13, Theorem 2.4] concerns mainly the
proof of Theorem 17.4 while the proof of Theorem 17.2 is essentially the same as that
of [13, Theorem 7.1]. So we start by stating the Almgren’s boundary strong excess
estimate.

Theorem 17.2 (Almgren’s boundary strong excess estimate). There are constants €11, y11 >
0 and C > 0 (depending on n, Q) with the following property. Assume T satisfies Assumption
14.2 in Cy4 and is area minimizing. If E = E(T,Cy) < €11, then

er(A) < C ((E+ A% +|A|™) (E+A?), (17.5)
for every Borel set A C B 9

This estimate complements (16.1) enabling to control the excess also in the region
where d > 1. We call it boundary strong Almgren’s estimate because a similar formula
in the interior case can be found in the big regularity paper (cf. [5, Sections 3.24-3.26 and
3.30(8)]) and is a strengthened version of Proposition 16.3 that we called weak excess
estimate. To prove (17.5) we construct a suitable competitor to estimate the size of the
set K where the graph of the EP Lipschitz approximation f differs from T. Following
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Almgren, we embed Ag(R") in a large Euclidean space, via a bilipschitz embedding ¢.
We then regularize ¢ o f by convolution and project it back onto Q = ¢ (Ap(R")). To
avoid loss of energy we need a rather special "almost projection” p} that preserves zero
boundary data, i.e., p5(0) = 0.

Proposition 17.3. (Analogue to [13, Proposition 7.2]) For every n,Q € IN \ {0} there are
geometric constants &, C > 0 with the following property. For every 6 €)0,80[ there is
p3 :RNQM 5 Q = & (Ag(R™)) such that p%(0) = 0, |p3(P) — P| < C6® " forall P € Q
and, for every u € W2 (Q, RN), the following holds

D(psou)f < (1+c87) [ Duf+C Dul2.

/| (P§ )| - < ) {dist(u,Q)<6Q+1} ’ ‘ {dist(u,Q)>6"Q+1} ’ ’
(17.6)

Proof. pj is the projection obtained in [13, Proposition 7.2]. O

Here we show the Strong Excess Approximation of Almgren in our version that
takes into account the non-homogeneous boundary value problem, concluding in this
way the proof of Theorem 17.1. Theorem 16.1 enters crucially in the argument when
estimating the second summand of (17.6) for the regularization of ¢ o f.

17.1 REGULARIZATION BY CONVOLUTION WITH A NON CENTERED KERNEL

Here we construct the competitor preserving the boundary conditions.
Proposition 17.4. Let B € (0, }) and T be an area minimizing current satisfying Assumption
14.2 in Cy. Let f be its EP1-Lipschitz approximation. Then, there exist constants &12,y12,C > 0
and a subset of radii B C [9/8,2] with |B| > 1/2 with the following properties. If E (T, Cys) <
E1p, for every o € B, there exists a Q-valued function h € Lip (B, N D, Aqg(IR")) such that
h|BgﬁaD = g/
hlas,np = flas,nD .
Lip(h) < C(E + A?%)F,

' 1
/ |Dh|? S/ IDfP+C (E+A2%) 7. (17.7)
B-ND B-NKND

Proof. Since |Df|> < Cdr < CE?Y1 < 1 on K, by Theorem 16.1 there is q; = 2p; > 2
such that
Do (kg < C (E + A%). (17.8)

Given two (vector-valued) functions /; and h; and two radii 0 < 7 < r, we denote by
lin (h1, hy) the linear interpolation in B, \ B; between hy ;5 and hy|,p . More precisely,
if (6,¢) € S" ! x [0,00) are spherical coordinates, then

. —t t—7
lin (h1, 1) (6, 1) = %hz(e,t) + (0,1,



17.1 REGULARIZATION BY CONVOLUTION WITH A NON CENTERED KERNEL

Next, let § > 0 and € > 0 be two parameters and let 1 < r; < rp < r3 < 2 be three radii,

all to be chosen suitably later. First of all extend the function g to the whole disk B3
by making it coinstant in the direction x, i.e. g(x1,x2) = g(x1, 1(x1)). We then extend
the EP1-Lipschitz approximation to a function f* defined on the entire B; by setting

f*(x):{f(x> ?fxeBg,ﬂDi
Qlg(x)] ifxeBsND

From now to keep our notation simpler we denote f* as well by f. Observe moreover
that

(1o fllp-=38-
We next define a translation operator @ : Ag (RY) x RN — Ag (RYN) setting
Q Q
Tot=)Y [t+1] for T=) [t].
i=1 i=1

We then introduce f := f & (—#o f), so that f|p- = Q[0] and o f = 0.

Next we define, as in the proof of Proposition 15.7, ¢.(x) := Sln(p(f) and ¢(x) =
@(x — zp) with @ being the standard bump function with support in B;(0) and z :=
(0, —2). We therefore set

he = (0 f) % pe —g* e +3.
We easily see that (/i) |aDmB,3 = g|aDmB,3/ and
Lip(h:) < C(E+ A%)Pr.

Recall the maps p} and ¢ of [LS11 b, Theorem 2.1] and observe that ¢(Q [0]) = 0 and
p%(Orn) = Ogn. We then set f] := ¢o f

. od od .
\/E+A2poCI>ohn<{/1E+A2,p5 (§E+Az> in (B, \ B,,) N D
~ od e ) oD .
Bhesi= E+A2poq>ohn< (f1E+A) ((%ﬁ )) in (B, \ B,,) N D,
VE+Aa%; ( e ) in B, N D,

where @ is the diffeomorphism constructed in Proposition 15.6. Now, we define

fis,s = ﬁ [(z7"oghes) —no (87" 0g,s)] inBunD, (17.9)

i=1
and

Hes := i [[(g’,"l o gg,gls)i —1no (6’1 o ggrs,s) + Egﬂ , in B,, N D. (17.10)

i=1
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Notice that the convolution of any function u satisfying up,\p = 0 with ¢ for ¢ small
enough always produces smooth function u * @, satisfying (u * ¢¢)|p,\p = 0, because
we have assumed that dD is the graph of a Lipschitz function and so it stays inside a
cone with fixed angles. With this last fact in mind it is easy to see that (¢});p = 0, and
(hs)jap = & 1 © hses = 0. We will prove that, for ¢ := r3 in a suitable set B C [9/8,2]
with |B| > 1/2, we can choose r, = r3 —s and r; = r, — s so that h satisfies the
conclusion of the proposition. Our choice of the parameters will imply the following
inequalities:

28" <5 e<s, and EV?P<¢ (17.11)

We estimate the Lipschitz constant of &§. This can be easily done observing that
* in B, N D, we have

Lip (§5) < CLip (fi * ¢c) < CLip (fi) < C(E+ A*)P,

* in (B, \ By,) N D, we have

_fll * (PSHLw
s

Lip (&) < CLip (7)) + ¢/ < (14 ) Lip (7)) < C(E+ A2,

* in (B, \ By,) N D, we have

8~
Lip (85) < CLip (f)) + C(E+ A% —

< CEPr + C(E+AY)'* < C(E+ AP, (17.12)

In the first inequality of the last line we have used that, since Q is a cone, (E+
A?)~'2fl(x) € Q for every x, hence

<Co8,

(AN

"\VE+AZ) VE+A?
From (17.12) and (17.11) we deduce easily that §} is continuous and piecewise Lipschitz
and so globally Lipschitz and furthermore that

Lip(hyes) < C(E + A2)Pr, (17.13)

In the following Steps 1-3 we estimate the Dirichlet energy of h;, s and finally in Step
4 we obtain the desired estimate (17.7) of Theorem 17.4 for a suitable choice of §,¢,s
depending on some powers of the infinitesimal quantity E (see (17.39) below). Before
we realize this program, we recall that for every f € W2(Q), Ag(R")) we have

0 < Dir(f & (— o f)) = Dir(f) — QDir(yo ). (17.14)



17.1 REGULARIZATION BY CONVOLUTION WITH A NON CENTERED KERNEL

We write here the estimate of the Dirichlet energy of &, which will be useful in
combination with (17.14).

/ |Dg * g, — Dg|> < CA%¢?, (17.15)
IDg * ¢ — Dgllo < ClD*gllwe < CAe,
[ (D9~ Dg) (Dlno ) < 90| < Che [ Dl o

< CAe(E + A?)z
< Ce(E+A?),, (17.16)

where we used Young’s inequality and Remark 15.5. Summing (17.16), (17.15), we
obtain

J 1002 = [ ID(ro )+ g2+ [ IDg* g — DgP
—2/(Dg*¢e—Dg) (Do f) * ¢c)
< [IDGro PP +CA%? + Ce(E+ A%)
SC/]Df]2+Cs(E+A2).

Step 1. Energy in B,, \ B;,. By Proposition 17.3, we have |p5(P) — P| < Co% " for all
P € Q:=g(Ap(R")). Thus, elementary estimates on the linear interpolation give

C(E + A? ?
‘D~/‘2 < ( + )

& (r3 —12)? /(Brg\Brz)”D

A o f
VE+AZ "°\VELA?
+c/ D~’2+C/ D (p* o 7)|?

(3,3\3,2)@‘ i (3,3\3,,2)mD| (pj o 1)

= C/ IDF|* + C(E+ A?)s 1628, (17.17)
(Bry\Br,)ND

/(BVS\B,Z)DD

Hence, using that Lip(¢) < 1 and (17.14), we estimate

~ 2 ~ 2
/ Dhtsesl? = [ [Ditses| +0 [ |Di|
(By3\B,)ND (By3\B,)ND (By3\By,)ND

g/ D&|? — /+C/ Di, |
<Br3\Br2>mD} Bl <373\Br2>mD’ .

<C/ Df? +C(E+A?) (e +5s710*%). (1718
< C g DI+ CE+ A7) (e457187) . a7.18)
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Step 2. Energy in B,, \ B,,. Here, using the same interpolation inequality and a
standard estimate on convolutions of W!Z functions, we get

D~/ 2 S C/ + / * =2
/(Brz\Brl)ﬁD‘ g(5| (Buye\Bry—0)D | fl‘ 7’1) B\, |f1 Pe f1|

<cc/ D +CCss’/ DF|?
=0 (BYZH\Brrg)ﬂD| fl‘ ® B3ﬂD‘ fil
< c/ IDfI? + Ce2(E + A?)s~2
Byy+e\Bry—c)ND
< c/ IDf|? + C2(E + A2)s2
Bry+c\Bry—c) D

So coming back to the energy estimate on /. s we get

~ 2
/ |Dh§,£,s|2:/ ‘Dhées +Q/ ‘Dh£’
(By,\By, )AD (B, \By, )ND (Br,\Br, )N

S/ IDg;[? +C/ ]Dh\
(Bry\Br, )1D 2\Br)N

gc/ IDFI? + CE*(E + A%)s~2 + Ce(E + A?).
Br2+e\B;1 s)

(17.19)
Step 3. Energy in B;,. Define Z := {dist <\% * P, Q) > §”Q+1} C D and use (17.6)
to get
Do 2

Jr o 088

< (1+c58”*Q’1)/ \D(f{*¢e)}2+c/ D (] * ¢e) |° (17.20)

B (B,,\D)\Z z

=L+ 1.

We consider [ and I, separately. For I; we first observe the elementary inequality

1D (7 @) |12 < [|(DF) * e 12
< | (|IDfi|1x) * gell7 + | (|DFI[1x) * e
+2|[(|DAJ1K) * e 2 || (| DA k) * el (17.21)

where K¢ is the complement of K in D. Recalling 71 +¢& < r; + s = r, we estimate the
first summand in (17.21) as follows

1(IDA 1) * 9ellfags, oy < /.

Brl +€mD

(PA[W)* < [ DAL (1722



17.1 REGULARIZATION BY CONVOLUTION WITH A NON CENTERED KERNEL

In order to treat the other terms, recall that Lip (f]) < C(E 4+ A?)f1 and |K°| < C(E +
A?)1=2P1_ Thus, we have

P 2
H (‘Dfl'}ch) * §0€HL2(B,10D) < C(E —|—A2)Zl31 |[1xe * (Ip€||%2
< C(E+ A2 [[1ke |71 [l el 2

C(E + A2)>-2
2 ’

< (17.23)

Putting (17.22) and (17.23) in (17.21) and recalling (E + A2)!"2f1 < ¢? and | ‘Dfl’lz <
C(E + A?%), we get

h= /B X IDF[*+Co® " (E+ A%) + Ce ! (E+ A2)Y 2R, (17.24)
n

n
For what concerns I, first we argue as for I, splitting in K and K¢, to deduce that

b <C [ (D) )+ G (E + A3 (17:25)

Then, regarding the first summand in (17.25), we note that

£r 1
Z52HQ+2</ fl . fl CZ‘ 26
TS o | VE AT VB A 5 (729
Next, we recall that g1 = 2p; > 2 and use (17.8) to obtain
! 2 E = 2
[ ((IDA[) = 9 < 1215 (1D [1) * el
e 2t 2
!
SC((SnQ+1) 1 H}Dfl‘Hqu(K)
e l)
<C (W) "(E+A?). (17.27)

Gathering all the estimates together (17.20), (17.24), (17.25) and (17.27) gives

2 Cno- E + A%)3/2-F
/ ‘Dg(;’zﬁ/ IDF;|* + C(E + A%)6* " 1 cEHAT)TTR
B, ND B, NK £

e 2(p;1—1)
onQ+1

_ Df — / D 24 C(E+ A%
[ PAE=Q [ Do p)F +C(E+ )

+C(E+A?) (

+C

(E -+ A2/ < )
3

+C(E+A?) (5”Q+1 (17.28)
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Define Z := {dist ((170 f) * ¢, Q) > 6"*1} to get

fy o PN x 0l < [ Do) k9P + [ ID (e f) <90
(17.29)
= fl -+ jZ-

We consider [} and [, separately. For [; we first observe the elementary inequality

ID (70 f) * @o)lI72 < [(D(0 £)) * gell 2
< [(ID(0 ) 1k) * @ell72 + (1D (0 £)| 1) * e[
+2[/(ID(g0 £)|1k) * @ell 2 [1(ID (0 £)| 1ke) * @ell 2 -
(17.30)

Recalling r1 + & < r1 + s = rp, we estimate the first summand in (17.30) as follows

10D6 e DI = @il aga, o) < f, (PN < [ Do A G731

B,,NK

In order to treat the other terms, recall that Lip (7o f) < C(E + A%)P1 and |K¢| <
C(E + A?)!1=2P1, We thus have

(DG 0 f)] 1ke) * %Hiz(g,lmp) < C(E+ A% |1k + e |72

< C(E + A2 |1k |71 || eI 72

C(E + A2)2—2ﬁ1

< .
< - (17.32)

Putting (17.31) and (17.32) in (17.30), and recalling E'-2/1 < ¢2 and f |D(n of)\2 < CE
we get

IS

h S/ ID(yo f)I? + Ce ™' (E + A%)*/2Fr, (17.33)
B,,NDNK
For what concerns [, first we argue as for I (splitting in K and K°) to deduce that

L=< C/Z ((ID(0 f)| 1k) * @)* + Ce 1 (E + A%)¥/ 2P, (17.34)

Then, regarding the first summand in (17.34), we note that

2
2nQ+2 (nof) . (mof) 2
1Z6 < /BHOD vk eIl Ce?. (17.35)
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Recalling that g1 = 2p; > 2, we use (17.8) to obtain

[ (Do P11 90 < 121 B 11D £)] 1) g

2(p1-1)

€ S 2
<C(5ig57) " 1PN
2(p1-1)
<C £ " (E+ A?). (17.36)
- onQ+1

Gathering all the estimates together, (17.29), (17.33), (17.34) and (17.36) gives

2)3/2-p1
/B““D|D(”Of)*w2§/ ‘D<ﬂof)|2+c(E+A€)

JB, NK
2 e\
+CE+A) (557) " (17.37)
So combining (17.28) and (17.37) yields
2 s 2 7|2
| IDhses?= [ |Dhses| +Q [ |Dh]
B,,ND B,,ND B,,ND

< Dg;[? / Dh|?
_/B,lﬂD} &l +Q BylﬂD‘ 8}

<[ IDP=Q[ Do HP+Q [  IDyof+Ce(E+A?)
B, NK B, NK B, NK

— 2(py-1)
2 87nQ—1 (E+A2)3/2 ﬁl 2 € p
oo 2\3/2-B;
s/ IDf|? + C(E + A%)5% " B AT
B, N £
¢ 2(py-1)
+ C(E + A?) ((WQH) 4 Ce(E + A?). (17.38)

Step 4. Final estimate. This part is analogue to [13, Step 4 of Proposition 7.3].

Summing (17.18), (17.19), (17.38), and recalling that ¢ < s, we conclude
Dh 2</ D 2+C/ Df'|* + C(E+ A?) (e 468"
/. Pl [, IDrErC [ IDFP e C(E A ( )

2 5280 2\1/2—B4 A1)
o [€ 6 (E+ A?) € 0
+C(E+A)<Sz+ P c <5nQ+1 B

1

We set e = (E+ A%)", 6 = (E+ A?)? and s = (E + A?)¢, where

o128 1-2B o 1-2p
47 8(nQ+1)’ - 8"Q8(nQ +1)

and ¢ (17.39)
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and we finally let & be the corresponding function ;.. This choice respects (17.11).
Assume (E + A?) is small enough so that s < 11—6. Now, if C > 0 is a sufficiently large
constant, there is a set B’ C [%, %] with |B’| > 1/2 such that,
D’2§Cs/ Df'|> < C(E + A%)*¢  for every r; € B'.
ABr1+35\Brls)ﬁD ‘ f | B,ND ‘ f ’ ( ) y
For o = r3 € B = 25 + B’ we then conclude the existence of a ¥ (1,1, Q) > 0 such that

[ D < [ |DfP+cC(E+ AT
BsND BsNK

O]

Proof of Theorem 17.2. Here we proceed as in the proof of [13, Theorem 7.1]. Choose
B1 = 3 and consider the set B C [9/8,2] given in Proposition 17.4. Using the coarea
formula and the isoperimetric inequality (the argument and the map ¢ are the same in
the proof of Theorem 15.3 and that of Proposition 16.3), we find s € B and an integer
rectifiable current R such that

dR = (T -Gy, ¢,s) and M(R) < CEZ.

Since h|ypng,) = fla(pna,) we can use & in place of f in the estimates and, arguing as
before (see e.g. the proof of Proposition 16.3), we get, for a suitable y > 0

1 .
ITI(C) < QIBND|+5 [ [Dgl+C(E+AY"
sM

(17.7)

1 -

< Q]BsﬂD]qu/ DFE+C(E+AY)"T.  (17.40)

2 JBsnk

On the other hand, by Taylor’s expansion in [13, Remark 5.4],
ITI(Cs) = IITI (B D\ K) x R") + |G| ((Bs N K) x R")
> || TI ((Bs 0 D\ K) x R") + Q |K N Bs|

1 _

+5 [ DR = C(E+AYT. (17.41)
KNB;

Hence, from (17.40) and (17.41), we geter (BsN D\ K) < C (E + AZ)H?. This is enough
to conclude the proof. Indeed, let A C By,s N D be a Borel set. Using the higher
integrability of |[Df| in K (see (17.8)) and possibly selecting a smaller ¥ > 0, we get

eT(A) < eT(A N K) + eT(A \ K)
o cte

p-1 2/m 1+75
< ClANK]| 7 </ \wal) +C (E+A?)
ANK

<clam (E+A2) +C(E+AY)""7,
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Proof of Theorem 17.1. Here we proceed exactly as in the proof of [13, Theorem 2.4].

Assume r = 1 and x = 0. Choose B11 < min{%,ﬁ} , where 11 is the con-
stant in Theorem 17.4. Let f be the EF1 -Lipschitz approximation of T. Clearly
(17.1) and (17.2) follow directly from Proposition 14.4, if v < Bi1. Set next A :=
{mer > 27"(E + A%)?P11} N By /5. By Proposition 14.4 we have |A| < C(E + A?)1~%u,
If e4 > 0 is sufficiently small, apply (14.9) and the estimate (17.5) to A in order to
conclude

|BiN D\ K| < C(E + A?)%rier(A) < C(E + A?)m—2Pnlltmm) (E 4 A?).

