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Abstract

We consider a problem in the theory of optimal control proposed for the first
time by Bressan. We characterize the associated minimum time function using tools
from geometric measure theory and we obtain, as a corollary, an existence theorem
for a related variational problem.

1. Introduction

In this paper we deal with a problem in the theory of optimal control introduced
for the first time by Bressan in [5] and which has been subsequently studied in
several papers (see [6–9]). The problem models the propagation of a wild fire in a
forest or the spatial spreading of a contaminating agent.

Consider a continuous multifunction F : R
2 �→ R

2 with compact, convex
values (that is, F(x) is a compact convex set for every x and F(xn) → F(x) in
the sense of Hausdorff when xn → x). A bounded, open set R0 ⊂ R

2 is the initial
burned set and F describes the speed at which the fire might spread. A control-
ler can construct one-dimensional rectifiable sets γ (or “walls”) which block the
spreading of the fire at a certain maximum rate. More precisely, consider a contin-
uous function ψ : R

2 �→ R+ and a constant ψ0 with ψ � ψ0 > 0. We denote by
γ (t) ⊂ R

2 the portion of the wall constructed within time t � 0 and we make the
following assumptions (H1 denotes the one-dimensional Hausdorff measure):

(H1) γ (t1) ⊆ γ (t2) for every 0 � t1 � t2;
(H2)

∫
γ (t) ψ dH1 � t for every t � 0.

A strategy γ satisfying (H1)–(H2) will be called an admissible strategy. In the
above formula, 1/ψ(x) is the speed at which the wall can be constructed at the
location x .
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At each time t , the burned set consists of the points reached by absolutely con-
tinuous trajectories x(·)which start in R0, solve the differential inclusion ẋ ∈ F(x)
and do not cross the walls γ . That is,

Rγ (t) :=
{

x(t) |x ∈ W 1,1 ∩ C([0, t],R2) , x(τ ) �∈ γ (τ) ∀τ,
x(0) ∈ R0 and ẋ(τ ) ∈ F (x(τ )) for almost everywhere τ

}
. (1)

The purpose of this paper is to study the minimum time function at which a
point is reached by the fire. We will be able to characterize this function via a
suitable modification of the usual Hamilton–Jacobi partial differential equation. In
the paper [7], Bressan and De Lellis introduced a variational problem on the set
of admissible strategies and proved the existence of a minimizer (this problem is
connected to that of confining the fire in a bounded set, see for instance [8]). An
interesting byproduct of our analysis is a shorter proof of this existence result. The
price to pay is the use of some more advanced techniques in geometric measure
theory.

1.1. Minimum time function

Given an admissible strategy γ , for any x ∈ R
2 we set

T γ (x) := inf{t > 0 : x ∈ Rγ (t)}. (2)

T γ (x) is the time at which the fire reaches x . Obviously T γ vanishes identically
on R0 and the total burned set is given by {T γ < +∞}.

If γ (t) = ∅ for every t , then T γ is the minimum time function of a classical
control problem. Let us introduce the Hamiltonian function related to it.

Definition 1. H(x, p) := supq∈F(x){p · q} − 1.

In what follows, we will always assume that

(H3) There is a constant λ > 0 such that Bλ(0) ⊂ F(x) for all x .

It is well known that, under (H3) and the assumption γ = ∅, T γ is a Lipschitz map
and satisfies the Hamilton–Jacobi equation

H(x,∇T γ (x)) = 0 for almost everywhere x ∈ R
2 \ R0. (3)

Indeed, T γ is characterized as the viscosity solution of (3) in R
2 \ R0 with boundary

value equal to 0 (see for instance [11] or [4]).
Assume for the moment that γ∞ := ∪tγ (t) is a sufficiently regular curve. Then

T γ must be a viscosity solution of (3) in {T γ < ∞}\(R0 ∪γ∞). Moreover, T γ has
jump discontinuities on γ∞. We can regard it as a “ viscosity solution of (3) with
obstacles γ∞”. In this note we propose a suitable mathematical definition of this
concept and use it to characterize T γ . The strength of our result is its generality,
which will give us a few interesting corollaries. In order to state our main theorem,
we need some notation.
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1.2. Main Theorem

We start by introducing the “complete strategies”, which were first defined
in [7]. The definition is motivated by the following example. Assume that γ
is an admissible strategy and consider a family of sets η(t) satisfying (H1) and
H1(η(t)) = 0 for every t . Then γ (t) ∪ η(t) satisfies (H1)–(H2). In other words,
given an admissible strategy γ , we can increase its effectiveness by adding an
H1-negligible amount of walls.

Definition 2. An admissible strategy γ is complete if

(i) γ (t) = ⋂
s>t γ (s);

(ii) γ (t) contains all its points of positive upper density, that is all x such that

lim sup
r↓0

H1(Br (x) ∩ γ (t))
r

> 0. (4)

The following proposition follows from standard geometric measure theory.

Proposition 1. (Lemma 4.2 of [7]) Let γ be an admissible strategy. Then there
exists a complete admissible strategy γ c such that

(iii) γ (t) ⊂ γ c(t);
(iv) H1(γ c(t) \ γ (t)) = 0 except for a countable number of times t.

An interesting byproduct of the results of this note is a proof of the intuitive fact
that γ c has the maximum effectiveness among all strategies which differ from γ

by a negligible amount of walls (that is, γ c has the largest minimum time function
in this set of strategies, compare with Theorem 1 below).

We next introduce some notation in order to describe our “viscosity solution”
to the Hamilton–Jacobi equation with obstacles.

Definition 3. Given a measurable function u : R
2 → [0,∞] and a t ∈ [0,∞[ we

set ut := u ∧ t = min{u, t}.
For a given strategy γ , a measurable u : R

2 → [0,∞] belongs to the class Sγ
if the following conditions hold for every t ∈ [0,∞[:
(a) ut ∈ SBVloc(R

2), H1(Jut \γ (t)) = 0 and ut ≡ 0 on R0;
(b) If ∇ut denotes the absolutely continuous part of Dut , then

H(x,∇ut (x)) � 0 for almost everywhere x . (5)

SBVloc(R
2) is a linear subspace of BVloc(R

2) (where the latter is the space of
functions having bounded variation on every bounded open subset of R

2). For its
precise definition we refer the reader to the next Section. We are now ready to state
the main result of this paper.

Theorem 1. Let γ be an admissible strategy. Assume (H1), (H2), (H3) and

(H4) the initial set R0 is open and ∂R0 has zero 2-dimensional Lebesgue measure.

