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Abstract

This doctoral thesis is about the density of wild initial data for the hypodissipative
Navier-Stokes equations in the set of L2 divergence-free vector fields defined on the
three-dimensional torus T3.

The motivation for considering the fractional Navier-Stokes equations is to study the
effect of a fractional dissipation term on the Euler equations, and specifically on uniqueness
or non-uniqueness of weak solutions to the Cauchy problem. On one hand, in the case of
the Euler equations, for any 𝛽 < 1/3, there exist C 𝛽 initial data which generate infinitely
many C 𝛽 weak solutions which satisfy the energy inequality. On the other hand, for the
Navier-Stokes equations, as long as the initial datum has at least L3 regularity, the Cauchy
problem is locally well-posed. The case of the fractional laplacian with exponent 𝜃∈(0,1)
studied in this thesis should represent an intermediate case between these two situations.

The context wherein our work places itself is a relatively broad literature regarding the
properties of solutions to the Euler, Navier-Stokes, and fractional Navier-Stokes equations.
In this thesis, we briefly review the known uniqueness and non-uniqueness properties, as
well as some other results about these systems, most notably Onsager’s conjecture for the
Euler equations and the regularity results for solutions of the Navier-Stokes equations.

The method used to tackle the problem studied in this thesis is the technique of
Convex Integration. To introduce it, we discuss the development of its application to
the Euler equations, and how it led to both the proof of Onsager’s conjecture, and the
proof of the density in L2 divergence-free vector fields on T3 of C 𝛽 wild initial data for
the Euler equations. We also discuss the applications of this technique to the fractional
Navier-Stokes equations for a laplacian exponent 𝜃 <

1
3
.

The above-mentioned work provided the motivation for the main result of this thesis,
as well as the main ideas for its proof. This result states that, for any T > 0, if we
consider the set of divergence-free L2 vector fields on T3 which generate infinitely many
L2([0,T ];H𝜃(T3)) solutions of the fractional Navier-Stokes equations with exponent 𝜃 ,
this set is dense in the set of divergence-free L2 vector fields on T3.

The general strategy for the proof features four steps. In the first step, three kinds
of “subsolutions” are defined, i.e. approximate solutions to the hypodissipative Navier-
Stokes equations. An existence result for subsolutions of the “weakest” kind is then
proved. Convex Integration is then used to prove that weak solutions are approximated
by subsolutions of the strongest kind, which in turn are approximated by subsolutions of
the weakest kind. These approximation results, combined with the existence result, finally
lead to the proof of the theorem.
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Chapter 1

Introduction

In fluid dynamics, the Euler equations{
∂tv+div(v⊗ v)+∇p = 0
divv = 0 (1.1)

and the Navier-Stokes equations{
∂tv+div(v⊗ v)+∇p = 𝜈Δv
divv = 0 , (1.2)

both describe the motion of a Newtonian fluid: a non-viscous one in the former case, and
a viscous one in the latter. In both systems, v is the velocity of the fluid and p is the
pressure. In (1.2), 𝜈 is the viscosity.

The presence of the dissipation term 𝜈Δv has allowed several regularity results to be
proved for solutions of the Navier-Stokes equations. However, it is as of now not entirely
clear how much this term affects the existence and (non-)uniqueness of solutions to the
system. Another puzzle is the fact that, while formally the Euler equations are the limit of
the Navier-Stokes equations for 𝜈 → 0, it has not yet been proved that the solutions satisfy
a similar limit relation in general.

The fractional Navier-Stokes equations{
∂tv+div(v⊗ v)+∇p+(−Δ)𝜃v = 0
divv = 0 , (1.3)

are a way of modulating the dissipation term to investigate how its presence affects the
uniqueness or non-uniqueness of weak solutions to these two systems of PDEs.

In this chapter, we introduce the key steps in the understanding of some of the features
of the solutions to these system, eventually leading to the main result of this thesis.

1.1 The Euler equations
The Euler equations (1.1) first appeared in print in the 1757 paper [31] by Leonhard Euler.
The general properties of the solutions to these equations were studied during the XIX
century, and it was well known that the kinetic energy

EE(t) –
1
2

∫
|v|2(t,x)dx
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is a conserved quantity in the case of classical solutions. This is not the case, however,
for weak (i.e. distributional) solutions. Indeed, halfway through the XX century, Onsager
wrote his famous note [58]. In this note, he conjectured the existence of solutions to
the Euler equations which did not conserve the kinetic energy. More specifically, he
formulated the following conjecture (cfr. Chapter 2).

Onsager’s Conjecture. Let (v, p) be a weak solution of (1.1). If v∈C 𝛽 for 𝛽 > 1/3, then
the energy EE is a conserved quantity, i.e. EE(t)≡ EE(0).

By contrast, for any 𝛽 < 1/3, there exist C 𝛽 weak solutions of (1.1) which do not
conserve the energy.

The first part was proved in the 1994 paper [13].
The second part of the conjecture was the object of a long series of papers in the first

two decades of the XXI century, starting with the 2009 paper [21], where the first form of
convex integration was applied to the Euler equations by De Lellis and Székelyhidi, and
culminating in the 2018 paper [40], which finally provided a proof of the conjecture. These
papers used successive refinements of the Convex Integration technique (cfr. Chapter 3)
first introduced by Nash in the context of differential geometry in [56].

The Euler equations arise from Physics. Hence, it is of interest to consider physical
solutions, i.e. admissible solutions. These are defined by the fact that they satisfy the
energy inequality: ∫

T3

|v(t,x)|2dx ≤
∫
T3

|v(0,x)|2dx. (1.1.1)

Such solutions satisfy what is known as weak-strong uniqueness, i.e., if there exists a
smooth (C1) solution with a certain initial datum, it is the only admissible one with that
datum. The question therefore presented itself as to whether admissible solutions, given
an initial datum, were unique. A negative answer for general initial data was given in the
paper [18]. In it, the authors considered the so-called “C 𝛽 -wild” initial data, i.e. initial
data w∈C 𝛽 (T3) which generate infinitely many C0([0,T ];C 𝛽 (T3)) solutions of the Euler
equations which satisfy (1.1.1). They proved that, for every 𝛽 < 1/3, the set of C 𝛽 -wild
initial data is dense in the set of divergence-free L2(T3) vector fields.

1.2 The Navier-Stokes equations
The Navier-Stokes equations (1.2) first appeared in published form in his 1822 paper [57]
by Claude-Louis Marie Henri Navier. They were given their final form by George Gabriel
Stokes in his 1845 paper [66]. Since these equations describe the motion of a viscous
fluid, it is not surprising that the kinetic energy EE is not conserved by classical solutions.
Such solutions do have a conserved quantity, however, which is EE plus a dissipation term:

ENS(t) –
1
2

∫
|v|2(t,x)dx+ 𝜈

t∫
0

∫
|∇v|2(s,x)dxds.
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The presence of this dissipation term in ENS played an important role in the proof, given
by Leray in the 1934 paper [51], of the existence, for any initial datum, of at least one
weak solution satisfying the following energy inequality:

1
2

∫
T3

|v(t,x)|2dx+ 𝜈 ·
t∫

0

∫
T3

|∇v(s,x)|2dxds ≤ 1
2

∫
T3

|v(0,x)|2dx a.e. t > 0. (1.2.1)

Such solutions are called Leray solutions or Leray-Hopf solutions; we will call them
admissible solutions of (1.2).

Note that this result by Leray does not have an analogue in the case of the Euler
equations. Indeed, the existence (or non-existence) of admissible solutions to the Euler
equations (i.e. solutions to (1.1) satisfying (1.1.1)) for any initial data is a long-standing
open problem.

The dissipative term in (1.2) has a smoothing effect on the solutions. On the one hand,
this provides the solutions with higher regularity, as discussed in the regularity results
of Chapter 2. On the other hand, for the Navier-Stokes equations, an equivalent of the
wild initial data result of [18] discussed in the previous subsection remains, until now,
unproven. Indeed, the uniqueness or non-uniqueness of solutions to (1.2) satisfying (1.2.1)
is still a long-standing open problem.

Several non-uniqueness results have been obtained for non-admissible solutions, or
solutions that are not proved admissible. For an overview, see Chapter 2.

1.3 The fractional Navier-Stokes equations
Introducing a fractional dissipative term in (1.1) is a way to study how much the presence of
dissipation affects the uniqueness or non-uniqueness of solutions to the Cauchy problem.
More specifically, we consider the fractional Navier-Stokes equations (1.3) with exponent
𝜃 <

1
3

and admissibility condition

1
2

∫
T3

|v(t,x)|2dx+

t∫
0

∫
T3

∣∣∣(−Δ)
𝜃

2 v(s,x)
∣∣∣2dxds ≤ 1

2

∫
T3

|v(0,x)|2dx. (1.3.1)

On one side, the presence of the fractional laplacian allows one to adapt the strategy of
Leray in [51] to prove any initial datum generates an admissible solution for (2.1.3.1), for
any exponent 𝜃 > 0. This is done for instance in [15]. Calculations entirely analogous to
those employed in the Euler and Navier-Stokes cases prove that smooth solutions of (1.3)
satisfy the energy equality, i.e. conserve the following quantity:

EFNS(t) –
1
2

∫
|v|2(t,x)dx+

t∫
0

∫ ∣∣∣(−Δ)
𝜃

2 v
∣∣∣2(s,x)dxds.

On the other side, in [15] and [26] it was proved that there exist infinitely many C 𝛽 initial
data for 𝜃 < 𝛽 < 1/3 which generate infinitely many C0([0,T ];C 𝛽 (T3)) solutions which,
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by [16], are in fact C 𝛽 ([0,T ];C 𝛽 (T3)). In fact, [15] produces such data for 𝜃 up to 1/2,
with solutions that can only be proved to be admissible (i.e. satisfy (1.3.1)) for 𝜃 < 1/5,
and the solutions in the range [1/5,

1/2] are not C𝜃 .
Inspired by the wild initial data result of [18] discussed in Section 1.1, in this thesis

we investigate the existence of an L2-dense class of C 𝛽 wild initial data (namely data for
which non-uniqueness holds) for admissible solutions to (1.3) in L2([0,T ];H𝜃(T3)).

Notice the two main differences between our result and that of [26]:

• While they obtain infinitely many initial data, we prove the existence of an L2-dense
set of wild data, which is a topologically stronger statement;

• In order to obtain this stronger property, we must pay the price of the C 𝛽
x,t regularity,

and be content with L2
t H𝜃

x regularity on the whole of [0,T ], and C
𝛽
x,t only locally

near t = 0.

Concerning the second point, note that, if we fix an L2 vector field w and an 𝜂 > 0, we can
find wild data w𝜂 which are 𝜂-close to w in L2 which have C 𝛽

x,t solutions on [0,T ] which we
can only prove admissible on [0,T (𝜂)], where T (𝜂)→ 0 as 𝜂 → 0. This arises from the
necessity of controlling the dissipation term in the energy. Therefore, proving the density
of the wild data requires us to continue these solutions by means of Leray solutions, which
are only L2

t H𝜃
x .

Here, we explore and extend the strategy of [18] to the fractional Navier-Stokes
equations. The main issue with respect to the Euler setting is to control the dissipative
term in the energy. Our main results are the following.

Theorem 1.3.1 (C 𝛽 weak solutions with data close to L2 functions and time of admis-
sibility). Let 𝜃 < 𝛽 < 1/3,w∈L2(T3). Then, for all 𝜂 > 0, there exist a time T𝜂 > 0, an
initial datum w𝜂 ∈C 𝛽 (T3) such that ‖w𝜂 −w‖L2 < 𝜂 , and infinitely many weak solutions
v𝜂 ∈C0([0,T ],C 𝛽 (T3)), with initial datum v𝜂 |t=0 = w𝜂 , which satisfy (1.1.1) on [0,T ], but
can be proved to satisfy (1.3.1) (i.e to be admissible) only on [0,T𝜂 ]. Moreover

lim
𝜂→0

T𝜂 = 0.

Definition 1.3.1 (Wild initial data). Let X be a function space. A divergence-free vector
field w∈L2(T3) is a (𝜃 ,X ,T )-wild initial datum for (1.3) if there exist infinitely many weak
solutions v : [0,T ]×T3 → R3 of (1.3) such that v∈X , v(0,x) = w(x) a.e. in T3, and the
admissibility condition (1.3.1) holds on [0,T ]. The set of such data is denoted by W𝜃 ,X ,T .
If X = L∞([0,T ];C 𝛽 (T3)), we will speak of (𝜃 , 𝛽 ,T )-wild data, and of the set W𝜃 ,𝛽 ,T .

As a consequence of Theorem 1.3.1, we obtain the following corollary.

Corollary 1.3.1 (Density of wild initial data – Hölder solutions). The set
⋃

T W𝜃 ,𝛽 ,T is
dense in the set of divergence-free L2 vector fields, for all 𝜃 < 𝛽 < 1/3.

Moreover, by taking a solution v𝜂 as given by Theorem 1.3.1, and continuing it with
a Leray solution ṽ𝜂 : [T𝜂 ,∞]×T3 → R3 with datum ṽ𝜂(T𝜂) = v𝜂(T𝜂), as provided by
Theorem 2.4.2.1, we obtain the following.

10



Theorem 1.3.2 (Density of wild initial data – Sobolev solutions). W𝜃 ,L2
t H𝜃

x ,T
is dense in

the sef ot divergence-free L2 vector fields, for all 𝜃 < 1/3,T > 0.

The general strategy of the proof is to define suitable relaxations of the notion of solution
(the so-called “subsolutions” of Chapter 4), and approximating one kind of subsolution
with another one which is closer to the notion of solution. This is done by constructing se-
quences of subsolutions that converge, in an appropriate sense, to a “stronger” subsolution.
We will need two such approximations, and therefore two convex integration schemes:
the first one will converge to a so-called “adapted subsolution”, i.e. a subsolution such
that R̊(·,0) ≡ 0 which has the C1 norm of the velocity blowing up at a controlled rate at
t = 0 (cfr. Definition 4.2.2). As in [18], these adapted subsolutions are the basis for a
quantitative criterion for non-uniqueness. The second approximation will lead to a weak
solution.

The thesis is organized as follows. Chapter 2 gives the context in which this thesis
places itself, i.e. the state of the art of existence and (non-)uniqueness results for the
Euler, Navier-Stokes, and fractional Navier-Stokes equations. Chapter 3 gives a survey
of the applications of Convex Integration to the Euler equations, with a brief conclusion
on previous results which apply Convex Integration to fractional Navier-Stokes. Chapter
4 introduces three kinds of subsolutions, namely strict, strong, and adapted subsolutions,
proves an existence result for strict subsolutions, and gives a guide to the following chapters.
Chapter 5 shows how one can approximate strict subsolutions with strong ones. Chapter
6 contains the two substeps of each convex integration step, namely a gluing step and a
perturbation step. Chapter 7 state and prove the other approximation results, namely the
approximation of strong subsolutions with adapted ones, and that of adapted subsolutions
with weak solutions. Finally, Chapter 8 deduces Theorem 1.3.1 from those approximation
results.

1.4 Notations
The following notations are used throughout the rest of this thesis:

• S3×3 are the symmetric 3-by-3 matrices; within this set, S3×3
+ are the positive

definite ones, S3×3
0 are the traceless ones, and S3×3

≥0 are the positive semidefinite
ones.

• If R∈S3×3, we decompose it as

R =
1
3

trR Id+R̊ = 𝜌 Id+R̊,

where R̊∈S3×3
0 is the traceless part of R.

• For scalar functions f , we write ∇ f – (∂1 f ,∂2 f ,∂3 f ) — D f ;

• However, for vector fields v, we define Dv so that (Dv)i j = ∂ jvi, whereas ∇v =
(Dv)T ; with these choices, (v ·∇)v =Dv · v = v ·∇v;

11



• In a similar fashion, for tensor fields S, DS is defined by (DS)i jk = ∂kSi j, whereas
∇S is defined by (∇S)i jk = ∂iS jk;

• The Hölder norms are defined as follows:

‖ f‖0 – sup | f (x)|, [ f ]k – max
𝛽∈N3

|𝛽 |=k

sup
∣∣∂𝛽 f

∣∣, [ f ]𝛼 – sup
x,y

| f (x)− f (y)|
|x− y|𝛼

‖ f‖k – ‖ f‖0 +
k

∑
i=1

[ f ]i, ‖ f‖k+𝛼 – ‖ f‖k + max
|𝛽 |=k
𝛽∈N3

[∂𝛽 f ]𝛼 ,

for k∈N,𝛼∈(0,1);

• We will denote the time slices of a function v defined on [0,T ]×T3 by the notation
vt(x) – v(t,x);

• Instead of writing CA([0,T ],CB(T3)), or Lp([0,T ];Lq(T3)), or similar notations,
we will write CA

t C
B
x ([0,T ],T3) and Lp

t Lq
x([0,T ];T3) respectively, often with the

domains [0,T ] and T3 left implied.
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Chapter 2

General features of Euler,
Navier-Stokes, and fractional
Navier-Stokes equations and their
solutions

In this chapter we present some general features of the Euler, the Navier-Stokes, and the
fractional Navier-Stokes equations. We first define the equation systems, the associated
energy functionals, and the corresponding notions of weak, strong, and classical solutions.
We then illustrate the main properties of solutions to these systems with regard to existence,
uniqueness, and regularity.

2.1 The equation systems and the associated energy func-
tionals

2.1.1 The Euler equations
The Euler equations describe the motion of a non-viscous Newtonian fluid, with velocity
v and pressure p: {

∂tv+div(v⊗ v)+∇p = 0
divv = 0 . (2.1.1.1)

The total kinetic energy of the fluid is given by:

EE(t) –
1
2

∫
Td

|v(t,x)|2dx.

A classical solution of the Euler equations is a pair (v, p)∈C1([0,T ]×Td;Rd ×R) which
solves the equations in the classical sense.
A strong solution of the Euler equations is a weak solution v (as defined below) with the
additional regularity v∈L∞

t Hm
x for some integer m ≥ 1.

13



A weak solution of the Euler equations with initial datum v0 ∈ L2 is a function v ∈
L∞

t L2
x([0,T ]×Td) which solves the equations in the sense of distributions, i.e., for every

𝜑∈C∞
c ([0,∞)×Td) such that div𝜑= 0 and every 𝜓∈C∞

c (Td), the following hold for a.e.
t∈ [0,∞):

t∫
0

∫
Td

∂t𝜑(s,x)v(s,x)dsdx

+

t∫
0

∫
Td

(v⊗ v)(s,x) : ∇𝜑(s,x)dsdx =
∫
Td

v(t,x) · 𝜑(t,x)− v0(x) · 𝜑(0,0)dx

∫
Td

v(t,x) ·∇𝜓(x)dx ≡ 0.

Note that classical solutions are also weak solutions. Vice versa, C1 weak solutions are
classical solutions.

2.1.2 The Navier-Stokes equations

The Navier-Stokes equations describe the motion of a viscous Newtonian fluid with vis-
cosity 𝜈: {

∂tv+div(v⊗ v)+∇p− 𝜈Δv = 0
divv = 0 . (2.1.2.1)

The total kinetic energy and dissipation term for the Navier-Stokes equations are given by:

ENS(t) –
1
2

∫
Td

|v(t,x)|2dx+ 𝜈 ·
t∫

0

∫
Td

|∇v|2(s,x)dxds.

We will see that classical solutions of the Navier-Stokes equations conserve ENS, whereas
classical solutions of the Euler equations conserve EE . The same is true of strong solutions
of the Navier-Stokes equations, in accordance with [60, Theorem 6.5]. This means that the
kinetic energy EE of the fluid is dissipated by sufficiently regular Navier-Stokes solutions.
A classical solution of the Navier-Stokes equations is a pair (v, p) : Td → Rd ×R such
that v∈C0

t C
2
x ∩C1

t C
0
x , p∈C0

t C
1
x which solves the equations in the classical sense.

A strong solution of the Navier-Stokes equations is a weak solution v (as defined below)
with the additional regularity v∈L∞

t H1
x ∩L2

t H2
x .

A weak solution of the Navier-Stokes equations with initial datum v0 ∈L2 is a function
v∈L∞

t L2
x ∩L2

t H1
x which solves the equations in the sense of distributions, i.e., for every
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𝜑∈C∞
c (Td) : div𝜑 = 0 and every 𝜓 ∈𝜑∈C∞

c ([0,∞)×Td), the following hold:

t∫
0

∫
Td

∂t𝜑(s,x)v(s,x)+(v⊗ v)(s,x) : ∇𝜑(s,x)dsdx

+

t∫
0

∫
Td

𝜈v(s,x) ·Δ𝜑(s,x)dsdx =
∫
Td

v(t) · 𝜑(t,x)− v0 · 𝜑(0,x)dx

∫
Td

v(t,x) ·∇𝜓(x)dx = 0.

2.1.3 The fractional Navier-Stokes equations

It is of mathematical interest to study how different levels of diffusion affect the behaviour
of the solutions. This leads to the fractional Navier-Stokes equations, which are obtained
by replacing the laplacian from the Navier-Stokes equations with a fractional laplacian:

{
∂tv+div(v⊗ v)+∇p+(−Δ)𝜃v = 0
divv = 0 . (2.1.3.1)

These equations are termed hypodissipative when 𝜃 < 1 and hyperdissipative when 𝜃 > 1.
In this thesis, unless otherwise stated, we shall study solutions of the hypodissipative
range, and more specifically solutions for 𝜃 < 1/3.

As described for instance in [54], these equations also model the behaviour of a fluid
with internal friction interaction when 𝜃 ∈ [1/2,1].
The total kinetic energy and dissipation terms for the fractional Navier-Stokes equations
are given by:

EFNS(t) –
1
2

∫
Td

|v(t,x)|2dx+

t∫
0

∫
Td

∣∣∣(−Δ)
𝜃

2 v
∣∣∣2(s,x)dxds.

A classical solution of the fractional Navier-Stokes equations is a pair (v, p)∈ (C0
t C

2𝜃
x ∩

C1
t,x)([0,T ]×Td;Rd ×R) which solves the equations in the classical sense.

A weak solution of the fractional Navier-Stokes equations with initial datum v0 ∈L2 is
a function v∈ (L∞

t L2
x ∩ L2

t H𝜃
x )([0,T ]×Td) which solves the equations in the sense of

distributions, i.e., for every ∀𝜑∈C∞
c ([0,∞)×Td) : div𝜑 = 0 and every 𝜓 ∈C∞

c (Td) the
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following hold for a.e. t∈ [0,∞):

t∫
0

∫
Td

∂t𝜑(s,x)v(s,x)+(v⊗ v)(s,x) : ∇𝜑(s,x)dxds

−
t∫

0

∫
Td

(v · (−Δ)𝜃 𝜑)(s,x)dsdx =
∫
Td

v(t,x) · 𝜑(t,x)− v0(x) · 𝜑(0,x)dx

∫
Td

v(t,x) ·∇𝜓(x)dx ≡ 0.

2.1.4 Conservation of energy vs. dissipation: admissibility conditions
For all three of these systems, a straightforward computation shows that classical solutions
satisfy energy balances, i.e.

EE(t)≡ EE(0)

for the Euler equations,
ENS(t)≡ ENS(0)

for the Navier-Stokes equations, and

EFNS(t)≡ EFNS(0)

for the fractional Navier-Stokes equations. The proof is especially simple for the Euler
equations (2.1.1.1). By multiplying the equation by v, we obtain:

0 = v ·∂tv+ v ·div(v⊗ v)+ v ·∇p =
1
2

∂t |v|2 + v ·div(v⊗ v)+ v ·∇p = 0.

If we now integrate in space, we obtain

d
dt

EE(t)+
∫
Td

v · (div(v⊗ v)+∇p)dx.

Now,
∫

v ·∇pdx =−
∫

pdivv = 0 because divv = 0. As for the other term:∫
Td

v ·div(v⊗ v)dx = ∑
i j

∫
Td

vi∂ j(viv j)dx =−∑
i j

∫
Td

viv j∂ jvidx.

On the other hand:∫
Td

v ·div(v⊗ v)dx = ∑
i j

∫
Td

vi(∂ jvi)v j + vi(∂ jv j)∂idx = ∑
i j

∫
Td

vi(∂ jvi)v jdx+
∫
Td

|v|2 divvdx,

where the second term is zero because divv = 0, and the first term is the opposite of what
we found before. Therefore,

∫
v ·div(v⊗ v) = 0, and conservation of energy is proved.
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However, experiments [29, 64] and numerical simulations [65, 41] have shown that,
in some turbulent viscous régimes, the kinetic energy dissipation does not approach
zero for very small viscosities. This suggests that even the Euler equations may admit
nonconservative solutions, a phenomenon known as anomalous dissipation. From a
physical standpoint, it is natural to require that, if the energy is not conserved, at least it
does not increase in time. Thus, the natural admissibility condition for these systems is:

EE(t)≤ EE(0) for a.e. t∈ [0,T ]. (2.1.4.1)

If the dissipation does not approach zero while the viscosity does, ENS will also not be
conserved. Analogously to the Euler case, the natural admissibility condition for Navier-
Stokes will then be:

ENS(t)≤ ENS(0) for a.e. t∈ [0,T ] (2.1.4.2)

An analogous condition is considered for the fractional Navier-Stokes case as well:

EFNS(t)≤ EFNS(0) for a.e. t∈ [0,T ]. (2.1.4.3)

More explicitly, the admissibility conditions for the three systems, required to hold for a.e.
t∈ [0,T ], read:

1
2

∫
Td

|v(t,x)|dx ≤ 1
2

∫
Td

|v(0,x)|2dx (Euler)

1
2

∫
Td

|v(t,x)|dx+

t∫
0

∫
Td

|∇v(s,x)|2dxds ≤ 1
2

∫
Td

|v(0,x)|2dx (Navier-Stokes)

1
2

∫
Td

|v(t,x)|dx+

t∫
0

∫
Td

∣∣∣(−Δ)
𝜃

2 v(s,x)
∣∣∣2dxds ≤ 1

2

∫
Td

|v(0,x)|2dx. ( Fractional
Navier-Stokes )

We will refer to solutions satisfying the appropriate above condition as admissible or
dissipative solutions.

2.2 Existence and (non-)uniqueness of solutions to the
Euler equations

Much of the research regarding PDEs concerns the existence and uniqueness properties of
their solutions. In this section, we briefly review the main results for the cases of classical,
strong, and weak solutions to the Euler equations.

2.2.1 Smooth solutions: local well-posedness and the problem of
finite-time singularities in three dimensions

A local well-posedness result holds for solutions belonging to Sobolev spaces. The result
is drawn from [53, Theorems 3.4-3.5].

17



Theorem 2.2.1.1 (Local well-posedness). Given a divergence-free initial condition v0∈
Hm(Td), m > bd/2c+ 1, then the following holds. There exists a time T with the rough
upper bound:

T ≤ 1
cm‖v0‖Hm

,

such that there exists the unique solution v∈C([0,T ],C2(T3))∩C1([0,T ],C(T3)) to the
Euler equations.(1) In fact, the solution v∈C([0,T ),Hm(T3))∩C1([0,T ),Hm−1(T3)).

A very similar result holds for general compact manifolds, as obtained by combining
[70, Theorem 2.1 and Proposition 2.2], giving solutions of regularity L∞

t Hm
x ∩Lipt Hm−1

x .
An important consequence of this result is the following continuation property, which

is [53, Corollary 3.2].

Corollary 2.2.1.1 (Maximal time of existence). Given a divergence-free initial condition
v0 ∈Hm(Td),m > b1/2c+ 1, there exists a maximal time of existence T ∗, possibly infi-
nite, and a unique solution v∈C([0,T ∗),Hm(Td))∩C1([0,T ∗),Hm−2(Td)) to the Euler
equations. Moreover, if T ∗ < ∞, then necessarily:

lim
t→T ∗

‖v(t, ·)‖Hm = ∞.

Proof.
Assume v exists up to time T ∗ < ∞. Either it exists up to some T̃ > T ∗, or it does not.

If it does, then T ∗ is not the maximal time. If it does not, then, by Theorem 2.2.1.1,
it must mean that, for any t < T ∗, ‖v(t, ·)‖Hm ≥ c−1

m (T ∗ − t)−1. Indeed, if there was
t∗ < T ∗ such that ‖v(t∗, ·)‖Hm < c−1

m (T ∗− t∗)−1, we could consider the solution v∗ defined
on [t∗, t∗+(cm‖v(t∗, ·)‖Hm)−1) given by Theorem 2.2.1.1. This would have the desired
regularity, it would coincide with v on [t∗,T ∗] by the uniqueness part of Theorem 2.2.1.1,
and t∗+(cm‖v(t∗, ·)‖Hm)−1 > T ∗ by choice of t∗, thus contradicting the fact that v cannot
be continued past T ∗.

Therefore, if v cannot be prolonged past T ∗ < ∞, then limt→T ∗ ‖v(t, ·)‖Hm = +∞,
completing the proof. 3

While the local-in-time existence of Hm solutions has been established, the global-
in-time existence of such solutions on Td is a long-standing open problem. The main
result in this regard, proved in [2] and reported as [53, Theorem 3.6], asserts an equivalent
condition for the global-in-time existence.

Theorem 2.2.1.2 (Beale-Katô-Majda criterion). Let the initial velocity v0∈Hm
div=0(T

d),
m > bd/2c+1, so that there exists a classical solution v∈C1([0,T ],(C2∩Hm

div=0)(T
d)) to

the Euler or Navier-Stokes equations. Then:

(i) If for any T > 0 there exists M1 > 0 such that the vorticity 𝜔 = curlv satisfies

T∫
0

|𝜔(𝜏, ·)|L∞d𝜏 ≤ M1,

then the solution v exists globally in time;

1For solutions on Rd , this result holds in Hs, for every s > d/2 +1, as proved by Katô and Ponce in [43].
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(ii) If the maximal time T of existence of the solution in Hm is finite, then necessarily
the vorticity accumulates so rapidly that

lim
t↑T

t∫
0

|𝜔(𝜏, ·)|L∞d𝜏 = ∞.

To conclude the subsection, a general theorem ([3, Theorem 1.1]) exists, which states
that, for some Cm data, there is no C0

t C
m
x solution, m being any strictly positive integer. In

other words, the solution does not preserve the regularity of the initial datum in its time
evolution. This loss of regularity phenomenon is somewhat akin to what happens in the
fractional Navier-Stokes case for the solutions provided by Theorem 1.3.2, which are C 𝛽

for small times, and then only remain L2
t H𝜃

x . Whether or not a stronger but more delayed
form of regularity loss happens for Euler solutions is also a long-standing open problem,
related to the question of uniqueness of time-global admissible solutions for sufficiently
regular data.

Theorem 2.2.1.3. Let m ≥ 1 be an integer. For any given velocity v(g)∈C∞
c (T3) and any

𝜀 > 0, we can find a C∞ perturbation v(p) : T3 → T3 such that the following hold true:

(1) ‖v(p)‖L1 +‖v(p)‖Hm +‖v(p)‖Cm < 𝜀;

(2) Let v0 – v(g)+ v(p) and
T1 –

cd

2+2
∥∥∥v(g)

∥∥∥
H

7
2

;

there exists a unique strong solution v = v(t,x) to the Euler equations∂tv+(v ·∇)v =−∇p 0 < t ≤ T1,x∈T3

divv = 0
v|t=0 = v0

satisfying
max

0≤t≤T1
(‖𝜔(t, ·)‖L1 +‖𝜔(t, ·)‖Cm−1)< ∞,

𝜔 = curlv being the vorticity; furthermore, v∈C0
t Hm

x and v(t, ·)∈C∞(T3) for each
0 ≤ t ≤ T1;

(3) For any 0 < t0 ≤ T1, we have

ess-sup0<t≤t0 ‖u(t, ·)‖Cm =+∞;

more precisely, for any n = 1,2,3, . . . there exist 0 < t1
n , t

2
n < n−1 and open balls

Bn = B(xn,1)⊂T3 such that u(t, ·)∈C∞(Bn) for t∈ [t1
n , t

2
n ], but

‖u(t, ·)‖Cm(Bn)
> n ∀t∈ [t1

n , t
2
n ].

As remarked in [3], Ck ↪→ Ck−1,1 and ‖ · ‖Ck ∼ ‖ · ‖Ck−1,1 , so the above result implies
an analogous result for Cm−1,1, for any m ≥ 1. It is striking that, looking between Ck and
Ck,1, one finds Ck,𝛼 , where a local well-posedness result holds, as stated in the 3D case
k = 1 in [52] and in the general case in [37].
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2.2.2 Global-in-time existence of smooth solutions in two dimensions
For solutions defined on R2 or T2, the known properties are remarkably different. All
the results presented in the 3D case hold for the 2D case as they are or with minor
modifications. However, a stronger result holds in the 2D case, namely the following
global-in-time existence result ([53, Corollary 3.3] adapted to T2) for smooth solutions to
the 2D Euler equations.

Theorem 2.2.2.1 (Global well-posedness in two dimensions). Given an initial 2D
divergence-free velocity field v0∈Hm(T2),m > 3, there exists for all time a unique smooth
solution v∈C0

t Hm
x to the 2D Euler equations.

In order to prove this result, it is necessary to lay some groundwork. We begin by noting
that, in two dimensions, the vorticity 𝜔 = curlv = ∂x1v2 − ∂x2v1 satisfies the following
equation:

∂t𝜔+(v ·∇)𝜔 = 0. (2.2.2.1)
By computations entirely analogous to those by which we deduced that solutions of the
Euler equations conserve EE in the previous section, one finds that equation (2.2.2.1)
implies the following balance:

1
2
‖𝜔‖2

L2 = ‖𝜔0‖2
L2. (2.2.2.2)

The final elements we need in order to prove Theorem 2.2.2.1 are an a priori bound for
Sobolev norms of Hm Euler solutions, and a potential theory estimate. The former can be
proved by computations entirely analogous to those used for the proof of [53, Proposition
3.7], while the latter is an adaptation of [53, Proposition 3.8] to T2.

Proposition 2.2.2.1. If u∈C0
t Hm ∩{divu = 0},m∈Z+∪{0} is a solution of the Euler

equations, then it satisfies the following estimates:

d
dt
‖u‖m ≤ cm{|∇u|L∞}‖u‖m.

Proposition 2.2.2.2. Let v be a smooth, L2 ∩L∞(T2), divergence-free velocity field, and
let 𝜔 = curlv. Then

|∇v|L∞ ≤ c
(
1+ ln+ ‖v‖3 + ln+ ‖𝜔‖0

)
(1+ |𝜔|L∞).

We are finally ready to prove Theorem 2.2.2.1.
Proof. (Theorem 2.2.2.1)

Combining Proposition 2.2.2.1 and Grönwall’s lemma, we have

‖v(T, ·)‖m ≤ ‖v0‖me
∫T

0 cm(|∇v|L∞)dt . (2.2.2.3)

Hence, bounding ∇v in L∞ will prove the existence of the solution in V m.
To obtain such a bound, we will pass through the vorticity, so we recall that, as stated

above, we have:

‖𝜔‖L∞ ≤ ‖𝜔0‖L∞ (2.2.2.4)
‖𝜔‖L2 ≤ ‖𝜔0‖L2. (2.2.2.5)
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Using Proposition 2.2.2.2, we obtain that

|∇v|L∞ ≤ c(1+ ln+ ‖v‖3 + ln+ ‖𝜔‖0)(1+ |𝜔|L∞)≤ K(1+ ln(‖v‖3 + e)) — K(1+ lny(t)),

where ln+ is the positive part of the logarithm, and the last inequality used (2.2.2.4)-
(2.2.2.5).

Inserting (2.2.2.3) into this, we conclude that

y(t)≤ y(0)e
K

t∫
0
(1+lny(s))ds

,

which implies that

lny(t)≤ lny(0)+Kt +K

t∫
0

lny(s)ds,

so that, by Grönwall’s lemma

lny(t)≤ (lny(0)+Kt)eKt .

This implies that |∇v|L∞ is similarly bounded, and therefore ‖v‖m is bounded by y(0)eKteKt ,
thus it will not blow up in finite time, completing the proof. 3

2.2.3 Weak solutions: existence, (non-)uniqueness, and Onsager’s
conjecture

The first non-uniqueness results for weak solutions were given by Scheffer [61] and
Shnirelman [63], on R2 and T2 respectively. The combination of their results is the
following statement.

Theorem 2.2.3.1. Let Ω be T2 or R2. There exists a weak solution u : [0,T ]×Ω→R2 of
the Euler equations such that u ≡ 0 for |x|2 + |t|2 > 1 and u is nonzero on a set of positive
Lebesgue measure.

Note that the initial datum of these solutions is u0 ≡ 0, so even for the simplest initial
datum there is non-uniqueness. In fact, Wiedemann [72] proved the non-uniqueness of
weak solutions for any L2 initial data.

Theorem 2.2.3.2. Call H(Td) – {u∈L2(Td) : divu = 0,
∫
Td u(t,x)dx = 0}, and let v0∈

H(Td). Then there exist infinitely many weak solutions v∈C0([0,∞),Hw(Td)) of the Euler
equations with v(0) = v0. Moreover, the kinetic energy EE(t) is bounded and satisfies
E(t)→ 0 as t →+∞.

The proof of this theorem in [72] also yields the following.

Remark 2.2.3.1. The solutions of [72] have a jump discontinuity at t = 0. Thus, for every
initial datum v∈C∞(T3), there exist non-admissible weak solutions.
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In other words, for C∞ initial data, we have at most one C∞ solution which, if it exists (and
it does for small enough times), is the only admissible solution (cfr. Theorem 2.2.3.3
below), but there are also non-admissible solutions.

It is then natural to ask whether admissible solutions are unique. The following weak-
strong uniqueness result ([73, Theorem 2.1]) gives a partial answer: if there is a classical
solution, it is the only admissible one.

Theorem 2.2.3.3 (Weak-strong uniqueness). Let u∈L∞((0,T );L2(T3)) be an admissible
weak solution of (2.1.1.1) and U ∈C1([0,T ]×T3) be a strong solution of (2.1.1.1), and
assume u,U share the same initial datum u0. Then u(t,x) = U(t,x) for a.e. (t,x)∈
(0,T )×T3.

Note now that the local well-posedness of the initial value problem for such data was
proved in [52] in 3D for C1,𝛼 data, and in [37] for the general case. The local solution
preserves the Ck,𝛼 regularity of the datum, if 𝛼∈(0,1). If 𝛼 = 0 or 𝛼 = 1, it may instead
lose it instantly, as stated in [3, Theorem 1.1] (Theorem 2.2.1.3). At any rate, by weak-
strong uniqueness, this means that, if an initial datum is Ck,𝛼 for some k ≥ 1,𝛼 > 0, then
locally it admits a unique admissible solution.
Admissible solutions to the 3D Euler equations may or may not conserve the kinetic
energy. Generally speaking, energy dissipation depends on the features of the space-time
fluctuations of the solutions. In physics, fluctuations in fluids can have different properties
depending on the underlying instabilities. In 1941, Kolmogorov ([44, 45, 46]) provided
a general mathematical framework for the description of the so-called “fully developed
turbulence”, which is verified experimentally in many physical systems. For the case of
fully developed turbulence, as explained in [33], the fluctuations of the velocity satisfy the
following relation, known as “Kolmogorov’s four-fifths law”:〈

(v(x+ `)− v(x))3〉=−4
5
𝜀|`|. (2.2.3.1)

In this relation, v is the usual velocity of the fluid, ` is the (small) increment of the position
vector x, 𝜀 is the so-called “mean energy dissipation per unit mass” (see [33]), and 〈·〉
denotes the spatial average.

This result can be compared with the estimate on
〈
(v(x+ `)− v(x))3〉 which holds in

the case where v is Hölder-continuous with exponent 𝛽 , i.e. if

|v(x+ `)− v(x)| ≤C|`|𝛽 ∀x, `∈T3,

which gives ∣∣〈(v(x+ `)− v(x))3〉∣∣≤ 〈(C|`|𝛽 )3
〉
≤C|`|3𝛽

for some positive constant C > 0. For |`| sufficiently small, this estimate is compatible
with the four-fifths law (2.2.3.1) only if 𝛽 < 1/3. In other words, one should expect
stronger turbulence, and hence stronger dissipation of energy, when the conditions of fully
developed turbulence can be achieved, i.e. 𝛽 < 1/3.

This led Onsager to his famous conjecture in the 1949 paper [58], which can be
formulated as follows.
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Onsager’s Conjecture. Let v be a weak solution of (2.1.1.1) and define the total kinetic
energy as

E(t) –
1
2

∫
T3

|v(t,x)|2dx

• If v∈C 𝛽 for 𝛽 > 1/3, then the energy is a conserved quantity, i.e. E(t)≡ E(0).

• By contrast, for any 𝛽 < 1/3, there exist C 𝛽 weak solutions of (2.1.1.1) which do
not conserve the energy.

A subcase of the first statement was proved in by Eyink in [32], with the stronger
condition ∑k |v̂k|

1/3+𝜀 |k| < ∞. The exact statement by Onsager was proved in [13] by
Constantin, E, and Titi, and sharper results can be found for instance in [10] and [28].

The efforts to prove the second statement led to the development of the convex inte-
gration techniques which form the basis the main original result presented in this thesis
([35]). A number of papers were produced, culminating in the proof of the conjecture by
Isett in [40].

The first steps towards proving this second part of the conjecture were made by Scheffer
[61] on R2 and Shnirelman [63] on T2, proving the existence of nontrivial compactly
supported Euler solutions as seen at the start of this subsection. De Lellis and Székelyhidi
then, in [21], used methods reminiscent of Nash’s convex integration technique ([56])
in order to construct anomalously dissipative solutions in L∞. They thus pointed out an
analogy between Nash’s theorem in the context of isometric embeddings and Onsager’s
conjecture. Successive refinements of the convex integration technique led to continuous
dissipative solutions in [24], then C

1/10−𝜀 ones in [25], C1/5−𝜀 ones in [38] (refined to
have prescribed kinetic energy profiles in [6]), a.e. C

1/3−𝜀 ones in [4], C1/3−𝜀 ones with
L1-in-time Hölder norm in [7], and finally the full conjecture in [40].

There are further results about C 𝛽 solutions to the 3D Euler equations with 𝛽 < 1/3.
Paper [8] shows that, for any 𝛽 < 1/3, there exist C 𝛽 solutions with arbitrary energy
profiles EE(t). More explicitly, the result below is stated in [8, Theorem 1.1].

Theorem 2.2.3.4. Assume e : [0,T ]→ R is a strictly positive smooth function. Then, for
any 0 < 𝛽 < 1/3, there exists a weak solution v∈C 𝛽 ([0,T ]×T3) to (2.1.1.1) such that∫

T3

|v(t,x)|2dx = e(t).

This means that the energy may be conserved, be strictly dissipated, and be increased
in time. In other words, even up to C

1/3−𝜀 regularity, we have both non-admissible and,
most importantly, strictly dissipative solutions.

All these results produce infinitely many solutions. However, they have no control
on the initial data. The question of the existence or non-existence of wild initial data
was tackled in another series of works, producing infinitely many wild initial data for
C

1/16−𝜀-Hölder solutions in [29], and a dense subset of L2 consisting of wild initial data
for C1/5−𝜀-Hölder solutions in [19], and for C1/3−𝜀-Hölder solutions in [18]. We conclude
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this subsection by citing the last of these three, and specifically its main theorem, [18,
Theorem 1.1], which states that, for every 𝛽 < 1/3, there are infinitely many C 𝛽 initial
data that give rise to infinitely many C 𝛽 admissible solutions. In the next chapter, we will
be reviewing the techniques used in all these works, and highlighting the main innovations
that allowed the various regularity jumps as well as the passage to the question of wild
initial data.

Theorem 2.2.3.5. For any 0 < 𝛽 < 1/3, the set of divergence-free fields v0∈C 𝛽 (T3,R3)
which admit infinitely many C 𝛽 admissible weak solutions of the 3D Euler equations is a
dense subset of L2(T3,R3)∩{divv = 0}.

This is the main result obtained so far regarding the non-uniqueness of admissible
solutions to the 3D Euler equations. In the case of the 3D fractional Navier-Stokes
equations, an analogous result is the main theorem of this thesis, Theorem 1.3.2.

2.3 Existence and (non-)uniqueness results for solutions
to the Navier-Stokes equations

Some of the existence and uniqueness properties for solutions to the Navier-Stokes equa-
tions are analogous to their Euler counterparts. There are, however, important differences
due to the regularizing effect of the Laplacian term, as shown in this section.

2.3.1 Local existence and uniqueness of smooth solutions in three
dimensions

Hm solutions to the Navier-Stokes equations share the same local well-posedness proper-
ties as their Euler equations counterparts. In fact, [53, Theorems 3.4-3.5, Corollary 3.2]
(Theorem 2.2.1.1 and Corollary 2.2.1.1) are stated simultaneously both for Euler, and for
Navier-Stokes for every viscosity 0 ≤ 𝜈 < ∞. With a suitable interpretation of the differen-
tial operators, a very similar result also holds true on any compact Reimannian manifold,
giving solutions of regularity L∞

t Hm
x ∩Lipt Hm−2

x , as can be obtained by combining [70,
Theorem 5.1 and Proposition 4.2].

Again like in the Euler case, we have local well-posedness for Ck,𝛼 initial data, as
proved in the book [49].

For the Navier-Stokes equations, however, lower regularity is enough to ensure local
well-posedness. In fact, we have local well-posdeness as soon as all the terms in the
equations can be understood as functions rather than just distributions. The minimal
regularity for which this happens is L∞

t H1
x ∩L2

t H2
x , as stated in the theorem below, which

combines two results from [60], namely Lemma 6.2 and Theorem 6.4.

Theorem 2.3.1.1. Suppose v is a strong solution of the Navier-Stokes equations on [0,T ].
Then ∂tv,Δv,(v ·∇)v are all elements of L2

t L2
x . Moreover, there exists a function p∈L2

t H1
x

such that, for a.e. (t,x)∈ [0,T ]×T3, we have

∂tv(t,x)+ [(v ·∇)v](t,x)+∇p(t,x)−Δv(t,x) = 0.
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In order to prove local well-posedness for L∞
t H1

x ∩L2
t H2

x solutions, one proceeds in
three steps, the first being a proof of local existence, provided by [60, Theorem 6.8]
reported below.

Theorem 2.3.1.2. There exists a constant c > 0 such that any v0∈H1 with zero divergence
gives rise to a strong solution v∈L∞([0,T ],H1(T3))∩L2([0,T ],H2(T3)) of the Navier-
Stokes equations (2.1.2.1), where:

T = c‖∇v0‖−4
L2 .

The second step is the proof that strong solutions are admissible. In fact, as stated in
[60, Theorem 6.5] reported below, they conserve ENS.

Theorem 2.3.1.3. If v is a strong solution of (2.1.2.1) on [0,T ], then it conserves ENS, i.e.
it satisfies the energy equality:

1
2
‖vt1‖

2
L2 +

t1∫
t0

‖∇vs‖2ds = 1
2
‖vt0‖

2
L2,

for all 0 ≤ t0 < t1 ≤ T .

