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Abstract

In this paper we prove a strong coarea-type formula and a chain rule for distributional Jaco-
bians of some classes of maps. In particular we give a partial answer to a question arisen by
Jerrard and Soner in Jerrard and Soner (Indiana Univ. Math. J. 51 (2002) 645).
? 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The starting point of this paper is a “weak” coarea formula involving distributional
Jacobians proved by Jerrard and Soner in [9]. The notion of distributional Jacobian
is based on the fact that maps u∈C1(Rm;Rn), with m¿ n, satisfy d(u1 du2 ∧ · · · ∧
dun) = du1 ∧ · · · ∧ dun. This identity holds in the sense of distributions for maps
u∈W 1;p

loc with p¿ n but fails when p¡n. However if p¿ n − 1 and u∈L∞ then
�= u1 du2 ∧ · · · ∧ dun is an L1 function and we can de>ne the distributional Jacobian
[Ju] as the exterior derivative of � in the sense of distributions (we refer to [9] for an
account of its applications and of the main papers on the argument). We notice that �
has a natural action (via the classical Hodge operator) as m−n+1-dimensional current
and we can think of [Ju] as the boundary of � (see De>nitions 3, 4 and Remark 5;
for a more general discussion of the properties of [Ju] as current we refer to [5]).
If we de>ne uy = (u− y)=|u− y| for every y∈Rn such that Lm(u−1(y)) = 0, then

we have the following:
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Theorem 1 (see [9, Section 4]). If u∈W 1; n−1 ∩ L∞ then uy ∈W 1; n−1 ∩ L∞ for a.e.
y∈Rn and

〈[Ju]; !〉= 1
!n

∫
Rn
〈[Juy]; !〉 dy (1)

for every smooth m−n di0erential form ! (with !n we denote the Lebesgue measure
of the unit ball in Rn). If u∈W 1; n−1 ∩ L∞ and F ∈C1(Rn;Rn) then

〈[J (F(u))]; !〉= 1
!n

∫
Rn

det ∇F(y)〈[Juy]; !〉 dy: (2)

It is natural to think of (2) as an extension of the chain rule for Jacobians of
smooth maps, hence we will refer to it as weak chain rule. Of course when u is
smooth we have the much stronger relation [J (F(u))] = det∇F(u)[Ju]. For general
u we cannot even give a meaning to the right-hand side of this equation, because
[Ju] is only a distribution. However when [Ju] is a measure we might hope that
there exists a pointwise representative Fu of u which is Borel measurable and satis>es
[J (F(u))] = det∇F( Fu)[Ju] (where the right-hand side is now well de>ned because
det∇F( Fu) is a Borel function). In general this identity does not hold; if it holds we
say that u satis>es a strong chain rule.
If for every open set A ⊂ � we de>ne

‖Ju‖(A) := sup{〈[Ju]; !〉|!∈C∞
c (A); ‖!‖∞6 1}

then a consequence of the previous Theorem is

‖Ju‖(A)6 1
!n

∫
Rn

‖Juy‖(A) dy: (3)

A natural question is to ask under what conditions the equality holds. When n=1 the
problem reduces to the coarea formula on the level sets of a scalar function (see for
example Theorem 3.40 of [1]). When n¿ 1 Jerrard and Soner proved that the equality
holds for u∈W 1;p with p¿n. In this case [Ju] is equal to the natural action as current
of du1∧· · ·∧dun and a comparison with the classical coarea formula for approximately
diHerentiable functions (see for example Theorem 3.2.3 of [6]) implies that [Juy] is the
integer recti>able current supported by u−1(y) with the usual orientation. Motivated by
these facts we will say that equation (1) represents a weak coarea formula and that u
satis>es the strong coarea formula if the equality holds in (3).
In general, for the validity of (3), it is not suIcient to assume merely that ‖Ju‖ is a