By our choice of 11 and 11, this last inequality gives (17.3) for some positive 1. Finally,
set S = Gy. Recalling the strong Almgren estimate (17.5) and the Taylor expansion in
[13, Remark 5.4] we conclude for every 0 < ¢ <1

ISR (17.42)
< ey (B,ND\K) +es (B, N D\ K) + |es (B, N D) —/BmD‘sz‘z (17.43)
<C(E+A%)""™ +C|B,ND\K| +CLip(f)” [ |Df’ (17.44)
< C(E+A%)"M, (17.45)

We conclude the proof by noticing that the L* bound follows from Proposition 14.4.
O
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This section is devoted to prove an analog of [21, Theorem 8.13], namely to construct,
in a neighborhood of a flat point p, a smooth C** submanifold with boundary T and a
normal multivalued map N on it. The first is, roughly, an approximation of the average
of the sheets lying over the unique tangent plane V to T at p. The second is a more
accurate approximation of the current T, which compared to the one in Section 14 has
the additional property of having (almost) zero average.

We start by introducing the spherical excess and the cylindrical excess with respect
to a general plane.

Definition 18.1. Given a current T as in Assumption 12.5 and 2-dimensional planes
V, V', we define the excess of T in balls and cylinders with respect to planes V,V' as

E(T,B,(x),V) := (27tr2)_1/B

E(T,C,(x,V), V') := (27'cr2)_1/ (
C,(x,

Definition 18.2 (Optimal planes). For the case of balls we define the spherical excess
as follows. The optimal spherical excess at some x € spt(T) \ T is given by

r

[T =PRI,

T~ V'd|T]|.
v)

E(TIBI’(x)) = mVinE(T,Br(x), V)/ (18'1)
but in the case of x € I' we define the optimal boundary spherical excess as
E’(T,B,(x)) := min{E(T,B,(x),V) : V D T,T}.

The plane V which minimizes E, resp. E, is not unique but since for notational purposes
it is convenient to define a unique “height” h(T, B,(x)) we set

h(T,B,(x)) := min {h(T,B,(x),V) : V optimizes E (resp. E’) } . (18.2)

In the case of cylinders we denote by E(T,C.(x,V)) = E(T,C.(x,V),V) and
h(T,C,(x,V)) =h(T,C,(x,V), V).

We recall that under the above assumptions Csg, = Csg,(0, Vo) and p;TL Csr, =
Q[D], where D C Bsg, is one of the two connected components in which Bsg,
is subdivided by the curve v = p(T'). Moreover TyI' = R x {0} and in particu-
lar TNGCsg, = {(t,9(£))} = {(t, ¢91(t), P(t))}, where 1 : (—5R,5Rp) — R and
P : (—5Rp,5Rp) — R". In particular vy is the graph of ; and without loss of generality
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we assume that D = {(x1,x2) € Bsg, : X2 > §1(x1)}, namely it is the upper half of

Bsro \ -
In this section we will then work under the following assumptions.

Assumptions 18.3. p =g = (0,0), V = Vy = R? x {0}, Q, T, and T are as in Assumption
14.2 in the cylinder Csg,, where Ry > 1+ +/2 is a sufficiently large geometric constant which
will be specified later. Moreover Q [Vo] is the (unique) tangent cone to T at 0. We moreover
assume in the sequel that

E(T,Csg,(0, Vo)) + A < ecm,
for some small positive parameter ecp; = ecpm(n, Q, Ro).

Under the above assumptions we show now that the height of T in C4g, is also under
control.

Lemma 18.4. There are constants ecp, C depending on Q,n and Ry such that, if Assumption
18.3 holds, then for all p € T and r > 0 such that Cs,(p, Vo) C Csg,, we have

Nl=

h(T,Cq(p, Vo)) < Cr(E(T,Cs(p, Vo)) + rA)2. (18.3)

Proof. We divide the proof into two steps.

Step: sup  |ph(z—pP=cr? [Pty (z — p) 2] T (2) + CoA?r™

zespt(T)NCyr (p, Vo) Cor/2(p, Vo)

This is shown in [21, Lemma 6.6] and carries over word by word to our setting as
the only part where the stationarity of the associated integral varifold is needed, is
for the harmonicity of the coordinate functions. This however is true, as we test with
functions which are supported away from the boundary of T. We use this to apply a
Moser iteration scheme and estimate the L* norm by the limsup of the L norms as
p — oo.

Step 2: r_2/ Ipt: (z — p)Pd|| T]|(z) < C E(T, s, (p, Vo))r + CAP.
Co,/2(p, Vo)

Also for this, the proof of [21, Lemma 6.7] carries over as the difference to our
situation is a factor Q in the monotonicity formula (Theorem 11.2). From there, we
estimate the remainder term by r?(E(T, Cs,(0,Vp)) + A).

[

18.1 WHITNEY DECOMPOSITION

We specify next some notation which will be recurrent when dealing with squares
inside Vj. For each j € N, ¢} denotes the family of closed squares L of Vj of the form

[a1,a1 + 20] X [ag, a2 +20] x {0} C V} (18.4)



18.1 WHITNEY DECOMPOSITION

which intersect D, where 2 ¢ = 2177 =: 2/(L) is the side-length of the square, a; € 2! 7/Z
Vi and we require in addition —4 < a4; < g; + 2/ < 4. To avoid cumbersome notation,
we will usually drop the factor {0} in (18.4) and treat each squares, its subsets and
its points as subsets and elements of R2. Thus, for the center x; of L we will use the
notation x; = (a1 + ¢, a2 + ¢), although the precise one is (a1 + ¢,a, + ¢,0,...,0). Next
we set ¢ := Ujen €. If H and L are two squares in ¢’ with H C L, then we call L an
ancestor of H and H a descendant of L. When in addition ¢(L) = 2¢(H), H is a child
of L and L the parent of H. Moreover, if H N L # @ but they are not contained in each
other, we call them neighbours.

Definition 18.5. A Whitney decomposition of D N [—4,4]% C Vj consists of a closed set
A C [-4,4]>N D and a family # C ¢ satisfying the following properties:

(W1) AUULey LN D = [—4,4]> N D and A does not intersect any element of #/;

(w2) the interiors of any pair of distinct squares L1, L, € #  are disjoint;

(w3) if L1, L, € # have nonempty intersection, then %E(Ll) < U(Lp) <24(Ly).

Remark 18.6. Because of (w1) we will assume that any L € % intersects D.
Observe that (w1) - (w3) imply

sep (A, L) :=inf{|x —y|:x € L,y € A} > 2{(L) forevery L€ ¥/, (18.5)

since there is an infinite chain of neighbouring squares {L; };cy with Ly = L, dist(A, L;) —

0 and ¢(L;) > 2¢(L;;+1) for all i. However, we do not require any inequality of the form
sep (A, L) < Cl(L), although this would be customary for what is commonly called a
Whitney decomposition in the literature.

Assumptions 18.7. In the rest of this section we will use several different parameters:

(a) 61 and By are two small geometric constants which depends only on Q, n, the constant
Y1 of Theorem 17.1, in fact they will be chosen smaller than % and 6, < %;

In(132v/2)
In(2)

(b) My is a large geometric constant which depends only on 61, while Ny > isa

large natural number which will be chosen depending on 1,91, and My,
(c) CE is a large constant CZ (B1,61, My, Ny), while CE is larger and depends also on Ceb;
(d) Cy, is large and depends on 1,51, Mo, No, CE and CE;

(e) the small threshold ecpy is the last to be chosen, it depends on all the previous parameters
and also on the constant € o of Theorem 17.1.
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Definition 18.8. For each square L € % we set 1, := v/2Mp/(L) and we say that L is an
interior square if dist(xy,y) > 64ry, otherwise we say that L is a boundary square and
we use, respectively, the notation €* for the interior squares contained in D and €” for
the boundary squares. Next, we define a corresponding (1 + 2)-dimensional balls By,
resp. B}, for such L’s:

(@) If L € %*, we pick a point p; = (x1,y1) € spt(T) N ({x} x R") and we set
Br = Bear, (pL);

(b) If L € €, we pick x] = (t,¢1(t)) € 7 such that dist(xr,v) = |x] — x1|, define
pr = (t9(t)) € TN ({x]} x R") and set B} = Byeyy, (p])-

We are now ready to prescribe Ny: we require the inequality
2764r; < 2764v2My2 N < 1, (18.6)

so that, in particular, all the balls By, and BbL considered above are contained in the
cylinder Cyg,.
The following remark will be useful in the sequel.

Remark 18.9. If L € ¢” and ] is the parent of L, then | € ¢, while if L € €, then
every child of L is an element of €. In fact, if H and L are two squares with nonempty
intersection, /(H) < ¢(L) and H is a boundary cube, then necessarily L is a boundary
cube too.

Remark 18.10. Fix L € ¥’ and subdivide it into the canonical four squares M with
half the sidelength. For M any of the following three cases can occur: M might be
a boundary square, an interior square, or might simply not belong to ” U ¢” (i.e.
M N D = @). However, because of the enlarged radius for boundary squares, it still
holds that the ball of a child is contained in the ball of its parent (compare to Proposition
19.1(i)). Moreover, B} O L for any boundary square L.

We are now ready to define the refining procedure leading to the desired Whitney
decomposition.
Definition 18.11. First of all we set mg := E(T, Csg,) + [|¢[|25. (|5Ro5R, ()" Ve start with

all L € ° U%* with ¢ (L) = 2™ and we assign all of them to .. Next, inductively,
for each j > Np and each L € %jb U %ju such that its parent belongs to . we assign to
S orto W =W UW"UW"in the following way:

(EX) L € #° if E(T,Br) > Cimol(L)>~%, resp. if E*(T,B}) > Clmol(L)> 2,
1 1
(HT) Le #"if L ¢ #*°and h(T,BL) > Cym{{(L)'P1, resp. h(T,B}) > Cpm {(L)'*F;

(NN) L € #"if L ¢ #"U#° but there is a ] € # such that £(]) = 2¢(L) and
Ln]#o;
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(S) L € .7 if none of three conditions above are satisfied.
We denote by 67 := € N%}, 6} 1= 6 NG, .7} := S NG, W == W NG W == WM,
V/jh ;= #"N€; and W' := #" 6. Finally, we set
A:=(-44°nD)\ JL=) UL. (18.7)
Lew j>No Le;ﬁj

A simple consequence of our refining procedure is the following proposition which
we will prove in the next section.

Proposition 18.12. Let Vj, Q, T, and I be as in Assumption 18.3 and assume the parameter
Ny satisfies (18.6). Then (A, #') is a Whitney decomposition of D N [—4,4]?. Moreover, for any
choice of My and Ny, there is C*(Mo, Ny) such that, if CE, and CE / CE, Cy/ CE, are larger than
C*, then

(@) W, = O;
(b) if L € €% N W then the parent of L belongs to "

Moreover, the following estimates hold for some geometric constant C depending on By and
01, provided ecypy is sufficiently small (depending on all the previous parameters as detailed in
Assumption 18.7)

1

E’(T,B)) < CComol(L)* %, and h(T,B}) < CCumi0(L)HP, VL e w N€°, (18.8)
1

E(T,Br) < CClmol(L)*> % and h(T,BL) < CCumil(L)'""F1, VL € w N€*. (18.9)

18.2 CONSTRUCTION OF THE CENTER MANIFOLD

First of all for each B and B}, we let V; be the choice of optimal plane for the excess
and the height in the sense of Definition 18.2: note that for boundary squares, namely
in BbL, the plane Vi optimizes the excess E’, and thus it is constrained to contain the
line prL I'. The following key lemma allows us to apply Theorem 17.1 (and its interior
version [13, Theorem 2.4]) to corresponding cylinders.

Lemma 18.13. For any choice of the other parameters, if ecpy is sufficiently small, the following
holds for every L € S U W .

(a) If L € 6", then T satisfies the assumptions of [13, Theorem 2.4] in Capy, (p, VL)
(b) IfL € 6”, then T satisfies the assumptions of Theorem 17.1 in Coraor, (p3, V1)

The corresponding Q-valued strong Lipschitz approximations will be denoted by f1, and will be
called Vi -approximations.
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Given a square L € €” which belongs to . U #/, we denote by Dy, C B2724rL(pr, V)
the domain of the function f;, which coincides with the orthogonal projection on
ph + V7 of spt(T) N Coroar, (p%,V}). Note in particular that 9Dy N Bz724rL(pr, V}) is the
projection of T' N Cyryy, ( pr, VLb) onto p; + VLb, which we will denote by ;. Likewise, we
denote by ¢; the function over 7 whose graph gives I' N Cy74,, ( p3,V}). In particular,
Theorem 17.1 implies that fr|,, = Q[gr]. We now regularize the averages 5 o f; to
suitable harmonic functions /;, in the following fashion.

Definition 18.14. We denote by /11 the harmonic function on B¢, (pr, V1), resp. DL N
Bz7lerL(PbL/ V1), for L € %", resp. L € %", such that the boundary value of hj, on the
respective domain is given by 5 o fi (in particular it coincides with g7 on ). hy will
be called tilted harmonic interpolating function.

In order to complete the description of our algorithm we need a second important
technical lemma.

Lemma 18.15. Consider L € ¥ U . For every L € %, resp. L € €1, there is a smooth
function ur : DN Bz78rL(po(pr), Vo) — Vi, resp. ur, : Bsy, (po(pr), Vo) — V-, such that

Gu, L Csr, (P}, Vo) = Gy, L Csy, (p, Vo), resp. (18.10)
GuLLCSrL(PL/ Vo) = GhLLCSrL(PL/ Vo). (18.11)
The function uy, will be called interpolating function.

The center manifold is the result of gluing the interpolating functions appropriately.
To that we fix a bump function ¢ € C®((—3,3)2) which is identically 1 on [—1,1]? and
define

=0 ()

Hence, for any fixed j > Ny we define

Pl = Siu U W (18.12)

i<j
and the following function ¢;, defined over D N [—4, 4]2 C V) and taking values in V3

Yre i Or(x)ur(x)
pj(x) := - B
Lte i Ou(X)
The center manifold is the graph of the function ¢ which is the limit of ¢; as explained
in the statement of the next theorem.

(18.13)

Theorem 18.16 (Center manifold). Let T be as in Assumption 18.3 and assume that the
parameters satisfy the conditions of Assumption 18.7. Then there is a positive w (depending
only on 6, and B1), with the following properties:
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(@) @yl = g for every j;

1
(D) ||l@jllcsw < Cm§ for some constant C which depends on 1,61, Mo, No, C:,Cb, and C,
but not on ecpy;

(c) For every k,k' > j+ 2, ¢ = @y on every cube L € ¥;
(d) @; converges uniformly to a C3* function g.

Definition 18.17. The graph of the function ¢ will be called center manifold and
denoted by M. We will define ®(x) := (x,¢(x)) as the graphical parametrization of M
over [—4,4]?> N D. The set ®(A) will be called the contact set, while for every L € #
the corresponding £ := ®(L N D) will be called Whitney region.

183 THE M-NORMAL APPROXIMATION AND RELATED ESTIMATES

In what follows we assume that the conclusions of Theorem 18.16 apply. For any Borel
set V C M we will denote by |V| its *>-measure and will write [, f for the integral of
f with respect to H2. B,(q) denotes the geodesic balls in M. Moreover, we refer to [14]
for all the relevant notation pertaining to the differentiation of (multiple valued) maps
defined on M, induced currents, differential geometric tensors and so on.

Assumptions 18.18. We fix the following notation and assumptions.
(U U:={x+y:xeM,ly| <1, and y L M}.
(P) p:U — M is the map defined by (x +y) — x.

(R) For any choice of the other parameters, we assume €cpy to be so small that p extends to
C2*(0) and p~'(y) =y + B1(0, (TyM) 1) for every y € M.

(L) We denote by 9;U := p~1(d.M) the lateral boundary of U.

The following is then a corollary of Theorem 18.16 and the construction algorithm.
Corollary 18.19. Under the hypotheses of Theorem 18.16 and of Assumption 18.18 we have:

(i) spt(d(TLU)) C oU, spt(TL[—%,%]> x R") C Uand py(TLU) = Q [M];

(ii) spt({T,p, ®(q))) C {y : |®(q) —y| < Cm*¢(L)"*F1} for every q € L € #, where
C depends on all the parameters except ecp;

(iii) (T,p,p) = Q[p] for every p € ®(A) U (T NIM).

The main reason for introducing the center manifold of Theorem 18.16 is that we are
able to pair it with a good approximating map defined on it.
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Definition 18.20 (M-normal approximation). An M-normal approximation of T is
given by a pair (/C, F) such that

(A1) F: M — Ap(U) is Lipschitz (with respect to the geodesic distance on M) and
takes the special form F(x) = Y_; [x + N;(x)], with N;(x) L T, M.

(A2) K C Misclosed and TrLp~}(K) = TLp 1(K).

(A3) K contains ® (AN [-73,7]?) and T N®(D N [—%,2]?), and on the latter two sets
the map N equals Q [0].

The map N = Y; [N;] : M — Ag(R*™) is the normal part of F.

Theorem 18.21 (Existence and local estimates for the M-normal approximation). Let
Y2 = %, with 7y the constant of Theorem 17.1. Under the hypotheses of Theorem 18.16
and Assumption 18.18, if ecyy is suitably small (depending upon all other parameters but
not the current T), then there is an M-normal approximation (), F) such that the following
estimates hold on every Whitney region L associated to a cube L € W, with constants
C = C(B1,61, Mo, No,C,C2,Cp) >0 :

Lip(N|z) < CmJ?¢(L)? and ||N|z|co < Cmy (L) P, (18.14)
[L\K|+ | Te = T||(p~1(£)) < Crg24(L)*H, (18.15)

/ IDNP? < Cimg £(L)*21 (18.16)
L

Moreover, for any a > 0 and any Borel ¥V C L, we have (for C = C(B1, 61, Mo, No, CE, CE, Cn))

3 12/2 C 2
/VwoNr < Crng (C(L)**F +a t(L)2V]) + = /V G(N,QlyoN])* ™. (18.17)

From (18.14) - (18.16) it is not difficult to infer analogous “global versions” of the
estimates.

Corollary 18.22 (Global estimates for the M-normal approximation). Let M’ be the
domain <I>(D N [—%, %]2) and N the map of Theorem 18.21. Then, there is a constant C =

C(B1,01, Mo, No, CE, CE, Cy) such that

Lip(N|apy) < Cml* and  ||[N| o < Cmg/“, (18.18)
M\ K|+ [T = Tl (pH (M) < Cmy™™, (18.19)
/M ’DN,Z < Cmy. (18.20)

In addition, since N = Q [[0] on T N M/, we also get

/M' IN|?2 < Cmy. (18.21)
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18.4 ADDITIONAL L' ESTIMATE

While the estimates claimed so far have all appropriate counterparts in the papers
[15] and [21], we will need an additional important estimate which is noticed here for
the first time, even though it is still a consequence of the same arguments leading to
Theorem 18.16 and Theorem 18.21.

Proposition 18.23. Consider the function f : By — Aq(R") with the property that Gy =
TrL Cs. For every L € #° we then have the estimate

le—mnoflle < Cmy/*¢(L)* (18.22)

and in particular, as long as v < 3 is a radius such that ¢{(L) < r for every L € # with
L N B, # @, we have the estimate

lg—10 fHLl(B,) < Cm8/4r4 . (18.23)
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TILTING OF OPTIMAL PLANES

We estimate the changes of excess and height when tilting the reference planes of
nearby squares.

Proposition 19.1 (Tilting of optimal planes). Let Q, T and I be as in Assumption 18.3 and
recall the parameters of Assumption 18.7. There are constants C = C(B1, 61, Mo, No, CE, CE) >
0 and C = C(B1,61, Mo, No, C,C2, Cp) > 0 such that, if ecar = ecpm(Q, 1, Ro, Cp) > 0 is
small enough, for any H, L € . U W with H being equal or a descendant of L we have

(Z) BID{ C BE C B4R0/
(ii) |V — V1| < Cmy*(L)%,
(iii) |Vi — Vo| < Cmy?,

(iv)? if H € €7, then
h(T, Czer,, (P, Vo)) < Cm/*¢(H) and spt(T) N Caery (pu, Vo) C Bh,

(iv)’ if H € €, then
h(T, C2736rH(P§1/ Vo)) < Cm(1)/4€(H) and spt(T) N C2736rH<pr' Vo) C By,

(v)! if H L € €°, then
h(T, Cser, (P, Vir)) < Cm/*0(L)"*P1 and spt(T) N Caer, (p, Vi) C By,

(v)° if L € €, then
h(T, Cyragy, (P1, Vi) < Comg/*£(L)'*F1 and spt(T) N Cyrag,, (P}, Vi) C BL.

where O = or O = b depending on whether the square is a boundary square or not. Moreover,
(ii) — (v) also hold if H and L are neighbours with 3¢(L) < ¢(H) < ¢(L).

Proof. We argue by induction on i = —log,(¢(H)). The base step is when i = Ny and
H = L while we pass to children squares in the induction step. By the choice of M
and Ny, we notice that there are no squares with side length 2~Nojn .