Then T γ ∈ Sγ and T γ
c

is the unique maximal element of Sγ , that is

for every v ∈ Sγ we have v � T γ
c

almost everywhere. (6)
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1.3. A variational problem

Besides its intrinsic interest, Theorem 1, together with the SBV compactness
theorem of Ambrosio and De Giorgi, yields a direct proof of the existence of min-
ima for the variational problem first studied in [7]. More precisely, consider two
continuous, non-negative functions α, β : R

2 �→ R+ and define

Rγ∞ :=
⋃

t>0

Rγ (t), γ∞ :=
⋃

t>0

γ (t) and (7)

J (γ ) :=
∫

Rγ∞
α dL2 +

∫

γ∞
β dH1, (8)

Note that the functional J is well defined: the set Rγ∞ is indeed measurable by The-
orem 1 because Rγ∞ = {T γ < ∞} (however, the measurability of Rγ∞ can also be
proved directly; compare with Lemma 3.1 of [7]). As a consequence of Theorem 1
we have the following.

Corollary 1. (Cp. with Theorem 1.1 of [7]) In addition to (H1)–(H4) assume that:

(H5) α � 0, β � 0, α is locally integrable and β is lower semicontinuous.

Then there exists a strategy that minimizes J (among all the admissible ones).

2. Preliminaries on BV functions

Most of this section will be devoted to proving the following technical prop-
osition, which is a key point of our proof. We refer below for the definition of
approximate continuity.

Proposition 2. Let u ∈ Sγ and assume γ is a complete strategy. Then there is a
measurable function ũ having the following properties:

(i) u = ũ almost everywhere (that is ũ is a representative of u);
(ii) ũt is approximately continuous at every x �∈ γ (t);

(iii) If
 : [0, 1]×[0, 1] → R
2 is a C1 diffeomorphism (of [0, 1]2 with its image)

and ατ denotes the curve {
(τ, s) : s ∈ [0, 1]}, then the following holds for
almost everywhere τ and for every t:

If ατ ∩ γ (t) = ∅, then w(·) := ũt (
(τ, ·)) is Lipschitz and

ẇ(s) = ∇ut (
(τ, s)) · ∂s
(τ, s) for almost everywhere s

H(
(τ, s),∇ut (
(τ, s))) � 0 for almost everywhere s.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(9)

In the proposition above it is crucial that the Lipschitz regularity holds for w in its
pointwise definition: we do not need to redefine it on a set of measure zero!

A second technical point is the next proposition. This time, however, the state-
ment is a well-known fact for BV functions and we refer to the monograph [1]. In
what follows, the derivative of BV functions v, which are Radon measures, will
be decomposed into its absolutely continuous part and its singular part, using the
notation Dv = ∇vL2 + Dsv.
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Theorem 2. (Approximate Differentiability) Let v be a BV(�) function and Dv =
∇vLn + Dsv. Then, at almost everywhere x ∈ � there exists a measurable set
B (possibly depending on x) such that:

(i) lim
r↓0

Ln(Br (x) \ B)

rn
= 0;

(ii) lim
z→x,z∈B

v(z)− v(x)− 〈∇v(x), (z − x)〉
|z − x | = 0.

Or, in the language of [12], v is approximately differentiable at almost everywhere
x with approximate differential given by ∇v(x).

2.1. Decomposition of Du, SBV functions and slicing

We list here several fine properties of BV functions which will play a crucial
role throughout the paper. From now on, given a Radon measure μ on a Borel set
E ⊂ R

n , we will denote its total variation on E by |μ|(E). If u is a BV function,
the singular part of Du, namely the measure Dsu, can be further decomposed into,
respectively, a Cantor part and a jump part, that is Dsu = Dcu + f νHn−1 Ju ,
where:

– Ju is the jump set of u and it is a rectifiable set of dimension n − 1;
– Hn−1 Ju denotes the measure μ such that μ(E) = Hn−1(Ju ∩ E);
– ν is a Borel vector field orthogonal to Ju and with |ν| = 1;
– f is a Borel scalar function;
– Dcu(E) = 0 for every Borel set E with Hn−1(E) < ∞.

A BV function u belongs to SBV if Dcu vanishes. We refer to Chapter 3 of [1] for
the details.

In the case of one-dimensional BV functions, the jump set Ju consists of count-
ably many points. The measure Du will then be denoted by du

ds and we will use u′
for the L1 function ∇u. The decomposition above reads then as

du

ds
= u′L1 +

∑

si ∈Ju

f (si )δsi + Dcu. (10)

Each f (si ) is, thus, a real number and Dcu is the singular nonatomic part of the
measure du

ds (see Section 3.2 of [1]).
Next, recall the following theorem (compare with Section 3.11 of [1]).

Theorem 3. (Slicing) A function u ∈ L1([0, 1]2) belongs to BV iff

1. The functions u(y, ·) and u(·, y) belong to BV([0, 1]) for almost everywhere y;
2. The following integral is finite

∫
(∣∣ d

ds u(y, ·)∣∣ ([0, 1])+ ∣
∣ d

ds u(·, y)
∣
∣ ([0, 1])) dy.

The function u belongs to SBV if and only if the two conditions above hold and, in
addition,

(3) u(y, ·) and u(·, y) belong to SBV for almost everywhere y.
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Moreover, if u ∈ SBV and we write Du = ∇uL2 + f νH1 Ju, the following
identity is valid for almost everywhere y ∈ [0, 1]:

d

ds
u(y, ·) = 〈∇u, (0, 1)〉L1 +

∑

si ∈J (y)

αiδsi , (11)

where J (y) := {s : (y, s) ∈ Ju} and αi = f (y, si )〈ν(y, si ), (0, 1)〉.
Remark 1. The obvious modification of Theorem 3 holds in coordinates which are
locally C1-diffeomorphic to the cartesian ones. For instance the theorem holds in
polar coordinates (except at the origin).

2.2. Fine properties of 1-dimensional BV functions

When I is an interval and u ∈ BV(I ), we can change the values of u on a set of
zero Lebesgue measure so to gain a function ũ with the following properties (see
Section 3.2 of [1]):

– ũ is continuous at every point t ∈ I \ Ju ;
– u+(t) = limτ↓t ũ(τ ) and u−(t) = limτ↑t ũ(τ ) exist (and are finite) at every

t ∈ Ju .

Moreover, the coefficients f (si ) of (10) satisfy f (si ) = u+(si ) − u−(si ). It is
customary to set ũ(si ) := (u+(si )+ u−(si ))/2. ũ is then called the precise repre-
sentative of u. The following Proposition is a simple corollary of the properties of
the precise representative.

Proposition 3. If I is an interval, u ∈ BV(I ) and Ju = ∅, then the precise repre-
sentative ũ is continuous. If in addition u ∈ SBV(I ), then ũ ∈ W 1,1 ∩ C and its
distributional derivative is the L1 function u′.

2.3. More on fine properties

The properties listed above for 1-dimensional BV functions can be suitably
generalized to the higher-dimensional case. In order to do that we must introduce
the concept of approximate continuity.

Definition 4. A measurable map u : R
n ⊃ E → [−∞,+∞] is said approximately

continuous at x ∈ E if there is a measurable set A such that

lim
r↓0

Ln((E \ A) ∩ Br (x))

rn
= 0;

lim
y→x,y∈A

u(y) = u(x).