Radon measure (see [9] for some counterexamples based on earlier ones of Giaquinta
et al. [7]). However it is conjectured in [9] that the strong coarea formula holds for
W 1; n functions and for continuous functions such that ‖Ju‖ is a Radon measure.
In this paper we prove that if u satis>es the strong chain rule then the strong

coarea formula holds (see Theorem 13). This theorem provides a diHerent proof of the
strong coarea formula when u∈W 1;p, p¿n, which can be extended to u∈W 1; n; more
generally it implies that the strong coarea formula holds whenever u is a Cartesian map
in the sense of Giaquinta et al. (see Remarks 16 and 18).
In Section 4 we prove (using arguments involving classical degree of continuous

maps and distributional Jacobians) that if u is a continuous BnV function in W 1;p with
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p¿n−1 and ‖Juy‖(�) is an integrable function of y then u satis>es the strong chain
rule (see Theorem 14). This provides a partial answer to the conjecture of Jerrard and
Soner. However we notice that in this case the strong coarea formula can be shown
with a direct proof without passing through the strong chain rule. Unfortunately we
are not able to prove that if ‖Juy‖(�) �∈ L1

loc and u is continuous then ‖Ju‖(�) =∞,
which would prove the full conjecture in the case p¿n− 1.

2. Preliminaries

We begin this section by stating some basic de>nitions and properties of distribu-
tional Jacobians. We refer to [9] for a more general treatment and to [5] for de>nitions
and proofs in the framework of Geometric Measure Theory. We notice that in [5] we
used the “metric theory” of currents introduced by Ambrosio and Kirchheim in [2]
because we think that it simpli>es notations and proofs. However to make this paper
more readable and self-contained we state de>nitions and theorems of this section in
the language of “classical” Geometric Measure Theory.
We will denote by �n(Rm) the vector space of n-covectors and we will endow it

with the usual norm | · | as Hilbert space (see for example Section 1 of [6]). If � ⊂ Rm

is an open set we will call n- form on � a function ! :� → �n(Rm). We will endow
C∞

c (�;�n(Rm)) with the usual Ck seminorms and we will call n- dimensional current
on � a continuous linear functional on it. For the sake of simplicity when the regularity
of a form ! is not speci>ed we suppose that it is C∞. The exterior derivative on forms
and the boundary operator on currents are de>ned as usual.
From now on � will denote an open set and Br(x) the open ball of radius r centered

on x. Moreover if � is a Radon measure on � and A ⊂ � is a Borel set then � A
will indicate the measure � given by �(E) = �(A ∩ E).

De�nition 2. If T is a k-dimensional current on � and A ⊂ � is an open set then we
de>ne

‖T‖h(A) := sup{T (!)|supp(!) ⊂⊂ A; ‖!‖∞6 1}

If ‖T‖h(�)¡∞ then ‖T‖h can be extended to a Radon measure.

To simplify notations we will use ‖T‖ in place of ‖T‖h but we warn the reader that
this notation is diHerent from the one used in the literature. Indeed in the literature
‖T‖ usually denotes the mass of T , which can be de>ned on open sets A as

‖T‖M (A) := sup{T (!)|supp(!) ⊂⊂ A; ‖!‖∞6 1 and ! is simple}:

The mass can be extended to a Radon measure when ‖T‖M (�)¡∞. Moreover ‖T‖M
6 ‖T‖ and there is a constant k1 (which depends on the dimensions of � and of T )
such that ‖T‖6 k1‖T‖M . Of course if T is a 0-dimensional current the two measures
coincide.
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De�nition 3. Let us >x a simple k-form �=u0 du1∧· · ·∧duk in � ⊂ Rm with u∈L∞,
∇ui ∈Lk for every i and m¿ k. We de>ne the m− k-dimensional current H� via the
action

H�(f dg1 ∧ · · · ∧ dgm−k) :=
∫
Rm

u0f det (∇g1; : : : ;∇gm−k ;∇u1; : : : ;∇uk)

extended to general diHerential forms by linearity.

De�nition 4. Let u∈W 1; n−1(�;Rn) ∩ L∞ with � ⊂ Rm. Then we de>ne j∗(u) as the
(n− 1)-form

n∑
i=1

(−1)i−1ui du1 ∧ · · · ∧ d̂ui ∧ · · · ∧ dun

and j(u) as the current on � given by (−1)nHj∗(u). Moreover we call [Ju] := @j(u)=n
weak Jacobian of u and we say that u∈BnV (or u has bounded higher variation)
if ‖Ju‖(�) is >nite. In this paper to simplify the notation we will write Ju instead
of [Ju].