The second inclusion of (i), we already observed in (18.6) while the first inclusion of
(i) and the inequality in (ii) is redundant for H = L. Thus, we show now (iii). We use
(i), the optimality of Vi, the monotonicity formula of Theorem 11.2 and the definition
of my to deduce

Vi = Vol <Cri? [ (T = VuPalTl(0) + Cri? [ (T = VoPd| Tl (x)
H H

S ZEE(T, BIIE‘I/ V()) S EE(T, B5R0, V()) S Emo. (19.1)
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130 TILTING OF OPTIMAL PLANES
For (iv) we use the height estimate (18.3) of Lemma 18.4. Notice that C367H(pID{, W) C
Cy4r, (0, Vo) and hence,
h(T, Caery, (P, Vo)) < h(T, Car, (0, Vo)) < Cm}/* = Cml/*¢(H).

Then also the inclusion spt(T) N C36rH(PEp Vo) C BIE'[ holds, as long as ecp is small
enough. For (v) we observe that as B, C Cyg,(0, Vo) we can estimate

|pE|? < 9R3 4 h(T, C(4Ry, Vp))? < 9R3 + Cmy.

Thus if ecy (and thus my) is small enough, then Csgr,, (PH, Vi) N Bar, C Cag, (0, Vo).
Hence, also spt(T) N Csery, (PR, Vi) C Car,(0, Vo) and we can estimate

h(T, Caer,, (PR, Vi) < h(T,Cyr,(0, Vo)) + C|Viy — Vg
< Emé” = Em(l)/4€(H)1+ﬁl,

where we used (iii) and (iv).

7 =pw(l)

Figure 3: An illustration of the various relevant points in the Whitney square.

Induction step: Let H € .11 U #;1 for some i > Np. Thus there is a chain of squares
such that H;,1 := H C H; C --- C Hy, with H; € %] for each j < i. Assume the
validity of (i) — (v) for H; and Hj with Ny <1 < k < i. We want to show (i) — (v) for
H = H;;1 and L = H; with Ny < j < i. For (i), we notice that it is enough to show
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the inclusion for j = i. Then we have |xy, — x| < v/2¢(H;) and hence, if ecy is small
enough, we use the induction hypothesis for (iv) to estimate

P, — pal* < (V2L(H;) + 96ry,)* +h(T, Car,, (P, V0))?
< ((Hy)? (ﬁ<1+96Mo>> + Cmy/20(H;)? < 2 MGe(H;),

Now we check that B, C BID{I,. Indeed, we have

2764ry + |pp, — Pl < 2732V2Mol(H;) 4 28 Mol (H;)
< 2732v/2Mpl(H;) 4 2732v2 Mol (H;) = 2764ry,.

For (ii), we first show the special case where j = i. We notice that by (i), the fact that
2ry = ry, and H; € .}, we have by the monotonicity formula

2
- W
< C(E(T, B, Vi) + E°(T,BE,))
< 2CE"(T, B}
< ECEmof(H)z_%l-

Vg — Vg, |> < (E°(T,By) +E°(T,BR.))

Now for a general j € {Ny, ..., i}, we use the geometric series to conclude
i i
Vi = Vig | < Y Vi, — Vi | < CCPmg Y £(Hy)' =
1= =

I=j
< CClmo Y (27I0(Hy))' =" < CCFmol (Hy)'=*.
=71

—.

(iii) follows by (ii) and (19.1). To prove (iv)?, we observe that by the induction hy-
pothesis, we already know spt(T) N C367’Hi (pEIi, Vh,) C BID{," Now we want to see that

Cer, (Pr1, Vo) C Caory, (PR, Vo)- In case where H; € %", we have |xy — xg,| < V20(H,),
hence

36ry + |xg — xp,| < 367,
On the other hand, if H; € €7, then we recall |py — p?qi\ < 28Myl(H;) which implies
36ry + |xpg — xh] < 36ry+ |pu — p?{i] < 2736ry..
Thus the desired inclusion of the cylinders holds. We deduce
h(T, C36rH(pH/ V())) < h(T, BEL_, V()) < h(T BII:_‘I) —|—ET’H |VH — V0|
< Chm1/4£( )1+ﬁ1 + Cg( ) 0/2
S CChg( i)m()/ 7

where we used the induction hypothesis and that H; € .7;.
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The previous estimate shows also that spt(T) N Caer, (pr, Vo) C By assuming that
ecy is small enough. The proof of (iv)’ is analogous because if H € %”, then also
H; € ¢’ and so as before

2736ry + |x) — x?{i| < 2736ry + |p}y — ph\ < 2736ry..

Now we show (v)?, (v)” for H = Hj; 1 and L = H; for some j € {Ny, ..., i} by induction
on j. For j = Ny, we use the estimate on |Vy — VHN0| to deduce

<C2736rHNO (pEINOI VH) N B4Ro) - <C2736rHN0 (pEINOI VHNO) N B5R0) C C4Ro (0, VO)
provided that ecps is small enough. Therefore, we have

h(T, C27361’HN0 (p}DfNO’ VH)) < h(T, C4R0 (0, Vo)) + C|VH — V0| < Em(l)/z.

Again if ecp is small, this also implies that spt(T) N Cor36r,,, (pENO, Vh)) C BE{NO. Now
0

assume that (v)!, (v)” hold for some j > Nj and denote L = Hj,1. We first consider
the case where L € €”. Then its parent H; is still unknown, but in any case, By, C BID{/_

and thus, C36rL(pL/ VH) C C367’Hj (ijr VH) or C36rL(pLz VH) C C27367’Hj (p?{j’ VH) respec-
tively. Using the induction hypothesis, we find h(T, C367’Hj (p H;s Vy)) <h(T,B H;/ Vi) or
h(T, Cyrzer,, (pg{j, Vy)) < h(T, B?{j, Vi) respectively. Moreover, using (ii), we deduce

]

h(T, By, Vi) < h(T,By,) + Cra|Vi — Vi
< CCymy*€(H;)"" P + Cmy*0(H;)*% < CCymy*¢(Hj).
Thus, we have also spt(T) N Cser, (pr, Vi)) C Br and finally
h(T, Cser, (p, Vir)) < h(T,BL) + Cr|Viy — Vi| < CCymg*6(L) P

On the other hand, if L € €, then also H i € %’ and we can perform the same argument
since B} C ng and Cyrz,, (P}, Vi) C Corzer, (p?{j, Vi ). This shows both (v)% and (v)".
For neighbor squares, the argument works exactly the same as everything follows

from the smallness of |p}’ — pj;| and the fact that B’ UB}; C B7, where ] is the parent
of L. O

Very similarly we now prove the excess estimates using the fact, that the parent of
any square belongs to ..

Proof of Proposition 18.12. For squares L of side length 2~N, we know by Proposition

19.1 (i) that BY C Bag, and so we can choose CE and C’ large enough such that

E”(T,BL) < C(Ro, No)E(T, By, Vo) < C(Ro, No)moy < Cg'mol(L)**,
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Hence, L ¢ #°. Similarly we see that L ¢ #"". Indeed, we use Proposition 19.1 (ii) and
the height estimate of Lemma 18.4

h(T,BY) < h(T,Byg,, Vo) + C(Ro, 1, Q)|V] — Vo| < C(Ro,n, Q)m}/*.

Thus, we can choose Cj, large enough such that h(T, BY) < C,m}/*¢(L)*F1. This shows
().

We claim that (b) holds as long as ci > 16C.. Let L € %" and assume its parent
H € €°. We want to show that L ¢ #°. Recall that |p; — p};| < 28Mf(L) and thus
B; C B?I. Moreover, as H is a parent, it belongs to .7, thus

E’(T,B)) < Comol(H)>~21,
This then implies
E(T,B.) < E(T, B, Vy) < 4E’(T,B%;) < 16C2mol(L)>~2.

Now let L € # N’ and denote by H € . the parent of L. As L is a boundary square,
so is H. By Proposition 19.1 (i) and (ii), we know that B} C B}, and

E'(T,B}) < 4E’(T,B);) < CComol (L)%,
h(T,B) < h(T,B}) + Cri|VL — Vi| < CCuml/*0(L)" 1,

On the other hand, for L € % N %%, the parent H of L could be either a boundary
square or an interior square. So we estimate

) < 4E7(T,BY) < C(C? + CHmol(L)* 2,
< h(T,BY) + Cr.|Vi, — V2| < CCmt/*e(L) +hr,
H H 0

= =
HH
=
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ESTIMATES ON THE INTERPOLATING FUNCTIONS

We notice that our construction fulfills the estimates needed for the strong Lipschitz
approximation.

Proposition 20.1. Suppose that Assumption 18.3 holds true, recall the constants from As-
sumption 18.7 and assume that ecyy is small enough. Let either H,L € ¥ U W be neighbors
with 10(L) < ¢(H) < £(L) or let H be a descendant of L. Then we have

spt(T) N Cagy, (pr, Vi) C By, if L € 67, (20.1)
spt(T) N Cyrapy, (1, V) C B}, if L €%, (20.2)

and [13, Theorem 2.4] can be applied to T in the cylinder Csp,, (pr, Vi) and Theorem 17.1 in
Cyrapy, ( P}, Vi) respectively. The resulting strong Lipschitz approximation we call fyr.

Proof. The proof of Proposition 20.1 is completely analogous to [15, Proposition 4.2] for
interior squares and to [21, Proposition 8.25] for boundary squares. O

Remark 20.2. Observe that if /(H) < ¢(L) and H is a boundary square, then L is
necessarily also a boundary square, since either H and L are neighbors or H C L. When
¢(H) = ¢(L), in case H is a boundary square and L is an interior square, we can simply
swap their roles. In particular, without loss of generality, we will in the sequel ignore
the case in which H is a boundary square and L is an interior square.

Definition 20.3. We denote by fp; the strong Lipschitz approximation produced by
Proposition 20.1. We will however consider the domain of the function fy; a sub-
set of py + Vg, resp. p?{ + Vu. More precisely, for interior squares the domain is
Ca4r, (pL, V) N (pH + Vi), while for boundary squares itis Dyp := Dy N Cyroyy, (pr, Vu),
where we recall that Dy is the projection on p}; + Vi of spt(T). Observe next that
Coar, (P, V) N (pa + Vi) and Cyroy,, (pr, Vi) N (pf + Vi) are discs, whose centers are
given by

puL = pH +pvy(pL),  resp.
Phi = pi + pvi (p}).

(Note that, when L is a boundary square, H might be a boundary square but it might
also be an interior square).

Definition 20.4. We then let hp; be the harmonic function on Bigy, (paL, Vi), resp.
Dy N Cyr1gy, ( p?ﬂ, Vp), such that the boundary value of gy on the respective domain
is given by 5o fyr, in particular it coincides with gy on yy. hyy will be called the
(H, L)-tilted harmonic interpolating function.
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Lemma 18.15 will then be a particular case of the following more general lemma.

Lemma 20.5. Consider H and L as in Proposition 20.1. Then there is a smooth function
upL : D0 Byg,, (po(p2), Vo) — Vgt, resp. unr : By, (po(pr), Vo) — Vi, such that

GuHL L(:87’L (pL’ VO) = GhHL LCSI’L (er VO)/
Gy L Corgy, (ph, Vo) = Gy L Corgy, (ph, Vo), respectively.

The function upy, will be called interpolating function.
20.1 LINEARIZATION AND FIRST ESTIMATES ON hpp

Proposition 20.6. Under the Assumptions of Proposition 20.1 the following estimates hold for
every pair of squares H and L as in Proposition 20.1. First of all

/D(ﬂofHL) : D < Cmgry PY||DE o, (20.3)

for every function { in C(Bsy, (pHL, VH),Vﬁ), resp. CX(Dy N B278rL(p3ﬂ, VH),Vﬁ),
depending on whether L € €% or L € €”. Moreover,

5 .

1hrL — U OfHLHLl(BSrL(pHL,VH)) < CmOVL—i_ﬁl/ ifL € ¢4 (20.4)
5+ .

mL =10 f HL”Ll(DHﬁBm(mﬂ,vH)) < Cmor, P, ifLe%”;  (205)
l —_ .

DAL (B, (pr vy < Ciry ifLE¢";  (206)

1
IDhuLlimipyemy, vy < Cmary ", FLEE. (209)
Proof. Proof of (20.3). Without loss of generality consider a system of coordinates (x,y)
with the property that pg; is the origin, (x,0) € Vi and (0,y) € V4. Fix { as in the
statement of the proposition and in the cylinder C € {Caz;, (pHr, Vi), Co7321, (P, Vi) }
we consider the vector field x(x,y) = (0,¢(x)). Observe that, by assumption, the vector
field vanishes on I'. Observe that, though x is not compactly supported, since the height
of the current in the cylinder C is bounded, we can multiply x by a cut-off function
in the variable y but keeping its values the same on spt(T). The latter vector field is
a valid first variation for the area-minimizing current T and thus we have 6T (x) = 0.

Thus we can use Theorem 17.1 and Proposition 19.1 to estimate

10G i, (X)] = 16(T = G )(X) | < (Dol T = Gy, [I(C)
< C||Dllorf (B(T, C, Vi) + A?r)
< ClIDZJlorf (E°(T, BL) + [Vig — Vi * + A%rf) 7

_ 4
< C||D o7} (mor¥ 1)1 < C||Dg|omor; P,
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provided d; and B are chosen small enough to satisfy (2 —2461)(1+ y1) > 2+ Ba.
Next we use the Taylor expansion [14, Theorem 4.1] to estimate

96,00~ Q [ 7o Dfur D8] < €Dl [ 1D

< ClIDgloLip(furr) [ 1Dfur
< C|DZ|lo(E™(T,C, Vi) + A%r2)"+2 (E°(T, C, Viy) + A%r})

< C||Dglfor? (mory 2) 7

Proof of (20.4)-(20.5). Consider v := hyy — 5o fy on its respective domain () which
equals either Bg,, (prr, Vi) or Dy N Byrg,, ( pLL, V). Observe that v vanishes on the
boundary of Q. For every w € L? we denote by { = P(w) the unique solution of
Al = w in Q with |39 = 0, which is an element of the Sobolev space W,*(Q)). Next
notice that by a simple density argument, the estimate (20.3) remains valid for any test
function € W&'Z and recall also the standard estimate

ID(P(w))llo < Crl[wllo.
Therefore we can write

|oll; = sup v-w= sup v-A(P(w))

w:||wlp<1 wi|jw|jo<1 /2
= sup <—/ Do : D(P(w))) = sup Dyo fyr : D(P(w))
w:||wo<1 Q wi||w|jo<1 /2
<C sup mori%1 |IDP(w)llo < CmoriﬂBl )
w:||wllp<1

Proof of (20.6). Using the mean-value inequality for harmonic functions we simply
get

Dh o <= Dh
|| HLHL (B7rL(pHL/VH)) — T’L BBrL pHL, VH ‘ HL’

C v
< — |Dhy|?
rL BBrL puL V)

C &
i D ] HL 2
L </BSrL (paL,VH) | 1 f | )

(P2 (E(T, C, Vi) + A%2))? < Cm2rl 01

IN

IN
Ke)

rp
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ESTIMATES ON THE INTERPOLATING FUNCTIONS

Proof of (20.7). Using standard Schauder estimates for harmonic functions, we get

C

E Y L L° DHQB 7 P IV” 7 I)H B 7 14 H
( 2. 77! ( HL )) [ 2 8rl ( HL’V )

+C(IDgrllo+r."[grla),

|Dhpy|

where we recall that gy : 9Dy N Bz78rL(p?_1L, V) is the graphical parametrization of
our boundary curve I and « is a positive number smaller than 1, to be chosen later.
The first summand on the right hand side is estimated as in the proof above of (20.6).
As for the second summand, recall that Tp,Ll" is contained in the plane V; and that

VL — Vig| < Cmy*r1 %1 This implies that

|D8H(PHL)| < Cmy Jr 1 o

In particular we have
/2 1 )
HDgH||L°°(8DHOBZ7SVL(pLL,VH < |Dgu(phL)| + CAry < Cmg*r; "
On the other hand,
[gH] < Cri ZDLA < le/Z 1 206,

and thus it suffices to choose 2o < 7. O

20.2 TILTED ESTIMATE

We follow here [21, Section 8.5] almost verbatim to establish a suitable comparison
between tilted interpolating functions which are defined in different system of coordi-
nates.

Definition 20.7. Four cubes H, |, L, M € ¢ make a distant relation between H and L if
J, M are neighbors (possibly the same cube) with same side length and H and L are
descendants respectively of | and M.

Lemma 20.8 (Tilted L! estimate). Under the Assumptions of Theorem 18.16 the following
holds for every quadruple H, |, L and M in . U'# which makes a distant relation between H
and L.

o If ] € €V, then there is a map fipy : By, (pry, Vi) — Vi such that
G,y = G - Cary (Py, Vi)
and

ey — flLMHLl(BZ,](pH],VH)) < Cmgl(])* P12, (20.8)
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o Ifboth | and M belong to €”, then there is a map hyp : Dy 0 B274rl(p§q], Vu) — Vi
such that

GflLM = Gpyy LC274r] (p?-ljf Vi)
and

5+B1/2 .

1hEy = flLMHy(DH,QBMI(,,;U,VH)) < Cmol(]) (20.9)

The proof follows verbatim the arguments given in [21, Section 8.5]. The only dif-
ference is the absence of the “ambient Riemannian” manifold which in [21, Lemma
8.31] is the graph of a function ¥. The case needed for our arguments is the clearly
simpler situation in which the linear subspaces @ and @ in [21, Lemma 8.31] are given
by the trivial subspace {0}. The proof of this version of the lemma (which is in fact
[15, Lemma 5.6]) is even less complicated. However there is a direct way to conclude it
directly from the more general statement of [21, Lemma 8.31]: we can consider R*>*" as
a subspace of RZt+1 and apply [21, Lemma 8.31] to a generic choice of x, 7, 7r, 7 and
the specific choiceof @ =@ = {0} x Rand ¥ =¥ : m X s = T X x = @ = @ given
by the trivial map ¥ = 0.
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FINAL ESTIMATES AND PROOF OF THEOREM 18.16

Proposition 21.1. There is a constant w depending upon 61 and By such that, under the
assumptions of Theorem 18.16, the following holds for every pair of squares H,L € I (cf.
(18.12)).

(a) ||uHHC3"*’(B4,H(xH) < Cm(l)/z, resp. HuHHCS/“’(D”Bzu,H(X?i)) < Cm(l)/z,for H € €*, resp.
He %

(b) If H and L are neighbors, then we have for every i € {0,1,2,3}

lun —utllcis,, (v)) < Cm)/?¢(H)**“~"  when H € ¢, (21.1)
lup — uLHC"(DﬂBﬂ,H(x?i)) < Cm}/2(H)3 e when H,L € 6”; (21.2)
© |D3up(x) — D3up (x2)| < Cm}/?|x5 — x|, where O = if the corresponding

square is a non-boundary square and O = b if it is a boundary square;

(d) if H € €%, then |lug — py, (Pr) | co(y,,, (vi) < Cm}/*0(H) and if H € €, then

”H’aDmBzu,H(xL)) -8

€ Vi — Tixu(x))Guy| < Cm)/*((H)'=% for every x € Bay,,(xy), resp. x € DN
B2747H(x?—1);

(f) If H' is the square concentric to H € #; with ((H') = 2((H), then we have for every
izj+1

54+B1/2 .

i — unll 1y < Cmol(H) (21.3)

21.1 PROOF OF PROPOSITION 21.1

Proof. We follow the proof of [21, Proposition 8.32] and often we drop here for simplicity
the domains where we estimate the norm in.

(a) By [13, Lemma B.1], it is enough to make the estimates on hpy instead of uy. Fix any
square H € I and consider the family tree H = H; C H;_1 C --- C Hy,. We estimate

i
Ihullcse < ) Nham —hang llcse + [y, | e -
j=No+1
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As these are all harmonic functions, by the mean value property, it is enough to estimate
the L! norms. Again using the harmonicity we see that

5+
1han, — hang o) < llwe fus — 1o fan o) + CmorH]-,ﬁff

where Q); either is B77’Hj (pH]., Vy)if H; € €% or Dy N B277rHj (p%j, Vy) if H; € ¢, Using

Theorem 17.1, we see that both fHHj and fHH/.f1 describe spt(T) on a large set K, thus
their average agree on K. Together with the oscillation estimate we then deduce

_ 1+71
0 fur; —n0 fum [l q,) < CO(Hj-1) (mof(ijl)z 251) mgO(Hj_) P
< Cmof(Hj_1)5+'Bl .
For |[hupy, [|cs« we argue similarly and use Proposition 20.6.