We recall, then, the following classical result in real analysis and its improved
version for BV functions (we refer to Section 3.7 of [1]).
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Proposition 4. Measurable maps are approximately continuous almost every-
where. If u is a BV map of n variables, then we can redefine it on a set of measure
zero so to get a precise representative ũ which is approximately continuous at every
point x which satisfies

lim
r↓0

|Du|(Br (x))

rn−1 = 0. (12)

If N denotes the set of points where (12) fails, then Hn−1(N \ Ju) = 0. Moreover,
for every x ∈ Ju, there exist two distinct values u+(x) and u−(x) and a measurable
set G such that:

lim
r↓0

Ln(Br (x) \ G)

rn
= 0; (13)

lim
y→x, y∈G, 〈(y−x),ν(x)〉<0

ũ(y) = u−(x); (14)

lim
y→x, y∈G, 〈(y−x),ν(x)〉>0

ũ(y) = u+(x). (15)

Finally, it is useful for our analysis that, roughly speaking, points of approx-
imate continuity of traces of BV functions and points of approximate continuity
of the functions themselves, coincide “most of the time”. The precise statement
is given below. We restrict ourselves to the case of 2-dimensional BV functions,
which is the one really needed for our purposes. However, the statement can be
suitably generalized to any dimensions.

Proposition 5. Let u ∈ BV([0, 1]2) and consider the function ũ of Proposition 4.
Then, the following property holds for almost everywhere y:

– If (y, x) �∈ Ju ∩ ({y} × [0, 1]), then

lim
z→x,(y,z) �∈Ju

ũ(y, z) = ũ(y, x). (16)

Proof. First of all, consider the two sets of y’s, N1 and N2 such that (1) of Theorem 3
apply. For each y ∈ N2, let G2

y be the set of points y of approximate continuity of
u(·, y) and set

G2 := ∪t G
2
t × {t}.

Finally, let N be the set of Proposition 4 and recall that H1(N \ Ju) = 0.
We are now ready to give the set of y’s for which the conclusion of the Propo-

sition holds. More precisely, y has to satisfy the following conditions:

(c1) y ∈ N1 and ({y} × [0, 1]) ∩ (N \ Ju) = ∅;
(c2) (y, x) ∈ G2 for almost everywhere x ∈ [0, 1].

Fix a y satisfying the two conditions above and an x with (y, x) �∈ Ju . We claim
that

(Cl) v(·) := ũ(y, ·) is approximately continuous at any such x .
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Assume for the moment that (Cl) holds. By the classical properties of 1d BV func-
tions (see Section 2.2), after redefining v on a set of measure zero, we get a new ṽ

which is continuous at every x �∈ Ju . On the other hand, we must have v(x) = ṽ(x)
at every point where v is approximately continuous. So, after having proved (Cl),
we conclude that ṽ and ũ(y, ·) coincide at every point x with (y, x) �∈ Ju . This
proves the proposition.

It remains to show (Cl). We argue by contradiction and assume it is false. Then
at some x with (y, x) �∈ Ju , we have a constant η > 0 with the following property.
If we define

Ar := {
z ∈]x − r, x + r [: |ũ(y, z)− ũ(y, x)| � η

}
,

then

lim sup
r↓0

L1(Ar )

r
� η.

Now, set A′
r := {z ∈ Ar : (y, z) ∈ G2}. By (c2) L1(Ar \ A′

r ) = 0. We further
restrict A′

r by setting A′′
r := {z ∈ A′

r : (τ, z) ∈ G2 for almost everywhere τ }.
Then, by Fubini, L1(A′

r \ A′′
r ) = 0. Hence

lim sup
r↓0

L1(A′′
r )

r
� η. (17)

On the other hand, for z ∈ A′′
r , (recalling that (y, z) ∈ G2) we can write

|ũ(τ, z)− ũ(y, z)| �
∣
∣
∣
∣

d

dt
u(·, z)

∣
∣
∣
∣ (]y − r, y + r [) =: g(r, z) (18)

for every τ ∈]y−r, y+r [∈ G2 (and hence for almost everywhere τ ∈]y−r, y+r [).
Since, by (c1), (y, x) �∈ N , we know that

lim
r↓0

1

r

∫ x+r

x−r
g(r, z) dz � lim

r↓0

|Du|(B2r (y, x))

r
= 0. (19)

So, for the set

Cr := A′′
r ∩ {z : g(r, z) < η/2}

we have

lim
r↓0

L1(A′′
r \ Cr )

r
= 0, which implies lim sup

r↓0

L1(Cr )

r
� η. (20)

Consider finally the set Dr := {(τ, z) : z ∈ Cr , |τ − y| < r}∩ G2. It turns out that:

– lim supr↓0 r−2|Dr | � η/2;
– Dr ⊂ B2r ((y, x));
– If (τ, z) ∈ Dr , then

|ũ(τ, z)− ũ(y, x)| � |ũ(y, z)− ũ(y, x)| − |ũ(τ, z)− ũ(y, z)| � η − η

2
= η

2
.
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The existence of the sets Dr obviously contradict the approximate continuity of ũ
at (y, x), which must hold because (y, x) �∈ N .

Proof of Proposition 2. Consider for any t the SBV map ut . Now consider the
precise representative ũt of ut , given by Proposition 4. ũt and ut differ on a set
of measure zero Lt . Moreover, ũt is approximately continuous at all points x for
which

lim
r↓0

|Dut |(Br (x))

r
= 0. (21)

On the other hand, by the definition of Sγ , we have Dut = ∇utL2 + f νH1 γ (t).
Now, since 0 � ut � t almost everywhere, it is a standard fact that | f | � t . More-
over, since H(x,∇ut (x)) � 0 for almost everywhere x , assumption (H3) implies
that |∇ut (x)| � λ−1. Thus |Dut | � λ−1L2 + tH1 γ (t) and, if (21) fails, we
necessarily have

lim sup
r↓0

H1(γ (t) ∩ Br (x))

r
> 0. (22)

The completeness of γ , implies that:

ũt is approximately continuous at every x �∈ γ (t). (23)

Obviously, if t < τ , then ũt (x) � ũτ (x) for almost everywhere x . Moreover, if x
is a point of approximate continuity of ũt and ũt (x) < t , then

(a) x is a point of approximate continuity for ũτ for every τ ;
(b) ũτ (x) = ũt (x) for every τ > t and ũτ (x) � ũt (x) for every τ � t .