Remark 5. We remark that Ju can be thought as the natural action as current of the
distributional exterior derivative of j∗(u)=n. Indeed let us >x a system of coordinates
in Rm and suppose that j∗(u) =

∑
I∈Jn−1

fI dxI where:

(i) Jk is the collection of all subsets of {1; : : : ; m} with cardinality k;
(ii) dxI = dxi1 ∧ · · · ∧ dxik if I = {i1; : : : ; ik}.

Let us denote by @jfI the partial derivative of fI with respect to xj in the sense of
distributions and, given a distribution T , let us agree that the formal writing S=T dx1∧
· · · ∧ dxk acts as a current via

〈S; f dg1 ∧ · · · ∧ dgm−k〉 := T (f det (∇x1; : : : ;∇xk ;∇g1; : : : ;∇gm−k)):

Hence it is not diIcult to see that

Ju=
1
n

∑
I∈Jn−1

m∑
j=1

@jfI dxI ∧ dxj :=
∑
I∈Jn

TI dxI :

Moreover u is in BnV if and only if every TI is a measure with bounded variation.
In this case Ju can be thought as a measure which takes values in the Hilbert space
�n(Rm): in this setting ‖Ju‖ is exactly the total variation measure of Ju.

When u∈BnV we can use the last remark to give a meaning to 〈Ju; !〉 for every
! which is Borel measurable.

Theorem 6. Let us suppose that u∈W 1; n−1 ∩ L∞(�;Rn), where � ⊂ Rn × Rm−n. If
we put vz(w) = u(w; z) and �z = � ∩ (Rn × {z}), then

〈Ju; g dz1 ∧ · · · ∧ dzm−n〉=
∫
Rn
〈Jvz; g(·; z)〉 dz:
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Moreover if u∈BnV then vz ∈BnV(�z;Rn) for a.e. z and

‖Ju‖(A)¿
∫
Rn

‖Jvz‖(A ∩ �z) dz

for every measurable set A ⊂ �.

We refer to [9] or to [5] for the proof. The next lemmas will focus on the relations
between classical degree theory and weak Jacobians (see [11, Section 8]). If � ⊂ Rn

and u∈C( F�;Rn) then we will denote by deg(u; �; y) the degree of u at y. If M and N
are smooth compact manifolds of the same dimension and u∈C(M;N ) then we denote
by deg(u;M; N ) the degree of the map u.

Lemma 7. Assume � ⊂ Rn has smooth boundary and let u∈C∞(�;Rn). Then for
every vector 6eld ’∈C∞

c (Rn;Rn) we have∫
Rn

∇ · ’(y) deg(u; �; y) dy =
1
n

∫
@�

’(u) ·Mi
j (∇u) · � dHn−1;

where � denotes the unit normal to @�.

After a change of variables the proof of this Lemma follows from an integration by
parts.

Remark 8. When � ⊂ Rn, j(u) can be seen as the vector >eld given by v := u·Mi
j (∇u)

(where Mi
j is the cofactor matrix of ∇u). Indeed let us take a form != g dx1 ∧ · · · ∧

dxn−1: then we have that

〈j(u); !〉=
∫
Rn

g(x)vn(x) dx:

Hence the 0-current Ju is the divergence of v=n in the sense of distributions.

Given a set K ⊂ Rn and a real number 1¿ 0 we denote by K1 the set {x∈Rn |
dist(x; K)¡1}.