(b) By [13, Lemma C.2], we have
1D/ (ugr — up)||co < CCri > g — up |l + Cry 77| D (upr — g o

The second term is already bounded in (a), thus we are left with showing the L!
estimate. To do so, we again use [13, Lemma B.1] to replace u; and uy with functions
which have the same graph. It is enough to notice that, by Lemma 20.8

b — hp || < Cmg20(H)> /2,

(c) Let H L € #I. In case that |xy — x| > 27™, the statement follows from (a).
Otherwise, we can find ancestors |, M such that H, L are in a distant relation where
((]) = £(M) is comparable to |x; — x[’|. Then we estimate

|D3up (xg) — Dur(x[)| < |D?un(xf) — D2upy(x})| + [D2urm(xjy) — DPur(xL)|
+[D%upy(x]) — DPupm(xy)l-
The bound on the last term is already shown in (b), while for the first two we argue

similarly as before. Consider the family tree H C H;_ 1 C --- C J. By the previous
arguments, we deduce

lupp, — tpn, | llce < Cmyg*0(H;1)%.

(d) The claim is obvious by construction for boundary cubes. For non-boundary cubes,
consider that the height bound for T and the Lipschitz regularity for fy give that

PV, (pr) — 1o fu| < Cmy/*((H).
| I.

We also get Hp‘%H (pH) — nofHH < Cm(l)/4€(H). On the other hand the Lipschitz
regularity of the tilted H -interpolating function 1y and the L! estimate on hy — nofu
easily gives Hp‘ﬁH (PH) — hHH < Cm}/*¢(H). The estimate claimed in (d) follows then

from [15, Lemma B.1].
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(e) follows from the estimates on Dl of Lemma 20.8.

(f) By definition of ¢, it is enough to estimate that for L a neighbour square of H, we
have

HuH — uLHL1 S Cm()f(H)SJrél/z.

21.2 PROOF OF THEOREM 18.16

Proof. (a) is an immediate consequence of the definition of ¢; and the fact that uy
satisfies the correct boundary condition (for L € %"). (b) follows exactly as in the proof
of [13, Theorem 1.17] and from Proposition 21.1. In fact, we are in the simpler situation
where our "ambient manifold" is just R"*2 and thus, we can choose ¥ = 0. (c) and (d)
are consequences of (b). O

21.3 PROOF OF COROLLARY 18.19 AND THEOREM 18.21

Proof. We extend ¢ to all of [—4,4]? changing the C>*-norm only by geometric constant
and call this extension . Then consider
T=T+Q G@\[_4,4]2\D'

Then as 9M = T, so 9T = 0. We cannot directly apply the corresponding interior
paper, [15, Corollary 2.2], to T because the latter is not area-minimizing. However,
the argument given in [15, Proof of Corollary 2.2] does not use the area-minimizing
assumption. It uses only the height estimates of Proposition 19.1 (which can be trivially
extended to T since the portion added to T is regular) and the constancy theorem
(which is valid in our case, since T has no boundary).

As for the existence and estimates on the normal approximation, we also can follow
the same argument as in [15, Section 6.2] substituting the current T to the current T in
there and the map ¢ to the map ¢ in there. First of all notice that the extension is done
locally on each square and the ones surrounding it, and thus, even though the union
of the squares in our # and the set m does not cover [—4,4]?, this does not prevent us
from applying the same procedure. Next, the construction algorithm and the estimates
performed in [15, Section 6.2] depend only on the following two facts:

(@) The map ¢ in [15, Section 6.2] has, on every L € #/, the same control on the C3w
norm that we have for the map ¢ (up to a constant).

(b) For each square L € # (which in the case of [15, Section 6.2] corresponds to
an interior square for us) we have a Lipschitz approximation f; of the current
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TL Csy, (pr, V), which in turn coincides with the current T on a set K, x VLi,
where |Bg,, \ Ki| is small and the Lipschitz constant and the height of f; are
both suitably small too. This is literally the case with the very same estimates
for our interior squares, because T Cs,, (pr, V) = Tl Cs,, (pr, V1). In the case of
boundary squares, we apply Theorem 17.1 and we extend the corresponding fr
to a map F; on the whole disk Byrg,, ( p%, Vi) by setting it equal to Q copies of the
graph of ¢ outside of the domain Dy N Byrg,, ( pr, V). We then notice that such
extension satisfies the same estimates on the Lipschitz constant and the height.
Moreover, over the new region, by construction the extension coincides with the
current T. Hence, if we denote by K| the complement of the projection on V of
the difference set spt(T)Aspt(Gr(fL)), then

Bysr, (P1, Vi) \ Ko = (Bysy, (pi, Vi) N D) \ Kr.
In particular |Byrg,, (p], Vi) \ Ki| has the desired estimate.

Finally, observe the following. By the construction of [15, Section 6.2] we have a specific
description of the set K consistsing of those points p in the center manifold for which we
know that the slice (T, p, p) coincides with the slice of the multivalued approximation,
namely Y; [Fi(p)]. First of all, K contains ®(m). Secondly, for every Whitney region
L corresponding to some square L € #/, K N L is defined in the following fashion.
First of all, we denote by Z(L) the family of squares M € # which have nonempty
intersection with L (i.e. its neighbors), hence we consider in each Cys := Cg,,, (pm, VM),
resp. Cyp := Cyg,,, (Pm, VM), the corresponding Lipschitz approximation f; and define

KnL:= (1 plspt(T)Ngr(fm)).
Me%(L)

Since for boundary cubes I' N Cy C spt(T) Ngr (fm), we conclude that TN £ C K. On
the other hand every point of I' 1 M which does not belong to some Whitney region is
necessarily contained in the contact set ®(m). Thus we conclude that I' C K. Observe,
moreover, that by construction the map N vanishes identically on the contact set, while
we also know that for each fj as above fj coincides with the function gy on py,, (T).
In particular this implies that N vanishes identically on the intersection of I' with any
Whitney region. O

21.4 PROOF OF PROPOSITION 18.23

(18.23) is an ovious consequence of (18.22) since on the complement of the squares
L € #° the two functions ¢ and f coincide.

We now turn to (18.22) Observe next that, by Proposition 21.1(f), it suffices to show
the claim for the function up in place of ¢. Observe also that we already know from
the above argument that, if we replace uy with the tilted interpolating function hy and
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f with the Lipschitz approximation fy = fym, the estimate holds, as it is in fact just a
special case of (20.5) and (20.4). Fix now a point x € H and the corresponding point let
y(x) := pv, (un(x)) be the corresponding projection on the plane V. We can use [15,
(5.4)] (where we identify the manifold M in there with the affine plane Vi + ¢(p)) to
compute

0 f(x) —un(x)| < Clyo fuly) — hu(y)| + CIVu — Vo[Lip(f)h(T, Br) .
In particular we conclude
[0 f(x) —un(x)| < Clyo frly) = hu(y)] + Cmy 20 (H)'~mg* €(L)mg/ (L)1

Observing that x — y(x) is a Lipschitz function with Lipschitz constant bounded by
|Dgl|, i.e. by Cmé/ 2 and integrating in x, we easily conclude the claimed estimate.






LOCAL LOWER BOUNDS FOR THE DIRICHLET ENERGY AND
THE L2 NORM OF N

As in [15, Section 3] the aim of this section is to conclude suitable lower bounds for
f |DN ]2 and |N| over regions of the center manifold which are close (and sizable)
enough to some Whitney region £. Depending on the reason why the refinement was
stopped, we will either bound |N| from below in terms of £(L)'*# or we will bound
[ IDN|? from below in terms of the excess of the current in By

22.1 LOWER BOUND ON N

We start with the following conclusion.

Proposition 22.1 (Separation because of the height). If L € #" then L is necessarily
an interior square. Moreover, there is constant C > 0 depending on My such that whenever
(Cp)* > CCE and ecpy > 0 is small enough, then every L € %" fulfills

(S1) O(T,p) <Q—13 forall p € Bigy, (pr),
(S2) LNH=0Q forall He %" with {(H) < }{(L),
(S3) G(N(x),Q[noN(x)]) > %Chmz)/‘lﬁ(L)lJﬂBl forall x € d)(Bzﬁé(L)(xL)).

Proof. We only have to prove that L € €7 as the rest follows from the interior theory in
[15, Section 3]. We show that any boundary square H which did not stop because of
the excess, also did not stop because of the height. Fix such an H € ¢” \ #°. Then we
know that its parent M € €” N .7 satisfies

E(T,B},) < Comol(H)> >
and we want to show that
h(T,BY) < Cymy*0(H)* P

To do so, we apply the height bound of Lemma 18.4 to a suitable rotated current
T = O4T, where O is a rotation which maps Vj onto V4. Notice that the proof of this

147



148

LOCAL LOWER BOUNDS FOR THE DIRICHLET ENERGY AND THE L2 NORM OF N

lemma is based on the first variation and thus on the minimality of T. As T is area
minimizing (with respect to the tilted boundary O(T')), we can directly deduce

h(T,BY) < h(T, Cyeyy, (Ph Vir)) < Crr (E(T, Corsor,, (Ph Vi) + Arg)"”
< Cry (E(T, Byy) + C|[Vag — Vit 2 + Argy)
< sz)/ Zr;/,z
< Cymy*0(H) A,
where we also used Proposition 19.1 and the sufficient small choice of ecp. O

A simple corollary of the above proposition is that if a square stopped because of the
neighbor condition, then this originated from a larger nearby square which stopped
because of the excess.

Corollary 22.2. For every H € #'", there is a chain of squares Lo, Ly, ..., L; = H such that
(a) Lie #W" foralli > 0and Lo € #°,
(b) they are all neighbors, i.e. Ly N\ Li_1 # @ and ¢(L;) = %E(Li,l).

In particular, H C B3\/§e(LO)(wa Vo).

Accordingly, we can collect all the squares H which have such a chain relating H
to a specific square L € #/°. The latter square is not necessarily unique, but it will be
convenient to fix a consistent choice of L.

Definition 22.3 (Domains of influence). First, let us fix an ordering {J; }icn of #¢ such
that the side length is non-increasing. For Jy, we define its domain of influence by

#"(Jo) := {H € #" : there is a chain as in Corollary 22.2 with Ly = Jp and L; = H}.

Inductively, we define for k > 0 the domain of influence #"(Ji) of J; by all H €
W7\ Uik #"(Ji) which have a chain as in Corollary 22.2 with Ly = Jy and L; = H. As
it is easy to check using Corollary 22.2 we have #" = (Jcn#" (Ji)-

22.2 LOWER BOUND ON THE DIRICHLET ENERGY

Having handled the case of “height stopped” squares we turn to squares which were
stopped because they exceed the excess bound.

Proposition 22.4. (Splitting) There are constants C1(d1), C2(Mo, d1), C3(Moy, é1) such that,
if My > Ci1(d1), CE > Ca(My, d1), CE > C3(Mo, 61), if the hypotheses of Theorem 18.21
hold and if ecp is chosen sufficiently small, then the following holds. If L € ¢, q € VW
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with dist(L,q) < 4v24(L), By(1y/4(q, Vo) C D and Q = ®(By(1),4(q, Vo)), then (with
C,Cs = C(B1,81, Mo, No, CZ, C2, Ci)):

COmol(L)*2 < £(L)?E(T,BY) < c/ IDN2, (22.1)
/ IDN|? < C(L)2E(T, BY) < Cyf(L / INP. (22.2)

Before coming to the proof of the Proposition, let us first observe an important point.
Fix L as in the statement of the Proposition and consider its parent H and its ancestor |
6 generations before. If L is a boundary square, then H and | are both boundary squares.
On the other hand, if L is an interior square, since C, ’ is chosen much larger than C,
we can ensure that both L and | are also interior squares. Indeed, when B; C Bb and
J & #¢, we have the obvious estimate

E(T,B.) < 2%°E(T,Bj) < 2°Cmol(])* 2 < 2%Clmol(L)* ",

which therefore, by choosing ci > 2%8C? implies that L does not satisfy the excess
stopping condition.

Hence we can invoke [15, Proposition 3.4] to cover the case in which L € #¢ N %7,
since the proof given in [15, Section 7.3] just uses the fact that all squares L, H and | are
interior squares (i.e. the repsective balls B;, By, and B; do not intersect the boundary
I'). We are thus left to handle the case in which L (and therefore also H and J) are
boundary squares.

To do so, we need analogues of three lemmas from [15].

Lemma 22.5. Let BT C IR? be a half ball centered at the origin and w € W2(B*, Aq(R"))
be Dir-minimizing with w = Q[0] on Bt N (R x {0}). Denoting @ := w® (—yow) =
Y. [w; —yow] and u := 5 ow, we have

Q/B+ IDu — Du(0)|? = /B+ G(Dw, Q [Du(0)])? — Dir(w, B*).

Proof. We extend w in an odd way to all of the ball B. Notice that then also the extension
of u is harmonic in all of B. Now the proof is the same as in [15, Lemma 7.3], but
we repeat it here anyway. First notice, that u is a classical harmonic function and in
particular, fulfills the mean value property. We use it to deduce

Q/B\Du—Du(O)\2 = Q/B (|Du|* + |Du(0)[* — 2Du - Du(0))
= Q/B\Du|2+Q]BHDu(O)|2—2Q (/B Du> -Du(0) (22.3)
= Q [ IDul* - QIB|IDu(0) .
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Similarly we compute

Q/B|Dw2:Zi:/B\Dwi\z:Xi:/B(|Dwi—Du(O)|2—|Du(0)|2+2Dwi-Du(0))

:/Bg(Dw,Q[[Du(O)]])Z—Q|BHDu(0)y2+zQ (/Bclglz.Dwf> - Du(0)

_ /B G(Dw, Q [Du(0)])? + Q|B||Du(0)|?.
(22.4)

Last we split the Dirichlet energy of w into the average and the average-free part (as
already observed in (17.14)).

/B]Dw|2:Z/B]Dwi—Dulz:Z/B(\Dwi\2+|Du]2—2Dwi-Du)
i i

:/B|Dw|2+Q/B]Du|2—2Q/I; <éDwi) - Du (22.5)
= [ 1DwP - [ |Dup.

The three identities (22.3), (22.4), (22.5) and dividing everything by 2 conclude the
lemma. O

An other important ingredient is the unique continuation for Dir-minimizers (com-
pare to [15, Lemma 7.1]).

Lemma 22.6 (Unique Continuation for Dir-minimizers). For every 0 <1 < 1and c > 0,
there is a 6 > 0 such that whenever By, C Vj is the half ball and w : B, — Ag(R") is
Dir-minimizing with w = Q [0] on By, N (R x {0}), Dir(w, BS.) = 1, and Dir(w, B;") > ¢,
then

Dir(w, Bs(q)) > 6 for every Bs(q) C B, with s > 7.

Proof. The qualitative statement (UC) of the proof of [15, Lemma 7.1] applies directly
to our situation while the quantitative statement follows from a blow-up argument that
goes analogously for us as B;(q) C B O

The previous two lemmas imply the following energy decay for Dir-minimizers
(compare to [15, Proposition 7.2]) which itself implies the Proposition 22.4. First fix a
number A > 0 such that

(1+A)* <29,
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Proposition 22.7 (Decay estimate for Dir-minimizers). For any 1 > 0 there isa § > 0
such that whenever BS, C V; is the half ball and w : By, — Ag(R") is Dir-minimizing with
w = Q[0] on By, N (R x {0}) and satisfies

/B  G(Dw,QID (o w)(0)])? > 2 *Dir(w, B,),

(14+A)r

then we have for any Bs(q) C B, with s > nr

1
: + (o B+ )
d Dir (w,B(HA)r) < Dir (w,B(HA)r) < 52 /Bs(q) ||“.
Here we used again the notation @ := w & (—gow) = Y; [w; — o w].

Proof. We follow word by word the proof of [15, Proposition 7.2] using Lemma 22.6 and
Lemma 22.5 instead of [15, Lemma 7.1] and [15, Lemma 7.3]. We reach the contradicting
inequality

/+ IDu — Du(0)]> > 251—4/

[Dul?
B

which is false as one can see by reflecting such that u stays harmonic and then using
the classical decay for harmonic functions. O
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In this section we take a further crucial step towards the proof of Theorem 12.6. We
recall our key Assumption 12.5 and we add a further one on the smallness of the excess.
Before doing that, we observe a corollary of the decay estimate in Theorem 12.7.

Corollary 23.1. Let T and T be as in Assumption 10.4 and assume that 0 € T is a flat point
and that Q [V is the unique tangent cone to T at 0. Then there is a geometric constant k > 0
and constants C and ry > 0 (depending on I and T) such that

E(T,C,) < Cre Vr <. (23.1)

Thus, upon rescaling the current appropriately, if 0 is a flat point we can assume,
without loss of generality, the following.

Assumptions 23.2. Let T and T be as in Assumption 10.4. 0 € T is a flat point, Q [V] is the
unique tangent cone to T at 0, we let n be as in (12.1) and assume that (12.3) holds. In addition
we assume to have fixed a choice of the parameters so that Theorem 18.16 and Theorem 18.21
hold and that

E(T, C4ryp) + A2p2 < SCMpZK forallp <1. (23.2)

Observe that, by (23.2), we conclude that both Theorem 18.16 and Theorem 18.21 can
be applied to the current Ty, whenever p < 1.

23.1 INTERVALS OF FLATTENING

We start defining a decreasing set of radii {t; > t, > ...} C (0,1], which at the moment
can be both finite and infinite: in the first case one ty will be equal to 0, while in the
second case all t;’s are positive and t; | 0.

t; is defined to be equal to 2. We then let M; = M be the center manifold and
N; = N the corresponding normal approximation which results after we apply
Theorem 18.16 and Theorem 18.21 to the current T. Moreover we let # (1) be the squares
of the Whitney decomposition described in Definition 18.11. We then distinguish two
cases:

(Stop) There is a square H € #(1) such that
dist(0, H) < 64v2((H). (23.3)

(Go) There is no such square.
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Notice that every such square H satisfying (23.3) is a boundary square. In the first case
we select an H as in (Stop) which has maximal sidelength and we define f, := 66+/2¢(H)
and t; := t;f, = 1321/2¢(H). Otherwise we define t, = 0. Observe that
t
?2 < 66227 (23.4)
1
Before proceeding further, we record an important consequence of the Whitney
decomposition.

Corollary 23.3. If (Stop) holds, then the square H of maximal sidelength that satisfies (23.3)
must be an element of #'°, i.e. it violates the excess condition.

Proof. Observe that if H is an (NN) square, then there is a neighboring square H’' of
double sidelength which also belongs to # and it is easy to see that the latter satisfies
(23.3) too, violating the maximilaity of H. Note next that (23.3) implies that H is a
boundary square, and as such it cannot belong to 7. O

In case t, > 0 we then apply Theorem 18.16 and Theorem 18.21 to Ty, and let M,
and N be the corresponding objects. The pair (My, N;) will be derived by scaling back
the objects at scale t;, namely

My ={tq:qe My}, (23.5)
N2(q) = taNa <Z> . (23.6)

We then apply the procedure above to M5 in place of M; and determine f53 analogously,
while we set t3 := f513.

We proceed inductively and define My, My, Ni, Ny, f, and t; := t;_1#;: the procedure
stops when one t; equals 0, otherwise goes indefinitely. Observe that for every k we
have the estimate

t
ﬁ < 661227 Mo, (23.7)

23.2 FREQUENCY FUNCTION

Observe that the conclusion of Theorem 12.6 is equivalent to T coinciding with Q [M]
for some k in a neighborhood of the origin. A simple corollary of the interior regularity
is in fact the following

Corollary 23.4. If Ny = Q [0] on some nontrivial open subset of My, then T = Q [My] ina
neighborhood of 0 and in particular Theorem 12.6 holds.
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We next consider a function d which is C? in the punctured ball B;(0), whose gradient
Vd is tangent to I' and such that (i)-(ii)-(iii) of Definition 13.6 hold. Likewise we fix the
function ¢ : [0, c0) — [0, 00) given by

1, ift €0,1],
¢(t) =41 (1—2t), ifte[i 1],
0, ift>1.

From now on we denote by D the classical Euclidean differentiation of functions,
tensors, and vector fields, which for objects defined on the manifold M will mean
that we compute derivatives along the tangents to the manifold. On the other hand
we use the notation V ;,, D™, and div,,,, respectively for the gradient, Levi-Civita
connection, and divergence of (respectively), functions, tensors, and vector fields on
M understood as a Riemannian submanifold of the Euclidean space R*™".

We then define

D)= [, o (") DN R, it r € (], (239
Ho == [ ¢ (1) 19ad PP ), it € it @39)
so)i= [ 0 (") I P (23.10)

We are then ready to state our main estimate.