Set then ũ(x) := supt ũt (x).
Step 1 First we prove assertion (i), that is ũ = u almost everywhere. Indeed,

consider first the set AN := {ũ < N }, where N ∈ N. Then ũ = ũN on the set
A′

N ⊂ AN of points of approximate continuity for ũN and ũ. Indeed, at such a
point x we have ũN (x) � ũ(x) < N . Thus we can apply (a) and (b), from which
we conclude ũ(x) = supτ ũτ (x) = ũN (x). Observe next that |AN \ A′

N | = 0 and
that ũN = uN on a set A′′

N ⊂ A′
N with |A′

N \ A′′
N | = 0. On the other hand, on every

x ∈ A′′
N we have uN (x) < N and thus u(x) = uN (x) = ũN (x) = ũ(x). So, u = ũ

almost everywhere on AN .
Since ∪N AN = {ũ < ∞}, it remains to show that u = ∞ almost everywhere

on A := {ũ = ∞}. Consider now the subset A′ ⊂ A of points x where all ũN

are approximately continuous. Clearly |A \ A′| = 0. On the other hand, on each
x ∈ A′ we necessarily have ũN (x) = N . Otherwise, by (a) and (b) we would have
ũ(x) = supτ ũτ (x) = ũN (x) < N , contradicting ũ(x) = ∞. Consider next the set
A′′ ⊂ A′ of points x where ũN (x) = uN (x) for every N . Again |A′ \ A′′| = 0.
Hence, for every x ∈ A′′ we have uN (x) = ũN (x) = N . Letting N ↑ ∞ we
conclude u(x) = ∞ for every x ∈ A′′.

Step 2 We claim next that, if ũt is approximately continuous at x , so is ũt

(observe that ũt is the precise representative of ut , whereas ũt = ũ ∧ t). Assume,
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indeed, that ũt is approximately continuous at x . Then let E be a measurable set
satisfying the requirements of Definition 4. Obviously, if we further reduce E ,
taking all the points y ∈ E of approximate continuity for ũt , the new set still sat-
isfies the requirements of Definition 4. With a slight abuse of notation, we keep
the name E for this second set. Next, if y ∈ E , either ũt (y) < t , and hence
ũ(y) = ũt (y) (because ũt is approximately continuous at y and hence (b) applies),
or ũt (y) = t and hence ũ(y) � t . In both cases, ũt (y) = ũt (y). For the same
reasons ũt (x) = ũt (x). We therefore conclude that

lim
y∈E,y→x

ũt (y) = lim
y∈E,y→x

ũt (y) = ũt (x) = ũt (x).

This shows that all the points of approximate continuity of ũt are points of approx-
imate continuity of ũt . Thus assertion (ii) follows from (23). Finally, assertion (iii)
follows easily from Proposition 5, Theorem 3 and assertion (ii).

3. Zig-zag constructions and faster trajectories

3.1. Zig-zag constructions

In this section we outline a crucial construction for our proof of Theorem 1. The
basic idea is borrowed from [7], but we require several technical improvements.
We assume that

(Z1) γ is an admissible strategy, not necessarily complete;
(Z2) t ∈]0,∞[ and x0 is a point such that

lim
r↓0

H1(Br (x0) ∩ γ (t))
r

= 0. (24)

Lemma 1. (Zig-zag) Assume (Z1)–(Z2) and let ε be any given positive number.
Then there is a set G of radii such that

lim
r↓0

L1([0, r ] \ G)

r
= 0 (25)

and the following property holds.
If Bε(v) ⊂ F(x0), μ|v| ∈ G and τ < t − μ, then there exists a Lipschitz

trajectory z : [τ, τ + μ] → R
2 satisfying the following assumptions

(z1) z(τ ) = x0, z(τ + μ) = x0 + μv;
(z2) ż(s) ∈ F(z(s)) for almost everywhere s;
(z3) z(s) �∈ γ (t) for every s.

Assume, in addition, that γ is a complete strategy, u ∈ Sγ and ũ is the function
given by Proposition 2. Then, we can require the following additional property:



Hamilton Jacobi Equations with Obstacles 1061

(z4) w(s) := ũt (z(s)) is Lipschitz, ut is approximately differentiable at z(s) for
almost everywhere s and the following identities hold:

⎧
⎨

⎩

ẇ(s) = ∇ut (z(s)) · ż(s)

H(z(s),∇ut (z(s))) � 0
. (26)

For v and μ (as above) and τ < t there exists a trajectory z : [τ − μ, τ ] → R
2

enjoying (z2)–(z4) but with z(τ − μ) = x0 − μv and z(τ ) = x0.

Proof. The proof of the first assertion of the Theorem follows essentially from
the same arguments proving the second assertion. We assume, therefore, that the
strategy γ is complete and prove the existence of a set G satisfying (25) [and of
the corresponding trajectories satisfying (z1)–(z4)].

Without loss of generality, we assume v = (1, 0) and x0 = 0. Observe also that
(by the continuity of the multifunction F) there is a δ > 0 such that:

Bε/2((cos θ, sin θ)) ⊂ F(x) if |x | < δ and |θ | � δ. (27)

By the properties of ũ, we know that ũt is approximately continuous at 0. Therefore,
let A be a measurable set such that

(AC1) r−2|Br \ A| → 0 for r ↓ 0;
(AC2) ũt (x) → ũt (0) if x ∈ A and x → 0.

Next, fix a small positive number α < δ to be chosen later. For every r consider
the arc of circle ηr := {r(cos θ, sin θ) : |θ | � α}. We denote by H the set of radii
r such that γ (t) ∩ ηr = ∅. By (Z2) it easily follows that

lim
r↓0

L1([0, r ] \ H)

r
= 0. (28)

On the other hand, by Proposition 2 we can conclude that, for almost everywhere
r ∈ H :

(G1) w = ũt |ηr is Lipschitz;
(G2) the derivative of w at p ∈ ηr is the tangential component of ∇ut (p) for

H1-almost everywhere p ∈ ηr ;
(G3) H(p,∇ut (p)) � 0 for H1-almost everywhere p ∈ ηr .

We define G as the set of elements r ∈ H which satisfy (G1)–(G3) and which are
smaller than a positive constant c0 (to be chosen later). Then (25) holds. Next, for
every N ∈ N and any angle θ ∈] − α, α[ consider the segment

σθ,N :=
{
ρ(cos θ, sin θ) : 2−(N+2) � ρ � 2−N

}
.

We say that (θ, N ) is good if

(G4) The conditions corresponding to (G1)–(G3) are satisfied for ũ|σθ,N ;
(G5) There is a ρ = ρ(N , θ) between 3

8 2−N and 2−N−1 such that

ρ(N , θ)(cos θ, sin θ) ∈ A.
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Obviously, again by (Z2) and by (AC1), there is a constant c0 such that, for every
N with 2−N � c0 there always exists an angle θN for which (θN , N ) is good.

It is also easy to conclude that, by possibly choosing c0 smaller, there is always
a radius rN ∈]2−(N+2), 3

8 2−N [ belonging to H . Assume, therefore, that μ ∈ G.
Let N0 be the largest natural number such that 2−N0 � μ. We construct a piecewise
smooth curve joining μ(1, 0) and (0, 0) as follows.

– We first let p0 be the intersection of σθN0 ,N0 with the arc ημ and we let ψ0 be the
arc contained in ημ joining μ(1, 0) and p0.