Therefore, if we prove that, once a strong solution exists, all admissible solutions
coincide with it, we can conclude that strong solutions are unique. The following “weak-
strong uniqueness” result, which is [60, Theorem 6.10], is thus the last step towards local
well-posedness for H1 initial data.

Theorem 2.3.1.4. If u∈L∞
t H1

x ∩L2
t H2

x and v∈L∞
t L2

x ∩L2
t H1

x are a strong solution and a
weak solution on the interval [0,T ], with the same initial data, and v is admissible (i.e.
satisfies (2.1.4.2)), then u = v on [0,T ].

The global existence and regularity properties of solutions to the Navier-Stokes equa-
tions are generally stronger than their counterparts for Euler solutions, as can be seen from
Theorem 2.3.3.4, which has no analogue in the Euler case, as well as the following three
theorems. The first theorem ([60, Theorem 6.12]) states that, for initial data whose H1

norm is sufficiently small, the L∞
t H1

x ∩L2
t H2

x strong solution exists globally in time.

Theorem 2.3.1.5. There exists a constant C > 0 such that, if ‖v0‖H1 <C, then the strong
solution arising from v0 exists globally in time.

The existence and regularity properties of solutions with Hm data which are small in
H1 can be summarized as follows: there exists a unique global L∞

t H1
x ∩ L2

t H2
x solution

which is C0
t Hm

x locally, and which is also the only Leray solution generated by its initial
datum.

For Hm data which are small in H1, an even stronger result holds, namely that the
higher regularity L∞

t Hm
x ∩L2

t Hm+1
x is found on any finite time interval, as stated in [60,

Theorem 7.1] reported below.

Theorem 2.3.1.6. If v is a strong solution of the Navier-Stokes equations on [0,T ] with
initial data v0∈Hm, then v∈L∞

t Hm
x ∩L2

t Hm+1
x .
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In fact, [60, Theorem 7.5], which is reported below, states that, for positive times,
strong solutions are much more regular than their initial data.

Theorem 2.3.1.7. If v is a strong solution on [0,T ] then v∈C∞([𝜀,T ]×T3) for every
0 < 𝜀 < T .

With the results presented so far, we know that, for C2 data, we have a unique global-
in-time L∞

t H2
x ∩ L2

t H3
x solution that is smooth for positive times. Therefore, the only

obstruction to the existence and uniqueness of C0
t C

2
x solutions is if the C2 norm of that

unique solution is not continuous at t = 0. This instantaneous loss of regularity was proven
for the Euler equations (cfr. Theorem 2.2.1.3).

2.3.2 Global-in-time existence of smooth solutions in two dimensions

Analogously to the Euler case, all the results presented in the 3D case hold for the 2D case
as they are or with minor modifications. In addition, the following stronger result holds
in the 2D case in relation to the global existence and uniqueness of smooth solutions to
the Navier-Stokes equations. The theorem below is, in fact, almost identical to its Euler
counterpart (Theorem 2.2.2.1).

Theorem 2.3.2.1 (Global well-posedness in two dimensions). Given an initial 2D veloc-
ity field v0 with locally finite-energy decomposition v0 = u0 + ṽ0 with u0∈Hm(T2),m > 3
and curlv = 𝜔0(r)∈C∞(T2)∩ L2(T2), then there exists for all time a unique smooth
solution

v(t,x) = u(t,x)+ v(t,x)

to the 2D Navier-Stokes equations, with u(t,x)∈L∞
t Hm

x ∩L2
t Hm+1

x on any time interval
[0,T ] and v(t,x) an exact solution.

Compared to the global existence result in the 3D case (Theorem 2.3.1.5), this result
is stronger in that it holds for all Hm data, whereas the result in the 3D case only holds
for data which are small in H1. The additional regularity L2

t Hm+1
x in the above statement

with respect to its Euler counterpart is a consequence of Theorem 2.3.1.6.
The proof of Theorem 2.3.2.1 can be straightforwardly derived from that of Theorem

2.2.2.1, with the observation that (2.2.2.1) is replaced by

∂t𝜔+(v ·∇)𝜔 = 𝜈Δ𝜔,

which means that (2.2.2.2) and (2.2.2.4) are replaced by inequalities. More precisely,
equation (2.2.2.2) is replaced by the following balance:

‖𝜔‖2
L2 + 𝜈

t∫
0

∫
T2

|∇𝜔|2dxds = ‖𝜔0‖2
L2.
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2.3.3 Weak solutions: existence, (non-)uniqueness, weak-strong uni-
queness, and regularity

A first non-uniqueness result follows from [9, Theorem 1.2], which asserts the existence
of weak solutions with C0 regularity in time and arbitrary smooth kinetic energy profiles.

Theorem 2.3.3.1. There exists 𝛽 > 0 such that, for any non-negative smooth function
e(t) : [0,T ]→ R≥0, there exists a weak solution v∈C0

t ([0,T ];H 𝛽
x (T3)) to (2.1.2.1) such

that: ∫
T3

|v(t,x)|2dx = e(t).

Moreover, the associated vorticity ∇× v∈C0
t ([0,T ];L1

x(T3)).

A consequence of this result is the non-uniqueness of solutions with zero initial data,
since any solution associated to a kinetic energy profile EE such that EE(0) = 0 will have
that initial condition. Any nonzero solution with ENS(0) = 0 must be non-admissible.

The construction used to prove Theorem 2.3.3.1 in [9] also yields the following
remark.

Remark 2.3.3.1. The solutions constructed in Theorem 2.3.3.1 lie in C
𝛾
t L2

x for some
regularity index 𝛾 > 0.

For weak solutions withC0 regularity in time, the following gluing result ([5, Theorem
1.1]) also holds.

Theorem 2.3.3.2. There exists a 𝛽 > 0(2) such that the following holds. For T > 0,
let v(1),v(2)∈C0([0,T ]; Ḣ3(T3)) be two strong solutions of the Navier-Stokes equations
(2.1.2.1) on [0,T ], with data v(1)(0,x) and v(2)(0,x) of zero mean. There exists a weak
solution v of the Cauchy problem to (2.1.2.1) on [0,T ] with initial datum v|t=0 = u(1)|t=0,
which has the additional regularity v∈C0([0,T ];H 𝛽 (T3)∩W 1,1+𝛽 (T3)), and such that
v ≡ v(1) on [0,T/3] and v ≡ v(2) on [2/3T,T ]. Moreover, for every such v, there exists a zero
Lebesgue measure set of times ΣT ⊂[0,T ] with Hausdorff (in fact box-counting) dimension
less than 1− 𝛽 such that v∈C∞(((0,T ]∖ΣT )×T3). In particular, v is smooth almost
everywhere.

The above result implies that, for all Ḣ3 initial data, C0
t H 𝛽

x solutions are non-unique.
The paper does not quantify 𝛽 . However, the strategy employed therein allows 𝛽 to

be at most slightly higher than 10−3.
It is also known (see e.g. [14]) that 𝛽 = 1/2 is enough to guarantee weak-strong

uniqueness. It is, in fact, a threshold for it in general dimensions, given the result in
Terence Tao’s blog post [68]. This result states that, at least for the zero initial datum, for
any s < 1/2 there exists a sufficiently high dimension d(s) such that non-uniqueness holds
for C0

t Hs
x solutions on Td(s).

Lowering the time regularity to L1 substantially increases the space regularity for
which non-uniqueness holds. This is the content of the following theorem ([11, Theorem
1.7]).

2The maximal 𝛽max for which this holds can be quantified as 𝛽max ≈ 10−3.
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Theorem 2.3.3.3. Let d ≥ 2 be the dimension and 1 ≤ p < 2,q < ∞, and 𝜀 > 0. For any
smooth divergence-free vector field u∈C∞([0,T ]×T3) with zero spatial mean for each
t∈ [0,T ], there exists a weak solution v of (2.1.2.1) and a set

I =
∞⋃

i=1

(ai,bi)⊂ [0,T ]

such that the following hold.

(1) The solution v satisfies

v∈(Lp
t L∞

x ∩L1
t W 1,q

x )([0,T ]×T3);

(2) v is a smooth solution on (ai,bi) for every i, i.e.

v|I×T3 ∈C∞(I×T3);

(3) The Hausdorff dimension of the residue set S = [0,T ]∖I satisfies

dH(S)≤ 𝜀;

(4) The solution v and the given vector field are 𝜀-close in Lp
t Lq

x ∩L1
t W 1,q

x , i.e.

‖u− v‖Lp
t Lq

x∩L1
t W 1,q

x
≤ 𝜀.

Theorem 2.3.3.3 implies that, for all Ḣ3 data, Lp
t L∞

q ∩L1
t W 1,q

x solutions are non-unique.
To obtain this, we note that, assuming v(1),v(2) are strong solutions as in Theorem 2.3.3.2,
we can apply Theorem 2.3.3.3 to an opportune gluing of v(1),v(2), i.e. 𝜒v(1)+(1− 𝜒 )v(2)

with 𝜒 a smooth cutoff in time. If we proceed as in the proof of Theorem 2.3.3.3 (which
does not modify u where it already is a solution) only on [1/3T,2/3T ], we obtain a gluing
theorem in the spirit of Theorem 2.3.3.2.

A simple adaptation of the proof in [11] allows one to extend Theorem 2.3.3.3 to
Lp

t Lq
x ∩Ls

tW
1,q
x , for s < 2 and q < qmax(p,s) such that qmax(p,s)→ 1 whenever p → 2 or

s → 2. Therefore, non-uniqueness also holds for Ls
tW

1,q
x solutions.

Analogously to what is done in the Euler case, one can attempt to achieve existence
and uniqueness of the solutions to the Navier-Stokes equations by imposing the condition
of admissibility. Admissible solutions to (2.1.2.1) are known to exist for all L2 initial data
by Leray’s theorem in [51], which is the reason why admissible solutions are also called
Leray solutions. We report the theorem below.

Theorem 2.3.3.4 (Global-in-time existence of Leray solutions for the Navier-Stokes
equations). For any v0∈L2(T3)with divv0 = 0 there is a weak solution v∈L∞(R+,L2(T3))∩
L2(R+,H1(T3)) of (2.1.2.1) such that v(0, ·)= v0 and (2.1.4.2) holds. In fact, the following
form of energy inequality also holds:

1
2

∫
T3

|v|2(t,x)dx+

t∫
s

∫
T3

|∇v|2(x,𝜏)dxd𝜏 ≤ 1
2

∫
T3

|v|2(s,x)dx a.e. s,∀t > s.
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This also holds on general compact manifolds, as stated in [70, Theorem 4.6]. An
analogous existence result for the Euler equations remains so far elusive. The presence of
the dissipation term in the energy inequality plays an important role in the proof. In effect,
some form of control of the gradient of the velocity also allows to prove an existence
criterion for the Euler equations: the Beale-Katô-Majda criterion of Theorem 2.2.1.2 has
a control on the vorticity as its condition, and this is a form of control on the gradient of
the velocity since 𝜔 = curlv.

There are also quite a few regularity results about admissible solutions to the Navier-
Stokes equations. Firstly, if an admissible solution with H1 datum is L1

t Ẇ 1,∞
x , then it is

strong, as stated in [60, Theorem 7.6] below.

Theorem 2.3.3.5. Let v be an admissible solution of the Navier-Stokes equations arising
from a divergence free initial datum v0∈H1. Then, if

T∫
0

‖∇v(s)‖∞ds < ∞,

v is strong on [0,T ].

Notice how this, again, parallels the Beale-Katô-Majda criterion (Theorem 2.2.1.2),
this time controlling the same L1

t L∞
x norm of the ∇v as the Beale-Katô-Majda criterion

controls for 𝜔.
Moreover, all global admissible solutions are eventually strong, as given by [60,

Theorem 8.1] below.

Theorem 2.3.3.6. Any global-in-time admissible weak solution v is C∞((T ∗,∞)×T3) for
some T ∗ > 0.

The statement of the next theorem requires the following definition of singular and
regular times of an admissible solution.

Definition 2.3.3.1. Let v be an admissible solution with initial datum v0. We say that t0 is
a regular time of v if ‖∇vt‖L2 is essentially bounded in some neighrborhood of t0, i.e. if
∇v∈L∞([t0−𝜀, t0+𝜀];L2(T3)) for some 𝜀 > 0. t0 is instead a singular time of v if it is not
regular. We denote the set of strictly positive regular times by R and the set of singular
times by T(3).

On the open set R×T3, whereR has just been defined, admissible solutions can be shown
to be smooth (C∞), as stated in [60, Lemma 8.4], which is reported below with R written
in the form given by [60, Theorem 8.14].

Theorem 2.3.3.7. An admissible weak solution is smooth on the open set

R×T3 =
∞⋃

i=1

(ai,bi)×T3,

where ai,bi∈R for all i.

3By Theorem 2.3.3.6, T is bounded. Since R is open by definition, we conclude ([60, Lemma 8.3])
that T must be compact.

29



On general 3-dimensional compact manifolds, the same result holds, with R simply
being an open dense subset with Lebesgue-null complement. This is stated in [70,
Proposition 4.7].

A very low regularity requirement, namely v∈Lr
t Ls

x for suitable choices of r,s, is enough
to ensure smoothness of admissible solutions for positive times. This was established by
Ladyzhenskaya [48], and is the content of [60, Lemma 8.16] reported below.

Theorem 2.3.3.8 (Ladyzhenskaya regularity theorem). If v is an admissible weak so-
lution for some v0∈H1, and

v∈Lr
t Ls

x
2
r
+

3
s
= 1 2 ≤ r < ∞, (2.3.3.1)

then v is smooth on (0,T ].

For the endpoint case (r,s) = (∞,3), one has a local well-posedness result, as per [30]
and [60, Theorem 11.4].

Theorem 2.3.3.9. If v0 ∈L3 ∩ L2 is a divergence-free initial datum, then there exists a
time T > 0 such that the equations have a unique local solution v∈L∞

t L3
x([0,T ]×T3).

Moreover, there exists an absolute constant C > 0 such that, if in addition

‖v0‖3
L3

T∫
0

∫
T3

∣∣∣∇etΔv0

∣∣∣2∣∣∣etΔv0

∣∣∣dxdt <C,

then the solution v is global, meaning there exists a unique global solution which which is
smooth for all positive times.

Moreover, such regularity is sufficient for weak-strong uniqueness, as proved by Prodi
[59] and [62]. This result is known as the Prodi-Serrin criterion.

Theorem 2.3.3.10 (Prodi-Serrin criterion). Let v0∈L2 be a divergence-free initial con-
dition. Assume that, for v0, there exists a solution v1∈L2

t H1
x ∩L∞

t L2
x ∩Lp

t Lq
x to the Navier-

Stokes initial-value problem, where 2/p+
3/q = 1. Then, if v2 is a Leray solution, we have

v2 = v1.

Note that both the Ladyzhenskaya regularity theorem Theorem 2.3.3.8 and the Prodi-
Serrin criterion Theorem 2.3.3.10 hold on R3 as well as T3. In the latter domain, due to
the scale of Lp spaces, we have these results for 2/p +

3/q < 1 too. Indeed, if this relation
holds, then it is possible to find p′ ≤ p,q′ ≤ q such that 2/p′ +

3/q′ = 1, and thus we apply
the above versions of the results for such a choice of p′,q′.

It should be noted that the Prodi-Serrin criterion can be extended to other dimension,
but the relation changes to 2/p +

d/q, where d is the dimension. Thanks to this, since
compact Riemannian manifolds have the same scale of Lp spaces as T3, the following
result ([70, Proposition 4.3]) holds.

Theorem 2.3.3.11 (Local well-posedness on manifolds). If divv0 = 0 and v0 ∈Lp(M),
where M is a compact Riemannian manifold and p > n = dimM, and if 𝜈 > 0, then
(2.1.2.1) has a unique short-time solution on an interval I = [0,T ], and this solution
u = u𝜈 ∈C0

t Lp
x ([0,T ]×M)∩C∞((0,T )×M).
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Moreover, in the book [49], global well-posedness for L2 data is proved in two dimen-
sions.

In the book [50], it is proved (see [50, Theorem 2.4]) that, for weak-strong uniqueness,
it is sufficient for the velocity to belong to a space of multipliers which, as stated in [50,
Proposition 12.3], includes the spaces of the Prodi-Serrin criterion.

Theorem 2.3.3.12 (Lemarié-Rieusset weak-strong uniqueness). Let v0∈L2 be a diver-
gence-free initial condition. Assume the Navier-Stokes problem with initial condition v0

has a solution v1∈X ∩X(T )
0 , where:

• X is L2
t H1

x ∩L∞
t L2

x;

• XT is the space of pointwise multipliers from X to L2
t L2

x , normed with:

‖u‖XT
= sup
‖w‖X≤1

‖uw‖L2
t L2

x
;

• ‖w‖X = ‖w‖L∞
t L2

x
+‖w‖L2

t H1
x
;

• X(0)
T is the space of multipliers u∈XT such that, for every t∈ [0,T ),

lim
t1→t+0

∥∥1(t0,t1)(t)u(t,x)
∥∥
XT

= 0.

Then, if v2 is an admissible solution of the same Navier-Stokes initial value problem, we
have v2 = v1.

The above result is formulated for solutions on (0,T )×R3, but the arguments of the
proof easily adapt to (0,T )×T3.

We have one last local existence and uniqueness result, stated in [60, Corollary 10.2].

Theorem 2.3.3.13. Suppose that v0∈L2∩Ḣ
1/2 is divergence-free. Then there exists a time

T = T (v0)> 0 such that the Navier-Stokes equations have a solution v∈L∞
t Ḣ

1/2
x ([0,T ]×

T3)∩L2
t Ḣ

3/2
x ([0,T ]×T3)which is unique in the class of admissible solutions and is smooth

on (0,T ]. Moreover, there exists an absolute constant C′ such that, if ‖v0‖Ḣ1/2
<C′, then

the solution exists globally in time and hence is the unique global admissible solution of
the Navier-Stokes equations.

Despite the wealth of results concerning regularity and weak-strong uniqueness re-
ported above, the question of uniqueness for admissible solutions to the Navier-Stokes
equations is still an open problem. The most recent result in the direction of non-unique-
ness is found in [1]. In this paper, the authors consider the forced Navier-Stokes equations
on R3: {

∂tv+ v ·∇v−Δv+∇p = f
divv = 0 , (2.3.3.2)

with the following energy inequality:

1
2

∫
R3

|v(t,x)|2dx+

t∫
0

∫
R3

|∇v(t,x)|2dxd𝜏 ≤ 1
2

∫
R3

|v(t,x)|2dx+

t∫
0

∫
R3

( f · v)(s,x)dxds,

(2.3.3.3)
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and by a suitable choice of f are able to exhibit two solutions with zero initial datum.
More specifically, they prove the following result.

Theorem 2.3.3.14 (ABC Non-uniqueness). There exist T > 0, f ∈ L1
t L2

x((0,T )×R3),
and two distinct solutions v,v :(0,T )×R3 →R3 of (2.3.3.2) satisfying (2.3.3.3) with body
force f and initial condition v0 ≡ 0.

2.4 Properties of solutions to the fractional Navier-Stokes
equations

The fractional Navier-Stokes equations are a relatively recent topic of study, and therefore
the available literature on the properties of their solutions is more limited. As shown below,
the known properties are more similar to those of the Euler or Navier-Stokes equations
depending on the exponent of the Laplacian.

2.4.1 Local existence and uniqueness of smooth solutions
The local well-posedness for Hm solutions of the Euler and Navier-Stokes equations also
holds in the case of the fractional Navier-Stokes equations. This is stated in [26, Theorem
3.4] reported below.

Theorem 2.4.1.1. For any Laplacian exponent 𝜃 > 0,m ≥ 3 there exists a constant cm =
c(m) such that the following holds. Given any divergence-free initial condition v0 ∈Hm

and Tm – cm‖v0‖−1
Hm , there exists a unique solution v∈ (C0

t Hm
x ∩C1

t Hm−2
x )([0,Tm]×T3)

of (2.1.3.1). Moreover we have the estimate

‖v(t)‖Hm ≤ ‖v0‖Hmecm
∫t

0 ‖∇v(s)‖0ds ∀t∈ [0,Tm]. (2.4.1.1)

A local well-posedness result can also be obtained in the case of Ck,𝛼 spaces. We saw
that, in the Euler case, local well-posedness holds in Ck,𝛼 for every k ≥ 1,𝛼∈ (0,1). In
the fractional Navier-Stokes case, local well-posedness holds for every k ≥ 3,𝛼∈(0,1).

Theorem 2.4.1.2. For any 𝜈 > 0, 0< 𝛼 < 1, and k ≥ 3, there exists a constant c= c(𝛼)> 0
with the following property. Given any initial datum v0∈Ck,𝛼 , and T ≤ c‖v0‖−1

1+𝛼 , there
exists a unique solution v∈C0([0,T ],Ck,𝛼(T3,R3)) of (2.1.3.1). Moreover, v obeys the
bounds

‖v‖N+𝛼 ≤C(N,𝛼)‖v0‖N+𝛼 ∀1 ≤ N ≤ k. (2.4.1.2)

The proof of this result is an adaptation of that of [26, Proposition 3.5], and requires
the use of the Schauder estimates reported in Lemma A.4. (see e.g. the book [34]), as
well as some estimates on the transport-diffusion equations, which are [26, Proposition
3.3] and are reported in Proposition B.2. In the course of this proof, we will use the
notation A ≲ B to mean A ≤CB for some positive constant C > 0.
Proof. (Theorem 2.4.1.2)
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We first show that all solutions given by Theorem 2.4.1.1 (which applies since v0 ∈
Ck,𝛼 ↪→ H3) exist in the interval [0,T ], for any T ≲ ‖u0‖−1

1+𝛼 . Fix any 𝛼∈(0,1) and let T ∗

be the maximal time such that

T ∗ sup
0≤t≤T ∗

[v(t)]1 ≤ 1.

Suppose T ∗ < c‖u0‖−1
1+𝛼 , for some constant c = c(𝛼) to be fixed later (we will see that

this contradicts the assumption on the maximality of T ∗, in particular T ∗ ≥ c‖u0‖−1
1+𝛼).

Using Lemma A.4 on −Δp = tr(∇v∇v), we have

‖p(t, ·)‖2+𝛼 ≲ ‖v(t, ·)‖2
1+𝛼 ,

thus, differentiating the equation in the x variable, we get∥∥(∂t + v ·∇+ 𝜈(−Δ)𝜃)Dv
∥∥
𝛼
≲ ‖v(t, ·)‖2

1+𝛼 .

By Proposition B.2, for any 0 ≤ t ≤ T ∗, we have

‖v(t, ·)‖1+𝛼 ≲ ‖u0‖1+𝛼 +

t∫
0

‖v(s, ·)‖2
1+𝛼ds.

Finally, using Grönwall’s inequality, we get the estimate

‖v(t, ·)‖1+𝛼 ≲ ‖u0‖1+𝛼 <
1

T ∗ ∀t∈ [0,T ∗],

where in the last inequality we have chosen the constant c = c(𝛼) so as to absorb the
implicit constants and get a strict inequality. Obviously, this contradicts the hypothesis
on the maximality of T ∗, and also gives the a priori estimate (2.4.1.2) for N = 1, which
together with (2.4.1.1) gives the existence of a C1,𝛼 solution in the interval [0,T ], for any
T ≤ c‖u0‖−1

1+𝛼 .
We are left with the higher-order bounds (2.4.1.2) for N ≥ 2. For any multi-index 𝜇

with |𝜇|= N, we have

∂t∂ 𝜇v+ v ·∇∂ 𝜇v+ 𝜈(−Δ)𝜃∂ 𝜇v+[∂ 𝜇,v ·∇]v+∇∂ 𝜇p = 0.

Using again Lemma A.4 for the pressure, we obtain

‖∇∂ 𝜇p‖𝛼 ≲ ‖tr(∇v∇v)‖N−1+𝛼 ≲ ‖v‖1+𝛼‖v‖N+𝛼 .

Therefore ∥∥(∂t + v ·∇+ 𝜈(−Δ)𝜃)∂ 𝜇v
∥∥
𝛼
≲ ‖v‖1+𝛼‖v‖N+𝛼 ,

and (2.4.1.2) follows by applying Proposition B.2 and the Grönwall inequality. 3
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2.4.2 Weak solutions: existence, non-uniqueness, and weak-strong
uniqueness

As is the case for the Navier-Stokes equations, admissible solutions of the fractional
Navier-Stokes equations are also known as Leray solutions. This is because, as in the
case of Theorem 2.3.3.4, the proof from [51] can be adapted to prove the existence of
admissible solutions of the fractional Navier-Stokes equations.

Theorem 2.4.2.1. For any divergence-free v∈L2(T3) and every 𝜃 > 0, there is a weak
solution v∈(L∞

t L2
x ∩L2

t H𝜃
x )(R+×T3) of (2.1.3.1) such that v(0, ·) = v and (2.1.4.3) holds,

i.e.
1
2

∫
T3

|v|2(t,x)dx+

t∫
0

∫
T3

∣∣∣(−Δ)
𝜃

2 v
∣∣∣2(s,x)dxds ≤ 1

2

∫
T3

|v|2(x)dx ∀t ≥ 0.

For the proof of this result, see the Appendix of [15]. That paper states the result for
𝜃 ∈(0,1), but the argument used in the proof also works for 𝜃 ≥ 1.

Moreover, a weak-strong uniqueness theorem holds for the fractional Navier-Stokes,
similarly to what was seen for the Euler and Navier-Stokes equations. In the statement
below, we impose the same conditions as Theorem 2.2.3.3 in the Euler case.

Theorem 2.4.2.2 (Weak-strong uniqueness). Let u∈L∞((0,T );L2(T3))∩ L2
t H𝜃

x be an
admissible weak solution of (2.1.3.1) and U ∈C1([0,T ]×T3) be a strong solution of
(2.1.3.1), and assume u,U share the same initial datum u0. Then u(t,x) =U(t,x) for a.e.
(t,x)∈(0,T )×T3.

The proof is a simple adaptation of the one given in [73] for the Euler case.
Proof.

Define Eu,U
FNS,rel as the functional EFNS computed on the difference u−U , and observe

that

Eu,U
FNS,rel(t) =

1
2

∫
T3

|u−U |2(t,x)dx+

t∫
0

∫
T3

∣∣∣(−Δ)
𝜃

2(u−U)
∣∣∣2(s,x)dxds

=
1
2

∫
T3

|u|2(t,x)+ |U |2(t,x)dx−
∫
T3

(u ·U)(t,x)dx+

+

t∫
0

∫
T3

∣∣∣(−Δ)
𝜃

2 u
∣∣∣2(s,x)+ ∣∣∣(−Δ)

𝜃

2U
∣∣∣2(s,x)dxds

−2

t∫
0

∫
T3

((−Δ)
𝜃

2 u · (−Δ)
𝜃

2U)(s,x)dxds

≤
∫
T3

|u0|2dx−
∫
T3

(u ·U)(t,x)dx−2

t∫
0

∫
T3

((−Δ)
𝜃

2 u · (−Δ)
𝜃

2U)(s,x)dxds
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=

t∫
0

∫
T3

(−∂tu ·U −u ·∂tU)(s,x)−2((−Δ)
𝜃

2 u · (−Δ)
𝜃

2U)(s,x)dxds =

= −
t∫

0

∫
T3

(u⊗u) : ∇U − ((−Δ)
𝜃

2 u · (−Δ)
𝜃

2U)+u ·∂tU(t,x)dxds

−
t∫

0

∫
T3

2((−Δ)
𝜃

2 u · (−Δ)
𝜃

2U)dxds

=

t∫
0

∫
T3

div(U ⊗U) ·u− (u⊗u) : ∇U(t,x)dxds

=

t∫
0

∫
T3

[(U −u) ·∇]U ·u(t,x)dxds =

t∫
0

∫
T3

[(U −u) ·∇]U · (u−U)dxds

≤
t∫

0

∫
T3

|U −u|2‖∇U‖L∞dxds = 2

t∫
0

‖∇U(t)‖L∞
x

EU,u
E,rel(t)ds

≤ 2

t∫
0

‖∇U(t)‖L∞
x

EU,u
FNS,rel(t)ds.

Grönwall’s lemma then implies that

EU,u
FNS,rel(t)≤ 0,

but since it has to be non-negative, we conclude it is zero. This means that for all t

‖U(t)−u(t)‖2
L2 = 0,

hence U = u. 3

The uniqueness or non-uniqueness properties of weak solutions depend on the value
of the exponent 𝜃 . In the hyperdissipative range 𝜃 > 1, we note that Theorem 2.3.3.2
holds for 𝜃 ∈ [1,5/4), but 𝛽max → 0 as 𝜃 → 5/4. As seen in the Navier-Stokes case, this
implies that, for any Ḣ3 initial datum, there exist non-unique C0

t (H
𝛽 ∩W 1,1+𝛽 )x solutions

to the fractional Navier-Stokes equations, for 𝜃 ∈ [0,5/4).
In the hypodissipative range, the following theorem ([15, Theorem 2.1]) tells us that

solutions with arbitrary kinetic energy profiles EE(t) exist for 𝜃 ∈(0,1/2).

Theorem 2.4.2.3. Assume e : [0,1]→ R is a positive smooth function with 1/2 ≤ e(t)≤ 1
and 𝜀 > 0 a positive number. For any 𝜃 ∈ (0,1/2) there is a solution (v, p)∈C0([0,1]×
T3;R3 ×R) of (2.1.3.1) such that

e(t) =
∫
T3

|v|2(t,x)dx ∀t∈ [0, t]
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and:

(i) v∈C
1/5−𝜀 , p∈C

2/5−2𝜀 if 𝜃 ≤ 1/4;

(ii) v∈C
1−2𝜃/3−2𝜃−𝜀 , p∈C21−2𝜃/3−2𝜃−2𝜀 if 1/4 < 𝜃 < 1/2.

We can compare this result with its Euler counterpart Theorem 2.2.3.4 and its Navier-
Stokes counterpart Theorem 2.3.3.1. In doing that, we find that the C

1/3−𝜀 regularity
given by the Euler counterpart is always higher than the one of Theorem 2.4.2.3, whereas
for the Navier-Stokes counterpart the situation is more complex. Indeed, for 𝜃 < 1/4,
the C

1/5−𝜀 regularity of the solutions given in Theorem 2.4.2.3 is higher than the H 𝛽

regularity of the Navier-Stokes counterpart. For the case 1/4 < 𝜃 < 1/2, however, Theorem
2.4.2.3 only gives C1−2𝜃/3−2𝜃−𝜀 , which tends to 0 as 𝜃 → 1/2. This means that, eventually,
1−2𝜃/3−2𝜃 < 𝛽 , at which point the two regularities are not comparable.

As seen for the Euler and Navier-Stokes counterparts, this means that weak solutions
can conserve, dissipate, or increase their kinetic energy (the last of which makes them
non-admissible whenever EFNS is defined.

In fact, thanks to [15, Proposition 2.2], there exist infinite families of profiles asso-
ciated to solutions with the same initial data. In other words, we have non-uniqueness.
The following theorem ([15, Theorem 1.3 and Corollary 2.3]) makes this more precise,
asserting the existence of C 𝛽 wild initial data for 𝜃 < 1/5, with 𝜃 < 𝛽 < 1/5, and the
existence of C0 data generating infinitely many weak solutions up to 𝜃 < 1/2.

Theorem 2.4.2.4. If we choose 𝜃 < 1/5, there are initial data v∈L2(T3) with divv = 0
such that:

(a) v belongs to some Hölder space C 𝛽 (T3) for 𝜃 < 𝛽 < 1/5;

(b) There is a positive time T and infinitely many solutions v∈C 𝛽 ([0,T ]×T3) of
(2.1.3.1) with v(0, ·) = v;

(c) Such solutions are admissible, and in fact satisfy the weak energy inequality (2.1.4.3)
for all times 0 ≤ s ≤ t ≤ T .

If instead we choose 1/5 ≤ 𝜃 < 1/2, then there are divergence-free initial data v∈C(T3)
for which there exist infinitely many weak solutions v∈L∞([0,∞),L2(T3)) of (2.1.3.1) with
v(0, ·) = v.

Note that the solutions obtained for 𝜃 ≥ 1/5 may be too irregular for the admissibility
condition to even make sense, since they are not necessarily L2([0,∞),H𝜃).

The non-uniqueness of admissible solutions can be extended to 𝜃 < 1/3 with the higher
regularity of C1/3−𝜀 . This is the content of [26, Theorem 1.2] reported below.

Theorem 2.4.2.5. Let 𝜃 < 1/3. Then there are initial data v∈L2(T3) with divv = 0 for
which there exist infinitely many Leray solutions v of (2.1.3.1) in [0,+∞)×T3. More
precisely, if 𝜃 < 𝛽 < 1/3, there are divergence-free initial data v∈C 𝛽 (T3) and a positive
time T such that:
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(a) There are infinitely many Leray-Hopf solutions of (2.1.3.1) and moreover v ∈
C 𝛽 ([0,T ]×T3);

(b) Such solutions strictly dissipate the total energy in [0,T ], i.e. the function EFNS
defined in Section 2.1 is strictly decreasing on [0,T ].

A final result regarding non-uniqueness of admissible solutions is Theorem 1.3.2
stated in Chapter 1, which concerns the L2-density of initial data for which infinitely many
solutions exist, and is the main result of this thesis. Both this result and the theorems in
this section produce C 𝛽 admissible solutions up to a time T depending only on the initial
datum. The proof of Theorem 1.3.2, when approaching a given L2 vector field with wild
data, is unable to maintain the admissibility of the regular solution up to a fixed time, and
therefore has to give the regularity up in order to restore the admissibility on this fixed
time interval.
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Chapter 3

Convex Integration and the Euler
equations

3.1 The general idea
Convex integration is a powerful technique for addressing problems of existence and (non-
)uniqueness of solutions to systems of PDEs. First introduced by Nash in [56], it was
extended by Kuiper in [47] in the context of differential geometry. It was then formalized
by Gromov [36] in the more general setting of partial differential relations, of which PDEs
and the isometric embeddings of the Nash-Kuiper theorem are special cases.

The general idea is that, given a system of PDEs, one tries to do the following:
1. Modify the system of PDEs by introducing an additional “error” term, thus obtaining

the so-called “relaxed system”;

2. Prove the existence of “suitable” solutions to the modified system, also known as
“approximate solutions” or “subsolutions”;

3. Prove that the existence of one such approximate solution implies the existence of
infinitely many solutions to the original system of PDEs.

Perhaps the most important achievement of convex integration applied to the Euler equa-
tions is the proof of Onsager’s conjecture. In this chapter, we give an overview of the
steps that led to the proof of this result. We also present the adaptations of the technique
that made it possible to prove the L2-density of initial data which generate infinitely many
solutions for the Euler equations, and the existence of such data for the fractional Navier-
Stokes equations. This was the starting point for the application of the convex integration
technique to prove this thesis’s main result, Theorem 1.3.2.

An example of “relaxed system”, which will be used in sections 3.3-3.7, is the Euler-
Reynolds system, used in fluid dynamics (cfr. [39, Chapter 1]) to describe turbulent
phenomena. In this approach, a solution to the Euler equations v = v+w is separated into
the sum of a coarse-grained flow v, i.e. an “averaged” solution, and a perturbation term
w which accounts for fluctuations. If · indicates an averaging process, applying it to the
Euler equations we get: {

∂tv+divv⊗ v+∇p = 0
divv = 0 .
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Introducing the Reynolds stress tensor R:

R – v⊗ v− v⊗ v,

we obtain the so-called Euler-Reynolds system:{
∂tv+div(v⊗ v)+∇p =−divR
divv = 0 . (3.1.1)

By Jensen’s inequality, R is positive semidefinite. System (3.1.1) is a relaxed system where
the error term is −divR and the triple (v, p,R) is a subsolution.

3.2 The first steps to Onsager’s conjecture

3.2.1 Bounded solutions with compact support
The first applications of the general idea expressed above to the Euler equations was in [21]
and [22], producing L∞(R×Rn) solutions and C0([0,T ];L2

w(Rn)) solutions (i.e. such that
t 7→ v(t, ·)∈L2(T3) is continuous w.r.t. the weak topology), respectively. As noted in the
previous section, oscillations play a major role in the development of turbulence. Hence, it
was only natural to attempt to insert the Euler equations into the Tartar [69] framework for
the analysis of oscillations in systems of linear PDEs coupled with nonlinear constraints.

In this framework, one writes the system of equations in the form

∑
i

Ai∂iz = 0,

where z is the “state variable” (in our case z = (v,u,q)) and the Ai ∈RM are constant
coefficient vectors, and then considers “plane wave solutions” of the system as oscillatory
building blocks, i.e. solutions of the form

z(x) – ah(x · 𝜉 ),

for h a smooth function. Such plane waves are the simplest oscillatory solutions to the
system, so it makes sense to use them as a starting point to construct the perturbations we
need to prove an existence theorem for solutions.

The set of directions a such that, for some 𝜉 , the functions above are solutions for any
profile h is called wave cone and is denoted by

Λ –

{
a∈RM : ∃𝜉 ∈Rm : ∑

i
𝜉iAia = 0

}
.

To use this framework, we recast the Euler equations as follows:
∂tv+divu+∇p = 0
divv = 0
u = v ⊗̊ v = v⊗ v− 1

n
|v|2 Id

, (3.2.1.1)
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where a⊗̊b – a⊗b− 1/n〈a,b〉 denotes the traceless part of the tensor product, and Id is
the n×n identity matrix.

The goal of this subsection is to sketch the proof of the following theorem given in
[21].

Theorem 3.2.1.1. Let Ω⊂R×Rn be a bounded open domain. There exist a v∈L∞(R×
Rn;Rn) and a p∈L∞(R×Rn)which solve the Euler equations in the sense of distributions,
such that |v|= 1 a.e. in Ω and v = 0 a.e. outside Ω.

To this end, one fixes a bounded spacetime domain Ω⊂R×Rn, then proves a “per-
turbation property”, and then concludes by a Baire category argument in a suitable func-
tion space. Note that the solutions provided by Theorem 3.2.1.1 cannot conserve the
energy. Indeed, for any t ∈R such that Ω∩ ({t}×Rn) = ∅, one has EE(t) = 0, yet∫∞
−∞ EE(t)dt = 2−1|Ω| 6= 0.

To prove such a perturbation property, one needs oscillatory perturbations supported
in smaller and smaller regions of Ω. One also needs to preserve a certain property of what
is being perturbed, which is achieved by keeping the perturbation “sufficiently close” to
a line segment with one endpoint in the wave cone. This is what [21, Proposition 2.2]
provides.

The next step is to set up a suitable functional framework for the Baire category
argument. The goal is to show the existence of solutions (v,u,q) of (3.2.1.1) supported in
Ω such that (v(t,x),u(t,x))∈K for a.e. (t,x)∈Ω, where

K –
{
(v,u)∈Rn ×Sn×n

0 : u = v⊗ v− 1/n|v|2 Id, |v|= 1
}
.

Defining
U – int(Kco × [−1,1]),

where int denotes the topological interior, we see that (v,u)∈K is equivalent to (v,u,q)
taking values in the convex extremal points of U. We can thus give a definition of
subsolutions.

Definition 3.2.1.1 (Subsolution). Let X0 be the following space:

X0 –

(v,u,q)∈C∞(R×Rn) :


supp(v,u,q)⊂Ω
(v,u,q) solves (3.2.1.1) in R×Rn

(v,u,q)(R×Rn)⊆U

.

A subsolution of (3.2.1.1) is a triple (v,u,q) such that (v,u,q)∈X0.

To compare with the previous subsection, the error term, which was divR there, takes
here the form of v⊗ v− 1/n|v|2 Id−u.

By [21, Lemma 4.2], 0∈U, so X0 is nonempty. Therefore, X0 is a bounded nonempty
subset of L∞, and thus its weak-* closure X will be a compact nonempty metrizable space,
as stated in [21, Lemma 4.4].

This result states a further property: if (v,u,q)∈X and |v| = 1 a.e. in Ω, then (v, p)
is a weak solution of the Euler equations, where p – q− 1/3|v|2. Therefore, if we can
show that there are infinitely many elements of X with |v| = 1Ω a.e., the existence result
is proved. To do so, as said above, one looks for a suitable Baire-1 map defined on X .
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Definition 3.2.1.2 (Baire-1 map). A map f : (X ,dX)→ (Y,dY ) between two metric spaces
is called a Baire-1 map, or a map of Baire class 1, if it is the pointwise limit of continuous
maps.

Since it is known ([67, Theorem 4.6]) that the set of continuity points of Baire-1 maps
between complete metric spaces is dense in (X ,dX), the proof will be completed by finding
a complete metric space Y and a Baire-1 map f : X →Y such that the continuity points of
f satisfy the condition |v|= 1 a.e.. Indeed, since X is nonempty, a residual set in X is also
nonempty, proving the existence of the desired “wild solutions”. Proving the density of a
set by proving it contains the continuity points of a Baire-1 map (or the shared continuity
points of a countable family of such maps) is what is known as a Baire category argument.

To make such an argument, we first note that any element (v,u,q)∈X is an L∞ map with
compact support, and therefore is in L2(R×Rn). If d∗

∞ is a metric on X inducing the weak-
* topology of L∞, then the identity map I : (X ,d∗

∞)→ L2 is a Baire-1 map. Indeed, let 𝜑 be
a convolution kernel in spacetime and 𝜑r(x) – r−n𝜑(r−1x). Then, I( f ) = limr→0 𝜑r( f )
for any f ∈X ⊆L2, and the map 𝜑r : (X ,d∗

∞)→ (L2,‖ ·− ·‖L2) is continuous for all r > 0.
To conclude the argument, one proves that the identity map’s continuity points must

satisfy |v| = 1 a.e. in Ω. Doing this requires the “perturbation property” of [21, Lemma
4.6], reported below.

Lemma 3.2.1.1. There exists a dimensional constant 𝜅 > 0 with the property that, given
(v0,u0,q0)∈X0, there exists a sequence (vk,uk,qk)∈X0 such that

‖vk‖L2(Ω) ≥ ‖v0‖2
L2(Ω)+ 𝜅(|Ω|−‖v0‖2

L2(Ω))
2,

and (vk,uk,qk)
∗−→ (v0,u0,q0) in L∞(Ω).

Assume now that (v,u,q)∈X is such that |v| is not 1 a.e. in Ω. Since X is the closure
of X0, there is a sequence {(vk,uk,qk)}⊂X0 approximating (v,u,q). By the above lemma
and a standard diagonal argument, there exists (ṽk, ũk, q̃k) a sequence in X0 converging to
(v,u,q) weakly-* in L∞ but such that

liminf
k→∞

‖ṽk‖2
L2 ≥ liminf

k→∞

(
‖vk‖2

L2 + 𝜅(|Ω|−‖vk‖2
L2)

2
)
.

If I were continuous at (v,u,q), one would have that both vk, ṽk → v in L2, and thus

‖v‖2
2 ≥ ‖v‖2

2 + 𝜅
(
|Ω|−‖v‖2

2

)2
,

which would imply
‖v‖2

2 = |Ω|.

Then again, v = 0 a.e. outside Ω and |v| ≤ 1 a.e., therefore |v| = 1 a.e., which is a
contradiction.

The perturbation property is proved, roughly speaking, by covering “a sufficiently
large portion” of Ω with balls of small radius, applying [21, Proposition 2.2] on each ball,
and summing all the perturbations constructed on those balls together with the starting
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(v,u,q). By repeating the construction with smaller and smaller radii, we get a sequence
(vk,uk,qk) with the desired properties.

The above arguments lead to the proof of Theorem 3.2.1.1. This was a remarkable
generalization of the result by Scheffer [61], namely the existence of nontrivial Euler
solutions with compact support in space and time in two space dimensions. Indeed,
Scheffer’s result is a weaker version of the case n = 2 of the above statement: the statement
above yields solutions in L∞, and thus in L2 by the boundedness of their supports, whereas
Scheffer’s result had no control over the energy, meaning that the solutions which it
provides may not be L2.

3.2.2 Infinitely many admissible solutions
Theorem 3.2.1.1 left open the question of whether one might achieve the uniqueness of
weak solutions by imposing a form of the energy inequality. This question was addressed
in [22], where the following result ([22, Theorem 1.1]) was proved.

Theorem 3.2.2.1. Let n ≥ 2. There exist bounded and compactly supported divergence-
free vector fields v0 for which there are

(a) Infinitely many solutions of the Cauchy problem for (2.1.1.1) satisfying both the
strong and the local energy inequalities;

(b) Weak solutions satisfying the strong energy inequality but not the energy equality;

(c) Weak solutions satisfying the weak energy inequality but not the strong energy
inequality.

In this statement:

• The weak energy inequality is our admissibility condition, i.e. EE(t) ≤ EE(0) for
every t > 0;

• The strong energy inequality is EE(t)≤ EE(s) for all s.t : t > s;

• The energy equality is the conservation of EE , i.e. EE(t)≡ EE(0);

• The local energy inequality reads

∞∫
0

∫
Rn

|∇v|2𝜑dxdt ≤
∞∫
0

∫
Rn

|v|2

2
(∂t𝜑+ 𝜈Δ𝜑)+

(
|v|2

2
+ p

)
v ·∇𝜑dxdt,

for any nonnegative 𝜑∈C∞
c ((0,∞)×Rn).

This theorem is obtained by proving the following proposition, and then constructing
suitable triples to apply it to.
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Proposition 3.2.2.1. Let Ω⊂Rn be an open set (not necessarily bounded) and let

e∈C((0,T )×Ω)∩C([0,T ],L1).

Assume there exists (v0,u0,q0) smooth solution of (3.2.1.1) on (0,T )×Rn with the fol-
lowing properties:

v0∈C([0,T ],L2
w)

supp(v0(t, ·),u0(t, ·))⊂⊂Ω ∀t∈(0,T )

e(v,u) –
n
2
𝜆max(v0(t,x)⊗ v0(t,x)−u0(t,x))< e(t,x) ∀(t,x)∈Ω× (0,T ),

where 𝜆max denotes the maximum eigenvalue and L2
w is the space L2 endowed with the

weak topology. Then there exist infinitely many weak solutions v of the Euler equations
(2.1.1.1) in [0,T )×Rn with pressure

p = q0 −
1
n
|v|2

such that

v∈C([0,T ];L2
w)

v(t,x) = v0(t,x) t∈{0,T}, a.e. x∈Rn

1
2
|v(t,x)|2 = e(t,x)1Ω ∀t∈(0,T ), a.e. x∈Rn.

The strategy to prove Proposition 3.2.2.1 is similar to the one in the previous sub-
section: find a suitable complete metric space, and prove that the desired solutions are
residual by using one or more Baire-1 maps whose continuity points are among those
solutions.

In this case, the space of subsolutions will be the following:

X0 –

(v,u,q)∈C∞((0,T )×Rn)∩C0([0,T ];L2
w) :

(v,u,q) solves (3.2.1.1)
supp(v,u)(t, ·)⊂Ω ∀t∈(0,T )

v(0,x) = v0(0,x)
v(T,x) = v0(T,x)

e(v,u)< e ∀(t,x)∈Ω× [0,T ]

.