Lemma 9. Let u∈BnV(�;Rn) be a continuous map (with � ⊂⊂ Rn). For every 1¿ 0
there exists an open set M with smooth boundary such that

(a) M ⊂ � and � ⊂ M1;
(b) u∈W 1; n−1(@M);
(c) it holds

1
n

∫
@M

u ·Mi
j (∇u) · � dHn−1 = Ju(M):

Proof. First of all we choose an open set M ′ ⊂ � with smooth boundary such that
� ⊂ M ′

1=2. A well known theorem on tubular neighborhoods implies that there exists a
2¡1=2 such that for every 0¡t¡2 the sets

S−t = {x|dist(x; @M ′) = t} ∩M ′; St = {x|dist(x; @M ′) = t}\M ′
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are smooth manifolds. Moreover we can de>ne a signed distance function d such that
the sets S−t , St are the level sets of d. Hence for every |s|¡2, d−1(s) is the boundary
of an open set Ms which satis>es (a). Applying the coarea formula to d we conclude
that for a.e. s condition (b) holds for Ms.

Now let us put v := u · Mi
j (∇u); we have v∈L1(�;Rn) and the measure Ju is the

divergence of v (see the previous Remark). Using standard approximation arguments
we can >nd a sequence of C∞ vector >elds vn such that, for a.e. s, vn → v strongly
in L1(@Ms) and

1
n

∫
Ms

∇ · vn → Ju(Ms):

Hence it follows that condition (c) is satis>ed by Ms for a.e. s.

Lemma 10. If M ⊂⊂ Rn is an open set with smooth boundary and u∈W 1; n−1

(@M; Sn−1) is continuous then

!n deg(u; @M; Sn−1) =
1
n

∫
@M

u ·Mi
j (∇u) · � dHn−1:

Proof. A straightforward calculation shows that (1=n)u · Mi
j (∇u) · � is the Jacobian

determinant of u as map from @M to Sn−1. Then the statement of the Lemma follows
from the integral formula for the degree as can be found for example in Brezis and
Nirenberg [3].

Lemma 11. Let us suppose that u∈C( F�;Rn)∩W 1; n−1, where � ⊂ Rn. Then for a.e.
y∈Rn we have

!n|deg(u; @�; y)|6 ‖Juy‖(�): (4)

Proof. As it is stated in Theorem 1, uy ∈W 1; n−1(�; Sn−1) for a.e. y (see Lemma 6 in
[9, Section 4] for a proof of this fact). If y∈ u(@�) then |deg(u; @�; y)| = 0 and the
statement is obviously true; in an analogous way we reason if ‖Juy‖(�) =∞. Hence
let us >x a y �∈ u(@�) such that uy ∈W 1; n−1(�; Sn−1) and ‖Juy‖(�)¡∞. If we take
an open set M with smooth boundary such that uy ∈W 1; n−1 ∩ C(@M) then

!n deg(uy; @M; Sn−1) =
1
n

∫
@M

uy ·Mi
j (∇uy) · � dHn−1:

Using Lemma 9 we conclude that for 1 suIciently small there is an open set M such
that M ⊂ � ⊂ M1, uy ∈W 1;p ∩ C(@M) and

!n deg(uy; @M; Sn−1) = Juy(M):

We notice that for 1 small enough we have

deg(uy; @M; Sn−1) = deg(u; @M; y) = deg(u; @�; y)

and this completes the proof.

We end this section with a corollary of the area formula (see [10] or Corollary
3.2.20 in [6] for the proof).
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Lemma 12. Let 5 be an oriented C∞ (n−1)- dimensional manifold and suppose that
u∈W 1;p(5;Rn) ∩ C with p¿n − 1. Then for any Hn−1 measurable set A ⊂ 5 we
have

Hn−1(u(A))6 (n− 1)(1−n)=2
∫
A
|Du|n−1 dHn−1

3. Strong coarea formula

In this section we prove that the strong chain rule implies the strong coarea formula.
In particular we have the following:

Theorem 13. Let u∈BnV(�;Rn), where � ⊂ Rm, and suppose that there is a point-
wise representative Fu of u such that J (F(u))=det∇F( Fu)Ju for every F ∈C1(Rn;Rn).
Then

!n

∫
Rn

‖Juy‖(�) = ‖Ju‖(�): (5)

In the following we deal with family of currents parameterized by variables in Rn:
for the sake of clarity if Ty is a family of currents on Rm parameterized by y and !
is a form sometimes we will indicate with 〈Ty(x); !(x)〉 the real numbers Ty(!).