– We then let q0 := σθN0 ,N0 ∩ ηrN0
and denote by σ0 the segment with endpoints

p0 and q0;
– We let p1 := σθN0+1,N0+1 ∩ ηrN0

and let ψ1 be the arc contained in ηrN0
joining

q0 and p1.

We proceed inductively. The trajectory consists of infinitely many radial segments
σi and of infinitely many arcs ψi . We call their union�. The sum the lengths of σi

is exactly μ. The sum of the lengths of ψi is bounded from above by Cαμ, where
C is a geometric constant independent of α and μ. We can go at all speeds up to
1 + ε/2 along the segments σi (by (27)) and at all speeds up to λ along the arcs ψi

(by (H3)).
Therefore, it is surely possible to go along the trajectory � with a map z :

[τ, τ + μ] → � satisfying (z1) and (z2) if the following inequality holds:

μ
(

1 + ε

2

)−1 + Cα
μ

λ
� μ.

However, this is certainly the case if α is chosen sufficiently small. Next, since
� ∩ γ (t) = ∅, z obviously satisfies (z3).

Now, the function w = ũt ◦ z is obviously locally Lipschitz on ]τ, τ + μ]
because of (G1)–(G4). Moreover, (26) is satisfied, and therefore the Lipschitz con-
stant of w on any interval [τ + ν, τ + μ] is bounded by a constant C independent
of ν > 0 (recall indeed that, by (H3), if H(x, p) � 0, then |p| � λ−1). This means
that w extends to a continuous function w̃ on [τ, τ + μ] and, in order to conclude
the proof, it suffices to check that w̃(τ ) = w(τ). Note that by our construction, the
points ρ(i, θi )(cos θi , sin θi ) belong to the trajectory� and hence they are equal to
z(τi ) for some sequence τi ↓ τ . But then z(τi ) ∈ A, and by (AC2), we have that
w(τi ) = ũt (z(τi )) converges to ũt (0) = w(τ). This completes the proof (Fig. 1).

3.2. Faster trajectories

The last technical tool of the paper comes again from an idea of [7] (compare
to Lemma 7.1 therein). The obvious proof is left to the reader.

Lemma 2. (Faster trajectory) Let x : [0, T ] → R
2 be an admissible trajectory,

that is:

– ẋ(t) ∈ F(x(t)) for almost everywhere t;
– x(t) �∈ γ (t) for every t;
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Fig. 1. The zig-zag curve constructed in the proof of Lemma1

– x(0) ∈ R0.

Let 0 < ε < δ and consider the trajectory x� : [0, T − ε] → R
2 given by

x�(t) = x

(
T

T + δ + ε
(t + δ + 2ε)

)

.

For δ and ε appropriately small, we have

– B2ε(ẋ�(t)) ⊂ F(x�(t)) for almost everywhere t;
– x�(t) �∈ γ (t + ε) for every t;
– x�(0) ∈ R0.

4. Proof of Theorem 1: Part I

In this section we prove that T γ belongs to Sγ under the only assumption that γ
is an admissible strategy. Thus we have to show that T γ satisfies the requirements
(a) and (b) of Definition 3.

4.1. Condition (a)

Obviously T γ ≡ 0 on R0.
Step 1 We fix t > 0 and start by showing that T γt belongs to SBVloc. For an

arbitrary x ∈ R, we set lx := {(x, y) : y ∈ R} and lx,γ := lx ∩ γ (t). We claim that

(Cl) T γt is locally Lipschitz on the interior of lx \ lx,γ , with Lipschitz constant
smaller than λ−1 [where λ is the constant in (H3)].
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We will prove this claim later. Obviously the same proof gives the following sym-
metric statement, where l ′y := {(x, y) : x ∈ R} and l ′y,γ = l ′y ∩ γ (t):
(Cl′) T γt is locally Lipschitz on the interior of l ′y \ l ′y,γ with constant smaller than

λ−1.

First of all, (Cl) and (Cl′) imply the measurability of T γt . Indeed, recall that γ is
rectifiable and hence Borel measurable. Therefore, for every fixed integer j > 0
it is possible to find a closed set � j ⊂ γ (t) such that H1(γ (t) \ � j ) < 1

j . Let

Vj , Hj ⊂ R be the projections of the set γ (t) \ � j respectively on the horizontal
and the vertical axis. (Cl) and (Cl′) imply that T γt is locally Lipschitz on

C j := [((R \ Hj )× R) ∩ (R × (R \ Vj ))] \ � j .

Indeed, fix (x1, y1) ∈ C j . Since � j is closed, there is a ball B centered at (x1, y1)

such that B ∩ � j = ∅. Consider any other point (x2, y2) ∈ B and let σ and η be
the segments joining, respectively, (x1, y1)with (x1, y2) and (x1, y2)with (x2, y2).
Since x1 �∈ Hj and y2 �∈ Vj , the intersections η ∩ γ (t) and σ ∩ γ (t) must be
contained in � j . On the other hand, the segments σ and η are also contained in B
and thus we conclude that η∩γ (t) = σ ∩γ (t) = ∅. Therefore (Cl) and (Cl′) imply
that

|T γt (x1, y1)− T γt (x2, y2)| � |x1 − x2| + |y1 − y2|
λ

Observe next that L1(Hj ) + L1(Vj ) < 2/j . Thus, R
2 \ ⋃

C j has zero Lebesgue
measure and, having concluded that T γt is locally Lipschitz on each set C j , we
infer that T γt is measurable.

Note that, if lx,γ is finite, (Cl) clearly implies that the restriction T γt |lx is an
SBV function with finitely many jumps. If � denotes cardinality, on the other hand
we have the co-area formula

∫
�(lx,γ ) dx � H1(γ (t)) < ∞, (29)

which implies that (lx,γ ) is finite for almost everywhere x . Since 0 � T γt � t , each
jump has size at most t and we therefore bound

∫ R

−R

∣
∣
∣ d

dy T γt (x, ·)
∣
∣
∣ (] − R, R[) dx �

∫ R

−R
(λ−1 + t �(lx,γ )) dx

(29)
< +∞. (30)

The same argument applies if we fix the y coordinate and let x vary. We can there-
fore apply Theorem 3 to conclude that T γt ∈ SBV(] − R, R[2) for every positive
R. This shows that T γt ∈ SBVloc.

We now come to the proof of (Cl). We fix Y = (x, y) ∈ lx \ lx,γ and distinguish
two cases:

Case 1: τ := T γt (x, y) < t . In this case T γt (x, y) = T γ (Y ). We fix ε < t−τ
2

and

δ < min{ε, λ−1dist ((x, y), lx,γ )}. (31)
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Let Z = (x, z). When |z − y| < δ we consider the path ϕ : [0, λ−1|z − y|] → R
2

given by

ϕ(s) =
(

x, y + z − y

|z − y|λs

)

= Y + Z − Y

|Z − Y |λs.