Also in this case, the role of the error term is played by v⊗ v− 1/n|v|2 Id−u.
Since we assumed e∈C0

t L1
x and

∫
Ω
|v|2dx ≤

∫
Ω

edx, the functions in X0 take value
in a bounded subset B⊂ L2, which can be metrized under the weak topology. Thus,
X0⊂Y – C0([0,T ],B), and since Y is a complete metric space under the uniform norm,
one concludes that X , defined as the closure of X0 in Y , is a complete metric space.

We then introduce a family of Baire-1 maps. For any 𝜀 > 0 and bounded Ω0⊂Ω, we
define

I𝜀,Ω0(v) – inf
t∈[𝜀,T−𝜀]

∫
Ω0

[
1
2
|v(t,x)|2 − e(t,x)

]
dx.
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These are all Baire-1 maps on X , they take values in the non-positive real numbers, and,
whenever v is such that I𝜀,Ω0(v) = 0 for all 𝜀,Ω0, v is a weak solution of the Euler equations
of the type provided by Proposition 3.2.2.2. It is therefore of interest to investigate the
relation between the continuity points of these maps and their zeroes. The relation is
provided by the perturbation property [22, Proposition 4.5] reported below.

Proposition 3.2.2.2. Let Ω0 and 𝜀 > 0 be given. For all 𝛼 > 0 there exists 𝜅 =
𝜅(𝛼,Ω0,𝜀) > 0 such that, whenever v∈X0 with I𝜀,Ω0(v) ≤ −𝛼, there exists a sequence
{vk}⊂X0 with vk → v in Y such that

liminf
k→∞

I𝜀,Ω0(vk)≥ I𝜀,Ω0(v)+ 𝜅 .

In other words, whenever I𝜀,Ω0(v)< 0, we can find a sequence converging to v in Y such
that I𝜀,Ω0(vk) stays above I𝜀,Ω0(v) by at least a certain positive quantity. Thus, in particular,
if v is a continuity point for I𝜀,Ω0 , then I𝜀,Ω0(v) = 0.

To conclude the proof of Proposition 3.2.2.1, consider an exhausting sequence Ωk
for Ω, and the maps Ik−1,Ωk

. The set C of points where all of these are continuous is a
countable intersection of residual sets, and is thus residual. Moreover, it is clear that, for
𝜀 ′ < 𝜀 and Ω′

0⊂Ω0, we have I𝜀 ′,Ω′
0
≤ I𝜀,Ω0 . Thus, for any 𝜀,Ω0, we have Ik−1,Ωk

≤ I𝜀,Ω0

whenever k−1 < 𝜀 and Ω0 ⊂Ωk, and since k−1 → 0,Ωk ↑ Ω, we can always find such a
K. If v∈C, it means Ik−1,Ωk

(v) = 0 for all k, and therefore, for any 𝜀,Ω, we can find a k
such that 0 = Ik−1,Ωk

≤ I𝜀,Ω0 ≤ 0, meaning C is formed by triples such that I𝜀,Ω0(v) = 0 for
all 𝜀,Ω0. Thus, the points of C provide the solutions from the statement of Proposition
3.2.2.2, completing its proof.

3.3 Analogy with a Nash theorem
By comparing the first equations of the two systems (3.2.1.1) and (3.1.1), we see that they
are equivalent if we set

u = v⊗ v+R− 1
n
(|v|2 + trR) Id .

Recalling the e(v,u) introduced in the previous subsection, we note that

v⊗ v−u =−R̊+
1
n
|v|2 Id ≤ 2

n
e Id,

where e = 1/2|v|2. This is equivalent to e(v,u)≤ e, whose strict form e(v,u)< e was one
of the defining conditions of the triples in X0 in the previous subsection. Moreover, we see
that e(v,u) = e is equivalent to R = 0, and thus to v being a solution of the Euler equations.

This brings to light a striking analogy between Proposition 3.2.2.2 and the famous
Nash-Kuiper theorem of [56] and [47]. In order to state this theorem, we need to define
short immersions.

Definition 3.3.1. Let (Σ,g) be a Riemannian manifold. An immersion v : Σ→RN is short
if it reduces the lengths of curves, i.e. `(v∗𝛾)≤ `g(𝛾) for any curve 𝛾 . For C1 immersions
and in local coordinates, this condition is equivalent to the inequality

(∂iv ·∂ jv)wiw j ≤ gi jwiw j ∀w∈TΣ.
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Theorem 3.3.1 (Nash-Kuiper). Let (Σ,g) be a smooth closed n-dimensional Riemannian
manifold and v : Σ→RN a C∞ short immension with N ≥ n+1. Then, for any 𝜀 > 0 there
exists a C1 isometric immersion u : Σ→ RN such that ‖u− v‖C0 ≤ 𝜀. If v is, in addition,
an embedding, then u can be assumed to also be an embedding.

Indeed, the isometric embedding problem can be formulated for the gradient A – Du of
the immersion, and produces a linear PDE

curlA = 0 (3.3.1)

coupled with a nonlinear constraint

AT A = g. (3.3.2)

Short immersions satisfy the inequality

AT A < g. (3.3.3)

Nash’s theorem is thus an analogue of the existence theorem for the Euler equations: if
there exists a solution of (3.3.1) (resp. (3.2.1.1)) satisfying the strict inequality (3.3.3)
(resp. u−v⊗v< n−1|v|2), then there exist infinitely many solutions satisfying the equality
(3.3.2) (resp. u = v⊗ v+n−1|v|2).

However, Nash’s theorem has one additional property: the continuity of the gradients
it provides. Indeed, the solutions proved to exist for the Euler equations are only L∞

loc, not
continuous. To have a “perfect analogue” of Nash’s theorem, it would thus be desirable to
show the existence of infinitely many continuous Euler solutions.

This was done by adopting an approach more similar to that of Nash, i.e. by iteratively
adding highly oscillatory corrections to the “subsolutions” in order to absorb the error, i.e.
the Reynolds stress, one bit at a time. Following [20, Section 7], we give an outline of the
iteration scheme, which also shows what kind of Hölder regularity we may expect to get
from this argument.

The aim is to construct a sequence of subsolutions of (3.1.1), i.e. triples (vq, pq,Rq)
solving {

∂tvq +div(vq ⊗ vq)+∇pq =−divRq
divvq = 0 ,

such that the error Rq ≥ 0 is gradually removed. We note that, to measure the error from
being an Euler solution, only the traceless part R̊q matters, since if we write

Rq = 𝜌q Id+R̊q,

we have div(𝜌q Id) = ∇𝜌q, and we can thus absorb 𝜌q into the pressure term. This means
that, if R̊q = 0, vq is an Euler solution, perhaps with a pressure different from pq.

Recalling that we wish to prescribe the kinetic energy profile, we choose the trace 𝜌q
to be

𝜌q(t) –
1

3(2𝜋)3

Eq+1(t)−
1
2

∫
T3

∣∣vq(t,x)
∣∣2dx

.
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The aim is to construct a sequence (vq, pq, R̊q)→ (v, p,0) uniformly. We will henceforth
mostly focus on the velocity v. Such a sequence is achieved iteratively by adding suitable
perturbations. We set

wq – vq − vq−1.

The size of wq is controlled by two parameters: an amplitude 𝛿
1/2
q and a frequency 𝜆q.

Indeed, we will assume a bound on the uniform norm:∥∥wq
∥∥≲ 𝛿

1
2
q.

We will choose perturbations that oscillate at frequency 𝜆q, hence obtaining a bound on
the uniform norm of the gradient: ∥∥∇wq

∥∥
0 ≲ 𝛿

1
2
q𝜆q. (3.3.4)

Naturally, we will let 𝛿q → 0. Since we expect that removing the error completely may
require unbounded frequencies, we will let 𝜆q → ∞. We will, in fact, require at least an
exponential rate. For the upcoming exposition, for the sake of definiteness, we imagine

𝜆q – 𝜆 q 𝛿q – 𝜆−2𝛽0
q , (3.3.5)

for some 𝜆 > 1. The actual proofs (as well as the proof of this thesis’s main result, which
uses a very similar method) actually require super-exponential growths. By interpolation,
we see that ∥∥vq − vq−1

∥∥
𝛼
=
∥∥wq

∥∥
𝛼
≲ 𝛿

1
2
q𝜆

𝛼
q ≲ 𝜆 𝛼−𝛽0

q ,

meaning {vq} is a Cauchy sequence in C𝛼 for any 𝛼 < 𝛽0.
The perturbations are meant to absorb the error Rq, so we would expect Rq ∼ wq+1 ⊗

wq+1. We will see that this is indeed the case, and thus we have∥∥R̊q
∥∥

0 ≤ c0𝛿q+1 (3.3.6)∥∥∇R̊q
∥∥

0 ≲ 𝛿q+1𝜆q.

Ideally, we would choose the main part of the perturbation wq+1 to satisfy an Ansatz of
the type

w0(t,x) =W (vq(t,x),Rq(t,x),𝜆q+1x,𝜆q+1t),

where the “profile” W = W (v,R,𝜉 ,𝜏) is a suitable function to be specified later. The
pressure pq+1 will be defined similarly, but we omit the details.

Since the perturbation must be oscillatory, we require that W be periodic in 𝜉 ∈T3.
We then observe that we need divvq+1 = 0, and since vq is divergence-free, wq+1 is also
required to be. However, wo as defined above is unlikely to be divergence-free, so we will
need to add a suitable correction wc such that div(wo +wc) = 0. To this end, consider a
vector potential for vq, i.e. a smooth zq such that curlzq = vq. We would like to perturb zq
in a similar way:

zq+1(t,x) = zq(t,x)+
1

𝜆q+1
Z(v(t,x),R(t,x),𝜆q+1x,𝜆q+1t).
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Computing vq+1, we obtain

vq+1(t,x) = curlzq+1(t,x) = vq(t,x)+ curl𝜉 Z(v(t,x),R(t,x),𝜆q+1x,𝜆q+1t)+O
(

1
𝜆q+1

)
.

The second term would ideally be wo. We thus need to find a 𝜉 -periodic potential Z for
W , which implies div𝜉 W = 0 and 〈W 〉= 0, i.e. W is average-free in the 𝜉 variable.

Similar considerations, as illustrated for instance in [67], lead to the following condi-
tions for W :

(H1) 𝜉 7→W (v,R,𝜉 ,𝜏) is 2𝜋-periodic with vanishing average;

(H2) The average stress is R, i.e.
〈W ⊗W 〉= R;

(H3) The “cell problem” is satisfied:{
∂𝜏W +(v ·∇𝜉 )W +div𝜉 (W ⊗W )+∇𝜉P = 0
div𝜉 W = 0 ,

where P = P(v,R,𝜉 ,𝜏) is a suitable pressure;

(H4) W is smooth in all its variables and satisfies the estimates

|W |≲ |R|
1
2 |∂vW |≲ |R|

1
2 |∂RW |≲ |R|−

1
2 .

When computing |vq+1|2, we see that we have

∣∣vq+1
∣∣2 = ∣∣vq

∣∣2 +2vq ·wo + |wo|2 +O
(

1
𝜆q+1

)
,

since wo =W (vq,Rq,𝜆q+1x,𝜆q+1t) = curl𝜉 Z(vq,Rq,𝜆q+1x,𝜆q+1t). If we then integrate,
the second term also becomes O(𝜆−1

q+1), since wq+1 is fast-oscillating and vq is slow-
oscillating. This, combined with (H1)-(H2) above, implies that∫

T3

∣∣vq+1
∣∣2dx ∼

∫
T3

∣∣vq
∣∣2 + ∣∣W (vq,Rq,𝜆q+1x,𝜆q+1t)

∣∣2dx ∼
∫
T3

∣∣vq
∣∣2dx+3(2𝜋)3 𝜌q(t),

thus the total kinetic energy of vq+1 is, up to small errors, eq+1.
Having defined the pair (vq+1, pq+1), we must find a suitable Reynolds tensor R̊q+1. An

important remark is that one can select a good “antidivergence operator” solving div R̊= f ,
as stated in the following technical lemma.

Lemma 3.3.1 (Antidivergence). There exists a homogeneous Fourier-multiplier operator
of order −1, denoted

div−1 : C∞(T3,R3)→ C∞(T3,S3×3
0 )

such that, for any f ∈C∞(T3,R3) with zero average −
∫
T3 f = 0, we have:
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(a) div−1 f (x) is a symmetric trace-free matrix for any x∈T3;

(b) divdiv−1 = f .

With this operator div−1, assuming the existence of an ideal profile W , the next stress
tensor R̊q+1 is defined as

R̊q+1 – −div−1[∂tvq+1 +div(vq+1 ⊗ vq+1)+∇pq+1]

= −div−1 [∂twq+1 +(vq ·∇)wq+1
]

−div−1 [div(wq+1 ⊗wq+1 − R̊q)+∇(pq+1 − pq)
]

−div−1[(wq+1 ·∇)vq]

— R̊(1)
q+1 + R̊(2)

q+1 + R̊(3)
q+1.

Since we are assuming that the size of the corrector wc is negligible compared to wo, we
will discuss the corresponding terms where wo replaces wq+1.

The main issues we have are thus:

• To show that indeed it is possible to send 𝛿q → 0 as q ↑ ∞ (so that the scheme
converges);

• To obtain a relation between 𝛿q and 𝜆q in the form of (3.3.5).

If we were able to find a profile W satisfying (H1)-(H2)-(H3)-(H4), the above iteration
would lead to a proof of the Onsager conjecture. To see this, we first expand W as a
Fourier series in 𝜉 . We then compute

R̊(3)
q+1 =−div−1[(w0 ·∇)vq] = div−1 ∑

k∈Z3

k 6=0

ck(t,x)ei𝜆q+1k·x,

where the coefficients ck vary much slower than the rapidly oscillating exponentials.
Applying the antidivergence operator, we can therefore treat the ck as constants and gain a
factor 𝜆−1

q+1 in the outcome: a typical “stationary phase argument”. Note that it is crucial
that c0 vanishes, which is the content of (H1).

Using (H4), we can estimate the size of each term ck:

‖ck‖0 ≲ ‖W‖0

∥∥∇vq
∥∥

0 ≲
∥∥Rq
∥∥1

2
0

∥∥∇vq
∥∥

0.

Applying (3.3.4) and (3.3.6), we arrive at

∥∥∥R̊(3)
q+1

∥∥∥
0
≲

𝛿
1
2
q+1𝛿

1
2
q𝜆q

𝜆q+1
.

In fact in our computations so far we are ignoring a lot of technical issues: the relevant
estimates are much more complicated and affected by several other terms which we are
neglecting.
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Similar arguments for the two other error tensors R̊(1)
q+1, R̊

(2)
q+1 lead to an estimate like

the one below: ∥∥R̊q+1
∥∥

0 ≲
𝛿

1
2
q+1𝛿

1
2
q𝜆q

𝜆q+1
.

This is just one of the estimates for (vq+1, pq+1,Rq+1), and similar ones should be obtained
for all the other quantities (and for other norms). However, this estimate already implies
a relation between 𝛿q,𝜆q. Indeed, comparing it with (3.3.6), the inductive step requires

𝛿q+2 ∼
𝛿

1
2
q+1𝛿

1
2
q𝜆q

𝜆q+1
.

Assuming 𝜆q ∼ 𝜆 q for some fixed 𝜆 � 1, this yields

𝛿
1
2
q ∼ 𝜆−q

3 ∼ 𝜆
−1

3
q ,

which gives 𝛽0 =
1/3 as the critical Hölder regularity.

3.4 Beltrami flows and the first Hölder regularity
To start the search for a suitable profile W , we consider first the case where we set v = 0.
Since we wish to fulfil (H1), we will assume that

W (0,R,𝜉 ,𝜏) =Ws(R,𝜉 ) – ∑
k

ak(R)Bkeik·𝜉 ,

for some directions Bk, requiring that a0 = 0. Since v is constant, we also eliminate the
dependence on the time 𝜏 . This entails that (H3) reduces to{

div𝜉 (Ws ⊗Ws)+∇𝜉P = 0
div𝜉 Ws = 0 ,

and condition (H4) reduces to |ak|≲ |R|1/2 and |Dak|≲ |R|−1/2 .
Condition (H2) reads as follows:

∑
k,k′

−
∫
T3

ak(R)ak′(R)Bk ⊗Bk′e
i(k+k′)·𝜉d𝜉 = R.

Naturally, only for k′ =−k do those integrals not vanish. Since we will choose real-valued
ak, and the Bk from Proposition 3.4.1 below satisfy Bk = B−k, we thus need

∑
k

∫
T3

|ak(R)|2(R)Bk ⊗Bk = R.

This suggests that, in choosing the set Λ of indices k to sum over, we will want to ensure
that −Λ⊆Λ.

Condition (H3) tells us we are looking for stationary solutions of the Euler equations.
It seems thus natural to recall a well-known class of such solutions, namely the Beltrami
flows. These are summarized in [24, Proposition 3.1] reported below.
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Proposition 3.4.1 (Beltrami flows). Let 𝜆0 ≥ 1 and let Ak∈R3 be such that

Ak · k = 0 |Ak|=
1√
2

A−k = Ak

for k∈Z3 with |k|= 𝜆0. Furthermore, let

Bk – Ak + i k
|k|

×Ak∈C3.

For any choice of ak with ak = a−k the vector field

W (𝜉 ) = ∑
|k|=𝜆0

akBkeik·𝜉

is divergence-free and satisfies

div(W ⊗W ) = ∇ |W |2

2
.

Furthermore

〈W ⊗W 〉=−
∫
T3

W ⊗Wd𝜉 =
1
2 ∑
|k|=𝜆0

|ak|2
(

Id− k
|k|

⊗ k
|k|

)
.

The choice of the set (in fact, any number of suitable sets) of indices k is given by [24,
Lemma 3.2], reported below.

Lemma 3.4.1. For every N ∈N we can choose r0 > 0 and 𝜆0 > 1 with the following
property. There exist pairwise disjoint subsets

Λ j⊂{k∈Z3 : |k|= 𝜆0} j∈{1, . . . ,N}

and smooth positive functions

𝛾
( j)
k ∈C∞(Br0(Id)) j∈{1, . . . ,N},k∈Λ j

such that:

(a) k∈Λ implies −k∈Λ j and 𝛾
( j)
k = 𝛾

( j)
−k ;

(b) For each R∈Br0(Id) we have the identity

R =
1
2 ∑

k∈Λ j

(
𝛾
( j)
k (R)

)2
(

Id− k
|k|

⊗ k
|k|

)
∀R∈Br0(Id).

We therefore have the following profiles for v = 0:

Ws(R,𝜉 ) = ∑
k∈Λ j

ak(R)Bkeik·𝜉 ,
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for any j, where the Λ j are as prescribed in the above lemma.
The natural extension to nonzero v would then be to choose the solution W to

∂𝜏W + v ·∇𝜉W = 0

with W |𝜏=0 =Ws, leading to the formula

W (v,R,𝜉 ,𝜏) =Ws(R,𝜉 − v𝜏) = ∑
k∈Λ j

ak(R)Bkei(k−v𝜏)·𝜉 .

However, this fails to satisfy (H4), since

|∂vW (v,R,𝜉 ,𝜏)| ∼ |R|
1
2 |𝜏|,

which is estimated as required by (H4) only for bounded 𝜏 . This is a serious problem,
since we will eventually set 𝜏 = 𝜆 t, leading to an additional factor 𝜆 , which prevents the
iterative scheme from converging.

To overcome this, paper [25] introduces a “phase function” to deal with the transport
part of the cell problem. In other words, the chosen profile is

W (v, t,𝜉 ,𝜏) = ∑
|k|=𝜆0

ak(R)𝜑k(v,𝜏)Bkeik·𝜉 .

With this Ansatz, condition (H3) gives us

∂𝜏𝜑k + i(v · k)𝜑k = 0.

The exact solution is 𝜑k(v,𝜏) = e−i(v·k)𝜏 , but as seen above it is incompatible with (H4),
so (H3) was required to hold only approximately:

∂𝜏𝜑k + i(v · k)𝜑k = O(𝜇−1) |∂v𝜑k|≲ 𝜇,

for some new parameter 𝜇.
More specifically, we choose a suitable cutoff function 𝜑∈C∞

c (B1(0)) which is identi-
cally one on B√

3/2
, and define:

𝜑
( j)
k (v,𝜏) – ∑

`∈C j

𝛼`(𝜇v)e−i(k· `
𝜇
)𝜏
,

where
𝛼`(x) –

𝜑(x− `)√
𝜓(x)

𝜓(x) = ∑
k∈Z3

𝜙2
k(v) 𝜙k(x) – 𝜑(x− k),

and the C j are the equivalence classes of Z3 modulo (2Z)3, i.e. with respect to the relation
k ∼ ` ⇐⇒ k− `∈ (2Z)3. Since 𝜓 can be seen to be bounded away from 0, bounded,
and smooth, the functions 𝛼k are smooth and bounded, and ∑k 𝛼

2
k = 1. Since 𝛼`,𝛼`′ have

disjoint supports for C j 3 ` 6= `′∈C j, this means that {|𝜑( j)
k |2} j,k is a partition of unity.

This fact means that, when we compute 〈W ⊗W 〉, the |𝜑( j)
k |2 will sum to 1 and not affect

(H2).
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It is simple enough to see that, for any m = 0,1,2, . . .

sup
v,𝜏

∣∣∣Dm
v 𝜑

( j)
k (v,𝜏)

∣∣∣≲ 𝜇m.

Next, fix any (v,𝜏), j. There is at most one `∈C j such that 𝛼`(𝜇v) 6= 0 and it satisfies
|𝜇v− `|< 1. Thus, in a neighborhood of (v,𝜏), we have

∂𝜏𝜑
( j)
k + i(k · v)𝜑( j)

k = ik ·
(

v− `

𝜇

)
𝜑
( j)
k .

Given |𝜇v− `|< 1, we conclude |v− `𝜇−1|< 𝜇−1, so that∥∥∥Dm
v (∂𝜏𝜑

( j)
k + i(k · v)𝜑( j)

k )
∥∥∥
C0

v,𝜏

≲ |k|𝜇m−1.

Thus, the approximate version of (H3) is satisfied. This means that |∂vW |≲ 𝜇|R|1/2 holds,
which replaces the second estimate in (H4).

With the above, the paper [25] provides the first examples of Hölder solutions of the
Euler equations with prescribed energy. More precisely, the authors show the following
theorem.

Theorem 3.4.1. Given any positive smooth function E on [0,T ] and any 𝛽 < 1/10, there
is a pair (v, p) : [0,T ]×T3 → R3 ×R of C 𝛽 functions which solves the Euler equations
(2.1.1.1) in the distributional sense and satisfies 1/2

∫
T3 |v|2(t,x)dx = E(t).

3.5 A new profile and 1/5-Hölder regularity
A new Ansatz for the profile was introduced in [38], and the scheme was refined in [6] to
produce not only nontrivial compactly supported flows, but flows with prescribed energy.
This new Ansatz was the following:

wo(t,x) =Ws(Rq(t,x),𝜆q+!Φq(t,x)) = ∑
k∈Λ

ak(Rq(t,x))Bkei𝜆q+1Φq(t,x),

where Φq solves the transport equation

(∂t + vq ·∇)Φq = 0.

One term in the new Reynolds stress would then be

S – div−1[(∂t + vq ·∇)(w0 +wc)] = ∑
k∈Λ

∇ak(Rq)(∂t + vq ·∇)Rqei𝜆q+1Φq.

If DΦq is not too far from the identity, using the Stationary Phase Lemma (Lemma C.3),
we would conclude that

‖S‖0 ≲
𝛿

3
2
q+1𝛿

1
2
q𝜆q

𝜆q+1
.
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In fact, the above estimate also requires the assumption, justified by Isett in [38], that
the advective derivative (∂t + vq ·∇)Rq satisfies a better bound than the regular derivative
DRq, a property that also holds for vq.

However, ‖Dv‖0 → ∞, which would lead us to expect DΦq to be controllable only
for short times. More precisely, by a well-known elementary estimate on ODEs, if
Φq(t,x0) = x, then ∥∥DΦq(t, ·)− Id

∥∥
0 ≲

∥∥∇vq
∥∥

0|t − t0|≲ 𝛿
1
2
q𝜆q|t − t0|

for |t − t0|≲ (𝛿
1/2
q 𝜆q)

−1.
The strategy employed in [38, 6] to handle this problem was to consider a partition of

unity { 𝜒 j} j on the time interval [0,T ] such that supp 𝜒 j is an interval I j of size |I j|= 𝜇−1
q

for some large parameter 𝜇q. In each such interval, we consider the solution Φq, j of the
transport equation above with initial condition

Φq, j(t,x j) = x,

where t j is the center of I j. Recalling that ‖Dvq‖0 ≲ 𝛿
1/2
q 𝜆q, the above estimate on

DΦq − Id leads to

∥∥DΦq, j
∥∥

0 = O(1) and
∥∥DΦq, j − Id

∥∥
0 ≲

𝛿
1
2
q𝜆q

𝜇q
,

provided we assume, as we henceforth will, that

𝜇q ≥ 𝛿
1
2
q𝜆q.

Note also that |∂t 𝜒 j|≲ 𝜇q.
Our new principal perturbation will be

wo = ∑
j
𝜒 j(t)∑

k∈Λi( j)

ak(Rq)Bkei𝜆q+1k·Φq, j ,

where i( j) is 1 if j is odd and 2 if j is even, and Λ(i) are two disjoint families as in the
Lemma above. This new Ansatz yields the following estimate:∥∥R̊q+1

∥∥
0 ≲ 𝛿

1
2
q+1𝜇q𝜆

−1
q+1 + 𝛿q+1𝛿

1
2
q𝜆q𝜇

−1
q .

The aim is to bound this with 𝛿q+2. Let �̃�q be the choice making the two terms equal, and
let any other choice be �̃�q �̂�q. If �̂�q > 1, then the first term will be larger than it would be
with the choice �̃�q. If �̂�q < 1, the second term would be in the same situation. Thus, the
optimal choice for 𝜇q is the one making the two terms equal:

𝛿
1
2
q+1𝜇q𝜆

−1
q+1 = 𝛿q+1𝛿

1
2
q𝜆q𝜇

−1
q ⇐⇒ 𝜇2

q = 𝛿
1
2
q+1𝛿

1
2
q𝜆q𝜆q+1 ⇐⇒ 𝜇q = 𝛿

1
4
q+1𝛿

1
4
q𝜆

1
2
q𝜆

1
2
q+1.

With this choice, the estimate becomes∥∥R̊q+1
∥∥

0 ≲ 𝛿
3
4
q+1𝛿

1
4
q𝜆

1
2
q𝜆

−1
2

q+1,

53



which gives us the following relation:

𝛿q+2 ≳ 𝛿
3
4
q+1𝛿

1
4
q𝜆

1
2
q𝜆

−1
2

q+1.

With our assumption that 𝜆q = 𝜆 q,𝛿q = 𝜆
−2𝛽0
q , this means that

𝜆−2𝛽0(q+2) ≳ 𝜆−3
2
𝛽0(q+1)− 𝛽0

2
q+q

2
−q+1

2 = 𝜆−2𝛽0q−3
2
𝛽0−1

2 ,

that is
−2𝛽0q− 3

2
𝛽0 −

1
2
<−2𝛽0(q+2) ⇐⇒ 𝛽0 <

1
5
,

leading to the following theorem.

Theorem 3.5.1. Given any positive smooth function e : [0,T ]→R+ and any 𝛼 < 1/5, there
is a pair (v, p) : [0,T ]×T3 →R3×R of C𝛼 functions which solves the Euler equations in
the distributional sense and satisfies 1/2

∫
T3 |v|2(t,x)dx = e(t).

3.6 Mikado flows and Onsager-critical regularity
In [4], Buckmaster observed that, by a clever choice of the cut-off functions 𝜒i from the
previous section, it is possible to show that the solution produced in proving the previous
theorem is C1/3−𝜀 at almost every time slice. The idea is to make the cut-offs flat on large
portions of their supports, paying the price of a very steep time derivative on the remaining
small portions. This causes the global Hölder regularity to be much weaker, making the
solution only C𝜂 for some very small 𝜂(𝜀).

In [7], Buckmaster, De Lellis, and Székelyhidi exploited a quantitative version of this
idea to reach the first Onsager-critically regular non-conservative flows, proving the exis-
tence of nontrivial L1

t C
1/3−𝜀
x continuous compactly supported solutions, i.e. continuous

pairs (v, p) : R×T3 → R3 ×R satisfying

|v(t,x)− v(y, t)| ≤C(t)|x− y|,

for every t∈R,x,y∈T3, and for some L1 function C : R→ R+.
To reach global C0

t C
1/3−𝜀 regularity and fully prove the Onsager conjecture, better

estimates for the various error terms were needed. These were reached with a key
ingredient introduced in [19]: Mikado flows. These are a family of stationary flows whose
existence is given by the following lemma.

Lemma 3.6.1 (Mikado flows). For any compact subset N consisting of positive definite
3× 3 matrices, there exists a smooth vector field Ws : N×T3 → R3 such that, for every
R∈N, we have {

div𝜉 (Ws(R,𝜉 )⊗Ws(R,𝜉 )) = 0
div𝜉 Ws(R,𝜉 ) = 0 ,

and

〈Ws〉𝜉 = R

〈Ws ⊗Ws〉𝜉 = R.
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While these flows do indeed improve the estimates on several error terms, they are
incompatible with the “patching strategy” described in the previous section. This is
because, while single Mikado flows give better control, there appears to be no way of
controlling the interference terms where distinct Mikado flows interact with each other.
Indeed, the work [19] only used them for one perturbation step, an initial perturbation used
to constrain the Reynolds stress in an opportune cone of tensors, and then used Beltrami
flows for the rest of its iterations.

This problem was overcome by Isett in [40], where he introduced the final key ingre-
dient: the “gluing argument”. This consists in first modifying the subsolution (vq, pq,Rq)
to a new (vq, pq,Rq), satisfying essentially the same estimates, but such that the Reynolds
stress is identically zero on several disjoint “stripes”. This is obtained by partitioning the
time interval [0,T ] as before, but finding exact smooth solutions of the Euler equations in
each of these intervals (which need to be small enough so that the solution is guaranteed to
exist) whose initial data coincide with the time-slices of vq, and then gluing those together,
to obtain ∑i 𝜒ivi — vq.

With that, there will be stripes where vq coincides with one of the exact solutions,
implying Rq = 0. This means that we can use one Mikado flow for each of the remaining
time regions, and those Mikado flows will have disjoint support in time and thus never
interact.

With this strategy, Isett was able to prove the following theorem.
Theorem 3.6.1. For every 𝛽 < 1/3 there is a nontrivial continuous compactly supported
solution (v, p)∈C 𝛽 (R×T3) of the Euler equations (2.1.1.1).

The reason Isett did not find such solutions with arbitrary prescribed kinetic energy
profile was that, not being able to obtain good enough estimate with the usual definition of
Rq, he had to generate this Reynolds stress by a different and more complicated strategy.
The satisfactory estimate were then obtained in [8], where the following theorem was
proved.
Theorem 3.6.2. For every 𝛽 < 1/3 and every positive smooth E : [0,T ]→ R, there exists
a solution (v, p)∈C 𝛽 ([0,T ]×T3) of the Euler equations such that

1
2

∫
T3

|v(t,x)|2dx = E(t).

In fact, the use of the Mikado flows allowed the authors of [8] to prove a stronger
statement, of which the previous theorem is a corollary. This stronger statement is the
below h-principle, the true analogue of the Nash-Kuiper theorem.
Theorem 3.6.3. Let (ṽ, p̃, R̃) be a smooth solution of (3.1.1) on [0,T ]×T3 such that R̃(t,x)
is positive definite for all t,x. Then for any 𝛼 < 1/3 there exists a sequence {(vk, pk)}⊂C𝛼

of weak solutions of the Euler equations such that

vk
∗
⇀ ṽ and vk ⊗ vk

∗
⇀ ṽ⊗ ṽ+ R̃ in L∞

uniformly in time, and furthermore for all t∈ [0,T ]∫
T3

vk ⊗ vkdx =
∫
T3

(ṽ⊗ ṽ+ R̃)dx.
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3.7 Wild initial data and their “quantity”
While the above results were being proved, a parallel trilogy of papers was published in
[17], [19], and [18], namely Daneri, Daneri-Székelyhidi, and Daneri-Runa-Széhelyhidi.
Their concern was to measure the “quantity” of what they called “wild initial data”,
i.e. those initial data which generated infinitely many admissible solutions of the Euler
equations. The main theorems of these papers are reported below.

Theorem 3.7.1 (Daneri). Let e : [0, t]→ R be a positive smooth function. Then, for any
𝛽 < 1/16 there exist infinitely many v0∈C0,𝛽 (T3;R3) satisfying e(0) =

∫
T3 |v0|2 and each

being the initial datum of infinitely many (v, p)∈C0([0,1]×T3) solving (2.1.1.1) and
satisfying ∣∣v(t,x)− v(x′, t)

∣∣≤C
∣∣x− x′

∣∣𝛽 ∀x,x′∈T3, t∈ [0,T ]∫
T3

|v(t,x)|2dx = e(t) ∀t∈ [0,T ].

Theorem 3.7.2 (Daneri-Székelyhidi). For any 𝛽 < 1/5 the set of divergence-free vector
fields v0 ∈C 𝛽 (T3;R3) which are wild initial data in C 𝛽 (i.e. which generate infinitely
many admissible C 𝛽 solutions) is a dense subset of the divergence-free vector fields in
L2(T3;R3).

Theorem 3.7.3 (Daneri-Runa-Székelyhidi). For any 0 < 𝛽 < 1/3, the set of divergence-
free vector fields v0∈C 𝛽 (T3;R3) which are wild initial data in C 𝛽 (i.e. which generate
infinitely many admissible C 𝛽 solutions) is a dense subset of the divergence-free vector
fields in L2(T3;R3).

The main ingredients towards these results, aside from the innovations described in
the previous sections, were the localization of the perturbations, and a double convex
integration scheme. More precisely, the idea was the following:

• First, perform a convex integration scheme where the perturbation is localized in
time near t = 0;

• Arrive at a subsolution which is a solution (i.e. has zero Reynolds stress) at t = 0,
and satisfies suitable additional properties required for a second convex integration:
a so-called “C 𝛽 -adapted subsolution”;

• Finally, obtain a solution by performing another convex integration scheme where
the perturbation is localized in time away from t = 0, thus leaving the initial datum
untouched.

Since all convex integration schemes provide a sequence of solutions approximating the
starting point in some sense (in this case, in the C 𝛽 norm), this led to the conclusion that
the initial data of adapted subsolutions are automatically wild, assuming they satisfy an
appropriate “admissibility condition” (cfr. [18, Corollary 3.1]).

The techniques used in these papers form a good parallel with those of [25], [6], and
[8], with a few things to be noted aside from the localization discussed above. Two things
immediately hit the eye when looking at the statements:
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• Firstly, the fact that, from [19] onwards, the prescription of an arbitrary kinetic en-
ergy profile is abandoned; however, that does not mean the energy is not prescribed;
indeed, what happens in [19] and [18] is the conservation of the generalized energy
of the subsolutions, namely

∫
T3 |v|2(t,x)+ trR(t,x)dx, across the whole iterations;

Secondly, while the papers [19] and [18] reach the same thresholds as [6] and [8],
paper [17] does not reach 1/10 as in [25], but the smaller 1/16.

Concerning the second one, looking at the proofs in [17], we see that the first iteration
does reach the 1/10 threshold, and it is in passing from adapted subsolutions (which they
call admissible subsolutions) to weak solutions with the second iteration that the threshold
is lowered. The paper itself notes how the method actually gives a threshold of 3/47,
which is slightly larger. A similar loss of regularity in the second iteration occurs in [18,
Proposition 3.2], but it can be made arbitrarily small.
The last remark we wish to make is that, from [19], a second intermediate step (besides
the one of adapted subsolutions mentioned above) is introduced: strong subsolutions.
Essentially, these are subsolutions where the C0 norm of the traceless part of the Reynolds
stress is controlled by the trace. The introduction of such a control is motivated by the
construction in [12], where the first h-principle for the Euler equations was proved, which
is reported below.

Theorem 3.7.4 (Choffrut h-principle). Assume d = 2 or d = 3. Let e : [0,T ]→R+ be a
smooth positive profile. Let (u,𝜋,S) be a strong subsolution, i.e. a subsolution such that

e−−
∫
Td

|v(t,x)|2dx

d
Id−R̊(x, t)> 0 x∈Td, t∈ [0,T ].

Let 0 < 𝛽 <
1

10
and 𝜎 > 0. Then:

(1) There exists a vector field v∈C0
t C

𝛽
x ([0,T ]×Td) and a function p∈C0([0,T ]×Td)

which solve the Euler equations (2.1.1.1) in the weak sense, and such that

supt∈[0,T ] ‖v(t, ·)−u(t, ·)‖H−1(Td) < 𝜎;

(2) The solution can be constructed so that, for all t∈ [0,T ],∣∣∣∣∣∣∣∣∣∣∣
−
∫
T3

(
v(t,x)⊗ v(t,x)−u(t,x)⊗u(t,x)+ R̊(t,x)

)
dx−

e(t)−−
∫
Td

|u(t,x)|2dx

d

∣∣∣∣∣∣∣∣∣∣∣
< 𝜎.

Starting from here, the paper [19] introduced the Mikado flows mentioned in the
previous subsection to obtain a satisfactory passage from strict to strong subsolutions.
The paper [12] was missing not only this step, but also an existence result for strict or
strong subsolutions relative to arbitrary profiles. In the absence of such a result, the
authors of [19] were able to obtain the admissibility of their solutions by imposing the
conservation the generalized energy of the subsolutions, as pointed out above.
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3.8 Adaptations to hypodissipative Navier-Stokes
To the best of our knowledge, two papers exist which adapt the convex integration technique
to the hypodissipative Navier-Stokes equations (specifically 𝜃 < 1/2): [15] and [26].

In [15], Theorem 2.4.2.4 is proved. The technique employed therein is an adaptation to
the hypodissipative Navier-Stokes equations of the one used in [6] for the Euler equations
in the case of Hölder exponent 𝛽 < 1/5. This yields the existence of solutions with
arbitrary kinetic energy profiles up to 𝜃 < 1/2, and the existence of wild initial data for
𝜃 < 1/5. This adaptation features the following new elements with respect to the strategy
of [6]:

• A new term in the definition of the new Reynolds stresses, added to account for the
laplacian term in the equation, whose relaxed form is the Navier-Stokes-Reynolds
system: {

∂tv+div(v⊗ v)+∇p+(−Δ)𝜃v =−divR
divv = 0 ;

• Estimates on the fractional laplacian to estimate both the aforementioned term and
the dissipation term in the admissibility condition;

• A control of the C 𝛽 norm, for 𝛽 = 𝜃+𝜀 for some small 𝜀, by the C1 and C2 norms
of the kinetic energy profile;

• Choosing the kinetic energy profile in such a way that the above control on the
dissipation guarantees admissibility.

The estimates mentioned in the second item are the contents of [26, Theorem B.1 and
Corollary B.1], summarized in the theorem below.

Theorem 3.8.1 (Fractional laplacian and Hölder norms). Let 𝛾,𝜀 > 0 and 𝛽 ≥ 0 such
that 2𝛾+ 𝛽 +𝜀 ≤ 1, and let f : T3 →R3. If f ∈C0,2𝛾+𝛽+𝜀 , then (−Δ)𝛾 f ∈C 𝛽 , moreover
there exists a constant C =C(𝜀) such that

‖(−Δ)𝛾 f‖𝛽 ≤C(𝜀)[ f ]2𝛾+𝛽+𝜀 . (3.8.1)

Moreover, for every 𝛾∈(0,1), 𝜀 > 0 such that 0 < 𝛾+ 𝜀 ≤ 1, and f as above, there exists
C =C(𝜀)> 0 such that∫

T3

∣∣∣(−Δ)
𝛾

2 f
∣∣∣2(x)dx ≤C(𝜀)[ f ]2𝛾+𝜀 ∀ f ∈C𝛾+𝜀(T3). (3.8.2)

The last two bullets deserve a somewhat more detailed explanation.
The starting point of the proof in [15] is the following proposition ([15, Proposition 2.2]).

Proposition 3.8.1. Let E1,E2 > 1. Assume E is a family of smooth functions on [0,1] with
the property that:

(i) 1/2 ≤ e(t)≤ 1 for every t and every e∈E;
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(ii) e(0) is the same for every e∈E;

(iii) e′(0) is the same for every e∈E;

(iv) supe∈E ‖e‖C1 = E1;

(v) supe∈E ‖e‖C2 = E2.

Then for each e∈E it is possible to produce a corresponding pair (ve, pe) for which the
following holds.

(a) (ve, pe) solves the fractional Navier-Stokes equations (2.1.3.1);

(b) Each ve satisfies
∫
|ve|2(t,x)dx = e(t) for all t∈ [0,1];

(c) If 𝛽 = 𝜃 + 𝜀 < 1/5 for some suitably small 𝜀 (depending only on 𝛼), then we have
the explicit estimate

‖ve‖C 𝛽 ≤C(𝜃 ,𝜀)max
{

E2𝜃+3𝜀
1 ,E

2𝜃 +4𝜀
3

2

}
;

(d) The initial datum v𝜀(·,0) is the same for every e∈E.

With this result in hand, the idea of the proof of Theorem 2.4.2.4 in [15] is to choose
energy profiles e where there is a quadratic relation between E2 and E1, and where e′

“almost saturates” the bound on the C1 norm. More specifically, for a constant K > 1,
we choose E1 = 2K + 2 and E2 = CK2, and we require e′ ≤ −2K + 2. This gives us
‖ve‖C 𝛽 ≲ K𝛾 for some 𝛾 < 1. If we now look at the admissibility condition, we see that
the dissipation term can be estimated by CK𝛾(t − s). Since the kinetic energy is e/2, we
can estimate it from above by (t − s)(1−K), so that the admissibility condition can be
ensured by choosing K large enough so that CK𝛾 < K −1.

In the paper [26], Theorem 2.4.2.5 is proved. The strategy employed therein is a
combinations of innovations similar to those described above with the strategy used in [8]
for the Euler equations in the case of Hölder exponent 𝛽 < 1/3. This allows the author
of [26] to reach the threshold 𝜃 < 1/3 for the exponent of the Laplacian. Note that such a
strategy requires local existence and uniqueness results for solutions of fractional Navier-
Stokes, as well as estimates for the norms of such solutions, which we have already seen
in Theorem 2.4.1.1 and Theorem 2.4.1.2, both of which were taken from [26, Section 3].
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Chapter 4

Strategy towards the density theorem

4.1 Subsolutions and their existence
As seen in Chapter 3, the first step to setting up a convex integration scheme is to find
a relaxation of the equations, and define a notion of approximate solutions, also called
subsolutions. To this end, consider a pair (v, p) which solves the fractional Navier-Stokes
equations (2.1.3.1). Consider an averaging process which is linear and commutes with
derivatives (e.g. a mollification), and write v = v+w, where v is the “mean flow”, and w
is the “fluctuation”. If we take the average of the fractional Navier-Stokes equations, we
get: {

∂tv+divv⊗ v+∇p+(−Δ)𝜃v = 0
divv = 0 .

The second equation implies divw = 0, since divw = div(v− v) = divv−divv = 0−0.
The first equation can be rewritten as:

∂tv+div(v⊗ v)+∇p+(−Δ)𝜃v =−div(v⊗ v− v⊗ v) — −divR.

We thus have that (v, p) “almost solves” the fractional Navier-Stokes equations, and
−divR is, in some sense, an error term. Noting that, by Jensen’s inequality, R is positive
semidefinite, we have a definition of subsolutions, which is very similar to the one used in
[18, 19, 23].

Definition 4.1.1 (Subsolutions and strict subsolutions). A subsolution for the fractional
Navier-Stokes equations is a triple (v, p,R) : (0,T )×T3 → R3 ×R×S3×3

≥0 such that
v∈L2

loc, R∈L1
loc, p is a distribution, the equations{

∂tv+div(v⊗ v)+∇p+(−Δ)𝜃v =−divR
divv = 0 (4.1.1)

hold in the sense of distributions in (0,T )×T3, and moreover R ≥ 0 a.e., i.e. it is positive
semidefinite a.e.. If R∈S3×3

+ a.e., then the subsolution is said to be strict.

This system is known as fractional Navier-Stokes-Reynolds system, and is in perfect anal-
ogy to the Euler-Reynolds system (3.1.1) introduced in Chapter 3 for the Euler equations.
The two notions of subsolution are also analogous to those introduced in Chapter 3. The
following existence lemma holds for strict subsolutions.
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Lemma 4.1.1 (Existence of strict subsolutions). Let w∈L2(T3) with divw = 0. For any
𝛿 > 0 there exists a smooth strict subsolution (ṽ, p̃, R̃) defined on [0,T ) and a time T𝜂 ≤ T
such that

‖ṽ|t=0 −w‖L2(T3) ≤ 𝛿, (4.1.2)

and

1
2

∫
T3

(
|ṽ|2(t,x)+ tr R̃(t,x)

)
dx

+

t∫
0

∫
T3

∣∣∣(−Δ)
𝜃

2 ṽ
∣∣∣2(s,x)dxds ≤ 1

2

∫
T3

|w|2(x)dx+ 𝛿 ∀t∈ [0,T𝜂 ]. (4.1.3)

Moreover, T𝜂 → 0 as 𝜂 → 0.

The following proof is inspired by that of [67, Lemma 6.8, p. 38].
Proof.

Fix 𝜌∈C∞
c (B1(0)) a standard mollification kernel in space, and define:

𝜌𝜀(x) – 𝜀−3 𝜌(x𝜀−1).

To ensure the regularity of the initial datum, we consider the smoothed datum

w0 – w∗ 𝜌𝜂0,

where

𝜂0 – max

𝜂 : ‖w∗ 𝜌𝜂 −w‖L2 ≤ 𝛿

3
∧
∫
T3

[|w0|2 −|w|2](x)dx ≤ 2
3
𝛿

. (4.1.4)

By Theorem 2.4.2.1, there exists a solution (ṽ, p̃) with initial datum w0, where p̃ can be
recovered uniquely once we impose

∫
p̃ = 0.

We now fix a standard mollification kernel in time 𝜒 ∈C∞
c ((−1,0)) and, with 𝜌𝜀 , 𝜌 as

defined above, we define

𝜒𝜀(t) –
1
𝜀
𝜒
( t
𝜀

)

v(t,x) –

t+𝜀∫
t

(ṽ∗ 𝜌𝜀)(s,x) 𝜒𝜀(t − s)ds,

p(t,x) –

t+𝜀∫
t

(p̃∗ 𝜌𝜀)(s,x) 𝜒𝜀(t − s)ds,

R(t,x) – ṽ⊗ ṽ− v⊗ v,
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where

f =

t+𝜀∫
t

( f ∗ 𝜌𝜀)(s,x) 𝜒𝜀(t − s)ds.