Proof. To simplify notations we will identify u and Fu. Moreover we notice that it is
suIcient to prove

‖Ju‖(�)¿ 1
!n

∫
Rn

‖Juy‖(�) dy: (6)

Let us de>ne the current T on �x × Rn
y in the following way:

(a) if !=
∑

fI (x; y) dxI then

T (!) =
1
!n

∫
Rn

∑
〈Juy; fI (x; y) dxI 〉 dy;

(b) if != f(x; y)� ∧ dyj then 〈T; !〉= 0;
(c) T is extended by linearity to the whole space of smooth forms.

(In more “technical” words we have

T (!) =
1
!n

∫
Rn
〈Juy; !〉 dy

where Juy is the push-forward of Juy via the iy :� → �×Rn given by iy(x)= (x; y).)
We will prove that

‖Ju‖(�)¿ ‖T‖(� × Rn)¿
1
!n

∫
Rn

‖Juy‖(�): (7)
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Step 1: We prove the second inequality of (7). First of all we recall that∫
Rn

‖j(uy)‖L1 dy = !n‖j(u)‖L1 ¡∞: (8)

Let W ′ be the set of points y0 such that

lim
1→0

1
!n1n

∫
B1(y0)

‖j(uy0 )− j(uy)‖L1 dy = 0:

Then Eq. (8) gives that Ln(Rn\W ′) = 0. We claim that, >xed an 7¿ 0, for every
z ∈W ′ there is an 1(z) such that

(A) For every 2¡1(z) there is a smooth form � such that ‖�‖∞6 1, supp(�) ⊂
� × B2(z) and T (�)¿ (1− 7)32n‖Juz‖(�).

Using (A) and standard covering arguments it is easy to >nd a sequence of smooth
n-forms �k(x; y) on � × Rn such that ‖�k‖∞6 1 and

‖T‖(� × Rn)¿ lim sup
k→∞

T (!k)¿ (1− 7)3
1
!n

∫
Rn

‖Juy‖(�) dy:

If we let 7 go to 0 we have the desired inequality.
To prove (A) we reason as follows. First we choose !∈C∞

c (�;�m−n(Rm)) such
that ‖!‖∞6 1 and 〈Juz; !〉¿ (1−7)‖Juz‖(�). Then we notice that there is an 1 such
that for 26 1

1
!n2n

∫
B2(z)

〈Juy(x); !(x)〉 dy =
1

!n2n

∫
B2(z)

〈j(uy)(x); d!(x)〉 dy

¿ (1− 7)〈 j(uz); d!〉= (1− 7)〈Juz; !〉:
Moreover with the same idea it is not diIcult to >nd for every 2 a function ’∈C∞

c
(B2(z)) such that∫

Rn
〈Juy(x); ’(y)!(x)〉 dy¿ (1− 7)

∫
B2(z)

〈Juy; !〉 dy:

Then the form �(x; y) = ’(y)!(x) satis>es condition (A) for 2.
Step 2: We will prove that ‖T‖(�×Rn)6 ‖Ju‖(�). First we notice that the strong

chain-rule and Theorem 14 imply

〈det∇F(y)!(x); T (x; y)〉= 1
!n

∫
Rn

det∇F(y)〈Juy(x); !(x)〉 dy

= 〈[det∇F(u(x))]!(x); Ju(x)〉 (9)

for every ! with supp(!) ⊂⊂ � and for every F ∈C1(Rn;Rn). Now let us take a real
function  ∈C1(Rn): it is easy to see that we can >nd two functions  1;  2 such that
 1 +  2 =  ,  i ∈C1 and  1¿ k,  26− k for some k ¿ 0. From a result of Dacorogna
and Moser (see [4]) it follows that for every ball B ⊂ Rn we can >nd functions
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Fi
B ∈C1(Rn;Rn) such that

det∇Fi
B(y) =  i(y) for every y∈B:

If we >x a form ! with compact support we can >nd a ball B such that u(supp(!)) ⊂
B, hence Eq. (9) applied to Fi

B and the multilinearity of T give

〈 (y)!(x); T (x; y)〉= 〈 (u(x))!(x); Ju(x)〉:
Now we would like to use density arguments to >nd

〈 (x; y)!(x); T (x; y)〉= 〈 (x; u(x))!(x); Ju(x)〉 (10)

for every  ∈C1
c (� × Rn). We notice that (8) and the relation @j(uy) = Juy imply

lim
k→∞

T ( k(x; y)!(x)) = T ( (x; y)!(x))

if  k →  in C1. Moreover we remark that the vector space generated by

{9∈C1
c (� × Rn)|9 is of the form g(x)f(y)}

is dense in C1
c (� × Rn) in the strong topology. These facts imply that (10) holds.