It is easy to see that ϕ̇ ∈ F(ϕ) (because of (H3)) and that ϕ(s) �∈ γ (t). On the other
hand, if T is a given time in ]τ, τ +ε[, there is an admissible pathψ : [0, T ] → R

2

which starts from a point ψ(0) ∈ R0 and reaches Y = (x, y). If we join the paths
ψ and ϕ in the obvious way, then we obtain an admissible path which reaches
Z = (x, z) at a time T + λ−1|z − y|. Since T can be chosen arbitrarily close to
τ = T γ (x, y), we conclude

T γ (x, z) � T γ (x, y)+ 1

λ
|z − y|. (32)

On the other hand, a symmetric argument shows

T γ (x, z) � T γ (x, y)− 1

λ
|z − y|, (33)

which therefore completes the proof of the claim.
Case 2: T γ (x, y) � t . In this case T γt (x, y) = t and, since T γt � t , it suffices

to show

T γ (x, z) � t − λ−1|z − y| (34)

for any z sufficiently close to y. On the other hand, if (34) were false for a
sufficiently close z, we could argue as in (32), reversing the roles of z and y and
finding

T γ (x, y) � T γ (x, z)+ λ−1|z − y| < t,

which contradicts our assumption T γ (x, y) � t .
Step 2 To complete the proof that (a) in Definition 3 is satisfied, we must show

that the jump set J of T γt is contained in γ (t). Let A be the set of x’s such that
�lx,γ < ∞ and B the set of y’s for which �l ′y,γ < ∞. In the previous subsection we
have shown that L1(R \ A) = 0 and that for any x ∈ A the jump set Jx of T γt |lx is
contained in γ (t). By Theorem 3, there is a further set A′ ⊂ A with L1(A\ A′) = 0
such that Jx = J ∩ lx for every x ∈ A′. We thus conclude that J ∩ (A′ ×R) ⊂ γ (t)
and L1(R \ A′) = 0. Arguing similarly for the y coordinates, we conclude the
existence of a set B ′ with L1(R \ B ′) = 0 such that

J ⊂ γ (t) ∪ ((
(R \ A′)× R

) ∩ (
R × (R \ B ′)

))
. (35)

On the other hand
((
(R \ A′)× R

) ∩ (
R × (R \ B ′)

)) = (R \ A′)× (R \ B ′). But,
since J is a 1-d rectifiable set, H1(JT γt

∩ ((R \ A′)× (R \ B ′))) = 0.
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4.2. Condition (b)

We start by observing that (5) holds almost everywhere on {T γt = t}. Indeed, if
this set has measure zero, then there is nothing to prove. Otherwise, using Theorem 2
and the Lebesgue Theorem it is easy to show that ∇T γt = 0 almost everywhere on
{T γt = t}. Since (H3) implies that H(X, 0) < 0 for every X , this proves our claim.
The same observation shows that (5) holds at every X ∈ R0.

Next, we fix a point X such that

– T γ (X) = T γt (X) < t ;
– T γt is approximately differentiable with differential ∇T γt (X);
– X �∈ R0 and

lim
r↓0

H1(γ (t) ∩ Br (X))

r
= 0. (36)

Clearly, almost everywhere X ∈ R
2 \ (R0 ∪{T γt = t}) satisfies these requirements.

Our aim is to show

∇T γt (X) · w � 1, for every w ∈ ◦
F(X) . (37)

From this easily follows that:

H(X,∇T γt (X)) = sup

w∈ ◦
F(X)

∇T γt (X) · w − 1 � 0. (38)

We now show (37) and fix, therefore, w ∈ ◦
F(X). Choose ε ∈]0, 1/2[ so that

B2ε(w) ⊂ F(X) and T γ (X) + 2ε < t . Apply Lemma 1 with x0 = X , t , ε and
u = T γ . Let τ ∈]T γ (X), T γ (X)+ ε[ and v a vector in Bε(w). G is the set given
by Lemma 1. If μ is such that μ|v| ∈ G and μ < ε, let z : [τ, τ +μ] → R

2 be the
trajectory given by the first assertion of Lemma 1. Since τ ∈]T γ (X), T γ (X)+ ε[,
there exists a trajectory x : [0, τ ] → R

2 such that

– x(0) ∈ R0, x(τ ) = X ;
– ẋ(s) ∈ F(x(s)) for almost everywhere s;
– x(s) �∈ γ (s) for every s.

Obviously, if we extend x to [0, τ + μ] by setting x(s) = z(s) for s ∈ [τ, τ + μ],
x continues to enjoy the same properties. This implies that T γ (X +μv) < τ +μ.
Let now τ converge to T γ (X) to conclude

T γt (X + μv) � T γ (X + μv) � T γ (X)+ μ = T γt (X)+ μ.

Since T γt is approximately differentiable at X , we find a set B satisfying (i) and
(ii) of Theorem 2. Clearly, for every η > 0, there are μ < η and v ∈ Bε(w) such
that X + μv ∈ B and μ|v| ∈ G.

We thus conclude that, for every ε > 0 and κ > 0, we findμ < ε and v ∈ Bε(w)
such that

∇T γt (X) · v � T γt (X + μv)− T γt (X)

μ
+ κ � 1 + κ.
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We thus can estimate

∇T γt (X) · w � ∇T γt (X) · v + |∇T γt (X)||w − v|
� |∇T γt (X)|ε + 1 + κ. (39)

Letting κ and ε go to 0 we conclude

∇T γt (X) · w � 1.

5. Proof of Theorem 1: Part II

In this section we prove the second part of Theorem 1. We first claim that
Sγ = Sγ c

. The inclusion Sγ ⊂ Sγ c
is obvious. In order to show the opposite inclu-

sion, recall that there is a countable set C of t’s such that H1(γ c(t) \ γ (t)) = 0
for every t �∈ C . Thus, let u ∈ Sγ c

. The only thing we need to show is that
H1(Jut \ γ (t)) = 0 for t ∈ C , since for t �∈ C this identity is trivial. Therefore, fix
a t ∈ C and a point x in Jut . Let u−

t (x) and u+
t (x) be the left and right approximate

values of ut at x , according to Proposition 4. To fix ideas, assume u+
t (x) > u−

t (x)
(recall that the two values are necessarily different!). Then, for τ > u−

t (x), we
obviously conclude that x is not a point of approximate continuity for τ . Choose
a sequence {τi } ⊂ R \ C with τi ↑ t . According to Proposition 4, our argument
shows

H1

(

Jut \
⋃

i

Juτi

)

= 0. (40)

On the other hand H1(Juτi
\γ c(τi )) = 0, H1(γ c(τi )\γ (τi )) = 0 and γ (τi ) ⊂ γ (t).