By construction and since (ṽ, p̃) solves (2.1.3.1), (v, p,R) is a smooth solution of (4.1.1),
i.e. {

∂tv+div(v⊗ v)+∇p+(−Δ)𝜃v =−divR
divv = 0 .

By using Jensen’s inequality on [t, t + 𝜀]×T3 with the measure 𝜌𝜀(x− y) 𝜒𝜀(t − s)dxds,
we conclude that

R = ṽ⊗ ṽ− v⊗ v ≥ 0. (4.1.5)

Coming to the initial datum, we have that

v|t=0 =

𝜀∫
0

((ṽ−w0)∗ 𝜌𝜀)(s,x) 𝜒𝜀(−s)ds+w0 ∗ 𝜌𝜀 .

Taking the L2 norm, we can easily obtain that

‖v|t=0 −w0‖L2(T3) ≤ sup
t∈[0,𝜀]

‖ṽ(t, ·)−w0‖L2(T3)+‖w0 ∗ 𝜌𝜀 −w0‖L2(T3) — sup
t∈[0,𝜀]

It + II𝜀 .

II𝜀 can be made as small as we desire by choosing 𝜀 small enough. Let 𝜀0 be the maximal
parameter such that II𝜀 < 𝛿/3. As for sup It , using ṽt(x) – ṽ(t,x), we can obtain that

I2
t =

∫
T3

|ṽt −w0|2dx =
∫
T3

|ṽt |2 −|w0|2dx−2

t∫
0

∫
T3

〈∂t ṽ,w0〉dxds

∗
≤2

t∫
0

∫
T3

−(ṽs ⊗ ṽs) :Dw0 +
〈
ṽs,(−Δ)𝜃w0

〉
dxds

•
≤2
√

C(1−2𝜃)

t∫
0

‖ṽt‖L2[w0]1ds+2

t∫
0

‖ṽt‖2
L2‖Dw0‖L∞ds

≤ 2t‖Dw0‖L∞‖w0‖L2(
√

C(1−2𝜃) +2‖w0‖L2)≤ K(w)t‖Dw0‖L∞.

In ∗, we used the fact that ‖ṽt‖2
L2 ≤ ‖w0‖2

L2 , i.e. (1.3.1), as well as the fact that (ṽ, p̃) is a
solution of (2.1.3.1) and the fact that divw0 = 0. In •, we used Theorem 3.8.1, choosing
𝜀 = 1−2𝜃 . In the last step, we used that ‖w0‖L2 ≤ ‖w‖L2 . This becomes arbitrarily small
if we choose t appropriately small which, since we are taking t ≤ 𝜀, reduces to choosing
𝜀 small enough. Since Dw0 = D𝜌𝜂0 ∗w = 𝜂−4

0 D𝜌(𝜂−1
0 ·)∗w, Hölder’s inequality yields

‖Dw0‖L∞ ≤ 𝜂−4
0

∥∥D𝜌(𝜂−1
0 x)

∥∥
L2

x(B𝜂0)
‖w‖L2 ≤ 𝜂−4

0 𝜂2
0‖D𝜌‖C0‖w‖L2 =C(w)𝜂−2

0 ,
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so that, to ensure sup[0,𝜀] It ≤ 𝛿/3, we choose

𝜀 ≤ 𝛿𝜂2
0

3C(w)K(w)
— 𝜀.

Choosing 𝜀 – min{𝜀0,𝜀} thus yields

‖v|t=0 −w0‖L2 ≤ 2
3
𝛿 ∧‖w0 −w‖L2 ≤ 𝛿

3
=⇒ ‖v|t=0 −w‖L2 ≤ 𝛿.

We have thus obtained (4.1.2). As for (4.1.3), we first notice that, by the definition of R,
we have that ∫

T3

|v|2(t,x)+ trR(t,x)dx =
∫
T3

|ṽ|2(t,x)dx.

We have thus reduced (4.1.3) to the following inequality:

1
2

∫
T3

|ṽ|2(t,x)+
t∫

0

∫
T3

∣∣∣(−Δ)
𝜃

2 v
∣∣∣2(s,x)dxds ≤

∫
T3

|w|2(x)dx+ 𝛿.

Since (ṽ, p̃) satisfies (1.3.1), we can see that

1
2

∫
T3

|ṽ|2(t,x)+
t∫

0

∫
T3

∣∣∣(−Δ)
𝜃

2 v
∣∣∣2(s,x)dxds ≤ 1

2

∫
T3

|w|2dx+ 1
2

∫
T3

|w0|2 −|w|2dx

+
1
2

∫
T3

[|ṽ|2 −|ṽ|2](t,x)dx

+

t∫
0

∫
T3

[∣∣∣(−Δ)
𝜃

2 v
∣∣∣2 − ∣∣∣(−Δ)

𝜃

2 ṽ
∣∣∣2](s,x)dxds

—
1
2

∫
T3

|w|2dx+ I + II + III.

Our desired estimate (4.1.3) will then follow from

I ≤ 𝛿

3
II ≤ 𝛿

3
III ≤ 𝛿

3
. (4.1.6)

The first of these relations follows from (4.1.4).
The second relation in (4.1.6) is the reason why (4.1.3) only holds for small times. Indeed,
if we define N(t) –

∫
|ṽ|2(t,x)dx, we can see that

II(t) = ( 𝜒𝜀 ∗N)(t)−N(t).

To deduce our desired estimate, we would require this to be smaller than 𝛿/3 for all t,
or at least for a.e. t, since deducing the estimate for a.e. t implies that it holds for all
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t. However, this would mean 𝜒𝜀 ∗N → N uniformly a.e.. If N is not continuous, this is
impossible since 𝜒𝜀N is smooth. The best that we can obtain for ṽ on [0,T ] is ṽ∈C0

t L2
w,x,

that is t 7→ ṽ(t, ·) is continuous w.r.t. the weak L2 topology. However, that is not enough.
Indeed, with this continuity, the continuity of N would imply ṽ∈C0

t L2
x , which is not known

in general. However, since w0, there exists T𝜂 such that on [0,T𝜂 ] there exists a smooth
solution, for which N is indeed continuous. This implies the desired uniform convergence
on [0,T𝜂 ], and thus the desired estimate for t ≤ T𝜂 .
Coming to the third relation, we first rewrite and bound the integral of the first integrand:

t∫
0

∫
T3

∣∣∣(−Δ)
𝜃

2 v
∣∣∣2(s,x)dxds =

t∫
0

∫
T3

∣∣∣∣∣∣
s+𝜀∫
s

∫
T3

𝜌𝜀(x− y)(−Δ)
𝜃

2 ṽ(y,𝜏) 𝜒𝜀(t − 𝜏)dyd𝜏

∣∣∣∣∣∣
2

dxds

≤
t∫

0

s+𝜀∫
s

∫
T3

𝜌𝜀 ∗
∣∣∣(−Δ)

𝜃

2 ṽ
∣∣∣2(x,𝜏) 𝜒𝜀(t − 𝜏)dxd𝜏ds,

where we used Jensen’s inequality in the second step. Therefore, the remaining term is
estimated as:

III ≤
t∫

0

∫
T3

[∣∣∣(−Δ)
𝜃

2 ṽ
∣∣∣2(s,x)− ∣∣∣(−Δ)

𝜃

2 ṽ
∣∣∣2(s,x)]dxds.

We now note that, since ṽ∈L2
t H𝜃

x , we have that (−Δ)
𝜃/2 ṽ∈L2

t L2
x , and thus |(−Δ)

𝜃/2 ṽ|2∈
L1

t L1
x . Therefore, |(−Δ)𝜃/2 ṽ|2 −|(−Δ)

𝜃/2 ṽ|2 → 0 in L1
t L1

x , and the third relation of (4.1.6)
reduces to an opportune choice of 𝜀. Note that, in this case, the uniform convergence is
not a problem since we are integrating in t.
Summing up, (v, p,R) is a smooth solution of (4.1.1), which satisfies (4.1.3) and (4.1.2),
and R ≥ 0 by (4.1.5). The proof of Lemma 4.1.1 is thus complete. 3

4.2 Two “stronger” kinds of subsolutions
Since we are setting up a convex integration scheme which aims to prove a density result,
we must introduce strong and adapted subsolutions analogous to the notions seen in
Chapter 3 (Section 3.7). However, the notions we will use are a bit different to those from
that chapter. In particular, the notion of strong subsolution extends the ones of [19] and
[18]. As in [18], the Reynolds stress is controlled by a power of the trace. However, the
exponent 𝛾 will only act on the “reduced” trace 𝜌Ω−1, where Ω> 0 is a constant whose
role is explained in Section 4.3.

Definition 4.2.1 (Strong subsolutions). A strong subsolution with parameters 𝛾,Ω > 0
is a subsolution (v, p,R) such that in addition trR is a function of t only and, if

𝜌(t) –
1
3
(trR)(t) 𝜚(t) –

𝜌(t)
Ω

,

then ∣∣R̊(t,x)∣∣≤Ω 𝜚1+𝛾(t) ∀(t,x). (4.2.1)
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Remark 4.2.1 (On strength and parameters). In our schemes 𝜚will be sufficiently small
so that in particular 𝜚𝛾 ≤ r0, where r0 is the geometric constant in [19, Definition 3.2],
thus leading to the conclusion that (4.2.1) implies that our strong subsolutions are also
strong in the sense of [19], provided Ω= O(1) (specifically Ω 𝜚𝛾 ≤ r0). Note also that, if
(v, p,R) is a strong subsolution for some parameters 𝛾,Ω> 0 with 𝜚< 1, then it is also a
strong subsolution for any 0 < 𝛾 ′ < 𝛾 with the same Ω.

The last notion of subsolution has vanishing Reynolds stress at time t = 0 and theC1-norms
blow up at certain rates as the Reynolds stress goes to zero. Such adapted subsolutions
have been introduced in [19, 18]. The blow-up rate in the remainder of this thesis is
analogous to the one of [18]. Differently from [18], the blow-up is controlled by the
“reduced” trace 𝜚 rather than the “full” trace 𝜌, and the estimates include a power of Ω.

Definition 4.2.2 (Adapted subsolutions). Given 𝛾,Ω> 0,0 < 𝛽 < 1/3, and 𝜈 satisfying

𝜈 >
1−3𝛽

2𝛽
, (4.2.2)

we call a triple (v, p,R) a C 𝛽 -adapted subsolution on [0,T ] with parameters 𝛾,Ω, 𝜈 if
(v, p,R)∈C∞((0,T ]×T3)∩C([0,T ]×T3) is a strong subsolution with parameters 𝛾,Ω
with initial datum

v(0, ·)∈C 𝛽 (T3) and R(0, ·)≡ 0, (4.2.3)

and, setting 𝜌(t) – 1/3 trR(t,x) and 𝜚 – 𝜌Ω−1, for all t > 0 we have that 𝜌(t) > 0 and
there exist 𝛼∈(0,1) and C ≥ 1 such that

‖v‖1+𝛼 ≤CΩ
1
2 𝜚−(1+𝜈) (4.2.4)

|∂t 𝜚| ≤CΩ
1
2 𝜚−𝜈 . (4.2.5)

4.3 General strategy
The remainder of this thesis closely follows the convex integration strategy adopted by
[18] in the Euler setting and described in Section 3.7.
Chapter 5 shows how to obtain a strong subsolution from a strict one.
Chapter 6 states and proves the two propositions that allow us to make each step in the
two convex integration schemes, the gluing step of Sections 6.1-6.3, and the perturbation
step of Section 6.4.
Chapter 7 states and proves two propositions that allow us to approximate one kind of
subsolution (as defined in the previous sections) with another. More specifically, in Section
7.1 we approximate strict subsolutions with C 𝛽 -adapted ones, whereas in Section 7.2 we
approximate C 𝛽 -adapted subsolutions with weak solutions. The latter of those results
uses the parameters we will introduce in this section in (4.3.1).
Chapter 8 proves the main theorem starting from the results of Chapter 7.
In passing from one subsolution to the next, the C0 and C1 norms of the various subsolu-
tions are estimated in terms of parameters (𝛿q,𝜆q), where 𝛿

1/2
q is the amplitude (in space)
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of wq – vq − vq−1, and 𝜆q is the oscillation frequency (in space) of wq. The parameters,
however, are partially different from those chosen in [18] and closer to the ones used in
[19]. More precisely, we define

𝜆q – 2𝜋dabq
e 𝛿q – Λ𝜁q = 𝛿𝜆

2𝛽
1 𝜆−2𝛽

q 𝜁q – 𝜆−2𝛽
q Λ – 𝛿𝜆

2𝛽
1 , (4.3.1)

where

• dxe denotes the ceiling of x, i.e. the smallest integer n ≥ x;

• 𝛿 is a small parameter;

• 𝛽 ∈ (0,1/3) and b∈ (1,3/2) control the Hölder exponent of the scheme and are
required to satisfy

1 < b <
1− 𝛽

2𝛽
. (4.3.2)

• a � 1 is sufficiently large to absorb various q-independent constants in the course
of the proofs.

The parameter Λ, and thus the distinction between 𝛿q and 𝜁q, were absent in [18]. They
are added here to make sure 𝛿1 = 𝛿, thus making (5.2.2) an a-independent estimate. Thus,
in particular, we are allowed to bound Λ from below, since such a bound will be satisfied
for a large enough, but not to bound it from above, which would cause 𝛿 to depend on a.
With this choice of parameters, we must require the conditions

Λ≥ 1 (4.3.3)
1
3
> 𝛽 > 𝜃 + 𝜀 ′, (4.3.4)

for some positive 𝜀 ′. Condition (4.3.3) merely requires a to be sufficiently large.
The main convex integration step will consist in stating that, for a certain universal constant
M > 1, some sufficiently small 𝛼,𝛾 > 0, and a sufficiently large a � 1, if (vq, pq,Rq) is a
strong subsolution satisfying ∥∥R̊q

∥∥
0 ≤ Λ 𝜚1+𝛾

q (4.3.5)∥∥vq
∥∥

1+𝛼
≤ M𝛿

1
2
q𝜆

1+𝛼
q (4.3.6)

3
4
𝛿q+2 ≤ 𝜌q ≤

7
2
𝛿q+1 (4.3.7)∣∣∂t 𝜌q

∣∣≤ 𝜌q𝛿
1
2
q𝜆q (4.3.8)

∥∥vq
∥∥
𝜃+𝜀

≤ M

(
1+

q

∑
i=0

𝜆 𝜃+𝜀−𝛽
i

)
, (4.3.9)
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where 𝜌q – 1/3 trRq, and 𝜚q – Λ−1 𝜌q, then there exists (vq+1, pq+1,Rq+1) a strong
subsolution satisfying the conditions (4.3.5)-(4.3.9) with q replaced by q+1 as well as the
following additional estimate

∥∥vq+1 − vq
∥∥

0 +𝜆q+1
∥∥vq+1 − vq

∥∥
H−1 +𝜆−1−𝛼

q+1

∥∥vq+1 − vq
∥∥

1+𝛼
≤ M𝛿

1
2
q+1.

The proof consists of three steps:

1. A mollification step, moving from (vq, pq,Rq) to (v`q,i, p`q,i,R`q,i), where the mol-
lification parameter `q,i varies on suitably chosen subintervals, as required by the
different orders of the upper and lower bounds on 𝜌q in (4.3.7);

2. A gluing step, which goes from (v`q,i, p`q,i,R`q,i) to (vq, pq,Rq);

3. A perturbation step going from (vq, pq,Rq) to (vq+1, pq+1,Rq+1).

The change in condition (4.3.5) with respect to [18] was made in order to prevent the new
definition of 𝛿q from causing bounds of the form ΛA ≤ 1, with A > 0, to appear in the
proofs. Condition (4.3.9) was added in order to control the new trace terms.
Chapter 6 addresses all three steps. The gluing step was introduced in [40] to ensure R̊q is
supported in pairwise disjoint time intervals. This allows us to construct the perturbation
as w = ∑i(wo,i +wc,i), where the wo,i are Mikado flows with pairwise disjoint supports
and suppwc,i⊆suppwo,i, thus preventing w⊗w from containing “mixed terms” wo,i⊗wo, j
with i 6= j, which are harder to deal with.
Fixing 𝛼 > 0,𝛾 > 0, we also define

`q –
𝜁

1+ 𝛾
2

q+2

𝜁
1
2
q𝜆q𝜆

2𝛼
q+1

=
𝛿

1+ 𝛾
2

q+2Λ
−𝛾

2

𝛿
1
2
q𝜆q𝜆

2𝛼
q+1

(4.3.10)

𝜏q –
`4𝛼

q

𝛿
1
2
q𝜆q

. (4.3.11)

Remark 4.3.1 (Homogeneity in Λ of `q,𝜏q). `q, as well as the `q,i defined in Section 6.3,
are 0-homogeneous in Λ, whereas 𝜏q is 1/2-homogeneous. The last property allows us to
cancel the Λ1/2 factors we will see appearing in the course of the proof.

We also assume
𝛿

1
2
q+1𝛿

1
2
q𝜆q

𝜆
1−15𝛼−𝛽 𝛾
q+1

≤ 𝛿q+2, (4.3.12)

which can be achieved if a is sufficiently large assuming (15𝛼+ 𝛽 𝛾)b < (b−1)(1− 𝛽 −
2b𝛽 ). Moreover, we assume

𝜆−1
q+1 ≤ `q ≤ 𝜆−1

q . (4.3.13)
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The right inequality in (4.3.13) is evident from the definition. The left inequality can be
reduced to −b < 𝛽b2(1+ 𝛾)+ 𝛽 −1−2b𝛼, which can easily be verified for 𝛼 = 0 = 𝛾 ,
and thus also for 𝛼,𝛾 sufficiently small. We will in fact need the following sharper bound:

𝜆 1−N
q+1 ≤ `N+1

q , (4.3.14)

which can be achieved by imposing the following condition:

N[(b−1)(1− 𝛽 (b+1))− 𝛾 𝛽b2 −2𝛼b]> 1+b+(1+ 𝛾)𝛽b2 +2𝛼b− 𝛽 . (4.3.15)

The above conditions can be obtained by choosing, in this order

• b, 𝛽 as in (4.3.2), so that in particular 𝛽 (1+b)< 1;

• 0 < 𝛼,𝛾 sufficiently small depending on b, 𝛽 ;

• N∈N sufficiently large depending on b, 𝛽 ,𝛼,𝛾 so as to get (4.3.15).

One last notational remark: A ≲ B (resp. A ≳ B) will mean A ≤C(b, 𝛽 ,𝛼,𝛾,M)B (resp.
A ≥C(b, 𝛽 ,𝛼,𝛾,M)B), or C(N,b, 𝛽 ,𝛼,𝛾,M) if norms depending on N are involved (e.g.
CN+1+𝛼-norms). A ∼ B will mean A ≲ B and A ≳ B. Note that C does not depend on
a � 1.
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Chapter 5

First approximation

As discussed in Section 4.3 above, the first step in the proof of the main result of this thesis
is to approximate strict subsolutions with strong subsolutions. The strategy to that end, as
in [19] and [18], proceeds in two steps:

• We first prove a proposition that gives a “perturbation strategy” for smooth solutions
of (4.1.1);

• We then apply it to strict subsolutions and obtain, as a corollary, that they can be
approximated by strong subsolutions with additional properties necessary to then
start the first convex integration scheme (as is done in Section 7.1).

This chapter is devoted to those two steps.

5.1 The approximation proposition
The first of the above steps is provided by an analogue of [19, Proposition 3.1].

Proposition 5.1.1. Let (ṽ, p̃, R̃) be a smooth solution of (4.1.1), and S ∈C∞([0,T ]×
T3;S3×3

+ ) be a smooth positive-definite matrix field. Fix 𝛼∈ (0,1) and 𝜀 > 0. Then for
any 𝜆 > 1 there exists a smooth solution (v̌, p̌, Ř) of (4.1.1) with

(v̌, p̌, Ř) = (ṽ, p̃, R̃) for t 6∈supptrS, (5.1.1)∫
T3

(
|v̌|2 + tr Ř

)
(x, t)dx =

∫
T3

(
|ṽ|2 + tr R̃

)
(x, t)dx ∀t∈ [0,T ], (5.1.2)

and the following estimates hold

‖v̌− ṽ‖H−1 ≤ C
𝜆

(5.1.3)

‖v̌‖k ≤C𝜆 k k = 1,2 (5.1.4)∥∥R̃− Ř−S
∥∥

N ≤ C
𝜆 1−2𝜃−𝛼−N (5.1.5)
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Moreover, tr(R̃(x, t)− Ř(x, t)−S(x, t)) — 𝜇(t) is a function of t only and satisfies∣∣𝜇′∣∣(t)≤C𝜆 𝛼 . (5.1.6)

The constant C ≥ 1 above depends on (ṽ, p̃, R̃),S and 𝛼, but not on 𝜆 . Finally, defining

Ť(t) –

t∫
0

∫
T3

(∣∣∣(−Δ)
𝜃

2 v̌(x,s)
∣∣∣2 − ∣∣∣(−Δ)

𝜃

2 ṽ(x,s)
∣∣∣2)dxds,

we have that ∣∣∂tŤ(t)
∣∣≤C𝜆 2(𝜃+𝜀). (5.1.7)

Proof.
Define the inverse flow of ṽ, Φ : T3 × [0,T ]→ T3, as the solution of{

∂tΦ(x, t)+(ṽ ·∇)Φ(x, t) = 0
Φ(x,0) = x x∈T3 ,

and set
R(x, t) =DΦ(x, t)S(x, t)DTΦ(x, t).

Observe that R is defined on the compact set T3 × [0,T ] and, being continuous, has a
compact image N0 – R(T3 × [0,T ])⊂S3×3

+ .
By Lemma C.1 there exists a smooth vector field W : N0 ×T3 → T3 satisfying the

differential equations (C.1) and the integral equations (C.2). Define

wo(x, t) =DΦ−1W (R,𝜆Φ(x, t))

wc(x, t) =
1
𝜆

curl(DTΦU(R,𝜆Φ(x, t)))−wo,

where U =U(R,𝜉 ) is defined as in (C.7) and thus satisfies curl𝜉 U =W . Moreover, set

v̌ – ṽ+wo +wc p̌ = p̃+ p Ř – R̃−S− E̊(1)−E(2),

where

p – − 1
3
(wc · v̌+wo ·wc)

E̊(1) – R(F)+(wc ⊗ v̌+wo ⊗wc + p Id)
F – div(wo ⊗wo −S)+(∂t + ṽ ·∇)wo

+[(wo +wc) ·∇]ṽ+∂twc +(−Δ)𝜃(wo +wc)

E(2) –
1
3
·−
∫
T3

(
|v̌|2 −|ṽ|2 − trS

)
dx · Id,

with R defined as in (C.11). By construction, the relation (5.1.2) holds, E̊(1) is traceless,
E(2) is only t-dependent (and thus divE(2) = 0), F is mean-free (and thus divR(F) = F),
and (v̌, p̌, Ř) solves (4.1.1). To verify this last claim, we can see that

div E̊(1) = div(v̌⊗ v̌− ṽ⊗ ṽ−S+ p Id)+∂t(v̌− ṽ)+(−Δ)𝜃(wo +wc)

= ∂t v̌+div(v̌⊗ v̌−S+ R̃)+∇ p̌+(−Δ)𝜃 v̌.
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We call w – wo +wc = v̌− ṽ. Recall that

W (R,𝜉 ) = ∑
k 6=0

ak(R)Akeik·𝜉

U(R,𝜉 ) = ∑
k

ak(R)
ik×Ak

|k|2
eik·𝜉 ,

which are respectively (C.3) and (C.7), with the ak satisfying (C.5). This allows us to
decompose

wo = ∑
k 6=0

DΦ−1ak(DΦSDTΦ)Akeik·𝜆Φ = ∑
k 6=0

bkeik·𝜆Φ (5.1.8)

wc =
i
𝜆 ∑

k 6=0
∇(ak(DΦSDTΦ))×DTΦ(k×Ak)

|k|2
eik·𝜆Φ = ∑

k 6=0

ck
𝜆

eik·𝜆Φ. (5.1.9)

We next obtain estimate (5.1.5). To that end, we decompose E̊(1) as follows:

E̊(1) =R div(wo ⊗wo −S)+R[(∂t + v ·∇)wo]

+R(w ·∇v)+R(∂twc)+(wc ⊗̊ v̌+wo ⊗̊wc)+R((−Δ)𝜃w)
— I + II + III + IV + IV +V +V I.

Noting that V is the traceless part of wc⊗ v̌+wo⊗wc, and any estimate on this will imply
the same estimate for V , we proceed to reproduce the arguments used in [19] estimate the
first five terms, and then prove estimates for E(2) and V I.

We start by estimating I. By (C.4) we have that

wo ⊗wo −S = ∑
k
DΦ−1Ck(R)DΦ−T ei𝜆k·Φ — ∑

k
dkeu𝜆k·Φ.

Using (C.8), we see that
div(dkei𝜆k·Φ = divdkei𝜆k·Φ,

so that
div(wo ⊗wo −S) = ∑

k
div(dk)ei𝜆k·Φ.

We can thus estimate term I by (C.14):

‖I‖0 ≤ ∑
k

∥∥∥R(div(dk)ei𝜆k·Φ)
∥∥∥
𝛼
≲ ∑

k

[
‖divdk‖0

|k𝜆 |1−𝛼
+

‖divdk‖N+𝛼 +‖divdk‖0‖Φ‖N+𝛼

|k𝜆 |N−𝛼

]
≲ 1

𝜆 1−𝛼 ∑
k

[
‖dk‖1

|k|1−𝛼
+

‖dk‖N+1+𝛼 +‖dk‖1‖Φ‖N+𝛼

|k𝜆 |N−1|k|1−𝛼

]
.

Since the coefficients dk are smooth, they will satisfy a bound of the form ‖dk‖ ≲ |k|−5.
This yields that div(wo ⊗wo −S) satisfies (5.1.5) in the case N = 0. The other cases can
be tackled by observing that any derivative will add a factor of 𝜆 to the estimate when
differentiating the exponential.
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As for the terms II, III, IV , since the coefficients bk,ck also satisfy an estimate of the
form ‖bk‖ ≲ |k|−5, a similar application of (C.14) to the one above will estimate them
once we rewrite them as:

II = ∑
k
R
[
(∂t + v ·∇)(bk)ei𝜆k·Φ

]
III = ∑

k
R
[(

bk +
ck
𝜆

)
·∇vei𝜆k·Φ

]
IV = ∑

k
R

(
∂tck
𝜆

ei𝜆k·Φ
)
.

Coming to V , we can rewrite it as:

V =
1
𝜆 ∑

k
(ck ⊗ v̌+wo ⊗ ck)ei𝜆k·Φ,

which easily yields that
‖V‖0 ≲

1
𝜆
.

For all these terms, we once again note that any extra derivative on the exponential costs
a factor of 𝜆 .

E(2) is estimated in a similar fashion to how we estimate E̊(1) below.
Finally, to estimate R((−Δ)𝜃w), using the fact that [R,(−Δ)𝜃 ] = 0 and (3.8.1), we

see that

∥∥R((−Δ)𝜃w)
∥∥

0 ≲ ‖Rw‖2𝜃+𝛼 ≲ ∑
k

(∥∥bk +𝜆−1ck
∥∥

0

|𝜆k|1−𝛼−2𝜃 +

∥∥bk +𝜆−1ck
∥∥

N+2𝜃+𝛼

|𝜆k|N−2𝜃−𝛼

+

∥∥bk +𝜆−1ck
∥∥

0‖Φ‖N+2𝜃+𝛼

|𝜆k|N−2𝜃−𝛼

)
≲ 𝜆 𝛼+2𝜃−1 ·∑

k

(
1

|k|7−𝛼−2𝜃 +
1+CΦ(N,𝛼, 𝜃)

𝜆N−1|k|N+6−2𝜃−𝛼

)
,

where we used (C.5) to get the extra |k|−6 in each term, and the boundedness of Φ to get
the CΦ(N,𝛼, 𝜃).

Concerning (5.1.4), the smoothness of Φ,S combined with (C.5) gives us

max{‖ck‖N ,‖bk‖N}≲ |k|−m, (5.1.10)

for all integers m > 0, where the bk and ck are as in the decompositions of wo,wc above.
This easily allows us to conclude that

‖w‖N ≲ 𝜆N ,

since differentiating the exponential gives us a factor of 𝜆 for each derivative. We then
note that

‖v̌‖N ≤ ‖ṽ‖N +‖w‖N ≲ 1+𝜆N ≲ 𝜆N ,
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where the second step used the smoothness of ṽ. For N = 1,2 the above reduces to (5.1.4).
Next, we prove estimate (5.1.3). Let f ∈H1, and observe that:∣∣∣∣∣∣

∫
T3

(v̌− ṽ) f dx

∣∣∣∣∣∣=
∣∣∣∣∣∣
∫
T3

w f dx

∣∣∣∣∣∣= 1
𝜆

∣∣∣∣∣∣
∫
T3

curl(DTΦU(R,𝜆Φ(x, t))) f dx

∣∣∣∣∣∣
≲ 1

𝜆

∥∥DTΦU(R,𝜆Φ(x, t))
∥∥

L2‖∇ f‖L2 ≲ 1
𝜆
‖ f‖H1,

since DTΦU(R,𝜆Φ(x, t))∈C∞⊂L2. This yields (5.1.3).
To continue, we note that 𝜇= trE(2) =−

∫
|v̌|2−|ṽ|2− trSdx. ṽ and trS are both smooth,

so they are bounded. In order to estimate
∫
|v̌(t)|2, note that the following energy identity

for v̌ follows from (4.1.1):

∂t
1
2
|v̌|2 +div

(
v̌
(
|v̌|2

2
+ p̌
))

+ v̌ · (−Δ)𝜃 ṽ = − v̌ ·div(Ř+R((−Δ)𝜃w)+E(2))

= − v̌ ·div(R̃−S)

+ v̌ ·div(E̊(1)−R((−Δ)𝜃w)).

Moreover, we already saw above that∥∥∥E̊(1)−R((−Δ)𝜃w)
∥∥∥

0
≲ 𝜆 𝛼−1.

These two bounds, by integrating in x and using (5.1.4), yield∣∣∣∣ d
dt

−
∫

1
2
|v̌|2dx

∣∣∣∣≲−
∫
|v̌|
∣∣div(R̃−S)

∣∣+ |∇v̌|
∣∣∣E̊(1)−R(((−Δ)𝜃w))

∣∣∣dx ≤C(1+𝜆 𝛼).

Thus, the estimate (5.1.6) is proved.
The last thing left is to estimate |∂tŤ|. Combining some simple calculations with

(5.1.4), (3.8.1), (3.8.2), and (A.2), we obtain that

∣∣∂tŤ
∣∣=
∣∣∣∣∣∣
∫
T3

∣∣∣(−Δ)
𝜃

2 v̌
∣∣∣2 − ∣∣∣(−Δ)

𝜃

2 ṽ
∣∣∣2dxds

∣∣∣∣∣∣=
∣∣∣∣∣∣
∫
T3

[2(−Δ)
𝜃

2 ṽ+(−Δ)
𝜃

2 w] · (−Δ)
𝜃

2 wdxds

∣∣∣∣∣∣
≲

∣∣∣∣∣∣
∫
T3

2(−Δ)
𝜃

2 ṽ · (−Δ)
𝜃

2 wdxds

∣∣∣∣∣∣+[w]2𝜃+𝜀ds ≲ ‖ṽ‖𝜃+𝜀‖w‖𝜃+𝜀︸ ︷︷ ︸
—I

+𝜆 2(𝜃+𝜀).

The velocity ṽ is bounded by smoothness, so I ≤ K(ṽ, 𝜃 ,𝜀)𝜆 𝜃+𝜀 . Since 𝜆 > 1, this yields
(5.1.7), thus concluding the proof. 3

5.2 From strict to strong subsolutions
The second of the two steps in this chapter is given by the following corollary, which is an
adaptation to the hypodissipative Navier-Stokes case of [18, Corollary 4.1].
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Corollary 5.2.1 (Strict to strong). Let (ṽ, p̃, R̃) be a smooth strict subsolution on [0,T ].
There exist 𝛿,𝛾 > 0 such that the following holds.

For any 0 < 𝛿 < 𝛿, 𝛼,𝛾 > 0 and 0 < 𝜀 < 𝛽 − 𝜃 sufficiently small, there exists a smooth
strong subsolution (v̌, p̌, Ř) with Ř(x, t) = �̌�(t) Id+ ˚̌R(x, t), and a “dissipative trace term”
as isolated in Proposition 5.1.1, i.e.

Ť(t) –

t∫
0

∫
T3

(∣∣∣(−Δ)
𝜃

2 ṽ(x,s)
∣∣∣2 − ∣∣∣(−Δ)

𝜃

2 v̌(x,s)
∣∣∣2)dxds,

such that, for all t∈ [0,T ]∫
T3

(
|ṽ(x, t)|2 + tr R̃(x, t)

)
dx =

∫
T3

(
|v̌(x, t)|2 + tr Ř(x, t)

)
dx (5.2.1)

3
4
𝛿 ≤ �̌� ≤ 5

4
𝛿 (5.2.2)∣∣∣ ˚̌R

∣∣∣≤ Λ �̌�1+𝛾 (5.2.3)

‖v̌− ṽ‖H−1 ≤ 𝛿𝜆−1
0 (5.2.4)

‖v̌‖1+𝛼 ≤ 𝛿0𝜆
1+𝛼
0 (5.2.5)

|∂t �̌�(t)| ≤ 𝛿𝛿
1
2
0𝜆0 (5.2.6)∣∣∂tŤ(t)

∣∣≤ Λ
1
2𝛿

1
2
0𝜆

𝜃+𝜀
0 (5.2.7)

‖v̌‖𝜃+𝜀 ≤ K(1+ 𝛿
1
2
0𝜆

𝜃+𝜀
0 ). (5.2.8)

where �̌� – Λ−1 �̌�, the constant K depends on (ṽ, p̃, R̃) and 𝜀, the parameters 𝛿q,𝜆q, 𝜁q,Λ
are defined as in (4.3.1) with sufficiently large a, and 𝛼 is the small parameter from Section
4.3.

The proof will proceed by first reducing all the claims in the corollary to a series of
conditions on 𝜆 , and then, at the end, proving that all those conditions can be satisfied
simultaneously. This is necessary because some of them are upper bounds on 𝜆 , and some
are lower bounds.
Proof.

Let
𝛿 –

1
2

inf
{

R̃(x, t)𝜉 · 𝜉 : |𝜉 |= 1,x∈T3, t∈ [0,T ]
}
.

Since R̃ is a smooth positive definite tensor on a compact set, 𝛿 > 0. Then S – R̃− 𝛿 Id
is positive definite for any 𝛿 < 𝛿. We may in addition assume without loss of generality
that 𝛿 ≤ 1. We apply Proposition 5.1.1 with (ṽ, p̃, R̃),S, and 𝛼∈(0,1),𝜀 > 0 to be chosen
below. This yields a smooth solution (v̌, p̌, Ř) of (4.1.1) with properties (5.1.2), (5.1.3)-
(5.1.5), and (5.1.6). We first note that (5.2.1) coincides with (5.1.2). Next, we observe
that Ř− R̃+S = Ř− 𝛿 Id, so that, since 𝜇(t) = tr(Ř− R̃+S) is a function of time only, the
function

�̌� =
1
3

tr Ř =
1
3

tr(Ř− 𝛿 Id)+ 𝛿 =
1
3

tr(Ř− R̃+S)+ 𝛿 (5.2.9)
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is independent of x.
Let us now prove (5.2.2). By the above and (5.1.5) for N = 0, we have that

| �̌�− 𝛿|= 1
3

∣∣tr(Ř− R̃+S)
∣∣≤ ∥∥Ř− R̃+S

∥∥
0 ≤C𝜆 2𝜃+𝛼−1, (5.2.10)

We require now the following condition on 𝜆 :

C𝜆 2𝜃−1+𝛼 ≤ 𝛿
1
2
0𝜆

2𝜃−1+𝛼
0 . (5.2.11)

Then we notice that, for 𝛾 sufficiently small and a sufficiently large, we have that

𝛿
1
2
q𝜆

2𝜃+𝛼−1
q ≤ 1

4
𝛿q+1𝜁

𝛾
q+1. (5.2.12)

Indeed, rewriting the above in terms of 𝜆q, it reads

Λ
1
2𝜆−𝛽+2𝜃+𝛼−1

q ≤ Λ𝜆−2b𝛽 (1+𝛾)
q .

Since Λ≥ 1 by (4.3.3), this reduces to showing that

−𝛽 +2𝜃 +𝛼−1 <−2b𝛽 (1+ 𝛾). (5.2.13)

and taking a sufficiently large. In turn, (5.2.13) can be proved using that, by assumption,
𝜃 < 𝛽 ,2b𝛽 < 1− 𝛽 (see (4.3.2)), and taking 𝛼,𝛾 sufficiently small. Thus (5.2.12) is
proved.

Now from (5.2.10), (5.2.11), and (5.2.12) for q = 0, it follows that

| �̌�− 𝛿| ≤ 1
4
𝛿1𝜁

𝛾
1 =

1
4
Λ−𝛾𝛿1+𝛾 ≤ 1

4
𝛿, (5.2.14)

where in the last inequality we used the fact that 𝛿 < 1 < Λ. We have thus proved (5.2.2).
From this estimate we can in turn deduce (5.2.3). Indeed, since ˚̌R = ˚̌R− ˚̃R+ S̊, by

chaining the inequalities (5.1.5) for N = 0, (5.2.11), and (5.2.12) for q = 0, we analogously
deduce that:∣∣∣ ˚̌R

∣∣∣≤ 1
4
𝛿1𝜁

𝛾
1 =

1
4
Λ−𝛾𝛿1+𝛾 ≤

(
3
4

)1+𝛾

𝛿1+𝛾Λ−𝛾 ≤ �̌�1+𝛾Λ−𝛾 ≤ Λ �̌�1+𝛾 .

The bound (5.2.4) follows from (5.1.3) together with the following condition on 𝜆 :

C𝜆−1 ≤ 𝛿𝜆−1
0 . (5.2.15)

To obtain (5.2.5), we first use standard interpolation estimates together with (5.1.4) to
obtain that

‖v̌‖1+𝛼 ≤CI‖v̌‖1−𝛼
1 ‖v̌‖𝛼2 ≤CIC𝜆 1+𝛼 .

Therefore, (5.2.5) reduces to the following condition on 𝜆 :

CCI𝜆
1+𝛼 ≤ 𝛿

1
2
0𝜆

1+𝛼
0 , (5.2.16)
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The estimate (5.2.6) follows from (5.1.6) and (5.2.9), giving

|∂t �̌�|=
1
3

∣∣∂t tr(Ř− R̃+S)
∣∣≤ C

3
𝜆 𝛼 .

Therefore, (5.2.6) amounts to
C
3
𝜆 𝛼 ≤ 𝛿Λ

1
2𝜆

1−𝛽
0 . (5.2.17)

Since by (5.1.7) one has that |∂tŤ| ≤C𝜆 2(𝜃+𝜀), to obtain (5.2.7) we require

C𝜆 2(𝜃+𝜀) ≤ Λ
1
2𝛿

1
2
0𝜆

𝜃+𝜀
0 . (5.2.18)

Finally, to obtain (5.2.8), we note that v̌ is smooth and thus bounded by a constant C0, so
that, by interpolation and (5.1.4), we have that

‖v̌‖𝜃+𝜀 ≤CI‖v̌‖1−𝜃−𝜀
0 ‖v̌‖𝜃+𝜀

1 ≤CIC1−𝜃−𝜀
0 (C𝜆 )𝜃+𝜀 .

Therefore, we will require

CIC1−𝜃−𝜀
0 (C𝜆 )𝜃+𝜀 ≤ 𝛿

1
2
0𝜆

𝜃+𝜀
0 . (5.2.19)

To conclude the proof of the corollary, we now show that, for suitable choices of 𝛿,𝛾,𝛼,
there exists a 𝜆 satisfying conditions (5.2.11), (5.2.15), (5.2.16), (5.2.17), (5.2.18), and
(5.2.19).

In particular, for fixed constants C,K independent of the parameters a,𝛿,b,𝛼, 𝛽 , the
following conditions must be satisfied by 𝜆 :

𝜆 ≥ K𝛿
1
2
(2𝜃−1+𝛼)−1

0 𝜆0 (5.2.20)
𝜆 ≥ K𝛿−1𝜆0 (5.2.21)

𝜆 ≤C𝜆0𝛿
1

2+2𝛼
0 (5.2.22)

𝜆 ≤C𝛿
1
𝛼Λ

1
2𝛼𝜆

1− 𝛽

𝛼

0 (5.2.23)

𝜆 ≤CΛ
1

4(𝜃 + 𝜀)𝛿
1

4(𝜃 + 𝜀)

0 𝜆
1
2
0 (5.2.24)

𝜆 ≤C𝛿
1
2
(𝜃+𝜀)−1

0 𝜆0 (5.2.25)

First we choose 𝛿 < 1, and 𝛼,𝛾 sufficiently small, and then show that, for a sufficiently
large there exists a 𝜆 satisfying all the above inequalities.

First of all, notice that, since 𝛿0 = 𝛿𝜆
2𝛽 (b−1)
0 � 1 if 𝛿 is fixed and a is sufficiently

large, then (5.2.21) implies (5.2.20), and (5.2.22) implies (5.2.25) independently of the
choice of 𝛼 > 0, since 𝜃 + 𝜀 < 𝛽 <

1
3
< 1+𝛼.

Hence, we are left with showing that (5.2.21) is compatible with (5.2.22)-(5.2.24).
The compatibility of (5.2.21) and (5.2.22), independently of 𝛼 > 0, is straightforward,

since 𝛿0 � 1 when a is sufficiently large.
Inequality (5.2.23) does not contradict (5.2.21) provided we choose 𝛼 so small that

1−𝛽

𝛼
> 1, and then a sufficiently large.
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The compatibility of (5.2.21) with (5.2.24) rewrites as

𝜆
1
2
0 ≤

C𝛿

K
Λ

1
4(𝜃 + 𝜀)𝛿

1
4(𝜃 + 𝜀)

0

and, inserting the definitions of 𝛿0,Λ,𝜆1, as

𝜆
1
2
0 ≤

C
K
𝛿

1
2(𝜃 + 𝜀)

+1
𝜆
(2b−1)

(
𝛽

2(𝜃 + 𝜀)

)
0 .

Hence the above reduces to showing that

1
2
≤ 𝛽 (2b−1)

2(𝜃 + 𝜀)
,

which holds since b > 1 and 𝜃 + 𝜀 < 𝛽 .
The proof is thus complete. 3
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Chapter 6

The iterative step

6.1 Partitioning the time interval
As stated in Section 4.3, the proof of the theorem continues with two convex integration
schemes. The first one approximates strong subsolutions (and thus strict subsolution by
the result of the previous chapter) with adapted subsolutions, whereas the second one
approximates adapted subsolutions with weak solutions.

Each step of these iterations consists of a mollification step, a gluing step, and a
perturbation step. The first two are performed together in Proposition 6.3.1, whereas the
last one is carried out in Proposition 6.4.1. In order to perform the gluing step, we need
a suitable partition of the time interval [0,T ] into intervals of length 𝜏q.

Definition 6.1.1 (Decomposing the time interval). Let 0 ≤ T1 < T2 ≤ T such that T2 −
T1 > 4𝜏q. We define sequences of intervals {Ii},{Ji} as follows. Let

ti – i𝜏q Ii –

[
ti +

1
3
𝜏q, ti +

2
3
𝜏q

]
∩ [0,T ], (6.1.1)

and let

n –

{
min

{
i : ti − 2

3
𝜏q ≥ T1

}
T1 > 0

0 T1 = 0
n – max

{
i : ti +

2
3
𝜏q ≤ T2

}
. (6.1.2)

Moreover, define

Ji –

(
ti −

1
3
𝜏q, ti +

1
3
𝜏q

)
∩ [0,T ] n ≤ i ≤ n

Jn−1 –

[
0, tn −

2
3
𝜏q

)
Jn+1 –

(
tn +

2
3
𝜏q,T

]
.

(6.1.3)

These form a pairwise disjoint decomposition of [0,T ]:

[0,T ] = Jn−1 ∪ In−1 ∪ [Jn ∪ . . .∪ Jn]∪ In ∪ Jn+1, (6.1.4)

and
tn < T1 +

5
3
𝜏q < T2 −

5
3
𝜏q < tn. (6.1.5)

Moreover, if T1 > 0, n ≥ 1, otherwise we have both that n = 0 and that Jn−1 ∪ In−1 =∅.
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6.2 A technical lemma

We now prove a technical lemma, which will be used to simplify the proof of the gluing
step in the next section. To state it, we need a couple of definitions.

Given a strong subsolution (v, p,R) with 𝜌 –
1
3

trR and 𝜚 – Λ−1 𝜌, we will define:

(𝜌i, 𝜚i, `q,i) –

𝜌(ti), 𝜚(ti),
𝜚

1+ 𝛾
2

i

𝜁
1
2
q𝜆

1+𝛼
q `−𝛼

q

, (6.2.1)

where 𝛼,𝛾 are the parameters of Section 4.3. Assuming a � 1 is sufficiently large (as in
(4.3.13), depending on 𝛼,𝛾,b) and 𝜌 ≳ 𝛿q+2, we may ensure that

𝜆−1
q+1 ≤ `q ≤ `i ≤ 𝜆−1

q . (6.2.2)

Since we will always be working with 𝜃 < 𝛽 , recalling `−1
q ≤ 𝜆q+1, and assuming 𝜀 ≤ 𝛼,

we observe that

𝜏q`
−2𝜃−𝜀
q,i ≤ 𝜏q`

−2𝜃−𝜀
q ≤ `3𝛼

q Λ−1
2

(
𝜁

1
2
q𝜆q

)−1

𝜆 2𝜃
q+1 ≤ `3𝛼

q 𝜆 𝛽−1+2b𝜃
q < `3𝛼

q , (6.2.3)

for b sufficiently close to 1.