By the de>nition of T we have that if � is a smooth form on �×Rn with compact
support then there are a scalar function  ∈C∞(� × Rn) and an (m − n)-form ! on
� such that

(a) T (�) = T ( (x; y)!(x));
(b) ‖ !‖∞6 ‖�‖∞.

We conclude that (10) gives ‖T‖(� × Rn)6 ‖Ju‖(�).

4. Strong chain rule

In this section we will prove the following

Theorem 14. Let u∈W 1;p(�;Rn) be continuous, with � ⊂ Rm and p¿n− 1. More-
over suppose that∫

Rn
‖Juy‖(�) dy¡∞: (11)

If F ∈C1(Rn;Rn) then F(u)∈BnV and J (F(u)) = det∇F(u)Ju.

First of all we will prove the Theorem when m = n and then we will recover the
general case with a slicing argument. The key ingredient for the case m=n is the lemma
stated below, where we use some ideas of MPuller and Spector (see [11, Section 8]).
We remark that the hypothesis p¿n − 1 is needed in the proof of the >rst step of
Lemma 15. Indeed in this proof we use Lemma 12 which in general does not hold
when p= n− 1.
The continuity of u is used heavily in the second step of Lemma 15 and the tech-

nical hypothesis (11) is employed to derive condition (C) below. Condition (C) is
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crucial for passing to the limit in formula (15) because it allows to use the Dominated
Convergence Theorem. Indeed it could be true that the relation∫

Rn
deg(u; A; y) dy = Ju(A) (12)

holds true for every continuous BnV function u and for every open set A such that
Ln(u(A)) = 0. This would imply that the strong chain rule, and hence the strong
coarea formula, are true for every continuous BnV function in W 1;p, p¿n− 1. How-
ever at the present stage we do not know how to derive equality (12) without using
condition (C).

Lemma 15. Let u∈BnV(�;Rn) ∩W 1;p, where � ⊂ Rn and p¿n− 1. Suppose that
u is continuous and that there exists a function N ∈L1

loc(R
n) such that

(C) for all open �′ ⊂⊂ �, |deg(u; y; �′)|6N (y) for a.e. y.

Then for every open set A ⊂⊂ � such that Ln(u(@A)) = 0 we have∫
Rn

deg(u; y; A) dy = Ju(A);
∫
Rn

|deg(u; y; A)| dy6 ‖Ju‖(A): (13)

Proof. We split the proof into two steps.
First step: We prove the >rst equation of (13) when A is an open set with smooth

boundary such that u∈W 1;p(@A) and
1
n

∫
@A

u ·Mi
j (∇u) · � dHn−1 = Ju(A): (14)

Let us approximate u strongly in L∞ and in W 1;p(A) ∩W 1;p(@A) with C∞ functions
uk . The formula of integration by parts of Lemma 7 gives∫

Rn
∇ · ’(y) deg(uk ; A; y) dy =

1
n

∫
@A

’(u) ·Mi
j (∇uk) · � dHn−1

for every C∞
c vector >eld. This implies that fk := deg(uk ; A; y) are functions of

bounded variation and

‖Dfk‖(Rn)6
1
n

∫
@A
‖Mi

j (∇uk)‖ dHn−16
1
n
‖∇uk‖n−1

Ln−1(@A):

Moreover the supports of fk are all contained in a ball big enough. From the PoincarRe
inequality for BV functions it follows that their BV norms are equibounded, hence the
sequence fk is weakly compact in L1. Moreover deg(uk ; A; y) converges to deg(u; A; y)
for every y �∈ u(@A) and Lemma 12 implies that u(@A) is negligible, hence we have
fk = deg(uk ; A; y) → deg(u; A; y) strongly in L1. Passing to the limit we conclude that∫