Theorem 23.5. Let T be as in Assumption 23.2. Either T = Q [M] in a neighborhood of the
origin for some k (and in that case note that ty.1 = 0), or else H(r) > 0 and D(r) > 0 for

every r. In the latter case the function 1(r) := rg((:)) satisfies the following properties for some
constants C and T > 0:
(a) Forall r > 0, we have
I(r) > c 1 (23.11)
and
D(r) < Cr¥T. (23.12)

(b) I is continuous and differentiable on each open interval (ty 1, tx) and moreover

5(r)
D(r)

4 <log I(r) + CD(r)" — Ctf* 2

o ) > —Cr't  forae r €]t tr].

(23.13)
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(c) At each ty the function I has one-sided limits

) = 1i
I(te) im I(t),
I(tk ) = ltlTrg(l I(t),

and moreover

LI = 10| < (23.14)

We will prove (a) and (b) in Section 24 while we devote Section 25 to show (c). An
obvious corollary of Theorem 23.5 is the following

Corollary 23.6. Let T be as in Assumption 23.2. Either 0 is a reqular point, or else I(r) is well
defined for every r and the limit

Ip:=1lim]
0:=TimI(r)

exists, is finite and positive.

Proof. First of all observe that, since I(r) > C~!,

f(r) :=logI(r) — CH 2 1?)((:)) +CD(r)"+Cr* > —logC.

We will also see below in Lemma 24.1 that S(r) < Cr?D(r). Hence, since the Lipschitz
constant of log is bounded on [C -1 oo[, we infer

£(6) = £ < CIIED) = 1)+ C (& )" (2315

Next we show that the two bounds (23.14) and (23.13) imply that f is bounded from
above: considering p €]0,1], we let k the largest number such that p < t; and we can
estimate

b k-1 tj k N
1) — — ! ! +y _ -
£(1) - flp) Af+gﬁgwgy@>f@»
which turns into
te k=1 rt;
ﬂMSfm—K}ﬂ—;[.f—zvmw—ﬂgﬂ
j=1"" j
< f(1) +C/Oerldr—i—CZ|I(tj+) — ()| < oo
j

(note that in the last line we have used (23.15)).
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Next observe that the distributional derivative of f consists of a nonnegative measure
(on the union of the open intervals (#1, tx) and a purely atomic Radon measure which
has finite mass by (23.14). We thus conclude that the distributional derivative of f is a
Radon measure. Next fix any p < 1 and let #; be such that 2t; 1 < p < 2t;. We then
have the bound

DfI(o 1) < Df(p )+ Y DFQLED+ L LA — £(27)]

1<j<k—1 2<j<k

SZiV@W—ﬂqumw<w.
2

Hence, letting p go to 0 we discover that |[Df|(]0,1[) < oo, thatis f € BV(]0,1[). This in
turn implies that f is a function of bounded variation and hence that lim, | f(r) exists
and is finite. Observe, moreover that by (24.11) we infer that f(r) — log(I(r)) converges
to 0 as r | 0. We thus conclude that

lime/ ) = lim I(r)
rl0 rl0

exists, it is finite, and it is positive. ]
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PROOF OF THEOREM 23.5: PART I

24.1 PROOF OF (23.11)

The claim is simply equivalent to the existence of a constant C such that H(r) < CrD(r).
The latter is a consequence of a Poincaré-type inequality which uses the fact that
N vanishes identically on the boundary curve I'. The proof will be reduced to [21,
Proposition 9.4]. However, in order to make the latter reduction, we employ a device
which will be used in several subsequent computations. Having fixed a positive r
different from any ¢; we let k be such that t; 1 < r < f; and we define the corresponding
rescaled quantities Dy (t, 'r), Hy(t,'r), Sc(t 'r), and I (t, 'r). More precisely we define
the function di(x) := t, 'd(t;x) and set

Dile)i= [ o (“) IDRP () an), 241

T (o) — — s ((9(x) ) 2Nk 1o

Alp)i= = [ o (52) IV i) PRI ), (242)

o) i= [ 0 (B0 1Mo . @43)
We then can immediately check the relations

Di(t'r) = 4.%D(r), (24.4)

T(ty'r) = t°H(r), (24.5)

S(ty'r) = *S(r), (24.6)

Si(te'r) = £°8'(r), (24.7)

Dy(t;'r) =t 'D'(r). (24.8)
Lemma 24.1. There is a constant C such that

H(r) < CrD(r), (24.9)

S'(r) < CrD(r), (24.10)

S(r) < Cr*D(r). (24.11)

Proof. We observe that the corresponding inequalities for Dy, Hy, Sy, and S_;c follow from
[21, Proposition 9.4], since the center manifold My, the functions di, and Nj satisfy the
assumptions of the Proposition. O
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24.2 DERIVATIVES OF H AND D

In order to prove (23.13) the first step consists in computing the derivatives of H and
D. In what follows we will use the usual convention of denoting by O(g) any function
f of the real variable r > 0 with the property that |f(r)| < Cg(r). Moreover, in order to
avoid cumbersome notation, for r € (t,1, ] we will drop the subscript M from the
gradient V 4, on the manifold.

Proposition 24.2. Under the assumptions of Theorem 23.5 we have, for every r € (txi1, ],

Do) = [ ¢ () o, (24.12)
H'(r) = C + o<1)> H(r) +2E(), (24.13)

and
E(r) = —% /47/ (d(rx)) Zj:Ni(x) - (DN;(x)Vd(x)) . (24.14)

Proof. The first derivative is a straightforward computation. For the second, we can
follow the computations of [21, Proof of Proposition 9.5] to conclude that

H) = 2600~ 1 [ ¢/ (") asaINE),

where Ay, is the Laplace-Beltrami operator on the manifold Mj. Noticing that
¢ (@) vanishes unless C~!r < |x| < Cr, our claim will follow once we show
that

Lo =L atouw).

AMkd(x) = d(x)

In order to show the latter estimate, we fix a point x € M} and observe first that the
second fundamental form of the center manifold M is bounded by C (E(Toyt,, 4R0)1/ 24
Aty), which in turn is bounded by Ctf for some positive k. By rescaling, the second
fundamental form A, of M; enjoys the bound [|A s, [ < Ctf 1. On the other hand,
recalling that |x|~}|Dd — D|x|| + |D?d — D?|x|| < C it is easy to see that
1 1
Baad ) = | < [Banlel = | + €+ ClxllAng e
S CH+C[Amllo S Ctg+C < C. O



24.3 FIRST VARIATIONS AND APPROXIMATE IDENTITIES

24.3 FIRST VARIATIONS AND APPROXIMATE IDENTITIES

We start by recalling that, since T, is area-minimizing and 0Ty o, L C4r, = Q [I't] L Car,,
then 6Ty, (X) = 0 for every X which is tangent to T. In what follows we fix a C®
extension @y of the function @ to [—4,4]?> C V (by increasing the C>“ estimate on ¢y
by a constant factor) whose graph is the center manifold M and we denote by py
the orthogonal projection onto the graph of ¢, (which is of course defined only in a
suitable normal neighborhood of it). We then fix the two relevant vector fields with
which we will test the stationarity condition:

Xo(p) = ¢ (dk“’"(*’”) (7 - pe(p)),

r

2
Xi(p) = ~Y(pulp) 1= 59 (ALY )

r

(note that V means the gradient V y;, here).

Note that X; is tangent to both M} and I'yx. Moreover, in [21, Sections 9.4 and 9.5],
the estimates are done separately on both sides of I'y. Thus, it applies to our situation
directly with M* = M;. Note also that the fifth error terms vanish for us as our
"ambient manifold" is R"T2. We summarize the statements here and first define the
following function

() = <dk(pk(P))> .

r

We also introduce the rescaled quantity

Eilp) == [ o (M) DRu) - (09 (0) Vil ()

M Y 7
and record the corresponding relation with E, namely
Ex(t'r) = £ 2E(r) . (24.15)

Proposition 24.3 (Outer variations). Let Ay and H y, denote the second fundamental form
and the man curvature of My, respectively. Assume t"t—:l < r < 1. Then we have

4
< Z |Err;?|,

j=1

|Di(r) — Ex(r)| = ‘/Mk <(Pk|DNk|2 + Z((Nk)i ® Dey) D(Nk)i>

(24.16)
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with
Errf := —Q/_ §0<HMk/’7°Nk>r
My
Breg| < C [ o[ ARINGE,
My
3| < @r| (|DNg|*|Ni| [ Ag Nk
|[Err3| < C M! | (IDNi?| Nil| Ax| + [DNi|)

+C [ 1D@ul (DN INi] + DNl [N | A,
EI‘I‘Z = 5TFk(XO) - 5T0/tk (Xo) - 5TFk(XO)'

For the inner variation, we introduce first a bit more of notation. First of all, we see
D(Ny)j as a map from T M to R""2. Denoting the components of (Ny); by (Ni); =
((Nk) . (Nk)”“) and choosing a vector field Z tangent to My, we write

D(Ny)j(Z) = (Dz(Ny)}, - ., Dz(N)*2).
Similarly, we have
D(Ni);DMY(Z) = D(Ny) (DM (2)) = (DDMky(Z)(Nk)]l'/---/DDMky(Z)(Nk)?+2)-

Thus, for the scalar product D(Ny); : D(Ng) jDMk Y, we choose an orthonormal frame
e, of TM; and express

D(Nk)] : D(Nk)]DMkY = Z<DE((Nk)]I DDMky(e/)(Nk ZDeé Nk DDMkY(e[)(ka:'
n , ,
We further introduce the quantity
d d
= - -2 — p——— D i d 2
G(r) ! /Mk¢<7’> |Vd|2;| (Ni)j - v

and its correspoding rescaled version

d
_ 2 k
Gutp) =07 [, # (3 ) e DI Vil

while we record the corresponding relation as in (24.4)-(24.8)
Gt 'r) = t.1G(r). (24.17)
Proposition 24.4 (Inner variations). Under the above assumptions we have

|Di(r) — O() De(r) — 2Gi ()|

_ _ - N
<ZD(Nk)j : D(Ni);DMry — ZIDNk|2dvakY>

<2

’ |Err1 |, (24.18)

Mu;

I
—

j



24.4 FAMILIES OF SUBREGIONS FOR ESTIMATING THE ERROR TERMS

with
Err| := Q/Mk ((HMk,;]o Ni)div g Y + (DyH gy, 50 Nk>> ,
Brrt] < C [ 1A (IDYIING[? + Y] R4l DRe])
|Err| < C/Mk (!DNkF!YHAkMNk\ +|DNi|) + [DY| (|| Nk[*| DNg| + \DNk|4))
Err} := 0Tp (X;) — 6Tos, (Xi) = 6Tg (X;).

Proof. The arguments for the proposition are the same as in [21, Proposition 9.10] and
indeed they are based on the Taylor expansions of [14, Theorems 4.2 & 4.3]. However
some more care is required because the term O(#{)D(r) appears in the corresponding
inequality (namely [21, (9.28)] as O(1)D(r). The reason for the improvement is based
on the computations [21, (9.29)] and [21, Lemma 9.2]: the improvement follows easily
from the fact that:

¢ The curvature of the rescaled boundary Iy is bounded by t;

* The C? norm of the function @; (whose graph is the center manifold Mj) is
bounded by (E(Tyy,, Car,) + ||kl )% where iy is the function whose graph
describes I'y; we thus have ||| s < CHf.

O]

24.4 FAMILIES OF SUBREGIONS FOR ESTIMATING THE ERROR TERMS

We want to estimate the error terms over the Whitney regions in order to use the sepa-
ration estimate (Proposition 22.1) and the splitting before tilting estimates (Proposition
22.4). To achieve this goal we goes along the same lines of [21, Section 9.6] and apply the
arguments of [21, Section 9.6] to the current Ty, that gives rise to the center manifold
M. . Notice that in each error term, there is the cut-off ¢(d;/r), thus it is enough to
consider squares which intersect ;" := {x € VN D : di(@x(x)) < r}. However, to
sum the estimates over all squares, we prefer the regions over which we integrate to be
disjoint. For this purpose, we define a Besicovitch-type covering.

From now on we fix all the constants from Assumption 18.7 and treat them as
geometric constants. We are going to consider the Whitney decomposition and the
corresponding family #°¢, #", #" of squares whose definition is detailed in Section
18. Note that the construction is not applied to the current T and the boundary T,
but rather to the rescaled current Ty, and the rescaled boundary I'y. Note that the
assumptions for the construction apply for each k. For our notation to be more precise
we should add the dependence on k of the various families %, however, since k is fixed
at this stage, in order to make our formulas simpler we drop such dependence.
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First we consider all squares which stopped for the excess or the height and which
influence some square intersecting %;".

Definition 24.5. We define the family 7 to be
T = {Lewuwh:m@j ;A@}
U{L e #*: thereisan L' € #"(L) such that L' N %B,” # @} .

Notice that because in a chain of squares in #", the sidelengths always double, we
have for each L € T

sep(L, B, ) :=inf{|x —y|:x € L,y € "} <3V20(L).

To each such square L € T, we associate a ball B(L) which we call satellite ball.
Preferably this ball is contained in the square and with radius comparable to the
sidelength. However, as not every square in 7 is contained in D, we choose instead
a nearby ball. Moreover we want that the concentric ball with twice the radius to be
contained in %,". Notice that because of the intervals of flattening (23.3), the largest

square L contributing to the center manifold and intersecting %, satisfies ¢(L) < ﬁr.

e If Bypyo(xr) C %,7, we define B(L) := By(1)/4(xL).

e If Bypyo(xL) € %7, we choose a point y € 9%;" minimizing the distance to L.
Notice that the size length of the squares in the domain of influence of L vary by
a factor 2, we have |x; —y| < 4v/2¢(L). The center of the satellite ball we want
to be a point inside %," and close to y (and thus close to x1). Indeed, first notice
that by the regularity assumption on I'y, ¢ (Theorem 18.16) and dj (Definition
13.6) there is a C!-diffeomorphism ¥, : B} — %, with |¥, —1d| < Cm>
Moreover, we define for any ¢ < % the vectorfield n, : 9B, — B, describing
d{y € B, : dist(y,0B;") > (} by

xl,E), if]x1|<r—ﬁ, x, =0,

(
nf(XLJCz) = Er _g)(xlle)/ if Xy > ﬁl

r—24,0), fl—r<xy<r x <4V,

(=7 + ¢, 0), if —r<xy<-—r+4+4¥ x </
Notice that if ecps is small enough, we have for any ¢ < 7
Bg/z(‘l’r(ng(x))) C ‘Yr(Bg(ng(x))) C %;L
Thus for the y € By(p/2(x1) N 90%,", we define
qr = "¥r(ny) 2 (v)))

and observe that

B(L) := Byy4(qL) C %, .
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By construction and the estimates on dj, we have if ecys is small enough,
lgr — x1| < 5V24(L) and thus dist(q;, L) < 4V20(L).

From this family 7, we now choose a maximal subfamily .7 for which the satellite
balls are disjoint. Denote by S := sup{/(L) : L € T}. We define 3 C {L € T :
%S < /(L) < S} to be a maximal subfamily for which the associated satellite balls are
pairwise disjoint. We inductively define ., C {L € T : 27¥715 < (L) < 27¥S} to
be a maximal subfamily such that all the satellite balls B(L') with L' € AU --- U 9
are pairwise disjoint. Finally we define .7 to be the union of all the .7;. As we want to
cover all of 4", we associate to each square in L € .7 the nearby squares of 7 whose
satellite balls intersect B(L) and the domain of influence #"(L). Indeed, by a standard
covering argument, notice that if H € T, then there is at least one square L € .7 such
that dist(H, L) < 20v/2¢(L). We fix an arbitrary choice to partition 7 into families 7 (L)
such that L € .7, for any H € T (L) we have ¢(H) < 2¢(L) and dist(H, L) < 20v/2¢(L).
Now we add the rest of %, and define

w(L):= |J #"(H)U{H}.
HeT (L)
The associated Whitney regions will be called ¢/ (L) C M,
Hew (L)

where the map ® is the parametrization of the center manifold induced by @, namely

D (x) = (x,@r(x)).
For simplicity of notation, we enumerate .7 = {L;}; and denote

B = ®(%,) = M N {dy <1},
U :=U(L;)N B,

B':= ®(B(L;)),

li = L(L;).

Notice that by construction, every satellite ball B(L;) has distance at least ¢;/4 to
d%,". In particular, there is a geometric constant ¢ > 0 such that

c

r p (B

As in [21, Section 9.6.2], we conclude that there is a geometric constant C > 0 such that

{i < inf ¢ = inf ¢y.
B

sup ¢ =sup ¢ < C inf ¢ =Cinfoy, (24.19)
Py (U) U; Py (U) U;
Z ((H)* < CP2. (24.20)

Hew/ (L)
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Applying the estimates of Theorem 18.21 and Corollary 18.19(ii) in each square of
# (L;) and summing over them yields

Lip(Ni|y,) < Cm*()?, (24.21)

||Nk”c0(ui) + sup p| < Cm;)/4£3+ﬁl , (24.22)
spt(T)Np~ 1 (U;)

||TFk — To| (Pk_l(uz‘)) < Cm}f”é?”” / (24.23)

/u- IDNi[* < Cmg 672, (24.24)

/u o Nl < Cmoli ™" +-C /M N[22 (24.25)

On the other hand, we can use the the Separation Proposition 22.1, the Splitting
Proposition 22.4 and the estimates (24.19), (24.20) to deduce estimates on the normal
approximation as stated in the next lemma.

Lemma 24.6. Assume the assumption 18.18 holds. Then there is a geometric constant Cp *
such that

Y (e;*“ﬁl inf qok) < CoDy(1), (24.26)
Z, 1
my ZE;Hﬁl <G /B* IDNi|? < Co(Di(r) + rDi(r)). (24.27)
i v RPr
Moreover, we have

mosup {; < Co(rDi(r)) 5P and  mgsup <£i igf gok) < CoDy(r)V/ 441,
(24.28)
and

Di(r) < Comgr*=21 < Coti"r‘l’zé1 ) (24.29)

Proof. The proof goes completely analogous to the one of [21, Lemma 9.13] and we
summarize it here. Fix an L; € 7. If L; € #", it is an interior square and we can use
Proposition 22.1 to deduce

/Bi |N |2 > comz)/zﬁfﬂﬁl. (24.30)

1 Here and in the sequel we call a constant geometric if it depends only on 1, Q, Ny, M), CE, CE, Cj, which
we fixed.
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On the other hand, if L; € #¢, then L; can be either a boundary square or an interior
square. However the satellite ball does not intersect the boundary and also we can
apply Proposition 22.4 in both situations. Thus, we have

/Bi IDNi|? > comot} ™, (24.31)
/Bf @|DNi|? > comol? ilrglif Pk (24.32)
Summing over all squares and using (24.30), (24.31) and (24.32), we conclude
mo Z%Hzﬁl inf i < Co /z# (INk|> + @ DN ),
p ;

442 - - -
mo Y6 < Co [ (NP +IDRKP) <G [ IDRP,
i r r

where we used the Poincaré inequality and the fact that Nj vanishes on I'y. We conclude

by noticing that, as ¢’ = —2in [%, 1], we have

/  IDRkP < rDi(1),
{r/2<dp<r}nM;

| DN <Dy(r).
{de<r/23N My

(24.29) is a consequence of (24.24). O

We end this section with estimating the error terms (compare with [21, Proposition
9.14]).

Proposition 24.7. There are constants C,T > 0 such that

|Erry| + |Erry| + |Err§| < CDi(r)''T, (24-33)
|Err§| < CE5S(r) < Ct2*r*Dy(r) (24.34)
and

[Bxed| + [Brrs]| + [Eref| < CDy(r)" (Di(r) + rD}(1), (2435)

|Brrh| < Ct¥rDy(r). (24.36)

Proof. The detailed estimates can be found in the proof of [21, Proposition 9.14]. Notice
that as there it is done for either side of the boundary separately, and as we have the

same estimates on N, it applies directly to our situation. The idea is as follows. First we
notice that

Y(p)| < ¢(p)d(pr(p)) and [DY(p)| < Clg:(pr(p))-
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Then because of the Theorem 18.16, both the second fundamental form and the mean
curvature of M are bounded (and their derivatives) are bouned by Ct;. The remaining
terms in the errors can be split into the regions U; and then be estimated by powers of
my and €]~ using (24.21) - (24.25). Choosing T < 41 and recalling that §; < 1 < 91/8,
we see that the powers are higher than what we need for (24.26) and (24.27). Thus with
(24.28) we gain the additional Dy (r)".