Lemma 6.2.1 (Material derivative estimates for subsolutions and potentials). Let
(v, p,R), (v′, p′,R′)be two solutions of (4.1.1), and let z – (−Δ)−1 curlv,z′ – (−Δ)−1 curlv.
Then the following estimates hold for every N∈N,𝛼∈(0,1):∥∥(∂t + v ·∇+(−Δ)𝜃)(v− v′)

∥∥
N+𝛼

≲
∥∥v− v′

∥∥
N+𝛼

(‖v‖1+𝛼 +
∥∥v′
∥∥

1+𝛼
)

+
∥∥v− v′

∥∥
𝛼
(‖v‖N+1+𝛼 +

∥∥v′
∥∥

N+1+𝛼
)

+
∥∥R−R′∥∥

N+1+𝛼
(6.2.4)∥∥(∂t + v ·∇+(−Δ)𝜃)(z′− z)

∥∥
N+𝛼

≲
∥∥z′− z

∥∥
N+𝛼

‖v‖1+𝛼

+
∥∥z′− z

∥∥
𝛼
‖v‖N+1+𝛼

+
∥∥R′−R

∥∥
N+𝛼

. (6.2.5)

If in addition we assume that vt0 − v′t0 = 0 for some time t0 and the following estimates
hold:

max{‖v‖N+1+𝛼 ,
∥∥v′
∥∥

N+1+𝛼
}≲ 𝛿

1
2
q𝜆

1+𝛼
q `−N

q,i (6.2.6)

max{‖v‖𝜃+𝜀 ,
∥∥v′
∥∥
𝜃+𝜀

}≲ Λ
1
2 (6.2.7)

max{‖R‖N+𝛼 ,
∥∥R′∥∥

N+𝛼
}≲ Λ 𝜚

1+𝛾
i `−N−𝛼

q,i , (6.2.8)
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then the following estimates hold on [t0, t0 +
4
3
𝜏q]:∥∥v′− v

∥∥
N+𝛼

≲ Λ
1
2 𝜚

1+ 𝛾

2
i `−N

q,i `
𝛼
q (6.2.9)∥∥(−Δ)𝜃(v′− v)

∥∥
N+𝛼

≲ Λ
1
2 𝜚

1+ 𝛾

2
i `−2𝜃−𝜀−N

q,i `𝛼q

≲ Λ 𝜚
1+𝛾
i `−1−N−𝛼

q,i (6.2.10)∥∥(∂t + v ·∇+(−Δ)𝜃)(v′− v)
∥∥

N+𝛼
≲ Λ 𝜚

1+𝛾
i `−1−N+2𝛼

q,i (6.2.11)∥∥z′− z
∥∥

N+𝛼
≲ Λ𝜏q 𝜚

1+𝛾
i `−N

q,i `
−𝛼
q (6.2.12)∥∥(∂t + v ·∇+(−Δ)𝜃)(z′− z)

∥∥
N+𝛼

≲ Λ 𝜚
1+𝛾
i `−N−𝛼

q,i (6.2.13)∥∥(−Δ)𝜃(z′− z)
∥∥

N+𝛼
≲ Λ𝜏q 𝜚

1+𝛾
i `−N−2𝜃−𝜀

q,i `−𝛼
q

≲ Λ 𝜚
1+𝛾
i `−N

q,i `
−𝛼
q (6.2.14)∣∣∣∣∣∣ d

dt

∫
T3

∣∣v′∣∣2 −|v|2dx

∣∣∣∣∣∣≲ Λ 𝜚1+𝛾
i 𝜏−1

q `2𝛼
q . (6.2.15)

Note that, since the proofs require the Schauder estimates of Lemma A.4, this result does
not hold for 𝛼 = 0.
Proof.

First of all, we observe that:

(∂t + v ·∇+(−Δ)𝜃)(v− v′) = −∇p−divR− [(v− v′) ·∇]v′+∇p′+divR′

= − [(v− v′) ·∇]v′−∇(p− p′)−div(R−R′).

The first and third term clearly satisfy (6.2.4). We thus focus on the pressure term. Taking
divergence:

Δ(p− p′) = div{−(v ·∇)(v− v′)− [(v− v′) ·∇]v′−div(R−R′)}.

We then note that:

div[a ·∇b−b ·∇a] = a ·∇divb−b ·∇diva, (6.2.16)

which, combined with Schauder estimates, yields:∥∥∇(p− p′)
∥∥

N+𝛼
≤
∥∥p− p′

∥∥
N+1+𝛼

≲
∥∥[(v− v′) ·∇](v+ v′)+div(R−R′)

∥∥
N+𝛼

≲
∥∥v− v′

∥∥
N+𝛼

∥∥v+ v′
∥∥

1+𝛼
+
∥∥v− v′

∥∥
𝛼

∥∥v+ v′
∥∥

N+1+𝛼
+
∥∥R−R′∥∥

N+1+𝛼
.

This yields the desired estimate (6.2.4).
Coming then to the potentials, we observe that, since the velocities will be chosen so that∫

v =
∫

v′ = 0, and recalling curlcurl = ∇div−Δ, we have curlz = v and curlz′ = v′, and
moreover:

(v ·∇)(v′− v) = curl((v ·∇)(z′− z))+div(((z′− z)×∇)v)

[(v′− v) ·∇]v′ = div(((z′− z)×∇)v′T ),

80



so, recalling the above transport equation:

(∂t + v ·∇+(−Δ)𝜃)(v− v′) =−[(v− v′) ·∇]v′−∇(p− p′)−div(R−R′).

we see we can rewrite it as:

curl[(∂t + v ·∇+(−Δ)𝜃)(z′− z)] = −div(((z′− z)×∇)v+((z′− z)×∇)v′T )
−∇(p′− p)−div(R′−R).

Recall once more the identity curl2 = ∇div−Δ, so that, taking curl, our transport equation
becomes:

−Δ[(∂t + v ·∇+(−Δ)𝜃)(z′− z)] = −∇div[(v ·∇)(z′− z)]

− curldiv(((z′− z)×∇)v+((z′− z)×∇)v′T )
− curldiv(R′−R).

Recalling (6.2.16) and that divv = 0 = div(z′− z), Schauder estimates then give us, for
N ≥ 2:∥∥(∂t + v ·∇+(−Δ)𝜃)(z′− z)

∥∥
N+𝛼

≲
∥∥((z′− z) ·∇)v

∥∥
N+𝛼

+
∥∥((z′− z)×∇)v+((z′− z)×∇)v′T

∥∥
N+𝛼

+
∥∥R′−R

∥∥
N+𝛼

≲
∥∥z′− z

∥∥
N+𝛼

‖v‖1+𝛼 +
∥∥z′− z

∥∥
𝛼
‖v‖N+1+𝛼

+
∥∥z′− z

∥∥
N+𝛼

∥∥v′
∥∥

1+𝛼
+
∥∥z′− z

∥∥
𝛼

∥∥v′
∥∥

N+1+𝛼

+
∥∥R′−R

∥∥
N+𝛼

,

our second desired estimate. As for N = 0 and N = 1, we use (−Δ)−1 and the RHS will
only exhibit order-0 operators, which are continuous CA → CA for all A∈R+.

We must now obtain (6.2.9)-(6.2.15). We first remark that (6.2.11) follows easily
by plugging (6.2.6)-(6.2.8) and (6.2.9) into (6.2.4), while (6.2.13) follows by plugging
(6.2.6)-(6.2.8) and (6.2.12) into (6.2.5). (6.2.12) can be obtained from (6.2.5) by the same
argument we shall now use to deduce (6.2.9) from (6.2.4), so we will only prove (6.2.9).

To that end, we first set N = 0. With this choice, plugging (6.2.6)-(6.2.8) into (6.2.4)
gives ∥∥(∂t + v ·∇+(−Δ)𝜃)v′− v

∥∥
𝛼
≲
∥∥v′− v

∥∥
𝛼
𝛿

1
2
q𝜆

1+𝛼
q +Λ 𝜚

1+𝛾
i `−1−𝛼

q,i .

We can then use Proposition B.2 on [t0, t0 +
4
3
𝜏q], since then |t − t0| ≤ 4

3
𝜏q < [v′t − vt ]

−1
1 ,

and thus obtain that

∥∥v′t − vt
∥∥
𝛼
≲

t∫
t0

∥∥v′s − vs
∥∥
𝛼
𝛿

1
2
q𝜆

1+𝛼
q +Λ 𝜚1+𝛾

i `−1−𝛼
q,i ds.

By Grönwall’s inequality, we then have

∥∥v′t − vt
∥∥
𝛼
≲ Λ𝜏q 𝜚

1+𝛾
i `−1−𝛼

q,i e

t∫
t0

𝛿
1
2
q𝜆

1+𝛼
q

≲ Λ
1
2 𝜚

1+ 𝛾

1
i

𝜚
1+ 𝛾

2
i

𝜁q𝜆
1+𝛼
q `−1−𝛼

q
`4𝛼−𝛼

q 𝜆 𝛼
q `

−𝛼
q,i ≲ Λ

1
2 𝜚

1+ 𝛾

2
q `𝛼q ,
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which is (6.2.9) in the case N = 0.
We then continue by setting N = 1. We plug (6.2.6)-(6.2.8) and the case N = 0 of

(6.2.9) into (6.2.4), thus obtaining∥∥(∂t + v ·∇+(−Δ)𝜃)(v− v′)
∥∥

1+𝛼
≲
∥∥v− v′

∥∥
1+𝛼

𝛿
1
2
q𝜆

1+𝛼
q

+Λ
1
2 𝜚

1+ 𝛾

2
i `𝛼q · 𝛿

1
2
q𝜆

1+𝛼
q `−1

q,i +Λ 𝜚1+𝛾
i `−2−𝛼

q,i

≲
∥∥v− v′

∥∥
1+𝛼

𝛿
1
2
q𝜆

1+𝛼
q +Λ 𝜚1+𝛾

i `−2−𝛼
q,i .

Applying Proposition B.2, we conclude

∥∥v− v′
∥∥

1+𝛼
≲

t∫
t0

∥∥v− v′
∥∥

1+𝛼
𝛿

1
2
q𝜆

1+𝛼
q +Λ 𝜚

1+𝛾
i `−2−𝛼

q,i ds

+

t∫
t0

(t − s)𝛿
1
2
q𝜆

1+𝛼
q

[∥∥vs − v′s
∥∥

1+𝛼
𝛿

1
2
q𝜆

1+𝛼
q +Λ 𝜚1+𝛾

i `−2−𝛼
q,i

]
ds

≲
t∫

t0

∥∥v− v′
∥∥

1+𝛼
𝛿

1
2
q𝜆

1+𝛼
q +Λ 𝜚

1+𝛾
i `−2−𝛼

q,i ds,

so that, by Grönwall ∥∥v− v′
∥∥

1+𝛼
≲ Λ𝜏q 𝜚

1+𝛾
i `−2−𝛼

q,i ,

which, again as before, gives us (6.2.9) for N = 1.
With these two cases on our hands, we can tackle the general case. Plug (6.2.9) for

N = 0 and N = 1, as well as (6.2.6)-(6.2.8), into (6.2.4) to get∥∥(∂t + v ·∇+(−Δ)𝜃)(v− v′)
∥∥

N+𝛼
≲
∥∥v− v′

∥∥
N+𝛼

𝛿
1
2
q𝜆

1+𝛼
q

+Λ
1
2 𝜚

1+ 𝛾

2
i `𝛼q · 𝛿

1
2
q𝜆

1+𝛼
q `−N

q,i +Λ 𝜚1+𝛾
i `−N−𝛼

q,i

≲
∥∥v− v′

∥∥
N+𝛼

𝛿
1
2
q𝜆

1+𝛼
q +Λ 𝜚1+𝛾

q,i `−N−𝛼
q,i .

Applying, once again, Proposition B.2, we conclude that

∥∥v− v′
∥∥

N+𝛼
≲

t∫
t0

∥∥v− v′
∥∥

N+𝛼
𝛿

1
2
q𝜆

1+𝛼
q +Λ 𝜚

1+𝛾
i `−N−1−𝛼

q,i ds

+

t∫
t0

(t − s)𝛿
1
2
q𝜆

1+𝛼
q

[∥∥vs − v′s
∥∥

1+𝛼
𝛿

1
2
q𝜆

1+𝛼
q +Λ 𝜚1+𝛾

i `−N−1−𝛼
q,i

]
ds

≲
t∫

t0

∥∥v− v′
∥∥

1+𝛼
𝛿

1
2
q𝜆

1+𝛼
q +Λ 𝜚

1+𝛾
i `−N−1−𝛼

q,i ds,
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and using the N = 1 case of (6.2.9) and the fact that (t − s)‖vs − v′s‖1+𝛼 ≲ 1:

∥∥v− v′
∥∥

N+𝛼
≲

t∫
t0

∥∥v− v′
∥∥

N+𝛼
𝛿

1
2
q𝜆

1+𝛼
q +Λ 𝜚

1+𝛾
i `−N−1−𝛼

q,i ds,

which yields the other cases of (6.2.9) by Grönwall’s inequality.
The first inequality in (6.2.10) is obtained by simply interpolating (6.2.9), since

‖(−Δ)𝜃(v′− v)‖N+𝛼 ≲ ‖v′− v‖N+𝛼+2𝜃+𝜀 by Theorem 3.8.1. To obtain the second in-
equality, note that

Λ
1
2 𝜚

1+ 𝛾

2
i `−2𝜃−𝜀−N

q,i `𝛼q = Λ 𝜚1+𝛾
i 𝜏q`

−4𝛼
q 𝜆−𝛼

q `𝛼q `
−2𝜃−𝜀−N−1
q,i `𝛼q

≤ Λ 𝜚
1+𝛾
i `−N−1−𝛼

q,i · `−4𝛼
q 𝜆−𝛼

q `𝛼q `
3𝛼
q ,

where we used (6.2.3) in the last step. This yields (6.2.10). Estimate (6.2.14) is obtained
similarly.

We are then left only with (6.2.15). To obtain it, we note that

d
dt

∫
T3

∣∣v′∣∣2 −|v|2dx =
∫
T3

2v′∂tv′−2v∂tvdx,

and using the fact that (v, p,R),(v′, p′,R′) are subsolutions and divv = 0 = divv′:

d
dt

∫
T3

∣∣v′∣∣2 −|v|2dx =−2
∫
T3

v′((−Δ)𝜃v′+divR′)− v((−Δ)𝜃v+divR)dx.

Integration by parts then gives us that∣∣∣∣∣∣ d
dt

∫
T3

∣∣v′∣∣2 −|v|2dx

∣∣∣∣∣∣≤ 2

∣∣∣∣∣∣
∫
T3

Dv : Rdx

∣∣∣∣∣∣+2

∣∣∣∣∣∣
∫
T3

Dv′ R′ dx

∣∣∣∣∣∣+2

∣∣∣∣∣∣
∫
T3

∣∣∣(−Δ)
𝜃

2 v
∣∣∣2 − ∣∣∣(−Δ)

𝜃

2 v′
∣∣∣2dx

∣∣∣∣∣∣
≲ ‖v‖1+𝛼‖R‖𝛼 +

∥∥v′
∥∥

1+𝛼

∥∥R′∥∥
𝛼
+
∥∥v+ v′

∥∥
𝜃+𝜀

∥∥v− v′
∥∥
𝜃+𝜀

∗
≲ 𝛿

1
2
q𝜆

1+𝛼
q ·Λ 𝜚

1+𝛾
i `−𝛼

q,i +Λ
1
2 ·Λ 𝜚

1+𝛾
i `−𝜃−𝜀−1−𝛼

q,i

= Λ 𝜚1+𝛾
i 𝜏−1

q `2𝛼
q (F1 +F2),

where we used (6.2.9) in ∗ and we write

F1 – 𝛿
1
2
q𝜆

1+𝛼
q `−𝛼

q,i 𝜏q`
−2𝛼
q

F2 – Λ
1
2𝜏2

q `
−2𝛼
q `−1−𝜃

q,i `−𝜀−𝛼
q,i .

It is easy to see that
F1 = `4𝛼

q 𝜆 𝛼
q `

−𝛼
q,i `

−2𝛼
q ≲ 1.
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To prove that F2 is also bounded above by a constant, we note that

F2 = f (𝛼,𝜀,𝛾) Λ
1
2

𝛿q𝜆
2
q

(𝜁
1
2
q𝜆q)

1+𝜃

𝜚
1+ 𝜃

2
q,i

,

where f (𝛼,𝜀,𝛾)∼ 1 for 𝛼,𝛾,𝜀 � 1. We then observe that (6.3.2), together with the fact
that 𝜃 <

1
3
,b > 1, implies that

Λ
1
2

𝛿q𝜆
2
q

(𝜁
1
2
q𝜆q)

1+𝜃

𝜚
1+ 𝜃

2
q,i

≤ 𝜚
−2

3
q,i (𝜁

1
2
q𝜆q)

−2
3 ≲ 𝜁

−2
3

q+2𝜆
−2

3
(1−𝛽 )

q = 𝜆
4
3
𝛽b2−2

3
(1−𝛽 )

q = 𝜆
−2

3
(1−𝛽−2b2 𝛽 )

q ≤ 1.

We have thus proved that
F2 ≲ 1,

provided 𝛼,𝛾,𝜀 � 1 are sufficiently small and a is sufficiently large. The proof is thus
complete. 3

6.3 Gluing step
We can finally state and prove the proposition that contains the gluing step.

Proposition 6.3.1 (Gluing step). Let b, 𝛽 ,𝛼,𝛾 and (𝛿q,𝜆q,Λ, 𝜁q, `q,𝜏q) be as in Section
4.3, with

𝛼b < 𝛽 𝛾 (6.3.1)

b2(1+ 𝛾)<
1− 𝛽

2𝛽
, (6.3.2)

Let [T1,T2]⊂ [0,T ] with |T2 −T1|> 4𝜏q. Let (vq, pq,Rq) be a strong subsolution on [0,T ]
which on [T1,T2] satisfies the estimates

3
4
𝛿q+2 ≤ 𝜌q ≤

7
2
𝛿q+1 (6.3.3)∥∥R̊q

∥∥
0 ≤ Λ 𝜚1+𝛾

q (6.3.4)∥∥vq
∥∥

1+𝛼
≤ M𝛿

1
2
q𝜆

1+𝛼
q (6.3.5)∥∥vq

∥∥
𝜃+𝜀

≤ M

(
1+

q

∑
i=0

𝛿
1
2
i 𝜆

𝜃+𝜀
i

)
(6.3.6)

∣∣∂t 𝜌q
∣∣≲ 𝜌q𝛿

1
2
q𝜆q (6.3.7)

with some constant M > 0, where

𝜌q –
1
3

trRq 𝜚q –
𝜌q

Λ
.

Define 𝜌q,i, 𝜚q,i, `q,i as in (6.2.1), using (vq, pq,Rq) as the starting point.
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Then, provided a � 1 is sufficiently large, there exists (vq, pq,Rq) solution of (4.1.1) on
[0,T ] such that

(vq, pq,Rq) = (vq, pq,Rq) on [0,T ]∖ [T1,T2], (6.3.8)

and on [T1,T2] the following estimates hold:∥∥vq − vq
∥∥
𝛼
≲ Λ

1
2 𝜚

1+ 𝛾

2
q `𝛼q (6.3.9)∥∥vq

∥∥
1+𝛼

≲ 𝛿
1
2
q𝜆

1+𝛼
q (6.3.10)∥∥vq

∥∥
𝜃+𝜀

≤ M

(
1+

q+1

∑
i=0

𝛿
1
2
i 𝜆

𝜃+𝜀
i

)
(6.3.11)∥∥∥R̊q

∥∥∥
0
≲ Λ 𝜚1+𝛾

q `−2𝛼
q (6.3.12)

7
8
𝜌q ≤ 𝜌q ≤

9
8
𝜌q (6.3.13)∣∣∂t 𝜌q

∣∣≲ 𝜌q𝛿
1
2
q𝜆q (6.3.14)

∣∣𝜌q − 𝜌q
∣∣= 1

3

∣∣∣∣∣∣
∫
T3

(∣∣vq
∣∣2 − ∣∣vq

∣∣2)dx

∣∣∣∣∣∣≲ Λ 𝜚1+𝛾
q 𝜆−𝛼

q `𝛼q . (6.3.15)

Moreover, on [tn, tn] the following additional estimates hold for t∈ Ii−1 ∪ Ji ∪ Ii:∥∥vq
∥∥

N+1+𝛼
≲ 𝛿

1
2
q𝜆

1+𝛼
q `−N

q,i (6.3.16)∥∥∥R̊q

∥∥∥
N+𝛼

≲ Λ 𝜚1+𝛾
q `−N

q,i `
−2𝛼
q 𝜆−𝛼

q (6.3.17)∥∥∥(∂t + vq ·∇)R̊q

∥∥∥
N+𝛼

≲ Λ 𝜚1+𝛾
q 𝜏−1

q `−N
q,i `

−2𝛼
q 𝜆−𝛼

q . (6.3.18)

Regarding the support of the Reynolds stress, we have that

R̊q(·, t)≡ 0 ∀t∈
n⋃

i=n

Ji. (6.3.19)

In terms of energy, we have that∫
T3

(∣∣vq
∣∣2(x, t)+ trRq(x, t)

)
dx =

∫
T3

(∣∣vq
∣∣2(x, t)+ trRq(x, t)

)
dx, (6.3.20)

and the function

Tg –

∫
T3

t∫
0

(∣∣∣(−Δ)
𝜃

2 vq

∣∣∣2 − ∣∣∣(−Δ)
𝜃

2 vq

∣∣∣2)dsdx,

satisfies ∣∣∂tTg
∣∣≲ Λ

1
2𝛿

1
2
q+1𝜆

𝜃+𝜀
q+1 , (6.3.21)
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and therefore ∣∣Tg(t)
∣∣≲ tΛ 𝜚1+𝛾

q 𝜁
1
2
q `

−N
q,i `

−6𝛼
q ≤ TΛ 𝜚1+𝛾

q 𝜁
1
2
q `

−N
q,i `

−6𝛼
q .

Finally, if 2𝛼 < 𝛽 𝛾 , then ∥∥vq − vq
∥∥
𝛼
≲ 𝛿

1
2
q+1`

(2
b
+1

2
)𝛼

q . (6.3.22)

The proof closely follows the gluing procedure of [18, Section 6], which in turn draws
heavily from [8, Sections 3-4]. Recall that the solution is left unchanged outside [T1,T2]
and the gluing only happens in that interval. More precisely, recalling the decomposition
(6.1.4):

• The gluing procedure is carried out in the interval

Jn ∪ . . .∪ Jn =

(
tn −

1
3
𝜏q, tn +

1
3
𝜏q

)
; (6.3.23)

• The subsolution is left unchanged in Jn−1 ∪ Jn+1;

• The intervals In−1 and In are used as cutoff regions between the glued and unglued
subsolutions.

Recall also that, since the trace 𝜌q = 1/3 trRq has different lower and upper bounds on
[T1,T2] (respectively of order 𝛿q+2 and 𝛿q+1), mollification with different parameters `q,i
depending on 𝜌q(ti) on intervals of size 𝜏q around the points ti is necessary.
Proof. (Proposition 6.3.1)

Step 1: Mollification

Let 𝜑 be a standard mollification kernel in space and define

v`q,i – vq ∗ 𝜑`q,i

p`q,i – pq ∗ 𝜑`q,i +
1
3
(|vq|2 ∗ 𝜑`−|v`q,i|

2)

R̊`q,i – R̊q ∗ 𝜑`q,i +(vq ⊗̊ vq)∗ 𝜑`q,i − v`q,i ⊗̊ v`q,i.

With this definition, (4.1.1) holds for the triple (v`q,i, p`q,i.R`q,i). Using the estimates (6.3.4)
and (6.3.5), together with (A.5), we deduce that∥∥v`q,i − vq

∥∥
𝛼
≲ 𝛿

1
2
q𝜆

1+𝛼
q `q,i = Λ

1
2 𝜚

1+ 𝛾

2
q,i `

𝛼
q (6.3.24)∥∥v`q,i

∥∥
N+1+𝛼

≲ 𝛿
1
2
q𝜆

1+𝛼
q `−N

q,i (6.3.25)∥∥v`q,i

∥∥
𝜃+𝜀

≲ Λ
1
2 (6.3.26)∥∥R̊`q,i

∥∥
N+𝛼

≲ Λ 𝜚1+𝛾
q `−N−𝛼

q,i + 𝛿q𝜆
2+2𝛼
q `2−N−𝛼

q,i (6.3.27)

≲ Λ 𝜚1+𝛾
q `−N−𝛼

q,i +Λ 𝜚1+𝛾
q,i `−N

q,i `
𝛼
q∣∣∣∣∣∣

∫
T3

∣∣vq
∣∣2 − ∣∣v`q,i

∣∣2dx

∣∣∣∣∣∣≲ 𝛿q𝜆
2+2𝛼
q `2

q,i = Λ 𝜚1+𝛾
q,i `2𝛼

q . (6.3.28)

To obtain (6.3.28), we also use the trivial identity
∫

f ∗ 𝜑` =
∫

f for f = |vq|2.
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Step 2: Gluing procedure

Let {Ii}n≤i≤n be the sequence of intervals corresponding to [T1,T2] according to Definition
6.1.1 above. We now fix a partition of unity on [0,T ]

n+1

∑
i=n−1

𝜒i ≡ 1

subordinate to the decomposition (6.1.4), i.e. [0,T ] = Jn−1∪In−1∪ [Jn∪ . . .∪Jn]∪In∪Jn+1.
More precisely, for each n ≤ i ≤ n, the function 𝜒i ≥ 0 satisfies

supp 𝜒i⊂ Ii−1 ∪ Ji ∪ Ii, 𝜒i

∣∣∣
Ji
≡ 1

∣∣∂ N
t 𝜒i

∣∣≲ 𝜏−N
q ∀N ≥ 0,

whereas for i = n+1, i = n−1 we have

supp 𝜒n+1⊂ In ∪ Jn+1 𝜒n+1

∣∣∣
Jn+1

≡ 1
∣∣∂ N

t 𝜒n+1
∣∣≲ 𝜏−N

q ∀N ≥ 0,

supp 𝜒n−1⊂Jn−1 ∪ In−1 𝜒n+1

∣∣∣
Jn−1

≡ 1
∣∣∂ N

t 𝜒n−1
∣∣≲ 𝜏−N

q ∀N ≥ 0.

We define

vq –
n+1

∑
i=n−1

𝜒ivi, p(1)q –
n+1

∑
i=n−1

𝜒i pi, (6.3.29)

where (vi, pi) is defined as follows. For n ≤ i ≤ n we define (vi, pi) as the solution of
∂tvi +div(vi ⊗ vi)+∇pi +(−Δ)𝜃vi = 0
divvi = 0
vi(·, ti) = v`q,i(·, ti)

, (6.3.30)

and set (vi, pi) = (vq, pq) for i = n− 1 and i = n+ 1. Thus, we note first of all that
divvq = 0, and moreover

(vq, p(1)q ) = (vq, pq), t∈ [0,T ]∖ [T1,T2].

Next, we define Rq. We have that 𝜒i + 𝜒i+1 = 1 for t∈Ji ∪ Ii ∪ Ji+1, and therefore

∂tvq +div(vq ⊗ vq)+∇p(1)q +(−Δ)𝜃vq = ∂t 𝜒i · (vi − vi+1)

− 𝜒i · (1− 𝜒i)div((vi − vi+1)⊗ (vi − vi+1))

−div( 𝜒iRi +(1− 𝜒i)Ri+1)

for all n−1 ≤ i ≤ n, where we wrote Ri = 0 for n ≤ i ≤ n and Ri = Rq otherwise. Thus,
recalling the operator R from Definition C.1, set

R̊
(1)
q –


−∂t 𝜒iR(vi − vi+1)

+ 𝜒i · (1− 𝜒i)(vi − vi+1) ⊗̊ (vi − vi+1)
t∈ Ii

0 t∈Ji ∪ Ji+1

R̊
(2)
q –

n+1

∑
i=n−1

𝜒iR̊i = ( 𝜒n−1 + 𝜒n+1)R̊q,

(6.3.31)
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and

p(2)q –
n+1

∑
i=n−1

𝜒i · (1− 𝜒i)

|vi − vi+1|2 −−
∫
T3

|vi − vi+1|2dx

. (6.3.32)

Finally, we define

Rq = R̊
(1)
q + R̊

(2)
q + 𝜌q Id, pq – p(1)q + p(2)q , (6.3.33)

where
𝜌q – 𝜌q +

1
3
−
∫
T3

(∣∣vq
∣∣2 − ∣∣vq

∣∣2)dx. (6.3.34)

Define also
Tg(t) –

1
3
−
∫
T3

(∣∣∣(−Δ)
𝜃

2 vq

∣∣∣2 − ∣∣∣(−Δ)
𝜃

2 vq

∣∣∣2)dx.

By construction, we have that

∂tvq +div(vq ⊗ vq)+∇pq =−divRq,

and (6.3.8) and (6.3.20) hold. Moreover

R̊q = 0 ∀t∈
n⋃

i=n

Ji.

Step 3: Stability estimates on classical solutions

Throughout this step and the next, we will assume estimate (6.3.13), which will be proved
in Step 5 below. This estimate will allow us to replace 𝜌q with 𝜌q and vice-versa whenever
we need to do so in our estimates, since the two are of the same order.
Let us consider for the moment n ≤ i ≤ n. We recall the classical existence result for
solutions of (6.3.30) found in Theorem 2.4.1.2, by which (vi, pi) in (6.3.29) above is
defined at least on an interval of length ∼ ‖v`q,i‖

−1
1+𝛼 . By (6.3.25) and (4.3.11), we have

that ∥∥v`q,i

∥∥
1+𝛼

≲ 𝛿
1
2
q𝜆

1+𝛼
q = 𝜏−1

q `4𝛼
q 𝜆 𝛼

q ≤ 𝜏−1
q .

Therefore, provided a � 1 is sufficiently large, vi is defined on Ii−1 ∪ Ji ∪ Ii, so that vq in
(6.3.29) is well-defined.

Next, we deduce from (6.3.7) that |∂t log 𝜌q| ≤ 𝛿
1/2
q 𝜆q = 𝜏−1

q `4𝛼
q , so that, by assuming

a � 1 is sufficiently large, we may ensure that

𝜌q(t1)≤ 4𝜌q(t2) ∀t1, t2∈ Ii−1 ∪ Ji ∪ Ii, (6.3.35)

for any i. In particular 𝜌q ∼ 𝜌q,i and 𝜚q ∼ 𝜚q,i in Ii−1 ∪ Ji ∪ Ii.
We then note that, thanks to (6.3.25), (6.3.26), (6.3.27), (6.3.35), and the Hölder

estimates in Theorem 2.4.1.2, we can apply Lemma 6.2.1 to (v`q,i, p`q,i,R`q,i) and (vi, pi,0),
thus obtaining (6.2.9), which reads∥∥vi − v`q,i

∥∥
N+𝛼

≲ Λ
1
2 𝜚

1+ 𝛾

2
q,i `

−N
q,i `

𝛼
q . (6.3.36)
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The case N = 0 of (6.3.36), together with (6.3.24), leads to∥∥vq − vq
∥∥
𝛼
≤

i+1

∑
j=i−1

(
∥∥v j − v`q, j

∥∥
𝛼
+
∥∥v`q, j − vq

∥∥
𝛼
)≲ Λ

1
2 𝜚

1+ 𝛾

2
q,i `

𝛼
q . (6.3.37)

By (6.3.13), this is equivalent to (6.3.9).
The case N = 1 of (6.3.36) leads to∥∥vi − v`q,i

∥∥
1+𝛼

≲ Λ
1
2 𝜚

1+ 𝛾

2
q,i `

−1
q,i `

𝛼
q = Λ

1
2 𝜁

1
2
q𝜆

1+𝛼
q `−𝛼

q `𝛼q = 𝛿
1
2
q𝜆

1+𝛼
q .

Combining the above estimate with (6.3.5) outside the gluing region and in In−1 ∪ In, and
with (6.3.25) in Jn∪ In∪ . . .∪ In−1∪Jn, we deduce that (6.3.10) is verified. More generally,
as we did above for N = 0, we deduce from (6.3.25) and (6.3.36) that∥∥vq
∥∥

1+N+𝛼
≤

i+1

∑
j=i−1

𝜒 j

(∥∥v j − v`q, j

∥∥
1+N+𝛼

+
∥∥v`q, j

∥∥
1+N+𝛼

)
≲ 𝛿

1
2
q𝜆

1+𝛼
q `−N

q,i ∀t∈supp 𝜒i.

We have used the fact that `q,i ∼ `q,i+1 ∼ `q,i−1. The above inequality coincides with
(6.3.16).
We also remark the following simple interpolation of the N = 0 and N = 1 cases of
(6.3.36), which will be used in Step 5 below.∥∥vi − v`q,i

∥∥
𝜃+𝜀

≲
∥∥vi − v`q,i

∥∥1−𝜃−𝜀

𝛼

∥∥vi − v`q,i

∥∥𝜃+𝜀

1+𝛼
≲ Λ𝜏q 𝜚

1+𝛾
q,i `−𝜃−𝜀−1−𝛼

q,i . (6.3.38)

Further in the proof, we will need estimates for ‖vi − vi+1‖N+𝛼 and ‖(∂t + v`q,i ·∇)(vi −
vi+1)‖N+𝛼 . Concerning the former, by applying the triangle inequality, we see that

‖vi − vi+1‖N+𝛼 ≤
∥∥vi − v`q,i

∥∥
N+𝛼

+
∥∥∥v`q,i − v`q,i+1

∥∥∥
N+𝛼

+
∥∥∥v`q,i+1 − vi+1

∥∥∥
N+𝛼

.

The first and third term are estimated by (6.3.36). Coming to the second one, we note that∥∥∥v`q,i − v`q,i+1

∥∥∥
𝛼
≤
∥∥v`q,i − vq

∥∥
𝛼
+
∥∥∥vq − v`q,i+1

∥∥∥
𝛼
.

Both of these terms obey the bound (6.3.39) by (6.3.24). For the cases N 6= 0, we instead
note that ∥∥∥v`q,i − v`q,i+1

∥∥∥
N+𝛼

≤
∥∥v`q,i

∥∥
N+𝛼

+
∥∥∥v`q,i+1

∥∥∥
N+𝛼

,

and conclude, by (6.3.25), that both terms obey the bound (6.3.39). Thus, we conclude
that

‖vi − vi+1‖N+𝛼 ≲ Λ
1
2 𝜚

1+ 𝛾

2
q,i `

−N
q,i `

𝛼
q . (6.3.39)

As for the material derivative, we note that∥∥(∂t + v`q,i ·∇)(vi − vi+1)
∥∥

N+𝛼
≤
∥∥(∂t + v`q,i ·∇)(vi − v`q,i)

∥∥
N+𝛼

+
∥∥∥(∂t + v`q,i ·∇)(v`q,i − v`q,i+1)

∥∥∥
N+𝛼

+
∥∥∥(v`q,i − v`q,i+1) ·∇(v`q,i+1 − vi+1)

∥∥∥
N+𝛼

+
∥∥∥(∂t + v`q,i+1 ·∇)(v`q,i+1 − vi+1)

∥∥∥
N+𝛼

— I + II + III + IV.
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We start by estimating I. Combining the two estimates (6.2.11) and (6.2.10) from Lemma
6.2.1, we obtain that

I ≤
∥∥(∂t + v`q,i ·∇+(−Δ)𝜃)(vi − v`q,i)

∥∥
N+𝛼

+
∥∥(−Δ)𝜃(vi − v`q,i)

∥∥
N+𝛼

≲ ≲ Λ 𝜚
1+𝛾
q,i `−1−N−𝛼

q,i

IV ≤
∥∥∥(∂t + v`q,i+1 ·∇+(−Δ)𝜃)(vi+1 − v`q,i+1)

∥∥∥
N+𝛼

+
∥∥∥(−Δ)𝜃(vi+1 − v`q,i+1)

∥∥∥
N+𝛼

≲ Λ 𝜚
1+𝛾
q,i `−1−N−𝛼

q,i ,

where we used the fact that (v`q,i+1, p`q,i+1,R`q,i+1) and (vi+1, pi+1.0) also satisfy the as-
sumptions of Lemma 6.2.1, since 𝜚q,i ∼ 𝜚q,i+1. Since v`q,i − v`q,i+1 obeys the bound
(6.3.39) as seen above, by using Lemma 6.2.1, we conclude that II also obeys the above
bound. We now consider III, which can be estimated as follows:

III =
∥∥∥(v`q,i − v`q,i+1) ·∇(vi+1 − v`q,i+1)

∥∥∥
N+𝛼

≲ Λ
1
2 𝜚

1+ 𝛾

2
q,i `

𝛼
q,i ·Λ

1
2 𝜚

1+ 𝛾

2
q,i `

𝛼
q,i · `−N−1

q,i = Λ 𝜚
1+𝛾
q,i `2𝛼−N−1

q,i ,

in particular satisfying the same bound as I. We thus conclude that∥∥(∂t + v`q,i ·∇)(vi − vi+1)
∥∥

N+𝛼
≲ Λ 𝜚

1+𝛾
q,i `−1−N−𝛼

q,i = Λ
1
2 𝜚

1+ 𝛾

2
q,i 𝜏

−1
q `3𝛼

q 𝜆 𝛼
q `

−N−𝛼
q,i . (6.3.40)

Step 4: Estimates on the new Reynolds stress

As is done in [8, Section 3.3], we define the vector potentials

zi – (−Δ)−1 curlvi z`q,i – (−Δ)−1 curlv`q,i, zq – (−Δ)−1 curlvq

and, by Lemma 6.2.1, obtain that∥∥zi − z`q,i

∥∥
N+𝛼

≲ Λ𝜏q 𝜚
1+𝛾
q,i `−N

q,i `
−𝛼
q . (6.3.41)∥∥(∂t + v`q,i ·∇+(−Δ)𝜃)(zi − z`q,i)

∥∥
N+𝛼

≲ Λ 𝜚
1+𝛾
q,i `−N

q,i `
−𝛼
q . (6.3.42)∥∥(−Δ)𝜃(zi − z`q,i)

∥∥
N+𝛼

≲
∥∥zi − z`q,i

∥∥
N+𝛼+2𝜃+𝜀

≲
∥∥vi − v`q,i

∥∥
N+𝛼−1+2𝜃+𝜀

≲ Λ𝜏q 𝜚
1+𝛾
q,i `−N−2𝜃−𝜀

q,i `−𝛼
q ≲ Λ 𝜚

1+𝛾
q,i `−N

q,i `
−𝛼
q .

(6.3.43)

By the triangle inequality, (3.8.1), (6.3.43), and (6.3.42), we thus conclude that∥∥(∂t + v`q,i ·∇)(zi − z`q,i)
∥∥

N+𝛼
≲ Λ 𝜚

1+𝛾
q,i `−N

q,i `
−𝛼
q . (6.3.44)

Both (6.3.41) and (6.3.44) are valid in Ii−1 ∪ Ji ∪ Ii for any n ≤ i ≤ n.
The sequel of this proof will require estimates on zi − zi+1 and (∂t + v`q,i ·∇)(zi − zi+1).
We first use a triangle inequality to obtain

‖zi − zi+1‖N+𝛼 ≤
∥∥zi − z`q,i

∥∥
N+𝛼

+
∥∥∥z`q,i − z`q,i+1

∥∥∥
N+𝛼

+
∥∥∥z`q,i+1 − zi+1

∥∥∥
N+𝛼

. (6.3.45)
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The first and third term are estimated by (6.3.41), so we only have to estimate the second
one. We note that z`q,i = zq ∗𝜑`q,i and z`q,i+1 = zq ∗𝜑`q,i+1 , so that, using (A.5) and Schauder
estimates (Lemma A.4), we get∥∥∥z`q,i − z`q,i+1

∥∥∥
N+𝛼

≲
∥∥zq
∥∥

2+𝛼
(`2−N

q,i + `2−N
q,i+1)≲ Λ𝜏q 𝜚

1+𝛾
q,i `−2𝛼

q 𝜆−𝛼
q `−N

q,i . (6.3.46)

The final estimate for zi − zi+1, combining (6.3.45), (6.3.46), and (6.3.41), is thus

‖zi − zi+1‖N+𝛼 ≤
∥∥zi − z`q,i

∥∥
N+𝛼

+
∥∥∥z`q,i − z`q,i+1

∥∥∥
N+𝛼

+
∥∥∥z`q,i+1 − zi+1

∥∥∥
N+𝛼

≲ Λ 𝜚
1+𝛾
q,i 𝜏q`

−N
q,i `

−2𝛼
q 𝜆−𝛼

q . (6.3.47)

As for the material derivatives, we must estimate∥∥(∂t + v`q,i ·∇)(zi − zi+1)
∥∥

N+𝛼
≤
∥∥(∂t + v`q,i ·∇)(zi − z`q,i)

∥∥
N+𝛼

+
∥∥∥(∂t + v`q,i ·∇)(z`q,i − z`q,i+1)

∥∥∥
N+𝛼

+
∥∥∥(v`q,i − v`q,i+1) ·∇(z`q,i+1 − zi+1)

∥∥∥
N+𝛼

+
∥∥∥(∂t + v`q,i+1 ·∇)(z`q,i+1 − zi+1)

∥∥∥
N+𝛼

— I + II + III + IV.

The terms I and IV are estimated by (6.3.44). To estimate II, we apply Lemma 6.2.1 to
(v`q,i, p`q,i,R`q,i) and (v`q,i+1, p`q,i+1,R`q,i+1) and use (6.3.25) and (6.3.46), obtaining that∥∥∥(∂t + v`q,i ·∇+(−Δ)𝜃)(z`q,i − z`q,i+1)

∥∥∥
N+𝛼

≲ Λ 𝜚
1+𝛾
q,i `−N−𝛼

q,i (`𝛼q,i`
2𝛼
q +1).

We then note that, by interpolation∥∥∥(−Δ)𝜃(z`q,i − z`q,i+1)
∥∥∥

N+𝛼
≲ Λ𝜏q 𝜚

1+𝛾
q,i `−N−2𝜃−𝜀

q,i `−2𝛼
q 𝜆−𝛼

q ≲ Λ 𝜚1+𝛾
q,i `−N

q,i `
−2𝛼
q 𝜆−𝛼

q .

The above two bounds combine to yield

II ≤
∥∥∥(∂t + v`q,i ·∇+(−Δ)𝜃)(z`q,i−`q,i+1)

∥∥∥
N+𝛼

+
∥∥∥(−Δ)𝜃(z`q,i − z`q,i+1)

∥∥∥
N+𝛼

≲ Λ 𝜚
1+𝛾
q,i `−N

q,i `
−2𝛼
q 𝜆−𝛼

q . (6.3.48)

Coming to III, we estimate it by combining (6.3.41) with (6.3.39):∥∥∥(v`q,i − v`q,i+1) ·∇(zi+1 − z`q,i+1)
∥∥∥

N+𝛼
≤
∥∥∥v`q,i − v`q,i+1

∥∥∥
N+𝛼

∥∥∥zi+1 − z`q,i+1

∥∥∥
1+𝛼

+
∥∥∥v`q,i − v`q,i+1

∥∥∥
𝛼

∥∥∥zi+1 − z`q,i+1

∥∥∥
N+1+𝛼

≲ Λ
1
2 𝜚

1+ 𝛾

2
q,i `

𝛼
q,i ·Λ𝜏q 𝜚

1+𝛾
q,i `−𝛼

q · `−N−1
q,i

≤ Λ 𝜚1+𝛾
q,i `𝛼−N

q,i . (6.3.49)
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Combining (6.3.44), (6.3.48), and (6.3.49), we thus obtain that∥∥(∂t + v`q,i ·∇)(zi − zi+1)
∥∥

N+𝛼
≲ Λ 𝜚

1+𝛾
q,i `−N

q,i `
−2𝛼
q 𝜆−𝛼

q . (6.3.50)

Recalling the expression for R̊q in (6.3.33) and the fact that R curl : C𝛼 → C𝛼 is bounded
as a consequence of Schauder’s estimates (Lemma A.4), using (6.3.35), (6.3.47), and
(6.3.39), we obtain that∥∥∥R̊q

∥∥∥
N+𝛼

≲ 𝜏−1
q ‖zi − zi+1‖N+𝛼 +‖vi − vi+1‖N+𝛼‖vi − vi+1‖𝛼

≲ Λ 𝜚1+𝛾
q,i `−N

q,i `
−2𝛼
q 𝜆−𝛼

q +Λ
1
2 𝜚

1+ 𝛾

2
q,i `

−N+𝛼
q,i ·Λ

1
2 𝜚

1+ 𝛾

2
q,i `

𝛼
q,i

≲ Λ 𝜚1+𝛾
q,i `−N

q,i `
−𝛼
q (`−𝛼

q 𝜆−𝛼
q + `3𝛼

q,i ).

This, together with (6.3.13), gives us (6.3.17).
As for (6.3.18), reasoning as in the proof of [8, Proposition 4.3], we note that∥∥∥(∂t + vq ·∇)R̊q

∥∥∥
N+𝛼

≲ 𝜏−2
q ‖zi − zi+1‖N+𝛼 + 𝜏−1

q
∥∥(∂t + v`q,i ·∇)(zi − zi+1)

∥∥
N+𝛼

+ 𝜏−1
q
∥∥v`q,i

∥∥
1+𝛼

‖zi − zi+1‖N+𝛼 + 𝜏−1
q
∥∥v`q,i

∥∥
N+1+𝛼

‖zi − zi+1‖𝛼
+ 𝜏−1

q ‖vi − vi+1‖N+𝛼‖vi − vi+1‖𝛼
+
∥∥(∂t + v`q,i ·∇)(vi − vi+1)

∥∥
N+𝛼

‖vi − vi+1‖𝛼
+
∥∥(∂t + v`q,i ·∇)(vi − vi+1)

∥∥
𝛼
‖vi − vi+1‖N+𝛼

+
∥∥∥(v`q,i − vq) ·∇R̊q

∥∥∥
N+𝛼

.

Combining the above bound on R̊q with (6.3.47), (6.3.50), (6.3.25), (6.3.39), (6.3.40), and
the bound (6.3.37) applied to v`q,i − vq, we obtain that∥∥∥(∂t + vq ·∇)R̊q

∥∥∥
N+𝛼

≲ Λ𝜏−1
q 𝜚

1+𝛾
q,i `−N

q,i `
−2𝛼
q 𝜆−𝛼

q , (6.3.51)

which yields (6.3.18) once combined with (6.3.13).

Step 5: 𝜌q, Tg, and (6.3.22)

Next, we estimate 𝜌q, recalling its definition in (6.3.34). We wish to estimate 𝜌q − 𝜌q.
We note that

∣∣𝜌q − 𝜌q
∣∣= 1

3

∣∣∣∣∣∣
∫
T3

∣∣vq
∣∣2 − ∣∣vq

∣∣2dx

∣∣∣∣∣∣≤
∣∣∣∣∣∣
∫
T3

∣∣vq
∣∣2 − ∣∣v`q,i

∣∣2dx

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
T3

∣∣v`q,i

∣∣2 − ∣∣vq
∣∣2dx

∣∣∣∣∣∣.
The second term above is already estimated by (6.3.28), so we proceed to estimate the first
term.
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As in [8, Proposition 4.4], one has that∣∣vq
∣∣2 − ∣∣v`q,i

∣∣2 = 𝜒i(|vi|2 −|v`q,i|
2)+(1− 𝜒i)(|vi+1|2 −|v`q,i+1|

2)

+(1− 𝜒i)(|v`q,i+1|
2 −|v`q,i|

2)− 𝜒i(1− 𝜒i)|vi − vi+1|2.