Rn
deg(u; y; A) =

1
n

∫
@A

u ·Mi
j (∇u) · � dHn−1

and from (14) we obtain the >rst equation of (13).
Second step: Let us >x an open set A with Ln(u(@A)) = 0: using Lemma 9 we

choose open sets Ak ↑ A such that every Ak has smooth boundary and satis>es (14). By
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classical arguments we have deg(u; Ak ; y) → deg(u; A; y) for a.e. y and the Dominated
convergence Theorem allows us to conclude∫

Rn
deg(u; A; y) dy= lim

k→∞

∫
Rn

deg(u; Ak ; y) dy

= lim
k→∞

Ju(Ak) = Ju(A): (15)

Now let us de>ne for every k ∈Z

Lk := {y|deg(u; y; A) = k} Bk = u−1(Lk) ∩ A:

Then we have that every Lk is an open set and its boundary is contained in u(@A). It
follows that every Bk is an open set and u(@Bk) has measure zero. Moreover

|deg(u; y; A)|=
∑
k

|deg(u; y; Bk)|

and we conclude∫
Rn

|deg(u; y; A)| dy =
∑
k

|Ju(Bk)|6 ‖Ju‖(A):

Proof of Theorem 14. First step: � ⊂ Rn.
Eq. (11), the weak coarea formula and the weak chain rule imply that u and F(u) are

BnV function, hence the writing det∇F(u)Ju is formally correct in the distributional
sense because it is the product of a measure by a continuous function. Moreover
condition (11) implies condition (C) of the previous Lemma (see Lemma 11). Then,
thanks to standard measure-theoretic arguments, we only have to check*

J (F(u))(B) =
∫
B
det∇F(u(x)) dJu(x):

for every ball B ⊂⊂ �.
We notice that the previous lemma implies

J (F(u))(B) =
∫
Rn

deg(F(u); y; B) dy

=
∫
Rn

det∇F(y) deg(u; y; B) dy:

By standard covering arguments and the continuity of u we can >nd a countable family
of pairwise disjoint balls Bi centered on xi such that

(a) ‖Ju‖(B) =∑i ‖Ju‖(Bi);
(b) ‖J (F(u))‖(B) =∑i ‖J (F(u))‖(Bi);
(c) |det∇F(y)− det∇F(u(xi))|6 1 for every y∈ u(Bi).

First of all we notice that for a.e. y

deg(u; y; B) =
∑

i

deg(u; y; Bi): (16)
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Indeed Lemma 12 implies Ln(u(@Bi)) = 0, hence we have∫
Rn

∣∣∣∣∣deg(u; y; B)−
N∑
i=1

deg(u; y; Bi)

∣∣∣∣∣ dy∫
Rn

∣∣∣∣∣deg
(
u; y; B

∖
N⋃
i=1

FBi

)∣∣∣∣∣6 ‖Ju‖
(
B

∖
N⋃
i=1

FBi

)
and if we let N go to in>nity condition (b) gives (16). Moreover conditions (b) and
(c) imply that

;i :=
∣∣∣∣det∇F(u(xi))Ju(Bi)−

∫
Rn

deg(F(u); y; Bi) dy
∣∣∣∣

6
∫

|det∇F(y)− det∇F(u(xi))‖deg(u; y; Bi)| dy6 1‖Ju‖(Bi)

and that

�i :=
∣∣∣∣det∇F(u(xi))Ju(Bi)−

∫
Bi

det∇F(u(x)) dJu(x)
∣∣∣∣6 1‖Ju‖(Bi):

Hence we have∣∣∣∣J (F(u))(B)− ∫
B
det∇F(u(x)) dJu(x)

∣∣∣∣
6
∑

i

∣∣∣∣J (F(u))(Bi)−
∫
Bi

det∇F(u(x)) dJu(x)
∣∣∣∣

6
∑

i

(;i + �i)6 21
∑

i

‖Ju‖(Bi) = 21‖Ju‖(B):