The only relevant difference in the estimates of [21, Proposition 9.14] is in the terms
Erry and E, where our estimates have an improved factor Ct2* in the right hand side.
But this follows easily from the fact that in our case we take advantage of || A/« < Ctf,
while in [21, Proposition 9.14] the second fundamental form of the center manifold is
only known to be bounded by a constant. O

24.5 PROOF OF (23.12) AND (23.13)
In order to prove (23.12) we exploit (24.4) and (24.29): we assume ft;1 < v < t; and
estimate

D(r) = tka(tk_lr) < Ct‘i“"(t‘k_lr)‘L_Z‘s1 < Crtee,

In order to prove (23.13) we follow the computations of [21, Section 9.1], but in our
setting some additional complications are created by the fact that we need to scale back
our estimates for the rescaled quantities Dy, Hy, Sk, G, and S;. First of all we recall

(24.13):

H'(r) = rH(r) +2E(r) + O(1)H(r). (24.37)
Next we combine (24.16), (24.33), and (24.34) to get

|Di(t1r) — Ex(t'r)| < CDg(t )T + CHTSk (1 7). (24.38)
We next can use (24.4), (24.6), and (24.15) to conclude

ID(r) = E(r)| < CD(r)(£2D(r))" + C728(r) . (24.39)
Next recall that D(r) < Cr?*2*. Since r < t; we can write

t2D(r) < Ct2D(r) e < CD(r) /049
Thus, at the prize of choosing T smaller, we can translate (24.39) into

|D(r) — E(r)] < CD(r)"™ + C£272S(r). (24.40)
The final ingredient is derived by first combining (24.18), (24.35), and (24.36) to get

DLt r) + O(B)Di(t;™r) — Gult; )|

C D - D - - ) — = _
S tk_ierk(tk 11">T <Dk(tk 11,-) + tk er]/((tk 17/.)> 4 Ct%KDk(tk 11/_) , (2441)
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which in turn, using (24.4), (24.17), and (24.15) becomes
[D'(r) + O(E")D(r) = 2G(r)| < C(t2D(1))*(r'D(r) + D'(r)) + CE'D(r)
But then, arguing as for (24.40) we can achieve
|D'(r) —2G(r)| < CE*'D(r) + CD(r)"(r 'D(r) + D'(r)) . (24.42)
We are now ready to estimate 4 log I(r). We start by writing

1, D(r) H()

d
Elogl(r):;+ D~ H(r)

Hence, using (24.37) we write

D'(r) 2E(r)

D)~ H{) (24-43)

d
el > _
drlogl(r) > —-C+

Next recall (23.12) while Lemma 24.1 implies that for o €]0, 1] we have
H72S(r) < CrPE72D(r) < Cr*D(r).

In combination with the last two bounds, (24.40) becomes (after possibly choosing a
new positive T)

|ID(r) —E(r)| < Cr'D(r),
which in turn implies

Dér) < E(r) <2D(r), (24-44)

provided r < ry is sufficiently small with g > 0 depending only on C and 7.
By (24.44) we can turn (24.40) into

5(r)
D(r)?”

[E() ™ = D(r) | < CD(™ ! + R

Inserting the latter into (24.43) (and considering that D’(r) > 0) we then get

D'(r) 2E(r) D'(r) x—2S(r)D'(r)
Elog(l(r)) > E(r) — H(r) _CD(r)l—T —Cti ZW—C.

We can finally insert (24.42) to achieve
2G(r) 2E(r) D(r) (D(r)" D'(r) .
ar 1810 250 = ey ~CE Ty T T 2)
e D) cpeaSOD)

Next note that:
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Q

(r)H(r) > E(r)?, by Cauchy-Schwarz;

D(r
E(r

—

<G

~

e D(r) < Cr2t2x,

¢ We can rewrite —% = % g((rr)) — SD,EQ’ and it is easy to see that S’ is positive.

So, after possibly choosing T smaller, yet positive, we achieve

;r (log I(r)+CD(r)" — Ctisz((:))> > _Crt L.
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This section is devoted to prove (23.14). We observe that, by the continuity of the
functions

t— H(Nk, t) and t— D(Nk,t)

we have

tkD(Ny_1, t)

tD (N, ty)
H(Nkfl/ tk)

1) = H(Ni, ty)

and  I(t,) =
In order to simplify our notation we use the shortcut E(T,r) for E(T,B;). We will
show the following two propositions

Proposition 25.1. There is a constant C independent of k such that, if ecpy is small enough
then

C*Ewwwsmmlnhzﬁﬂﬂm) (25.1)
C™'7E(T, 6t) < D(Ni, tx) < CHE(T, 6t) (25.2)
C'HE(T, 6t) < H(Ni_1, t) < CKE(T, 6t;) (25.3)
C~ 1tiE(T 6t) < H(N, tx) < CHE(T,6t) . (25.4)

Proposition 25.2. There is a positive exponent Ty independent of k such that, if ecpy is small
enough then

|D(Ng_1,t)—D(Nj, t)| < CEE(T, 6t;)'" 0, (25.5)
|H(Ny_1, ) —H(N, ti)| < CEE(T, 6t;) 1. (25.6)

Observe that the estimates (25.2) (the second one), (25.3) (the first one), (25.4) (the
first one), (25.5), and (25.6) imply

[I(t5) = I(tg )| < CE(T,6t)™ < CE*™. (25.7)

On the other hand, by the choice of Ny in Assumption 18.7, by (23.7), we get o< %,
which iterated implies t; < 27F. We therefore get

[I(t]) — I(t;)| < C27 %7k, (25.8)

which clearly implies (23.14).
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Proof of Proposition 25.1. As the center manifold M;_; stopped, and we are close to the
boundary, it must have stopped for the excess and thus, there is a square L € #° such
that ctkt—fl </{L)<C t:—fl (recall section 23.1). Looking at its ancestors (as we did in
Proposition 18.12), we notice
b\
BT, pt) = BTy e/ ti1) < Ol 1) (p ) (25.9)

forevery 1 <p < SROt’;—;1 and some geometric constant C. Here we denote by mg(k — 1)
and mo(k) the two quantities

mO(k - 1) = E(TO,tk,lr C5R0) + ||1Pk71Hé&‘"(}—SRO,SROD’
mo (k) = E(Tot, Csr,) + H¢k||%3,a(]_5Rol5Ro[) ,

where ¢ and ¢, are the functions describing the rescaled boundaries I'y and I'y_;.
Observe that, since ,(0) = ¢_1(0) = 0 and 1, (0) = ¢;_,(0) = 0, it can be readily
checked that

2

2 k 2
lellcsngsrosmap < 72k llcong-srosm

so that we have

12 b\ 22
mo(k) < E(T, Csryt,) + tzikmo(k —1) < Cmo(k—1) (tkk1> , (25.10)
k-1 -

where we also used (25.9). On the other hand, because of the stopping condition we

also know that

2-25
_ t !
E(T,6tr) = E(Toy, ,, 6t /tr_1) > C 'mo(k — 1) <tkk1> . (25.11)

In particular, we infer by (25.10) that

E(T,6t;) > C lmg(Kk). (25.12)
Observe now that for D(N, 1) we have the inequality

D(Ni, 1) < Cmy(k)

by construction of the center manifold (i.e. (18.20)). In turn, by rescaling, we can
conclude

D(Ni, ty) = 8D(Ni, 1) < Ctzmg(k) < Ct2E(T, 6t;),

namely the first of the two inequalities in (25.13). Then we observe that (25.1) and (25.3)
follow from the Splitting Proposition 22.4 applied to to the current Ty, which in turn
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produces the center manifold M;_; and the normal approximation Ny_; as we are
in the situation where the center manifold stopped. Moreover, we recall that by the
Poincaré inequality (as already observed in (23.11) and proved in Section 24), we have
for any r > 0

H(Ng, 1) < CrD(Ng, 7).
Thus (25.4) and (25.2) follow once we have shown the following inequalities
D(Ny, t) < CHE(T, 6t) < Ct, "H(Ng, 6ty) . (25.13)

For the second inequality in (25.13) we adapt the proof of [15, Proposition 3.7] as the
only difference to our situation is the cut-off function. We describe here the idea of the
argument, the details can be read in [15, Section 9]. Again recall the square L € #°
which stopped in the construction of Mj_; according to the argument above. By the
splitting Proposition 22.4, we then have a nearby ball B;/4(z) not intersecting I'p;, ,
such that

£\ 02 .
moe—1) () T sc [ RGP
te—1 ®i—1(Br/a(2))
The argument of [15, Section 9] provides now a similar bound for the ball B’ =
Ztﬁ—;lBg s4(z), which has radius comparable to 1, in the center manifold Mj. More

4
recisely, since f1) " is exactly the scaling relating the L2 norm on B’ and By/4(2),
p Y i y g g /

2-25
while (%) " is the scaling factor which makes mg(k) and mo(k — 1) comparable,

the corresponding estimate is given by
mo(k) <C [ IR,
@i(B')

Applying the rescaling which relates My and Mj, we find a corresponding rescaled
ball B” (of radius comparable to t;)

mo(k)tg < C |Ng|*.
B"N My
Using that the center z of the ball can be chosen arbitrarily as long as it is at a distance
from L compared to its diameter, we can ensure that —d(p)~1¢/(t, 'd(p)) > ct, ' on B”
(for some positive geometric constant c). We thus get

/(41
mo(k)t; < — /Bka |Nk|2¢<t§(;l)(””)

< CH(Ng, ) -

However E;(T,6t;) < Cmy(k), and we have thus completed the proof of the second
inequality in (25.13).

O
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Proof of Proposition 25.2. Define for p € My the map Fr(p) = Y [p + (Nk)i(p)] and for
q € My_1 the map Fr_1(q) = ;[ + (Nx_1)i(q)]. Moreover denote by E; := E(T, 6t)
and Cy := Cy, (0, Vp). In order to compare Ny and Ni_;, we first apply Theorem 18.21
to the rescaled currents Ty, and Tpy, , to derive corresponding estimates for the normal
approximations N and Nj_; of the currents on M and M;_;. We then scale them
back to find corresponding estimates for Ny and Nj_;. During this process we also
observe that, by (25.9) and (25.10), we have

b\ 22
mo(k) +mo(k — 1) <tk1> < CE. (25.14)

Moreover, we will prove later

H(Pmllcow%k) < kaE;(/zz (25.15)

||D€0k71||c0(32tk) < CEL/Z (25.16)

||D2(Pk—1||C0(B4fk) < Ctlymo(k—1)72 < CtlzlE;(/z (25.17)

9kl cos,, ) < kaE;(/Z, (25.18)

D@kl cops, ) < Cmyo(k)'”* < CE/?, (25.19)

HDZ(Pk||C0(B5tk) < Cty'mo(k)'? < Ctk_lE;c/z, (25.20)

ID(@k = @r-1)lI12(,, ) < CHE'*72. (25.21)

In particular we get by (25.14), (18.18), and (18.20) after rescaling back

Lip(Nk) + Lip(Ni_1) < CE}?, (25.22)
M(Tr LG — T, LCr) S M(TpLC —TLCy) + M(TLC, —Tg,_,LCy)

< CtiEiﬂz . (25.23)

Thus, we set N to be the Q-valued function defined on M _; satisfying
GNkLCk = TFkLCk = GNkLCk =: S,

where with Gg, we mean the current associated to the function p — p + Ni(p). By
comparing D(Nj, t) with D(Nj, t) and H(Ny, ti) with H(Ny, t;) we make an additional
error of size tiEfﬂ’z and size tiE}f” respectively. We will prove this later. With this
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aim in mind we change coordinates in the integrals of D and H to flat ones. Denote by
@ (x) == (x,(x)) and ®y_1(x) := (x,@x_1(x)). We then estimate

DN )= [ IDNGP (@ ()9 (1 ' (@(x)) dx

<C [ [DNe[*(@k(x))p(t; ' d(@k(x))) [DD(x) — (1d,0)| dx

Bo,
< ClID@ oy, | IDNEP(@i(x)) (1 4(@x(x))) i) dx
< CEE”,
where we used (25.2) and (25.19) for the last inequality. Analogous estimates can be

employed for D(Ny, t;), H(Ni, t), and H(Nj, t;).
Therefore, it is enough to prove

[ DN (1 (@)~ [ 1Dl (@ ()| < CHELT,

(25.24)

‘/|Nk|24’/(tkld(q)k(x)>)dx_/|Nk|2¢/(tk1d(d>k1(3()))

x 3plt+r
4(@(x) i@ ) | =R

(25.25)
For (25.24), notice that Ni(p) = Y_; [(Fk)i(p) — p]- Hence, each component of Nj satisfies
ID(Ni)i(@x(x))| < C [T(g),x)Tr — Taog(x) Ml -
By the Lipschitz bound of ¢y (25.19) and of Fy, we thus have
| IDNPo (8 d(@i(x)
<C [ 1(9) = T MePp (5 o p)S ) + O(REL ™),
[ DRt (@1 ()
SC/C 15(P) = Tpe s (M1t d (P (p))AIIS [ (p) + O(RE, ™),

where we denoted by pix and px_; the nearest point projection on My and Mj_;
respectively, while C is the vertical cylinder with base By;,. As we have from Theorem

18.16 that ||@x — @i_1|lc2 < Ctk_lE,l(/z, by the Lipschitz bound of ¢, we deduce for any
p € spt(S) and q,q' € M,

(1 d(pe(p))) — ¢t ' d(pi 1 (p))| < CEY2,
| Ty My — Ty Myl < CHUE g — 4]
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Hence, we have

/(:lg(p)—f )M P1g(t d(pi(p))) — o(t d(pr-1(p)1d]1 S| (p) < CHE,
|Tpk(p)Mk

To () Mi-1| < C|D@(pv, (Pc(p))) — Dpi—1(pvy (Pr-1(p)))|
< CEx + [D(¢x — @r-1)|(Pvy (P))

where we used (18.18) in the last inequality. We therefore can conclude

‘ [ 1PN (1 (@ (x)))dx — [ IDRiPp(t (@ 1 (x)))dx

2y

< CHE,'™+ C/C 15(p) = Tp( Mil* 19 (8 " d(pi(p))) — @t "d(pe1(p)))| d|1S|
+ C/C ’|§(P) = Tou Ml = 15(p) — Tpk,](p)/\/lk—ﬂz‘ ¢t 'd(pr-1(p))) d|IS|
< CHE ™ + C/ S(p) — Tpk(p)Mk||Tpk(p)Mk = Tor (M lo(t d(pr(p))) d|S|

+C/ 15(p) = Tp_y(npMiallT,y k= To s Mi-110(t ' d(pi(p))) d|S|

1

. 2
scﬁf:ﬁmakla;/z(/c o M1~ Ty Mica P pu(p)

1
2

< CEE, ™ + CHEV? ( /B |Dgpy. — D(pk_1|2>

2t
< CEE, ™,
where we used (25.21) for the last inequality.

We finally turn to (25.25). For x € V;, denote by z; := (x,¢(x)) and 2 =
(x,9r_1(x)). Then we estimate

| INE? (z6) — [N (2) | < [Nkl (ze) | INKI(z6) — [Nkl (26)]
+ [Nkl (2) [Nkl (zk) — Nl (2¢)| -

Moreover, using Cauchy-Schwarz and the fact that the L norm of Ny and Nj is bounded
by t%El/ 2, we have

¢/ (t'd(z) ¢ (d((2))
|/1N12<de—/wkrz R

1

2
N N
< CHE} ( | 1IN @) = 1Rl )| dx) . (25.26)
2t
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If we now define p; := (F);(x) and q; := (F):(x) := £ + (Ni)i(2x), we have (up to
reordering the indices)

1 1
2
| Nk (z) (Z’Pz—zﬂ ) |Nie| (2¢) = <Z|‘1i—2k’2> .
1

Now we use the triangle inequality to see

2
| [Nkl (zk) — |Ni| (2 \

<E|Pz—zk| ) (Zjﬂ%—fk\z)%

< CZ|Pz‘ — o> + Clzk — £

2
=CG(LIpl, Llal) + Clor(®) @ (0P,

for o the permutation realizing the distance G ( Yilpil, i lad )

Note that, since ¢ and ¢y_1 agree on the boundary py,(I'), we can use (25.21) and
the Poincaré inequality to conclude

1/2
lok = @1l i2(8,,) < Ctill Dr — Dgpiell 2(s,, ) < CHE; +72 (25.27)

Gr(Fy)

// M,

M

0

Figure 4: An illustration of how Lemma 25.3 is used.

To estimate further we split the distance G ( Yilpil, Xilail ) into a horizontal and

vertical part in the following sense. We define V := 2, + T, My_q, V := zj + T, My,
V"= 2+ T, My and Y, [q] := (S, pv,0). Observe that V and V" differ by a rotation,
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while V' and V are parallel. We then apply the Lemma 25.3 to the shifted situation
where Z; = 0 and deduce

6L 10, X191 ) < CLip(E)INe s (V= Vol + V' — Val)

< CLip(F)|[ Nillco (| Dgi| + | Depic—1])
< CHE/™,

where in the last inequality we used (25.16) and (25.19).

In order to estimate G ( Yilpil X [4] ), we call fi : T, My — Ag(R") the function
having the same graph as F; in Cy;,. Observe that

| Toy My — Vo| < C|| D%yl 0 < CE,”
and by [14, Proposition 5.2]

Lip(fy) < CEZ.

Then we observe that Y, [pi] = ¥; [fp;(z¢)] and &, [g/] = & [[ 7i(PT, M, (2k))]] Thus
we have

(Z [pil, Z [9] ) < Lip(fy)|zx — pr, M, (1)
< Lip(fp) (llgillco + llgi-illen) < CHES™.
Squaring and integrating (and using (25.27)), we deduce
| INd @) = IRkl 20 < crE; ™.
2t

Inserting in (25.26) we conclude

'(t1d o @ (B ((2
‘ [inp? <;(Zk)<zk> Py s (2)«2)) ax| < coErT.

It remains to prove (25.15)-(25.21).

(25.19) and (25.20) follow from Theorem 18.16 using a simple rescaling and (25.14).
Next, for ¢;_1 the estimate on the second derivative derived from Theorem 18.16
and (25.14) is favourable, as it gives directly (25.17). However the estimate on the first
derivative is not, as it would give

1-4
t
ID@i—1lcogs, ) < Crmo(k — 1 <c < ktk1> E”, (25.28)
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which is not good enough for our purposes.
Proof of (25.15), (25.16), and (25.18) In order to gain a more favorable estimate for
the first derivative (and the C” norm of ¢;_1) we first observe that by Lemma 18.4

h(T, Ci01, (0, Vo)) < CE/’ty..

Arguing as in the proof of (25.3) it is not difficult to see that

Ni_1|> < CEtf. o
/ka(o,vo)kal' el < CEi (25.29)

Since Tr,_, coincides with spt(T) on a large set we can also infer

/B lpr_1|* < CEit}. (25.30)
5t

k

In order to see the latter estimate, consider first a point p € Mj_; with the property
that the support of F,_1(p) is a subset of the support of T. By the height bound we
know that h(T, Cyo:, (0, Vp)) < CE}(/ 2t In particular, if we let poL be the projection on
the orthogonal complement Vj, we conclude

o o Fe1l(p) < CE/*t;.

Consider now that, if x is such that p = (x,¢x1(x)), since F(p) = ¥ [Fi(p)] =
i [Ni(p) + p], we get

[pi-1(x)] < [Py © Feetl (%, @r-1(x)) + [Pg © Nyt | (x, @1 (x))
< CE/*t + [Ni_1| (%, @x_1 (%)) - (25.31)
Let now IC be the set of such points p (i.e. for which the support of F(p) is contained

in the support of T) and define K := po(K) N Bs;,. Using the bounds (25.29) and (25.31)
we easily obtain

/Kkvkq(X)\z < CEt;. (25.32)

In order to estimate the integral on the remaining portion (i.e. on Bs, \ K), we apply
(18.15) to M1, sum over all the stopped squares in Bs;, \ K (which by the stopping
condition have side length comparable to f;/t;_1), scale it back to Mj_; and deduce

4+,
t
B, \ K| < H*(Ber, N My_1\ K) < C(mp(k — 1)) (tkkl) 1

tk 2472
<C(—= . (25.33)
te—1
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Then we observe that, by (25.32) and the classical Chebyshev inequality, there is at least
one point x € Bs;, where |@;_1(x)| < CE,%/ztk, and we use (25.28) to conclude that for
all y € Bs;, we have

1-6 1-6
tr_ ! tr_ !
1(y)| < CE, + CE” <§k1) x—y| < CEY <§k1) e (2539)
Putting together (25.32), (25.33), and (25.34), we achieve

t4

¢ ) 2+’)/2*2(17(51)
k .

k
/ |(Pk—1|2 S CEkt% + CEk <
B5tk tkfl

Since 2 + 2 > 2 — 241 and t; < tx_4, the latter clearly implies (25.30).
We next use Gagliardo-Nirenberg interpolation inequality and from (25.29) and
(25.17) we get (25.15) and (25.16), namely

1 1
lpr-1llcos,,) < CHE/, ID@i—1llcogsy, ) < CE/””.