Therefore∣∣∣∣∣∣
∫
T3

∣∣vq
∣∣2 − ∣∣v`q,i

∣∣2dx

∣∣∣∣∣∣≤
∣∣∣∣∣∣
∫
T3

|vi|2 −
∣∣v`q,i

∣∣2dx

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
T3

|vi+1|2 −
∣∣∣v`q,i+1

∣∣∣2dx

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
T3

∣∣v`q,i

∣∣2 − ∣∣∣v`q,i+1

∣∣∣2dx

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
T3

|vi − vi+1|2dx

∣∣∣∣∣∣. (6.3.52)

We start by estimating the fourth term as follows by using (6.3.39):∣∣∣∣∣∣
∫
T3

|vi − vi+1|2dx

∣∣∣∣∣∣≤ ‖vi − vi+1‖2
𝛼 ≲ Λ 𝜚1+𝛾

q,i `2𝛼
q . (6.3.53)

We then proceed to estimate the third term in (6.3.52) by using the triangle inequality,
(6.3.28), and the fact 𝜚q,i ∼ 𝜚q,i+1:∣∣∣∣∣∣

∫
T3

(∣∣v`q,i

∣∣2 − ∣∣∣v`q,i+1

∣∣∣2)dx

∣∣∣∣∣∣≤
∣∣∣∣∣∣
∫
T3

(∣∣v`q,i

∣∣2 − ∣∣vq
∣∣2)dx

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
T3

(∣∣vq
∣∣2 − ∣∣∣v`q,i+1

∣∣∣2)dx

∣∣∣∣∣∣
≲ Λ 𝜚

1+𝛾
q,i `2𝛼

q . (6.3.54)

The first and second terms in (6.3.52) are estimated in similar ways, so we only estimate
the former. To that end, we proceed in a way similar to [26, Proposition 5.5]. We start by
applying Lemma 6.2.1 to (vi, pi,0) and (v`q,i, p`q,i, R̊`q,i) to obtain that∣∣∣∣∣∣ d

dt

∫
T3

|vi|2 −
∣∣v`q,i

∣∣2dx

∣∣∣∣∣∣≲ Λ 𝜚1+𝛾
q,i 𝜏−1

q `2𝛼
q . (6.3.55)

Combining (6.3.52)-(6.3.55), we conclude that∣∣∣∣∣∣
∫
T3

∣∣vq
∣∣2 − ∣∣v`q,i

∣∣2dx

∣∣∣∣∣∣≲ Λ 𝜚1+𝛾
q,i `2𝛼

q . (6.3.56)

Estimates (6.3.56) and (6.3.28) imply∣∣∣∣∣∣
∫
T3

∣∣vq
∣∣2 − ∣∣vq

∣∣2dx

∣∣∣∣∣∣≲ Λ 𝜚1+𝛾
q,i `2𝛼

q .

93



This proves in particular that 𝜌q ∼ 𝜌q and (6.3.13), as well as (6.3.15).
Similarly, applying Lemma 6.2.1 to (vq, pq,Rq) and (v`q,i, p`q,i, R̊`q,i)first, and to (vq, pq,Rq)
and (v`q,i, p`q,i,R`q,i) afterwards, we also deduce that∣∣∣∣∣∣ d

dt

∫
T3

∣∣v`q,i

∣∣2 − ∣∣vq
∣∣2dx

∣∣∣∣∣∣≲ Λ 𝜚
1+𝛾
q,i 𝜏−1

q `2𝛼
q (6.3.57)

∣∣∣∣∣∣ d
dt

∫
T3

∣∣vq
∣∣2 − ∣∣v`q,i

∣∣2dx

∣∣∣∣∣∣≲ Λ 𝜚1+𝛾
q,i 𝜏−1

q `2𝛼
q . (6.3.58)

Combining (6.3.57) and (6.3.58), we get∣∣∂t 𝜌q −∂t 𝜌q
∣∣≲ Λ 𝜚

1+𝛾
q,i 𝜏−1

q `2𝛼
q . (6.3.59)

To prove (6.3.14) note that

Λ 𝜚1+𝛾
q,i 𝜏−1

q `2𝛼
q ≲ 𝜌q𝛿

1
2
q𝜆q ·𝜆 2𝛼−2𝛽 𝛾

q+1 ≲ 𝜌q𝛿
1
2
q𝜆q,

where we used the definitions of 𝜏q, 𝜁q+1, (6.3.3), the relations `−1
q ≤ 𝜆q+1 and Λ 𝜚q,i =

𝜌q,i ∼ 𝜌q, and the fact that 𝛼 < 𝛼b < 𝛽 𝛾 , which follows from (6.3.1) since b > 1.
Therefore, since we showed above that 𝜌q ∼ 𝜌q, we have (6.3.14).
It remains to estimate

∥∥R̊q
∥∥

0 on [T1,T2] in order to verify (6.3.12) for the Reynolds stress.
We already obtained (6.3.17) on Jn∪ . . .∪Jn (recall the decomposition (6.1.4)). Moreover,
on Jn−1 ∪ Jn+1 the subsolution remains unchanged, so there is nothing to prove. We are
then left with the task of proving (6.3.12) on the cut-off regions In−1 and In.
To do so, we need to estimate ‖vi − vq‖𝛼 and ‖zi − zq‖𝛼 . For the former, we combine
estimates of vi−v`q,i and of v`q,i −vq. For the latter, we only need to estimate ‖z`q,i − zq‖𝛼 ,
since we already handled zi − z`q,i above. One has that, by (A.5), Lemma A.4 (Schauder
estimates), and (6.3.5)∥∥z`q,i − zq

∥∥
𝛼
≲
∥∥zq
∥∥

2+𝛼
`2

q,i ≲
∥∥curlvq

∥∥
𝛼
`2

q,i ≲ 𝛿
1
2
q𝜆

1+𝛼
q `2

q,i = Λ𝜏q 𝜚
1+𝛾
q,i `−2𝛼

q 𝜆−𝛼
q ,

which gives us (6.3.12) as desired.
We then have to verify (6.3.11) and (6.3.21). To that end, we observe that∥∥vq

∥∥
𝜃+𝜀

≤
∥∥vq − vq

∥∥
𝜃+𝜀

+
∥∥vq
∥∥
𝜃+𝜀

.

The second term is estimated by (6.3.6). As for the first one, we note that∥∥vq − vq
∥∥
𝛼
≲ Λ

1
2 𝜚

1+ 𝛾

2
q `𝛼q ≲ 𝛿

1
2
q+1𝜁

𝛾

2
q+1`

𝛼
q ≤ 𝛿

1
2
q+1`

𝛼
q ,

where the first step is due to (6.3.37). We can thus estimate ‖vq−vq‖𝜃+𝜀 by interpolation:

∥∥vq − vq
∥∥
𝜃+𝜀

≲
∥∥vq − vq

∥∥1−𝜃−𝜀

𝛼

∥∥vq − vq
∥∥𝜃+𝜀

1+𝛼
≲ (𝛿

1
2
q+1`

𝛼
q )

1−𝜃−𝜀 ·
(
𝛿

1
2
q𝜆

1+𝛼
q

)𝜃+𝜀

≤ 𝛿
1
2
q+1𝜆

𝜃+𝜀
q+1 · `𝛼(1−2𝜃−2𝜀)

q .
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Lastly

∣∣∂tTg
∣∣=
∣∣∣∣∣∣
∫
T3

∣∣∣(−Δ)
𝜃

2 vq

∣∣∣2 − ∣∣∣(−Δ)
𝜃

2 vq

∣∣∣2dx

∣∣∣∣∣∣≲ ∥∥vq + vq
∥∥
𝜃+𝜀

∥∥vq − vq
∥∥
𝜃+𝜀

≲ Λ
1
2𝛿

1
2
q+1𝜆

𝜃+𝜀
q+1 ,

thus proving (6.3.21).
We conclude the proof by obtaining (6.3.22). To that end, we first note that (6.3.13) and
(6.3.3) combine to give us 𝜚q ≲ 𝜁q+1. Combining this with (6.3.9), we conclude that

∥∥vq − vq
∥∥
𝛼
≲ 𝛿

1
2
q+1𝜁

𝛾

2
q+1`

𝛼
q ,

thus reducing (6.3.22) to

𝜆−𝛽 𝛾
q+1 `

(1
2
−2

b
)𝛼

q ≲ 1.

Since `−1
q ≤ 𝜆q+1, the above follows from

−𝛽 𝛾+
2
b
𝛼− 1

2
𝛼 < 0 ⇐⇒ 𝛼 <

2b𝛽 𝛾
4−b

.

We recall that we wish to obtain (6.3.22) only under the assumption 2𝛼 < 𝛽 𝛾 . This means
the above relation follows from

2b
4−b

>
1
2

⇐⇒ 5b > 4,

which in turn follows from b > 1. The proof is thus complete. 3

Remark 6.3.1 (Multi-gluing). Proposition 6.3.1 can easily be extended to a pairwise
disjoint union of intervals [T (i)

1 ,T (i)
2 ]⊂ [0,T ] with T (i)

2 −T (i)
1 ≥ 4𝜏q and T (i)

2 < T (i+1)
1 .

6.4 Perturbation step
Proposition 6.4.1 (Main Perturbation Step). Let b, 𝛽 ,𝛼,𝛾,(𝛿q,𝜆q,Λ, 𝜁q, `q,𝜏q) be as in
Section 4.3 with

𝛼 < 𝛽 𝛾. (6.4.1)

Let [T1,T2]⊂ [0,T ] and let ti, Ii,Ji be as in (6.1.1). Let (v, p,R) be a smooth strong
subsolution on [T1,T2] satisfying

‖R‖1 ≲ Λ 𝜚1+𝛾`−2𝛼
q `−1

q,i (6.4.2)
𝛿q+2 ≲ 𝜌 ≲ 𝛿q+1 (6.4.3)
‖v‖0 ≤CP (6.4.4)
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on Ki – [(i− 1+ 1
3
)𝜏q,(i+

2
3
)𝜏q] for n− 1 ≤ i ≤ n+ 1, where the `q,i are defined as in

(6.2.1), and CP is a geometric constant. Further, let 𝜓 : [0,T ]→ [0,1] be a cutoff function
and S𝜓 ∈C∞(T3 × [T1,T2];S3×3) be a smooth matrix field with

S𝜓(x, t) = 𝜎𝜓(t) Id+S̊𝜓(x, t) = Λ𝜍𝜓(t) Id+S̊𝜓(x, t), (6.4.5)

where S𝜓 = 𝜓2S, S̊𝜓 = 𝜓2S̊ is traceless, 𝜎𝜓 = 𝜓2𝜎, and (𝜍 , 𝜍𝜓) – Λ−1(𝜎,𝜎𝜓). Suppose
𝜓 satisfies ∣∣𝜓 ′∣∣≲ 𝛿

1
2
q𝜆q, (6.4.6)

and 𝜎 satisfies

0 ≤ 𝜎(t)≤ 4𝛿q+1 (6.4.7)
𝜎|Ki ≲ 𝜌(ti) (6.4.8)

|∂t𝜎|≲ 𝜎𝛿
1
2
q𝜆q, (6.4.9)

Moreover, assume that for any N ≥ 0, t∈ Ii−1 ∪ Ji ∪ Ii,n ≤ i ≤ n∥∥∥S̊
∥∥∥

N+𝛼
≲ Λ𝜍 1+𝛾`−N

q,i `
−2𝛼
q (6.4.10)

‖v‖N+1+𝛼 ≲ 𝛿
1
2
q𝜆

1+𝛼
q `−N

q,i (6.4.11)

‖v‖𝜃+𝜀 ≤ M

(
1+

q+1

∑
i=0

Λ
1
2𝜆

𝜃+𝜀−𝛽
i

)
(6.4.12)∥∥∥(∂t + v ·∇)S̊

∥∥∥
N+𝛼

≲ Λ𝜍 1+𝛾`−N
q,i `

−6𝛼
q 𝛿

1
2
q𝜆q, (6.4.13)

Finally, assume that
supp S̊𝜓 ⊆T3 ×

⋃
i

Ii. (6.4.14)

Then, provided a � 1 is sufficiently large (depending on the implicit constants in (6.4.9),
(6.4.10), (6.4.11), and (6.4.13)), there exist smooth (ṽ, p̃)∈C∞(T3 × [T1,T2];R3 ×R) and
a smooth matrix field E∈C∞(T3 × [T1,T2];S3×3) with suppE⊂suppS𝜓 such that, setting
R̃ – R−S𝜓 −E, the triple (ṽ, p̃, R̃) is a strong subsolution with∫

T3

|ṽ|2 + tr R̃dx =
∫
R3

|v|2 + trRdx ∀t. (6.4.15)

Moreover, we have the estimates

‖ṽ− v‖H−1 ≤M
2
𝛿

1
2
q+1`

−1
q,i 𝜆

−1
q+1 (6.4.16)

‖ṽ− v‖0 ≤
M
2
𝛿

1
2
q+1 (6.4.17)

‖ṽ− v‖1+𝛼 ≤ M
2
𝛿

1
2
q+1𝜆

1+𝛼
q+1 (6.4.18)

‖ṽ− v‖𝜃+𝜀 ≤ M𝛿
1
2
q+1𝜆

𝜃+𝜀
q+1 , (6.4.19)
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and the error E satisfies the estimates

‖E‖0 ≤ 𝛿q+2𝜆
−6𝛼
q+1 (6.4.20)

|∂t trE| ≤ 𝛿q+2𝛿
1
2
q+1𝜆

1−6𝛼
q+1 . (6.4.21)

Finally, setting

Tp(t) –
1
3

t∫
0

∫
T3

(∣∣∣(−Δ)
𝜃

2 ṽ
∣∣∣2 − ∣∣∣(−Δ)

𝜃

2 v
∣∣∣2)dxds

=
1
3

t∫
0

∫
T3

(
(−Δ)

𝜃

2(ṽ+ v) · (−Δ)
𝜃

2(ṽ− v)
)

dxds,

we have that ∣∣∂tTp
∣∣≲ Λ𝜆 𝜃+𝜀−𝛽

q , (6.4.22)

for any 𝜀 > 0. Thus, Tp Id satisfies (6.4.21) for all t ∈ [0,T ], and (6.4.20) only for small
times.

The proof extends [18, Section 7], which is a localization of the argument carried out in
[8, Section 5]. The difference between [18] and [8] is that the latter absorbs the whole R
with the perturbation flow, whereas the former, as well as the proof below, aims to only
absorb S.
Proof.

Step 1: Squiggling Stripes and the Stress Tensors S̃i

As in [8, Lemma 5.3], we choose a family of smooth non-negative 𝜂i = 𝜂i(x, t) with the
following properties:

𝜂i∈C∞(T3 × [T1,T2]; [0,1]) (6.4.23)
supp𝜂i ∩ supp𝜂 j =∅ ∀i 6= j (6.4.24)

T3 × Ii⊂{(x.t) : 𝜂i(x, t) = 1} (6.4.25)
supp𝜂i⊆T3 × (Ji ∪ Ii ∪ Ji+1) (6.4.26)

= T3 ×
{(

ti −
1
3
𝜏q, ti +

1
3
𝜏q

)
∩ [0,T ]

}
∥∥∂ N

t 𝜂i
∥∥

m ≤C(N,m)𝜏−N
q N,m ≥ 0, (6.4.27)

∃c0 > 0 : f𝜂(t)≥ c0 ∀t∈ [0,T ] (6.4.28)

where the c0 in (6.4.28) is a geometric constant and we write

f𝜂(t) – ∑
i

∫
T3

𝜂2
i (x, t)dx.
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Define
𝜎i(x, t) –

∣∣T3∣∣ 𝜂2
i (x, t)

∑
j

∫
𝜂2

j (y, t)dy
𝜎𝜓(t),

so that ∑i
∫
T3 𝜎idx = |T3|𝜎𝜓 =

∫
T3 𝜎𝜓dx. Using the inverse flow Φi starting at time ti{

(∂t + v ·∇)Φi = 0
Φi(x, ti) = x ,

set

Si – 𝜎i Id+𝜂2
i S̊𝜓

S̃i –
DΦiSiD

TΦi

𝜎i
=DΦi

Id+
∑

j

∫
𝜂2

j

|T3|𝜎
S̊

DTΦi.

One can check from (6.4.28)-(6.4.27), (6.4.7), and (6.4.8) that

‖𝜎i‖0 ≤ 4|T3|c−1
0 𝛿q+1 (6.4.29)

‖𝜎i‖N ≲ 𝜌i – 𝜌(ti)≲ 𝛿q+1, (6.4.30)

and moreover, since by (6.4.14) supp S̊𝜓 ⊆
{

∑i 𝜂
2
i = 1

}
1
3

tr∑
i

∫
T3

Sidx = 1
3

trS𝜓 . ∑
i

S̊i = S̊𝜓 (6.4.31)

We next claim that for all (x, t)

S̃i(x, t)∈B1
2
(Id)⊂S3×3

+ , (6.4.32)

where B1
2
(Id) is the ball of radius 1

2
centered at the identity Id in S3×3. Indeed, by the

classical estimates on transport equations reported in Proposition B.1

‖∇Φi − Id‖0 ≲ 𝜏q𝛿
1
2
q𝜆

1+𝛼
q = `4𝛼

q 𝜆 𝛼
q ≤ `3𝛼

q (6.4.33)

for t ∈ Ji ∪ Ii ∪ Ji+1, since this is an interval of length |Ji ∪ Ii ∪ Ji+1| ∼ 𝜏q. Using (6.4.7),
(6.4.10) and (4.3.13), we also have that, for any N ≥ 0∥∥∥∥∥𝜂2

i S̊𝜓
𝜎i

∥∥∥∥∥
N

≲
∥∥∥∥ S̊
𝜎

∥∥∥∥
N
≲ 𝜍 𝛾`−N

q,i `
−2𝛼
q ≲ 𝜁

𝛾
q+1𝜆

2𝛼
q+1`

−N
q,i = 𝜆

2𝛼−2𝛽 𝛾
q+1 `−N

q,i . (6.4.34)

Then, using the decomposition

S̃i − Id =DΦi
𝜂2

i S̊𝜓
𝜎i

DΦT
i +DΦi(DΦT

i − Id)+DΦi − Id,
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we deduce from (6.4.33)-(6.4.34) that∣∣S̃i − Id
∣∣≲ (1+ `3𝛼

q )𝜆
2𝛼−2𝛽 𝛾
q+1 (1+ `3𝛼

q )+2`3𝛼
q ≤ 1

2
,

provided a � 1 is sufficiently large, since we assumed 𝛼 < 𝛽 𝛾 in (6.4.1). This verifies
(6.4.32).

Step 2: The perturbation w.

Now we can define the perturbation term as

wo – ∑
i

√
𝜎i (DΦi)

−1W (S̃i,𝜆q+1Φi) = ∑
i

woi,

where W are the Mikado flows on the compact set B1
2
(Id) as defined in Lemma C.1.

Notice that the supports of the woi are disjoint and, using the Fourier series representation
of the Mikado flows

woi – ∑
k 6=0

(DΦi)
−1bi,kAkei𝜆q+1k·Φi, (6.4.35)

where we write

bi,k(x, t) –
√

𝜎i(x, t)ak(S̃i(x, t)).

We define wc so that w – wo +wc is divergence-free:

wc –
i

𝜆q+1
· ∑
i,k 6=0

D(bi,k)×
DΦT

i · (k×Ak)

|k|2
ei𝜆q+1k·Φi = ∑

i,k 6=0

ci,k

𝜆q+1
ei𝜆q+1k·Φi,

where we write
ci,k =D(bi,k)×

iDΦT
i · (k×Ak)

|k|2
. (6.4.36)

Define then

w – wo +wc

ṽ – v+w

p̃ – p−∑
i
𝜎i

E(x, t) – E̊(1)(x, t)+E(2),

where

E̊(1) – R(∂t ṽ+div(ṽ⊗ ṽ)+∇p̃+(−Δ)𝜃 ṽ+div(R−S𝜓))
=R(∂tw+div(w⊗ v+ v⊗w+w⊗w)+∇(p̃− p)−divS𝜓), (6.4.37)

with R being the anti-divergence operator defined in Definition C.1, and

E(2)(t) –
Id
3

∫
T3

(
|ṽ|2 −|v|2 − trS𝜓

)
dx. (6.4.38)

Equations (6.4.15) and (4.1.1) follow by construction.
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Step 3: Estimates on the perturbation

The estimates on ṽ follow similarly to the ones for vq+1 in [8, Sections 5-6]. Obtaining
those requires estimates on the coefficients bi,k,ci,k, which in turn require estimates of S̃i
and estimates of DΦi. The latter read as follows:

‖DΦi − Id‖N +
∥∥(DΦi)

−1 − Id
∥∥

N ≲ `3𝛼
q `−N

q,i (6.4.39)

‖DΦi‖N +
∥∥(DΦi)

−1∥∥
N ≲ `

3𝛼1N 6=0
q `−N

q,i (6.4.40)

‖(∂t + v ·∇)DΦi‖N ≲ 𝛿
1
2
q𝜆

1+𝛼
q `

3𝛼1N 6=0
q `−N

q,i . (6.4.41)

To obtain these, we first observe that Φi is a diffeomorphism, which implies both DΦi and
(DΦi)

−1 are bounded, thus yielding the N = 0 case of (6.4.40). To obtain (6.4.39), we
start by combining (6.4.33) with the N = 0 case of (6.4.40), thus obtaining that∥∥(DΦi)

−1 − Id
∥∥

0 ≤
∥∥(DΦi)

−1∥∥
0‖Id−DΦi‖0 ≲ `3𝛼

q .

This yields (6.4.39) for N = 0. For N ≥ 1, we note that

‖DΦi − Id‖N+
∥∥(DΦi)

−1 − Id
∥∥

N ≲ ‖DΦi − Id‖0+
∥∥(DΦi)

−1 − Id
∥∥

0+
∥∥D2Φi

∥∥
N−1+

∥∥D(DΦi)
−1∥∥

N−1.

The other cases of (6.4.39) follow by combining its N = 0 case with the N ≥ 1 cases of
(6.4.40).
The estimates for ‖DΦi‖N for N ≥ 1 follow from Proposition B.1. By combining (C.9)
with Lemma A.1, we obtain that

‖(∂t + v ·∇)DΦi‖N ≲ ‖DΦi‖N‖∇v‖0 +‖∇v‖N‖DΦi‖0.

Estimates (6.4.40) and (6.4.11) then yield (6.4.41).
To complete the proof of (6.4.40), we are left with estimating ‖(DΦi)

−1‖N . We note that
DN(Φi ◦Φ−1

i ) = 0 for N ≥ 1. We then use the Leibniz rule and the chain rule to write

D2(Φi ◦Φ−1
i ) =D((DΦi ◦Φ−1

i )DΦ−1
i ) = (D2Φi ◦Φ−1

i )(DΦ−1
i )2 +(DΦi ◦Φ−1

i )D2Φ−1
i

D3(Φi ◦Φ−1
i ) =D(D2(Φi ◦Φ−1

i ))

= (D3Φi ◦Φ−1
i )(DΦ−1

i )3 +3(D2Φi ◦Φ−1
i )(DΦ−1

i )(D2Φ−1
i )+(DΦi ◦Φ−1

i )D3Φ−1
i

D4(Φi ◦Φ−1
i ) =D(D3(Φi ◦Φ−1

i ))

= (D4Φi ◦Φ−1
i )(DΦ−1

i )4 +6(D3Φi ◦Φ−1
i )(DΦ−1

i )2D2Φ−1
i +3(D2Φi ◦Φ−1

i )(D2Φ−1
i )2

+4(D2Φi ◦Φ−1
i )(DΦ−1

i )(D3Φ−1
i )+(DΦi ◦Φ−1

i )D4Φ−1
i .

From these, we can see that∥∥D2Φ−1
i

∥∥
0 ≤

∥∥DΦ−1
i

∥∥
0

∥∥D2Φi
∥∥

0

∥∥DΦ−1
i

∥∥2
0 ≲ `3𝛼

q `−1
q,i∥∥D3Φ−1

i

∥∥
0 ≤

∥∥DΦ−1
i

∥∥
0

(∥∥D3Φi
∥∥

0

∥∥DΦ−1
i

∥∥3
0 +3

∥∥D2Φi
∥∥

0

∥∥DΦ−1
i

∥∥
0

∥∥D2Φ−1
i

∥∥
0

)
≲ `3𝛼

q `−2
q,i∥∥D4Φ−1

i

∥∥
0 ≤

∥∥DΦ−1
i

∥∥
0

(∥∥D4Φi
∥∥

0

∥∥DΦ−1
i

∥∥4
0 +6

∥∥D3Φi
∥∥

0

∥∥DΦ−1
i

∥∥2
0

∥∥D2Φ−1
i

∥∥
0

+ 3
∥∥D2Φi

∥∥
0

∥∥D2Φ−1
i

∥∥2
0 +4

∥∥D2Φi
∥∥

0

∥∥DΦ−1
i

∥∥
0

∥∥D3Φ−1
i

∥∥
0

)
≲ `3𝛼

q `−3
q,i .
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These two examples show us that

DM(Φi ◦Φ−1
i ) = (DΦi ◦Φ−1

i )DMΦ−1
i +other terms,

where the other terms are of the form (DM−(m−1)nΦi ◦Φ−1
i )(DΦ−1

i )`(DmΦ−1
i )n, where

m < M. If we assume (6.4.40) for N < M − 1, we see that such terms are estimated as
`
−(k−1)
q,i `

−(m−1)n
q,i = `

−(1−M)
q,i , thus so is DMΦ−1

i = D(DM−1Φ−1
i ), which proves (6.4.40)

for N = M−1. Thus, by induction, the estimate (6.4.40) is proved.
The following estimates then follow precisely as in [8, Propositions 5.7 and 5.9]:∥∥S̃i

∥∥
N ≲ `−N

q,i (6.4.42)∥∥bi,k
∥∥

N ≲ 𝜌
1
2
i |k|

−6`−N
q,i (6.4.43)∥∥ci,k

∥∥
N ≲ 𝜌

1
2
i |k|

−6`−N−1
q,i (6.4.44)∥∥Dt S̃i

∥∥
N ≲ 𝜏−1

q `−N
q,i (6.4.45)∥∥Dtbi,k

∥∥
N ≲ 𝛿

1
2
q+1𝜏

−1
q `−N

q,i |k|
−6 (6.4.46)∥∥Dtci,k

∥∥
N ≲ 𝛿

1
2
q+1𝜏

−1
q `−N−1

q,i |k|−6. (6.4.47)

To obtain (6.4.42), observe first that, by its definition, we have that

S̃i =DΦiD
TΦi +DΦi

∑
j

∫
T3

𝜂2
j dx

|T3|𝜎
S̊DTΦi,

and therefore ∥∥S̃i
∥∥

N ≲ ‖DΦi‖N +‖DΦi‖N

∥∥∥∥ S̊
𝜎

∥∥∥∥
0
+

∥∥∥∥ S̊
𝜎

∥∥∥∥
N
,

where we used that ‖DΦi‖0 ≲ 1. By (6.4.40), the first term above obeys (6.4.42). To
estimate the remaining two terms, we use (6.4.10) and (6.4.7) to obtain that

∥∥∥∥ S̊
𝜎

∥∥∥∥
N
≲

∥∥∥S̊
∥∥∥

N+𝛼

𝜎
≲ 𝜍 𝛾`−N

q,i `
−2𝛼
q ≲ `−N

q,i 𝜆
2𝛼−2𝛽 𝛾
q+1 . (6.4.48)

Estimate (6.4.42) then follows from (6.4.40) and the assumption (6.4.1), i.e. that 𝛼 < 𝛽 𝛾 .
The proof of (6.4.45) follows a similar strategy, making use of the relations (6.4.40),
(6.4.41), (6.4.48), (6.4.27), and (6.4.9).
To prove (6.4.43) and (6.4.46), we first prove some estimates on √

𝜎i . Firstly, we note
that, thanks to (6.4.28) and (6.4.8)

‖
√
𝜎i ‖N ≤ |T3|1

2√
C0

√
𝜎𝜓 ‖𝜂i‖N ≤ |T3|1

2𝜓

c
1
2
0

𝜌
1
2
i ≲ 𝜌

1
2
i . (6.4.49)
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As for the material derivative, similar computations, combined with a straightforward
decomposition of Dt

√
𝜎i , (6.4.27), (6.4.11), (6.4.8), (6.4.28), the fact 𝜓 ≤ 1, (6.4.6), and

(6.4.9), yield the following bound:

‖Dt
√
𝜎i ‖N ≲ 𝛿

1
2
q+1𝜏

−1
q `−N

q,i . (6.4.50)

We will also use the following bound on the derivatives of f𝜂 , obtained by making use of
(6.4.27):

∥∥ f𝜂
∥∥

N =

∥∥∥∥∥∥∑j

∫
T3

2𝜂 j∂t𝜂 jdy

∥∥∥∥∥∥
N

≲ ∑
j

∫
T3

2
(∥∥𝜂 j

∥∥
N

∥∥∂t𝜂 j
∥∥

0 +
∥∥𝜂 j
∥∥

0

∥∥∂t𝜂 j
∥∥

N

)
dy ≤ K𝜏−1

q ,

(6.4.51)
where K > 0 is a constant.
To prove (6.4.43) and (6.4.46), we note that∥∥bi,k

∥∥
N ≲ ‖

√
𝜎i ‖N

∥∥ak(S̃i)
∥∥

0 +‖
√
𝜎i ‖0

∥∥ak(S̃i)
∥∥

N∥∥Dtbi,k
∥∥≲ ‖Dt

√
𝜎i ‖N

∥∥ak(S̃i)
∥∥

0 +‖Dt
√
𝜎i ‖n

∥∥ak(S̃i)
∥∥

N +‖
√
𝜎i ‖N

∥∥Dt [ak(S̃i)]
∥∥

0 +‖
√
𝜎i ‖0

∥∥Dt [ak(S̃i)]
∥∥

N .

The bounds (6.4.43) and (6.4.46) then readily follow by combining (6.4.49), (6.4.50), and
the following applications of (A.4):∥∥ak(S̃i)

∥∥
N ≲ ‖Dak‖0

∥∥DS̃i
∥∥

N−1 +‖Dak‖N−1

∥∥DS̃i
∥∥N

0 ≲ ‖ak‖N(
∥∥S̃i
∥∥

N +
∥∥S̃i
∥∥N

1 ),∥∥Dt(ak(S̃i))
∥∥

N ≤
∥∥(Dak)(S̃i)

∥∥
N

∥∥Dt S̃i
∥∥

0 +
∥∥(Dak)(S̃i)

∥∥
0

∥∥Dt S̃i
∥∥

N

≲ (‖ak‖N+1

∥∥S̃i
∥∥N

1 +‖ak‖2

∥∥S̃i
∥∥

N)
∥∥Dt S̃i

∥∥
0 +‖ak‖1

∥∥Dt S̃i
∥∥

N .

To prove (6.4.44), we note that, by Leibniz rule

∥∥ci,k
∥∥

N ≲
N

∑
i=0

∥∥bi,k
∥∥

i+1

∥∥DTΦi
∥∥

N−i,

from which (6.4.44) follows by (6.4.43) and (6.4.40). Coming finally to (6.4.47), we start
by noting that

Dt∇(bi,k) = ∇Dt(bi,k)+ [v ·∇,∇](bi,k).

This means that∥∥Dtci,k
∥∥

N ≲
N

∑
i=0

(∥∥∇Dt(bi,k)
∥∥

i +
∥∥[v ·∇,∇](bi,k)

∥∥
i

)∥∥DTΦi
∥∥

N−i+
N

∑
i=0

∥∥Dbi,k
∥∥

i

∥∥DtD
TΦi
∥∥

N−i.

Since, by the estimates (6.4.41), (6.4.40), (6.4.43), (6.4.46), and (6.4.11) on the factors
here involved, we see that this scales like `−N

q,i , we will only need to prove the case N = 0.
In that case, we obtain that∥∥Dtci,k

∥∥
0 ≲
∥∥Dt(bi,k)

∥∥
1‖DΦi‖0+

∥∥[v ·∇,∇](bi,k)
∥∥

0‖DΦi‖0+
∥∥bi,k

∥∥
1‖DtDΦi‖0 — I+II+III.

We now note that
𝛿

1
2
q𝜆

1+𝛼
q = 𝜏−1

q `3𝛼
q ≤ 𝜏−1

q . (6.4.52)
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By (6.4.46), (6.4.40), (6.4.43), (6.4.41), and (6.4.52), we see that I, II are estimated as
desired. We are then left with proving that II also satisfies this bound. To this end, we
rewrite the commutator as

[v ·∇,∇](bi,k) = ∑
j`
(v j∂ j(∂`bi,k)−∂`(v j∂ jbi,k))e` =−∑

j`
∂`v j∂ jbi,ke` = ∇v∇bi,k.

It then follows from (6.4.40), (6.4.43), and (6.4.52) that II satisfies the same bound as I
and III, thus proving (6.4.47).
In turn, the estimates on ṽ in (6.4.17)-(6.4.18) follow from the ones just given precisely as
in [8, Corollary 5.8, pp. 23-24]. Indeed, once we note that∥∥∥∇(ei𝜆q+1k·Φi)

∥∥∥
0
≤ 𝜆q+1|k|‖DΦi‖0 ≤ 2𝜆q+1|k|, (6.4.53)

we can deduce from the estimates above that

‖wo,i‖N ≲ ∑
i,k

∥∥DΦ−1
i

∥∥
N

∥∥bi,k
∥∥

0

∥∥∥ei𝜆q+1k·Φi
∥∥∥

0
+∑

i,k

∥∥DΦ−1
i

∥∥
0

∥∥bi,k
∥∥

N

∥∥∥ei𝜆q+1k·Φi
∥∥∥

0

+∑
i,k

∥∥DΦ−1
i

∥∥
0

∥∥bi,k
∥∥

0

∥∥∥ei𝜆q+1k·Φi
∥∥∥

N
≲ 𝛿

1
2
q+1𝜆

N
q+1.

The wo,i have pairwise disjoint supports, so the sum over i always consists of a single term,
which yields that the desired estimates hold for wo. The estimates on ci,k𝜆

−1
q+1 are always

better than those on bi,k, meaning that any estimate that holds for wo holds for wc as well.
Thus, (6.4.17) follows directly, and (6.4.18) and (6.4.19) follow by interpolation.
Coming to (6.4.16), the fact that wc satisfies this bound can be easily deduced from
(6.4.44), which tells us that 𝜆−1

q+1‖ci,k‖0 ≲ 𝛿
1/2
q+1|k|−6`−1

q,i 𝜆
−1
q+1. To estimate wo, we use a

procedure similar to the one employed in Section 5 to prove (5.1.3), replacing (5.1.10)
with (6.4.43).

Step 4: Estimates on the new Reynolds term E̊(1).

The aim of this section is to prove E̊(1) satisfies (6.4.20), namely∥∥∥E̊(1)
∥∥∥

0
≤ 𝛿q+2𝜆

−6𝛼
q+1 .

Drawing from [8], we decompose E̊(1) as

E̊(1) =R

(
∂tw+div(v⊗w+w⊗ v+w⊗w)−∑

i
∇𝜎i +(−Δ)𝜃w−divS𝜓

)
=R

(
∂tw+w ·∇v+ v ·∇w+div(w⊗w)−∑

i
∇𝜎i +(−Δ)𝜃w−divS𝜓

)
= R(w ·∇v)︸ ︷︷ ︸

Nash error—EN

+R((∂t + v ·∇)w)︸ ︷︷ ︸
Transport error—ET

+R

[
div(w⊗w− S̊𝜓)−∑

i
∇𝜎i

]
︸ ︷︷ ︸

Oscillation error—EO

+R((−Δ)𝜃w)︸ ︷︷ ︸
Dissipation error—ED

.
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We then note that, since the wo,i have disjoint supports and wo = ∑i wo,i, by (6.4.31), we
have that

div(w⊗w− S̊𝜓)−∑
i

∇𝜎i = div(wo ⊗wc +wc ⊗wo +wc ⊗wc)

+∑
i

[
div
(

wo,i ⊗wo,i −𝜂2
i S̊𝜓 −

1
3

Id trSi

)]
. (6.4.54)

We now rewrite the first three terms using the definition of w, (6.4.54) (to rewrite EO), and
the fact that Dtei𝜆q+1k·Φi = 0 (to rewrite ET ):

EN = ∑
i,k

R((DΦ−1
i bi,kAk +𝜆−1

q+1ci,k) ·∇vei𝜆q+1k·Φi)

ET = ∑
i,k

R((DtDΦ−1
i bi,kAk +DΦ−1

i Dtbi,kAk +𝜆−1
q+1Dtci,k)ei𝜆q+1k·Φi)

EO =R div(wo ⊗wc +wc ⊗wo +wc ⊗wc)+∑
i
R div(wo,i ⊗wo,i −Si)

=R div(wo ⊗wc +wc ⊗wo +wc ⊗wc)+∑
i,k

R(div(𝜎iDΦ−1
i Ck(S̃i)D

TΦ−1
i )ei𝜆q+1k·Φi),

where the Ck are as defined in Lemma C.1. We now note that the leading order terms are

E
(L)
N – ∑

i,k
R((DΦ−1

i bi,kAk) ·∇vei𝜆q+1k·Φi)

E
(L)
T – ∑

i,k
R((DtDΦ−1

i bi,k +DΦ−1
i Dtbi,k)Akei𝜆q+1k·Φi)

E
(L)
O – R div(wo ⊗wc +wc ⊗wo)+∑

i,k
R(div(𝜎iDΦ−1

i Ck(S̃i)D
TΦ−1

i )ei𝜆q+1k·Φi) — E
(L,1)
O +E

(L,2)
O .

We start by estimating E
(L,1)
O . Since R div is Calderón-Zygmund, we have that

‖R div(wo ⊗wc +wc ⊗wo)‖𝛼 ≲ ‖wo‖𝛼‖wc‖0 +‖wo‖0‖wc‖𝛼 .

From (6.4.43), (6.4.40), and (6.4.44), we can conclude that

‖wo‖N ≲ 𝜌
1
2
i𝜆

N
q+1 ‖wc‖N ≲ 𝜌

1
2
i𝜆

N−1
q+1 `

−1
q,i .

By interpolation, this lets us conclude that

∥∥∥E(L,1)
O

∥∥∥
𝛼
≲ 𝜌i`

−1
q,i 𝜆

𝛼−1
q+1 .
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To estimate the other leading terms, we start by using Lemma C.3 on all three:

∥∥∥E(L)
N

∥∥∥
𝛼
≲ ∑

i,k

(∥∥DΦ−1
i bi,k ·∇v

∥∥
0

|k𝜆q+1|1−𝛼
+

∥∥DΦ−1
i bi,k ·∇v

∥∥
N+𝛼

+
∥∥DΦ−1

i bi,k ·∇v
∥∥

0‖Φi‖N+𝛼

|k𝜆q+1|N−𝛼

)
∥∥∥E(L)

T

∥∥∥
𝛼
≲ ∑

i,k

∥∥DtDΦ−1
i bi,k +DΦ−1

i Dtbi,k
∥∥

0

|k𝜆q+1|1−𝛼

+∑
i,k

∥∥DtDΦ−1
i bi,k +DΦ−1

i Dtbi,k
∥∥

N+𝛼
+
∥∥DtDΦ−1

i bi,k +DΦ−1
i Dtbi,k

∥∥
0‖Φi‖N+𝛼

|k𝜆q+1|N−𝛼∥∥∥E(L,2)
O

∥∥∥
𝛼
≲ ∑

i,k

∥∥div(𝜎iDΦ−1
i Ck(S̃i)D

TΦ−1
i )
∥∥

0

|k𝜆q+1|1−𝛼

+∑
i,k

∥∥div(𝜎iDΦ−1
i Ck(S̃i)D

TΦ−1
i )
∥∥

N+𝛼
+
∥∥div(𝜎iDΦ−1

i Ck(S̃i)D
TΦ−1

i )
∥∥

0‖Φi‖N+𝛼

|k𝜆q+1|N−𝛼
.

To estimate E(L)
N , we combine (6.4.40), (6.4.43), and (6.4.11) with a Leibniz inequality:

∑
i,k

(∥∥DΦ−1
i bi,k ·∇v

∥∥
0

|k𝜆q+1|1−𝛼
+

∥∥DΦ−1
i bi,k ·∇v

∥∥
N+𝛼

+
∥∥DΦ−1

i bi,k ·∇v
∥∥

0‖Φi‖N+𝛼

|k𝜆q+1|N−𝛼

)

≲∑
i,k

∥∥DΦ−1
i

∥∥
0

∥∥bi,k
∥∥

0‖∇v‖0

|k𝜆q+1|1−𝛼
+∑

i,k

∥∥DΦ−1
i

∥∥
0

∥∥bi,k
∥∥

0‖∇v‖0‖Φi‖N+𝛼

|k𝜆q+1|N−𝛼
+∑

i,k

∥∥DΦ−1
i

∥∥
𝛼

∥∥bi,k
∥∥
𝛼
‖∇v‖N+𝛼

|k𝜆q+1|N−𝛼

+∑
i,k

∥∥DΦ−1
i

∥∥
N+𝛼

∥∥bi,k
∥∥
𝛼
‖∇v‖𝛼 +

∥∥DΦ−1
i

∥∥
𝛼

∥∥bi,k
∥∥

N+𝛼
‖∇v‖𝛼

|k𝜆q+1|N−𝛼

≲
𝜌

1
2
i 𝛿

1
2
q𝜆

1+𝛼
q

𝜆 1−𝛼
q+1

+
`−N−3𝛼

q,i 𝜌
1
2
i 𝛿

1
2
q𝜆

1+𝛼
q

𝜆N−𝛼
q+1

.

The above holds for any N. If we choose N to be the N from Section 4.3, by (6.4.3) and
(4.3.14), we conclude that ∥∥∥E(L)

N

∥∥∥
𝛼
≲

𝛿
1
2
q+1𝛿

1
2
q𝜆q

𝜆 1−2𝛼
q+1

.

Notice how the leading order term here is the one that does not depend on N thanks to the
`q in (4.3.14). This is also true of E(L)

T and E
(L,2)
O .

E
(L)
T is estimated in a similar manner, using (6.4.40), (6.4.41), (6.4.43), (6.4.46), and

(4.3.14).
As for E(L,1)

O , we first ensure that adding a derivative, whichever factor it lands on, costs
at most `−1

q,i . This ensures that the leading term is the first one, because of that gain of `q
mentioned above. We then estimate the leading term.
By (6.4.40) and (6.4.43), differentiating bi,k or DΦ−1

i costs `−1
q,i , and by (6.4.30), differen-

tiating 𝜎i does not cost anything, so we are left with showing that Ck(S̃i) scales like `−N
q,i .
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Thanks to (A.4), (C.6), and (6.4.42), we have that∥∥Ck(S̃i)
∥∥

N ≲ ‖Ck‖1

∥∥DS̃i
∥∥

N−1 +‖∇Ck‖N−1

∥∥S̃i
∥∥N

1 ≲ |k|−6`−N
q,i . (6.4.55)

We then use (6.4.7), (6.4.40), and the above estimate on Ck(S̃i) to estimate the leading
term:

∑
i,k

∥∥div(𝜎iDΦ−1
i Ck(S̃i)D

TΦ−1
i )
∥∥

0∣∣k𝜆q+1
∣∣1−𝛼

≲ ∑
i,k

‖𝜎i‖1

∥∥DΦ−1
i

∥∥2
0

∥∥Ck(S̃i)
∥∥

0 +‖𝜎i‖0

∥∥DΦ−1
i

∥∥2
0

∥∥Ck(S̃i)
∥∥

1

|k𝜆q+1|1−𝛼

+∑
i,k

2‖𝜎i‖0

∥∥DΦ−1
i

∥∥
1

∥∥Ck(S̃i)
∥∥

0

∥∥DTΦ−1
i

∥∥
0

|k𝜆q+1|1−𝛼
≲ 𝜌i`

−1
q,i 𝜆

−1
q+1.

We thus obtain that

‖EN‖𝛼 ≲
𝛿

1
2
q𝛿

1
2
q+1𝜆q

𝜆 1−2𝛼
q+1

‖ET‖𝛼 ≲
𝛿

1
2
q𝛿

1
2
q+1𝜆q

𝜆 1−5𝛼
q+1

‖EO‖𝛼 ≲ 𝜌i

`q,i𝜆
1−𝛼
q+1

.

The relation (4.3.12) easily yields that the above terms satisfy (6.4.20) for a� 1 sufficiently
large, since

𝛿
1
2
q+1𝛿

1
2
q𝜆q

𝜆 1−3𝛼
q+1

≤
𝛿

1
2
q+1𝛿

1
2
q𝜆q

𝜆 1−5𝛼
q+1

≤ 𝛿q+2𝜆
−6𝛼
q+1

𝜌i

`q,i𝜆
1−𝛼
q+1

≤
Λ𝜁

1− 𝛾
2

q+1𝜁
1
2
q𝜆

1+𝛼
q `−𝛼

q

𝜆 1−𝛼
q+1

≲
𝛿

1
2
q𝛿

1
2
q+1𝜆q

𝜆 1−3𝛼−𝛽 𝛾
q+1

≲ 𝛿q+2𝜆
−6𝛼
q+1 . (6.4.56)

Coming to ED, which is not present in [8], we estimate it as follows:∥∥R((−Δ)𝜃w)
∥∥

0 ≲ ‖Rw‖2𝜃+𝜀 ≲ ‖Rw‖1−2𝜃−𝜀
0 ‖Rw‖2𝜃+𝜀

1 . (6.4.57)

At this point, we use Lemma C.3 to obtain that

‖Rwo‖0 ≲ ‖Rwo‖𝛼 ≲ ∑
i,k

(∥∥DΦ−1
i bi,k

∥∥
0

|k|1−𝛼
+

∥∥DΦ−1
i bi,k

∥∥
N+𝛼

+
∥∥DΦ−1

i bi,k
∥∥

0‖Φi‖N+𝛼

|k|N−𝛼

)

≲ 𝛿
1
2
q+1 ·∑

k 6=0

(
1

𝜆 1−𝛼
q+1 |k|

7−𝛼
+

`−N−𝛼
q

𝜆N−𝛼
q+1 |k|N−𝛼+7

)
≲

𝛿
1
2
q+1

𝜆 1−𝛼
q+1

, (6.4.58)
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the last step being due to (4.3.14). We also note that

‖Rwo‖1 = max
i

‖R∂iwo‖0.

Proceeding on the R∂iwo as we did on Rwo then yields

‖Rwo‖1 ≲ max
i

‖R∂two‖𝛼 ≲ ∑
i,k

(∥∥DΦ−1
i bi,k

∥∥
1

|k|1−𝛼
+

∥∥DΦ−1
i bi,k

∥∥
N+1+𝛼

+
∥∥DΦ−1

i bi,k
∥∥

1‖Φi‖N+𝛼

|k|N−𝛼

)
≲ 𝛿

1
2
q+1𝜆

𝛼
q+1. (6.4.59)

Such estimates analogously also hold forRwc, and thus forRw. Thus, by (6.4.57)-(6.4.59)∥∥R(−Δ)𝜃w
∥∥

0 ≲ 𝛿
1
2
q+1𝜆

𝛼
q+1𝜆

2𝜃+𝜀−1
q+1 .