If we let 1 ↓ 0 we conclude J (F(u))(B) = [det∇F(u)Ju](B).
Second step: Again as in the previous step we remark that both F(u) and u are

functions of bounded higher variation. For sake of simplicity we choose an orthogonal
system of coordinates and we denote by x1; : : : ; xm−n the >rst m − n and by z1; : : : ; zn
the remaining ones. Moreover let us >x a form ! of type f dx1 ∧ · · · ∧ dxm−n and
de>ne vx(z) := u(x; z), �x := �∩({x}×Rn). Of course we have vyx (z)=uy(x; z), hence
applying Theorem 6 and Fubini Tonelli Theorem we have∫

Rm−n

∫
Rn

‖Jvyx ‖(�x) dy dx =
∫
Rn

∫
Rm−n

‖Jvyx ‖(�x) dx dy

6
∫
Rn

‖Juy‖(�) dy¡∞:

It follows that for a.e. x∫
Rn

‖Jvyx ‖(�x) dy¡∞:
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From the slicing arguments and the previous step we know that

〈J (F(u)); !〉=
∫
Rm−n

〈f(·; x); J (F(vx)〉 dx

=
∫
Rm−n

〈det∇F(vx)f(·; x); Jvx〉 dx

= 〈Ju; ! det∇F(u)〉:
We can reason in the same way for every diHerential form ! = fd<, where < is a
projection on m− n coordinates, and this completes the proof.

Remark 16. If u∈W 1;p(�;Rn) with p¿ n then the strong chain rule holds without
any other assumption. For sake of simplicity let us suppose � ⊂ Rn. If we approxi-
mate u strongly in W 1;p with C∞ functions uk we have that Ju= det∇uLn � and
det∇uk → det∇u strongly in Lp=n. Moreover if F ∈C1(Rn;Rn), then

J (F(uk)) = det∇F(uk) det∇uk L
n �: (17)

Since J (F(uk)) → J (F(u)), letting k ↑ ∞ in (17), we obtain J (F(u)) = det∇F(u) Ju.
In the same way we can recover the general case � ⊂ Rm with m¿ n.

5. Further remarks

As corollary of Theorem 13 and of Theorem 14 we have

Theorem 17. Let u∈W 1;p(�;Rn), where � ⊂ Rm and p¿n − 1. If u is continuous
and ‖Juy‖(�)∈L1(Rn) then the strong coarea formula holds.

However a direct proof of Theorem 17 can be given as follows. First of all we can
observe that∫

u−1(B)
’ dJu=

∫
B
〈Juy; ’〉 dy

for every m− n form ’∈C1
c (u

−1(B)) and for every ball B. Hence using the condition
‖Juy‖(�)∈L1 and an approximation argument we can argue that the same formula
holds for every form ’∈C(u−1( FB)). At this point using an argument similar to that
of step 1 of the proof of Theorem 13 we get the strong coarea formula.

Remark 18. Another interesting consequence of Theorem 13 is the following. Let us
suppose that u∈W 1;p∩L∞ is a Cartesian map, i.e. the graph of u is a recti>able current
which has no boundary in the interior of � × Rn (see [8] for the theory of Cartesian
maps and related questions). Then it is easy to prove that ‖Ju‖ is an absolutely contin-
uous measure and that its density coincides with the pointwise Jacobian. Hence using
the invariance of the de>nition of Cartesian map by composition of smooth maps we
point out that

J (F(u)) = det∇F(u)Ju for every F ∈C1(Rn;Rn):
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Applying Theorem 13 we conclude that the strong coarea formula holds for u. Moreover
for Sobolev functions we have a classical coarea formula involving the pointwise Jaco-
bian (see [8] or Theorem 3.2.3 of [6]): a comparison gives that if u is a Cartesian map
then there exists a set �′ ⊂ � of full measure such that ‖Juy‖=Hm−n(u−1(y)∩ �′)
for a.e. y.
Finally we notice that Remark 16 and Theorem 13 give a proof of the strong coarea

formula in the case of u∈W 1;p with p¿n which is diHerent from the one given in
[9] and can be extended to the case p= n.
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