Therefore we conclude H1(Jut \ γ (t)) = 0.
Having proved that Sγ = Sγ c

, we can assume that γ itself is a complete strat-
egy and aim at proving that T γ is the maximal element of Sγ . Thus we consider an
arbitrary u ∈ Sγ and, to simplify the notation, we assume that u = ũ, where ũ is
the function of Proposition 2. Our goal is to show that u � T γ almost everywhere.
This condition is obvious on R0 and on the set {T γ = +∞}. Thus, we can assume
that

– X �∈ R0, X �∈ γ∞, u is approximately continuous at X and T γ (X) < ∞.

We fix therefore such a point X and we will show that, for every positive ε, u(X) �
T γ (X)+ ε.

Using Lemma 2 we can assume that, for some positive T < T γ (X) + ε and
some δ > 0, there exists a trajectory x : [0, T ] → R

2 such that

– x(0) ∈ R0;
– B2δ(ẋ(t)) ⊂ F(x(t)) for almost everywhere t ;
– x(t) �∈ γ (t + δ) for every t ;
– x(T ) = X .

We next define a set P ⊂ [0, T ]: s belongs to P if and only if there is a trajectory
y : [0, s] → R

2 with the following properties:
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(P1) y(0) = x(0) and y(s) = x(s);
(P2) ẏ(σ ) ∈ F(y(σ )) for almost everywhere σ ;
(P3) w := uT +δ ◦ y is Lipschitz and for almost everywhere σ we have

either ẇ(σ ) = 0 or

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

uT +δ is approximately differentiable at y(σ )

ẇ(σ ) = ∇uT +δ(y(σ )) · ẏ(σ )

H(y(σ ),∇uT +δ(y(σ ))) � 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (41)

We will show below that:

– P has a maximal element;
– the maximal element of P is necessarily T .

We assume, for the moment, these two facts and conclude our proof. Since T ∈ P ,
there is a trajectory y : [0, T ] → R

2 satisfying (P1)–(P3). Note that, in a neigh-
borhood of 0, the trajectory y takes values in R0, where uT +δ vanishes identically.
Hence w(0) = 0. Moreover, for almost everywhere σ , either ẇ(σ ) = 0 or

ẇ(σ ) = ∇uT +δ(y(σ )) · ẏ(σ ) � sup
v∈F(y(σ ))

∇uT +δ(y(σ )) · v

= 1 + H(y(σ ),∇uT +δ(y(σ )) � 1. (42)

Therefore we conclude

uT +δ(X) = w(T ) =
∫ T

0
ẇ(τ ) dτ � T . (43)

But this implies u(X) = uT +δ(X) < T γ (X)+ ε, which is the desired conclusion.
Step 1. P has a maximal element.
Let S := sup P . If x(S) = x(0), then the assertion is trivial. Therefore, without

loss of generality, we assume X := x(S) �= x(0). We let {si } be a sequence in P
converging to S and we denote by yi the corresponding trajectories satisfying the
conditions (P1)–(P3). The idea is that, for i sufficiently large, we will be able to
prolong the trajectory to reach X . This will be done by adding a zig-zag curve to a
portion of yi .

Next, we set

ai := x(S)− x(si )

S − si

and, passing to a subsequence, we assume that ai converges to some point. We set
a equal to this limit if it is different from 0 (we call this the principal case). If not,
we distinguish two possibilities. If x(si ) = x(S) for some i , then we trivially have
S ∈ P . Indeed, it suffices to put y(τ ) = yi (τ ) for τ � si and y(τ ) = x(si ) = x(S)
for τ ∈ [si , S] to get a trajectory y satisfying (P1), (P2) and (P3). Otherwise, we
can assume (passing to a subsequence) that

x(S)− x(si )

|x(S)− x(si )|
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Fig. 2. The set Qi,β

converges to some limit ã with |ã| = 1. In this case we set a := λã/2 and we call
it secondary case. It will be clear from the proof below that this situation is just a
variant of the principal case. We therefore assume that a �= 0 is the limit of the ai

and leave to the reader the obvious modifications for the secondary case.
Note that, by our assumptions on F , it follows easily that B2δ(a) ⊂ F(x(S)).

Next choose v = (1 + κ)a, where κ is a positive constant, chosen so that Bδ(v) ⊂
F(x(S)). To fix ideas, assume a = (1, 0) and x(S) = 0. Fix, moreover, α > 0 (to
be chosen later), set τi = S − si and consider, for every i and for every β ∈]α/2, α[
the set Qi,β delimited by

– the segments

d+ = [τi (1 − β)(cosβ, sin β), τi (1 + β)(cosβ, sin β)]
and

d− = [τi (1 − β)(cosβ,− sin β), τi (1 + β)(cosβ,− sin β)];
– the arcs ar− and ar+ with radii, respectively, τi (1 − β) and τi (1 + β) and

delimited, respectively, by the pair of points

τi (1 − β)(cosβ,− sin β) τi (1 − β)(cosβ, sin β)

and by the pair of points

τi (1 + β)(cosβ,− sin β) τi (1 + β)(cosβ, sin β).

See Fig. 2.
Observe that 0, u and τ = S satisfy the assumptions of the Lemma 1 if we

choose t = S + δ. Therefor, let G be the set of radii given by the Lemma. We want,
for i sufficiently large, to choose a β such that the following conditions hold:
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(a) τi (1 − β)|a| = τi (1 − β)(1 + κ)−1|v| belongs to G, so that there exists a
trajectory as in Lemma 1;

(b) The restriction on ∂Qi,β of the function ut is a Lipschitz function ζ ;
(c) ut is approximately differentiable at H1-almost everywhere point x ∈ ∂Qi,β ,

and satisfies H(x,∇ut (x)) � 0;
(d) The derivative of ζ corresponds, H1-almost everywhere on x ∈ ∂Qi,β , to the

tangential component of ∇ut .

According to Proposition 2, the last three conditions are satisfied for almost every-
where β such that ∂Qi,β ∩ γ (t) = ∅. Since

lim
r↓0

H1(Br (0) ∩ γ (t))
r

= 0

and

lim
r↓0

L1(G ∩ [0, r ])
r

= 0

the existence of such a β is guaranteed if i is sufficiently large.
Now, we choose such a β = β(i) for every i and set Qi := Qi,β(i). Note that

yi (si ) ∈ Qi if i is large enough. Moreover, since yi (0) = x(0) and x(0) �= 0, we
have yi (0) �∈ Qi , for any i large enough. Thus, for large i’s, there is a s̃i < si

such that yi (s̃i ) ∈ ∂Qi . Now we let z : [S − τi (1 − β)(1 + κ)−1, S] → R
2 be

the trajectory given by the last assertion of Lemma 1, which is joining the points
z(S − τi (1 − β)(1 + κ)−1) = x(S)− τi (1 − β)(1, 0) and 0 = x(S). Note that the
first point belongs to ∂Qi .