In particular, for a � 1 large enough, (6.4.20) is satisfied if

2𝜃 + 𝜀−1+𝛼− 𝛽 <−2b𝛽 −6𝛼 ⇐⇒ 7𝛼+ 𝜀 < 1+ 𝛽 −2𝜃 −2b𝛽 . (6.4.60)

Since 𝜃 < 𝛽 , and 2b𝛽 < 1− 𝛽 by (4.3.2), we have that 1+ 𝛽 − 2𝜃 − 2b𝛽 > 0. Thus,
(6.4.60) above holds for 𝛼,𝜀 sufficiently small.

Step 5: Estimates on the new Reynolds term E(2).

Now we turn to E(2). Consider the decomposition

∣∣∣E(2)
∣∣∣= 1

3

∣∣∣∣∣∣−
∫
T3

|ṽ|2 −|v|2 − trS𝜓

∣∣∣∣∣∣
≤ 1

3

∣∣∣∣∣∣−
∫
T3

|wo|2 − trS𝜓

∣∣∣∣∣∣+ 1
3

∣∣∣∣∣∣−
∫
T3

2w · v

∣∣∣∣∣∣+ 1
3

∣∣∣∣∣∣−
∫
T3

2wc ·wo + |wc|2
∣∣∣∣∣∣, (6.4.61)

and proceed as in [8, Proposition 6.2]. In the case of the first term, we will bound the
whole tensor, and therefore the trace. For the other terms, only the trace will be estimated.
Concerning the first term in (6.4.61), thanks to (6.4.31), ∑

∫
𝜎i =

∫
𝜎𝜓 , so that two cancel-

lations occur:∫
wo ⊗wo −S𝜓dx = ∑

i,k 6=0

∫
𝜎iDΦ−1

i Ck(S̃i)DΦ−T
i ei𝜆q+1k·Φidx+

∫(
∑

i
𝜎i −𝜎𝜓

)
Iddx

= ∑
i,k 6=0

∫
Zi,kei𝜆q+1k·Φidx, (6.4.62)

where we write Zi,k – 𝜎iDΦ−1
i Ck(S̃i)DΦ−T

i . Using (C.13), (C.6), and (4.3.14), we obtain
that ∣∣∣∣∣∣

∫
T3

∑
i,k 6=0

Zi,kei𝜆q+1k·Φi

∣∣∣∣∣∣≲ ∑
i,k 6=0

∥∥Zi,k
∥∥

N +
∥∥Zi,k

∥∥
0‖Φi‖N

|𝜆q+1k|N
≲ ∑

k 6=0

𝛿q+1`
−N
q

𝜆N
q+1|k|N

≲ 𝛿q+1`q

𝜆q+1
.

(6.4.63)
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The second inequality above is easily justified by using (6.4.30), (6.4.39), and (6.4.55) to
estimate Zi,k as follows:∥∥Zi,k

∥∥
N ≲ ‖𝜎i‖N

∥∥DΦ−1
i

∥∥2
0

∥∥Ck(S̃i)
∥∥

0 +‖𝜎i‖0

∥∥DΦ−1
i

∥∥2
0

∥∥Ck(S̃i)
∥∥

N

+2‖𝜎i‖0

∥∥DΦ−1
i

∥∥
N

∥∥Ck(S̃i)
∥∥∥∥DΦ−1

i

∥∥
0

≲ |k|−6𝛿q+1`
−N
q .

To estimate the second term in (6.4.61), observe that

w · v = ∑
i,k
((DΦi)

−1bi,k +𝜆−1
q+1ci,k) · vei𝜆q+1k·Φi,

so that, combining Lemma C.3, (6.4.43), (6.4.44), (6.4.11), (6.4.39), and (4.3.14), we
obtain that∣∣∣∣−∫ 2w · vdx

∣∣∣∣≲ ∑
i,k

∥∥∥((DΦi)
−1bi,k +𝜆−1

q+1ci,k) · v
∥∥∥

N
+
∥∥∥((DΦi)

−1bi,k +𝜆−1
q+1ci,k) · v

∥∥∥
0
‖DΦi‖N

𝜆N
q+1|k|N

≲ 𝛿
1
2
q+1 · 𝛿

1
2
q𝜆

1+𝛼
q · `q𝜆

−1
q+1 ≲ 𝛿

1
2
q+1𝛿

1
2
q𝜆

𝛼
q 𝜆

−1
q+1. (6.4.64)

Concerning the third term in (6.4.61), note that the estimates on wc are always no coarser
than those for wo, so if we estimate

∫
wo ·wc well, the whole term is estimated well. To

this end, we observe that∣∣∣∣∫ wo ·wcdx
∣∣∣∣≤ ∑

i
∑

06=k 6=l

∣∣∣∣∫(DΦi)
−1bi,k𝜆

−1
q+1ci,l−kei𝜆 l·Φdx

∣∣∣∣
≲ ∑

i
∑

06=k 6=l 6=0

∥∥∥(DΦi)
−1bi,k𝜆

−1
q+1ci,l−k

∥∥∥
N
+
∥∥∥(DΦi)

−1bi,k𝜆
−1
q+1ci,l−k

∥∥∥
0
‖DΦi‖N

𝜆N
q+1|l|N

+∑
i

∑
k 6=0

∣∣∣∣∫(DΦi)
−1bi,k𝜆

−1
q+1ci,−kdx

∣∣∣∣— I + II,

where we used Lemma C.3 in the case l 6= 0, as well as the fact that the wo,i and wc,i have
disjoint support so we do not have products of the form bi,kc j,l−k for i 6= j. The term I is
easily estimated as 𝛿q+1`

−N
q 𝜆−N

q+1 ≲ 𝛿q+1`q𝜆
−1
q+1, so that I satisfies the same estimate as

the second term in (6.4.61). As for II, (6.4.43) and (6.4.44) easily yield II ≲ 𝜌i`
−1
q,i 𝜆

−1
q+1.

Therefore ∣∣∣∣∫ wo ·wcdx
∣∣∣∣≲ 𝛿q+1`q

𝜆q+1
+

𝜌i`
−1
q

𝜆q+1
. (6.4.65)

Combining (6.4.61)-(6.4.65) with the fact that
∫
|wc|2 also satisfies (6.4.65), we arrive at

∣∣∣E(2)
∣∣∣≲ 𝛿q+1`q

𝜆q+1
+

𝛿
1
2
q+1𝛿

1
2
q𝜆

1+𝛼
q `q

𝜆q+1
+

𝜌i`
−1
q,i

𝜆q+1
.

By (4.3.12), we thus conclude that, for a � 1 sufficiently large, E(2) satisfies (6.4.20).
Combining with the fact (obtained in the previous step) that E̊(1) satisfies (6.4.20), we thus
conclude that (6.4.20) holds.
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Step 6: Estimates on ∂t trE

Observe that E̊(1) is traceless, whereas E(2) is a function of t only. In order to estimate the
time derivative of E(2), observe that, since v is solenoidal, for every F = F(x, t)

d
dt

∫
T3

F =

∫
T3

DtF,

where Dt = ∂t + v ·∇. Therefore, using again the decomposition in (6.4.61), we have that∣∣∣∣∣∣ d
dt

∫
T3

|ṽ|2 −|v|2 − trS𝜓

∣∣∣∣∣∣≤
∣∣∣∣∣∣
∫
T3

tr

[
Dt

(
∑

i,k 6=0
𝜎iDΦ−1

i Ck(S̃i)DΦ−T
i ei𝜆q+1k·Φi

)]∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
T3

Dt(2wc ·wo + |wc|2)

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
T3

Dt(2v ·w)

∣∣∣∣∣∣. (6.4.66)

Let us first estimate ‖Dtwo‖0. Recall from (C.10) that Dt(DΦi)
−1 =Dv(DΦi)

−1, which,
combined with the fact that Dtei𝜆q+1k·Φi = 0, yields

Dtwo = ∑
i,k 6=0

Dt
(√

𝜎i ak(S̃i)
)
DΦ−1

i Akei𝜆q+1k·Φi

+ ∑
i,k 6=0

√
𝜎i ak(S̃i)DvDΦ−1

i Akei𝜆q+1k·Φi

= ∑
i,k 6=0

DΦ−1
i Dtbi,kei𝜆q+1k·Φi + ∑

i,k 6=0
DvDΦ−1

i bi,kei𝜆q+1k·Φi.

First notice that, by using (6.4.11), (6.4.39), and (6.4.43), we obtain that

∥∥DvDΦ−1
i bi,k

∥∥
0 ≲

𝛿
1
2
q+1𝛿

1
2
q𝜆

1+𝛼
q

|k|6
.

As for the coefficients DΦ−1
i Dtbi,k, combining (6.4.39) and (6.4.46) gives

∥∥DΦ−1
i Dtbi,k

∥∥
0 ≲ 𝜏−1

q 𝛿
1
2
q+1|k|

−6 =
𝛿

1
2
q+1𝛿

1
2
q𝜆q`

−4𝛼
q

|k|6
.

Therefore
‖Dtwo‖0 ≲ 𝛿

1
2
q+1𝛿

1
2
q𝜆q`

−4𝛼
q .

Observing that
Dtwc = ∑

i,k
𝜆−1

q+1Dtci,kei𝜆q+1k·Φi,

which follows from Dtei𝜆q+1k·Φi = 0 seen above, (6.4.47) implies

‖Dtwc‖0 ≲ 𝛿
1
2
q+1𝛿

1
2
q𝜆q`

−1−4𝛼
q 𝜆−1

q+1.
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Combining with ‖wo‖0 +‖wc‖0 ≲ 𝛿
1
2
q+1 and using (4.3.12)-(4.3.13), we obtain that∣∣∣∣∣∣

∫
T3

Dt(wo ⊗wc +wc ⊗wo +wc ⊗wc)

∣∣∣∣∣∣≲ ‖Dtwo‖0‖wc‖0 +‖wo‖0‖Dtwc‖0 +‖Dtwc‖0‖wc‖0

≲ 𝛿q+1𝛿
1
2
q𝜆q`

−4𝛼
q = 𝛿

1
2
q+1(𝛿

1
2
q+1𝛿

1
2
q𝜆q)`

−4𝛼
q

≲ 𝛿
1
2
q+1(𝛿q+2𝜆

1−10
q+1 𝛼)𝜆 4𝛼

q+1 = 𝛿q+2𝛿
1
2
q+1𝜆

1−6𝛼
q+1 .

The second term of (6.4.66) is thus estimated. We then similarly decompose the first term
in (6.4.66) as

Dt

[
∑

i,k 6=0
𝜎iDΦ−1

i Ck(S̃i)∇Φ−1
i ei𝜆q+1k·Φi

]
= ∑

i,k 6=0
Dt𝜎iDΦ−1

i Ck(S̃i)∇Φ−1
i ei𝜆q+1k·Φi

+ ∑
i,k 6=0

𝜎iDvDΦ−1
i Ck(S̃i)∇Φ−1

i ei𝜆q+1k·Φi

+ ∑
i,k 6=0

𝜎iDΦ−1
i Dt [Ck(S̃i)]∇Φ−1

i ei𝜆q+1k·Φi

+ ∑
i,k 6=0

𝜎iDΦ−1
i Ck(S̃i)∇Φ−1

i ∇vei𝜆q+1k·Φi.

In order to estimate this, we still need to estimate Dt [Ck(S̃i)] and Dt𝜎i. To obtain the
former, we first use (A.4):∥∥Dt(Ck(S̃i))

∥∥
N ≤

∥∥(DCk)(S̃i)
∥∥

N

∥∥Dt S̃i
∥∥

0 +
∥∥(DCk)(S̃i)

∥∥
0

∥∥Dt S̃i
∥∥

N

≲ (‖Ck‖N+1

∥∥S̃i
∥∥N

1 +‖Ck‖2

∥∥S̃i
∥∥

N)
∥∥Dt S̃i

∥∥
0 +‖Ck‖1

∥∥Dt S̃i
∥∥

N ,

We then use (C.6), (6.4.42), and (6.4.45) to conclude that∥∥Dt(Ck(S̃i))
∥∥

N ≲ |k|−6𝜏−1
q `−N

q,i . (6.4.67)

Coming to Dt𝜎i, we claim that

‖Dt𝜎i‖N ≲ 𝛿q+1𝜏
−1

q `−N
q,i . (6.4.68)

To obtain (6.4.68), we set

h(t) – ∑
j

∫
𝜂2

j (x, t)dx

Dt𝜎i =
|T3|𝜓2𝜎

h
2𝜂iDt𝜂i + |T3|𝜂2

i ∂t

(
𝜓2𝜎

h

)
— I + II.

We first estimate the term I. Recalling (6.4.27), (6.4.28), 𝜓 ≤ 1, and (6.4.7), we conclude
that

‖I(·, t)‖N ≲ |T3|𝜓2𝜎

h
(‖𝜂i‖N‖Dt𝜂i‖0 +‖𝜂i‖0‖Dt𝜂i‖N)≲ 𝛿q+1𝜏

−1
q `−N

q,i .
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As for the second term, we already see that, since the only factor depending on x is 𝜂2
i

which, by (6.4.27), satisfies ‖𝜂2
i ‖N ≲ 1 for all N, the estimates for II will only depend on

N via an a-independent constant, thus making it sufficient to estimate ∂t(𝜓
2𝜎h−1) in C0.

To that end, we rewrite it as

∂t

(
𝜓2𝜎

h

)
=

2𝜓𝜓 ′𝜎

h
+

𝜓2∂t𝜎

h
− 𝜓2𝜎h′

h2 — T1 +T2 +T3.

To estimate T1, we recall (6.4.7), (6.4.6), and (6.4.28):

‖T1‖0 ≤
2𝛿

1
2
q𝜆q ·4𝛿q+1

c0
≲ 𝜏−1

q 𝛿q+1.

Coming to T2, by (6.4.7), (6.4.9), 𝜓 ≤ 1, and (6.4.28), we obtain that

‖T2‖0 ≤
4C𝛿q+1𝛿

1
2
q𝜆q

c0
≲ 𝛿q+1𝜏

−1
q ,

where C is the implicit constant in (6.4.9). Finally, to estimate T3, we use (6.4.7), 𝜓 ≤ 1,
and (6.4.51):

‖T3‖0 ≤
4K𝛿q+1𝜏

−1
q

c2
0

≲ 𝛿q+1𝜏
−1

q ,

where K is the implicit constant in (6.4.51). The estimate (6.4.68) is thus proved. By
(6.4.68), (6.4.40), (6.4.55), (6.4.30), (6.4.11), (6.4.67), and (4.3.12), we conclude that∥∥∥∥∥Dt

[
∑

i,k 6=0
𝜎iDΦ−1

i Ck(S̃i)∇Φ−1
i ei𝜆q+1k·Φi

]∥∥∥∥∥
0

≲ 𝛿q+1𝜏
−1

q = 𝛿q+1𝛿
1
2
q𝜆q`

−4𝛼
q

≲
𝛿

1
2
q+1𝛿

1
2
q𝜆q

𝜆 1−10𝛼
q+1

𝛿
1
2
q+1𝜆

1−10𝛼+4𝛼
q+1 ≲ 𝛿q+2𝛿

1
2
q+1𝜆

1−6𝛼
q+1 .

Finally, to estimate the term involving Dt(w · v), we first note that∫
Dt(v ·w) =

∫
Dtv ·w+

∫
v ·Dtw =−

∫
(∇p+(−Δ)𝜃v+divR) ·w+

∫
v ·Dtw, (6.4.69)

using (4.1.1) in the last step. To estimate the second term of (6.4.69), we write

v ·Dtw = ∑
i,k 6=0

hi,kei𝜆q+1k·Φi,

where

hi,k – v ·Dt [(DΦi)
−1bi,k +𝜆−1

q+1ci,k] = v · [Dt(DΦi)
−1bi,k +(DΦi)

−1Dtbi,k +𝜆−1
q+1Dtci,k].

By Lemma A.1, we obtain that∥∥hi,k
∥∥

N ≲ ‖v‖N

(∥∥DtDΦ−1
i

∥∥
0

∥∥bi,k
∥∥

0 +
∥∥DΦ−1

i

∥∥
0

∥∥Dtbi,k
∥∥

0 +
1

𝜆q+1

∥∥Dtci,k
∥∥

0

)
+‖v‖0

(∥∥DtDΦ−1
i

∥∥
N

∥∥bi,k
∥∥

0 +
∥∥DtDΦ−1

i

∥∥
0

∥∥bi,k
∥∥

N

+‖DΦi‖N

∥∥Dtbi,ki
∥∥

0 +
∥∥DΦ−1

i

∥∥
0

∥∥Dtbi,k
∥∥

N +
1

𝜆q+1

∥∥Dtci,k
∥∥

N

)
.
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Thus, using (6.4.4), (6.4.11) (in the form ‖v‖N+𝛼 ≲ 𝛿
1
2
q𝜆

1+𝛼
q `1−N

q,i ≲ 𝜏−1
q `−N

q ), (6.4.43)-
(6.4.44), (6.4.46)-(6.4.47), and (6.4.40)-(6.4.41), we conclude that∥∥hi,k

∥∥
N ≲ 𝛿

1
2
q+1𝜏

−1
q `−N

q = 𝛿
1
2
q+1𝛿

1
2
q𝜆q`

−4𝛼−N
q .

With Lemma C.3, the above estimate yields that
∫

v ·Dtw satisfies (6.4.21).
To deal with the first term of (6.4.69), we first note that, since divw = 0,

∫
∇p ·w = 0. The

term
∫

divR ·w can be estimated as follows:∣∣∣∣∫ divR ·wdx
∣∣∣∣≤ ‖R‖1‖w‖0 ≲ Λ 𝜚1+𝛾`−2𝛼

q `−1
q,i · 𝛿

1
2
q+1 ≲ Λ

1
2 𝜁

1+ 𝛾

2
q+1𝛿

1
2
q𝜆

1+𝛼
q `−3𝛼

q · 𝛿
1
2
q+1,

where we used (6.4.2) and (6.4.3). To conclude that the first term in (6.4.69) satisfies
(6.4.21), we would require

𝜁
1+ 𝛾

2
q+1𝜁

1
2
q𝜆

1+𝛼
q `−3𝛼

q ≲ 𝜁q+2𝜆
1−6𝛼
q+1 . (6.4.70)

For 𝛼,𝛾 sufficiently small, this follows from

−b𝛽 − 𝛽 +1 <−2b2 𝛽 +b ⇐⇒ 1− 𝛽 −2b𝛽 < b(1− 𝛽 −2b𝛽 ) ⇐⇒ 1− 𝛽 −2b𝛽 > 0,

which in turn follows from (4.3.2).

Step 7: Tp and its derivative

The time derivative ∂tTp is readily estimated as

∣∣∂tTp
∣∣=
∣∣∣∣∣∣
∫
T3

(−Δ)
𝜃

2(2v+w) · (−Δ)
𝜃

2 wdx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
T3

2(−Δ)
𝜃

2 v · (−Δ)
𝜃

2 wdx

∣∣∣∣∣∣+
∫
T3

∣∣∣(−Δ)
𝜃

2 w
∣∣∣2dx

≲ (2‖v‖𝜃+𝜀‖w‖1−𝜃−𝜀
0 ‖w‖𝜃+𝜀

1 +‖w‖2−2𝜃−2𝜀
0 ‖w‖2𝜃+2𝜀

1 ).

By (6.4.12), we have that ‖v‖𝜃+𝜀 ≲ Λ
1
2 . As for w, we have that ‖w‖N ≲ 𝛿

1
2
q+1𝜆

N
q+1 (cfr.

Step 3 above). Thus, recalling that 𝜃 + 𝜀 < 𝛽∣∣∂tTp
∣∣≲ 2Λ

1
2 ·Λ

1
2𝜆

𝜃+𝜀−𝛽
q+1 +Λ𝜆 2𝜃+2𝜀−2𝛽

q+1 ≲ Λ𝜆 𝜃+𝜀−𝛽
q+1 .

Since this is exactly (6.4.22), the proposition is proved. 3

Remark 6.4.1 (The fractional dissipation term). Note that (6.4.22) is stronger than
(6.4.21), since

Λ𝜆 𝜃+𝜀−𝛽
q+1 = Λ

1
2𝛿

1
2
q+1𝜆

𝜃+𝜀
q+1 ≲ 𝛿

1
2
q+1𝛿q+2𝜆

1−6𝛼
q+1 .
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Indeed, this inequality follows from 𝜃 + 𝜀− 𝛽 < 1−6𝛼− 𝛽 −2b𝛽 which, for 𝛼,𝜀 suffi-
ciently small, follows from (4.3.2) and the fact 𝜃 < 𝛽 .
However, Tp is only estimated as follows:

|Tp(t)|≲ tΛ𝜆 𝜃+𝜀−𝛽
q+1 .

To ensure that this satisfies (6.4.20) for any q ≥ 0, we would require

0 < 𝜃 + 𝜀− 𝛽 <−2b2 𝛽 −3b𝛼 ⇐⇒ 3b𝛼 < 𝛽 − 𝜃 − 𝜀−2b2 𝛽 .

Seen as the above right-hand side is, in general, negative, we cannot require it. Thus, in
general, Tp only satisfies (6.4.20) if the q in the statement is sufficiently large, which is
why we separated Tp from the other Reynolds terms.
However, for t ≲Λ−1𝜆 𝛽−𝜀−𝜃

q+1 , we can contrast the growth of Λ𝜆 𝜃+𝜀−𝛽
q+1 with the smallness

of the time, meaning that Tp only satisfies (6.4.20) for a short period of time, or if q is
sufficiently large.

Remark 6.4.2 (C0 estimate on the Reynolds stress). The requirement (6.4.2) is only
used to obtain (6.4.21), meaning we only need it on suppS, since S = 0 =⇒ E = 0.
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Chapter 7

Final approximations

7.1 From strict to adapted subsolutions: perturbing near
t = 0

The aim of this section is to prove the following proposition, which provides the first
convex integration scheme.

Proposition 7.1.1 (From strict to adapted subsolutions). Let (ṽ, p̃, R̃) be a smooth strict
subsolution on [0,T ]. Then, for any 𝜃 < 𝛽 < 1/3, 𝜈 >

1−3𝛽
2𝛽

, and 𝛿,𝜎 > 0, there exist

𝛾,Ω> 0 and a C 𝛽 -adapted subsolution (v̂, p̂, R̂) with parameters 𝛾,Ω, 𝜈 such that �̂�≤ 5
4
𝛿

and, for all t∈ [0,T ] ∫
T3

(
|v̂|2 + tr R̂

)
dx =

∫
T3

(
|ṽ|2 + tr R̃

)
dx (7.1.1)

‖ṽ− v̂C0‖≲ 1+ 𝛿
1
2 (7.1.2)

‖ṽ− v̂‖H−1 < 𝜎 (7.1.3)

Moreover, if we define

T̂(t) –

t∫
0

∫
T3

(∣∣∣(−Δ)
𝜃

2 ṽ
∣∣∣2 − ∣∣∣(−Δ)

𝜃

2 v̂
∣∣∣2)dxds, (7.1.4)

we have the bound ∣∣∂tT̂
∣∣≲ ∑

q
Λ𝜆 𝜃+𝜀−𝛽

q . (7.1.5)

The q = 0 term of this sum is the largest, and is 𝛿𝜆 2𝛽
1 𝜆 𝜃+𝜀−𝛽

0 , which is a-increasing. We
now note that a → ∞ for 𝛿 → 0, since we required 𝛿𝜆

2𝛽
1 — Λ≥ 1 in (4.3.3), and thus need

𝜆 2𝛽
1 → ∞ for 𝛿 → 0. Therefore, for any 𝜂 > 0, it can only be ensured that∣∣T̂∣∣(t)≤ 𝜂 t∈ [0, T̂ (𝜂 ,𝛿,a)],

where T̂ (𝜂 ,𝛿,a)∼ 𝜂𝛿−1𝜆−2𝛽
1 𝜆 𝛽−𝜃−𝜀

0 → 0 if a → ∞ or 𝜂 → 0.
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The proof closely follows the arguments of [18, Section 8]. Each stage contains a localized
gluing step performed using Proposition 6.3.1, and a perturbation step performed using
Proposition 6.4.1.
Proof. (Proposition 7.1.1)

Step 1: Setting the parameters of the scheme

Let (ṽ, p̃, R̃) be a smooth strict subsolution and let 0 < 𝛽 < 𝛽 <
1
3
, 𝜈 > 0. Choose b > 1

according to (4.3.2), furthermore let 𝜀 > 0 such that:

b(1+ 𝜀)<
1− 𝛽

2𝛽
. (7.1.6)

Then, let 𝛿, �̃� > 0 be the constants given by Corollary 5.2.1, and choose 0 < 𝛼 < 1 and
0 < 𝛾 < �̂� < �̃� so that:

• The inequalities (4.3.12), (4.3.13) are satisfied by both the pairs (𝛼,𝛾) and (𝛼, �̂�);

• The other conditions in Sections 6.3 and 6.4, namely (6.3.1)-(6.3.2) (and conse-
quently (6.4.1)), (6.4.60), and (6.4.70), are satisfied by both the pairs (𝛼,𝛾) and
(𝛼, �̂�);

• Condition (4.3.14) can hold for both pairs (𝛼,𝛾) and (𝛼, �̂�); since �̂� > 𝛾, relation
(4.3.15) reduces this to:

(b−1)(1− 𝛽 (b+1))− �̂� 𝛽b2 −2𝛼b > 0; (7.1.7)

• The following conditions holds:

𝜈 >
1−3𝛽 +𝛼

2𝛽
(7.1.8)

𝛼

𝛽
< b�̂� <

3𝛼
2𝛽

, 0 < b𝛾 < �̂�− 𝛼

𝛽
, 3𝛼 > 2b𝛽 𝛾. (7.1.9)

Having fixed b, 𝛽 ,𝛼,𝛾, �̂�, we may choose N∈N so that (4.3.14) is also valid. For a � 1
sufficiently large (to be determined) we then define (𝜆q,𝛿q) as in (4.3.1). Thus we are in
the setting of Section 4.3.

Step 2: From strict to strong subsolution

We apply Corollary 5.2.1 to obtain from (ṽ, p̃, R̃) a strong subsolution (v0, p0,R0) with
𝛿 = 𝛿1 such that the properties from (5.2.2) to (5.2.6) hold. By (5.2.2)-(5.2.6), (v0, p0,R0)
satisfies

3
4
𝛿1 ≤ 𝜌0 ≤

5
4
𝛿1 (7.1.10)∥∥R̊0(t)

∥∥
0 ≤ Λ 𝜚

1+�̂�
0 (7.1.11)

‖v0‖H−1 ≤ 𝜆−1
0 (7.1.12)

‖v0‖1+𝛼 ≤ 𝛿
1
2
0𝜆

1+𝛼
0 (7.1.13)

|∂t 𝜌0| ≤ 𝛿1𝛿
1
2
0𝜆0. (7.1.14)
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Step 3: Inductive construction of (vq, pq,Rq)

Starting from (v0, p0,R0), we show how to inductively construct a sequence{(vq, pq,Rq)}q∈N
of smooth strong subsolutions with:

Rq(x, t) = 𝜌q(t) Id+R̊q(x, t)

which satisfy the following properties:

(aq) For all t∈ [0,T ] ∫
T3

(
|vq|2 + trRq

)
dx =

∫
T3

(
|v0|2 + trR0

)
dx;

(bq) For all t∈ [0,T ] ∥∥R̊q(t)
∥∥

0 ≤ Λ 𝜚1+𝛾
q ;

(cq) If 2− jT < t ≤ 2− j+1T for some j = 1, . . . ,q, then

3
8
𝛿 j+1 ≤ 𝜌q ≤ 4𝛿 j;

(dq) For all t ≤ 2−qT :

∥∥R̊q(t)
∥∥

0 ≤ Λ 𝜚1+�̂�
q ,

3
4
𝛿q+1 ≤ 𝜌q ≤

5
4
𝛿q+1;

(eq) If 2− jT < t ≤ 2− j+1T for some j = 1, . . . ,q, then

∥∥vq
∥∥

1+𝛼
≤ M𝛿

1
2
j𝜆

1+𝛼
j∣∣∂t 𝜌q

∣∣≲ 𝛿 j+1𝛿
1
2
j𝜆 j,

whereas if t ≤ 2−qT ∥∥vq
∥∥

1+𝛼
≤ M𝛿

1
2
q𝜆

1+𝛼
q∣∣∂t 𝜌q

∣∣≲ 𝛿q+1𝛿
1
2
q𝜆q.

( fq) For all t∈ [0,T ] and q ≥ 1:

∥∥vq − vq−1
∥∥

H−1 ≤ M𝛿
1
2
q(𝜁

𝛾

2
q `

𝛼
q−1 + `−1

q−1𝜆
−1
q )

∥∥vq − vq−1
∥∥

0 ≤ M𝛿
1
2
q.

(gq) ‖vq‖𝜃+𝜀 ≤ M
(

1+Λ
1
2

q
∑

i=0
𝜆
𝜃+𝜀−𝛽
i

)
.
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Thanks to our choice of parameters in Step 1 above, (v0, p0,R0) satisfies (7.1.10)-(7.1.14),
and thus the inductive assumptions (a0)-(g0) (the last condition can be deduced from
(5.2.8)).
Suppose then (vq, pq,Rq) is a smooth strong subsolution which satisfies (aq)-(gq). The
construction of (vq+1, pq+1,Rq+1) consists of two steps: first a localized gluing step
performed using Proposition 6.3.1 to get from (vq, pq,Rq) to a smooth strong subsolu-
tion (vq, pq,Rq), then a localized perturbation step done using Proposition 6.4.1 to get
(vq+1, pq+1,Rq+1) from (vq, pq,Rq).
We apply Proposition 6.3.1 with

[T1,T2] = [0,2−qT ].

Then T2 − T1 ≥ 4𝜏q, if a � 1 is sufficiently large. Moreover, by (dq), (eq), and (gq),
(vq, pq,Rq) fulfils the requirements of Proposition 6.3.1 on [T1,T2]with parameters 𝛼, �̂� >
0.
Then, by Proposition 6.3.1, we obtain a smooth strong subsolution (vq, pq,Rq) on [0,T ]
such that (vq, pq,Rq) is equal to (vq, pq,Rq) on [2−qT,T ], and on [0,2−qT ] satisfies

∥∥vq − vq
∥∥
𝛼
≲ Λ

1
2 𝜚

1+ �̂�

2
q `𝛼q∥∥vq

∥∥
1+𝛼

≲ 𝛿
1
2
q𝜆

1+𝛼
q∥∥vq

∥∥
𝜃+𝜀

≲ 1+
q+1

∑
i=0

𝛿
1
2
i 𝜆

𝜃+𝜀
i∥∥∥R̊q

∥∥∥
0
≤ Λ 𝜚1+�̂�

q `−2𝛼
q

5
8
𝛿q+1 ≤ 𝜌q ≤

3
2
𝛿q+1∣∣∂t 𝜌q

∣∣≲ 𝛿q+1𝛿
1
2
q𝜆q.

(7.1.15)

Moreover, on [0, tn] one has that

∥∥vq
∥∥

N+1+𝛼
≲ 𝛿

1
2
q𝜆

1+𝛼
q `−N

q∥∥∥R̊q

∥∥∥
N+𝛼

≲ Λ 𝜚1+�̂�
q `−N−2𝛼

q∥∥∥(∂t + vq ·∇)R̊q

∥∥∥
N+𝛼

≲ Λ 𝜚1+�̂�
q `−N−6𝛼

q 𝛿
1
2
q𝜆q.

(7.1.16)

and

R̊q ≡ 0 t∈
n⋃

i=0

Ji. (7.1.17)

Recalling Definition 6.1.1 and (6.1.5) observe that[
0, 3

4
2−qT

]
⊂ [0, tn], (7.1.18)
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provided a � 1 is chosen sufficiently large (e.g. so that 5
3
𝜏q <

1
4
2−qT ). Then, choose a

cut-off function 𝜓q∈C∞
C ([0, 3

4
2−qT ]; [0,1]) such that

𝜓q(t) =

{
1 t ≤ 2−(q+1)T
0 t > 3

4
2−qT

(7.1.19)

and such that |𝜓 ′
q(t)|≲ 2q. By choosing a � 1 sufficiently large, we may assume that∣∣𝜓 ′

q(t)
∣∣≤ 1

2
𝛿

1
2
q𝜆q (7.1.20)

for all q. Then, set
S𝜓 – 𝜓2

q (Rq − 𝛿q+2 Id) = 𝜓2
q S.

Using (7.1.20), (7.1.9), (7.1.15)-(7.1.18), and the easy observation that 𝜌q ≲ 𝜌q − 𝛿q+2,
we see that S𝜓 and (vq, pq,Rq) satisfy the assumptions of Proposition 6.4.1 on the interval
[0, tn] with parameters 𝛼, �̂� > 0. We have that

𝜎𝜓 = 𝜓2
q (𝜌q − 𝛿q+2) = 𝜓2

q𝜎.

Recalling Remark 6.4.2, since suppS𝜓⊆[tn, tn]where (6.3.17) holds, we can apply Propo-
sition 6.4.1, thus obtaining a new subsolution (vq+1, pq+1,Rq −S𝜓 −Eq+1) with∥∥vq+1 − vq

∥∥
0 + `q𝜆q+1

∥∥vq+1 − vq
∥∥

H−1

+𝜆−1−𝛼
q+1

∥∥vq+1 − vq
∥∥

1+𝛼

+𝜆−𝜃−𝜀
q+1

∥∥vq+1 − vq
∥∥
𝜃+𝜀

≤ M𝛿
1
2
q+1∫

T3

|vq+1|2 − trS− trEq+1 =

∫
T3

|vq|2 t∈ [0,T ],

and such that the estimates (6.4.20) and (6.4.21) hold for Eq+1. Let

Rq+1 – Rq −S𝜓 −Eq+1.

We claim that (vq+1, pq+1,Rq+1) is a smooth strong subsolution satisfying (aq+1)-(gq+1).
Notice that (aq+1) is satisfied by construction. Since (vq+1, pq+1,Rq+1) = (vq, pq,Rq) for
t ≥ 2−qT , we may restrict t to [0,2−qT ] in the following, so that in particular (7.1.15)
holds.
Let us now prove (bq+1). On the one hand∥∥R̊q+1

∥∥
0 =

∥∥∥(1−𝜓2
q )R̊q − E̊q+1

∥∥∥
0

≤ (1−𝜓2
q )Λ 𝜚1+�̂�

q `−2𝛼
q + 𝛿q+2𝜆

−3𝛼
q+1 1{𝜓q>0}, (7.1.21)

on the other hand

𝜌q+1 = (1−𝜓2
q )Λ 𝜚q +𝜓2

q 𝛿q+2 +
1
3

trEq+1

≥ (1−𝜓2
q )𝜌q +𝜓2

q 𝛿q+2 − 𝛿q+2𝜆
−3𝛼
q+1 1{𝜓q>0}. (7.1.22)
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The proof of (bq+1) thus reduces to assessing whether there exists a suitable 𝛾 such that

(1−𝜓2
q )Λ

−�̂� 𝜌1+�̂�
q `−2𝛼

q +𝛿q+2𝜆
−3𝛼
q+1 1{𝜓q>0}≤Λ−𝛾 [(1−𝜓2

q )𝜌q+𝜓2
q 𝛿q+2−𝛿q+2𝜆

−3𝛼
q+1 ]

1+𝛾 .
(7.1.23)

To this end set

F(s) – (1− s)Λ 𝜚1+�̂�
q `−2𝛼

q + 𝛿q+2𝜆
−3𝛼
q+1

G(s) – (1− s)𝜌q + s𝛿q+2 − 𝛿q+2𝜆
−3𝛼
q+1

H(s) – Λ−𝛾G1+𝛾(s)−F(s),

and observe that (7.1.23) is equivalent to H(𝜓2
q ) ≥ 0 if 𝜓q > 0, and follows from this

inequality also in case 𝜓q = 0. In particular, (7.1.23) follows from:

(i) H(0)≥ 0 and H(1)≥ 0;

(ii) H ′(0)≤ 0 and H ′(1)≤ 0.

(iii) H ′′(s)≥ 0.

We note next that, since 2b𝛽 �̂� < 3𝛼

𝛿q+2𝜆
−3𝛼
q+1 ≲ Λ 𝜚1+�̂�

q ,

so that we have the estimates

F(0)≲ Λ 𝜚1+�̂�
q `−2𝛼

q , G(0)≳ 𝜌q.

It is also clear that G(s)≤ 𝜌q.
It is then easy to check that the requirement H(0)≥ 0, i.e. F(0)≤Λ−𝛾G1+𝛾(0), amounts
to Λ 𝜚1+�̂�

q `−2𝛼
q ≲ Λ 𝜚1+𝛾

q , i.e. 𝜚�̂�−𝛾
q `−2𝛼

q ≲ 1. Hence, since `−1
q ≤ 𝜆q+1 by (4.3.13) and

𝜚q ≳ 𝜁q+1 by (dq+1), H(0)≥ 0 follows from

�̂�− 𝛼

𝛽
> 𝛾, (7.1.24)

provided a � 1 is sufficiently large to absorb geometric constants. The relation (7.1.24)
follows from (7.1.9) since b > 1.
The next requirement, H(1) ≥ 0, i.e. 𝜆−3𝛼

q+1 ≲ 𝜁
𝛾
q+2(1−𝜆−3𝛼

q+1 )
1+𝛾 , requires 3𝛼 > 2b𝛽 𝛾

as found in (7.1.9), since 1−𝜆−3𝛼
q+1 ≥ 1

2
for a sufficiently large.

The following condition, H ′(0)≤ 0, can be rewritten as

−Λ 𝜚1+�̂�
q `−2𝛼

q ≥ (1+𝛾)( 𝜚q− 𝜁q+2𝜆
−3𝛼
q+1 )

𝛾(𝛿q+2− 𝜌q)⇐⇒Λ 𝜚1+�̂�
q `−2𝛼

q ≲ ( 𝜚q− 𝜁q+2𝜆
−3𝛼
q+1 )

𝛾(𝜌q−𝛿q+2).

Noting that 𝜌q ≳ 𝛿q+1 � 𝛿q+2 by (dq+1), and therefore 𝜌q− 𝛿q+2 ≥ 1
2
𝜌q for a sufficiently

large, the above reduces to

𝜚�̂�−𝛾
q `−2𝛼

q ≲ 1 ⇐= 𝜆 2𝛼−2𝛽 �̂�+2𝛽 𝛾
q+1 = 𝜁 �̂�−𝛾

q+1 𝜆 2𝛼
q+1 ≲ 1,

119



which follows from condition (7.1.24) deduced above.
We then need the condition H ′(1)≤ 0, which can be rewritten as

−Λ 𝜚1+�̂�
q `−2𝛼

q ≥ (1+ 𝛾)𝜁
𝛾
q+2(1−𝜆−3𝛼

q+1 )
𝛾(𝛿q+2 − 𝜌q),

which similarly follows from (7.1.24).
The last condition, H ′′ ≥ 0, follows from the fact that F ′′ ≡ 0 and G′′ ≡ 0, and thus
H ′′ = Λ−𝛾(1+ 𝛾)𝛾G𝛾−1G′2 is positive.
Thus, our choice of 𝛼,𝛾, �̂� in (7.1.9) guarantees that (7.1.23) holds, which yields (bq+1).
Consider now (cq+1), where we only need to consider the case j = q+1, i.e. the estimate
on [2−q−1T,2−qT ]. Using (7.1.22), the fact that 𝜌q ≥ 𝛿q+2 for a large enough, and (7.1.15),
we see that

𝛿q+2(1−𝜆−3𝛼
q+1 )≤ 𝜌q+1(t)≤ 𝜌q(t)+ 𝛿q+2𝜆

−3𝛼
q+1 ≤ 3

2
𝛿q+1 + 𝛿q+2𝜆

−3𝛼
q+1 .

Therefore (cq+1) holds, provided a � 1 is sufficiently large.

Remark 7.1.1 (The reason for different-order bounds). This is the reason why the
Gluing step in Section 6.3 required different-order bounds on 𝜌q. Indeed, if we tried to
require 𝜌q ≥ 3

4
𝛿q+1 in that proposition, we would need to obtain it here, meaning we

would need 𝛿q+1(1−𝜆−3𝛼
q+1 ) in the above chain. This would change the definition of S𝜓 in

a similar way, which may not be positive definite since 𝜌q 6≥ 𝛿q+1 everywhere.

Similarly, concerning (dq+1), observe that for t ≤ 2−(q+1)T we have that 𝜓q(t) = 1, so that

𝛿q+2(1−𝜆−3𝛼
q+1 )≤ 𝜌q+1 ≤ 𝛿q+2(1+𝜆−3𝛼

q+1 ).

Moreover, using (7.1.21) and the fact that 𝜓q = 1 for t ≤ 2−(q+1)T

∥∥R̊q+1
∥∥

0 ≤ 𝛿q+2𝜆
−3𝛼
q+1 ≤ Λ

(
3
4
𝜁q+2

)1+�̂�

,

where we used the fact that 2b𝛽 �̂� < 3𝛼 and chose a � 1 sufficiently large. Therefore
(dq+1), i.e. ‖R̊q+1‖0 ≲ Λ 𝜚1+�̂�

q+1 and 3
4
𝛿q+2 ≤ 𝜌q+1 ≤ 5

4
𝛿q+2, holds.

Concerning (eq+1), it is once more enough to restrict to t ≤ 2−qT , i.e. the case j = q+1.
From (7.1.15) and (6.4.18) we deduce that∥∥vq+1

∥∥
1+𝛼

≤
∥∥vq+1 − vq

∥∥
1+𝛼

+
∥∥vq
∥∥

1+𝛼

≤ M
2
𝛿

1
2
q+1𝜆

1+𝛼
q+1 +C𝛿

1
2
q𝜆

1+𝛼
q

≤ M𝛿
1
2
q+1𝜆

1+𝛼
q+1 ,

where C is the implicit constant in (7.1.15), which can be absorbed by choosing a � 1
sufficiently large. The estimate on |∂t 𝜌q+1| similarly follows from the trace estimate of
(7.1.15) and (6.4.21). (eq+1) is thus proved.
( fq+1) follows from (7.1.15), (6.4.17), and (6.4.16).
Finally, (gq+1) easily follows from (6.4.19) and (7.1.15).
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Step 4: Convergence to an adapted subsolution

We have thus obtained a sequence (vq, pq,Rq) satisfying (aq)-(gq).
From ( fq) it follows that (vq, pq) is a Cauchy sequence in C0. Indeed, it is clear for {vq},
and concerning {pq} we may use (4.1.1) to write

Δ(pq+1 − pq) =−divdiv(R̊q+1 − R̊q +(vq+1 − vq)⊗ vq + vq+1 ⊗ (vq+1 − vq)),

and apply Schauder estimates (Lemma A.4). Similarly, {Rq} also converges inC0. Indeed,
from the definition and using (6.3.12), (6.3.4), (6.4.10), (6.4.20), and (bq), we have that∥∥Rq+1 −Rq

∥∥
0 =

∥∥Rq −Rq −S𝜓 −Eq+1
∥∥

0

≤
∥∥Rq
∥∥

0 +
∥∥Rq
∥∥

0 +
∥∥S𝜓

∥∥
0 +
∥∥Eq+1

∥∥
0

≲ 𝛿q+1.

For all t > 0 there exists q(t)∈N such that

(vq, pq,Rq)(·, t) = (vq(t), pq(t),Rq(t))(·, t) ∀q ≥ q(t),

thus (vq, pq,Rq) converges uniformly to a strong subsolution (v̂, p̂, R̂) satisfying∥∥R̂
∥∥

0 ≤ Λ �̂�1+𝛾 ,

and, using (5.2.1) and (aq)∫
T3

(
|v̂|2 + tr R̂

)
dx =

∫
T3

(
|ṽ|2 + tr R̃

)
dx ∀t∈ [0,T ].

Furthermore, using (5.2.4) and ( fq)

‖v̂− ṽ‖H−1 ≤ ‖v0 − ṽ‖H−1 +‖v0 − v̂‖H−1

≲ 𝛿1𝜆
−1
0 +

∞

∑
q=0

∥∥vq+1 − vq
∥∥

H−1

≲ 𝛿
1
2 𝜁

𝛾

2
q `

𝛼
q ,

leading to (7.1.3) for a sufficiently large. Using ( fq) and the fact that ṽ, v̌ are smooth and
thus bounded in C0, (7.1.2) is proved similarly:

‖v̂− ṽ‖C0 ≤ ‖v0 − ṽ‖C0 +‖v0 − v̂‖C0

≲ 1+
∞

∑
q=0

∥∥vq+1 − vq
∥∥

0

≲ 1+ 𝛿
1
2
1.

Concerning the initial datum, from (eq) and ( fq) we obtain by interpolation that v̂(·,0)∈
C 𝛽 , and from (dq) we obtain that R̂(·,0) = 0.
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Finally, we verify conditions (4.2.4), and (4.2.5) for being a C 𝛽 -adapted subsolution. Let
t > 0. Then there exists q∈N such that t∈ [2−qT,2−q+1T ]. By (cq) and (eq)

3
8
𝛿q+1 ≤ �̂� ≤ 4𝛿q

‖v̂‖1+𝛼 ≤ M𝛿
1
2
q𝜆

1+𝛼
q .

Therefore �̂�−1 ≥ 1
4
𝛿−1

q , and hence, using (4.3.1) and (7.1.8), we deduce that

‖v̂‖1+𝛼 ≤ Λ
1
2 �̂�−(1+𝜈),

for a � 1 sufficiently large. Similarly, using (eq) and (7.1.8), we deduce that

|∂t �̂�|≲ 𝛿q+1𝛿
1
2
q𝜆q =Λ

3
2𝜆 1−𝛽

q 𝜆−2𝛽
q+1 ∼Λ

3
2𝜆 1−𝛽−2b𝛽

q =Λ
3
2 𝜁

− 1
2𝛽
(1−𝛽−2b𝛽 )

q ≤Λ
3
2 𝜁

1−1− 𝛽

2𝛽
q ≲Λ

3
2 �̂�−𝜈 .

Finally, a word about the term

T̂ – ∑(T
(q)

g +T
(q)

d ),

where T
(q)

g and T
(q)

d are the extra trace terms from the qth gluing and perturbation steps.
We have that |∂tT

(q)
g |+ |∂tT

(q)
d | ≲ Λ𝜆 𝜃+𝜀−𝛽

q , thus proving (7.1.5). However, adding T̂

into R̂ could compromise the adaptedness of (v̂, p̂, R̂) by rendering (4.2.4)-(4.2.5) invalid,
which is why we keep it separated and deal with it in the final argument. The estimate
(7.1.5) implies that ∣∣T̂(t)

∣∣≲ ∑ tΛ𝜆 𝜃+𝜀−𝛽
q .

To be able to make it as small as we desire, we must contrast the a-growth of the q = 0
and q = 1 terms of this sum. This is easily achieved by requiring t ≤ Λ−1𝜆

𝛽−𝜃−𝜀−𝜄
0 for 𝜄

arbitrarily small. In any case, calling ts the maximal time where T̂ can be estimated with
small quantities, we have that

lim
a→∞

ts = 0,

since we need ts𝛿
1/2
0 𝜆 𝜃+𝜀

0 to be small. 3

7.2 Perturbing away from t = 0 to obtain weak solutions
The aim of this section is to prove the following proposition, which provides the second
convex integration scheme.