We analogously conclude (25.18).
Proof of (25.21) We wish to show that

142
| D (@x _(Pk—l)H%Z(Bmk) < CEEL ™7,

We choose a suitable cut-off function ¢ which equals 1 on By, and is compactly
supported in Bz, and write

| ID@c—@)P< [ IDlgi—i1)y
B2t BSt

k k

Integrating by parts, we can estimate

/!D(fpk—q)k_l)\zw:/((pk—qok_l)A((pk—qok_l)lIJ

* ./((Pk ~¢-1)V(@k = 9r1) - V.

We next use that | V|| < Ct. !, (25.16), (25.17), (25.19), and (25.20) to estimate

[ 1D = @) P < CEYET [ lge— g (25.35)
3ty

2ty
We next consider the multivalued functions f; and f;_; on Bz, and taking values into
Ag(R") with the properties that
G

k

=TgrLCost, , Gr , =Tg L Cos -
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Note that the values of f; and f;_1 coincide except for a set of measure at most t%E,chr”

(again we use Theorem 18.21 and sum over the stopped squares). Moreover, because
Lip(fi), Lip(fx—1) < CE}?, we immediately draw the conclusion

/ o fi—no fial <ETR.
B,
On the other hand, appealing to Proposition 18.23 (and rescaling appropriately) we get

[ nefi—ed < CEV,
3t

k

tk . 2-26, 3/4 tk 4
/ 0 fio1 —@ra| <C <‘> Ey <> £ .
B3y tk tk—l

k

While the first estimate is already suitable for our purposes, the second require some
more care. We recall (25.10) to the effect that

; 226 ; 224,
<k1> E < ("1) mo(k) < C
tr tx

for a geometric constant C. Since ﬁ > %, we can then estimate

3
/B 0 fi1 — @il < CE}}.
3t,

k
By possible choosing 7, sufficiently small we get
/ ok — @] < CE/ZR,
Bsy,

which, by (25.35), gives (25.21).

25.1 LIPSCHITZ ESTIMATE USING 2D-ROTATIONS

Lemma 25.3. There is a constant ¢ > 0 such that the following holds. Let F : Vo — Ag(R")
be a Lipschitz map with Lip(F) < ¢, let V and V' be 2-dimensional subspaces with |V — V| +
|V — W| < c and denote by p and p’ the orthogonal projection on V and V' respectively. Then
for P := (T, p,0) and P’ := (Tg,p’,0) it holds

G(P,P") < CLip(F) [[Fllco(|V — Vol + V' = Vo). (25.36)

Proof. We use an argument already observed in more generality in [15, Lemma D.1].
However, we repeat here the parts needed for the previous lemma. First of all, we
construct finitely many planes by using 2d-rotations that will allow us to reduce (25.36)
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to a one-dimensional situation. Recall the terminology: we say that R € SO(n +2) is a
2d-rotation if there are two orthonormal vectors ej, e; and an angle 6 such that

R(e1) = cos(f)e; +sin(f)ey,
R(ez) = cos(f)e; —sin()er,
R(v) =wo, for any v € (eq,e2)".

Now let us denote by Wy = VN V' If dim(W; ) = 2, then V = V' and there is nothing
to prove. Otherwise dim(W;) < 2 = dim(V) = dim(V’) and we can write

Vle@V, V’le@V’,

for some subspaces V and V’. Choose any unit vector e; € V = V N W;i- and define

/
e = P'(e1) eV NWi.
P/ (e)] !

Moreover, define R; to be the 2d-rotation mapping e; onto ¢} and
Vo :=Ry(V),
Wr := VN V.

Notice that Wy C Vj is invariant under Ry, so clearly W; = (Wi N V') C (VaNV') = W.
Moreover, ¢j € V, NV, and hence

W, D <W1,€£> .

As ¢ L W;, we have dim(W,) > dim(W;) + 1. Now, if dim(W,) = 2, then V, =
R1(V1) = V' and we define R; to be the identity. Otherwise dim(W;) = 1 and we can
again find a unit vector e; € Vo N WZL, define

/
eh = p,(ez) ev'n Wll,
p’(e2)]
and define R, to be the 2d-rotation mapping e, onto ¢),. As before, we denote by
V3 := Ry(V,) and observe that W3 := V3 N V' has at least one dimension more than W,.
Thus, in both cases we have

V' =RyoRy(V).

Next, denote by Vi := V and for j € {1,2,3} the orthogonal projection onto V; by p;
and P; := (T, p;,0). Notice that for ¢ > 0 small enough, spt(P;) is a Q-valued point.
We claim

G(Pj, Pi11) < CLip(F) [|Flco([Vj — Vol + [Vjs1 — Vo)
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concluding the lemma as |V; — Vp| < [V = V[ 4 [V = V| < 2(|V — Vo| + |V’ — W) for

every j. Indeed, for each j, fix a unit vector v; € V such that

<€]‘,€],'>ﬂVOI{t'U]‘2t€]R}.

Then we can apply the selection principle [12, Proposition 1.2] to the map F/(t) := F(tv;)

to get a selection

F=Y [[P{]]

i
for some Lipschitz functions Fij : [-1,1] — R” satisfying

IDF/| < |DF| < Lip(F)  ae.

i J+l

We therefore conclude the existence of points sjl, cesSQiSY e

Piiq) < E‘F] ]H)’
< Lip(F Z‘ ]H‘

< Lip(F) Y (Is/l +1s/")

1

< QCLip(E) [Elleo (1V; — Vol + [V — al) ,

where we also have used (25.37).

(25.37)

]H € [—1,1] such that
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BLOW-UP ANALYSIS AND CONCLUSION

In this section we complete the proof of Theorem 12.6, which in turn completes the
proof of Theorem 1.7. We recall the Iy from Corollary 23.6. The main point is the
following conclusion.

Theorem 26.1. Let T be as in Assumption 23.2 and assume that 0 is not a reqular point. Then
Ip = 1 and for every ¢ > 0

D(r)

rl0 r2+e

= 0. (26.1)

The latter is in contradiction with the estimate (23.12) (i.e. D(r) < Cr?>*7) for some
positive constant T which depends on the exponent « of Theorem 12.7.

26.1 BLOW-UP ANALYSIS

As already mentioned, Theorem 26.1 is reached through a suitable “blow-up” analysis.
First of all, having fixed a sequence of s; | 0 we define a suitable family of rescalings of
the maps Nis. First of all we choose any k(j) with the property that

te(+1 < 8j = (g - (26.2)

Next we define the exponential map ex; : To M — M and we identify each tangent
ToM; to R? through a suitable rotation of the ambient Euclidean space which maps it
onto R? x {0}. We then consider the rescaled maps

Nj(x) — (e(Xk()] /(2 X)) . (26.3)

The main conclusion of our blow-up analysis is the following

Theorem 26.2. Let T be as in Assumption 23.2 and assume that 0 is not a reqular point. Let
sj 4 0 be an arbitrary vanishing sequence of positive radii, let k(j) be an arbitrary choice of
integers satisfying (26.2) and let Nj : Bj — Ag(R"), where B = By N {(x1,x2) : x2 > 0}.
Then a subsequence, not relabeled, converges strongly in WY2(B{") to a map N, satisfying the
following conditions:

(i) Neo(x1,0) = Q0] for all xy;

(ii) Neo is Dir-minimizing;
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(iii) N is Ip-homogeneous, where Iy is the positive number in Corollary 23.6.
(iv) 70 Neo = 0;
(v) fo |DNo|* = 1.

In particular Iy = 1.

Then the arguments of Theorem 13.9 apply to Ni and in particular give that Iy = 1.

Proof of Theorem 26.2. Observe first that, following the computations of [21, Section
10.1] we conclude that

H(4s;)
—CSj81+IQ < ] < CSj81+4IQ
¢ = H(s;/2) = °
as long as s; < tk(j)- Since Ij exists and is finite, there is a constant C (depending only
on Iy) such that

On the other hand, arguing as in the proof of Proposition 25.1, we easily see that
D(tij)) > C 5 E(T, 24t)

(we just need to choose the constant M, appropriately large to compensate for the
larger radius in the right hand side) while D (4f(;)) < C ti(j)E(T, 24ty(j))- Now, since the
geodesic ball By, in My ;) contains {d < t;(;/2} while the geodesic ball By, , C {d <
4ty (j) }, using the fact that the rescaling of the manifolds converge smoothly to the flat
plane Vp, we easily conclude that

/ |DNj|2gc/ IDN;[2.
B B

We can then follow the argument of [21, Section 10.3] to conclude that, up to subse-
quences, N; converges strongly in the W'?(B;") topology to a Dir-minimizing map
No. Likewise we can follow the argument of [21, Section 10.2] to conclude that 7 0 N,
vanishes identically. Recall that the maps Ny ;) vanish identically on I', while the rescal-
ings of the latter converge smoothly to ToI' = {x» = 0}. The strong convergence then
implies that No = Q [0] on {x2 = 0} N B;. We have thus proved (i), (ii), (iv), and (v).
We can however also see that

r [ ¢(r7|x|)| DN (x)|* dx .. rsiD(rs;)
¢ x Ne(x)Pdx  joe H(rs)

which means that the frequency function of Ns is constant. This however happens if
and only if N is Ip-homogeneous.
As for the final statement, we invoke Theorem 13.3. O
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Now that we know that Iy = 1, we can then conclude that by the strong convergence
of {N;}; in W2(B{"), we have

Corollary 26.3. If T is as in Theorem 26.2, then

D(2r)
o D(r)

26.2 PROOF OF (26.1) AND CONCLUSION

Fix ¢ > 0 and consider the sequence of radii r; := 2. We know from Corollary 26.3
that, for k sufficiently large

D(ry) > 27272D(ryq).

In particular we conclude the existence of a ko such that for every k > ko, we have
D(Z*k) > 2*(2+€/2)(k*ko)D(2*ko)_

In particular for every r < 275 we can write

D275) 5.
D(r) = 2+e/2 | °

and since D(27%) > 0, (26.1) readily follows.
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APPENIX TO PART I

A.1 PROOF OF COROLLARY 2.4

Proof. By Lemma 2.3, we have for 0 < r < 2

= IT|(B2) _ -
|T||(Br) < r"wynexp (Ca (Ap + K1) (2—7)) i, <2 "e4C]M(T)r”
and
— T||(B.
IT||(B;) > r"w, lim <exp (Cio (Ap + K1) (5 —71)) HH(S)) > wye Camyh,
s10 s"wy,
Hence, there is a constant Cy43 > 0 such that
1 _
1" <||IT[|(Br) < Cyar". (a.1)

Ca3

N
Recall that C; is such that |[H| < C;A . Then we use Lemma 2.1 to estimate

ITUE) _ITUED _ [ s ooz
B;\B,

Si’l ri’l
< / p " (CroA M| T (By) + pw—1axrp™) dp
< C3(Ap +x7)(5—7).

A.2 PROOF OF LEMMA 3.3

The proof of Lemma 3.3 is based on the rather technical area comparison lemma: if we
change slightly the (1 + 1)-component of a current, then its new mass stays close to its
original mass.

In the following, we will denote points in R"** by (x,y), where x € R"*! and
y € RF1L
Lemma a1. Let 0 < T < 1, p > 0and A C Cy be a Borel set which is a cylinder (i.e.
A=pLt(p(A))). Let u : R" — [0,1] be a C'-function satisfying sup,,4) |Dul < p/T and
consider the map

F:R"F — R™E,

(0, y) = (X1, X, u(X1, o X)) X1, @1, oo, X, (X1, -, X)X ) ).
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Then there is a constant Cyy > 0 only depending on n, k and m such that for any current T
with (T, M) € T the following holds

14 2 2
IM(F#(TLA))—M(TLA)<C44< i /Xn+1d||T\!+£+<2+iz>A>r

where A := {x € R""! : dist(x, A) < T} is an enlargement of A by T.

Proof. By [23, Section 4.1.30], we infer that for any w € D" (IR"*1)

—
(F(TLA) (@) = [ (BT (x),@(F@)AIT].
We expand the tangent vector in the following basis for T(, ¢ (x))M
vj(x) := (e, 0;®(x)) forje{l,...,n+1}, (a.2)

where e; denotes the j-th standard basis vector in R"*!. Then there are real numbers T;
such that

~ n+l

T = Z FOLA AT ATy (a.3)

We compute

FeT(x,9) = Tupa 01(F(x)) A -~ A on(F(x))

1 (T = Tt adip) o1 (FG) A+ AGF()) A+ A o ()

and therefore, we have

n+1

— n
|FsT|> < (Tr%Jrl + ) (Tip = T X 10j1) ) (E [O1 A ATFA -+ A Un+1|2>
j=1
z 2
< (T,%H + Z (Tipt = Tuy1 X 119j1) ) (1+ Cas|DO?)
2 2 2 0’
< T+1+Z Tjpt = Tu1 Xu19j)” + Cao|DOI* (14 5 )

We argue as in the original paper [27, Lemma 3.1.1] to deduce
M (F4(TLA)) —M(TL A)

2 2 (a-4)
SZ%/AX 1dHTH+/ T2,,)d||T|| + CieA2 <1+P )]M(T).
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In order to bound the second integral, we compute the first variation of T with
respect the following vectorfield

E : ]Rn+k — Rn+k’ (x/]/) = (xn-i-l - IPT(xl, .. -/xn—l))Az(x)en+lr

where ¢,,,1 denotes the (1 + 1)-th basis vector of R"™* and A : R**! — [0,1] is a
C! cut-off function with spt(A) C Ar, A|, = 1 and sup |DA| < Cg7/7. Notice that &
vanishes on spt(dT) and therefore, by [21, Theorem 3.2]

ﬁ
/diV?E d|T|| = - /: Hr(x) d||T||(x), (a.5)
%
where Hrt is the mean curvature vector.
As spt(T) C M, we have div?E = divpE — divyE where v € T, ¢(x)) M is the outer

—
normal vector to T. We compute v by expanding everything in the basis in (a.2):

n+1

vV = Z 1/]'21]'
j=1

— n+1
T=mN ATy with T = Z ti,]'U]'.
=1

N
As v is normal to T, we can use the expansion (a.3) to find the following equalities for
allje{l,...,n+1}and t; := (tj1,...tins1)T withi € {1,...,n}:

T; = detr 1 <t1 tn), (a.6)
"
0= =( : |,8 t) (a.7)
Vn+1

where ¢ = ((v;,v));;) = idpy1 + ((9;®@,0;®);;) =: id, 11 + B is the metric.
From (a.7), we deduce that

v =+ ((g-8) A A(g ) = (~1)det™ =4 (g gup,).

We compute

n+k
div,Z = Y (DvE))j = (DyEpt1)n+1
j=1
_ <<D (i1 — Pr(x1, ..., 201))A2(x)) V>V> (2.8)
v [v] ) uia

1 n—1 n+1
TP (sz’%ﬂ — A2 Y U@t +2A (X1 — §1) Y Va1 vidjh | -
L 3

j j
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On the other hand, we need to compute the divergence with respect to M. To
do so, we compute the projection on M: Let M be the matrix with column vectors
U1,...Un11 € R". Then we have

div &

n+k

=Y (DMmE))j = (DMmEn+1)nt1
j:l

- (M gt M" D ((xpg1 — 1pT(x1,...,xn_1))/\2(x)))

n+1
. :
gh! ghmtl 1 0 2A (X1 — $r)did — A20;9r
= g1/”+1 . gn+1,n+1 0 1 2)\( n+1 — IIJT)a A
* % * 1@ - 0y ® 2M( X1 = Y1)0nr1A — A2
0
L 1n+1
g‘ § 2A (Xns1 — lPT)a A — A0y
- 1n+1 . n+1,n+1 :
8 J 2A(Xyg1 — ¢T)anA
* * * )
ZA(XrHl - lPT)anJrl)\ —A n+1
n+1
— AZgn-‘rl,n-‘rl /\2 Z gn-l-l ]a lPT _|_2/\( il — lPT Z gn+l ]a AL
j=1 =
This together with (a.8) yields
divos = A2 [ gn+ln+ V%H 22 = nt1,j _ Vnt1Vj 9
A O 7 R P O T A
: (a.9)

n+1 .
+2A(Xpt1 — ¥1) Z( L] _ Vﬁzvf ) JiA.
=1

Together with (a.5), we have

—_ = n — n+1
_/.:,-HT d||TH :/)\2 <<gn+1,n+1 |V—|i-21) Z ( n+1,j _ ’+|2]> ﬂPT) dHTH
j=1

n+1 ) v Vs
1, n+1VYj )
+2/A n+1 — l/]T) Z ( g — ‘1/‘2 >a]A dHTH

j=1

(a.10)

n+1
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In order to regain the term 1 — T2

(_1)n+1vn+1

1, we first estimate v,

= det"" ((id + ((0,®,0®);))) - (1 - 1))
n+1 n+1
=) sgn(c (tw +Zt1] <I>8<I>>) ( +Ztn] <1>ac1>>>
oEeSsy,
= Z Sgn( )tl,a(l) te n,a(n) + O(|D(I)D
0ES,

=Tr, 1+ O(|DD|).
Hence,
Vi < T2, + Css|DOJ. (a.11)

Now, we compute the norm of v. We use that the Hodge star is norm-preserving and
therefore, we have for 7 := (v,...,V,41)

91> = det ((g- £, 8 - £j)i;) = det ((t;, &7})i)
= det ((<ti, t]> + 2<tl’, Bt]> + <lL1’, thf>)i,j> .

Notice that

(ti, ;) +2(ti, Bt;) + (t;, B*t;) > (ti, t;) — 2||Bllopltilltj| — IIBI15, |t It;]
> (ti,tj) — (2|1B]| + |IB*) [t |t @12
12
> (ti 1) — <2\/n+1|D<I>\2+ (n+1)\D<I>]4) It1]|]
> (ti,t;) —2(n+1)|D®J?,
where we used in the last inequality the fact
n+1 2 n+1
P =[S0 - [ Lol <P =1
j=1
Therefore, we estimate
ZHSgn (8- ting to(i))
ceP, i=
>y (Hsgn (b)) z"<2(n+1>>"\m>\2> @1
oeP, =1

> det (<t1‘, t]'>i,]') — 22”n!(n + 1)"|D<I)|2.

195
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Now, we use that 74, ... T, are orthonormal to deduce that

n+1 n+1

i = (1, 1) = () tix(er, k@), ) _ ti1(e1, 0,P))
k=1 1=1
n+1 n+1 n+1 n+1
= <Z ti,kek, Z ti,lel> + <Z ti,kakq), Z ti,laﬂb
k=1 =1 k=1 =1
n+1
= (ti,tj) + Y tixt;1(0x®,0,P)
ki1=1

and hence,
16:j — (i, t)| < 2(n+1)| DD
By a similar argument as in (a.13), it follows that
det ((t;,tj);;) > 1—2"n!(n+1)"|D®*.
Putting this into (a.13), we yield

n+1

Zv]a d>‘

> yu|2 > 122" pl(n+1)" yD<1>|2

n+1

|1/|2 Zv]v]‘ % +1/n+1+

Therefore,

1 1 ,
W S Ty D = | T CelDeL (a.14)

Now, we take care of g~!. By the geometric series and the fact g = id + ((9;®,0,®); ),

we have
gt =id — ((9;®,0,®@);;) + Y (1) ((9,®,0;®); )’ (a.15)
1>2
and hence,
8| < 8;; — (9;®,0,®@) + C12| DD, (a.16)

Now, we are ready to estimate piece by piece the right hand side of (a.10)

e We use (a.11), (a.14) and (a.16) to deduce

22 n-&-'n—b—l_vi%-&-l diT
g ) aim

> [ 02 (1= 0,11 @ — CoDOJ* — T2, — Cxol D) | 7|

/AZ (1—1T2,,)d||T|| — CsM(T)A>
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e We use (a.11), (a.14) and (a.16) to deduce

n—1 ) Vy g1V
/AZ Z <gn+1r] _ TV|2 ]) a]lI)T dHTH
j=1

Vi,...,V
S //\2 <C52|Dq)|2+ |(1|1/|n)|> KT d“T”

1
< KT/AZ Vi d||T|| + CssM(T)| DD

< KT//\Z\/l — T2, + Cs4| D®|? (1 + Cyo|D®?) d|| T| + CssM(T) A>

< KT//\Z\/l— T2, | + Cas| D®Pd| T|| + Cs3M(T) A2

* We use (a.11), (a.14), (a.16) and a similar argument as in (a.13) to deduce

n+1 UV
1, n41vj
/2/\ n+1 — 11[JT) Z ( L — |1/|2 )a]/\ dHTH

j=1
V2 n R VR
= / 2A(| X1 | + x7) ((g - ,’;j;) dpar+ ) (g”“'f - 7;,*,2 ]) a]A> d||T]|
j=1
<2 [ A|DA|(|X 1—9,,® — Cag| D@2 + W1Vl g
IDA[(|Xpy1| +x7) 100 11®|* — Tj,1 + Css| DR|* + m T
C 72 —vis
< 2j (/)\ ’Xn+1’ +KT) (1T3_~_1+U2n dHT” +C57M(T)A2
C
<2ﬂ/)\ | Xos1| + x7) < - n+1+\/1 T3 41+ Cas| D®J? (1+ Cyo| DD )>dHTH
C
+C57ﬂ1M(T)A2

C
< Zﬂ </)\ | Xns1] +%7) 2\/1 Tii1 + Coo| DO T + Cél]M(T)AZ) '

Putting all this into (a.5) yields

[ra-T1dlT]

C
< [xA?\1= T2, + Css|D@PA| T 4+ =2 /Arxnﬂwl T2, + Coo| DO T|

e
59/ krdy/1- n+1—|—C6o|D<I>|2dHT||+/ - Hd||T|| + CeaM(T)A2.