Next, observe that the perimeter of Qi can be bounded by 10τiβ. If α is chosen
sufficiently small, the number

ω := S − τi (1 − β)(1 + κ)−1 − s̃i

is larger than 5βτi/λ. Indeed, we have the inequalities

5βτiλ
−1 � 5ατiλ

−1

ω � S − τi (1 − α)(1 + κ)−1 − si = τi [1 − (1 − α)(1 + κ)−1].
Hence the inequality ω � 5βτiλ

−1 holds whenever

κ + α

1 + κ
� 5α

λ
.

Thus, the choice of α depends only on κ and λ, which were fixed a priori.
Having chosen α accordingly small, we can find a trajectory

ϕ : [s̃i , S − τi (1 − β)(1 + κ)−1] → ∂Qi

which joins ϕ(s̃i ) = yi (s̃i ) and

ϕ(S − τi (1 − β)(1 + κ)−1) = z(S − τi (1 − β)(1 + κ)−1)

and satisfies ϕ̇(σ ) ∈ F(ϕ(σ )) for every σ .
We join z and ϕ into a single trajectory z on [s̃i , S], for which we have the

following conclusions:
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– w = ut ◦ z is Lipschitz;
– for almost everywhere σ , either ż(σ ) = 0 or ut is approximately differentiable

at z(σ ) and the approximate differential satisfies H(z(σ ),∇ut (z(σ ))) � 0;
– for almost everywhere σ , either ẇ(σ ) = 0 or d

dσ ut ◦ z(σ ) = ∇ut (z(σ )) · ż(σ )
for almost everywhere.

Next, join the trajectory yi |[0,s̃i ] to the trajectory z in order to build a new trajec-
tory y. We claim that y satisfies the requirements (P1)–(P3), thus showing that
S ∈ P . Indeed, y satisfies all the requirements with ut = uS+δ in place of uT +δ .
Thus, the computations (42) and (43) are still valid if we replace T with S and we
infer uS+δ(y(σ )) � σ � S < S + δ for every σ . Therefore, the properties (P1)–
(P3) with the desired value T � S can be easily inferred from the following facts,
which are easy consequences of the definitions of approximate differentiability and
approximate continuity. Assume a ∈ R and ua(x) < a. Then

– If ua is approximately continuous at x , so is any ub with b > a;
– If ua is approximately differentiable at x , so is any ub with b > a and the

corresponding approximate differentials coincide.

This completes the proof that S ∈ P .
Step 2. The maximal element of P is T .
Let S be the maximal element. Then, it is obvious that x(s) �= x(S) for every

s > S. In particular, if S < T , we must have x(T ) �= x(S). Assume by contradiction
that S < T and, for s > S, consider the vectors

v(s) := x(s)− x(S)

s − S
.

Recall that B2δ(ẋ(σ )) ∈ F(x(σ )). By our assumptions on the multifunction F ,
it follows easily that Bδ(x(s)) ⊂ F(x(S)) provided s is sufficiently close to S.
Therefore, we can apply Lemma 1. Given the set of radii G, it follows that, for any
ε > 0, there is 0 < s < S + ε with |s − S||v(s)| ∈ G. We can therefore construct
a zig-zag curve z : [S, s] → R

2 satisfying the assumptions of the Lemma with
t = S + δ, with z(S) = x(S) and z(s) = z(S) + (s − S)v(s) = x(s). Now, since
S ∈ P , there is a trajectory y : [0, S] → R

2 satisfying (P1), (P2) and (P3) with
y(S) = x(S). On the other hand, joining z and y into one single trajectory ỹ, we
can argue as in the previous step to conclude that ỹ : [0, s] → R

2 satisfies (P1),
(P2) and (P3). Since ỹ(s) = x(s), this implies that s ∈ P , thus contradicting the
maximality of S.

6. Proof of Corollary 1

Let {γ k} be a minimizing sequence of admissible strategies for the functional

J . Consider the completions ηk of γ k . Then, Rγ
k

∞ ⊃ Rη
k

∞ (because, by Theorem 1
T γ

k � T η
k
). Moreover, H1(ηk∞ \ γ k∞) = 0. Thus, we conclude J (γ k) � J (ηk).

Therefore, without loss of generality we can assume that the minimizing sequence
of strategies {γ k} consists of complete strategies.
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Consider the corresponding minimum time functions T k := T γ
k
. Note that

the functions T k belong to the space of functions GSBV (see Section 4.5 of [1];
this space is just a variant of the space of SBV functions introduced by Ambrosio
and De Giorgi). Note also that |DT k

t | � λ−1L2 + tH1 γ (t). This uniform bound
allows to apply the compactness theorem for GSBV functions (see Theorem 4.36
of [1]), which is just a variant of the SBV compactness Theorem of Ambrosio and
De Giorgi. Hence, after passing to a subsequence, we can assume that T k converges
pointwise almost everywhere to a function u satisfying the following properties:

(a) ut is an SBV function for every t ;
(b) Jut is a rectifiable set and

∫

Jut

ψ dH1 � lim inf
k

∫

J
T k

t

ψ dH1 � t

(see Theorem 5.22 of [1]);
(c) ∇T k

t converges weakly, in every L p with p < ∞, to ∇ut (see Corollary 5.31
of [1]).

For each t , denote by γ (t) the set of points where the precise representative of ut is
not approximately continuous. It is not difficult to see that γ (t) ⊂ γ (s) for every
s > t . Moreover, by Proposition 4, H1(γ (t) \ Jut ) = 0. It follows, therefore, from
(b) that γ (t) satisfies (H2) and, hence, it is an admissible strategy.

Next, note that H is a continuous function and that H(x, ·) is convex for every x .
Then, the property H(x,∇T k

t (x)) � 0 for almost everywhere x implies, by (c),
H(x,∇ut (x)) � 0 for almost everywhere x . Thus, u ∈ Sγ . So, if we consider the
completion γ c of γ , we conclude T γ

c � u.
Since T k converges pointwise almost everywhere to u, we conclude that

1{u<∞}(x) � lim inf
k↑∞ 1{T k<∞}(x) for almost everywhere x .

Thus, recall that α � 0 and use Fatou’s Lemma to conclude
∫

Rγ
c

∞
α dL2 =

∫

{T γ c
<∞}

α dL2 �
∫

{u<∞}
α dL2

� lim inf
k↑∞

∫

{T k<∞}
α dL2 = lim inf

k↑∞

∫

Rγ
k

∞
α dL2. (44)

On the other hand, by the Semicontinuity Theorem for SBV functions (see again
Theorem 5.22 of [1]),

∫

Jut

β dH1 � lim inf
k↑∞

∫

J
T k

t

β dH1 � lim inf
k↑∞

∫

γ k∞
β dH1.

Since
∫

γ c∞
β dH1 = sup

t<∞

∫

Jut

β dH1,

we conclude that
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∫

γ c∞
β dH1 � lim inf

k↑∞

∫

γ k∞
β dH1. (45)

From (44) and (45) it follows trivially that J (γ c) � lim infk J (γ k). Hence, γ c is
the desired minimizer.
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