Proposition 7.2.1 (From adapted subsolutions to weak solutions). Let 𝜃 < 𝛽 < 𝛽 <
1
3
,

𝛾 > 0, and 𝜈 > 0 with
1−3𝛽

2𝛽
< 𝜈 <

1−3𝛽
2𝛽

. (7.2.1)

The following holds for all 𝛿 < 1.
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If (v̂, p̂, R̂) is a C 𝛽 -adapted subsolution with parameters 𝛾,Ω, 𝜈 and �̂� ≤ 5
2
𝛿, then, for all

𝜎 > 0, there exists a C 𝛽 weak solution v of (2.1.3.1) with initial datum

v(·,0) = v̂(·,0) (7.2.2)

and such that, for all t∈ [0,T ] ∫
T3

|v|2dx =
∫
T3

(
|v̂|2 + tr R̂

)
dx (7.2.3)

‖v− v̂‖C0 ≲ 𝛿
1
2 (7.2.4)

‖v− v̂‖H−1 < 𝜎 (7.2.5)

Moreover, if we define

T(t) –

t∫
0

∫
T3

(∣∣∣(−Δ)
𝜃

2 v̂
∣∣∣2 − ∣∣∣(−Δ)

𝜃

2 v
∣∣∣2)dxds, (7.2.6)

once again we have the bound

|∂tT|≲ ∑Λ𝜆 𝜃+𝜀−𝛽
q , (7.2.7)

so that, like in the previous proposition, for any 𝜂 > 0, it can be ensured that

|T(t)| ≤ 𝜂 ∀t∈ [0,T (𝜂 ,𝛿,a)],

where T (𝜂 ,𝛿,a)∼ 𝜂𝛿−1𝜆
−2𝛽
1 𝜆

𝛽−𝜃−𝜀
0 → 0 if 𝜂 → 0 or a → ∞.

Finally, consider the family of strong subsolutions (v̂, p̂, R̂+ e/3 Id), where e : [0,T ]→ R
satisfies the following conditions:

e(t)≤ 5
2
𝛿− �̂�(t) (7.2.8)

|∂te| ≤
√

𝛿0 𝜆0e. (7.2.9)
e ≥ 0, (7.2.10)

e(0) = 0. (7.2.11)

This family can be used to yield infinitely many distinct weak solutions with the same initial
data as (v, p).

The proof closely follows the arguments of [18, Section 9]. We now start from an adapted
subsolution and, by a convex integration scheme, build a sequence of strong subsolutions
which converge to a solution of the fractional Navier-Stokes equation. As in Proposition
7.1.1, the convex integration scheme needs the localized gluing and perturbation arguments
of Proposition 6.3.1 (in the form of Remark 6.3.1) and Proposition 6.4.1. However, the
choice of the cut-off functions will be, as in [19], dictated by the shape of the trace part
of the Reynolds stress, and not fixed a priori as in Proposition 7.1.1. Before we start
the proof, a remark needs to be made about starting the chain of Proposition 6.3.1 and
Proposition 6.4.1 with worse estimates.
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Remark 7.2.1 (Worse starting estimate). In Proposition 6.3.1, if we replace (6.3.4) with∥∥R̊
∥∥

0 ≤ Λ 𝜚1+𝛾
q `

−2
b
𝛼

q ,

as we will need to do below, the estimates (6.3.27), (6.3.36), (6.3.37), (6.3.9), (6.3.10),
(6.3.16), (6.3.12), (6.3.17), (6.3.15), (6.3.51), and (6.3.59) will be worsened by a factor
`
−2/b𝛼
q . In fact, we can gain a factor `𝛼q in (6.3.12) and (6.3.17), and a factor `𝛼q 𝜆

𝛼
q in

(6.3.15) and (6.3.51). To keep the inductive estimates on the velocity gap ‖vq+1 − vq‖0
and ‖vq+1 − vq‖H−1 , the velocity ‖vq+1‖0, and the derivative of the trace |∂t 𝜌q|, we will
need

Λ
1
2 𝜚

1+ 𝛾

2
q `

(1−2
b
)𝛼

q ≲ 𝛿
1
2
q+1

𝛿
1
2
q𝜆q`

−2
b
𝛼

q ≲ 𝛿
1
2
q+1𝜆q+1

𝜚𝛾q,i`
−(2+2

b
)𝛼

q ≲ 1,

(7.2.12)

all of which can easily be deduced by assuming 2𝛼 < 𝛽 𝛾 and 𝛼 < 2/9. The former
assumption also yields (6.3.22), which will allow us to bound the H−1 norm of vq+1 − vq
sufficiently tightly. If we then start the perturbation step of Proposition 6.4.1 from estimates
that we can obtain from the modified output estimates mentioned above, we can get the
same output estimates from Proposition 6.4.1.

Proof. (Proposition 7.2.1)

Step 1: Setting the parameters in the scheme

Let (v̂, p̂, R̂) be a C 𝛽 -adapted subsolution on [0,T ], with Ω = Λ, satisfying the “strong”
condition | ˚̂R| ≤ Λ �̂�1+𝛾 for some 𝛾 > 0 and (4.2.4) and (4.2.5) for some 𝛼, 𝜈 > 0 as in
Definition 4.2.2 of adapted subsolution, with

1− 𝛽

2𝛽
< 1+ 𝜈 <

1− 𝛽

2𝛽
.

Fix b > 0 so that
b2(1+ 𝜈)<

1− 𝛽

2𝛽
, 2𝛽 (b2 −1)< 1. (7.2.13)

Observe that both the strongness condition (4.2.1) and the adaptedness conditions (4.2.4)-
(4.2.5) remain valid for any �̂� < 𝛾 and 𝛼 ′ ≤ 𝛼 (cfr. Remark 4.2.1). Then, we may assume
that 𝛼, �̂� > 0 are sufficiently small, so that (v̂, p̂, R̂) satisfies (4.2.1) for some �̂� > 0 and
(4.2.4)-(4.2.5) for some 𝛼, 𝜈 > 0, and furthermore choose 𝛾 so that

2𝛼 < 𝛽 �̂� < 𝛽 𝛾 < 3𝛼 b𝛽 �̂� < 3𝛼. (7.2.14)

For the reasons discussed in Remark 7.2.1 above, and for another technical reason we
will see below, we require

2𝛼 < 𝛽 𝛾 < 3𝛼. (7.2.15)
Finally, having fixed b, 𝛽 , 𝛽 ,𝛼,𝛾, �̂� , we may choose N ∈N so that (4.3.14) holds. For
a � 1 sufficiently large (to be determined) we then define (𝜆q,𝛿q) as in (4.3.1) (using 𝛽 ).
Thus, we are in the setting of Section 4.3.
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Step 2: Conditions on (v0, p0,R0) and the inductive construction of (vq, pq,Rq)

Differently from [18, Section 9], we can take (v0, p0,R0) = (v̂, p̂, R̂), since we are assum-
ing �̂� ≤ 5

4
𝛿1 =

5
4
𝛿, which is a-independent. We do have some estimates to verify for

(v0, p0,R0), namely that, wherever 𝜌0 ≥ 𝛿q+2

‖v0‖1+𝛼 ≤ 𝛿
1
2
q𝜆

1+𝛼
q

|∂t 𝜌0| ≤ 𝜌0𝛿
1
2
q𝜆q.

(7.2.16)

Indeed, where 𝜌0 ≥ 𝛿q+2, (7.2.13) easily yields

Λ
1
2 𝜚

−(1+𝜈)
0 ≲ Λ

1
2𝜆

2𝛽b2(1+𝜈)
q ≤ 𝛿

1
2
q𝜆q

Λ
3
2 𝜚−𝜈

0 ≲ Λ
3
2𝜆 2𝛽b2𝜈

q ≤ 𝛿q+2𝛿
1
2
q𝜆q,

provided a � 1 is sufficiently large. These two relations, combined with (4.2.4) and
(4.2.5), yield (7.2.16).
Start from (v0, p0,R0), we will inductively construct a sequence (vq, pq,Rq) of smooth
strong subsolutions for q = 1,2, . . . , with

Rq(x, t) = 𝜌q(t) Id+R̊q(x, t),

satisfying the following properties:

(Aq) For all t∈ [0,T ] ∫
T3

(
|vq|2 + trRq

)
dx =

∫
T3

(
|v0|2 + trR0

)
dx; (7.2.17)

(Bq) For all t∈ [0,T ]

𝜌q ≤
5
2
𝛿q+1; (7.2.18)

(Cq) For all t∈ [0,T ]

∥∥R̊q
∥∥

0 ≤


Λ 𝜚1+�̂�

q `
−2

b
𝛼

q 𝜌q ≥ 2𝛿q+2

Λ 𝜚
1+�̂�
q

3
2
𝛿q+2 ≤ 𝜌q ≤ 2𝛿q+2

Λ 𝜚1+𝛾
q 𝜌q ≤ 3

2
𝛿q+2

; (7.2.19)

(Dq) If 𝜌q ≥ 𝛿 j+2 for some j ≥ q, then

∥∥vq
∥∥

1+𝛼
≤ M𝛿

1
2
j𝜆

1+𝛼
j (7.2.20)∣∣∂t 𝜌q

∣∣≤ 𝜌q𝛿
1
2
j𝜆 j; (7.2.21)
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(Eq) For all t∈ [0,T ] and q ≥ 1

∥∥vq − vq−1
∥∥

H−1 ≲ (𝜁
𝛾

2
q `

𝛼

2
q + 𝛿

1
2
q𝜆

−1
q )

∥∥vq − vq−1
∥∥

0 ≲ 𝛿
1
2
q. (7.2.22)

(Fq) ‖vq‖𝜃+𝜀 ≤ M
(

1+Λ
1
2

q
∑

i=0
𝜆 𝜃+𝜀−𝛽

i

)
.

Thanks to our choice of parameters in Step 1 above, (v0, p0,R0) satisfies (7.2.16), and
therefore our inductive assumptions (A0)-(F0).
Suppose now (vq, pq,Rq) satisfies (Aq)-(Fq) above. Let

Jq –

{
t∈ [0,T ] : 𝜌q(t)>

3
2
𝛿q+2

}
, Kq –

{
t∈ [0,T ] : 𝜌q(t)≥ 2𝛿q+2

}
.

Being (relatively) open in [0,T ], Jq is a disjoint, possibly countable, union of (relatively)
open intervals (T (i)

1 ,T (i)
2 ). Let

Iq –

{
i : (T (i)

1 ,T (i)
2 )∩Kq 6=∅

}
,

and let t0∈(T (i)
1 ,T (i)

2 )∩Kq for some i∈Iq. Since Kq is compact, we may assume that the
open interval (T (i)

1 , t0) is contained in Jq ∖Kq. Using (7.2.21), we then have that

3
2
𝛿q+2 = 𝜌q(T

(i)
1 )≥ 𝜌q(t0)−|T (i)

1 − t0|sup
Jq

∣∣∂t 𝜌q
∣∣≥ 2𝛿q+2 −2𝛿q+2𝛿

1
2
q𝜆q|T (i)

1 − t0|,

hence

|T1 − t0| ≥
1
4
(𝛿

1
2
q𝜆q)

−1 =
`−4𝛼

q

4
𝜏q > 4𝜏q, (7.2.23)

provided a � 1 is chosen sufficiently large. A similar estimate holds for T (i)
2 . Therefore

T (i)
2 −T (i)

1 > 4𝜏q for any i∈Iq, so that Iq is a finite index set.
Next, we apply Proposition 6.3.1 (in the form of Remark 6.3.1), keeping Remark 7.2.1
in mind, to (vq, pq,Rq) on this disjoint union of intervals

⋃
Iq

Jq,i. Since 𝜌q >
3
2
𝛿q+2,

from (Aq)-(Fq) and (7.2.13)-(7.2.14) we see that the assumptions of Proposition 6.3.1 on
(vq, pq,Rq) hold with parameter �̂�. Then we obtain (vq, pq,Rq) such that, on Jq∥∥vq(t)− vq(t)

∥∥
𝛼
≲ 𝛿

1
2
q+1`

(1
2
+2

b
−2

b
1Kq)𝛼

q ≲ 𝛿
1
2
q+1`

𝛼

2
q (From (6.3.22))∥∥vq

∥∥
1+𝛼

≲ 𝛿
1
2
q𝜆

1+𝛼
q `

−2
b
𝛼1Kq

q ≲ 𝛿
1
2
q+1𝜆

1+𝛼
q+1 (From (6.3.10))∥∥∥R̊q

∥∥∥
0
≤ 𝜌1+�̂�

q `
−2𝛼+(1−2

b
)𝛼1Kq

q (From (6.3.12))

7
8
𝜌q ≤ Λ 𝜚q ≤

9
8
𝜌q (From (6.3.13))∣∣∂t 𝜌q

∣∣≲ 𝜌q𝛿
1
2
q𝜆q. (From (6.3.14))
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Moreover, recalling (6.1.5), for any i∈Iq we have the following additional estimates valid
for t∈ [T (i)

1 +2𝜏q,T
(i)

2 −2𝜏q]∩ Jq:

∥∥vq
∥∥

N+1+𝛼
≲ 𝛿

1
2
q𝜆

1+𝛼
q `

−N−2
b
𝛼1Kq

q∥∥∥R̊q

∥∥∥
N+𝛼

≲ Λ 𝜚1+�̂�
q `

−N−2𝛼+(1−2
b
)𝛼1Kq

q∥∥∥(∂t + vq ·∇)R̊q

∥∥∥
N+𝛼

≲ Λ 𝜚1+�̂�
q `

−N−6𝛼+(1−2
b
)𝛼1Kq

q 𝛿
1
2
q𝜆q,

(7.2.24)

and
supp R̊q⊂T3 ×

⋃
i

Ii, (7.2.25)

where {Ii}i are the intervals defined in (6.1.1).
Let us choose a cut-off function 𝜓q∈C∞

c (Jq; [0,1]) such that

supp𝜓q⊂
⋃

i∈Iq

(
T (i)

1 +2𝜏q,T
(i)

2 −2𝜏q
)

(7.2.26)

Kq⊂
{
𝜓q = 1

}
(7.2.27)∣∣𝜓 ′

q
∣∣≲ 𝛿

1
2
q𝜆q. (7.2.28)

Such a choice is made possible by (7.2.23). We then want to apply Proposition 6.4.1
(using Remark 7.2.1 above where 𝜌q ≥ 2𝛿q+2) to (vq, pq,Rq) with

S𝜓 – 𝜓2
q (Rq − 𝛿q+2 Id),

hence 𝜎𝜓 = 𝜓2
q (𝜌q−𝛿q+2). Using (7.2.28), (7.2.14), (7.2.13), (7.2.24), (7.2.25), (6.3.13)-

(6.3.14), and (Aq)-(Fq), we see that S and (vq, pq,Rq) satisfy the required assumptions on
the interval [T (i)

1 +2𝜏q,T
(i)

2 −2𝜏q] with parameters 𝛼, �̂� > 0. In particular, (6.4.2) (or its
worsened form discussed in Remark 7.2.1) follows from (7.2.24), since we only need it
on supp𝜓q⊆ [T (1)

i +2𝜏q,T
(2)

i −2𝜏q].
Proposition 6.4.1 gives then a new subsolution (vq+1, pq+1,Rq −S𝜓 −Eq+1) with∥∥vq+1 − vq

∥∥
0 +
∥∥vq+1 − vq

∥∥
H−1𝜆q+1

+𝜆−1−𝛼
q+1

∥∥vq+1 − vq
∥∥

1+𝛼

+𝜆−𝜃−𝜀
q+1

∥∥vq+1 − vq
∥∥
𝜃+𝜀

≤ M𝛿
1
2
q+1 (From (6.4.17) and (6.4.18))∫

T3

∣∣vq+1
∣∣2 −S𝜓 −Eq+1 =

∫
T3

∣∣vq
∣∣2 t∈ [0,T ]. (From (6.4.15))

and such that Eq+1 satisfies (6.4.20)-(6.4.21). Let

Rq+1 – Rq −S𝜓 −Eq+1,
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We claim that (vq+1, pq+1,Rq+1) is a smooth strong subsolution satisfying (Aq+1)-(Fq+1).
Notice that (Aq+1) is satisfied by construction. By definition of S𝜓 , one has that

𝜌q+1 = 𝜌q(1−𝜓2
q )+𝜓2

q 𝛿q+2 −
1
3

trEq+1

R̊q+1 = R̊q(1−𝜓2
q )− E̊q+1.

For t∈Kq, condition (Bq+1) follows easily from (6.4.20) and the fact that Kq⊂{𝜓q = 1}.
For t 6∈Jq, we have that

𝜌q+1 = 𝜌q ≤
3
2
𝛿q+2 <

5
2
𝛿q+2.

For t∈Jq ∖Kq, we have that 𝜌q ≤
9
8
𝜌q ≤ 9

8
·2𝛿q+2 =

9
4
𝛿q+2, which means

𝜌q+1 ≤
9
4
𝛿q+2

(
1− 4

9
𝜓2

q +
5
9
𝜆−6𝛼

q+1

)
≤ 5

4
𝛿q+2

(
9
5
+𝜆−6𝛼

1

)
,

and if 𝜆−6𝛼
1 ≤ 1

5
, which is a matter of choosing a large enough, we have (Bq+1).

Note that, by the construction of 𝜌q+1, we have that Jq⊆Kq+1, since on the whole of Jq
we have that 𝜌q+1 ∼ 𝛿q+2 � 𝛿q+3. This is the reason why we required �̂� < 𝛾 and used the
larger 𝛾 outside of Jq in (Cq): to make sure (Cq+1) was automatically verified outside Jq.
This is in stark contrast to what happened in Section 7.1, where the perturbation regions
Pq – [0,2−qT ] satisfied the opposite inclusion Pq+1 ⊆Pq, and where we consequently
required �̂� > 𝛾 to ensure the weaker “strongness condition” (bq+1) in Pq∖Pq+1, while the
stronger (dq+1) only held in Pq+1, where 𝜓q = 1.
By the above paragraph, in verifying conditions (Cq+1)-(Dq+1), it suffices to restrict to
the case when 𝜌q+1 ≥ 2𝛿q+3 and j = q+1, respectively.
The argument showing (Cq+1) for t ∈Kq+1 is similar to the proof of (bq+1) in Step 3 of
Proposition 7.1.1 above. On the one hand∥∥R̊q+1

∥∥
0 =

∥∥∥(1−𝜓2
q )R̊q − E̊q+1

∥∥∥
0

≤ (1−𝜓2
q )Λ 𝜚1+�̂�

q `
−2𝛼+(1−2

b
)𝛼1𝜓q=1

q + 𝛿q+2𝜆
−6𝛼
q+1 ,

on the other hand

𝜌q+1 = (1−𝜓2
q )Λ 𝜚q +𝜓2

q 𝛿q+2 +
1
3

trEq+1

≥ (1−𝜓2
q )𝜌q +𝜓2

q 𝛿q+2 − 𝛿q+2𝜆
−6𝛼
q+1 .

So where 𝜓q = 1 we have the condition since, for a large enough, we can guarantee

𝛿q+2𝜆
−6𝛼
q+1 ≲ 𝛿q+2𝜁

�̂�
q+2(1−𝜆−6𝛼

q+1 )
1+�̂� ⇐⇒ 𝜆−6𝛼

q+1 ≲ 𝜁 �̂�q+2(1−𝜆−6𝛼
q+1 )

1+�̂� , (7.2.29)

since 6𝛼 > 2b𝛽 �̂� is required in (7.2.14). If 𝜓q 6= 1, however, we need

(1−𝜓2
q )Λ

−�̂� 𝜌1+�̃�
q `−2𝛼

q +𝛿q+2𝜆
−6𝛼
q+1 1{𝜓q>0}≤Λ−�̂� [(1−𝜓2

q )𝜌q+𝜓2
q 𝛿q+2−𝛿q+2𝜆

−6𝛼
q+1 ]

1+�̂�`
−2

b
𝛼

q+1 .
(7.2.30)

128



To this end set

F(s) – (1− s)Λ 𝜚1+�̃�
q `−2𝛼

q + 𝛿q+2𝜆
−6𝛼
q+1

G(s) – (1− s)𝜌q + s𝛿q+2 − 𝛿q+2𝜆
−6𝛼
q+1 = 𝜌q + s(𝛿q+2 − 𝜌q)− 𝛿q+2𝜆

−6𝛼
q+1

H(s) – Λ−�̃�G1+�̃�(s)`
−2

b
𝛼

q+1 −F(s),

and, just like in Proposition 7.1.1, deduce that H(𝜓2
q )≥ 0 by proving that:

(i) H(0)≥ 0 and H(1)≥ 0;

(ii) H ′(0)≥ 0 and H ′(1)≥ 0.

(iii) H ′′(s)≥ 0.

To this end, we first obtain the estimates

𝛿q+2𝜆
−6𝛼
q+1 ≲ Λ 𝜚1+�̂�

q , F(0)≲ Λ 𝜚1+�̂�
q `−2𝛼

q , G(0)≳ 𝜌q, G(s)≤ 𝜌q.

The first one follows from (7.2.29), (6.3.13), and the fact we are working for t ∈ Jq..
The second one follows from the first one. The fourth one is obvious, since 𝜌q ≥
7
8

3
2
𝛿q+2

21
16
𝛿q+2 > 𝛿q+2. For the third one, we reduce it to 𝛿q+2𝜆

−6𝛼
q+1 ≲ 𝜌q, and then it

follows from the first estimate, since Λ 𝜚
1+�̂�
q ≤ 𝜌q. We then prove (i)-(v) as follows.

• It is easy to check that the two parts of (i) amount to

Λ 𝜚1+�̂�
q `−2𝛼

q ≲ Λ 𝜚1+�̂�
q `

−2
b
𝛼

q+1 , 𝛿q+2𝜆
−6𝛼
q+1 ≤ Λ−�̂� [𝛿q+2(1−𝜆−6𝛼

q+1 )]
1+�̂�`

−2
b
𝛼

q+1 ;

the first one follows from `q ∼ `
1/b
q+1; the second one follows from (7.2.14) and the

following relations, which hold for a sufficiently large:

1−𝜆−6𝛼
q+1 ≥ 1

2
⇐⇒ 𝜆−6𝛼

q+1 ≤ 1
2
, 𝜆−6𝛼

q+1 ≤ 𝜁
�̂�
q+2`

−2
b
𝛼

q+1 2−1−�̂� ;

• The requirements (ii) can be rewritten as

𝜌1+�̂�
q `−2𝛼

q ≥ (1+ �̂�)(𝜌q − 𝛿q+2)`
−2

b
𝛼

q+1 max{[𝜌q − 𝛿q+2𝜆
−6𝛼
q+1 ]

�̂� ,𝛿 �̂�q+2(1−𝜆−6𝛼
q+1 )

�̂�},

which easily follows for sufficiently small �̂� and sufficiently large a, since `−2𝛼
q ∼

`
−2

b
𝛼

q+1 ;

• Note that G′′ = 0 because G is linear in s, and the same is true of F ′′, meaning that
(iii) is simply

0 ≤ Λ−�̂� �̂�(1+ �̂�)G�̂�−1(s)G′2(s)`
−2

b
𝛼

q+1

= Λ−�̂� �̂�(1+ �̂�)[(1− s)𝜌q + 𝛿q+2(1−𝜆−6𝛼
q+1 )]

�̂�−1(𝜌q − 𝛿q+2)
2`

−2
b
𝛼

q+1 ,

which is obvious, since all those factors are positive.
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We have thus obtained (Cq+1).
The velocity estimate in (Dq+1) for j = q+1 follows from (6.4.18) and (6.3.16). The trace
estimate in (Dq+1) follows from (6.4.21) and (6.3.14). Finally, (Eq+1) follows precisely
as ( fq+1) in the proof of Proposition 7.1.1 in Section 7.1 above, and (Fq+1) is obtained
just like (gq+1). Keep in mind Remark 7.2.1 above for all of these.
Thus, the inductive step is proved.
Finally, the convergence of {vq} to a solution of the hypodissipative Navier-Stokes equa-
tions as in the statement of Proposition 7.2.1 (i.e. the one we are proving) follows easily
from the sequence of estimates in (Aq)-(Fq), analogously to Step 4 of Proposition 7.1.1
proved in Section 7.1 above.
The Navier-Stokes term T will be handled in the same way as T̂ was dealt with in
Proposition 7.1.1, giving us once more that the maximal time ts of “smallness” of T must
satisfy

lim
a→∞

ts = 0.

Step 3: From one to infinitely many

To obtain infinitely many solutions, we change the generalized kinetic energy of the initial
subsolution as described in the statement of Proposition 7.2.1, i.e. by adding a trace term
to the Reynolds stress. If we can iterate as described above, since the iteration preserves
this energy, we will have infinitely many solutions, which have the same initial datum
(since the scheme never perturbs at t = 0), which have different kinetic energies for some
time t, implying they do not coincide. Naturally, we will need the perturbation e from
the statement to satisfy e(0) = 0, otherwise it is not possible for the scheme to preserve
the generalized kinetic energy without perturbing at t = 0, which the scheme does not do.
This is the reason for requiring (7.2.11).
The main idea of this step is to change the kinetic energy by replacing (v̂, p̂, R̂) with

(v′0, p′0,R
′
0) – (v̂, p̂, R̂+ e/3 Id),

as described in the statement of Proposition 7.2.1. While this clearly retains condition
(4.2.3), since the initial datum is not changed, it does not necessarily preserve conditions
(4.2.4), and (4.2.5). Looking at the details of the iteration scheme, however, we realize
that those conditions are only needed to obtain the conditions (D0). If we then show that
the conditions (A0)− (F0) (and thus also (D0)) are maintained with such a perturbation,
we need not worry about losing (4.2.4) and (4.2.5).
Conditions about the velocity are clearly preserved, and (A′

0) and (E ′
0) are vacuous, so all

we need is

𝜌′0 ≤
5
2
𝛿 (B′

0)

∥∥R̊′
0
∥∥

0 ≤


Λ 𝜚

′1+�̂�
0 `

−2
b
𝛼

q 𝜌′0 ≥ 2𝛿2

Λ 𝜚′1+�̂�
0

3
2
𝛿2 ≤ 𝜌′0 ≤ 2𝛿2

Λ 𝜚′1+𝛾
0 𝜌′0 ≤

3
2
𝛿2

(C′
0)

∣∣∂t 𝜌
′
0
∣∣≤ 𝜌′0𝛿

1
2
0𝜆0. (D′

0.2, i.e. (7.2.21))
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Concerning (B′
0), the proposition assumes �̂� ≤ 5/2𝛿, so that the condition is preserved by

requiring (7.2.8). Since �̂�(0) = 0, e has the possibility to vary in a neighborhood of t = 0
without becoming negative.
(D′

0.2) boils down to the following condition on e:{
|∂te| ≤ e

√
𝛿0 𝜆0 e > 0

|∂te|+ |e|
√
𝛿0 𝜆0 ≤ �̂�

√
𝛿0 𝜆0 −|∂t �̂�| otherwise .

To keep things simple, we require (7.2.9) and (7.2.10).
Coming to (C′

0), we first assume e > 0, which immediately yields, by the properties of
(v̂, p̂, R̂), that

∥∥R̊0
∥∥

0 ≤


Λ( �̂�+Λ−1e)1+�̂�`

−2
b
𝛼

q �̂� ≥ 2𝛿2

Λ( �̂�+Λ−1e)1+�̂� 3
2
𝛿2 ≤ �̂� ≤ 2𝛿2

Λ( �̂�+Λ−1e)1+𝛾 �̂� ≤ 3
2
𝛿2

.

Our goal is to obtain that

∥∥R̊0
∥∥

0 ≤


Λ( �̂�+Λ−1e)1+�̂�`

−2
b
𝛼

q �̂�+ e ≥ 2𝛿2

Λ( �̂�+Λ−1e)1+�̂� 3
2
𝛿2 ≤ �̂�+ e ≤ 2𝛿2

Λ( �̂�+Λ−1e)1+𝛾 �̂�+ e ≤ 3
2
𝛿2

.

• We first note that �̂�+e ≤ 3/2𝛿2 =⇒ �̂� ≤ 3/2𝛿2, so in this case we have the desired
estimate for ‖R̊0‖0;

• If �̂� ≤ 3/2𝛿2 but 3/2𝛿2 ≤ �̂�+ e ≤ 2𝛿2, since �̂� < 𝛾 and ‖R̊0‖0 ≤ Λ( �̂�+Λ−1e)1+𝛾 ,
we have the desired estimate;

• If �̂�≤ 3/2𝛿2 but �̂�+e ≥ 2𝛿2, the desired estimate is even looser than in the previous
item;

• If 3/2𝛿2 ≤ �̂�≤ 2𝛿2, then either �̂�+e also satisfies this bound, in which case we have
the desired estimate, or �̂�+ e ≥ 2𝛿2, in which case the desired estimate is looser;

• Finally, if �̂� ≥ 2𝛿2, then so is �̂�+ e, meaning again we have the desired estimate.

Thus, we need no additional conditions to obtain (C′
0). Summing up, the conditions we

must impose on e are precisely (7.2.8)-(7.2.10). The proof is complete. 3
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Chapter 8

Proof of the density theorem

Proof. (Theorem 1.3.1)
We choose 𝜂 > 0, 𝜃 < 𝛽 < 𝛽 ,w∈ L2 with divw = 0. Using the above result, we

obtain a smooth strict subsolution (ṽ′, p̃′, R̃′) on [0,T ] such that (4.1.2)-(4.1.3) hold for
some 𝛿 > 0 which we will fix later. We now note that adding a smoothly time-dependent
non-negative multiple of the identity to R̃′ does not change the fact that (ṽ′, p̃′, R̃′) is a
smooth strict subsolution. We may thus substitute our strict subsolution with

(ṽ, p̃, R̃) –

(
ṽ′, p̃′, R̃′+

2
3|T3|

eK(t) Id
)
,

where K is a constant to be specified later in this proof, 0 ≤ eK(t) ≤ (𝛿/2 −Kt)+, and
eK(0) = 𝛿/2. Combining the choice of eK with (4.1.3), we obtain the following relations
for 𝛿/2 −Kt > 0 and t ≤ T̃𝛿 with T̃𝛿 given by Lemma 4.1.1:

1
2

∫
T3

(
|ṽ|2(x,0)+ tr R̃(x,0)

)
dx = 1

2

∫
T3

|w|2(x)dx+ 3
2
𝛿 (8.0.1)

1
2

∫
T3

(
|ṽ|2(x, t)+ tr R̃(x, t)

)
dx+

t∫
0

∫
T3

∣∣∣(−Δ)
𝜃

2 ṽ
∣∣∣2(x,s)dxds ≤ 1

2

∫
T3

|w|2(x)dx+ 3
2
𝛿−Kt.

(8.0.2)

Indeed, passing from (ṽ′, p̃′, R̃′) to (ṽ, p̃, R̃) adds a term eK to the left-hand side, since
tr R̃ = tr R̃′+2|T3|−1eK . Now let ṽ0 be the initial datum of ṽ, and note that∫

T3

tr R̃(x,0)dx = ‖w‖2
L2 −‖ṽ0‖2

L2 +3𝛿 ≤ ‖w− ṽ0‖L2(‖w‖L2 +‖ṽ0‖L2)+3𝛿

≤ 𝛿(2‖w‖L2 + 𝛿)+3𝛿 ≤C(w)𝛿. (8.0.3)

Using Proposition 7.1.1 and Proposition 7.2.1, we can produce aC 𝛽 -adapted subsolution
(v̂, p̂, R̂) and a C 𝛽 weak solution (v, p), satisfying the integral equalities (7.1.1) and (7.2.3)
and the H−1 estimates (7.1.3) and (7.2.5), and the functions T̂,T of (7.1.4) and (7.2.6).
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Recall that we have that∫
T3

(|ṽ|2 + tr R̃)(x, t)dx =
∫
T3

(|v̂|2 + tr R̂)(x, t)dx =
∫
T3

|v(x, t)|2dx, (8.0.4)

and thus
‖v(t)‖2

2 −‖ṽ(t)‖2
2 =

∫
tr R̃(x, t)dx. (8.0.5)

Call v0 the initial datum of v and of v̂, and note that, by (7.1.3), (8.0.5), and (8.0.3), we
have that

‖v0 − ṽ0‖2
2 = ‖v0‖2

2 −‖ṽ0‖2
2 −2 ·

∫
T3

ṽ0 · (v0 − ṽ0)dx ≤C(w)𝛿+2𝜎‖ṽ0‖H1.

Thus, we first choose 𝛿 sufficiently small so that C(w)𝛿 <
𝜂2

2
and obtain ṽ, then we fix

𝜎 <
𝜂2

4‖ṽ0‖H1
and obtain v̂, and finally we conclude that

‖v0 − ṽ0‖2
2 ≤ 𝜂2 =⇒ ‖ṽ0 − v0‖L2 ≤ 𝜂 .

As for the admissibility condition, choosing K so that |∂t(T+ T̂)| ≤ K − 1, as is made
possible by (7.1.5) and (7.2.7), we have that

1
2

∫
T3

|v(x, t)|2dx+

t∫
0

∫
T3

∣∣∣(−Δ)
𝜃

2 v
∣∣∣2(x,s)dsdx

(8.0.4)
=

1
2

∫
T3

(
|ṽ(x, t)|2 + tr R̃(x, t)

)
dx− (T̂+T)(t)+

t∫
0

∫
T3

∣∣∣(−Δ)
𝜃

2 ṽ
∣∣∣2(x,s)dsdx

(8.0.2)
≤

∫
T3

1
2
|w|2(x)dx+ 3

2
𝛿− t

(8.0.1)
≤ 1

2

∫
T3

(
|ṽ0|2 + tr R̃(x,0)

)
dx

(8.0.4)
=

1
2

∫
T3

|v|2(x,0)dx,

where the second-last inequality is strict for all t 6= 0 where (8.0.2) is valid. This yields
the energy inequality for t < T𝜂 – min{T̃𝛿 ,T ′

𝛿}, where T̃𝛿 is given by Lemma 4.1.1, and
T ′
𝛿 – 𝛿/2K . Since we can only estimate |∂tT+ ∂tT̂| with a quantity which is potentially

unbounded as 𝛿 → 0 (as seen in (7.1.5) and (7.2.7)), and C(w)𝛿 < 𝜂2
/2 implies 𝛿 → 0

as 𝜂 → 0, we conclude that both T ′
𝛿 and T̃𝛿 tend to zero as 𝜂 → 0. Thus, our time T𝜂 of

guaranteed admissibility satisfies
lim
𝜂→0

T𝜂 = 0.

So far, we have only obtained one solution for each 𝜂 . Suppose that, from (ṽ, p̃, R̃), we
produced the adapted subsolution (v̂, p̂, R̂), and from there the solution (v, p). As noted in
Proposition 7.2.1, considering

(v̂′, p̂′, R̂′) –

(
v̂, p̂, R̂+

e
3

Id
)
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with e satisfying a suitable set of conditions, we can obtain more weak solutions and ensure
these solutions are admissible up to T𝜂 . The required conditions are (7.2.8)-(7.2.11) from
Proposition 7.2.1 plus the following one, which ensures the admissibility of the new
solutions:

1
2
|T3|e(t)≤ 1

2

∫
T3

(
|v̂(x,0)|2 + tr R̂(x,0)−|v̂(x, t)|2 − tr R̂(x, t)

)
dx

−
t∫

0

∫
T3

∣∣∣(−Δ)
𝜃

2 v̂(x,s)
∣∣∣2dxds− T̂−Kt,

K being the same constant used to find (v, p). Since the right-hand side of the above
inequality is strictly positive for all t 6= 0 where (v, p) is admissible, this condition is
compatible with requiring that e ≥ 0 as done above.
This completes the proof. 3
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Appendix A

Classical calculus inequalities

We begin this appendix with a few estimates concerning the Hölder norms we introduced
in the notational section of Chapter 1. First of all, we have the following classical estimates.

Lemma A.1. For 0 ≤ s ≤ r and f ,g : T3 → Rd

[ f g]r ≤C(r)([ f ]r‖g‖0 +‖ f‖0[g]r) (A.1)

[ f ]s ≤C(r,s)‖ f‖
1−s

r
0 [ f ]

s
r
r. (A.2)

We also have the following estimates on the norms of compositions.

Lemma A.2. For f : T3 → S⊆Rd and Ψ : S → R:

[Ψ◦ f ]m ≤ K(d,m)([Ψ]1‖D f‖m−1 +‖∇Ψ‖m−1‖ f‖m−1
0 ‖ f‖m) (A.3)

[Ψ◦ f ]m ≤ K(d,m)([Ψ]1‖D f‖m−1 +‖∇Ψ‖m−1[ f ]m1 ). (A.4)

We now recall the definition of convolution:

( f ∗g)(x) –

∫
T3

f (x− y)g(y)dy.

We note that convolution is commutative, and that D( f ∗g) = f ∗Dg = D f ∗g. Moreover,
we have the following estimates for the Hölder norms of convolutions.

Lemma A.3. For all s,r ≥ 0:

‖ f ∗ 𝜑`‖r+s ≤C(r,s)`−s‖ f‖r

‖ f − f ∗ 𝜑`‖r ≤C(r,s)`1‖ f‖r+1

‖ f − f ∗ 𝜑`‖r ≤C(r,s)`2‖ f‖r+2

‖( f g)∗ 𝜑`− ( f ∗ 𝜑`)(g∗ 𝜑`)‖r ≤C(r,s)`2−r‖ f‖1‖g‖1,

(A.5)

where 𝜑 is a standard mollification kernel, i.e. 𝜑 ∈C∞
c (B1; [0,1]) and

∫
𝜑 = 1, and

𝜑` – 1/`3𝜑(·/`).
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The above lemmas can then be applied to the time slices of time-dependent vector
fields, e.g. the velocities of subsolutions, with the notation ‖ f (t, ·)‖Cr , [ f (t, ·)]Cr for
the (semi)norms of the slices. By taking supremum norms in time, the above inequalities
can be formulated with C0

t C
r
x norms.

To conclude this appendix, we recall classical Schauder estimates (see e.g. the book
[34]), which will be used in several places in this thesis.

Lemma A.4 (Schauder estimates). For any 𝛼 ∈ (0,1) and any m∈N, there exists a
constant C(𝛼,m) with the following properties. If 𝜑,𝜓 : T3 → R are the unique solutions
of {

Δ𝜑 = f
−
∫
𝜑 = 0

{
Δ𝜓 = divF
−
∫
𝜓 = 0

,

then

‖𝜑‖m+2+𝛼 ≤C(m,𝛼)‖ f‖m+𝛼 ‖𝜓‖m+1+𝛼 ≤C(m,𝛼)‖F‖m+𝛼 .
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Appendix B

Estimates on the transport and
transport-diffusion equations

Associated to the Euler equations (2.1.1.1) is the transport equation, which describes how
a quantity evolves with the flow of the fluid:

(∂t + v ·∇) f = g.

In particular, for g = 0, we say f is transported along the flow, meaning it is constant
along particle trajectories. A priori estimates on solutions of this transport equations can
be useful in proving results about the Euler equations, since the former becomes the first
of the latter for f = v and g =−∇p. Indeed, we will see in Chapter 6 that such estimates
are a useful tool for the proof of the density theorems in Chapter 1. The estimates we will
use are found in [8, Proposition B.1], which states the following.

Proposition B.1 (Estimates on the transport equation). Assume |t−t0|‖vt‖1 ≤ 1. Then,
any solution f of {

(∂t + v ·∇) f = g
ft0 = h (B.1)

satisfies

‖ ft‖0 ≤ ‖h‖0 +

t∫
t0

‖g𝜏‖ds

‖ ft‖𝛼 ≤ e𝛼

‖h‖𝛼 +
t∫

t0

‖gs‖𝛼ds


for all 0 ≤ 𝛼 ≤ 1 and, more generally, for any N ≥ 1 and 0 ≤ 𝛼 < 1

[ ft ]N+𝛼 ≲ [h]N+𝛼 + |t|[vt ]N+𝛼 [h]1 +

t∫
t0

(
[gs]N+𝛼 +(t − s)[vs]N+𝛼 [gs]1

)
ds.
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Define Φ to be the inverse of the flux X of v starting at time t0 as the identity (i.e.
d/dt X = v(t,X) and X(t0,x) = x). Under the same assumptions as above we have that

‖∇Φt − Id‖0 ≲ |t|[vt ]1

[Φt ]N ≲ |t|[vt ]N ∀N ≥ 2.

In the case of the (fractional) Navier-Stokes equations, the analogue of the transport
equation seen above is the transport-diffusion equation, which adds the laplacian term to
the transport equation:

(∂t + v ·∇+(−Δ)𝜃) f = g.

Once more, it reduces to the (fractional) Navier-Stokes equations once f = v,g = −∇p,
so having a priori estimates on its solutions can be useful to establish properties of the
(fractional) Navier-Stokes system. We thus close this appendix with the estimates on the
transport-diffusion equation found in [26, Proposition 3.3]

Proposition B.2 (Estimates on the transport-diffusion equation). Assume 0 ≤ (t −
t0)[vt ]1 ≤ 1, 𝜈 > 0,0 < 𝜃 ≤ 1. Then, any solution of{

(∂t + v ·∇+ 𝜈(−Δ)𝜃)u = f in (t0,T )×T3

ut0 = g in T3

satisfies

‖ut‖𝛼 ≤ e𝛼

‖g‖𝛼 +
t∫

t0

‖ fs‖𝛼ds


for all 0 ≤ 𝛼 ≤ 1 and, more generally, for any N ≥ 1 and 0 ≤ 𝛼 < 1

[ut ]N+𝛼 ≲ [g]N+𝛼 +(t − t0)[vt ]N+𝛼 [g]1 +

t∫
t0

(
[ fs]N+𝛼 +(t − s)[vs]N+𝛼 [ fs]1

)
ds,

where the implicit constants depends only on N,𝛼.
In both of these lemmas, we have used the notation ft(x) – f (t,x) for the time-slices of
functions defined on [0,T ]×T3, as introduced in the notational section of Chapter 1.
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Appendix C

Mikado flows and antidivergence

In this appendix, we collect some results regarding Mikado flows and a “stationary phase
lemma” which is used at several points in the proof of the density results. The proofs of
the results in this appendix can be found in [19].

Lemma C.1 (Mikado flows). For any compact subset N⊂⊂S3×3
+ there exists a smooth

vector field W : N×T3 → R3 such that, for every R∈N{
div𝜉 (W (R,𝜉 )⊗W (R,𝜉 )) = 0
div𝜉 W (R,𝜉 ) = 0 , (C.1)

and {
−
∫
T3 W (R,𝜉 )d𝜉 = 0

−
∫
T3 W (R,𝜉 )⊗W (R,𝜉 )d𝜉 = R

. (C.2)

Using Fourier series in 𝜉 and the above integral and differential relations, we obtain that

W (R,𝜉 ) = ∑
k∈Z3∖{0}

ak(R)Akeik·𝜉 (C.3)

W (R,𝜉 )⊗W (R,𝜉 ) = R+∑
k∈Z3∖{0}

Ck(R)eik·𝜉 , (C.4)

where the coefficients ak,Ck∈C∞, the Ak satisfy Ak ·k = 0, |Ak|= 1, the Ck satisfy Ckk = 0,
and moreover

sup
R∈N

∣∣DN
R ak(R)

∣∣= ‖ak‖CN(N) ≤
C(N,N,m)

|k|m
(C.5)

sup
R∈N

∣∣DN
RCk(R)

∣∣= ‖Ck‖CN(N) ≤
C(N,N,m)

|k|m
. (C.6)

A fact used in Section 5.1 is that, if we set

U(R,𝜉 ) – ∑
k

ak(R)
ik×Ak

|k|2
eik·𝜉 , (C.7)
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then we have that curl𝜉 U =W . Indeed

curl𝜉 U(R,𝜉 ) = ∑
k`mn

𝜀`mn∂m

(
ak(R)

ik×Ak

|k|2
eik·𝜉

)
n
e`

= ∑
k`mnpq

𝜀`mn𝜀npqak(R)ikp(Ak)q|k|−2 · ikmeik·𝜉 e`

= −∑
k`mpq

(𝛿`p𝛿mq − 𝛿`q𝛿mp)ak(R)kp|k|−2(Ak)qkmeik·𝜉 e`

= ∑
k

ak(R)Akeik·𝜉 −∑
kpq

ak(R)kpkq|k|−2(Ak)qeik·𝜉 ep

=W (R,𝜉 )−∑
k

ak(R)(k ·Ak)︸ ︷︷ ︸
0

k
|k|2

eik·𝜉 .

Continuing, we recall some elementary calculations for the reader’s convenience. With
the definitions we gave for ∇,D, setting D(v)

t – ∂t + v ·∇, we have that

∇eik·Φ = i∇Φ · keik·Φ = iek·Φk ·DΦ (C.8)

D(v)
t (DΦ) =D(D(v)

t Φ)−DΦ ·Dv. (C.9)

Observing that DΦDΦ−1 = Id and thus 0 = D(v)
t (DΦDΦ−1) = D(v)

t (DΦ) ·DΦ−1+DΦ ·
D(v)

t (DΦ−1), we can see that

D(v)
t DΦ−1 =−DΦ−1D(v)

t (DΦ)DΦ−1 = (∇Φ−1∇v)T −DΦ−1 ·DD(v)
t Φ ·DΦ−1.

(C.10)
We now introduce a certain “anti-divergence operator” which was used to obtain the new
Reynolds stress R in the various approximation results.

Definition C.1 (Anti-divergence R). Define the operator � so that{
Δ� v = v−−

∫
T3 vdx∫

T3 �v = 0
,

and then define

Rv –
1
4
(DP� v+(DP� v)T )+

3
4
(D� v+(D� v)T )− 1

2
(div�v) Id, (C.11)

P being the Leray projection onto divergence-free fields with zero average.

This operator satisfies the following properties.

Lemma C.2 (Divergence and R). For any C∞ vector field v, Rv∈S3×3
0 is symmetric and

trace-free, and moreover

divRv = v−−
∫
T3

vdx. (C.12)
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Moreover, we have the following statement, which we was used numerous times throughout
the thesis.

Lemma C.3 (Stationary Phase Lemma). Let 𝛼 ∈ (0,1),N ≥ 1. Let a∈C∞(T3),Φ∈
C∞(R3,R3) be smooth functions and assume

1
K

≤ |DΦ| ≤ K on T3.

Then ∣∣∣∣∣∣
∫
T3

a(x)eik·Φdx

∣∣∣∣∣∣≤C(K,N)
‖a‖N +‖a‖0‖Φ‖N

|k|N
, (C.13)

and for the operator R of (C.11) above we have that

∥∥∥R(a(x)eik·Φ)
∥∥∥
𝛼
≤C(𝛼,K,N)

(
‖a‖0

|k|1−𝛼
+

‖a‖N+𝛼 +‖a‖0‖Φ‖N+𝛼

|k|N−𝛼

)
. (C.14)
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