(a.17)
Using three times the Cauchy inequality (2ab < a? + b?), we estimate
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o [x022\1- T2, + Css|D@Pd| T

/\2
<[ G O-ThitCslDoP)d|T| + [ a2 dT],

C
. 59//\\Xn+1]\/1 T2, , + Ceo| D®[2d||T||

1 Cso
< 1¢ [ R A-Tha+CalDOP) AT+ 53 [ X, dlT,

C
« =2 [krA\/1-T2,, + Co| D@ T

C
<5 [, =T+ ColD@P) AT + 52 [ T,

Again putting this into (a.17) yields

C
[ oR-Tr)dTl <5 [ 20T AT+ [ X AT

2
+/ - Hd||T|| + CsM(T) (A2+K%+T§>
and hence,
[ Q=TT < [ -T2l
< Cso ) K7
27 X+1 d”TH—i—CMM(T) KT—F?—FZA .

Using (a.4), we deduce the desired inequality

M (Fs(TL A)) —M(TL A)

1+ 2 KZ 2
< Cosr o [ X dlT] + CaM(T) L + CooM(T)A (z i f;) |

Now we have all the tools to estimate the excess of T with its height.

Proof of Lemma 3.3. The second inequality holds true with C1; > 3" (1 + mw,) > M(T).
For the first inequality, we want to use Lemma a.1 for A := C14;\C1, p = 3 and
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T = /2. Consider F as in the lemma for some C!-function u : R" — [0,1] satisfying
sup [Du| < p/7 and
p(4)

u(z) =0 if|z| <1
w(z) >0 ifl<|zl| <147
u(z)y=1 ifjz| > 1+t
Moreover, we define for t € R and (x,y) € R"** the homotopy
Hi(x,y) i= (p(x), (1 — Do p(x) + s, ®(p(x), (1 — o p(x) + H¥asr))

Notice that F is the identity on M \ C14; and F = (p,0,®(p,0)) on C;.
Then for Rt := Hy([0,1] x 0T) we have spt(Rt) C M and

O(TLCiyr — F4(TL_C14r) — Rr) = (T — KT — Rr) = 0.
Hence, by the area minimality of T in M, we have
M(TL Ci14r) < M(F¢(TLCi47)) + M(R7).
Moreover, by [33, Remark 26.21(2)], the following holds

M(R7) < sup [9:H| sup [0+H|M((oT)L_Cy).
spt(aT) spt(oT)

Therefore, we compute

0:H| < (Xnt1 — Xpsapop) + |D®| (Xps1 — Xus1p 0 p)
< (14[D®J?) [Xuia] (1 - pop)
<

kr (1+ |D®?),

|0:H| < 1+ [Dp| X1+ [D®| (n+ [Dp|Xis1) + (Ip[+1) + [D®[([u] +1)

<n+ (g) k1 + | D®| <4+ <n+?)>+4

§C67<1+;%T),

M((T)LCz) < w,12" " \/n + x + A2(1 + x7) < Ces(1 + 7).

Thus, we have
K
M(R7) < Ceo—(1+A).

199
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Now, we argue as originally in [27, Lemma 4.1] and use Lemma a.1 to deduce

Ec(T,1) < M(Fy(TL A)) — M(TL A) + Cﬁg%T(l LA

C
<0 (ke [ XEdlT|+A).
o C1+17

A.3 PROOF OF LEMMA 3.4

Proof. We call a function f T-subharmonic if
/ (D2f, D20)d||IT| <0 forallT e CH(R"%; R>0) with spt(Z) Nspt(aT) = @.
The functions
hi i R 5 R, (x,y) = (—1) 41 + 224, fori e {1,2}
are T-subharmonic as
[0z, D0dIT] = [ {7 Dy, e DOA|T] = [ (Dhy,7e- DT
= [ {(=1)'ens1 42Xy 11041, 7 - DO)A||T||
(diV; (C ((_1)i +2Xn+1> en+1> - 26”n+1,n+1>dHT”
' i 11
<—g ((=1)"+2Xy11) ens - H— 208" > d|Tl,
¢ (7C1[D*®@] 2 (1~ [9,1®[> — Co| DOI*) ) d| 7]
¢

(7C; |D*®| —2 (1 — (14 C12)|D®|?)) d|| T||

where 77(x) denotes the orthogonal projection to the tangent plane of T at x and we used
(a.16), [21, Theorem 3.2] and the fact (spt({e,41) Nspt(dT)) C (spt(Z) Nspt(dT)) = D.
Consider the nonnegative, convex function

t— 2KT, if t Z ZKT

fTR=R t= ¢ 2k, ift < —2x7-

0, else

Notice that f((—1)'X,11 4+ X2,,) vanishes on spt(dT). If f were additionally smooth,

than by [2, Lemma 7.5(3)] f((—1)'X,+1 + X2, ;) would be T-subharmonic. Therefore,



A.3 PROOF OF LEMMA ?? 201

we take a smooth nonnegative mollifier i satisfying spt() C (—1,1) and [ 7(x)dx = 1.
Define #¢(x) := 617 (x/€) and fe := f * 7. f€ is smooth, convex and converges umformly

o f when e | 0. Therefore feo ((—1)'X,1 + X2,,) is T-subharmonic and by [2,
Theorem 7.5(6)]

2
sup f(( ) n+1 + Xn+1)
C1_Nspt(T)

= sup sup f((—1)Xpr + X210)°
aep~1(0) 7,(B1_)Nspt(T)

2
= sup lim sup  feo ((—1)'Xps1+ Xa44) .
acp~1(0) €40 <Ta(BlU)ﬁspt( T) " : ) (a 18)

C

< sup 11m< 710/ - (feo (( ) n+1+Xn+1))2d||T||>
acp-1(0) €0 Ta(B1_¢/2)

< En

<[ P X+ X )AIT.

Ci /2

We deduce further that in B, the following holds

Xn+1 40KT (|Xn+1| + Xn+1) - 4OKT

- (XM + X2, ) =206y, if [Xup1 + X2, > 2k7
else

) (a.19)
n { ( X1+ X%—O—l) — 20k, if |Xn+1 — X%+1| > 2K1
0

i else

P21+ X04) + (= X1 + X341)

and

P (X1 + X20) + (= X1+ X2,,) <2 ((XM F X2 )+ (= X + X207+ 8K%)

<4(1 Xy 1|+ X2,0)7 + 1612
< 36(X2,, +13).

(a.20)

Putting (a.18), (a.19) and (a.20), we conclude

Cro
sup  Xz4 < — (F2(Xns1 + Xoiq) + f2(— Xus1 + Xoiq)) d||T|| + 40x7
C1_,Nspt(T) Cio/2
36C
< [ (X +3) dIT] +40xr
o Cion2

C13 / )
< — X d|T .
<@ ([ ®adm+e
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For (ii.), we specify Cy; later and let

C:=12-3"*"2(7 + 2m +2C4 + C71) C13(1 + mw).

ol
Case 1: Ec(T,1) +xr+A > 3" (1 + me)T

In this case, as spt(T) C Bs, we can bound
C
0—n+1

/X%HdIITH < 3" (1+ mw,) < (Ec(T, 1) + k1 + A).

n+1
Case 2: Ec(T, 1) +xr + A < 3" (1 + mwy) UC (a.21).
Here, we aim to show that C;_,/» Nspt(T) C By. If this were true, the following would
conclude the lemma. Namely, recall the normal vector v from the proof of Lemma a.1.
Then, by Cauchy’s inequality, we can deduce

XEadITI = [ (% 1) + (Xoews = ) d|IT
Jo Xodl Tl = (0 0+ (X — )T
2
12 2
Sz/Bl <|X 1+ [X] >dHT|| (a.22)

2
<2 <|xL|2|xr—"—2+ ! )duTn
By

Now, we recall that the cylindrical excess can also be expressed by

1 2
i o I =pIPaiT],

v
€n41 — m

T 1
€+l €41 — WU v

where 7(x) still denotes the orthogonal projection to the tangent plane of T at x We
compute for (x,y) € B

<n—p><x,y>=(M-g1-MT<x,y> ), L ) Zx]e]

T

v v
= B(x,¥) + Xp1e511 — ((x,y), 7>m

7

where
B(x,y) :=M- g’1 . MT(x,y)T — (x,O)T.

Using (a.15) we estimate
[B(x,y)| < Cra| DD
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Hence, by Corollary 2.5 and the inequality (3.2), we can continue the estimate of (a.22)
in the following way:

o XadiT <2 (Bs(T 1) + oA x) + [ 2(Iw =l + B2 I
1 1

S 2ES(T/1) + 2C4(A + KT) +4EC(T,1) + C72A2 (a'23)
< (6+2m+2Cy) (Ec(T,1) +x71) + (2C4 + C71) A.

As (6 +2m +2C4 + Cy1) < C < Co "1, we are left with proving that
leg/z N Spt(T) C El.

First, we notice that due to a similar reasoning as we did for (i.) and using (a.23), we
have

611
Csp < Sn ([ i) )
Bl_a/éﬂspt(T) 1

6"C
S 0—nl3 ((7+2m +2Cy) (Ec(T, 1) + 1) + (2C4 + C71) A)
o
< —. ‘
- 12 (a.24)
As a next step, we show that spt((9T)L_Cy_,/3) C Bi_g/6. (a.25)

We argue by continuity: Assume by contradiction that this is not the case. Then we
would find a z € R"! such that (z, ¢7(2), Y1(2), ®(z, ¢1(2), P1(2))) € C1_0/3\B1-0/6,
hence, |(z, ¢1(2))| < 1—0/3 but |(z, ¢1(2), Yr(z), ®(z ¢1(z),¢r(z)))| > 1—0/6.
Then it must hold that

2
Pr(e? + 1091 pr)] 2 (1-7) - (1-5) =7 -2 (a.26)

Consider now for ¢ € [0,1] the curve y(t) := (tz, pr(tz), r(tz), ®(tz, pr(tz), Pr(tz))) €
R"**. As 7(0) = 0 and (1) ¢ B;_,/6, there is by the mean value Theorem a t € [0,1]
such that |y(t)| =1—0/6. Let § := min{t € [0,1] : |y(t)] =1 —0¢/6} > 0. Then for all
0 < s < §, we have y(s) € B;_,/6 and by (a.24), ¥r(sz)> < 0/12. But then we get by
(a.26)

[7(3) = () = [ipr(82) — r(s2)]
(%

2
> \/g — (1% — |® (52, ¢7(32), ¥1(32))|* — IR

5o mer (1-5)"
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where we used the assumption of the lemma in the last inequality. As 0 < s < § was
arbitrary, this contradicts the continuity of 7. Hence, (a.25) holds true.

And then spt(T)L_C;_, /, stays in the unit ball: We denote by p to projection to R" 1.
Then as T is minimizing in M, p#T is minimizing a parametric integrand described
Lemma 3.6. Then we can use [26, Corollary 4.2] to deduce that spt(psT) is contained in
the convex hull of spt(d(psT)). Hence, spt(ps+T|_Cy_,/2) C By_, /6. Using the fact that
T = (id, ®)4p4T and |D®| < ¢/6, we conclude that spt(T)_C;_,,» C By. O

A.4 PROOF OF REMARK 4.4

Proof.  (i.) we choose ¢ = 1/4 in Lemma 3.4 and get that

1\ 2
sup  Xp, . < 4"1C13C1(Ec(T, 1) + k7 + A) < <8> )
C3/4ﬂspt(T)

(ii.) We first check, whether we created additional boundary while taking the inter-
section with Bs. If this were the case, then for |w| < %, there is a point (u,v)
in
(€ pelM) 0 )] < Bl < 3307 (X4 (=4 81) N9Bysn M)
with

o u=(x1,..., X1, %, COS(w) — Xp41 Sin(w), X, sin(w) + x,41 cos(w))

v ==®(x,..., X1, X%, COS(wW) — Xp11Sin(w), Xy sin(w) + xy41 cos(w))

1
° < —
|xn+1| =g

9

o xf @ x| =

1
ﬁ+m+ﬁ4§1

1
* |x,cos(w) — xy41 sin(w)| < 5
This implies that x2 > g — | ®(x1, ..., x001) ]2 > 39—2 and hence,

1
5> |x, cos(w) — xp41 sin(w)|
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Hence, there is no such x and the intersection is trivial, thus we have

O((nanywosT)_B3) = (9(panysT)) L Bs.

The remaining conditions for (pasy,#T)L B3 to belong to 7 follow like in the
original paper [27, Remark 2.3].

(iii.) We write (pryywosT) B3 = (pyjauprasyosT) Bz in order to use Remark 4.4. As in

the original paper [27, Remark 2.3], we deduce

sup {X%H ix € spt(('yw#T)LCUz)} < 4<w2 + sup( ) |Xn+1|>.
C3/4ﬂspt T

Hence, by using Lemma 3.3 (with ¢ 1 0 and Lemma 3.4, we have

KT+ A
Ec ((pasyosT) B3, 1) < Cyo (Cn sup X2+ — I )
CaNspt(pag e T)

< Cyo (16C11 sup  Xiq+Kr+ A>
C1/2Nspt(yorT)

< Cpo (43(:11602 +4Cy sup  Xi +xr+ A) (a.27)

C3/4ﬂspt(T)
C
< C—Zl (w? + Ec(T,1) + k7 + A) (a.28)
20
1
<
C2o

Thus, we can use Remark 4.4 and conclude.

A.5 PROOF OF LEMMA 6.1

Proof. The plan to prove this lemma is as follows: First, we bound the excess with
[ X2,,d||T|| by Lemma 3.3. Then, we construct a vectorfield and compute the associ-
ated first variation. By minimality of T this can be expressed by the mean curvature
vector. Moreover, by the choice of the vectorfield, we can bound [ X2_,d||T| with
[ |X*[?|X|72d|| T||. By Corollary 2.5 this carries over to the spherical excess.

Let T be as in the lemma and Cjg as in Lemma 3.3. Moreover, we define

Cap = 2%"2C13Cu4,
Csyz = 32n+8C10(1 + mwn).
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We apply Lemma 3.4 with ¢ = 1/2 to deduce

sup  Xiq <22"71C13C1(Ec(T, 1) + k7 + A) <
Cl/zﬂspt(T)

N —

Hence, for all x = (%,77) € Cy,, Nspt(T) the following holds

P < (1 DR PIIpWP +330) <5 (3+5) =1 (a.29)

For x = (&) € R"* the projection to the tangent space of M at (¥, ®(%)) is given by

_ id | _ -1 1.D®
P=Pi=Mg M = )¢ (id po)=| % g .
D® (¢7'-D®)T D®T.¢'.-Do

Therefore

n+1
try1(P):=) Pi<n+1+ Cr|D®|? (a.30)
i=1

7 (0)] | (o)
0 D®(g %)

where we used (a.15).

Denote by v the outer unit normal vector being tangent to M and normal to the
approximate tangent space of T. As v = (vy,..., V1) € span{(e;, 0;®) : i < n+1},
we have

and

< Cyy|D®(%)|, (a.31)

n+1 .
Vpgp14j = E v;0; P/ forall j <k—1.
i=1

Denote by 7 = (v, ...,vk;1). Then the following holds

v < (1+|D®)[7]. (a.32)

. =n+1
Moreover, define A := B; \ By,4 where By = BT/Z x R¥"1. Denote « := x, € :=

Ec(T,1/3), B := 4C3_31/2 and for all x € R""* let

A(x) := max {O, SUAR Be — K} .

%]
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Then in A we have

< Xn+1
((%,0),0:)] < |«(x,0,0; (1))
xo(von (5 - S59)
< | Uik, o) — X1 (X, 7)?| + 8Cy4| D®| @39
R R
(%,
<2 4 8Cyy| DD
i |psewpel

Let k € IN with k > 1 and choose a C! function Ui : R = R such that for t > 1/4 we
have
i (t) = max{0, ¢t~ " — 1}1F1/k,

Moreover, let ki : R"*% — R"** be a C! vectorfield satisfying hi g, 4nspr(ry = 0 and
hi(x) = A2 (x) i (|%]) (£,0)  for x & Byya.

Notice that for x € (spt(dT) NB,) C {x € R"* : x,.1 < |%[(Be+ )} we have
A(x) =0, and when |%| > 1, px(|X|) = 0. Hence, Iy vanishes on

spt(dT) U (Byya Nspt(T)) U {x € R"* 1 x, 11 < |%|(Be +x)}

and by [21, Thereom 3.2], / div?hk d||T|| = - / hy - HT d||T|. (a.34)
B
We compute ’
n+1 V/ _
divahe =) <(p — v ®v)(2XjApDA + XjA? \Xk\ (X,0) + ejAzyk)>
=1 j
8 . X,0
= 20((5,0), D3) + A (£,0), (P = v o))

+try 1 (P — v @v)A .
Using (a.34), (a.30), (a.31), (a.32) and (a.33) we find

4)
lim/ hy - Hy d||T|
k—oo JA

gklim/él}\yk )i( AN (X, (id — 7 @ 7) = |)—|—n/\2ydeTH+C75A
—00
= [ ) \<}|‘X,> FAR| = A2 ||, ) T

+/ nA2(|X|7" = 1)d||T|| + CrsA

RSl

A2, R)2 mZ) d||T| + CrsA
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and hence,

n/A/\deTH g/A <4A(\X\f—1)‘<)‘i’;‘7>
<o (ol

Crs
A d||T /7dT Al.
<2 [ war+ 2 (\m |H|+)

2|2, >)dHTu+c76A

d||T|| +A>

We conclude

/)\ZdHTH<C78 (/‘ ):(

We argue in the same way to prove the same inequality for

dHTH + A) .

- X
A := min {O, &T —|—5£+K}.

As the spt(A) = {x € R"™* : x,1 > |%](Be +x)} and spt(A) = {x € R"F: x, 4y <
—|%|(Be+ )}, we see that spt(A2 +A%) = {x € R""* : |x,,1| > |%|(Be + ) } and hence

(Be + x)

+ (Be+x)

/ X2 7]
n+1
|X|+2d|m|
_/( 2 (petn) ) (Tt (e ) QT+ (e 7T (4)
|X] IXI
< Xn~+1 ‘

x| Lo azydlI Tl + (Be + )| TN (A)

S;/A(Auﬁ)dwn +2(% + )| T|[(A)

§C79<A

< (f, IX-PIXI 21T + A ) + 2087+ )T (4).

Notice that by the assumption of the lemma

(&) [
X]

d||T] + A) +2(p% + )| T (A)

Ec(T,1) ,

Ec((:T 1) ITI(Br/a) = == =BTl (Br/a) < €BIITII(By/a)-

f, Xl <
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We use Lemma 3.3 (with T, o replaced by (u34T)L B3, 1/2), (a.29) and Corollary 2.5
(with s = 1) to deduce

82 = Ec((y3#T> LBg, 1)

< 4Cy <K(ﬂ3#T)LB3 +/C X;%HdHﬂB#TH + AFS(M)>
3/2
< 4-3"C10 (K+/ X;%+1d’|TH +A)
Ci/2
< 3"2Cy, (x +/ Xo . d||T| + A>
By

< 32y, <c78 (/ |X12 X" 2| T +2A> + 2IM(T) (B*e> +K)>
A

S 3n+2C10 (C7g (Es(T,l) + C4K + (2 + C4)A) + ZM(T)(IBzﬁz + K))
3271+3C10(1 +mwn)16 2 C34
+ —(Es(T,1)+x+ A
32n+8(1+mwn)clo € > ( s(T,1) +x )

82 C34
5+ (Es(T,1) +x+A).

<
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